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Abstract 

The first chapter of this dissertation introduces and discusses the synthesis of a series of 

substituted quinolines as glycogen synthase kinase-3 (GSK-3) inhibitors.  GSK-3 is highly 

associated with Alzheimer’s disease (AD), and it is suggested that inhibition of this enzyme 

could alleviate the symptoms of AD. Total 16 novel substituted quinolines were designed and 

synthesized, and their bio-activities were evaluated on MC65 cell protection assay. Four of the 

most active compounds were selected to test their enzyme inhibitory activities on GSK-3 and 

protein kinase C assays. Among these compounds, 4-{[6-methoxy-4-methyl-5-(3-

(trifluoromethyl)phenoxy)quinolin-8-ylamino]methyl} phenol (1.5) shows the highest MC65 cell 

protection and GSK-3 enzyme inhibitory activities and potential enzyme specificity. Structure-

activity relationship (SAR) was built as well, and the binding mode was simulated via 

computational method to interpret the observed SAR. Although additional bio-evaluation is 

needed, compound 1.5 is a promising lead compound for the development of more active and 

less toxic drug for the counteraction of AD. 

The second chapter introduces the progress on the total synthesis of myriceric acid A. 

Myriceric acid A is a triterpene-type natural product which was isolated from the young twigs of 

Myrica cerifera. It is a non-peptide endotheline-1 (ET-1) receptor antagonist. The total synthesis 

of this natural product started from the stereoselective synthesis of bicyclic intermediate (R)-

5,8a-dimethyl-3,4,8,8a-tetrahydronaphthalene-1,6(2H,7H)-dione [(-)-2.28]. Then a new method 

was developed to enatioselectively synthesize the tricyclic intermediate (4aR,8R,8aR)-8-(tert-

butyldimethylsilyloxy)-1,4a,8a-trimethyl-4,4a,4b,5,6,7,8,8a,9,10-decahydro phenanthren-2(3H)-

one [(+)-2.72] which used the synthesized optically-pure (4aR,5R)-5-(tert-

butyldimethylsilyloxy)-1,4a-dimethyl-4,4a,5,6,7,8-hexahydronaphthalen-2(3H)-one [(-)-2.53] 

derived from (-)-2.28 and -trimethylsilylvinyl ethyl ketone via a cascade reductive Michael 

addition – aldol condensation reaction. After functional group inter-conversion, the desired 

tricyclic intermediate (4a'S,8a'R)-1',1',4a',8a'-tetramethyldecahydro-1'H-spiro[[1,3]dioxolane-

2,2'-phenanthren]-8'(3'H)-one [(-)-2.33] was synthesized. An intramolecular cascade Michael 

addition-aldol condensation reaction was designed to construct the triterpene-skeleton of 

myriceric acid A, and the desired starting material for this reaction was prepared with the 

trimethyl{(4a'R,8a'R)-1',1',4a',8a'-tetramethyl-3',4',4a',4b',5',6',8a',9',10',10a'-decahydro-1'H-



  

spiro[(1,3)dioxolane-2,2'-phenanthrene]-8'-yloxy}silane [(-)-2.81] and 3,3-dimethyl-7-oxo-

octanal (2.46) via Mukaiyama aldol condensation reaction. The resulting pentacyclic compound 

was further transformed to the desired ester (6a'R,8a'R,12a'S,12b'R,14b'R)-ethyl 

4',4',6a',11',11',14b'-hexamethyl-8'-oxo-2',4',4a',5',6',6a',8',8a',9',10',11',12',12a',12b',13',14',14a', 

14b'-octadecahydro-1'H-spiro[(1,3) dioxolane - 2, 3 '- picene]-8a'-carboxylate (-)-2.106. The 

further investigation on total synthesis of myriceric acid A will be pursued in future. 
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Abstract 

The first chapter of this dissertation introduces and discusses the synthesis of a series of 

substituted quinolines as glycogen synthase kinase-3 (GSK-3) inhibitors.  GSK-3 is highly 

associated with Alzheimer’s disease (AD), and it is suggested that inhibition of this enzyme 

could alleviate the symptoms of AD. Total 16 novel substituted quinolines were designed and 

synthesized, and their bio-activities were evaluated on MC65 cell protection assay. Four of the 

most active compounds were selected to test their enzyme inhibitory activities on GSK-3 and 

protein kinase C assays. Among these compounds, 4-{[6-methoxy-4-methyl-5-(3-

(trifluoromethyl)phenoxy)quinolin-8-ylamino]methyl} phenol (1.5) shows the highest MC65 cell 

protection and GSK-3 enzyme inhibitory activities and potential enzyme specificity. Structure-

activity relationship (SAR) was built as well, and the binding mode was simulated via 

computational method to interpret the observed SAR. Although additional bio-evaluation is 

needed, compound 1.5 is a promising lead compound for the development of more active and 

less toxic drug for the counteraction of AD. 

The second chapter introduces the progress on the total synthesis of myriceric acid A. 

Myriceric acid A is a triterpene-type natural product which was isolated from the young twigs of 

Myrica cerifera. It is a non-peptide endotheline-1 (ET-1) receptor antagonist. The total synthesis 

of this natural product started from the stereoselective synthesis of bicyclic intermediate (R)-

5,8a-dimethyl-3,4,8,8a-tetrahydronaphthalene-1,6(2H,7H)-dione [(-)-2.28]. Then a new method 

was developed to enatioselectively synthesize the tricyclic intermediate (4aR,8R,8aR)-8-(tert-

butyldimethylsilyloxy)-1,4a,8a-trimethyl-4,4a,4b,5,6,7,8,8a,9,10-decahydro phenanthren-2(3H)-

one [(+)-2.72] which used the synthesized optically-pure (4aR,5R)-5-(tert-

butyldimethylsilyloxy)-1,4a-dimethyl-4,4a,5,6,7,8-hexahydronaphthalen-2(3H)-one [(-)-2.53] 

derived from (-)-2.28 and -trimethylsilylvinyl ethyl ketone via a cascade reductive Michael 

addition – aldol condensation reaction. After functional group inter-conversion, the desired 

tricyclic intermediate (4a'S,8a'R)-1',1',4a',8a'-tetramethyldecahydro-1'H-spiro[[1,3]dioxolane-

2,2'-phenanthren]-8'(3'H)-one [(-)-2.33] was synthesized. An intramolecular cascade Michael 

addition-aldol condensation reaction was designed to construct the triterpene-skeleton of 

myriceric acid A, and the desired starting material for this reaction was prepared with the 

trimethyl{(4a'R,8a'R)-1',1',4a',8a'-tetramethyl-3',4',4a',4b',5',6',8a',9',10',10a'-decahydro-1'H-



  

spiro[(1,3)dioxolane-2,2'-phenanthrene]-8'-yloxy}silane [(-)-2.81] and 3,3-dimethyl-7-oxo-

octanal (2.46) via Mukaiyama aldol condensation reaction. The resulting pentacyclic compound 

was further transformed to the desired ester (6a'R,8a'R,12a'S,12b'R,14b'R)-ethyl 

4',4',6a',11',11',14b'-hexamethyl-8'-oxo-2',4',4a',5',6',6a',8',8a',9',10',11',12',12a',12b',13',14',14a', 

14b'-octadecahydro-1'H-spiro[(1,3) dioxolane - 2, 3 '- picene]-8a'-carboxylate (-)-2.106. The 

further investigation on total synthesis of myriceric acid A will be pursued in future. 
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Chapter 1 - Synthesis of quinolines as glycogen synthase kinase 3-

beta (GSK 3-) inhibitors possessing neural protective activities 

 1.1 Introduction – GSK-3 and its relationship with Alzheimer’s disease (AD)  

Glycogen synthase kinase-3 are the thirdly discovered kinases for controlling the activity 

of glycogen synthase enzyme, and, in human body, two isoforms of glycogen synthase kinase-3 

exist, which are named as glycogen synthase kinase-3 alphaGSK-3) and glycogen synthase 

kinase-3 beta (GSK-3).
1
 GSK-3 is found having a high level of concentration  in central 

nervous system (CNS) tissue and playing an important role in many neuronal cellular activities.
2
 

The imbalanced activity of GSK-3 is associated with many CNS degenerative diseases, such as 

Alzheimer’s disease (AD).
3
 

AD now is the most common type of dementia, and about 50 - 80 % of dementia patients 

are diagnosed as AD patients.
4a

 Development of this disease is highly associated with the 

increase of age, and most of AD patients are 65 or older. This disease is aggravated over time. At 

the early stage, AD only induces a short-term memory loss; but the advanced-stage AD causes 

cognitive impairment, long term memory loss, and loss of motor functions as well.
4b 

Most AD 

patients die in about 9 years after the diagnose of the disease. Till now, there is still no cure for 

the AD because the detailed pathological mechanism is still not known. However, considering 

that most of AD patients are elderly and slowing down the AD development could reduce their 

suffer and prolong their life presently, all of the available therapies are aiming alleviate the 

symptoms.
4
  

AD shows two main pathological characters: extracellular toxic amyloid beta (A) 

oligomer deposits and intracellular fibrillary tangles.
4
 Toxic A oligomer is composed of the 

toxic A peptide which is cleaved from the amyloid precursor protein (APP), and the 

intracellular tangles are made of the hyper-phosphorylated tau proteins.
4b

 These toxic A 

oligomer and fibrillary tangles induce the neuronal cell death.
4b

 GSK-3 is indirectly or directly 

associates with the formations of A oligomer and fibrillary tangles.
3
 In AD’s brain, GSK-3 is 

highly expressed and deregulated.
3
 Highly expressed GSK-3 hyper-phosphorylates tau protein 

to produces fibrillary tangles.
4b

 Inhibition of GSK-3 by lithium chloride shows protection effect 

on neural cells.
5
 In AD mice model, lithium chloride treatment reduces the A oligomer 
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production.
8
 In clinical trial, combination of lithium with drug Divalporex which has been shown 

to inhibit GSK-3 is used to reduce the hyper-phosphorylation of tau.
8
 Therefore, GSK-3 is a 

potential target for alleviation of the AD symptoms. 

There are only 2 types of FDA approved drugs for AD in the market now;
6
 however, 

these drugs either have strong side-effects or show less therapeutic effect than expected after 

long-term study.
7  

Research on discovering new drug with better therapeutic effect and less side-

reactions for AD are highly demanded and carrying out by scientists. Drug candidates for AD  

which are targeting GSK-3 have been reported as well.
3,8,9

 Among these reported inhibitors, 

only two candidates are currently in the clinical trial for AD, which are Np-12 (phase I)
8
 and 

tideglusib (phase II)
9
; however, there is still no conclusive result is reported yet. The rest of the 

GSK-3 inhibitors are still in the different stages of drug discovery.
9
  

Figure 1.1 : Structure of Np-12 and tideglusib 

N
N

S
Me

O

O

N S

NO

O

Np-12 (Phase I) tideglusib (Phase II)  

It is worthy to note that most of these reported GSK-3 inhibitors are pyrimidine analog, 

pyridine analog, pryarzole and thiazole analog compounds (Table 1.1).
3,8

 To expand the 

structural diversity of drug candidates and enhance the possibility to develop more effictive 

medicine for AD, novel GSK-3 inhibitors as AD drug candidates possessing different structural 

characters a.  
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Table 1.1 : First three of the largest groups of reported GSK-3 inhibitors 
3,8

  

 Numbers of compounds 

reported 

Example 

Pyrimidine analog 

N

N

 

Around 1500, about 160 of 

them have IC50 under 100 nM; 

CGP60474, IC50: 10 nM.

N

N
H
N Cl

N
H

HO

 

Pyridine analog 

N

 

Around 1400, about 120 of 

them have IC50 under 100 nM; N
H
N

N

Cl Cl

N
H

N
O2N

CT20026, IC50: 4 nM.

NH2

N
MeO

 

Pryarzole analog 

N
H

N

 & 

N

S  

Around 700, about 80 of them 

have IC50 under 100 nM; 

S

NO2N N
H

N
H

O

O
Me

ARA014418, IC50: 101 nM.  

 

In this study, a focus library of quinoline compounds were designed and synthesized as 

the novel type of GSK-3 inhibitors possessing neural cell protection activities.  

 

 1.2 Design and syntheses of quinoline compounds  

In this section, the design and syntheses of quinolines are described and discussed. 

Initially, reported compounds PQ-1
10

 and PQ-7
10

 which were firstly prepared by Dr. 

Aibin Shi in Dr. Duy H. Hua’s laboratory were tested their activities on MC65 cell protection 

assay, and the EC50 is 147 ± 20 nM for PQ-1 and 691 ± 27 nM for PQ-7, respectively (Details 

about the MC65 cell assay will be introduced in the section 1.3). Structures of PQ-1 and PQ-7 

are depicted in Figure 1.2. Total four substituents are attached on their quinoline core, and they 

are 4-methyl group, 5-(3-triflouromethylphenoxyl) group, 6-methoxyl and 8-amino group. For 

PQ-1 and PQ-7, the structural difference is the substituent connected at the 8-amino group. PQ-

1 has an alkyl amino group, and PQ-7 contains furan moiety in the 8-amino substituent. With 

these positive feedbacks from neuronal cell protection assay, PQ-1 and PQ-7 were selected as 

the lead compounds to develop a library of novel quinolines with higher neuronal cell protection 

activities. 
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Figure 1.2 : Structure of PQ-1 and PQ-7
10 

N

HN

O
Me

O MeF3C

NH2

45

6

8

3'

PQ-1

N

HN

O
Me

O MeF3C
45

6

8

3'

O

PQ-7

EC50 = 147 ± 20 nM EC50 = 691 ± 27 nM

 

Decided by the lead compounds, two categories of compounds, PQ-1 derivatives and 

PQ-7 derivatives, were designed and synthesized. PQ-7 derivative compounds are introduced 

firstly.  

 By altering the furan moiety with other heterocycles or aromatic structures, compounds 

1.1 – 1.8 were initially designed and synthesized.  

Amino quinolone 1.17
10

 was coupled with benzofuran-2-carboxylaldehyde to form 

compound 1.1 via reductive amination reaction (Scheme 1.1). 

Scheme 1.1 : Synthesis of compound 1.1 

N

HN

O
Me

MeOF3C

O

1.1

N

NH2

O
Me

MeOF3C

1.17

+
O

O

H

cat. AcOH, 
NaCNBH3,MeOH

65% yield

 

The optimal procedure for this reductive amination reaction was explored. 

Initially, acetic acid and sodium cyanoborohydride were planned to be added only after 

compound 1.17 and the aldehyde were completely transferred into the imine intermediate.  

However, after stirring at 25 
o
C over 14 hours, less than 10% of the starting materials were 

transferred into the desired imine, and the rest stayed unchanged. The imine formation is an 

equilibrium process. Since amino group (–NH2) of compound 1.17 is not a strong nucleophile, 

the attack to the aldehyde carbonyl is demoted. Therefore, the reaction reaches equilibrium after 

forming little amount of imine and stop (Scheme 1.2).  
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Scheme 1.2: Incomplete formation of imine intermediate 

N

O

O

Me

NH2

Me

F3C

+ R
CHO

N

O

O

Me

N

Me

F3C

R1.17

MeOH

Imine intermediate

+ H2O

 

The alternative strategy was to add acetic acid and sodium cyanoborohydride after 

compound 1.17 and aldehyde were stirred at 25 
o
C for 30 minutes; then, this mixture was stirred 

at 25 
o
C for 14 hours. Sodium cyanoborohydride could reduce the imine intermediate to generate 

desired product, and the disappearing of imine intermediate in the reaction mixture drives 

reaction equilibrium going forward to the right to complete the reaction. The problem of this 

method is that sodium caynoborohydride could also slowly reduce the aldehyde during long 

reaction period, and this process consumes both the aldehyde and reducing reagent. To solve this 

problem, excess amount of aldehyde (1.2 eq.) and sodium cyanoborohyride (3.0 eq.) are used in 

the reaction. This method is proven to be effective for synthesizing designed compounds, but the 

drawback is the yields are moderate. It might because the formed secondary amine could also 

undergo reductive amination reaction with the aldehyde to yield a dialkylated byproduct, which 

could consume the desired product. 

Besides furans, sulfur-containing heterocyclic aldehydes were coupled with compound 

1.17 as well. With thiazole-2-carboxylaldehyde and 5-phenyl thiophene-2-carboxylaldehyde, 

compound 1.2 and 1.3 were synthesized via the reductive amination reaction under the optimized 

condition, respectively (Scheme 1.3). 

Scheme 1.3 : Syntheses compound 1.2 and 1.3 

N
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O
Me

MeOF3C

N S

1.2

N

NH2

O
Me

MeOF3C

1.17

S

N O

H

cat. AcOH, 
NaCNBH3,MeOH,

S

O

HPh

cat. AcOH, 
NaCNBH3,MeOH, N

HN

O
Me

MeOF3C

S

1.3
Ph

72% yield

78% yield
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3,5-Dimethoxy-4-hydroxyl benzaldehyde, 4-hydroxyl benzaldehyde, were also coupled 

with compound 1.17 to give compounds 1.4 and 1.5 (Scheme 1.4). 

Scheme 1.4 : Syntheses of compound 1.4 and 1.5 

N

HN

O
Me

MeOF3C

1.4
N

NH2

O
Me

MeOF3C

1.17

O

H cat. AcOH, 
NaCNBH3,MeOH,

O

H

cat. AcOH, 
NaCNBH3,MeOH, N

HN

O
Me

MeOF3C

1.5

HO

MeO

MeO

HO

OH

OMeMeO

OH

82% yield

75% yield

 

Bi-quinoline structures were designed as well. Amino quinoline 1.17 was treated with 

carboxylaldehyde substituted quinoines
11

 to give compound 1.6 and 1.7, respectively (Scheme 

1.5). 

Scheme 1.5 : Syntheses of compound 1.6 and 1.7 
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75% yield
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Till then, all of the designed compounds were the N-alkylated derivatives of 1.17. To 

explore the potential of other functionality, an N-amidation product 1.8 was therefore designed 

and synthesized. To prepare compound 1.8, furfural was oxidized by hydrogen peroxide with 

selenium dioxide as a catalyst to yield 2-furoic acid.
12

 This carboxylic acid was treated with 

thionyl chloride (SOCl2) to give compound 1.18 which was directly introduced into compound 

1.17 in dry tetrahydrofuran (THF) solution at 0 
o
C to give compound 1.8 (Scheme 1.6).

13
 

Scheme 1.6 : Synthesis of compound 1.8 
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O
Me

MeOF3C

N

O
Me

MeOF3C

NH2
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+

1.8

75% yield

THF

O
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O
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O
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O
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O

H

O

cat. SeO2,
H2O2

O

OH

O

SOCl2

Furfural 2-Furoic acid

95% yield

 

Prepared compounds 1.1 – 1.8 were tested their cell protection activities on MC65 cell 

protection assay, and compound 1.5 is turned out to be the most active one with EC50 = 120 ± 10 

nM (Testing results are summarized in section 1.3). This compound is six times more active than 

PQ-7, which indicates the success of structure modification. From this stage, compound 1.5 was 

selected as lead compound for the further structure modification (Figure 1.3). Compounds 1.9 – 

1.12 are all derived from compound 1.5. 

Figure 1.3 : Structure of compound 1.5 
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HN

O
Me

O MeF3C
45
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8
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OH

 



8 

 

By keeping the 8-(4-hydroxylbenzyl) amino group unchanged, 6-methoxy group of 

compound 1.5 was modified into 6-hydroxyl group to generate structure of compound 1.9. To 

prepare 1.9, compound 1.17 was treated with boron tribromide (BBr3) in dry dichloromethane 

(DCM) over 14 hours to generated intermediate 1.19 which was coupled with 4-hydroxy 

benzaldehye by the same method as that for the synthesis of compound 1.5 to yield compound 

1.9 (Scheme 1.7). However, the desired product 1.9 could not dissolve well in most of the 

common solvents. Various solvents combinations were tried for column chromatographic 

purification, but pure product could not be obtained. Finally, to remove the impurities, a 

recrystallization procedure was carried out after the column chromatography. Therefore, the 

overall yield of this reaction was lower than compound 1.5.   

Scheme 1.7 : Synthesis of compound 1.9 

N

NH2

O

O Me

Me

F3C

BBr3, DCM

90% yield
N

NH2

HO

O MeF3C

1.17 1.19

N

NH2

HO

O MeF3C

1.19

+ OH

H

O

4-Hydroxybenzaldehyde

cat. AcOH, 
NaCNBH3,MeOH

N

HN

HO

O MeF3C

OH
1.9

52% yield

 

5-(3-Trifluoromethylphenoxyl) group of compound 1.5 was also modified into 5-(3-

fluorophenoxyl), 5-phenoxyl and hydrogen to generate the structures of compounds 1.10, 1.11, 

1.12, respectively (Figure 1.3).  

Figure 1.4 : Structures of designed 1.10, 1.11 and 1.12 
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To synthesize these designed compounds, amino quinolines 1.27, 1.28 and 1.31 were 

needed to be prepared. 

Amino quinolines 1.27 and 1.28 were prepared in the same method as that of compound 

1.17.
10

 Bromide 1.20 was treated with potassium 3-fluorophenolate and potassium phenolate 

respectively to give SNAr products 1.21 and 1.22. 3-Fluoro, an electron-withdrawing group, 

decreased the reactivity of the phenolate, and, therefore, the reaction yield was lower than that of 

1.22. Removals of the acetate groups of 1.21 and 1.22 were furnished by refluxing in 

hydrochloric acid (HCl) and ethanol (EtOH) solution to give anilines 1.23 and 1.24 respectively 

in quantitative yields. Methyl vinyl ketone was added dropwisely into a mixture of compound 

1.23, arsenic pentoxide hydrate in phosphoric acid at 120 
o
C to give nitro quinoline 1.25. Nitro 

quinoline 1.26 was synthesized in the same way by using compound 1.24 as the starting material. 

The nitro group in compounds 1.25 and 1.26 was reduced by iron powder and acetic acid to give 

amino quinolines 1.27 and 1.28 (Scheme 1.8). 

Scheme 1.8 : Syntheses of compounds 1.27 and 1.28 
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O
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DMF
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HCl, EtOH
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O
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As2O5.xH2O,
H3PO4

NO2

O

O

Me

R

N

Me Fe, H2O
AcOH

NH2

O

O

Me

R

N

Me

1.20 R = F or H Compound 1.21: R = F Yield: 65 %
Compound 1.22: R = H Yield: 80 %

Compound 1.23: R = F Yield: 95 %
Compound 1.24: R = H Yield: 98 %

Compound 1.25: R = F Yield: 35 %
Compound 1.26: R = H Yield: 45 %

Compound 1.27: R = F Yield: 95 %
Compound 1.28: R = H Yield: 96 %  

N-Acetyl-p-anisidine was treated with 20 % nitric acid to yield nitration–deacetylation 

product 1.29 in one pot. Aniline 1.29 reacted with methyl vinyl ketone, arsenic pentoxide hydrate 
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in phosphoric acid to furnish the synthesis of nitro quinoline 1.30. Reduction of 1.30 with iron 

powder in acetic acid gave quinoline 1.31 (Scheme 1.9).  

Scheme 1.9 : Synthesis of compound 1.31 

NHAc

O
Me

1.29

NO2

NH2

O
Me20 % HNO3

O

NO2

O
Me

N

Me

Fe, H2O
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O
Me

N

Me

1.31
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As2O5.xH2O
H3PO4

33% yield 87% yield

98% yield

 

Quinoline synthesis is the key step in the syntheses of designed quinolines, and a possible 

mechanism is proposed herein (Scheme 1.10). 

Scheme 1.10 : Proposed mechanism for quinoline synthesis reaction 
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Friedel-Craft reaction

1.32

1.33

Me

O

H

NO2

N
H2

O
Me

R

Me

O
H

Dehydration

 

This quinoline synthesis reaction starts with Michael addition of the aniline –NH to 

methyl vinyl ketone. This is proven by the isolation of the Michael-addition intermediate 1.35 

from the synthesis of compound 1.17 (R = 3-trifluoromethylphenoxyl) (Scheme 1.11).
10

 Intra-

molecular Friedel-Craft reaction followed by dehydration are carried out to furnish the cyclic 

structure construction.   
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Scheme 1.11 : Isolation of the Michael addition product from the synthesis of 1.17
10 

NO2

NH2

O

O

Me

F3C

Me

O

As2O5.xH2O,
H3PO4

NO2

O

O

Me

F3C

N
H

Me
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1.34 1.35

7 % yield

 

An oxidation step is needed to finish the synthesis of aromatic quinoline structure. This 

reaction was carried out with and without argon protection, and the reaction yields did not show 

significant difference. This indicates that the oxidizing reagent is not the oxygen in the air. Under 

heating, As2O5 decomposes to give As2O3 and oxygen (Scheme 1.12);
14 

hence, As2O5 probably is 

the oxygen source to provide the oxygen in situ to furnish the oxidation. Work-up of the reaction 

with sodium hydroxide gave free quinoline compounds. 

Scheme 1.12 : Oxygen from As2O5
14

 

As2O5 As2O3  +  O2  

In the proposed mechanism above, the intramolecular Friedel-Craft reaction is the key 

step for quinoline structure construction. A detailed mechanism of this step is proposed as well to 

interpret the reaction outcomes.  Firstly, the Michael addition products are divided into 2 groups: 

(1) with aryloxyl at 6-position (compound 1.32, 1.23, 1.24); (2) without aryloxyl at 6-position 

(compound 1.30) (Scheme 1.13). 

Scheme 1.13 : Two groups of compounds for mechanism proposal 
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For group (1) compounds, there are two possible mechanisms for the intramolecular 

Friedel-Craft reaction (Scheme 1.14). Pathway (a) is the aniline nitrogen undergoes 

deprotonation firstly to free the long pair electrons and then donates this long pair of electrons to 

initiate the Friedel-Craft process; pathway (b) is the 6-oxygen donates one long pair of electrons 

to initiate the Friedel-Craft reaction. Considering the reaction is carried out in the highly acidic 
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environment, the deprotonation of the aniline nitrogen could be slow. Hence, it is more 

reasonable that pathway (b) is the predominate route for the Friedel-Craft reaction. A di-cation 

intermediate 1.37 was formed after the dehydration. To stabilize the structure, the nitrogen could 

be easily deprotonated to yield a free amine intermediate 1.38 which is the resonance structure of 

compound 1.33. 

Scheme 1.14 : Possible mechanisms for the intramolecular Friedel-Craft reaction 
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Mechanism (b) could perfectly interpret the observed reaction outcomes.  For different 

quinolines, the yield changes from 25 % of 1.17 [R = 3-(trifluoromethyl) phenoxyl], 35 % of 

1.25 (R = 3-fluoropehnxoyl) to 45 % of 1.26 (R = phenoxyl). With stronger electron 

withdrawing groups attached, the reaction yield is lower. It might because that the electron 

withdrawing group destabilized the quinone cation intermediate 1.36. The electron withdrawing 

abilities comparison is: -CF3 > -F > -H; hence, the yield is 1.17 < 1.25 < 1.26. 

For the group (2) compound 1.31, since no aryloxyl group is available at 6-position, 

pathway (a) is the only possible mechanism to give the desired product. Meanwhile, the 

disappearing of 6-aryloxyl significantly reduces the steric hindrance in the Friedel-Craft reaction 

step; hence, a higher yield (87 %) is achieved. 

Compounds 1.10, 1.11 and 1.12 were prepared from quinolines 1.27, 1.28 and 1.31 

respectively by using the same method as that of synthesis of compound 1.5 (Scheme 1.15). 
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Scheme 1.15 : Syntheses of compounds 1.10, 1.11, 1.12 

N

NH2

O
Me

R Me

+

1.27: R = 3-Fluorphenoxyl
1.28: R = Phenoxyl
1.31: R = H

OH

H
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HN

O
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1.10: R = 3-Fluorphenoxyl Yield:65 %
1.11: R = Phenoxyl Yield: 84 %
1.12: R = H Yield: 73%

Me

 

Till now, syntheses of PQ-7 derivative compounds are all described and discussed. The 

syntheses of PQ-1 derivative compounds will be introduced.  

First PQ-1 derivative compound, compound 1.13, was synthesized by a Michael addition 

reaction of compound 1.17 with acrylamide in acetonitrile (Scheme 1.16). 

Scheme 1.16 : Synthesis of compound 1.13 
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O
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O
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O

1.13
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57% yield

 

With the synthesized amino quinolins 1.27, 1.28 and 1.30 in hand, three new PQ-1 

derivative compounds were prepared. Compounds 1.27, 1.28 and 1.30 were treated with iodide 

1.39 and sodium bicarbonate as the base in DMF to yield N-substituted compounds 1.40, 1.41, 

1.42, respectively. The imido groups were deprotected by refluxing in hydrazine ethanol solution 

to give compounds 1.14, 1.15 and 1.16 (Scheme 1.16). 
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Scheme 1.17 : Syntheses of compounds 1.14, 1.15, 1.16 
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NH2NH2, EtOH
N

HN

O
Me

R Me

NH2

1.14: R = 3-Fluorphenoxyl Yield: 58 %
1.15: R = Phenoxyl Yield: 59%
1.16: R = H Yield: 56 %  

 

All the designed quinoline compounds were synthesized and discussed, and, in the next 

section, bio-evaluation results of these novel quinoline compounds are summarized.  

 

 1.3 Bio-evaluation results for synthesized quinoline compounds  

The synthesized quinoline compounds 1.1 – 1.16 were firstly treated with succinic acid to 

generate the corresponding succinic salt. These prepared salts were used to screen their bio-

activity on MC65 cell protection assay.  

MC65 cell possesses a SC gene which could produce C99 fragment APP.
15

 This APP 

eventually could be cleaved to generate toxic A peptide which induces cell death.
15

 

Tetracycline (TC) is introduced to MC65 cells to suppress SC gene’s expression.
15

 Designed 

quinoline compounds were incubated with MC65 cells in the absence of TC to test their cell 

protection activity against the A peptide induced cyto-toxicity.
15

 This work was carried out by 

Dr. Izumi Maezawa and Dr. Lee-Way Jin. The cell protection activity results of compounds 1.1 – 

1.16 are summarized in Table 1.2.   
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Table 1.2 : EC50 (M) and TD50 (M) Values of quinoline compounds on MC65 protection 

assay 

 EC50 TD50  EC50 TD50  EC50 TD50 

1.1 0.46 ± 

0.10 
> 50 

1.2 2.39 ± 

0.06 

20.32 ± 

1.22 

1.3 
0.39 ± 0.02 

14.50 ± 

1.68 

1.4 0.48 ± 

0.03 

2.91 ± 

0.15 

1.5 0.12 ± 

0.01 

1.38 ± 

0.08 

1.6 
0.13 ± 0.01 

3.35 ± 

0.36 

1.7 0.19 ± 

0.02 
> 50 

1.8 3.47 ± 

0.32 
> 50 

1.9 
0.30 ± 0.01 

3.31 ± 

0.30 

1.10 0.70 ± 

0.01 

2.60 ± 

0.20 

1.11 0.53 ± 

0.01 

4.00 ± 

0.38 

1.12 
2.62 ± 0.15 

20.54 ± 

0.21 

1.13 0.50 ± 

0.02 
> 50 

1.14 0.60 ± 

0.02 

7.28 ± 

0.25 

1.15 
0.42 ± 0.01 

8.16 ± 

0.01 

1.16 17.62 ± 

0.37 
> 50 

PQ-1 0.15 ± 

0.20 

2.09 ± 

0.02 

PQ-7 0.69 ± 0.03 42.82 ± 

2.43 

 

To explore the mechanism, four of the most active compounds 1.5 (EC50 = 0.12 ± 

0.01M), 1.6 (EC50 = 0.13 ± 0.01 M), 1.7 (EC50 = 0.19 ± 0.02M) and 1.9 (EC50 = 0.30 ± 

0.01M) were selected to test their enzyme inhibitory activities on GSK-3ADP-Glo
TM

 kinase 

assay
16

 and protein kinase C (PKC)-PepTag
TM

 kinase assay
17

. These works were done by Sahani 

Weerasekara and Dr. Keshar Prasain in Dr. Duy Hua’s lab. 

On GSK-3 ADP-Glo
TM

 kinase assay, there are four steps to test the enzyme inhibitory 

activities of designed quinolines (Figure 1.5).
16

 Firstly, the compound, enzyme, ATP and 

substrate are incubated at 25 
o
C for 1 hour; then, ADP-Glo

TM
 reagent is introduced to stop the 

enzyme reaction and deplete the unreacted ATP. Thirdly, the remaining ADP is converted into 

ATP by the kinase detection reagent. At last, via a luciferase/luciferin reaction, the newly 

synthesized ATP is used to generate a light signal which is measured by luminometer. The 

measure luminescence is correlated with the concentration of ADP which is generated from the 

kinase reaction and therefore reflects the enzyme activity.  
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Figure 1.5 : Procedure for operating GSK-3 ADP-Glo
TM

 kinase assay
16

  

 

On PKC PepTag
TM

 kinase assay, a dye molecule attached eleven amino acids residue is 

used as the substrate, and, at pH = 7.4, this substrate held +1 net charge. There are three steps to 

test the enzyme inhibitory activities of designed quinolines (Figure 1.5).
17

 Firstly, the kinase 

reaction is carried out by the incubation of compound with the substrate, ATP and enzyme at pH 

= 7.4 and 31 
o
C for 45 minutes. After the kinase reaction, the phosphorylated substrate would 

held -1 net charge at the reaction pH while the unphosphorylated substrate stays unchanged. 

Secondly, the enzyme is destroyed to stop the reaction, and the phosphorylated substrate and the 

unphosphorylated substrate are separated by electrophoresis. At last, the fluorescence intensities 

of the bands from the electrophoresis experiment are measured, and these intensities are 

correlated with the enzyme activity.  
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Figure 1.6 : Procedure for operating PKC PepTag
TM

 kinase assay
17

 

 

 

Results on the enzyme inhibitory assays are summarized in Table 1.3. 

Table 1.3 : Enzyme inhibition activities of 1.5, 1.6, 1.7 and 1.9 on GSK-3 and PKC assays 

Quinoline GSK-3 PKC 

PQ-1 > 1 mM 35 ± 8 nM 

PQ-7 > 1 M 42.3 nM 

1.5 35 ± 6.36 nM  240 ± 21.2 M  

1.6 > 1 mM 216.3 nM 

1.7 > 1mM  400 ± 13.7 M 

1.9 158 ± 19.1 nM  750 ± 9.3 M  

 

 1.4 Discussion  

Designed quinoline compounds were synthesized and evaluated their bio-activities on 

both cell and enzymes assays. From these bio-evaluation results, a structure-activity relationship 

(SAR) could be derived, which may help to the development of a higher efficient and lower toxic 

drug candidate for AD therapy in future. Moreover, to explore the mechanism, a computational 
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experiment was also carried out to simulate the binding mode of the designed quinolines with 

GSK-3. All of these works are discussed in this section. 

1.4.1 Structure-activity relationship of the synthesized quinoline compounds 

From results of MC65 cell protection assay, a SAR could be derived (Figure 1.7). 

Figure 1.7 : Structures activity relationship of synthesized quinoline compounds 
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Structural modifications of PQ-1 do not give a positive feedback. The new synthesized 

PQ-1 analog compounds do not show better cell protection activities, and changes made on the 

PQ-1’s structure impair the bio-activity. From the result of the enzyme inhibitory assays, PQ-1 

is PKC inhibitor instead of GSK-3 inhibitor which indicates PQ-1 protects the neuronal cell 

through  different mechanism. Since this research is aiming to discover a GSK-3 inhibitor, PQ-

1 derivatives are not considered for deriving the SAR.  

Among the PQ-7 derivatives, compound 1.5 shows the highest cell protection activity 

and GSK-3 inhibitory activity. Some PQ-7 derivative compounds (compound 1.6 and 1.7) were 
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also examined their GSK-3 inhibitory activities; but the results indicate they are not the GSK-

3 inhibitors. Hence, only the compounds derived from 1.5 are used to derive the SAR. 

Compound 1.5 possesses the highest cell protection activity (EC50 = 120 ± 10 nM). 

Comparing with quinoline 1.5, compounds 1.4 shares the same substitution groups on the 4-, 5- 

and 6- positions of quinoline core, and the difference is the functionality which is connected to 8-

amino group. The cell protection results suggest the importance of 4-hydroxybenzyl group to the 

activity of designed compounds. Any changes on this portion of the molecule cause the decrease 

of the activity. Structure of compound 1.4 is very similar to compound 1.5; however, the addition 

of two methoxyl groups on the phenyl ring decreases quinoline 1.4 ‘s activity (EC50 = 480 ± 30 

nM)  four times comparing to compound 1.5. 5-Aryloxy group is also very important. Removal 

of the 5-aryloxy group in compound 1.5 gives compound 1.12, and compound 1.12 (EC50 = 

26.20 ± 0.15 M) almost lose the cell protection activity. Trifluoro group on the 5-aryloxy is also 

proven to be unsubstitutable for the activity, and the replacements of it with fluoro [compound 

1.10 (EC50 = 700 ± 10 nM)] or hydrogen [compound 1.11 (EC50 = 530 ± 10 nM)] decrease the 

activity. Replacement of the methoxy group with hydroxyl group at 6- position [compound 1.9 

(EC50 = 300 ± 10 nM)] did not improve the activity neither.  

In summary, 3-trifluoromethylphenoxyl at 5- position, methoxyl at 6- position and 4-

hydroxybenzyl at 8-amino position are all important to the designed quinoline compound activity. 

To modify 1.5’s structure to get more effective GSK-3 inhibitors, the functions of these  

substitutions in inhibiting GSK-3 should be learned.  The best way to acquire these information 

is from the co-crystal structure of GSK-3 with compound 1.5. However, this experiment dose 

not have to chance to be carried out yet. Hence, a computational docking experiment was carried 

out to simulate the binding mode of 1.5 to GSK-3. The design of the docking experiment and 

the results are summarized in the next section.  

1.4.2 Computational experiment and the result 

To understand the mechanism of 1.5‘s inhibitory activity on GSK-3, a computer-

docking experiment was carried out, and the result is introduced and discussed in this section.  

To begin with, the structural properties of GSK-3is briefly introduced herein. Figure 

1.8 shows one of the reported GSK-3 crystal structures in both cartoon and surface 

representations.
18

 GSK-3 has a small N-terminal domain and large C-terminal domain. The 
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kinase domain lies in the space between these two domains and is responsible for the kinase 

reaction.
18

 This domain is divided into three regions by their functions: ATP-binding pocket, 

phosphate transfer region and substrate binding groove.
18

 

Figure 1.8 : Cartoon and surface representations of GSK-3
18

: (a) Cartoon representation; 

(b) Surface representation (Green: carbon; Red: oxygen; Blue: nitrogen; Yellow: sulfur) 

 

Studies indicate that some residues in the kinase domain are extremely important to the 

enzyme’s activity.
18,19 

In the ATP-binding pocket, residues Asp133 and Val135 are suggested to 

be vital for the binding the ATP molecule to enzyme. Adenylyl imidodiphosphate (AMP-PNP) 

which has similar structure as the ATP was co-crystalized with GSK-3 to mimic the binding 

mode of ATP molecule with the enzyme.
19

 From the structure of the co-crystal, hydrogen-

bonding interactions are detected between residues Asp133 and Val135 with the adenylyl group 

of the AMP-PNP.
19

 Moreover, these hydrogen-bonding interactions are conserved in the co-

crystal structures of GSK-3 with some of its ATP-competitive inhibitors, such as staurosporine, 

indirubin-3’-monoxime and alsterpaullone (Figure 1.9).
19

 In the phosphate transfer region, Lys85 

and Lys183 are responsible for the enzyme’s binding to the phosphates in AMP-PNP molecule.
19

 

In the substrate binding groove, two residues, Phe67 and Try216, are suggested to control the 

enzyme’s activity.
3,20

 F67A mutant GSK-3 lose its activity on the phosphorylation of substrate 

peptide, which indicates that Phe67 is vital for GSK-3’s substrate recognition.
20

 Residue 

Try216 could be self-phosphorylated to be the pTry216 by GSK-3,  and pTry216 has a 

conformational change comparing with Try216. The enzyme is activated to hyperphosphorylate 

the substrate, such as tau, after Try216 is phosphoryated.
2
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Figure 1.9 : Structures of staurosporine, indirubin-3’-monoxime and alsterpaullone
19
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Autodock Vina was used as the computer docking program.
21

 The 3D structure of 

compound 1.5 was constructed via Chem3D 11.0. The exact binding site of compound 1.5 to 

GSK-3 was unknown; therefore, compound 1.5 was docked in whole kinase domain. Docking 

conformation of 1.5 with the lowest binding energy was supposed to simulate the real binding 

mode of compound 1.5. 

The crucial step for the computer docking is to choose the right crystal structure of GSK-

3and the criterions are rationally investigated. Since computer docking by Autodock Vina is a 

rigid docking process,
21 

the 3D structure of GSK-3 for docking should mimic the real structure 

of the enzyme in the enzyme and inhibitor (compound 1.5) complex. For GSK-3, it has 

different structural characters for different types of inhibitors. If compound 1.5 is an ATP-

competitive inhibitor and binds into the ATP-binding pocket, it would block ATP molecule bind 

to the enzyme. Hence, the Try216 would not have chance to be phosphorylated, and the enzyme 

would be in an inactive state. Moreover, it is highly possible that the compound conserved some 

similar interactions as other ATP-competitive inhibitors do. To resemble the similar interactions, 

the key residues in the ATP binding pocket should have the similar conformations as those of  

the same residues in other known GSK-3-inhibitor co-crystals. If compound 1.5 is a substrate 

competitive inhibitor and binds to the substrate binding groove of GSK-3, the enzyme is highly 

possible in its activated state. Since residue Try216 phosphorylation is self-phosphorylation 

process (in other words, intramolecular process), this phosphorylation process is fast in the 

presence of ATP (the enzyme assay environment). When the inhibitor binds into the substrate 

binding groove, it is highly possible that the Try216 is phosphorylated and the enzyme is in 

active state. Unfortunately, the exact binding site of compound 1.5 with GSK-3 is not clear. In 

other words, whether compound 1.5 is an ATP-competitive inhibitor or substrate competitive 
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inhibitor was not known. Hence, the protein structures for both possible cases should be 

considered.  

Considering the ideal docking would probe the ATP binding pocket and substrate binding 

groove with equal chance in one experiment, the ideal protein structure should be able to 

perfectly mimic the real protein for each case. In other words, the ideal protein crystal structure 

used for docking should possess the ATP binding pocket which should be the same as the one in 

the inactive enzyme, and a substrate binding pocket which should be the same as the one in the 

active enzyme! This seemed impossible. However, after screening the available crystal structures 

of GSK-3,
22 

fortunately, file 1O9U
23

 is finally found to satisfy this criterion. It had the same 

ATP binding pocket as the inactive enzyme, and the phosphorylation of residue Try216 caused 

the conformational change in the substrate binding pocket compares with the inactive enzyme.
23

 

This enzyme is overlaid with inactive enzyme
18 

to show the difference in the substrate binding 

pocket (Figure 1.10) . 

Figure 1.10 : Overlay of crystal structure 1O9U (Green) with inactive enzyme (pdb: 1I09) 

(Pink) 

 

Meanwhile, crystal structure 1O9U is also overlaid with the crystal structure of GSK-3 

which was complex with the known ATP-competitive inhibitor (alsterpaullone, pdb: 1Q3W)
19

 to 

compare the conformations of key residues in the ATP binding pocket. From the overlay, it is 

obvious that the key residues (Asp133, Val135, Lys85, Lys183) in the ATP-binding pocket and 

phosphate transfer region share very similar conformations. Therefore, it is highly possible that 

the docking environment in the ATP-binding pocket is well mimicked the “real” case if 

compound 1.5 is an ATP-competitive inhibitor (Figure 1.11). 

 



23 

 

Figure 1.11 : Overlay of crystal structure 1O9U (Green) with enzyme complex with ATP-

competitive inhibitor (pdb: 1Q3W) (Yellow) 

 

Crystal structure for docking (file: 1O9U) was added hydrogens by MOL Probity 

program
24

 before docking experiment, and the results are displayed in Figure 1.12. 

Figure 1.12 : Docking result of compound 1.5 with GSK-3 

 

From the docking result, the conformation with lowest binding energy is displayed in 

Figure 1.12. Compound 1.5 binds into the substrate binding groove of GSK-3, instead of ATP-

binding pocket. A hydrogen bonding interaction between hydroxyl group on the benzyl ring and 

residue Arg96 is discovered in the result. π-π Interaction is also found between the quinoline core 

of compound 1.5 and residue Phe67 in the computer simulation. Trifluoromethyl group is found 

having close contacts with residues Asp181 and Cys218. 
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Docking result suggests that compound 1.5 is a substrate-competitive inhibitor; hence, 

this could explain high enzyme inhibitory selectivity. Since GSK-3 and PKC have distinct 

substrate binding areas, the substrate-competitive inhibitors “fit” for the GSK-3 would not “fit” 

in PKC.  

Figure 1.13 : Overlay of crystal structure of GSK-3 1O9U (Green) with PKC-1XJD 

(Yellow) 

 

The observed SAR could also be interpreted by the docking result. In docked 

conformation, compound 1.5 opens its structure to support itself binds in the substrate binding 

groove; therefore, the “length” of the molecule is important. A shorter molecule (compound 1.16) 

has less possibility to conserve this type of binding to GSK-3. Meanwhile, the trifluoromethyl 

group and 4-hydroxyl group on the benzyl ring are two terminals of the structure and have 

important interactions with residues of GSK-3to secure the binding of 1.5.  As discussed above, 

residue Phe67 is important for substrate recognition of the enzyme
20

; hence, the detected π-π 

interaction might responsible for the deactivation of the enzyme. 

To sum up, via the computational experiment, the binding mode of compound 1.5 to 

GSK-3 is simulated. The importance of the required substitutions and quinoline core are 

demonstrated and explained. The information acquired from the SAR and computational 

experiment provides clues for designing more effective GSK-3 inhibitors, and this work will be 

discussed in the next section.  

 1.4.3 Future work 

 The novel quinoline analog compounds with higher bio-activities and less toxicities are 

being expected to be developed in future. Since the most active quinoline compound till now is 
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1.5, this compound is used as the lead compound. Aiding by the information obtained from the 

SAR analysis and computational experiment, some novel GSK-3 inhibitors derived from 1.5 is 

proposed herein. 

The criterions for designing new 1.5-derived inhibitors are discussed firstly. From the 

derived SAR, the threefold molecular structure is required for the inhibitor’s activity; 4-

hydoxybenzyl group, 5-(3-trifluoromethylphenoxyl) group and 6-methoxyl group are also 

important to the quinoline 1.5’s activity. Roles of the threefold structure and these substituents 

are interpreted by computer simulation. The threefold structure is essential for binding to the 

wide substrate binding groove of GSK-3; 4-hydroxyl group acts as the hydrogen bond donor; 

trifluoromethyl group has polar-polar interactions with residues in the substrate binding groove, 

and quinoline core is proposed to be responsible for the deactivation of enzyme via π-π 

interaction with Phe67. According to these information, the new designed inhibitors should 

maintain the threefold structure to ensure secure binding to wide-opened area; at the two 

terminals of the molecule, functional groups should be carefully designed to ensure an 

interaction with residues in the substrate binding groove. From the rigid docking result, it is 

worthy to note that the quinoline core of 1.5 is not in the perfectly parallel position of the phenyl 

ring of Phe67, which indicates this π-π interaction may not be well-established. Since this π-π 

interaction is proposed to be important for enzyme’s deactivation, enhancement on this π-π 

interaction is supposed to increase the designed inhibitor’s activity. Hence, modifications made 

on the structure of 1.5 are aiming to improve this π-π interaction. To achieve this purpose, the 

stereo-position of the quinoline core could adjusted by modify the whole structure; or other 

aromatic moieties could be used to instead of quinoline.  

Moreover, to assist design new inhibitors, two parameters, log P Octanol/Water and log S, are 

predicted by computer simulation method for each proposed molecules. log P Octanol/Water Value is 

used to estimate the lipophilicity of the drug candidates.
25

 The definition is, in the mixture of 

octanol and water at the equilibrium, the log value of the solute concentration in octanol minus 

the log value of the solute concentration in water (Equation 1.1).
25

 log P Value is important 

parameter for CNS drugs: with higher log P value, the drug candidate has higher chance to pass 

the blood-brain barrier (BBB) by diffusion, which has better bio-availability. 

Equation 1.1 : Definition of log P Octanol/Water 

log P Octanol/Water =  log c solute in octanol – log c solute in water  = log [c solute in octanol / c solute in water ]  
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log S Value is also very important for the bio-availability of drug candidates.  It is 

defined as the log value of the drug’s solubility in water (Equation 1.2).
26 

The higher of log S, the 

better solubility of the drug in water, and the better the drug distribution in body.
26

 For CNS 

drugs, the higher log S indicates a better diffusion to penetrate the BBB to reach the brain.
26

  

Equation 1.2 : Definition of log S 

log S = log solubility water 

The log P and log S Values could be predicated by the computer program: ALOGPS 

2.1.
27

 

Meanwhile, Lipinski’s the rules-of-five for designing more drug-like molecules are also 

utilized to evaluate the proposed inhibitors.
28

 The rules-of-five are including: log P should be in 

the range of -0.4 – +5.6; molecular weight should be in the range of 180 – 500; number of atoms 

should be in the range of 20 – 70; rotatable bonds should be less than 10; hydrogen bond donors 

should less than 5; hydrogen bonding acceptors less than or equal to 10; for CNS drugs, total 

nitrogen and oxygen atoms’ number [n(N+O)] should less than or equal to 5, and the other rule is 

log P – n(N+O)  > 0.
28

  

According to the discussed, three compounds are designed, and their properties are 

predicted and summarized in Table 1.4 
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Table 1.4 : Structure and predicted properties of the newly designed quinolines 

 1.5 1.43 1.44 1.45 

Structure N

HN

O
Me

MeO

OH

F3C

 

N

HN

O
Me

MeO

HO

CF3  

N
H

HN

O
Me

MeO

OH

F3C

 

HN

O

OH

HO

 

log POctanol/Water 5.50 5.62 5.44 4.93 

log SWater  -6.25 -5.63 -6.20 -5.35 

Molecular weight 454.15 454.15 458.18 357.14 

Number of atoms 54 54 58 46 

Rotatable bonds 8 8 8 7 

Hydrogen bond 

donors 
2 2 2 3 

Hydrogen bond 

acceptors 
3 3 3 1 

n(N+O) 5 5 5 4 

log P - n(N+O) + 0.50 + 0.62 + 0.44 +0.93 

 

By exchanging position of the terminal substituents (3-trifluoromethylphenoxyl group 

and 4-hydroxybenzyl group), compound 1.43 is designed. If the hydroxyl group and 

trifluoromethyl group of the compound 1.43 could assumable the similar binding mode as that of 

1.5,  the quinoline core of 1.43 will have a chance to adjust its position towards Phe67, which 

may strengthen the π-π interaction. By reducing quinoline core of 1.5 into benzopiperidine, the 

compound 1.44 is designed. From the docking result of 1.5, only the non-nitrogen containing 

aromatic ring of the quinoline has the π-π interaction with Phe67, and nitrogen containing 

portion of quinoline sits apart from Phe67. The piperidine of the 1.44 will have chair 

conformation; therefore, with the π-π interaction unchanged, this chair-conformation piperidine 

is expected to have a new hydrophobic-hydrophobic interaction with benzyl’s methylene group 

of Phe67, which also could strengthen the binding of inhibitor to Phe67 of GSK-3. By replacing 

the quinoline core of 1.5 in to naphthalene, compound 1.45 is designed. The trifluoromethyl 
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group is changed into hydroxyl group to reduce the log P value. The naphthalene core of 1.45 is 

expected to improve π-π interaction with Phe67.  

The log P and log S values of these designed inhibitors are predicted and summarized in 

Table 1.4. From the results, all of these newly designed GSK-3 inhibitors are satisfying the 

rules-of-five and expected  to be the qualified CNS drug candidates.  

Syntheses of these designed GSK-3 inhibitors are proposed herein as well. 

Compound 1.43 could be synthesized via the same synthetic route as compound 1.5. 

Phenolate 1.46 will be treated with bromide 1.20 to give compound 1.47. Following the same 

quinoline synthesis procedure, 1.48 will be prepared. Hydrogenantion with Pd/C as catalyst 

could remove the benzyl group and reduce the nitro group in one-pot to give 1.49.
29

 Amino 

quinoline 1.49 will be coupled with 3-trifluoromethyl benzaldehyde to give desired 1.43 

(Scheme 1.18). 

Scheme 1.18 : Synthesis of compound 1.43 
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Compound 1.44 could be directly generated by reduction of the quinoline of compound 

1.5. In 2010, a hydroxyapatite (HAP) supported Pd nanoparticle is reported to be used to regio-

selectively reduce the quinoline in good yield (Scheme 1.19).
30 

 

Scheme 1.19 : Quinoline reduction with HAP supported Pd nanoparticle
30
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Hence, compound 1.44 could be prepared under this reduction condition with compound 

1.5 as the starting material (Scheme 1.20). 

Scheme 1.20 : Synthesis of compound 1.44
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The synthesis of compound 1.45 could be start with the commercial available compound 

1.52. Similar as the synthesis of 1.43, bromide 1.52 will be treated with phenolate 1.53 to 

generate compound 1.54. Hydrogenantion with Pd/C as catalyst could remove the benzyl group 

and reduce the nitro group in 1.54 in one-pot to give 1.55.
29 

 Compound 1.53 will coupled with 

4-hydroxyl benzaldehyde to give desired 1.45 (Scheme 1.21). 

Scheme 1.21 : Synthesis of compound 1.45 
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In summary, with the information from the SAR study and computational docking of 

compound 1.5,  three new GSK-3 inhibitors are designed which will provide a direction for 

further investigation on discovering more effective GSK-3 inhibitor.  log P and log S Values of 

these proposed compounds are predicted as well, and these inhibitors are also evaluated by the 

rules-of-five. The designing ideas for these new inhibitors is described, and the syntheses of 

these compounds are also proposed. 
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 1.4.4 Concerns  

Although the bio-evaluation experiments gave very promising results, a few issues are 

still needed to be taken into account. Firstly, it still lacks of convincing evidence that designed 

quinolines could inhibit the GSK-3 in cell system. The difficulty in solving this problem is the 

GSK-3-overexpressed cell system is difficult to obtain. Therefore, at this stage, this experiment 

cannot carried out. Also, whether the designed quinoline compound could reduce the hyper-

phosphorylation of tau level and/or A oligomer production in an AD mice model is needed to 

be determined. This experiment is crucial to predict the designed inhibitor’s therapeutic effect 

and should be performed if the requirements for this experiment, such as funding, mice model, 

could be satisfied. 

 

1.5 Conclusion  

A focus library of quinoline compounds was designed, synthesized, and their bio-

activities evaluated on cell and enzymes assays. Compound 1.1 - 1.7 were synthesized from 1.17 

with various aldehydes via reductive amination reactions. Amide 1.8 was synthesized from 1.17 

with 1.18, and compound 1.18 was prepared from furfural. A deprotection of methoxyl of 1.17 

with BBr3 was performed to give 1.19, and compound 1.19 reacted with 4-hydoxybenzaldehyde 

to give compound 1.9. Compound 1.27, 1.28 and 1.31 were prepared in similar reaction 

sequences as that of compound 1.17 from the same starting material 1.20. From 1.27, 1.28, 1.31, 

similar reductive amination reactions were performed with 4-hydoxybenzaldehyde to yield 

compound 1.10, 1.11 and 1.12. Compound 1.13 was prepared from 1.17 with acrylamide via 

Michael addition reaction. 1.14, 1.15 and 1.16 were synthesized via a SN2 reaction and 

deprotection reaction from 1.27, 1.28 and 1.31, respectively.  

Bio-activities of compounds 1.1 – 1.16 were evaluated on MC65 cell protection assay. 

Most of quinoline compounds were found to have cell protection activities in nanomolar ranges. 

Four of the most active compounds were selected to test their enzyme inhibitory activities on 

GSK-3 and PKC enzyme assays.  Compound 1.5 is found to be the most active compound in 

the synthesized quinoline compounds.  A structure activity relationship of designed quinolines is 

derived. The binding mode of 1.5 with GSK-3 was simulated by the computational method, and 

several important interactions are shown in the result. The information acquired from the SAR 
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study and docking experiment gives clues for designing more effective GSK-3 inhibitors, and 

three novel GSK-3 inhibitors are proposed. Meanwhile, synthetic routes of these proposed 

inhibitors are suggested. In future, inhibition of GSK-3β in cell system and the level of 

phosphorylated tau in in vivo AD model by quinolines’ need to be performed.   

 

1.6 Experimental Section 

General procedure:  Melting points were tested on Thomas Hoover capillary melting 

point apparatus. Nuclear magnetic resonance spectra were obtained at 400 MHz for 
1
H and 100 

MHz for 
13

C in deuteriochloroform and reported in  ppm, unless otherwise indicated. Low-

resolution mass spectra were taken from an API 2000-triple quadrupole ESI-MS/MS mass 

spectrometer (from Applied Biosystems).  Benzofuran-2-carboxylaldehyde, thiazole-2-

carboxylaldehyde, 5-phenyl thiophene-2-carboxylaldehyde, 3,5-dimethoxy-4-hydroxyl 

benzaldehyde, 4-hydroxyl benzaldehyde and furfural, and aldehydes for synthesizing compounds 

1.1, 1.2, 1.3, 1.4, 1.5 and 1.8 were purchased from Aldrich chemical Co..  Arcylamide was 

purchase from Fisher Scientific Co. Quinoline-4-carboxylaldehyde and quinoline-8-

carboxylaldehyde for synthesizing 1.6 and 1.7 were prepared by Dr. Laxman Pokerhel in Dr. 

Duy Hua’s laboratory
11

.  

 

 N-(Benzofuran-2-ylmethyl)-6-methoxy-4-methyl-5-(3-trifluoromethylphenoxy) 

quinolin-8-amine (1.1). 

N

HN

O
Me

MeOF3C

O

1.1  

A solution of 25.0 mg (0.071 mmol) of 6-methoxy-4-methyl-5-(3-(trifluoromethyl) 

phenoxy)quinolin-8-amine (1.17) and 11.3 mg (0.078 mmol)  2-benzofurancaboxaldehyde in 1 

mL of dried methanol (distilled over magnesium) was stirred under argon at 25
o
C for 30 minutes. 
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To it, 2 drops of acetic acid was added. The mixture was stirred at 25 
o
C for 30 minutes. Then, 

3.4 mg (0.213 mmol) of sodium cyanoborohydride were added, the solution was stirred 12 hours, 

diluted with 30 mL of aqueous ammonium chloride solution, and extracted three times with ethyl 

acetate. The combined extract was washed with water, brine, dried (MgSO4), concentrated, and 

column chromatographed using a mixture of hexane and diethyl ether (1:1) as an eluent to 22.1 

mg (65% yield) of compound 1.1 as a yellow oil.  
1
H NMR δ 8.44 (d, J = 4.4 Hz, 1H), 7.52 (d, J 

= 5.6 Hz, 1H), 7.47 (d, J = 7.6 Hz, 1H), 7.33 (t, J = 7.6 Hz, 1H), 7.27 (td, J = 7.6, 1.6 Hz, 1H), 

7.25 – 7.20 (m, 2H), 7.11 (dd, J = 4.4, 0.8 Hz, 1H), 7.08 (s, 1H), 6.91 (dd, J = 8.0, 2.0 Hz, 2H, 

overlap with NH), 6.71 (d, J = 0.8 Hz, 1H), 6.64 (s, 1H), 4.74 (s, 2H, CH2N), 3.79 (s, 3H, OMe), 

2.63 (s, 3H, Me);  
13

C NMR δ 159.8, 155.5, 155.2, 150.9, 145.3, 143.9, 143.0, 133.9, 132.1 (q, 

2
JCF = 32 Hz, C-CF3), 130.2, 128.6, 126.5, 125.3, 124.5, 124.2, 123.6 (q, 

1
JCF = 239 Hz, CF3), 

123.0, 121.1, 118.3, 118.2 (q, 
3
JCF = 4 Hz), 112.3 (q, 

3
JCF = 4 Hz), 111.4, 104.1, 93.9, 56.8, 41.8, 

23.4; MS (electrospray), m/z 501.3 (M+Na)
+
. The succinic salt of 1.1 was generated by 

dissolving 20 mg (0.042 mmol) of 1.1 with 5 mg (0.042 mmol) of succinic acid in 4 mL of 

methanol. Then the methanol was concentrated off, the residue was dissolved in 1 mL 

acetonitrile, diluted with 10 mL deionized water and lyophilized to give a quantitative yield of 

the succinic salt of 1.1. 

 6-Methoxy-4-methyl-N-(thiazol-2-ylmethyl)-5-(3-trifluoromethylphenoxy)quinolin-8-

amine (1.2). 

N

HN

O
Me

MeOF3C

S N

1.2  

Prepared via the same procedure as compound 1.1. Starting from 25.0 mg (0.071 mmol) of 

compound 1.17 and 8.8 mg (0.078 mmol) 2-thiazolecarboxaldehyde gave 22.7 mg (72% yield) 

of compound 1.2 as a light yellow oil. 
1
H NMR δ 8.46 (d, J = 4.4 Hz, 1H), 7.77 (d, J = 3.6 Hz, 

1H), 7.32 (t, J = 7.6 Hz, 1H), 7.29 (d, J = 3.6 Hz, 1H), 7.25 – 7.20 (m, 2H), 7.11 (d, J = 3.6 Hz, 

1H), 7.07 (s, 1H, NH), 6.91 (dd, J = 8.4, 2.4 Hz, 1H), 6.57 (s, 1H), 4.94 (d, J = 5.6 Hz, 2H, 
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CH2N), 3.71 (s, 3H, OMe), 2.62 (s, 3H, Me); 
13

C NMR δ 171.2, 159.7, 150.8, 145.4, 143.6, 

143.0, 142.9, 134.0, 132.1 (q, 
2
JCF = 33 Hz, C-CF3), 130.2, 126.8, 125.3, 124.5, 124.1 (q, 

1
JCF = 

271 Hz, -CF3), 119.6, 118.3, 118.2 (q, 
3
JCF = 4 Hz), 112.3 (q, 

3
JCF = 4 Hz), 94.5, 56.7, 46.3, 23.4; 

MS (electrospray ionization), m/z 468.2 (M+Na)
+
. Succinic salt of 1.2 was prepared in the same 

way as compound 1.1 by dissolving 20 mg (0.045 mmol) of 1.2 and 5.3 mg (0.045 mmol) of 

succinic acid in 4 mL methanol. 

 6-Methoxy-4-methyl-N-[(5-phenylthiophen-2-yl) methyl]-5-(3-trifluoromethyl phenoxy) 

quinolin -8 - amine (1.3). 

N

HN

O
Me

MeOF3C

S

1.3  

Prepared via the same procedure as compound 1.1. Starting from 25.0 mg (0.071 mmol) of 

compound 1.17 and 12.6 mg (0.078 mmol) of 5-phenyl thiophene-2-carboxaldehyde gave 27.1 

mg (78% yield) of compound 1.3 as a green oil. 
1
H NMR δ 8.44 (d, J = 4.4 Hz, 1H), 7.57 (d, J = 

7.4 Hz, 2H), 7.38 – 7.19 (m, 6H), 7.11 – 7.08 (m, 2H), 6.93 – 6.86 (m, 2H), 6.62 (s, 1H), 4.75 (d, 

J = 5.2 Hz, 2H, CH2N), 3.78 (s, 3H, OMe), 2.62 (s, 3H, Me); 
13

C NMR δ 159.8, 150.9, 145.3, 

144.0, 143.9, 142.9, 142.2, 134.6, 134.0, 132.1 (q, 
2
JCF = 32 Hz, C-CF3), 130.2, 129.1, 127.6, 

126.5, 126.4, 125.9, 125.3, 124.5, 124.1 (q, 
1
JCF = 270 Hz, CF3), 123.0, 118.3, 118.2 (q, 

3
JCF = 4 

Hz), 112.3 (q, 
3
JCF = 4 Hz), 94.1, 56.8, 43.6, 23.3; MS (electrospray), m/z 521.0 (M+H)

+
. 

Succinic salt of 1.3 was prepared in the same way as compound 1.1 by starting with 20 mg 

(0.040 mmol) of 1.3 and 4.8 mg (0.040 mmol) of succinic acid.  
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 2,6-Dimethoxy-4-{[6-methoxy-4-methyl-5-(3-trifluoromethylphenoxy)quinolin-8-

ylamino]methyl}phenol (1.4). 

N

HN

O
Me

MeOF3C

OO

OH

MeMe

1.4  

Prepared via the same procedure as compound 1.1. Starting from 25.0 mg (0.071 mmol) of 

compound 1.17 and 14.2 mg (0.078 mmol) of 3, 5-dimethoxy-4-hydroxybenzaldehyde  gave 

27.3 mg (75% yield) of compound 1.4 as a yellow solid. Melting point: 173 - 175 
o
C;  

1
H NMR δ 

8.41 (d, J =  4.4 Hz, 1H), 7.34 (t, J =  8.4 Hz, 1H), 7.22 (d, J =  7.1 Hz, 1H), 7.10 (d, J =  4.0 Hz, 

1H), 7.03 (s, 1H), 6.94 (dd, J = 8.4, 2.0 Hz, 1H), 6.72 (bs, 1H, OH), 6.71 (s, 2 H), 6.49 (s, 1H), 

5.55 (s, 1H, NH), 4.48 (d, J = 4.0 Hz, 2H), 3.88 (s, 6H, 2 OMe), 3.75 (s, 3H, OMe), 2.62 (s, 3H, 

Me);  
13

C NMR δ 159.9, 151.0, 147.5, 145.1, 144.6, 142.9, 134.2, 134.0, 132.1 (q, 
2
JCF = 33 Hz, 

C-CF3), 130.2, 130.1, 126.2, 125.3, 124.5, 124.1 (q, 
1
JCF = 271 Hz, CF3), 118.4, 118.2 (q, 

3
JCF = 

4 Hz), 112.1 (q, 
3
JCF = 4 Hz), 104.5, 93.8, 56.7 (OMe), 56.6 (2 OMe), 48.7, 23.4; MS 

(electrospray), m/z 537.5 (M+Na)
+
, 515.2 (M+H)

+
. Succinic salt of 1.4 was prepared in the same 

way as compound 1.1 by starting with 20 mg (0.039 mmol) of 1.4 and 4.5 mg (0.039 mmol) of 

succinic acid.  

 

 4-{[6-Methoxy-4-methyl-5-(3-trifluoromethylphenoxy)quinolin-8-ylamino]methyl} 

phenol (1.5). 

N

HN

O
Me

MeOF3C

OH

1.5  
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A solution of 25.0 mg (0.071 mmol) of 6-methoxy-4-methyl-5-(3-

(trifluoromethyl)phenoxy)quinolin-8-amine (1.17) and 9.5 mg (0.078 mmol)  p-

hydoxybenzaldehyde in 1 mL of dried methanol (distilled over magnesium) was stirred under 

argon at 25
o
C for 30 minutes. To it, 2 drops of acetic acid was added. The mixture was stirred at 

25 
o
C for 1 hour. Then, 13.4 mg (0.213 mmol) of sodium cyanoborohydride were added, the 

solution was stirred 12 hours, diluted with 30 mL of aqueous ammonium chloride solution, and 

extracted three times with ethyl acetate. The combined extract was washed with water, brine, 

dried (MgSO4), concentrated, and column chromatographed using a mixture of hexane and 

diethyl ether (1:1). The column purified product was washed with 3 mL hexane and diethyl ether 

(1:1) to give pure 1.5 26.4 mg (82 %) as yellow solid. Melting point: 170 - 171
o
C;  

1
H NMR δ 

8.41 (d, J = 4.0 Hz, 1H), 7.35 - 7.32 (m, 3H), 7.25 - 7.21 (m, 1H), 7.11 - 7.06 (m, 2H), 6.93 (dd, 

J = 8.0, 2.4 Hz, 1H), 6.83 (d, J = 8.0 Hz, 2H), 6.71 (s, 1H, OH), 6.47 (s, 1H), 4.80 (s, 1H, -NH,), 

4.48 (d, J = 4.4 Hz, 2H, CH2N), 3.74 (s, 3H, OMe), 2.61 (s, 3H, Me); 
13

C NMR δ 159.9, 155.3, 

151.1, 145.1, 144.5, 143.1, 133.9, 132.2 (q, 
2
JCF = 33 Hz, C-CF3), 130.9, 130.2, 129.3, 126.1, 

125.2, 124.6, 124.2 (q, 
1
JCF = 271 Hz, CF3), 118.4, 118.2 (q, 

3
JCF = 4 Hz), 115.8, 112.3 (q, 

3
JCF = 

4 Hz), 93.8, 56.7, 47.8, 23.4; MS (electrospray), m/z 477.0 (M+Na)
+
, 455.1 (M+H)

+
. Succinic 

salt of 1.5 was prepared in the same way as compound 1.1 by starting with 20 mg (0.044 mmol) 

of 1.5 and 5.2 mg (0.044 mmol) of succinic acid.  
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 6-Methoxy-4-methyl-N-(quinolin-4-ylmethyl)-5-(3-trifluoromethylphenoxy)quinolin-8-

amine (1.6). 

N

HN

O
Me

MeOF3C

N

1.6  

A solution of 25.0 mg (0.071 mmol) of 6-methoxy-4-methyl-5-(3-

(trifluoromethyl)phenoxy)quinolin-8-amine (1.17) and 12.5 mg (0.078 mmol)  quinoline-4-

caboxaldehyde in 1 mL of dried methanol (distilled over magnesium) was stirred under argon at 

25
o
C for 30 minutes. To it, 4 drops of acetic acid was added. The mixture was stirred at 25 

o
C for 

1 hour. Then, 3.4 mg (0.213 mmol) of sodium cyanoborohydride were added, the solution was 

stirred 12 hours, diluted with 30 mL of aqueous ammonium chloride solution, and extracted three 

times with ethyl acetate. The combined extract was washed with water, brine, dried (MgSO4), 

concentrated, and column chromatographed using a mixture of hexane and diethyl ether (1:1). 

The column purified product was washed with 3 mL hexane and diethyl ether (1:1) to give pure 

1.6 28.3 mg (75 %) as yellow solid. Melting point: 155 
o
C – 159 

o
C. 

1
H NMR: δ 8.88 (d, J = 4.4 

Hz, 1H), 8.44 (d, J = 4.4 Hz, 1H), 8.21 (d, J = 8.4 Hz, 1H), 8.15 (d, J = 8.8 Hz, 1H), 7.79 (t, J = 

3.2 Hz, 1H), 7.64 (t, J = 6.4 Hz, 1H), 7.55 (d, J = 3.6 Hz, 1H), 7.34 (t, J = 8.0 Hz, 1H), 7.22 (d, J 

= 7.6 Hz, 1H), 7.13 (d, J = 8.4 Hz, 1H), 7.07 (s, 1H), 7.00 (t, J = 6.0 Hz, 1H), 6.95 (dd, J = 8.0, 

2.0 Hz, 1H), 6.40 (s, 1H), 5.09 (d, J = 5.6 Hz, 2H), 3.65 (s, 3H), 2.65 (s, 3H); 
13

C NMR: δ 159.8, 

151.0, 150.8, 148.6, 145.4, 144.1, 144.0, 143.1, 134.0, 132.2 (q, 
2
JCF = 33 Hz, C-CF3), 130.7, 

130.2, 129.6, 127.1, 126.8, 126.7, 125.4, 124.7, 124.2 (q, 
1
JCF = 271 Hz, CF3),  123.0, 119.5, 

118.4, 118.2 (q, 
3
JCF = 4 Hz),  112.3 (q, 

3
JCF = 4 Hz), 93.9,  56.8, 44.9, 23.3; MS, m/z 490.2 

(M+H)
+
. Succinic salt of 1.6 was prepared in the same way as compound 1.1 by starting with 20 

mg (0.041 mmol) of 1.6 and 4.8 mg (0.040 mmol) of succinic acid. 
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 6-Methoxy-4-methyl-N-(quinolin-8-ylmethyl)-5-(3-trifluoromethylphenoxy) quinolin -

8-amine (1.7).  

N

HN

O
Me

MeOF3C

N

1.7  

Prepared via the same as compound 1.4. Starting from 25.0 mg (0.071 mmol) of compound 1.17 

and 12.2 mg (0.078 mmol) of quinoline-8-caboxaldehyde gave 26.5 mg (76% yield) of 

compound 1.7 as yellow solid. Melting point: 158 - 160 
o
C;  

1
H NMR δ 9.05 (m, 1H), 8.42 (d, J 

= 4.4 Hz, 1H), 8.20 (d, J = 8.4 Hz, 1H), 7.85 (d, J = 8.0 Hz, 1H), 7.78 (d, J = 6.8 Hz, 1H), 7.52 (t, 

J = 7.6 Hz, 1H), 7.47 (dd, J = 7.2, 4.4 Hz, 1H), 7.32 (t, J = 8.4 Hz, 1H), 7.20 (d, 8.4 Hz, 1H), 

7.09 – 7.07 (m, 3H), 6.91 (d, J = 7.2 Hz, 1H), 6.61 (s, 1H), 5.31 (d, J = 6 Hz, 2H, CH2N), 3.65 (s, 

3H, -OMe), 2.61 (s, 3H, Me); 
13

C NMR δ 160.0, 151.2, 149.8, 146.8, 145.0, 144.8, 142.7, 137.0, 

136.7, 134.1, 132.1 (q, 
2
JCF = 32 Hz, C-CF3), 130.2, 128.6, 128.1, 127.4, 126.7, 125.9, 125.2, 

124.5, 124.2 (q, 
1
JCF = 270 Hz, CF3), 121.4, 118.3, 118.1 (q, 

3
JCF = 3 Hz), 112.3 (q, 

3
JCF = 3 Hz), 

93.8, 56.7 (OMe), 43.8 (CH2N), 23.4 (Me);  MS (electrospray), m/z 512.2 (M+Na)
+
, 490.2 

(M+H)
+
. Succinic salt of 1.7 was prepared in the same way as compound 1.1 by starting with 20 

mg (0.041 mmol) of 1.7 and 4.8 mg (0.040 mmol) of succinic acid. 

 N-[6-Methoxy-4-methyl-5-(3-trifluoromethylphenoxy)quinolin-8-yl]furan-2-

carboxamide (1.8). 

N

HN

O
Me

MeOF3C

O

O

1.8  

Furfural (200 mg, 2.1 mmol), selenium dioxide (9 mg, 0.08 mmol) and 280 mg (4.2 mmol) of 50 % 

hydrogen peroxide were mixed with 10 mL THF. This mixture was heated to reflux for 3 hours 

and cooled to room temperature, diluted with 10 mL ethyl acetate. This mixture was washed with 



38 

 

5 % aq. sodium hydroxide. Obtained aqueous solution was acidified with 2N HCl to pH = 3 ~ 4 

and extracted with ethyl acetate 3 times. The combined organic layer was washed with water, 

brine, dried with MgSO4 and concentrated to give 2-furoic acid 200 mg (98 % yield) which is 

pure enough to do next step.  

12 mg of 2-Furoic acid (0.11 mmol) was refluxed in 2 mL thionyl chloride under argon. The 

excess thionyl chloride was distilled off under vacuum to give compound 1.18 with quantitative 

yield. Compound 1.18 was dissolved in 1 mL dry THF, and this solution was cooled to -78
o
C.  

To this solution was added compound 1.17 (35 mg, 0.11 mmol) in 1 mL THF. The mixture was 

stirred at -78 
o
C until all the 1.17 was dissolved. Then this solution was warmed to 25 

o
C and 

stirred overnight. . The reaction solution was diluted with aqueous sodium bicarbonate solution, 

and extracted three times with ethyl acetate. The combined extract was washed with water, brine, 

dried (MgSO4), concentrated, and column chromatographed using a mixture of hexane and ethyl 

acetate (1:1) as an eluent to give 30.5 mg (75% yield) of compound 1.8 as a white solid. Melting 

point: 201 - 204
o
C;  

1
H NMR δ 11.0 (s, 1H, -NH), 9.0 (s, 1H), 8.60 (d, J = 4.0 Hz, 1H), 7.65 (s, 

1H), 7.33 (t, J = 7.6 Hz, 1H), 7.28 (d, J = 4.0 Hz, 1H), 7.25 (d, J = 8.9 Hz, 1H), 7.20 (d, J = 3.5 

Hz, 1 H), 7.11 (s, 1H), 6.94 (d, J = 7.4 Hz, 1H), 6.62 (d, J = 3.5 Hz, 1H), 3.91 (s, 3H, OMe), 2.70 

(s, 3H, Me);  
13

C NMR δ 169.3, 159.1, 156.8, 153.4, 150.0, 148.4, 146.6, 145.0, 143.6, 134.3 (q, 

2
JCF = 96 Hz, C-CF3), 131.5, 130.4, 125.4, 125.1, 122.7 (q, 

1
JCF = 278 Hz, CF3), 118.7, 118.3 (q, 

3
JCF = 4 Hz), 115.5, 112.8, 112.4 (q, 

3
JCF = 4 Hz), 105.3, 56.8 (OMe), 23.4 (Me); MS 

(electrospray), m/z 465 (M+Na)
+
, 443.3 (M+H)

+
. Succinic salt of 1.8 was prepared in the same 

way as compound 1.1 by starting with 30 mg (0.068 mmol) of 1.8 and 8.1 mg (0.068 mmol) of 

succinic acid. 
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 8-Amino-4-methyl-5-(3-trifluoromethylphenoxy)quinolin-6-ol (1.19). 

N

NH2

HO

O MeF3C

1.19  

To compound 1.17 (98.2 mg, 0.282 mmol) in 2 ml dried dichloromethane (distilled over calcium 

hydride) at 0 
o
C was added 1 ml 1.0 M BBr3’s dichloromethane solution (4.0 eq); then this 

mixture was warmed to 25
o
C and stirred overnight. The reaction solution was diluted with 

aqueous sodium bicarbonate solution, and extracted three times with dichloromethane. The 

combined extract was washed with water, brine, dried (MgSO4), and concentrated to give 78.2 

mg of compound 1.19 as brown solid which is pure enough for next step. Melting point: 133 - 

135
o
C; 

1
H NMR δ 8.46 (d, J = 4.4 Hz, 1H), 7.38 (t, J = 8.0 Hz, 1H), 7.29 (d, J = 7.2 Hz, 1H), 

7.14 (s, 1H), 7.08 (d, J = 3.6 Hz, 1H), 6.93 (d, J = 7.6 Hz, 1H), 6.73 (s, 1H), 5.40 (bs, 1H, OH), 

5.30 – 5.10 (bs, 2H, NH2), 2.55 (s, 3H); 
13

C NMR δ 159.1, 147.8, 145.4, 144.2, 141.8, 134.9, 

133.1 (q, 
2
JCF = 37 Hz, C-CF3) 130.9, 125.1, 124.5, 124.2, 123.0 (q, 

1
JCF = 270 Hz, CF3), 119.5, 

118.2 (q, 
3
JCF = 4 Hz), 112.5 (q, 

3
JCF = 4 Hz), 100.5, 22.7 (Me); MS (electrospray), m/z 335.1 

(M+H)
+
. 

 8-(4-Hydroxybenzylamino)-4-methyl-5-(3-trifluoromethylphenoxy)quinolin-6-ol (1.9). 

1.9

N

HN

HO

MeOF3C

OH

 

50.0 mg (0.149 mmol) of compound 1.19 was stirred with 20.0 mg (0.163 mmol) of p-

hydroxybenzaldehyde in 2 mL dry methanol for 30 minutes until the solid dissolved. Then 3 

drops of acetic acid was injected, and this brown mixture was stirred for 30 minutes at 25 
o
C. To 

it 28.5 mg (0.450 mmol) of sodium cyanoborohydride were added, the solution was stirred 12 

hours. Yellow solid participated out from the solution. This mixture was diluted with 30 mL of 

aqueous ammonium chloride solution, and extracted three times with ethyl acetate. The 
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combined extract was washed with water, brine, dried (MgSO4), concentrated, and column 

chromatographed using a mixture of hexane and diethyl ether (1:1) as an eluent; the obtained 

product was recrystallized with 2 mL of  hexane and diethyl ether (1:1) to give 34.2 mg (52% 

yield) of compound 1.10 as yellow solid; mp: 194 - 195
o
C;  

1
H NMR (DMSO-d6) δ 9.64 (bs, 1H, 

NH), 9.28 (s, 1H, OH), 8.37 (d, J = 4.0 Hz, 1H), 7.47 (t, J = 8.4 Hz, 1H), 7.28 (d, J = 7.6 Hz, 1H), 

7.20 (d, J = 8.4 Hz, 2H), 7.15 (d, J = 4.4 Hz, 1H), 7.01 (s, 1H), 6.97 – 6.93 (m, 2H), 6.72 (d, J = 

8.4 Hz, 2H), 6.36 (s, 1H), 4.32 (d, J = 6 Hz, 2H), 2.51 (s, 3H, Ar-Me; overlap with DMSO-d6 

signal);  
13

C NMR (DMSO-d6) δ 160.2, 157.1, 149.5, 144.4, 144.37, 141.3, 133.6, 131.6, 130.9 

(q, 
2
JCF = 31 Hz, -C-CF3), 130.1, 129.1 125.5, 124.6, 124.5 (q, 

1
JCF = 270 Hz, CF3), 123.1, 119.5, 

118.3 (q, 
3
JCF = 4 Hz), 115.9, 112.0 (q, 

3
JCF = 4 Hz), 97.2, 46.7 (CH2N), 23.1 (Me); MS 

(electrospray), m/z 441.5 (M+H)
+
. Succinic salt of 1.9 was prepared in the same way as 

compound 1.1 by starting with 30 mg (0.068 mmol) of 1.9 and 8.1 mg (0.068 mmol) of succinic 

acid. 

 4-Acetamino-5-nitro-2-(3-fluorophenyloxy) anisole (1.21). 

NO2

NHAc

O

O

Me

F

1.21  

Mixture of 3-fluorophenol (300.0 mg, 2.678 mmol) and potassium t-butoxide (300.5 mg, 2.678 

mmol) in 10 mL dried t-butanol (distilled over sodium) was stirred at 25 
o
C for 12 hours under 

argon. Then, t-butanol was concentrated off under vacuum to yield the potassium 3-

fluorophenolate as a yellow solid. The yielded 3-fluorophenolate in 4 mL dry DMF (distilled 

over calcium hydride) was added into N-(5-bromo-4-methoxy-2-nitrophenyl)acetamide 1.20 

(722.5 mg, 2.500 mmol) in 4 mL dry DMF at 60 
o
C under argon. Then this solution was stirred 

at 120
o
C for 24 hours. The cooled solution was poured onto ice-water with vigorous stirring. The 

participated solid was collected by filtration and recrystallized with ethanol to give 520.5 mg (65% 

yield) of compound 1.21 as a light yellow solid. Melting point: 125 - 126
o
C; 

1
H NMR δ 10.46 (s, 

1H, NH),  8.37 (s, 1H),  7.78 (s, 1H), 7.37 (td, J =  8.4, 6.4 Hz, 1H), 6.94 (td, J = 7.6, 2.4 Hz, 1H), 

6.89 (dd, J = 8.0, 2.0 Hz, 1H), 6.81 (dt, J = 9.6, 2.4 Hz, 1H), 3.95 (s, 3H, OMe), 2.23 (s, 3H, Me);  
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13
C NMR δ 169.2 (C=O), 164.7 (d, 

1
JCF = 247 Hz, CF), 156.2 (d, 

3
JCF = 11 Hz), 152.9, 145.7, 

131.141 (d, 
3
JCF = 10 Hz), 131.137, 115.4 (d, 

4
JCF = 3.6 Hz), 112.3 (d, 

2
JCF = 21 Hz), 110.7, 

108.7, 107.8, 107.5, 56.7 (OMe), 25.8 (Me); MS (electrospray), m/z 343.3 (M+Na)
+
. 

 

 4-Acetamino-5-nitro-2-phenyloxyanisole (1.22). 

NO2

NHAc

O

O

Me

1.22  

Prepared via the same procedure as compound 1.21. Potassium phenolate was made from 360 

mg (3.825 mmol) of phenol and 429.3 mg (3.825 mmol) of potassium t-butoxide. Starting from 

the obtained phenolate and compound 1.20 (982 mg, 3.400 mmol) gave 821.0 mg (yield 80%) of 

compound 1.22 as yellow solid. Melting point: 124 - 126
o
C;  

1
H NMR δ 10.46 (s, 1H, NH), 8.25 

(s, 1H), 7.80 (s, 1H), 7.49 - 7.39 (m, 2H), 7.29 - 7.22 (m, 1H), 7.12 - 7.09 (m, 2H), 3.96 (s, 3H, 

OMe), 2.23 (s, 3H, Me); 
13

C NMR δ 169.2, 154.7, 154.3, 145.4, 131.4, 130.4, 125.8, 120.4, 

109.20, 109.18, 108.48, 108.47, 56.7 (OMe), 25.7 (Me); MS (electrospray), m/z 325.3 (M+Na)
+
. 

 4-Amino-5-nitro-2-(3-fluorophenyloxy) anisole (1.23). 

NO2

NH2

O

O

Me

F

1.23  

Compound 1.21 (310.0 mg, 0.968 mmol) was stirred with 35 mL conc. HCl and ethanol (1:7)’s 

solution at reflux for 2 hours. This solution was poured onto ice-water mixture, stirred for 30 

minutes. The resulted solid was collected by filtration, washed with water, vacuum dried to give 

240.3 mg of 1.23 (95 %, yield) as organge solid which is pure enough for next step. Melting 

point: 120 - 121
o
C;  

1
H NMR δ 7.70 (s, 1 H), 7.34 (td, J =  8.4, 6.4 Hz, 1H), 6.92 (td, J = 7.6, 2.4 

Hz, 1H), 6.87 (dd, J = 8.0, 2.0 Hz, 1H), 6.81 (dt, J = 9.6, 2.4 Hz, 1H), 6.13 (s, 1H), 5.96 (s, 2H, 
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NH2), 3.90 (s, 3H, OMe); 
13

C NMR δ 163.6 (d, 
1
JCF = 247 Hz, CF), 156.2 (d, 

3
JCF = 10 Hz), 

154.4, 142.2, 141.9, 131.1 (d, 
3
JCF = 10 Hz), 126.7, 115.7 (d, 

4
JCF = 3 Hz), 112.2 (d, 

2
JCF = 20.6 

Hz), 108.3, 107.9 (d, 
2
JCF = 24 Hz), 106.1, 56.6 (OMe);  MS (electrospray), m/z 279.2 (M+H)

+
. 

 4-Amino-5-nitro-2-phenyloxyanisole (1.24). 

NO2

NH2

O

O

Me

1.24  

Prepared via the same procedure as compound 1.23. Deprotection of compound 1.22 (260.0 mg, 

0.839 mmol) gave 213.7 mg (98% yield) of 1.24 as yellow solid. Melting point: 162 - 163
o
C;  

1
H 

NMR δ 7.65 (s, 1H), 7.44 - 7.40 (m, 2H), 7.27 - 7.23 (m, 1H), 7.12 - 7.09 (m, 2H), 6.01 (s, 1H), 

6.10 – 5.3 (bs, 2 H, NH2), 3.92 (s, 3H, OMe);  
13

C NMR δ 155.8, 154.7, 142.1, 142.0, 130.4, 

125.6, 120.8, 108.0, 104.6, 56.6 (OMe); MS (electrospray), m/z 261.2 (M+H)
+
. 

 6-Methoxy-4-methyl-8-nitro-5-(3-fluorophenyloxy)quinoline (1.25). 

NO2

O

O

Me

F

N

Me

1.25  

A mixture of compound 1.23 (240.0 mg, 0.863 mmol) and H3AsO4 (395.2 mg, 1.736 mmol) in 3 

mL 85 % H3PO4 was heated to 120 
o
C.  Methyl vinyl ketone (90.8 mg, 1.290 mmol) was added 

dropwise into this mixture. After stirring for 30 minutes, this dark solution was quickly poured 

onto ice-water mixture. This mixture was basified to pH = ~ 10 with 2N NaOH, and extracted 

with dichloromethane 3 times. The combined extract was washed with water, brine, dried 

(MgSO4), concentrated, and column chromatographed using a mixture of hexane and ethyl 

acetate (2:1) as an eluent to give 99.0 mg (35% yield) of compound 1.25 as brown solid. Melting 

point: 167 - 169
o
C;  

1
H NMR δ 8.76 (d, J = 4.3 Hz, 1H), 7.88 (s, 1H), 7.28 - 7.21, (m, 2H), 6.78 

(td, J = 2.4, 0.16 Hz, 1H), 6.76 - 6.56 (m, 2H), 3.89 (s, 3H, OMe), 2.73 (s, 3H, Me); 
13

C NMR δ 

163.9 (d, 
1
JCF = 246 Hz, CF), 159.1 (d, 

3
JCF =10 Hz), 150.9, 148.4, 146.9, 143.9, 140.1, 136.2, 
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130.8 (d, 
3
JCF = 10 Hz), 125.9, 125.3, 111.9, 110.9 (d, 

4
JCF = 3 Hz), 109.7 (d, 

2
JCF = 21 Hz), 

103.3 (d, 
2
JCF = 25 Hz), 57.4 (OMe), 23.4 (Me);  MS (electrospray), m/z 329.3 (M+H)

+
. 

 6-Methoxy-4-methyl-8-nitro-5-phenyloxyquinoline (1.26). 

NO2

O

O

Me

N

Me

1.26  

Prepared via the same procedure as compound 1.25. Starting from methyl vinyl ketone (89.8 mg, 

1.275 mmol), 1.24 (220.0 mg, 0.846 mmol), H3AsO4 (387.0 mg, 1.689 mmol) and 3 mL 85% 

H3PO4 gave 118.0 mg (45 % yield) of compound 1.26 as brown solid. Melting point: 170 - 

172
o
C;  

1
H NMR δ 8.76 (d, J = 4.3 Hz, 1H), 7.88 (s, 1H), 7.28 - 7.21 (m, 2H), 7.22 (d, J = 2.0 Hz, 

1H), 7.05 (t, J = 6.0 Hz, 1H), 6.81 - 6.78 (m, 2H), 3.89 (s, 3H, OMe), 2.73 (s, 3H, Me);  
13

C 

NMR δ 158.0, 150.9, 148.6, 146.5, 144.3, 140.8, 136.4, 130.4, 130.0, 125.8, 125.5, 122.7, 120.8, 

115.2, 112.2, 57.4 (OMe), 23.5 (Me);  MS (electrospray), m/z 311.2 (M+H)
+
.  

 8-Amino-6-methoxy-4-methyl-5-(3-fluorophenyloxy)quinoline (1.27). 

NH2

O

O

Me

F

N

Me

1.27  

 

Compound 1.25 (35.0 mg, 0.106 mmol) and iron powder (33.6 mg, 0.636 mmol) was mixed with 

5 mL aqueous 10 % AcOH solution and heated to reflux for 2 hours. The mixture was cooled to 

25 
o
C and diluted with water. This mixture was firstly extracted with 20 mL THF, then, followed 

by diethyl ether 2 times. The combined organic solution was washed with water and brine, dried 

(MgSO4), concentrated, and column chromatographed using a mixture of hexane and diethyl 

ether (1:1) as an eluent to give 29.0 mg (92% yield) of compound 1.27 as yellow solid. Melting 

point: 146 - 147 
o
C; 

1
H NMR δ 8.45 (d, J = 4.3 Hz, 1H), 7.19 (dd, J = 8.2, 6.6 Hz, 1H), 7.08 (d, J 

= 4 Hz, 1H), 6.8 (s, 1H), 6.67 (td, J = 8.2, 2.3 Hz, 1H), 6.60 (dd, J = 8.2, 2.3 Hz, 1H), 6.48 (dt, J 
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= 10.9, 2.0 Hz, 1H), 5.15 (bs, 2H, NH2), 3.85 (s, 3H, OMe), 2.62 (s, 3H, Me); 
13

C NMR δ 164.0 

(d, 
1
JCF = 244 Hz), 161.0 (d, 

3
JCF = 10 Hz), 150.7, 145.6, 143.6, 143.0, 134.0, 130.4 (d, 

3
JCF = 9 

Hz), 127.6, 125.1, 124.7, 111.0 (d, 
4
JCF = 3 Hz), 108.4 (d, 

2
JCF = 21 Hz), 102.9 (d, 

2
JCF = 25 Hz), 

98.0, 56.4 (OMe), 22.9 (Me); MS (electrospray), m/z 299.3 (M+H)
+
. 

 8-Amino-6-methoxy-4-methyl-5-phenyloxyquinoline (1.28). 

NH2

O

O

Me

N

Me

1.28  

Prepared via the same procedure as compound 1.27. Starting from compound 1.26 (57 mg, 0.184 

mmol), iron (62.0 mg, 1.100 mmol) and 10 mL aqueous 10% AcOH solution gave 47.4 mg  (92% 

yield) of compound 1.28 as brown solid. Melting point: 145 - 146 
o
C; 

1
H NMR δ 8.44 (d, J = 4.3 

Hz, 1H), 7.26 - 7.20 (m, 2H), 7.03 (dd, J = 4.4, 0.8 Hz, 1H), 6.97 (t, J = 3.6 Hz, 1H), 6.79 - 6.76 

(m, 3H), 5.15 (bs, 2H, NH2), 3.78 (s, 3H, OMe), 2.63 (s, 3H, CH3); 
13

C NMR δ 159.7, 150.8, 

145.5, 143.3, 143.26, 134.1, 129.7, 128.0, 125.0, 124.9, 121.5, 115.0, 98.4, 56.8 (OMe), 23.4 

(Me); MS (electrospray), m/z 281.4 (M+H)
+
. 

 4-Methoxy-2-nitrobenzenamine (1.29) 

NO2

NH2

O
Me

1.29  

N-Acetyl-p-anisidine (2.0 g, 12.0 mmol) was mixed with 20 % nitric acid, and this mixture was 

heated to reflux for 1 h and poured onto the ice-water mixture. After vigorous stirring for 10 

minutes, the solid was collected by filtration to give crude product. The crude product was 

purified by recrystallization in ethanol to give 413 mg (33 % yield) of compound 1.29 as brown 

solid. 
1
H NMR δ 7.54 (d, J = 3.2 Hz, 1H), 7.08 (dd, J = 9.3, 4.3 Hz, 1H), 6.76 (d, J = 9.3 Hz, 1H), 

3.79 (s, 3H); MS, m/z 169.0 (M+H)
+
. 
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 6-methoxy-4-methyl-8-nitroquinoline (1.30). 

NO2

O
Me

N

Me

1.30  

Prepared via the same procedure as compound 1.25. Starting from methyl vinyl ketone (275 mg, 

3.93 mmol), 1.29 (440.0 mg, 2.62 mmol), H3AsO4 (1.20 g, 5.24 mmol) and 12 mL 85% H3PO4 

gave 500.0 mg (87 % yield) of compound 1.30 as brown solid. Melting point: 159 - 162 
o
C; 

1
H 

NMR (CDCl3) δ 8.77 (d, J = 4 Hz, 1H), 7.67 (d, J = 2.8 Hz, 1H), 7.40 (d, J = 2.8 Hz, 1H), 7.33 - 

7.34 (m, 1H), 4.00 (s, 3H, OMe), 2.70 (s, 3H, CH3). 
13

C NMR δ 156.1, 149.9, 143.4, 135.3, 

130.3, 123.8, 115.6, 106.2, 56.4 (OMe), 19.4 (Me); MS (electrospray), m/z 241.0 [M+Na]
+
, 

219.1 [M+H]. 

 8-Amino-6-methoxy-4-methylquinoline (1.31). 

NH2

O
Me

N

Me

1.31  

Prepared via the same procedure as compound 1.27. Starting from compound 1.30 (250 mg, 1.15 

mmol), iron (385.0 mg, 6.88 mmol) and 60 mL aqueous 10% AcOH solution gave 212 mg  (98% 

yield) of compound 1.31 as brown solid. Melting point: 88 - 91 
o
C; 

1
H NMR δ 8.48 (d, J = 4.4 

Hz, 1H), 7.17 (dd, J = 4.4, 0.8 Hz, 1H), 6.59 (d, J =  2.4 Hz, 1H), 6.55 (d, J = 2.4 Hz, 1H), 5.13 

(bs, 2H, NH2), 3.80 (s, 3H, OMe), 2.61 (s, 3H, CH3); 
13

C NMR δ 158.8, 145.8, 144.8, 142.9, 

135.1, 129.9, 122.8, 101.2, 91.5, 55.4 (OMe), 19.4 (Me);. MS (electrospray), m/z 189.3 [M+H]. 
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 4-{[5-(3-Fluorophenoxy)-6-methoxy-4-methylquinolin-8-ylamino]methyl}phenol 

(1.10).  

N

HN

O
Me

MeOF

OH

1.10  

Prepared via the same procedure same as compound 1.5. Starting from compound 1.27 (34.0 mg, 

0.114 mmol) and p-hydroxbenzaldehyde (15.3 mg, 0.125 mmol) gave 29.2 mg (65 %) of 

compound 1.12 as yellow solid. Melting point: 168 - 169 
o
C; 

1
H NMR δ 8.41 (d, J = 4.8 Hz, 1H), 

7.28 (d, J = 8.0 Hz, 2H), 7.19 (dt, J = 8.4, 6.8 Hz, 1H), 7.10 (dd, J = 4.4, 0.8 Hz, 1H), 6.79 (d, J 

= 8.0 Hz, 2H), 6.66 (td, J = 6, 0.4 Hz, 1H), 6.62 (dd, J = 8.4, 0.4 Hz, 1H),  6.51 - 6.49 (m, 3H), 

5.02 (s, 1H, OH), 4.44 (s, 2H, CH2N), 3.79 (s, 3H, OMe), 2.65 (s, 3H, Me); 
13

C NMR  δ 164.0 (d, 

1
JCF = 247 Hz), 161.2 (d, 

3
JCF = 10 Hz), 155.4, 151.2, 145.0, 144.3, 143.4, 133.7, 130.7, 130.4 (d, 

3
JCF = 10 Hz), 129.4, 126.4, 125.2, 124.7, 115.8, 111.0 (d, 

4
JCF = 3 Hz), 108.3 (d, 

2
JCF = 21 Hz), 

103.0 (d, 
2
JCF = 21 Hz), 93.9, 56.8 (OMe), 47.8 (CH2N), 23.4 (Me); MS (electrospray), m/z 

427.1 (M+Na)
+
. Succinic salt of 1.10 was prepared in the same way as compound 1.1 by starting 

with 20 mg (0.047 mmol) of 1.10 and 5.5 mg (0.047 mmol) of succinic acid. 

 4-[(6-methoxy-4-methyl-5-phenoxyquinolin-8-ylamino)methyl]phenol (1.11). 

N

HN

O
Me

MeO

OH

1.11  

Prepared via the same procedure same as compound 1.5. Starting from compound 1.28 (58.0 mg, 

0.207 mmol) and p-hydroxbenzaldehyde (27.8 mg, 0.228 mmol) gave 73.9 mg (84 %) of 

compound 1.11 as yellow solid. Melting point: 181 - 182 
o
C; 

1
H NMR δ 8.41 (d, J = 4.0 Hz, 1H), 

7.31 – 7.23 (m, 4H), 7.08 (d, J = 4.4 Hz, 1H), 6.95 (t, J =7.2 Hz, 1H), 6.81 - 6.79 (m, 4H), 6.54 
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(s , 1H), 6.53 (bs, 1H, OH), 6.08 (bs, 1H, NH), 4.45 (s, 2H, CH2N), 3.79 (s, 3H, OMe), 2.67 (s, 

3H, Me); 
13

C NMR δ 159.8, 155.4, 151.3, 144.9, 144.0, 143.7, 133.8, 130.7, 129.7, 129.4, 126.8, 

125.04, 125.0, 121.4, 115.7, 115.1, 94.32, 94.30, 56.9 (OMe), 47.8 (CH2N), 23.5 (Me); MS 

(electrospray), m/z 409.2 (M+Na)
+
, 387.1 (M+H)

+
. Succinic salt of 1.11 was prepared in the 

same way as compound 1.1 by starting with 20 mg (0.052 mmol) of 1.11 and 6.1 mg (0.052 

mmol) of succinic acid. 

 8-Amino-6-methoxy-4-methylquinoline (1.12). 

N

HN

O
Me

Me

OH

1.12  

Prepared via the same procedure same as compound 1.5. Starting from compound 1.31 (100.0 

mg, 0.532 mmol) and p-hydroxbenzaldehyde (71.4 mg, 0.585 mmol) gave 114.2 mg (73%) of 

compound 1.12 as yellow solid. Melting point: 164 
o
C; 

1
H NMR δ  8.43 (d, J = 4.4 Hz, 1H), 7.24 

(d, J = 8.0 Hz, 2H), 7.20 (d, J = 4.0 Hz, 1H), 6.76 (d, J = 8.4 Hz, 2H), 6.46 (d, J = 2.8 Hz, 1H), 

6.43 (bs, 1H, -OH), 6.34 (d, J = 1.6 Hz, 1H), 6.07 (bs, 1H, -NH), 4.38 (d, J = 4.8 Hz, 2H), 3.90 (s, 

3H, -OMe), 2.62 (s, 3H, Ar-Me); 
13

C NMR δ 159.4, 155.4, 146.2, 144.2, 143.4, 134.8, 130.8, 

129.9, 129.3, 122.9, 115.6, 97.2, 89.3, 55.4, 47.5, 19.5 ; MS, m/z 295.2 (M+H)
+
. Succinic salt of 

1.12 was prepared in the same way as compound 1.1 by starting with 20 mg (0.068 mmol) of 

1.12 and 8.1 mg (0.068 mmol) of succinic acid. 

 

 6-Methoxy-8- (3-phtalimidopropylamino)-4-methyl-5-(3-fluorophenyloxy)quinoline 

(1.33). 

N

HN

O
Me

O Me

N

O

O

F

1.33  
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The solution of compound 1.27 (25.0 mg, 0.084 mmol), 3-iodopropylphthalimide (26.0 mg, 

0.084 mmol) and NaHCO3 (7.0 mg, 0.084 mmol) mixed with 0.5 mL dry DMF (distilled over 

calcium hydride) under argon. This mixture was heated to 80 
o
C for 48 hours. After cooling to 25 

o
C, this mixture was diluted with water, extracted with ethyl acetate 3 times, washed with water, 

brine, dried (MgSO4), concentrated, and column chromatographed using a mixture of hexane and 

diethyl ether (1:1) as an eluent to recover 13.5 mg of compound 1.27 and give 17.0 mg (85% 

yield, basing on recovered compound 1.27) of compound 1.33 as yellow solid. Melting point: 

146 - 147 
o
C; 

1
H NMR δ 8.36 (d, J = 4.3 Hz, 1H), 7.86 - 7.82 (m, 2H), 7.73 - 7.69 (m, 2H), 7.18 

(dt, J = 7.2, 6.4 Hz, 1H), 7.04 (d, J = 4 Hz, 1H), 6.65 (td, J = 8.2, 2.3 Hz, 1H), 6.60 (dd, J = 8.2, 

2.3 Hz, 1H), 6.52 (bs, 1H, -NH), 6.50 - 6.42 (m, 2H), 3.91 (t, J = 6.7 Hz, 2H, CH2N), 3.83 (s, 3H, 

OMe), 3.43 (q, J = 5.4 Hz, 2H, CH2N), 2.60 (s, 3H, Ar-Me), 2.19 (pent, J = 7.0 Hz, 2H, CH2); 

13
C NMR δ 168.7 (C=O), 163.9 (d, 

1
JCF = 244 Hz), 161.2 (d, 

3
JCF = 10 Hz), 151.1, 144.9, 144.3, 

142.8, 134.2, 132.3, 130.4 (d, 
3
JCF = 10 Hz), 126.1, 125.1, 124.5, 123.5, 111.0 (d, 

4
JCF = 3 Hz), 

108.3 (d, 
2
JCF = 21 Hz), 102.9 (d, 

2
JCF = 25 Hz), 93.1, 56.9 (OMe), 41.2 (CH2N), 36.2 (CH2N), 

28.2 (CH2), 23.3 (Me); MS (electrospray), m/z 508.2 (M+Na)
+
, 486.2 (M+H)

+
.  

 6-Methoxy-8- (3-phtalimidopropylamino)-4-methyl-5-phenyloxyquinoline (1.34). 

N

HN

O
Me

O Me

N

O

O

1.34  

Prepared via the same procedure as compound 1.33. Starting from compound 1.28 (37.0 mg, 

0.133 mmol), 3-iodopropylphthalimide (41.0 mg, 0.133 mmol) and NaHCO3 (12.0 mg, 0.133 

mmol)  gave 17.3 mg (89 % yield, basing on the recovered compound 1.28 ) of compound 1.34 

and recovered compound 1.28 27.1 mg. Melting point: 164 - 165 
o
C; 

1
H NMR δ 8.36 (d, J = 4.3 

Hz, 1H), 7.85 - 7.82 (m, 2H), 7.72 - 7.69 (m, 2H), 7.23 (t, J = 7.4 Hz, 1H), 7.01 (d, J = 4.3 Hz, 

1H), 6.93 (t, J = 7.4 Hz, 1H), 6.77 (d, J = 8.6 Hz, 2H), 6.49 - 6.46 (m, 2H), 3.91 (t, J = 6.6 Hz, 

2H, CH2N), 3.83 (s, 1H, OMe), 3.43 (q, J = 7.0 Hz, 2H, CH2N), 2.61 (s, 3H, Ar-Me), 2.20 (pent, 

J = 7.0 Hz, 2H, CH2); 
13

C NMR δ 168.7, 159.8, 151.2, 144.9, 144.0, 143.0, 134.2, 134.0, 132.3, 
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129.7, 126.5, 125.0, 124.8, 123.5, 121.4, 115.1, 93.4, 57.0 (OMe), 41.2 (CH2N), 36.2 (CH2N), 

28.2 (CH2), 23.3 (Me); MS (electrospray), m/z 468.3 (M+H)
+
. 

 2-[3-(6-Methoxy-4-methylquinolin-8-ylamino)propyl]isoindoline-1,3-dione (1.35). 

N

HN

O
Me

Me

N

O

O

1.35  

Prepared via the same procedure as compound 1.33. Starting from compound 1.31 (70.0 mg, 

0.372 mmol), 3-iodopropylphthalimide (115.0 mg, 0.372 mmol) and NaHCO3 (31.0 mg, 0.372 

mmol) gave 57.3 mg (86 % yield, basing on the recovered compound 1.31 ) of compound 1.35 

and recovered compound 1.31 35.5 mg. 
1
H NMR δ 8.40 (d, J = 4.3 Hz, 1H), 7.88 - 7.80 (m, 2H), 

7.72 – 7.65 (m, 2H), 7.14 (d, J = 3.8 Hz, 1H), 6.41 - 6.40 (m, 2H, ArH & NH), 6.28 (d, J = 2.3 

Hz, 1H), 3.91 (s, 3H, OMe), 3.87 (t, J = 6.6 Hz, 2H, CH2N), 3.36 (q, J = 6.6 Hz, 2H, CH2N), 

2.59 (s, 3H, CH3), 2.13 (pent, J = 7.0 Hz, 2H, CH2); 
13

C NMR δ 168.7 (CO), 159.3, 146.3, 144.3, 

142.8, 135.0, 134.2, 132.3, 129.7, 123.5, 122.9, 96.4, 89.0, 55.4 (OMe), 40.9 (CH2N), 36.2 

(CH2N), 28.1 (CH2), 19.5 (Me); MS (electrospray), m/z 398.0 [M+Na]
+
, 376.3 [M+H]

+
. 

 3-[6-Methoxy-4-methyl-5-(3-trifluoromethylphenoxy)quinolin-8-

ylamino]propanamide (1.13). 

N

HN

O
Me

MeOF3C

NH2

O

1.13  

Compound 1.17 (70.0 mg, 0.201 mmol) and acrylamide (14.3 mg, 0.201 mmol) was dissolved in 

3 mL acetonitrile in a sealed tube. The system was degased with argon and heated to 120 
o
C for 

30 hours. The solvent was concentrated off, and residue was directly column chromatographed 

using a mixture of hexane and diethyl ether (1:1) as an eluent to give 48.2 mg (57% yield) of 

compound 1.13 as a light brown solid. Melting point: 170 - 172
o
C;  

1
H NMR δ 8.40 (d, J = 4.4 
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Hz, 1H), 7.33 (t, J = 8.0 Hz, 1H), 7.20 (d, J = 7.6 Hz, 1H), 7.08 – 7.05 (m, 2H), 6.93 (d, J = 8.0 

Hz, 1H), 6.58 – 6.49 (m, 2 H), 5.75 (broad s, 1H, NH), 5.56 (broad s, 1H, NH), 3.83 (s, 3H, 

OMe), 3.71 (t, J = 6.4 Hz, 2H, CH2N), 2.72 (t, J = 6.4 Hz, 2H. CH2CO), 2.61 (s, 3H, Me); 
13

C 

NMR δ 173.6, 159.8, 151.0, 145.2, 144.2, 142.8, 134.0, 132.1 (q, 
2
JCF = 32 Hz, C-CF3), 130.2, 

126.3, 125.4, 124.6 124.1 (q, 
1
JCF = 268 Hz, CF3), 118.4, 118.2 (q, 

3
JCF = 4 Hz), 112.2 (q, 

3
JCF = 

4 Hz), 93.7, 56.9 (OMe), 39.9 (CH2), 35.7 (CH2), 23.3 (Me); MS (electrospray), m/z 442.6 

(M+Na)
+
, 420.4 (M+H)

+
. Succinic salt of 1.13 was prepared in the same way as compound 1.1 

by starting with 40 mg (0.095 mmol) of 1.13 and 11.2 mg (0.095 mmol) of succinic acid. 

 6-Methoxy-8-[(3-aminopropyl)amino]-4-methyl-5-(3-fluorophenyloxy)quinoline (1.14). 

N

HN

O
Me

MeOF

NH2

1.14  

Compound 1.33 (17.0 mg, 0.035 mmol) in 6 mL 20 % hydrazine in ethanol’s solution was heated 

to reflux overnight. After concentrating ethanol off, the residue was diluted with 10 % aqueous 

K2CO3 solution, extracted with dichloromethane 3 times, dried over K2CO3, concentrated and 

column chromatographed using a mixture of dichloromethane and methanol (4:1) as an eluent to 

give 7.5 mg (58% yield) of compound 1.14 as yellow solid. Melting point: 96 - 97 
o
C; 

1
H NMR δ 

8.38 (d, J =  4.4 Hz, 1H), 7.18 (dt, J =8.0, 7.6 Hz, 1H), 7.05 (d, J = 4.3 Hz, 1H), 6.66 (td, J =  8.2, 

2.3 Hz, 1H), 6.61 (dd, J = 8.2, 2.3 Hz, 1H), 6.58 - 6.46 (m, 2H), 6.41 (bs, 1H), 3.85 (s, 3H, OMe), 

3.42 (t, J = 6.6 Hz, 2H, CH2N), 3.00 (t, J = 7.0 Hz, 2H, CH2N), 2.66 (bs, 2H, NH2), 2.60 (s, 3H, 

Ar-Me), 2.17 (pent, J = 6.6 Hz, 2H); 
13

C NMR δ 164.0 (d, 
1
JCF = 243 Hz), 161.3 (d, 

3
JCF = 10 

Hz), 151.2, 144.9, 144.6, 142.9, 133.9, 130.5 (d, 
3
JCF = 10 Hz), 126.1, 125.2, 124.6, 111.0 (d, 

4
JCF = 3 Hz), 108.3 (d, 

2
JCF = 22 Hz), 102.8 (d, 

2
JCF =  25 Hz), 93.2, 56.9 (OMe), 41.4 (CH2N), 

40.5 (CH2N), 32.2 (CH2), 23.1 (Me); MS (electrospray), m/z 356.2 (M+H)
+
. Succinic salt of 1.14 

was prepared in the same way as compound 1.1 by starting with 5 mg (0.014 mmol) of 1.14 and 

1.6 mg (0.014 mmol) of succinic acid. 
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 6-Methoxy-8-[(3-aminopropyl)amino]-4-methyl-5-phenyloxyquinoline (1.15). 

N

HN

O
Me

MeO

NH2

1.15  

Prepared via the same procedure same as compound 1.11. Starting from compound 1.34 (17.3 

mg, 0.036 mmol) gave 7.2 mg (59% yield) of compound 1.15 as yellow solid. Melting point: 130 

- 131 
o
C; 

1
H NMR δ 8.33 (d, J = 4.3 Hz, 1H), 7.21 (t, J = 8.6 Hz, 2H), 6.98 (d, J =4.4 Hz, 1H), 

6.92 (t, J = 8.6 Hz, 1H), 6.75 (d, J = 8.6 Hz, 2H), 6.49 (s, 1H), 6.30 (bs, 1H, NH), 4.35 (bs, 2H, 

NH2), 3.81 (s, 3H, OMe), 3.42 (t, J = 6.2 Hz, 2H, CH2N), 3.10 (t, J = 6.6 Hz, 2H, CH2N), 2.60 (s, 

Ar-Me), 2.11 (pent, J = 6.2 Hz, 2H, CH2); 
13

C NMR δ 159.8, 151.3, 144.9, 144.1, 143.3, 133.9, 

129.7, 126.7, 125.0, 124.9, 121.4, 115.0, 93.9, 57.1 (OMe), 41.2 (CH2N), 39.4 (CH2N), 29.9 

(CH2), 23.4 (Me); MS (electrospray), m/z 338.1 (M+H)
+
. Succinic salt of 1.15 was prepared in 

the same way as compound 1.1 by starting with 5 mg (0.015 mmol) of 1.15 and 1.8 mg (0.015 

mmol) of succinic acid. 

 6-Methoxy-8-[(3-aminopropyl)amino]-4-methylquinoline (1.16). 

N

HN

O
Me

Me

NH2

1.16  

Prepared via the same procedure same as compound 1.11. Starting with compound 1.35 (20 mg, 

0.093 mmol) gave compound 1.16 12.1 mg (56 %, yield) as yellow oil. 
1
H NMR δ 8.41 (d, J = 

4.3 Hz, 1H), 7.16 (d, J = 4.6 Hz, 1H), 6.42 (d, J = 2.3 Hz, 1H), 6.32 (d, J = 2.3 Hz, 1H), 6.27 (bs, 

1H, NH), 3.92 (s, 3H, OMe), 3.35 (t, J = 6.3 Hz, 2H, CH2N), 2.90 (t, J =7.0 Hz, 2H, CH2N), 2.59 

(s, 3H, Me), 1.92 (pent, J = 6.6 Hz, 2H, CH2); 
13

C NMR δ 159.2, 146.6, 144.2, 142.9, 135.0, 

129.7, 122.9, 96.3, 88.8, 55.4 (OMe), 41.3 (CH2N), 40.4 (CH2N), 33.0 (CH2), 19.5 (Me); MS 

(electrospray), m/z 245.2 (M+H)
+
. Succinic salt of 1.16 was prepared in the same way as 
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compound 1.1 by starting with 10 mg (0.041 mmol) of 1.16 and 4.8 mg (0.040 mmol) of succinic 

acid. 

Procedure for enzyme inhibition assays 

PKC assays:  Enzyme (PKC) was incubated with substrate (P-L-S-R-T-L-S-V-A-A-K, c = 0.4 

μg/μl in H2O), the activator solution (1 mg/ml phosphatidylserine in water), substrate protection 

solution, and the test compounds (inhibitors) in the buffer solution (100 mM HEPES, 6.5 mM 

CaCl2, 5 mM DTT, 50 mM MgCl2, and 5 mM ATP) at 30 
o
C for 45 minutes. The system was 

warmed to 100 
o
C for 10 minutes to stop the enzyme reaction, and the reaction was loaded into 

the agarose gel placed in a horizontal gel electrophoresis chamber. The electrophoresis was 

carried out for 30 minutes at 100 V. The photograph of the gel was taken under UV by Kodak 

Gel Logic 1500 Digital Imaging System, and quantification of both phosphorylated and 

nonphosphorylated substrates were carried out by Imagequant 5.2 software (Molecular 

Dynamics/Amersham Biosciences). 

GSK-3β assays.  Enzyme (GSK-3) was incubated with substrate, ATP, and the test compound 

for 40 minutes at room temperature. Then, an equal amount of ADP-Glo™ Reagent was 

introduced into the reaction mixture and incubated at room temperature for 40 minutes. 10 μL of 

kinase detection reagent was added and incubated at room temperature for further 30 minutes. 

The luminescence of the mixture was measured using a Glo Max multi detection luminometer. 
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Chapter 2 - Progress on total synthesis of (+)-Myriceric acid (A) 

 2.1 Introduction   

2.1.1 Endotheline-1 peptide and bio-activity, isolation and structure characterization of (+)-

myriceric acid A 

In 1988, a vasoconstrictor peptide was isolated from the culture supernatant of porcine 

endothelial cell (EC) by Yanasigawa et al., which is now known as endothelin-1 (ET-1).
1 

The 

structure of ET-1 was determined by the same group and shown in Figure 2.1.
1
 ET-1 is 21-

residue peptide which contains four cysteines. It has a fused bicyclic structure which is built up 

by two disulfide bridges
 
(Cys1-Cys15 and Cys3-Cys11) and essential for ET-1’s activity. 

Destruction of this bicyclic structure led the ET-1 to be inactive.
2
  

Figure 2.1 : Structures of ET-1
1 

NH2CysSerCysSerSer
Leu

Asp

Lys

Glu Val Tyr Phe Cys His Leu Asp Ile Ile Trp

Met

Cys
C

O

OH

S

S

S

S

 

The ET-1 preferring vasoconstrictory receptor, which is termed as ETA receptor, was 

firstly identified by DNA-cloning and expression methodology from bovine lung.
3
 Bovine’s ETA 

receptor is found in vascular smooth muscle cells and contains 427 amino acids, and its 

molecular mass is about 48.5 kilodaltons.
3
 It is considered as the member of the superfamily of 

G-protein coupled receptors (GPCR) because of their high homology in the transmembrane 

domains.
2 

 Till now, no crystal structure of human ETA receptor is reported.  

Signal transduction for vascular constriction starts from the binding of ET-1 to ETA on 

the membrane of vascular muscle cell.
4
 This binding could increase the formation of inositol 

triphosphate (IP3) in the vascular muscle cell, and the elevated level of IP3 could stimulate the 

sarcoplasmic reticulum (SR) to release calcium into cytoplasm. The increased cytosolic 

concentration of free calcium eventually induces the vasoconstriction (Figure 2.2). 
4,5
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Figure 2.2 : Vascular signal transduction for constriction
4
 

 

ET-1 is known as the most potent mammalian vasoconstrictor peptide (EC50 = 4.0 ± 2.2 × 

10
-1 

nM in porcine right proximal coronary artery assay) and characterized by its long lasting 

vasoconstriction effect and high difficulty in rinsing out from the system. ET-1 induced 

vasoconstriction is closely associated with calcium ion concentration; vasoconstriction could not 

occur in calcium-free environment or significantly reduced in the presence of calcium channel 

blocker. 
1 

Studies indicates that ET-1 and/or its receptors are involved in many cardiovascular 

diseases such as: heart failure, coronary vasospasm and hypertension.
4
 Applications of ET-1 

receptor antagonists gave promising therapeutic effects on these diseases.
2,4

 For example, 

Bosentan,  a non-selective ET-1 receptor antagonist, is in market for pulmonary hypertension
 

(Figure 2.3).
4
 However, because of the strong side effects of these drugs, for example, the 

hepatotoxicity from Bosentan, the discovery of new ET-1 receptor antagonist with less toxicity 

and higher efficiency have been continued.  

Figure 2.3 : Structure of Bosentan
4
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In 1996, Sakurawi, K. et al. found that the methanol extract of fresh Myrica cerifera’s 

twigs could prevent the ET-1-induced cytosolic free calcium concentration increase in rat aortic 
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smooth muscle A7r5 cells with IC50 of 35 g/mL.
6
 Further purification gave a more active 

fraction (IC50 = 0.11 g/mL).
6
 At last, a pure compound was obtained by semi-preparative 

reverse phase high performance liquid chromatography (HPLC).
6
 This compound inhibits not 

only on ET-1 induced cytosolic calcium concentration increase (IC50 = 0.0075 g/mL) but also 

specifically antagonized ET-1’s binding to ETA (IC50 = 0.04 g/mL).
6
 This compound is now 

known as myriceric acid A.  

The structure of myriceric acid A was proposed on the results from high resolution mass 

spectrometry, 
1
H NMR and 

13
C NMR.

6
 Myriceric acid A showes a mass of 632.3715, and its 

molecular formula is calculated as C39H52O7. Results of NMR experiments indicates the existing 

of a trans-caffeoyl group and a triterpene moiety (Figure 2.4).  

Figure 2.4 : Structure of myriceric acid A
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Isolated myriceric acid A was methylated by diazomethane, and the caffeoyl acid ester 

was hydrolyzed off by sodium hydroxide to give ester alcohol 2.1. Compound 2.1 was acetylated 

by acetic anhydride to form the diester 2.2 which is crystalline solid (Scheme 2.1).
6
  

Scheme 2.1 : Synthesis of compound 2.2
6
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The crystal structure of 2.2 is resolved by X-ray analysis and shown in Figure 2.5. The 

absolute configuration of compound 2.2 was assigned according to the positive Cotton effect in 
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the circular dichroism (CD) experiment.
6,7

 This X-ray structure plus NMR experiments results 

confirmed the structure of myriceric acid A. 

Figure 2.5 : Crystal structure of compound 2.5
6 

 

2.1.2 Semi-synthesis of myriceric acid A 

The semi-synthesis of myriceric acid A was accomplished in 1997 by Konoike, T. et al..
8
 

This partial synthesis used oleanolic acid as the starting material via 14 steps to give final 

product myriceric acid A. The retro-synthetic analysis is shown in Scheme 2.2.
8
 As the authors 

mentioned in the article, direct acylation of 27-hydroxy group with caffeic acid could not be 

achieved with  an acceptable yield; hence, final product myriceric acid A was prepared from 

compound 2.3 in alternative strategy. Compound 2.3 could be converted from compound 2.4, 

and compound 2.4 was derived from oleanolic acid. 

Scheme 2.2 : Retro-synthetic analysis of partial synthesis of myriceric acid A
8 
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The semi-synthesis of myriceric acid started with the oxidation of the 3-hydroxy group in 

oleanolic acid (500 mg, $309.00 form Sigma-Aldrich). Jones oxidation of oleanolic acid gave 
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compound 2.5. Olefin functionality in 2.5 was epoxidized by ozone, and the epoxide ring was 

opened by the attack of carboxylate nearby to give lactone 2.6 in one pot. Compound 2.6 was 

treated with nitrosyl chloride to form the unstable nitrite 2.7. Light irradiation of 2.7 gave desired 

product compound 2.8 via Barton reaction
9
 (Scheme 2.3). 

Scheme 2.3 : Partial synthesis of myriceric acid A (Part 1)
8 

O

OH

HO

Oleanolic acid from
 olive leaves extract

Jones oxidation
O

OH

O
3

2.5

O3

O

O

O
OH

NOCl, Py

O

O

O
ONO

2.6

hv

O

O

O
OH

NOH

2.7 2.8

79% yield 94%  yield

74% yield

3
H

H

H

H

H

H

H

H

H

H

 

Ozone is a strong oxidizing reagent, and, in most cases, ozone reacts with olefin to form 

the trioxolane. The dissect of O-O bond in trioxolane yields the carbonyl compound to furnish 

the olefin cleavage. However, for olefin with strong steric hindrance, the epoxidation to the 

double bonds by ozone is preferred, and this is called “partial cleavage” of the olefin.
10 

The mechanism of Barton’s reaction is described herein to explain the transformation 

from compound 2.7 into 2.8.
9 

Under the light irrigation, nitrosol moiety could be decomposed to 

give oxygen radical and nitric oxide radical. The formed oxygen radical abstract the hydrogen to 

give the hydroxyl group and hydrocarbon radical. This hydrocarbon radical reacts with the nitrc 

oxide radical nearby to form new nitroso compound which could be epimerized to oxime. 

Scheme 2.4 : Barton’s reaction mechanism 
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Reduction of oxime 2.8 with titanium trichloride gave imine 2.9. This imine was highly 

stable because of the “shielding” effect given by the pentacyclic structure, and the hydrolyzation 

of this imine was furnished by sodium nitrite in acetic acid. The mechanism was probably via an 

hydroxyl-azoimine intermediate (-C=N=N-OH), and this azoimine hydrolyzed readily to give 
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aldehyde 2.11. However, partial of the formed aldehyde 2.11 reacted with nearby hydoxy group 

to give acetal 2.10. This acetal 2.10 was hydrolyzed under basic condition to regenerate aldehyde 

2.11. C3-carbonyl group in 2.11 was then protected with ethylene glycol to give acetal 2.12, and 

acetylation of C12-hydroxy group in 2.12 was carried out with acetic anhydride in pyridine to 

give 2.13. 12-13 Olefin regeneration and aldehyde reduction in 2.14 was achieved by lithium 

ammonia reductive elimination. The mechanism of this step was discussed in the paper. Authors 

indicated that the aldehyde functionality acted as “electron transporter” in this process. It initially 

obtained electrons from lithium and, then, transferred them to the 12-carbon to reduce the acetate 

off. The formed anion underwent elimination of the lactone, and the aldehyde was reduced then 

to give desired 2.14 (Scheme 2.5).
8
 

Scheme 2.5 : Partial synthesis of myriceric acid A (Part 2)
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It’s worthy to note that the reactivity relationships between 27- position C-H and 12-

position C-H. The intramolecular reactions between these two positions are much easier to 

proceed because a six-member ring transition state is readily achieved to facilitate the reaction 

(Figure 2.6). Examples are Barton’s reaction
9
 and the transformation of 2.14 from 2.13. This 

interesting discovery could be applied into the total synthesis of myriceric acid A.  
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Figure 2.6 : Intramolecular six-member ring transition state  
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Compound 2.14 was treated with 2 N HCl to give ketone 2.15. The installation of 27-

position caffeic acid ester was furnished in three steps by starting with 2.15 via Horner-

Wadsworth-Emmons (HWE) olefination reaction. Alcohol 2.15 was firstly treated with 

diethylphosphonoacetic acid and carbonyldiimidazole (CDI) to give the ester 2.3. Ester 2.3 

reacted with benzaldehyde 2.16 to give 2.17 readily. Deprotection of 2.17 with trifluoroacetic 

acid finally gave desired product myriceric acid A (Scheme 2.6).
8 

 Scheme 2.6 : Partial synthesis of myriceric acid A (Part 3)
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2.1.3 Importance of total synthesis of myriceric acid A 

The semi-synthesis of myriceric acid A was accomplished;
8
 however, so far, no total 

synthesis of myriceric acid A has been reported, and  this work is still highly needed for the 

following reasons. 

Firstly, total synthesis of myriceric acid A will led to the intermediates and/or compounds 

derived from it to assist the study of its structure-activity relationship (SAR). As mentioned 

above, myriceric acid A is a non-peptide ET-1-specific antagonist in the reported natural 

products, and it has great potential in the treatment of ET-1 and/or ET-1 receptor related diseases, 
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such as: heart failure and pulmonary hypertension
3
. Hence, the study of its SAR will not only 

provide information to disclose the therapeutic mechanism but also lead to the development of 

more potent drug candidates. Unlike total synthesis, the partial synthesis of myriceric acid A 

only gave compounds with very limited numbers and structural varieties which is not enough for 

SAR study; however, as depicted in Figure 2.7 below, many useful and interesting intermediates 

and novel compounds could be synthesized via the methodology for the total synthesis of 

myriceric acid A and used for the SAR study. 

Figure 2.7 : Intermediates could be synthesized in total synthesis of myriceric acid A 
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Secondly, total synthesis of myriceric acid A may provide a protocol to synthesize other 

triterpene-type natural products.  As the largest group of the isolated compounds in the natural 

products, triterpene-type natural products are reported to have various novel biological properties, 

such as antioxidant, antibiotic, anticancer activities, etc..
11

 However, the applications of these 

compounds are limited because of their low availability from natural sources. Therefore, 

obtaining triterpene-type natural products via chemical method is one of possible solutions to 

solve this problem. The methods developed to construct the triterpene skeleton and modify the 

functionalities in the total synthesis of myriceric acid A could also be used to synthesis of other 

triterpene compounds directly or after modification. Hence, the protocol for synthesis of similar 

type of triterpene compounds can be developed based on the achievement of the total synthesis 

of myriceric acid A. The semi-synthesis method for myriceric acid A which started from 
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oleanolic acid could only be used to synthesize myriceric acid and only suitable for a limited 

number of triterpene compounds (Figure 2.8).
11 

Figure 2.8 : Few examples of the reported triterpene-type natural products
11
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2.1.4 Progress made by Angelo Aguilar
12

 

This project was initially carried out by a former graduate student, Dr. Angelo Aguilar, in 

Hua’s laboratory.
12

 His work will be briefly introduced in this section.  

Initially, 2-methyl-1,3-cyclohexanedione was treated with ethyl vinyl ketone to give a 

Michael addition product 2.27 in a quantitative yield. Then enantio-selective intramolecular aldol 

condensation was carried out with ketone 2.27, D-phenylalanine and D-camphorsulfonic acid 

(D-CSA) to give two ring enone-ketone (-)-2.28 with 95%ee. Selective reduction of (-)-2.28 with 

0.25 eq. sodium borohydride gave alcohol (-)-2.29 in high yield (Scheme 2.7). 

Scheme 2.7 : Progress made by Aguilar (Part 1)
12
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Robinson annulation of alcohol (-)-2.29 with ethyl vinyl ketone was carried out by using 

sodium methoxide as base to give three ring compound (+)-2.30 in 68% yield. Optical rotation of 

the obtained (+)-2.30 was taken and compared with the value of enantiomerically pure 

compound, which indicated 48%ee of optical purity. Optically impure enone (+)-2.30 was 

reduced by lithium-liquid ammonia, the generated enolate was trapped by methyl iodide to give 

ketone (+)-2.31. Ketone (+)-2.31 was treated with ethylene glycol and pyridinium p-

toluenesulfonate (PPTS) to give the protected compound (-)-2.32. Alcohol (-)-2.32 was oxidized 

by 2-iodoxybenzoic acid (IBX) to give three ring ketone (-)-2.33 (Scheme 2.8). 
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Scheme 2.8 : Progress made by Aguilar (Part 2)
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   To activate the carbonyl’s -H, ketone (-)-2.33 was treated lithium diisopropylamide 

(LDA) and diphenyldisulfide to yield sulfide (+)-2.34. Compound (+)-2.34 then underwent 

Michael addition reaction with methyl vinyl ketone to give (-)-2.35. Removal of the 

phenylsulfide in (-)-2.35 was achieved by the radical reduction reaction with 

azobisisobutyronitile (AIBN) and tributyltin hydride to form a mixture of (-)-2.36 and (-)-2.37. 

Intramolecular aldol condensation of (-)-2.37 furnished the ring formation to yield four ring 

compound 2.38. However, compound (-)-2.36 could not undergo the same aldol condensation to 

give tetracyclic compound. The reason might be the C8-methyl group blocks the enolate of 

methyl ketone attacking the carbonyl from the top face. Stirred with sodium methoxide in 

methanol, compound (-)-2.36 could be transferred into compound (-)-2.37 and finally gave to 

same cyclized compound (-)-2.38 (Scheme 2.9). 

Scheme 2.9 : Progress made by Aguilar (Part 3)
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Sodium nitrile was introduced to enone (-)-2.38 to give a Michael addition product (-)-

2.39, then, enol silyl ether (-)-2.40 was obtained by treating ketone (-)-2.39 with t-

butyldimethylsilyl triflate (TBS-OTf) and triethyl amine. The nitrile in (-)-2.40 was reduced to 

imine 2.41 with diisopropyl aluminum hydride (DIBAL-H). Removal of t-butyldimethylsilyl 

group in 2.41 with tetrabutylammonium fluoride (TBAF) gave hemiaminal 2.42. Under acidic 

condition, hemiaminal 2.42 was hydrolyzed to give aldehyde ketone 2.43 (Scheme 2.10). 

Scheme 2.10 : Progress made by Aguilar (Part 4)
12
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No further progress was made by Dr. Angelo Aguilar because of the available time, and 

this project was continued by me during my Ph.D period research. The progress I made will be 

introduced and discussed in the following sections. 

 2.2 Retro-synthetic analysis of myriceric acid A 

To get a better understanding and more rational design of this project, retro-synthetic 

analysis was conducted and is descripted in this section. 

Since the synthetic route from compound 2.14 to myriceric acid A have already been 

reported in the partial synthesis of myriceric acid A (Scheme 2.6)
8
, the target molecule of this 

project could be compound 2.14.  Compound 2.14 could be synthesized from compound 2.44 via 

several steps: deoxygenantion of the C16-carbonyl group to methylene, reduction of the C14-

nitrile into alcohol, and the elimination to give 12-13 olefin. Compound 2.44 could be obtained 

from (+)-2.45 after the 17-position -keto-ester formation, 13-position allylic functionalization 

and Michael addition of enone. D, E rings in (+)-2.45 could be constructed via an aldol 

condensation-Michael addition-aldol condensation sequence by using three ring compound (-)-

2.33 and novel keto-aldehyde 2.46 as the starting materials.  Compound (-)-2.33 could be formed 
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from (-)-2.29 via A-ring formation, reductive methylation and functional group interconversion 

(FGI) steps. A new method was developed to solve the problem of getting low enantio-excess of 

the (-)-2.33, and this method will be discussed in the following section. Two ring compound (-)-

2.29 could be synthesized form 1,3-cyclohexanedione. 

Figure 2.9 : Retro-synthesis of 2.14 
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 2.3 Preparation of starting materials for asymmetric synthesis of B, C-ring  

Transformation from 2-methyl-1,3-cyclohexanedione to keto-alcohol (-)-2.29 was 

accomplished by following the Aguilar’s procedure,
12

 and this section introduces the preparation 

of the starting materials for synthesis of compound (-)-2.29 (Figure 2.10). 

Figure 2.10 : Transformation from 1,3-cyclohexanedione to (-)-2.29 
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According to the literature,
13

 1,3-cyclohexanedione was treated with iodomethane in 

aqueous NaOH solution at 65 
o
C for 1 day to yield the 2-methyl-1,3-cyclohexanedione in high 

yield (Scheme 2.11). 

Scheme 2.11 : Synthesis of 2-methyl-1,3-cyclohexanedione 
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Another required starting material for synthesizing C ring, ethyl vinyl ketone, was 

prepared in 3 steps. This synthesis started with the protection of 3-pentanone with ethylene 

glycol, and the generated acetal was treated with bromine in one pot to give bromide 2.47.
14

 The 

elimination of bromide in 2.47 with sodium hydroxide in methanol generated alkene 2.48.
15 

Removal of the acetal group in 2.48 with catalytic amount of p-toluenesulfonic acid (PTSA) 

gave pure ethyl vinyl ketone (Scheme 2.12). 

Scheme 2.12 : Synthesis of ethyl vinyl ketone 
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With ethyl vinyl ketone and 2-methyl-1,3-cyclohexandione, the two ring enone alcohol  

(-)-2.29 was prepared utilizing the same method as Aguilar
12

 did (Scheme 2.7).  Mechanism for 

the asymmetric intramolecular cyclization to construct C-ring was discussed in Aguilar’s 

dissertation as well.
12 

  

 

2.4 Asymmetric synthesis of A-ring and functionalization of A-B-C ring 

structure 

A novel method for the asymmetric transformation from (-)-2.29 to (-)-2.33 was 

discovered and is discussed in this section (Figure 2.11). 

 



68 

 

Figure 2.11 : Transformation from (-)-2.29 to (-)-2.33 
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The traditional method for the synthesis of A ring from (-)-2.29 was originally reported 

by Honda, T. et al. in 1981
16

 and further investigated
17

 in 2003 by Honda, T, et al.. Starting with 

optically-pure (-)-2.29 could only afford an enantio-rich product (+)-2.30 (48%ee) with moderate 

yield (68%). To obtain the enantio-pure product, an enzyme resolution procedure is required.
17

 

As the only reported method, it has been used by many chemist to prepare three-ring compound 

(+)-2.30 in their synthesis till now. A mechanism was proposed explain the difficulty in the 

formation of enantio-pure product (Scheme 2.13).
17

 

Scheme 2.13 : Mechanistic explanation for the difficulty in preparation of  enantiomerically 

pure (+)-2.30 by traditional method 
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Deprotonation of C8-H by sodium methoxide gave the thermodynamic enolate. Because 

of the steric effect of the C10-methyl group, ethyl vinyl ketone could only approach the enolate 

from its -face to generate Michael addition product 2.49. Intramolecular aldol condensation of 

2.49 catalyzed by sodium methoxide formed desired product (+)-2.30 (blue route in Scheme 

2.13). However, the deprotonation of 5-hydroxy group led to C-ring opening and gave the 
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enolate-aldehyde intermediate 2.50. Intramolecular aldol reaction of intermediate 2.50 could 

generate the opposite enantiomer (+)-2.29 which followed the same reaction sequence to give (-

)-2.30, the undesired enantio-isomer of (+)-2.30, which decreased the optical purity of the final 

product. Meanwhile, the kinetic deprotonation of C3-H in (-)-2.29 gave the kinetic enolate, and 

this enolate could undergo Michael addition with ethyl vinyl ketone as well to give intermediate 

2.51. Cyclization and dehydration of 2.51 formed compound 2.52, the structure isomer of (+)-

2.30, which decreased the yield of desired product.   

Considering the complexity of following steps of myriceric acid A’s total synthesis, an 

enantio-pure tricyclic intermediate is desperately needed. With the traditional synthetic method, 

only enantio-rich tricyclic compound was obtained, and enzyme-resolution step was required to 

get the enantio-pure compound. However, to obtain large quantity of enantio-pure tricyclic 

compound, using enzyme resolution method become impossible if the cost, time, work inputs 

and the lose of the unwanted enantiomer were taken into account. Hence, an enantio-selective A-

ring synthesis reaction is highly demanded. To develop such reaction, many attempts were made. 

One way to prevent the C-ring opening is to block the formation of 5-alkoxide 

intermediate. Hence, the 5-hydroxy group in (-)-2.29 was protected by TBSCl in DMF with 

imidazole as base to give (-)-2.53 (Scheme 2.14). However, Honda, T.
17

 mentioned that the TBS 

group in (-)-2.53 was readily cleaved under sodium methoxide/methanol reflux condition. 

Consequently, other reaction pathways and conditions, instead of traditional Robinson annulation 

condition, should be considered. 

Scheme 2.14 : Preparation of (-)-2.53 
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In 1976, Fortunato and Ganem reported a cascade enone reductive-alkylation reaction. 

The enone was reduced by K-selectride firstly, and the formed enolate was trapped by alkyl 

halides to give the alkylated ketone (Scheme 2.15).
18
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Scheme 2.15 : Cascade K-selectride reductive-alkylation reaction of enone
18 
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Based on Fortunato’s strategy,
18

 compound (-)-2.53 was treated with K-selectride to 

reduce the enone moiety to regio-selectively generate the desired enolate 2.56, and ethyl vinyl 

ketone was introduced into the reaction mixture at once. However, at -78 
o
C or elevated 

temperatures, no Michael addition product 2.57 was formed, but only the reduced ketone 2.58 

was detected and isolated (Scheme 2.16). 

Scheme 2.16 : Cascade K-selectride enone reductive-Michael addition reaction of (-)-2.53 
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Another domino reductive-Michael addition reaction was reported by Cheung and 

Snapper with similar bicyclic compound 2.59. Compound 2.59 firstly was reduced by lithium in 

liquid ammonia; then, -unsaturated ketone 2.60 was introduced into the corresponded enolate 

slowly over 30 minutes to give enantio-selective Michael addition product 2.61 (Scheme 2.17). 

To prevent the polymerization of -unsaturated ester, the reaction was protected from light.  
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Scheme 2.17 : Cascade enone reductive-Michael addition reaction of 2.58
19 
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Following the similar strategy, enone (-)-2.53 was reduced by lithium metal in liquid 

ammonia at -35
o
C to give desired enolate 2.56. After evaporation of ammonia and dilution of the 

residue with dry THF, ethyl vinyl ketone in diethyl ether was introduced to the resulted enolate 

2.56 over 30 minutes with protection from light. Unfortunately, no desired Michael addition 

product was detected and isolated after the reaction. From the 
1
H NMR of crude mixture, broad 

signals appeared at 3.0 – 2.0 ppm and 1.5 – 0.8 ppm indicating the formation of polymers of 

ethyl vinyl ketone.  

Scheme 2.18 : Cascade lithium enone reductive-Michael addition reaction of (-)2.53 
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Mukaiyama-type Michael addition reaction was also tried to be applied in the asymmetric 

synthesis of A-ring. The idea is depicted in the Scheme 2.19. 

Scheme 2.19 : Mukaiyama-type Michael addition 
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Silyl enol ether 2.62 was prepared by reducing enone (-)-2.29 with lithium/ liq. NH3, the 

enolate was trapped with trimethylsilylchloride (TMSCl) after evaporation of liq. NH3 (Scheme 

2.20). This reaction gave a mixture of desired silyl enol ether and a TMS protected compound 

2.63. Due to the instability of enol silyl ether, the mixture was directly used for the next step 

without purification.  

 

 



72 

 

Scheme 2.20 : Preparation of silyl enol ether 2.62 
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A mixture of 2.62 and 2.63 was mixed with ethyl vinyl ketone and treated with boron 

trifluoride etherate (BF3
.
ether). Unfortunately, at -78 

o
C or elevated temperatures, no desired 

Michael addition product was detected. Under reaction conditions, TMS groups were hydrolyzed 

off to give back enone (-)-2.29 and ketone (-)-2.64 (Scheme 2.21). 

Scheme 2.21 : Attempt on Mukaiyama type Michael addition 
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With compound (-)-2.64 in hand, traditional Robinson annulation reaction was carried 

out with ethyl vinyl ketone. With the reflux with sodium ethoxide in ethanol, no desired product 

was found. Starting material (-)-2.64 was recovered, and ethyl vinyl ketone’s polymers were 

detected.  

Scheme 2.22 : Attempt on Robinson annulation of (-)-2.64 with ethyl vinyl ketone 
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Acid catalyzed Michael addition was also tested with (-)-2.58 and ethyl vinyl ketone. It 

was supposed that under acidic conditions with heating, the ketone would be transferred into its 

enol form. The enol could attack ethyl vinyl ketone to give a Michael addition product. However, 

after heat the mixture of (-)-2.58 and ethyl vinyl ketone with catalytic amount of PTSA for 24 

hours, reaction did not give any progress (Scheme 2.23). 
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Scheme 2.23 : Attempt on acid catalyzed Michael addition of (-)-2.58 with ethyl vinyl 

ketone 
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After summarizing these reaction outcomes, it becomes clear that the problem of the 

designed Michael addition is the reactivities of two reactants do not match. When the generated 

enolate 2.56 is complex with boron (from K-selectirde or BF3.ether), it is unreactive towards 

Michael addition. When enolate 2.56 stays in its free form (from lithium reduction or generated 

in-situ by EtONa), it is “hard” and acted as base to promote the polymerization of ethyl vinyl 

ketone. Enol 2.66 was not reactive enough to undergo the Michael addition neither.  

Scheme 2.24 : Self polymerization of ethyl vinyl ketone initiated by enolate 2.56 
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Since attempts on “tuning” the reactivity of Michael donors (enolate 2.56 or enol 2.66) 

were all failed, the other solution for this problem was to “tune” the reactivity of Michael 

acceptor, ethyl vinyl ketone. If the self-polymerization of ethyl vinyl ketone could be slowed 

down or prevented in the presence of “hot” enolate 2.56, the desired Michael addition would be 

preceded smoothly.  

To prevent the polymerization of ethyl vinyl ketone, one solution is to use the alternative 

reagent: -trimethylsilylvinyl ethyl ketone.
20

 Trimethylsilyl group at  position of vinyl ketone 

blocked this enone’s polymerization. The reason is probably the the enolate derived from the 

Michael addition could be stabilized by overlapping of d-orbital of silicon to prevent the 

polymerization; also, the strong steric hindrance of this bulky siliyl moiety slows down the 

deprotonation process of enone by the enolate 2.56. This silyl group could be readily hydrolyzed 
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off at base-catalyzed intramolecular aldol condensation step which would give the same 

Robinson annulation product as ethyl vinyl ketone. 

Scheme 2.25 : TMS group slows down the deprotonation 
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One of its applications is the total synthesis of stachenone (Scheme 2.26).
21

   

Scheme 2.26 : Application of -trimethylsilyl vinyl ethyl ketone in asymmetric ring 

construction 
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The disadvantage of this method is this chemical, -trimethylsilyl vinyl ethyl ketone, is 

not commercially available. Hence, it has to be prepared in the laboratory via a six-step synthesis 

from the commercially available 1,2-dibromoethane.  

The elimination of 1,2-dibromoethane readily gave vinyl bromide (b.p: 16 
o
C), and the 

prepared vinyl bromide was introduced to magnesium to generate vinyl magnesium bromide 

reagent. Vinyl Grignard reagent reacted with TMSCl to give vinyl trimethyl silane which was 

directly distilled out from the reaction mixture (Scheme 2.27).
22 
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Scheme 2.27 : Synthesis of vinyl trimethyl silane
22 
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Vinyl trimethyl silane was treated with bromine at -78
o
C to give an bromine addition 

product, and this crude product underwent an elimination reaction with diethylamine to give -

trimethylsilyl vinyl bromide (2.70). Bromide 2.70 was used to prepare the corresponding 

Grignard reagent with magnesium, and the prepared -trimethylvinyl magnesium bromide was 

treated with propanal to give allyl alcohol 2.71. Oxidation of allyl alcohol with pyridinium 

dichromate (PDC)
23

 gave -trimethylsilyl vinyl ethyl ketone (Scheme 2.28). 

Scheme 2.28 : Synthesis of -trimethyl vinyl ethyl ketone 
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With -trimethylsilyl vinyl ethyl ketone in hands, the reductive-Michael addition reaction 

was carried out. Same as before, the bicyclic enone (-)-2.53 was firstly reduced by lithium to 

regio-selectively form the enolate 2.56. After quenching the excess amount of lithium and 

evaporating off ammonia, enolate 2.56 was dissolved in dry diethyl ether. -Trimethylsilyl vinyl 

ethyl ketone was introduced into the mixture at -78
o
C over 30 minutes with protection from light 

to finally give the desired stereo-selective Michael addition product. Annulation with KOH as 

base in MeOH resulted the enantio-pure tricyclic product (+)-2.72 (Scheme 2.29). 

Scheme 2.29 : Stereoselective synthesis of tricyclic compound (+)-2.72 
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Compound (+)-2.72 underwent reductive-methylation reaction to give tricyclic 

compound (+)-2.73. The ketone (+)-2.73 was protected by ethylene glycol to form acetal (-)-2.74. 

Deprotection of TBS group in (-)-2.74 with TBAF generated alcohol (-)-2.32. At this stage, the 

optical rotation of obtained (-)-2.32 ([]D = -45
o
, c =0.1 in chloroform) was compared with the 
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reported value of the (-)-2.32 ([]D = -44
o
, c =0.1 in chloroform, 98%ee, measure by chiral 

HPLC),
24 

and the enantio-purity of the obtained (-)-2.32 was calculated as 100%ee. Oxidation of 

alcohol (-)-2.32 with IBX finally gave acetal ketone (-)-2.33 (Scheme 2.30). 

Scheme 2.30 : Synthesis of acetal ketone (-)-2.33 
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To sum up, the desired stereo-selective A-ring construction was finally achieved with the 

reductive-Michael addition-aldol condensation reaction by using -trimethylsilyl vinyl ethyl 

ketone as the building block. Functionalization of the resulted tricyclic compound was proceeded 

smoothly to give the enantio-pure acetal ketone (-)-2.33 for further exploration on the total 

synthesis of myriceric acid A.  

 

 2.5 Synthesis of D, E-rings of myriceric acid A 

In this section, the D, E rings construction from A, B, C-ring compound (-)-2.33 via a 

tandem aldol-Michael-aldol protocol is introduced and discussed (Figure 2.12). 

Figure 2.12 : Transformation from (-)-2.33 to (+)-2.45 
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Since Aguliar
12

 already successfully synthesized, functionalized and bio-evaluated the 

tetracyclic compound 2.38, my goal is to synthesize pentacyclic compound (+)-2.45 directly 

from compound (-)-2.33. To achieve this, two possible synthetic approaches could be used: (a) 

D-ring construction via inter-molecular Michael addition-intramolecular aldol condensation by 
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using tricyclic compound (-)-2.33 (or its derivatives) and monocyclic compound 2.75 which has 

all the structure features of E-ring; (b), D,E-rings construction via intra-molecular Michael 

addition-aldol condensation process by using compound (-)-2.76 which is derived from 

compound (-)-2.33 (Scheme 2.31). 

Scheme 2.31 : Possible synthetic approaches for synthesis of (+)-2.45 
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Approach (a) was firstly attempted. The retro-synthetic analysis of (+)-2.45 via inter-

molecular Michael addition approach is depicted in Scheme 2.32. D-ring in (+)-2.45 could be 

synthesized via an intramolecular aldol condensation reaction from compound 2.77. E-ring 

would be connected with fused A, B, C rings via the intermolecular Michael addition from 

compound (-)-2.33 and enone 2.75. 

Scheme 2.32 : Retro-synthetic analysis of (+)-2.45 in approach (a) 
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Compound 2.75 was prepared from isoprene and diethylamine via a reported 3-step 

synthesis.
25, 26

 Firstly, isoprene reacted with diethylamine and catalytic amount of n-butyllithium 

to give N,N,-diethylgeranylamine 2.78, and the following oxidation of amine was accomplished 

by hydrogen peroxide to give the corresponding N-oxide intermediate, and cyclization reaction 
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of N-oxide was carried out to form the desired monocyclic enone 2.75 in moderate yield 

(Scheme 2.33). 

Scheme 2.33 : Synthesis of compound 2.75 
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With compound 2.75 in hands, the synthesis of (+)-2.45 was tried. The basic idea was to 

use the enolate which derived from (-)-2.33 as the Michael donor to attack the enone 2.75 

(Scheme 2.34). 

Scheme 2.34 : Designed Michael Addition of 2.75 with (-)-2.33 
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Initially, enolate derived from compound (+)-2.34 was used as the Michael donor. With 

the phenylsulfide attached, the pKa of -H of the ketone is lowered to 16; also, this 

phenylsulfide group is an electron-withdrawing group which could stabilize the formed enolate 

to enhance the rate of desired Michael addition reaction. However, after refluxing in THF with 

2.75 and sodium methoxide for 24 hours, no desired product but only the starting materials were 

detected (Scheme 2.35). The reason might be the strong steric effects from the B-ring and C8-

methyl group. The B-ring blocks the enone approaching from the bottom face of (+)-2.34, and 

the C8-methyl group prevents the enone aligning with the enolate from the top. As the result, the 

desired Michael addition reaction cannot proceed.  

Scheme 2.35 : Michael addition of (+)-2.34 with 2.75 
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To reduce the steric hindrance, enolate directly derived from ketone (-)-2.33 was used as 

Michael donor to attack enone 2.75. With sodium methoxide as base, no reaction occurred even 
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the mixture was heated to reflux or to 120 
o
C (in a sealed tube) in methanol for 24 hours. Then, a 

stronger base, sodium t-butoxide, was employed for this reaction. However, after stirring in 

refluxed THF for 24 hours, ketone (-)-2.33 stayed unreacted. Enone 2.75 disappeared, and a new 

compound was detected by TLC. After isolation, the new compound 2.80 is determined as the 

self-Robinson annulation product of 2.75 (Scheme 2.36). 

Scheme 2.36 : Michael Addition of 2.75 with (-)-2.33 with MeONa and t-BuONa 
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In the attempted reactions, the enolate 2.79 was generated in-situ. pKa of -H of ketone 

is around 25 and pKa of hydroxyl in alcohol of around 16; so, the enolate 2.79 is highly reactive 

towards alcohol and easily protonated from the hydroxyl group to give back the ketone (Scheme 

2.37). Therefore, the real concentration of enolate is very low, and, considering that enone 2.75 

was not that reactive as vinyl ketones, the desired Michael addition would proceed extremely 

slow. Meanwhile, from the reaction outcome of the t-BuONa reaction, it could be tell that the 

base has a greater chance to deprotonate the -H of enone to give self-Robinson annulation 

product. It is understandable. Although both the -H of enone 2.75 and ketone (-)-2.33 have 

similar pKa, the enone 2.75’s -H has less steric hindrance than the ketone (-)-2.33, which 

makes the attack by the base much easier. 

 

 

 

 

 

 

 

 



80 

 

Scheme 2.37 : Generation of two enolates with alkoxide 
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Since the reactions with in-situ generated enloates by alkoxides were all unsuccessful, 

other pathways were to use pure enolate for the Michael addition. The desired enolate could be 

readily obtained by treating ketone (-)-2.33 with LDA. To this enolate in THF was added the 

enone 2.75. Unfortunately, at -78 
o
C, 25 

o
C and 70 

o
C, no desired Michael addition occurred, and 

all the starting material were recovered (Scheme 2.38). 

Scheme 2.38 : Michael addition with LDA-generated enolate 
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Mukaiyama-type Michael addition
27

 was also examined for the synthesis of 2.77. The 

advantage of this reaction was that the Lewis acid’s chelation with enone could increase its 

activity as Michael acceptor to promote the Michael addition. The silyl enol ether (-)-2.81 was 

readily prepared with ketone (-)-2.33 in quantitative yield. 

Scheme 2.39 : Synthesis of (-)-2.81 
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Initially, this type of Michael addition was tried with a weak Lewis acid: lithium ion. The 

1,4-addition reaction of silyl enol ether to -unsaturated ketone in the medium of lithium 

perchlorate and nitromethane (LPNM) was reported (Scheme 2.40).
28

 The authors stated that 
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Lewis acidity of lithium ion increases in nitromethane because of its poor coordination with the 

solvent. With large excessed acidity-increased lithium ion, the Michael addition is catalyzed to 

give the 1,4-addition product.  

Scheme 2.40 : Michael addition of silyl enol ether to  -unsaturated ketone in  LPNM
28
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However, the application of this reaction for the synthesis of 2.77 did not give any 

positive result. After prolong heating, enol silyl ether decomposed to give back the ketone (-)-

2.33, and 2.75 was also recovered. 

Scheme 2.41 : Application of LPNM condition to synthesize 2.77 
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Stronger Lewis acid, BF3 etherate, was used to try on this reaction as well. However, this 

reaction also failed and only provided the hydrolyzed product (-)-2.33 and unreacted 2.75 

(Scheme 2.42). 

Scheme 2.42 : Mukaiyama-type Michael addition for synthesis of 2.77 
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Enamine chemistry
29

 was also attempted for synthesis of 2.77 (Scheme 2.43). However, 

the preparation of enamine 2.85 turned out to be difficult. In the presence of 4 Å molecular sieve 



82 

 

and catalytic amount of PTSA, ketone (-)-2.33 and pyrrolidine remianed unchange in refluxed 

toluene for 24 hours. 

Scheme 2.43 : Michael addition for synthesis of 2.77 with enamine 2.85 
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To sum up, all attempts on the intermolecular Michael addition strategies did not give 

any positive results.  The reason might be the strong steric hindrances which were given by the 

C8-methyl group and B-ring of (-)-2.33 and gem-dimethyl groups of 2.75.  C8-Methyl group of 

enolate 2.79 blocks the enone 2.75 approaching from the top side. When enone 2.75 approaches 

the enolate from its bottom, the B-ring of (-)-2.33 blocks the two reactants to align in the right 

position; meanwhile, the gem-dimethyl groups on the enone 2.75 also increase the difficulty for 

the enolate approach and alignment (Figure 2.13). 

Figure 2.13 : Steric hindrance from 8-methyl group of enolate 2.79 and gem-dimethyl 

groups of 2.75  
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The other possible reason for the failures of intermolecular Michael addition strategies 

was the competition reaction: acid-base reaction. The enolate would act as the base instead of 

nucleophile to deprotonate the -H of enone, which could destruct both the Michael donor and 

acceptor and slow down the desired Michael addition (Scheme 2.44). 
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Scheme 2.44 : Acid base reaction between the enolate and enone 
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One way to overcome the strong steric effect is to go through the intramolecular approach 

to furnish the construction of pentacyclic structure, which is the above mentioned approach (b). 

The retro-synthetic analysis of compound (+)-2.45 via the approach (b) is depicted in 

Scheme 2.45. Similar as the intermolecular Michael addition approach, D-ring of (+)-2.45 could 

be built up via an intramolecular aldol condensation reaction from compound 2.77; however, the 

E-ring would be constructed via the intramolecular Michael addition from enone-ketone (-)-2.76 

which would be synthesized from (-)-2.33 and ketone-aldehyde 2.46 via intermolecular aldol 

condensation. 

Scheme 2.45 : Retro-synthetic analysis of (+)-2.45 in approach (b) 
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The synthesis of (+)-2.45 via approach (b) started from the preparation of novel ketone 

aldehyde 2.46. The retro-synthetic analysis of ketone aldehyde 2.46 is depicted in Scheme 2.46. 

The aldehyde functionality in 2.46 could be derived from the olefin in compound 2.86 via 

oxidative cleavage reaction. Olefin ketone 2.86 would be prepared from methyl vinyl ketone 

with dialkyl cuprous reagent via a 1,4-addition. The dialkyl cuprous reagent would be prepared 

from the Grignard reagent of bromide 2.87. Bromide 2.87 could be derived from aldehyde 2.89 

via few steps through functional group interconversions.  
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Scheme 2.46 : Retro-synthetic analysis of 2.46 
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Aldehyde 2.89 was synthesized from a known procedure in excellent yield (Scheme 

2.47).
30

 This synthesis used allyl alcohol and isobutryaldehyde as the starting materials. The 

reaction went through a hemiacetal formation-dehydration-Claisen rearrangement sequence to 

give desired aldehyde 2.89. 

Scheme 2.47 : Synthesis of 2.89
30 
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The olefin aldehyde 2.89 was readily reduced by sodium borohydride in methanol and 5% 

aq. sodium hydroxide mixture to give olefin alcohol 2.88 with quantitative yield. Bromination of 

2.88 firstly tried with triphenylphosphine and tetrabromomethane. The reaction went smoothly to 

give desired bromide 2.87; however, the purification of the product turned out to be difficult.  

Byproduct bromoform which was formed in the reaction has similar boiling point and polarity as 

the product and could not be separated. Hence, the alternative bromination method was utilized. 

Olefin bromide 2.87 was successfully prepared with bromine and triphenylphosphine in DMF 

and purified by distillation in moderate isolation yield (Scheme 2.48).
31

  

Scheme 2.48 : Synthesis of 2.87 
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With the bromide 2.87 in hands, the next step was to prepare the cuprate reagent. The 

first attempt was to use t-BuLi to generate the organolithium reagent 2.90 for synthesizing 

cuprate compound.
32

 Bromide 2.87 was treated with t-BuLi and the reaction was monitored by 
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1
H NMR. After prolong time stirring in THF at various temperatures, the bromide still stayed 

unchanged.  

Scheme 2.49 : Attempt on preparation of lithium reagent from bromide 2.87  
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Since the cuprate reagent can also be prepared from Grignard reagent, the back-up 

strategy is to make the corresponding Grignard reagent from bromide 2.87. However, the 

ordinary method for the Grignard reagent formation did not work in this case. With iodine or 

dibromoethane, the reaction was not initiated.  

All the failures of the reactions lie on the high stability of bromide 2.87 which may be 

given by the gem-dimethyl groups. These gem-dimethyl groups in 2.87 shields the bromide 

against the approach of the metal (Figure 2.14).   

Figure 2.14 : Steric effect from the gem-dimethyl group 
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To solve this problem, one of the possible methods was to use the activated magnesium
33

 

to prepare the Grignard reagent. A procedure was published by Bonnemann, H. et al. in 1983 for 

preparing the activated magnesium.
33

 Magnesium was stirred with catalytic amount of 

anthracene and 0.1 eq. of methyl iodide in THF for 14 hours to form highly active magnesium 

(Scheme 2.50). The process might start with the formation of methylmagnesium iodide which 

could clean the surface of the metal. Then, anthracene could form the complex with magnesium 

and THF. This is an equilibrium process, and the complex could decompose to give free 

magnesium atom and anthracene. This regenerated magnesium is “solvated” in the solvent (THF) 

and highly reactive. Therefore, after prolong time stirring, metal turnings are smaller in size than 

before, and magnesium “mud” appeares at the bottom of the flask. 
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Scheme 2.50 : Catalytic cycle for the formation of activated magnesium
33 

 

 

 

 

 

With the activated magnesium, Grignard reagent of bromide 2.87 was prepared 

successfully.  The Grignard reagent was introduced to cuprous iodide dimethylsulfide complex
32

 

to give the dialkyl cuprate reagent. The 1,4-addition of methyl vinyl ketone was furnished with 

this organocuprate reagent to give desired product 2.86 (Scheme 2.51). 

Scheme 2.51 : Synthesis of 2.86 
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However, the reaction yields varied from 5% - 35% when reaction scales varied. The 

reason was explored. For the different qualities of magnesium turnings, it was found that methyl 

iodide was sometimes needed more than 0.1 eq. to initiate the formation of magnesium*. The 

generated methyl Grignard reagent remained in the reaction mixture and reacted with cuprous 

iodide to give dimethyl cuprate which would also undergo a 1,4-addition to methyl vinyl ketone 

as well (Scheme 2.52).  

Scheme 2.52 : Formation of the byproduct 2.91 
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Replacement of methyl iodide with dibromoethane solved this problem. Dibromoethane 

had the same function as methyl iodide and reacted with magnesium gave the ethylene and 

magnesium bromide which would not affect the subsequent reaction. The reaction yield became 

repeatable at 40% (Scheme 2.53). 
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Scheme 2.53 : Revised procedure for synthesis of 2.86 
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Transformation from olefin ketone 2.86 to ketone aldehyde 2.46 was initially carried out 

by using ozone oxidation conditions. However, this reaction did not give any desired product but 

only decomposed compounds. The alternative condition was the osmium tetraoxide (OsO4) and 

sodium periodate (NaIO4) olefin oxidative cleavage reaction.
34

 OsO4 could oxidize olefin into 

1,2-diol, and the diol is cleaved and oxidized by NaIO4 to give desired aldehyde ketone 2.46. 

Scheme 2.54 : Synthesis of 2.46 
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The synthesis of (-)-2.76 was continued with both starting materials ready in hands. 

Mukaiyama aldol reaction
35

 was carried out with enol silyl ether (-)-2.81 and aldehyde ketone 

2.46 in DCM with BF3
.
ether as the Lewis acid, and alcohol 2.92 was obtained as a mixture of 

diastereomers. Since two carbonyl groups existed in compound 2.46, 2.0 eq. of BF3.ether was 

required to finish the reaction; otherwise, the yield of reaction would drop to half (Scheme 2.55). 

Scheme 2.55 : Synthesis of 2.92 
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Treatment of 2.92 with methylsulfonyl chloride (MsCl) and triethylamine in diethyl ether 

gave the corrosponding mesylate. Elimination of the mesylate with 1,8-

diazabicyclo[5.4.0]undec-7-ene (DBU) generated the desired enone ketone (-)-2.76 in good yield 

(Scheme 2.56). 
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Scheme 2.56 : Synthesis of (-)-2.76 
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The geometry of the enone in (-)-2.76 was confirmed by 
1
H NMR, NOESY and X-ray 

analysis to be the E-geometry. 

Figure 2.15 : A single crystal structure of (-)-2.76 

 

 Interestingly, only the E-isomer of enone was formed in the elimination reaction. The 

reason might be the strong steric hindrance between the carbonyl and gem-dimethyl groups in 

the Z-isomer made it difficult to form (Figure 2.16). 

Figure 2.16 : Steric hindrance between carbonyl and gem-dimethyl in (Z)-isomer of 2.76 
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Since the enone was successfully prepared, the constructions for D,E-rings were 

continued.  The idea was to use a base to generate the desired enolate 2.93, and the enolate 2.93 

would undergo intramolecular Michael addition to the enone to give 2.77. In the presence of a 
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catalytic amount of base, intramolecular aldol condensation of 2.77 proceeded to give 

pentacyclic compound (+)-2.45. 

Scheme 2.57 : Designed annulation for D, E-ring synthesis 
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Compound (-)-2.76 was heated with sodium ethoxide in high-diluted concentration 

(0.005 M) in ethanol for 14 hours to generate two new compounds with different polarities in 

TLC. The results of 
1
H NMR and mass spectra indicated that both of them are the annulation 

products of compound (-)-2.76 having different stereochemistry at C13, C17 and C18.   

Scheme 2.58 : Annulation reaction of (-)-2.76 
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To explain the observation of this reaction and determine the structures of the obtained 

products were quite challenging.  

This domino Michel addition aldol condensation reaction of (-)-2.76 could generate three 

new stereo-centers which were at carbon13, 17 and 18 positions; hence, a total number of 8 

possible isomers could be formed; but the reaction only gave two of them. The interpretation for 

this reaction outcome needed to be explored. As mentioned in Scheme 2.9,
12

 D-ring could be 

cyclized only when the C13-H is in axial, and this may work the same in the designed domino 
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reaction. If this hydrogen was in equatorial and the large substitution stayed in axial, there will 

be great steric hindrance against the C8-methyl group. Under thermodynamic condition, the C13-

H would stay in the axial position to give more stable conformation.
12

 For C18-H, it is the least 

acidic proton among the three, and the conformation of C18-H cannot be changed once E-ring is 

cyclized. C17-H is the most acidic proton in the final product and could be epimerized easily in 

ethanol in the presence of sodium ethoxide, and, under thermodynamic conditions, C17-H would 

stay in the conformation which made the whole system had lowest conformational energy. 

Therefore, for one possible conformation of C18-H, C17-H would only stay in one conformation 

which gives the lowest conformational energy of the whole structure. To sum up, under the 

reaction conditions, C13-H has to stayed in axial to furnish the annulation of D-ring; C18-H in 

the annulation products could stay in axial or equatorial; the conformation of C17-H relies on the 

conformation of C18-H. Hence, only two isomers were generated under the reaction conditions. 

  The next issue was to determine the exact structures of the obtained isomers. Assuming 

most of the fused six member rings were in chair conformation to maintain the lowest energy of 

the system, two structures could be constructed and shown in Figure 2.17. One isomer had 13-

H(a), 17-H(a) and 18-H(e) conformation, and the other had 13-H(a), 17-H(e) and 18 (a). In 

myriceric acid A, the 18-H is in axial position; hence, only one isomer [13-H(a), 17-H(e) and 18 

(a)] is useful for the continued synthesis of myriceric acid A. 

Figure 2.17 : Possible structures of obtained annulation products 
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To assign the structures of each isomer was also difficult. NMR methods, such as 
1
H 

NMR, COSY, NOESY, do not work on this case because the peak of 18-H is merged with other 

protons’ signals. Luckily, single crystals of the more polar isomer were obtained. A successful 

X-ray analysis was carried out and gave the crystal structure of the more polar isomer (Figure 

2.18). 
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Figure 2.18 : Crystal structure of more polar (+)-2.45 from X-ray analysis showing it to be 

the desired isomer 

 

The structure of (+)-2.45 which is same as the proposed structure 2 in Figure 2.17 is 

confirmed as the desired product, and the structure 1 should belong to less polar compound (-)-

2.94, the undesired isomer. 

Since the structures of the obtained products are all assigned, the detailed mechanisms of 

the formations of these products are investigated to explain the preference of the formation of 

undesired (-)-2.94. When the -H of side-chain ketone is abstracted, two types of enolates, Z- 

and E- enolates, could be formed. Z-enolate would prefer to approach the enone from its -face 

(top) because of the less steric hindrance to give undesired product (-)-2.94; while the E-enolate 

has difficulty in approaching from the -face because of the steric hindrance between the methyl 

group of the enolate and C8-methyl group on the C-ring. Therefore, E-enolate could only 

approach the enone from its -face (bottom side) to give desired pentacyclic product (+)-2.45. 

For the methyl ketone in (-)-2.76, the Z-enolate was slightly favored to be formed because it has 

less steric hindrance comparing with E-enolate; hence, more undesired annulation product is 

formed. 
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Scheme 2.59 : Detailed mechanisms for the formations of (-)-2.94 and (+)-2.45 

 

In summary, attempts on the construction of pentacyclic compound (+)-2.45 via 

intermolecular Michael addition strategies were not successful. To overcome the problem, 

ketone aldehyde 2.46 was prepared and used to synthesize the desired compound (-)-2.76 as the 

starting material for the intramolecular Michael addition-aldol condensation reaction which 

finally gave the desired pentacyclic compound. The mechanism of this reaction was investigated 

as well. 

2.6 Functionalization of D-ring 

In this section, the progress on the functionalization of D-ring in compound (+)-2.45 to 

finish the total synthesis of myriceric acid A is introduced and discussed (Scheme 2.60). 

Scheme 2.60 : Functionalization of D-ring to finish total synthesis of myriceric acid A 
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The strategy for the transformation the compound (+)-2.45 into final target compound 

2.14 is rationally designed. Firstly, advantages of using compound (+)-2.45 to prepare target 
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molecule 2.14 are fully explored. The enone moiety in compound (+)-2.45 activates all the 

necessary position to facilitate the introductions of required functional groups. As the -H of 

enone, C17-H is the mostly activated to introduce carboxylic group via enolate (kinetic) 

chemistry; C13-H is the -H of enone which could be functionalized to furnish the formation of 

olefin double bond by either enolate chemistry or allyl system chemistry; Michael addition on 

this enone moiety could accomplish the installation of the hydroxyl methylene groups at C14 via 

few steps. Secondly, the sequence of installations of the functional groups is considered. Since 

the C17-H is the most acidic proton and could be selectively deprotonated, the installation of 

carboxylic group should be given the first priority. Functionalization of C13-H requires the 

existence of enone; so, the second priority should be given to the manipulation of C13-H to 

alkene. Michael addition of enone could be given the third priority. A few steps of functional 

group inter-conversion would give the desired compound 2.14. To sum up, the designed reaction 

sequence is depicted in Scheme 2.61. 

Scheme 2.61 : Designed reaction sequence for preparing compound 2.14 
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Following the proposed strategy, the C17-carboxylic group was firstly introduced. 

Mander and Sethi reported a method for the regio-selective synthesis of -ketoester from 

lithium enolate by using alkyl cyanoformate.
36 

Scheme 2.62 : Regioselective synthesis of -ketoester from lithium enolate
36

 

LDA, methyl cyanoformate, HMPA, THF
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The undesired pentacyclic compound (-)-2.94 was firstly used for the model study.  LDA 

was used as the base to deprotonated the -H of the enone in compound (-)-2.94, and 

hexamethylphosphoramide (HMPA) was added to increase the activity of enolate by chelating 

with lithium. Ethyl cyanoformate was finally introduced to give the compound (+)-2.101 in 

moderate yield (Scheme 2.63). 

Scheme 2.63 : Model study of the synthesis of -ketoester with (-)-2.94 
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The exact structure of compound (+)-2.101 was confirmed by 
1
H NMR, 

13
C NMR and X-

ray analysis of its single crystal (Figure 2.19). 

Figure 2.19 : Crystal structure of (+)-2.101 from X-ray analysis 

 

The X-ray analysis result of (+)-2.101 confirmed our postulation about the structure of 

compound (-)-2.94: the conformation of C13-H is in axial and the conformation of C18-H is in 

equatorial. The conformation of C17-H in (-)-2.94 could not be determined since it was no-

longer exist in (+)-2.101; however, the real conformation of C17-H in (-)-2.94 is not important 

because it is destroyed in the deprotonation step eventually.  

In compound (-)-2.101, the C17-ethyl ester group stays in axial which is the cis-

conformation of the C18-H. This conformation indicates that the ethyl cyanoformate approaches 

the enolate from the less hindered side which in this structure is the same side as C18-H. In other 

words, via this reaction, the conformation of formed ethyl ester depends on the conformation of 
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C18-H. Therefore, if the C18-H is pointing up, the ester would also pointing up which is the 

desired conformation of C17-ester group. 

Since this reaction condition worked well in the model study, compound (+)-2.45 was 

then treated with LDA, HMPA and ethyl cyanoformate under this condition in THF. However, 

the reaction outcome was unexpected. Before quenching the reaction with NH4Cl, TLC showed 

no (+)-2.45 left but a new less polar spot; however, after the work up, only (+)-2.45 was detected 

on the TLC (Scheme 2.64). 

Scheme 2.64 : Synthesis of -ketoester with (+)-2.45 in THF 
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The unsuccessful application of cyanoformate in synthesis of -ketoester from a steric 

hindered enolate was also reported by Mander and Sethi in 1990.
37

 It was mentioned that O-

alkylation is favored to give undesired enol carbonate ester when THF is used as solvent for this 

type of reaction. This enol carbonate ester is not stable and readily hydrolyzed under acidic 

condition. The solution for this problem is to use diethyl ether instead of THF as the solvent for 

the reaction (Scheme 2.65). 

Scheme 2.65 : Synthesis of -ketoester with methyl cyanoformate in ether and THF
37 
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The reason might be the reactivity differences of the cyanoformate in different solvents. 

Comparing with diethyl ether, THF is a better coordinating solvent because of its cyclic structure, 

and cyanoformate is more “solvated” in THF, which made it a “harder” electrophile (Figure 
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2.20). When enolate orients in a hindered environment, the “hard” electrophile has a better 

chance to attack the oxygen because it is a “hard” nucleophile and easy to approach as well.   

Figure 2.20 : More “solvated” cyanoformate in THF 
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Although the exact reason of the failed synthesis of desired -ketoester is not confirmed 

as the formation of enol carbonate, this revised procedure was tried. Compound (+)-2.45 was 

then treated with LDA, HMPA and ethyl cyanoformate in diethyl ether. Fortunately, the desired 

compound (-)-2.106 was obtained in a good yield (Scheme 2.66). 

Scheme 2.66 : Synthesis of -ketoester (-)-2.106 

LDA, ethyl cyanoformate, HMPA, 

diethyl ehter, -78 oC
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The formation of -ketoester in (-)-2.106 was confirmed by 
1
H NMR, 

13
C NMR, and 

mass spectrums. However, the exact stereochemistry is still not clear. Compound (-)-2.106 is oil, 

therefore the single crystal could not be obtained for X-ray analysis. Considering the formate 

would approach from the less hindered side of the enolate, it is highly possible that the ester in  (-

)-2.106 is in cis position of C18-H which is the desired conformation. 

The functionalization of (-)-2.106 is carried out; however, because of the time limit, there 

is still no progress been made.  

 

2.7 Conclusion 

The total synthesis of myriceric acid A was continued with a revised synthetic strategy. 

The traditional method for synthesizing the tricyclic compound could not afford enantio-pure 
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product; therefore, a new method was developed to stereo-selectively generate the tricyclic 

compound.   The new method started with the TBS protected bicyclic compound (-)-2.53 and -

trimethylsilylvinyl ethyl ketone via a reductive-Michael addition-silyl hydrolyzation-aldol 

condensation reaction sequence to give the enantio-pure tricyclic compound (+)-2.72 in a good 

yield. After protection of carbonyl group, deprotection of TBS group and oxidation of the 

alcohol, tricyclic intermediate (-)-2.33 was synthesized.  

With the enantio-pure tricyclic intermediate ready, the synthesis of pentacyclic 

intermediate was explored.  Initial attempts on the intermolecular Michael addition strategy were 

not successful because of the steric effect. The intramolecular reaction was designed and used as 

the alternative method. Ketone aldehyde 2.46 was synthesized over five steps and coupled to the 

tricyclic compound (-)-2.81 via Mukaiyama type of aldol condensation reaction. The desired 

enone-ketone was prepared for the designed intramolecular Michael addition aldol condensation 

reaction. The desired pentacyclic compound (+)-2.45 was prepared eventually via the protocol, 

and the structure was confirmed by X-ray analysis. 

Functionalization of the obtained pentacyclic intermediate was started with installation of 

the 17-carboxylic group. After several attempts, the successful procedure was developed, and the 

desired pentacyclic carboxyl ester was synthesized in a good yield. Further functionalization of 

the pentacyclic structure will be pursued. 

 

 

2.7 Experimental Section  

General procedure:  Melting points were measured on Thomas Hoover capillary 

melting point apparatus. Nuclear magnetic resonance spectra were obtained at 400 MHz for 
1
H 

and 100 MHz for 
13

C in deuteriochloroform and reported in ppm, unless otherwise indicated. 

Solvents and some reagents were dried over CaH2 (DCM, pyridine, Et3N, DMF, 

diisopropylamine, trimethylsilyl chloride), sodium/benzophenone (THF, ether), magnesium 

(MeOH, EtOH) and lithium aluminum hydride (toluene, benzene) and distilled under argon. All 

other reagents were obtained from commercial sources and used without further purification. 

Reactions were performed under agron unless otherwise indicated.  
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 2-Methyl-1,3-cyclohexandione. 

O O
MeI, 5 N NaOH aq. 

65 oC

84% yield

O O

Me

 

1,3-Cyclohexandione (15.0 g, 0.13 mol) was dissolved in 5N NaOH aqueous solution (26 

mL, 0.13 mol). The resulted red-brown solution was cooled to 0
o
C over an ice-water bath. To it  

at 0
o
C was added iodomethane (37.0 g, 0.26 mol) slowly. This mixture was heat to 65

o
C with 

vigorous stirring for 24 hours and cooled to 25 
o
C. The white solid was collected by filtration, 

powderized and washed with 300 mL of hexane and 50 mL of cold water to give white solid as 

the desired product (13.44 g, 84 % yield) which was sufficiently pure used in the following step. 

This is a commercial available chemical. The 
1
H NMR is provided herein for reference, and the 

chemical shifts are identical to that of reported.
13

 
1
H NMR (DMSO-d6) δ 10.28 (bs, 1H, enol-

OH), 2.28 (m, 4H), 1.81 (m, 2H), 1.53 (s, 3H, -CH3). 

 2-(1-Bromoethyl)-2-ethyl-1,3-dioxolane (2.47).
 14,15

 

Me

O

Me

1. Ethylene glycol, cata. PTSA,
    Hexane
2. Bromine

Me Me
O O

Br

2.47

3-Pentanone
35% yield , two steps

 

3-Pentanone (86.0 g, 1.0 mol), ethylene glycol (70.0 g, 1.1 mol) and PTSA (20 mg, 0.12 

mmol) in 100 mL hexane were heated to reflux with Dean-Stark to remove water for 48 hours. 

To the resulting light brown color solution was added 500 mL of ethylene glycol. This mixture 

was cooled to 35
o
C, and bromine (140 g, 0.75 mol) was added dropwisely via a dropping funnel 

to maintain the reaction temperature below 40 
o
C. The stirring continued for 15 minutes after the 

addition of bromine, and the reaction mixture was directly extracted with hexanes (200mL×3). 

Na2CO3 (20.0 g) was added to the combined hexane extract, stirred with for 10 minutes, and 

filtrated off.  The hexane was removed over rotavapor, and the product was distilled under 

vacuum (1~2 torr., b.p.: 49 – 53 
o
C) to give a colorless liquid 48 g (35% yield). 

1
H NMR δ 4.16 

(q, J = 6.8 Hz, 1H, BrC-H), 4.09 – 4.03 (m, 4H), 1.99 (m, 1H), 1.79 (m, 1H), 1.68 (d, J = 6.8 Hz, 

3H), 0.92 (t, J = 7.6 Hz, 3H). 
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 2-Ethyl-2-vinyl-1,3-dioxolane (2.48).
15

 

Me Me
O O

Br
NaOH, MeOH Me

O O

2.48

90% yield

2.47  

Compound 2.47 (48.0 g, 0.23 mol) was mixed with sodium hydroxide (32.2 g, 0.8 mol) in 

70 mL MeOH under argon. This mixture was heated to reflux for 24 hours. To the cooled 

reaction mixture was added 150 mL of water and extracted with ether (200 mL×2). The 

combined organic layer was washed with water (200 mL×2), brine and dired over MgSO4. The 

ether was removed under vacuum to give 26.1 g of desired product 2.48 (90% yield). 
1
H NMR δ 

5.73 (dd, J = 17.2, 10.4 Hz, 1H), 5.36 (dd, J = 16, 1.6 Hz, 1H), 5.17 (dd, J = 10.8, 1.6 Hz, 1H), 

3.97 – 3.87 (m, 4H), 1.73 (q, J = 7.2 Hz, 2H), 0.93 (t, J = 7.2 Hz, 3H). 

 Ethyl vinyl ketone.
14

  

Me
O O

cata. PTSA, H2O

O

Me

Ethyl vinyl ketone

90% yield

2.48  

Compound 2.48 (26.1 g, 0.20 mol), PTSA (0.2 g, 0.01 mmol) was stirred in 30 mL water 

at 25 
o
C under argon for 10 hours. The organic layer was separated and dried over Na2SO4 to 

give 15.2 g of pure ethyl vinyl ketone (90% yield). This is a commercial available chemical. The 

1
H NMR is provided here for reference and is identical to that of the commercial mateiral. 

1
H 

NMR δ 6.36 (dd, J = 16.8, 10.4 Hz, 1H), 6.23 (dd, J = 16.8, 1.2 Hz, 1H), 5.82 (dd, J = 10.4, 1.2 

Hz, 1H), 2.62 (q, J = 6.8 Hz, 2H), 1.11 (t, J = 6.8 Hz, 3H). 

 (-)-(4aR,5R)-5-(tert-butyldimethylsilyloxy)-1,4a-dimethyl-4,4a,5,6,7,8-

hexahydronaphthalen-2(3H)-one  [(-)-2.53]. (JL-11-057) 

OH
Me

O

(-)-2.29

TBSCl, imidazole, DMF

90% yield
OTBS

Me

O

(-)-2.53  

To (-)-2.29 (400 mg, 2.06 mmol) and imidazole (272 mg, 4.0 mmol) in 15 mL dry DMF 

under argon at 25 
o
C was added TBSCl (467 mg, 3.1 mmol) at once. Then this mixture was 

stirred overnight. The reaction mixture was diluted with 50 mL aq. NH4Cl and extracted with 
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ethyl acetate (50 mL×3). The combined organic layer was washed with water, brine, dried over 

MgSO4. Ethyl acetate was concentrated off by rota-vapor, the residue was loaded on silica gel 

column which was eluted firstly with 200 mL hexane and 150 mL the mixture of hexane and 

ether (5:1) to recover (-)-2.29 (105 mg) and give (-)-2.53 (430 mg, 90% yield, calculated based 

on recovered (-)-2.29) as colorless oil. (-)-2.53 became a white solid after stored in the fridge 

overnight. []24= -106
o
, (c = 0.345 g in 100 mL chloroform); 

1
H-NMR: δ 3.35 (dd, J = 10.8, 5.6 

Hz, 1H), 2.65 (d, J = 14.8 Hz, 1H), 2.42 - 2.38 (m, 2H), 2.09 - 2.00 (m, 2H), 1.88-1.81 (m, 1H), 

1.77 (s, 3H), 1.71 - 1.62 (m, 3H), 1.36 - 1.24 (m, 1H), 1.14 (s, 3H), 0.90 (s 9H), 0.04 (d, J = 7.2 

Hz, 6H); 
13

C-NMR (CDCl3) δ 199.4, 161.5, 129.9, 79.2, 42.7, 34.2, 33.9, 30.7, 27.3, 26.1 (3 

carbons, t-Bu), 22.9, 18.3, 16.2, 11.5, -3.7, -4.7. 

 Vinyl bromide. 

Br

Br

1,2-dibromoethane

KOH, EtOH, 60 oC

48% yield Br

Vinyl bromide  

KOH (90 g, 1.5 mol), 600 mL Ethanol were added to a three-neck flask which was 

equipped with distillation apparatus [Long Vigreux column (30 cm), distillation head, long 

condenser (circulating ice-cold water), distillation adaptor and collection flask which was cooled 

by dry-ice]. To this mixture was added 1,2-dibromoethane (100 mL, 1.2 mol) over 1 hour via a 

syringe pump at 40 
o
C under argon. Vinylbromide was distilled out (b.p. = 16 

o
C) at 60 

o
C under 

argon. The crude product was redistilled over CaSO4 to give dry vinyl bromide 61 g (48% yield). 

Obtained vinyl bromide should stor at -78
o
C all the time. 

 

 Vinyl trimethylsilane. 

Br

Vinyl bromide

Mg, THF, TMSCl

TMS
75% yield

Vinyl trimethyl silane  

To a mixture of magnesium (10 g, 0.42 mol, from Strem Chemical Co.) and catalytic 

amount of iodine in 300 mL THF was slowly added vinyl bromide (30 g, 0.28 mol). Reaction 

was initiated by adding about 1 mL of vinyl bromide and heated to reflux by heat gun. After the 

initiation, the rest of bromide was cannulated into the reaction slowly to maintain a gentle reflux 
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of THF. After the adding of vinyl bromide, the mixture was stirred at 25 
o
C for 20 mins and 

heated to reflux for 2 hours to result a brown color solution. The mixture was cooled to 25 
o
C, 

and distilled TMSCl (30 g, 0.28 mol) in 30 mL THF was added slowly. The mixture was stirred 

for 2 hours at 25 
o
C, and the product was directly distilled out from the reaction mixture as the 

azeotrope of THF. This clear distillate was washed with water several times to get rid of THF, 

and the residue was dried over Na2SO4 to give vinyltrimethylsilane (21 g, 75% yield) as a 

colorless liquid. This is a commercial available chemical. The 
1
H NMR is provided here for 

reference, and the chemical shifts are identical to that of reported.
22

  
1
H-NMR: δ 6.16 (dd, J = 20, 

16 Hz, 1H), 5.93 (dd, J = 16, 4 Hz, 1H), 5.68 (dd, J = 20, 4 Hz, 1H), 0.08 (s, 9H).  

 

 -Trimethylsilyl vinyl bromide (2.70).
22

 

TMS

Vinyl trimethyl silane

1. Br2, pentane
2. Diethylamine

TMS

Br

2.70

66% yield, two steps

 

To a stirred solution of vinyltrimethylsilane (36 g, 0.36 mol), at -78
o
C, in 50 mL pentane 

was added bromine (57.6 g, 0.36 mol) dropwisely under argon. The resulted orange color 

mixture was stirred at -78 
o
C for 1 hour, diluted with water and extracted with ether (150 mL×3). 

The combined organic layer was washed with aq. Na2S2O5 (to remove any excess amount of 

bromine), aq. NaHCO3, and brine, and dried over MgSO4. The diethyl ether was concentrated by 

rota-vapor with a cool water bath (<40 
o
C) to give dibromide product. To this dibromide 

compound was added diethylamine (53 g, 0.72 mol) at 25 
o
C, and this mixture was stirred for 14 

hours. The resulted white diethylamine salt was filtrated off. To the clear filtrate was added 

additional amount of diethylamine (26 g, 0.36 mol). The reaction was kept stirring for 10 hours 

and monitored by NMR. When no dibromide compound was detected, the diethylamine salt was 

filtrate off, and the clear solution was diluted with 300 mL ether. This solution was gently 

washed with 1 N HCl several times until the pH is neutral, water, brine and dried over MgSO4. 

The ether was distilled out at 1 atm to give crude product. Distillation of this crude product (1 

atm, b.p.: 165 
o
C) finally gave pure 2.70 (42 g, 66% yield) as colorless liquid.

 1
H-NMR: δ 6.28 

(d, J = 1.6 Hz, 1H), 6.19 (d, J = 1.6Hz, 1H), 0.02 (s, 9H); 
13

C-NMR 139.2, 129.6, -2.2 (3 carbons, 

Me3Si). 
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 2-(Trimethylsilyl)pent-1-en-3-ol  (2.71).
22

 

TMS

Br

2.70

Mg, propyl aldehyde
THF

Me

OH

TMS

2.71

86% yield

 

To a mixture of magnesium (1.4 g, 56 mmol) in 50 mL dry THF was added 0.2 mL of 

1,2-dibromoethane, and the mixture was heated to reflux for 3 minutes. Bromide 2.70 (5.0 g, 28 

mmol) was added dropwisely. The reaction was initiated by heating with heat gun, and the 

bromide was slowly added into the mixture it to maintain a gentle reflux. The mixture was stirred 

at 25 
o
C for 30 minutes, heated to reflux for 1.5 hours and then cooled to -10 

o
C. Distilled propyl 

aldehyde (2.4 g, 42 mmol) in 10 mL THF was added slowly. Reaction mixture was warmed to 25 

o
C after the addition, stirred for 2 hours and quenched by aq. NH4Cl. The product was extracted 

out with ether (60 mL×3). Combined organic layer was washed with water, brine, dried over 

MgSO4. Ether was distilled off at 1 atm, and the crude product was purified on silica gel column 

by using a mixture of hexane and ether (4:1) as eluent to give 2.71 (3.89 g, 86% yield) as 

colorless liquid.
 1

H-NMR: δ 5.77 (s, 1H), 5.42 (s, 1H), 4.20 (t, J = 6.0 Hz, 1H), 1.66 – 1.48 (m, 

3H, merged with a broad -OH), 0.91 (t, J = 7.2 Hz, 3H), 0.13 (s, 9H); 
13

C-NMR 156.3, 124.2, 

77.9, 30.2, 10.3, -0.4 (3 carbons, Me3Si). 

 

 -Trimethylsilyl vinyl ethyl ketone 

Me

OH

TMS

2.71

PDC
Me

O

TMS

-trimethylsiyl vinyl 
ethyl ketone

65% yield

 

To the mixture of PDC (7.7g, 36 mmol) in 50 mL DCM was added 2-(trimethylsilyl) 

pent-1-en-3-ol (2.71) (3.8 g, 24 mmol) in 50 mL of DCM slowly at 0 
o
C. The mixture was 

warmed up to 25 
o
C and stirred for 14 hours. The resulted brown solid was filtrated off through a 

short silica gel pad, and the silica gel was washed with 20 mL DCM. The combined DCM was 

distilled off at 1 atm, and the crude product was purified on silica gel column with a mixture of 

ether and hexane (1:4) was eluent to give desired product 2.28 g (61 % yield) as yellow liquid. .
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1
H-NMR: δ 6.45 (d, J = 1.6 Hz, 1H), 6.09 (d, J = 1.6 Hz, 1H), 2.66 (q, J = 7.2 Hz, 2H), 1.08 (t, J 

= 7.2 Hz, 3H), 0.16 (s, 9H); 
13

C-NMR 207.2, 154.1, 135.1, 31.8, 8.3, -1.2 (3 carbons, Me3Si). 

 

 (+)-(4aR,8R,8aR)-8-(tert-Butyldimethylsilyloxy)-1,4a,8a-trimethyl-

4,4a,4b,5,6,7,8,8a,9,10-decahydrophenanthren-2(3H)-one  [(+)-2.72].(JL-12-059) 

OTBS
Me

O

(-)-2.53

1. Li, liq. NH3, t-BuOH, -35 oC,

2. -Trimethylsilyl vinyl ethyl ketone,

3. 6% KOH, MeOH, reflux

58% yield, 4 steps

OTBS

Me

O

(+)-2.72  

To liquid NH3 (40 mL) at -78 
o
C was added lithium (56 mg, 8.1 mmol). After stirring for 

30 minutes at this temperature, a solution of (4aR,5R)-5-(t-butyldimethylsilyloxy)-1,4a-

dimethyl-4,4a,5,6,7,8-hexahydronaphthalen-2(3H)-one [(-)-2.53] (1.0 g, 3.2 mmol) and t-butanol 

(179 mg, 2.56 mmol) in 10 mL dry ether was injected. Then this mixture was refluxed at -35 
o
C 

for 2 hours. A few drops of isoprene (freshly distilled over sodium) were injected to quench the 

excess amount of lithium. Liquid NH3 was evaporated off at room temperature, and the residue 

was connected to the high vacuum at 40
o
C for 10 minutes. The resulting white residue was 

dissolved in 40 mL dry ether again, cooled to -78
o
C and protected from light by covering with a 

black cloth. -Trimethylsilylvinyl ethyl ketone (0.75 g, 4.8 mmol) in 10 mL dry ether was added 

into this mixture over 30 minutes by syringe pump. The reaction mixture was warmed up to -40 

o
C and allow the temperature gradually warmed up to -10 

o
C over 2 hours with stirring. NH4Cl 

aq. was added into this mixture, and extracted with ethyl acetate (60 mL×3). The combined 

organic layer was washed with water, and concentrated off under reduced pressure. The residue 

was dissolved with 100 mL methanol and 20 mL 6% KOH aq., and this mixture was heated to 

reflux for 2 hours. Acetic acid was added to neutralize excess amount of base, and the methanol 

was evaporated under a rotary evaporator. The residue was diluted with aq. NH4Cl, extracted 

with ethyl acetate (60 mL×3). Combined organic layer was washed with water, brine, dried over 

MgSO4. The crude product was purified by column chromatography using a mixture of hexane 

and diethyl ether (3:1) to give desired product 680 mg (58% yield) as colorless oil. []27= +45.2
o
, 

(c = 0.25 in chloroform); 
1
H-NMR: (CDCl3) δ 3.06 (dd, J = 11.2, 4.8 Hz, 1H), 2.67 (dt, J =11.6, 

3.2 Hz, 1H), 2.49 – 2.31 (m, 2H), 2.23 (td, J = 12.8, 2.8 Hz, 1H), 2.04 - 1.97 (m, 2H), 1.79 (s, 
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3H), 1.78 – 1.75 (m, 1H), 1.59 – 1.11 (m, 6H), 1.15 (s, 3H), 1.11 – 1.02 (m, 2H), 1.05 (s, 3H), 

0.89 (s, 9H), 0.02 (d, J = 1.6 Hz, 6H); 
13

C-NMR (CDCl3) δ 199.2, 164.6, 128.4, 81.1, 55.6, 40.0, 

39.4, 38.2, 36.5, 33.5, 31.1, 26.1 (3 carbons, t-Bu), 24.6, 24.5, 20.6, 18.6, 18.3, 12.5, 11.3, -3.7, -

4.6. 

 

 (+)-(4aR,8R,8aR)-8-(tert-Butyldimethylsilyloxy)-1,1,4a,8a-tetramethyl-

decahydrophenanthren-2(1H,3H,4bH)-one [(+)-2.73].(JL-12-087) 

OTBS

Me

O

(+)-2.72

Li, NH3, THF, MeI
OTBS

O

(+)-2.73

65% yield

H H

H

 

To liquid NH3 (20 mL) at -78 
o
C was added lithium (30 mg, 4.3 mmol). After stirring for 

30 minutes at this temperature, (+)-2.72 (400 mg, 1.1 mmol) in 2 mL dry THF was added slowly. 

Then the mixture was refluxed at -35 
o
C for 2 hours and cooled to -78 

o
C degree. Dry THF (35 

mL) was injected and the mixture was stirred at -78 
o
C for 10 minutes. Methyl iodide (1.4 mL, 

22 mmol, 20 eq.) was added into the bottom part of the reaction by a long needle. After stirring 

at -78
 o

C for 30 minutes, another batch of methyl iodide (1.4 mL, 22 mmol, 20 eq.) was added. 

This mixture was allowed to warm up to room temperature slowly over 14 hours and diluted with 

NH4Cl aq., and extracted with ethyl acetate (40 mL×3). The combined organic layer was washed 

with water, brine, and dried over MgSO4. The organic layer was concentrated and purified by 

column chromatography using a mixture of hexane and diethyl ether (10:1) to give desired 

product 265 mg (65% yield) of (+)-2.73 as colorless solid. []27= +8.2
o
, (c = 0.25 in chloroform); 

1
H-NMR: (CDCl3) δ 3.06 (dd, J = 11.2, 4.8 Hz, 1H), 2.56 – 2.38 (m, 2H), 1.96 - 1.90 (m, 2H), 

1.78 - 1.69 (m, 1H), 1.55 - 1.17 (m, 11H), 1.08 (s, 3H), 1.04 (s, 3H), 0.94 (s, 3H), 0.90 (s, 3H), 

0.89 (s, 9H), 0.03 (6H); 
13

C-NMR (CDCl3) δ 218.2, 81.5, 56.7, 55.4, 47.7, 40.4, 39.6, 39.5, 37.0, 

34.4, 31.3, 26.8, 26.1 (3 carbons, t-Bu), 24.8, 21.3, 20.7, 19.6, 18.3, 16.4, 13.2, -3.7, -4.5. 
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 (-)-(4a'R,8'R,8a'R)-1',1',4a',8a'-8-t-Butyldimethylsilyoxy-tetramethyldodecahydro-

1'H-spiro[1,3]dioxolane-2,2'-phenanthren[(-)-2.74]. 

OTBS

O

(+)-2.73

Ethylene glycol, 
PTSA,benzene OTBS

(-)-2.74

O

O
95% yield

H

H

H

H

 

(4aR,8R,8aR)-8-(tert-Butyldimethylsilyloxy)-1,1,4a,8a-tetramethyl dodecahydro 

phenanthren -2 (1H)-one (+)-2.73 (2.0 g, 5.25 mmol), PTSA (50 mg, 0.3 mmol) and ethylene 

glycol (3.25 g, 52 mmol) were refluxed in benzene with a Dean-Stark apparatus to remove water 

for 2 hours. The solution was cooled to room temperature, diluted with aq. NaHCO3, and 

extracted with ether (50 mL×3). The combined organic layer was washed with water, brine, and 

dried over MgSO4. The crude product was purified by column chromatography using a mixture 

of hexane and ethyl acetate (5:1) to give desired product 2.1 g (95% yield) as a colorless solid. 

[]27= - 49
o
, (c = 0.23 in chloroform); 

1
H-NMR: δ 3.97 – 3.87 (m, 4H), 3.05 (dd, J = 11.2, 4.8 

Hz, 1H), 1.88 – 1.76 (m, 2H), 1.73 – 1.65 (m, 1H), 1.60 (ddd, J = 13.2, 7.2, 3.6 Hz, 1H), 1.52 – 

1.32 (m, 6H), 1.29 – 1.10 (m, 5H), 1.04 – 0.95 (m, 1H), 0.93 (s, 3H), 0.87 (s, 12 H), 0.86 (s, 3H), 

0.84 (s, 3H), 0.00 (s, 6H) ; 
13

C-NMR δ 113.6, 81.7, 65.09, 65.07, 57.2, 54.0, 42.4, 40.4, 40.3, 

37.3, 37.1, 31.4, 27.1, 26.2 (3 carbons, t-Bu), 24.8, 23.1, 20.3, 20.1, 18.4, 18.3, 16.4, 13.6, -3.7, -

4.6. 

 

 (-)-(4a'R,8'R,8a'R)-1',1',4a',8a'-Tetramethyldodecahydro-1'H-spiro[[1,3]dioxolane-

2,2'-phenanthren] -8'-ol [(-)-2.32].(JL-14-044) 

OTBS

(-)-2.74

O

O

H

H

TBAF
OH

(-)-2.32

O

O95% yield

H

H

 

27 mL of 1.0 M tetrabutylamnium fluoride in THF was diluted with 20 mL dry THF. 

This solution was pre-dried by 3Å molecular sieves and transferred into tert-

butyldimethyl((4a'R,8'R,8a'R)-1',1',4a',8a'-tetramethyldodecahydro-1'H-spiro[[1,3] dioxolane -

2,2'- phenanthrene]-8'-yloxy)silane  [(-)-2.74] (2.0 g, 4.6 mmol) in 30 mL dry THF. The resulting 
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solution was stirred at 60 
o
C under argon for 14 hours, diluted with NH4Cl aq., and extracted 

with ethyl acetate (50 mL×3). The combined organic layer was washed with water, brine, dried 

over MgSO4, and concentrated off under vacuum, and the crude product was purified on silica 

gel column with a mixture of ether and hexane (1:1) as eluent to give 1.4 g of pure (+)-2.32 (95% 

yield) as white solid. []25= - 45
o
, (c = 0.1 in chloroform; lit 

24
: []25= - 44

o
, c = 0.1, 98 %ee); 1H 

NMR δ 3.99 – 3.86 (m, 4 H), 3.13 (ddd, J = 11.4, 8.4, 4.1 Hz, 1 H), 1.90 – 1.74 (m, 2 H), 1.73 – 

1.08 (m, 15 H), 0.93 (s, 3 H), 0.88 (s, 6 H), 0.85 (s, 3 H) ; 
13

C-NMR (CDCl3) δ ppm 113.5, 81.4, 

65.1, 56.8, 53.8, 42.4, 39.8, 39.4, 37.2, 37.0, 30.4, 27.1, 26.1, 24.8, 23.2, 20.2, 20.1, 18.3, 16.5, 

13.3.  

 

 (-)-(4a'S,8a'R)-1',1',4a',8a'-Tetramethyldecahydro-1'H-spiro[[1,3]dioxolane-2,2'-

phenanthren ]-8'(3'H)-one [(-)-2.33].(JL-14-045) 

OH

(-)-2.32

O

O

IBX O

(-)-2.33

O

O95% yield

H

H

H

H

 

To the (-)-2.32 (240 mg, 0.75 mmol) in 5 mL DMSO was added IBX (208 mg, 0.89 

mmol) at 25 
o
C under argon. This solution was stirred for 14 hours. The white participate was 

filtrated off. The filtrate was diluted with aq. NaHCO3, and extracted with ether (60 mL×3). 

Combined organic layer was washed with water, brine, and dried over MgSO4 and concentrated 

under vacuum, and the crude product was purified on silica gel column with a mixture of hexane, 

DCM, ether (5:3:1) as eluent to give 220 mg of pure (-)-2.33 (95% yield) as white solid. []25= - 

27
o
, (c = 0.27 in chloroform, 100%ee; lit.

24
: []25= - 26

o
, c = 0.14, 98 %ee); 1H NMR δ 3.98 – 

3.86 (m, 4 H), 2.54 (td, J = 14.0, 6.9 Hz, 1 H), 2.18 (dm, 1 H), 2.08 – 2.01 (m, 1 H), 1.82 (td, J = 

13.9, 4.0 Hz, 1 H), 1.75 – 1.35 (m, 10 H), 1.26 (dd, J = 12.3, 2.1 Hz, 1 H), 1.18 (dd, J = 11.8, 3.0 

Hz, 1 H), 1.14 (s, 3 H), 0.98 (s, 3 H), 0.94 (s, 3 H), 0.84 (s, 3 H); 
13

C-NMR δ 215.9, 113.2, 65.1, 

65.1, 57.6, 53.2, 49.4, 42.4, 38.3, 37.9, 37.1, 34.7, 27.0, 26.4, 23.1, 20.3, 20.07, 20.04, 18.0, 16.8.  
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 N, N, -diethylgeranylamine (2.78).
25

 

Me

+ Me N
H

Me
cata. n-Butyllithium;

N

Me

Me

Isoprene Diethylamine 2.78

75% yield

 

Isoprene was distilled over sodium; and diethylamine was distilled over CaH2 before use.  

To a dry sealed tube was added isoprene (20 mL, 0.20 mol) and diethylamine (6 mL, 0.04 

mol) at 0 
o
C under argon. To this solution was added 1.6 M n-BuLi (2.5 mL) to result a light 

yellow color solution. The tube was capped tightly and heated to 65 
o
C 12 hours. The reaction 

mixture was cooled to 0 
o
C, and 15 mL of water was added to quench the reaction. The mixture 

was extracted by ether (20 mL×2), and the combined organic layer was dried over MgSO4. The 

ether was concentrated under vacuum, and the crude product was purified by vacuum distillation 

(b.p: 90 – 95 
o
C, 3 torr.) to give pure amine 5.65 g (75% yield) as colorless oil. 

1
H NMR δ 5.24 (t, 

J = 6.8 Hz, 1H), 5.09 (s, 1H), 3.04 (dd, J = 7.2, 1.2 Hz, 2H), 2.49 (q, J = 6.0 Hz, 4H), 2.04 (d, J = 

3.2 Hz, 4H), 1.71 – 1.60 (m, 9H), 1.01 (t, J = 6.0 Hz, 6H). 

 

 1-(4,4-dimethylcyclohex-1-enyl)ethanone (2.75).
26

 

N

Me

Me

2.78

(1), H2O2.
(2), H2SO4, H2O;
(3), NaOH, H2O.

45 % yield, 
three steps

O Me

2.75  

A 50 % of hydrogen peroxide aqueous solution was added to compound 2.78 (1.05 g, 5 

mmol) in 10 mL methanol at 25 
o
C. This solution was stirred for 48 hours. Then PtO2 (3 mg) was 

added to the reaction solution and stirred for 2 hours to destroy the excess amount of hydrogen 

peroxide. Removal of the methanol to give desired N-oxide. The N-oxide residue was diluted 

with 500 mL H2O. To this diluted solution was added 10 mL of 50 % H2SO4, and the mixture 

was heated to 100 
o
C for 24 hours and cooled to 0 

o
C with ice bath. To the resulted light brown 

solution was added 10 g of NaOH in 20 mL water. This mixture was heated to 100 
o
C for 24 

hours and cooled to 25 
o
C. The excess amount of NaOH was neutralized with 10 % HCl, and the 

product was extracted with ether (100 mL×3). The combined organic layer washed with water, 
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brine, dried over MgSO4, and distilled at 1atm to remove ether, and the crude product was 

purified on silica gel column with a mixture of hexane and ether (1:1) as eluent to give 340 mg 

of pure 2.75 (45 % yield) as colorless oil with pleasant ordor.
 1

H NMR δ 6.82 (m, 1H), 2.31 (s, 

3H, -CH3), 2.26 – 2.24 (m, 2H), 2.05 – 2.03 (m, 2H), 1.41 (t, J = 4.8 Hz, 2H), 0.8 (s, 6H). 

 

 (-)-Trimethyl((4a'R,8a'R)-1',1',4a',8a'-tetramethyl-3',4',4a',4b',5',6',8a',9',10',10a'-

decahydro-1'H-spiro[[1,3]dioxolane-2,2'-phenanthrene]-8'-yloxy)silane [(-)-2.81]. 

O

O

O
LDA, TMSCl,THF

(-)-2.33

98 %
O

O

OTMS

(-)-2.81

H

H

H

H

 

Trimethylsilyl chloride (TMSCl) was distilled twice over CaH2, and to the distilled 

TMSCl was added distilled Et3N (volume ratio: TMSCl : Et3N = 7 : 1). The mixture was 

centrifuged for 2 minutes, and the clear supernatant was used for the reaction. 

To the solution of diisopropylamine (0.05 mL, 0.35 mmol) in 1.5 mL dry THF was added 

1.6 M n-BuLi (0.21 mL, 0.33 mmol) at -78 
o
C under argon. The solution was stirred for 30 

minutes and transfered into compound (-)-2.33 (100 mg, 0.33 mmol) in 2 mL THF at -78 
o
C 

under argon. The mixture was warmed up to 25 
o
C, stirred for 2 hours and cooled to -78 

o
C. To it 

was added TMSCl (0.136 mL, 1 mmol), and the mixture stirred at -78 
o
C for 30 minutes. The 

reaction was diluted with 5% aqueous NH4OH solution, extracted with ether (20 mL×3). The 

combined organic layer washed with water, brine and dried over Na2SO4. The combined ether 

was distilled under vacuum, and the crude product was chromatographed on silica gel column 

with a mixture of hexane, DCM and ether (5:3:1) as eluent to give 110 mg of pure (-)-2.81 (98 % 

yield) as white solid. []25= - 32
o
, (c = 0.55 in chloroform); 1H NMR δ 4.50 – 4.87 (m, 1H), 3.98 

– 3.87 (m, 4H), 2.06 – 1.78 (m, 4H), 1.67 – 1.11 (m, 10H), 1.05 (s, 3H), 0.93 (s, 3H), 0.88 (s,3H), 

0.83 (s, 3H), 0.15 (s, 9H); 
13

C-NMR δ 159.0, 113.6, 100.0, 65.1 (2 carbons, acetal), 55.9, 53.8, 

42.5, 39.6, 37.1 (2 carbons, gem-dimethyl), 36.9, 27.1, 24.9, 23.1, 20.9, 20.0, 18.5, 17.9, 16.7, 

0.6 (3 carbons. TMS). 
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 2,2-Dimethylpent-4-enal (2.89). 

OH +
Me

Me
H

O cat. PTSA, mesitylene, Dean-Stark reflux

90% yield

Me Me
H

O

2.89Allyl alcohol Isobutyraldehyde  

Allyl alcohol (21.7g, 0.375 mol), isobutyraldehyde (40.5 g, 0.56 mol) and p-

toluenesulfonic acid(0.125g, 6.5 mmol) in mesitylene (70 mL)was heated at 220 
o
C by heating 

mental for 48 hours with Dean-Stark apparatus and a long Vigreux column (30 cm). The product 

was distilled at 1 atm to give 40 g (90 % yield) as colorless liquid. (The product was distilled out 

as the azeotrope of mesitylene which can be separated at next step); 1H NMR δ 9.50 (s, 1H), 5.77 

– 5.67 (m, 1H), 5.11 – 5.06 (m, 2H), 2.23 (d, J = 7.6 Hz, 2H), 1.07 (s, 6H).  

  

2,2-Dimethylpent-4-en-1-ol (2.88).  

Me Me
H

O

2.89

NaBH4, 5% NaOH aq.  MeOH Me Me
OH

2.88

90% yield

 

The sodium borohydride (4.8 g, 0.132 mol) in 60 mL 0.2 M NaOH aq. solution was 

added slowly in to a solution of aldehyde 2.89 (40 g,  0.35 mol) inMeOH (400 mL) over 30 

minutes. It was stirred at 25 
o
C for 10 hours. The MeOH was distilled off, and the residue was 

diluted with NH4Cl aq., extracted with ether (100 mL×3). The combined organic layer was 

washed with water, brine, and dried over MgSO4. The ether was removed under reduced pressure, 

and the residue was purified by column chromatography with pure hexane and the mixture of 

hexane ether (1:1) to give pure product as colorless oil (38 g, 90% yield); 1H NMR δ 5.94 – 5.82 

(m, 1H), 5.07 – 5.04 (m, 2H), 3.34 (s, 2H), 2.03 (d, J = 8.0 Hz, 2H), 0.89 (s, 6H). 

 

 5-Bromo-4,4-dimethyl-pent-1-ene (2.87).
31

 

Me Me
OH

2.88

PPh3, Br2, DMF Me Me
Br

2.87

65% yield
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Bromine (7.7 g, 48.8 mmol) was added to triphenylphsophine (12 g, 45.9mmol) in 30 mL 

DMF (dried over 3 Å molecular sieve), and the mixture was stirred for 30 minutes. To it, a 

solution of alcohol 2.88 (5.0 g, 43.8 mmol) in 30 mL DMF was added slowly. The resulting 

black solution was heated to 130 
o
C for 2 hours, cooled to 25 

o
C and diluted with 70 mL water. 

The mixture was extracted with pentane (60 mL×10), and the combined organic layer was 

washed with water, brine, and dried with MgSO4. The pentane was distilled off at 1 atm, and the 

product was distilled from this residue at 180 
o
C to give a colorless liquid with pleasant odor (4.5 

g, 65 % yield).1H NMR δ 5.83 – 5.72 (m, 1H), 5.12 – 5.07 (m, 2H), 3.28 (s, 2H), 2.11 (d, J = 7.4 

Hz, 2H), 1.02 (s, 6H). 

 

 6,6-Dimethylnon-8-en-2-one (2.86). 

Me Me
Br

Me

Me Me O
1. Mg, cat. anthracene, dibromoethane, THF;
2. CuI.MeSMe, methyl vinyl ketone, ether

40% yield

2.87 2.86  

[Activation of magnesium: If the magnesium is not new purchased, it should be activiated 

by the following procedure: the metal was washed with 1 N HCl several times until a shiny 

surface appeared, then washed with distilled water several times to remove excess acid; the 

washed magnesium could be transferred into a Hirsh funnel (without filtering paper) and wash 

with water, THF and dried under high vacuum for 1 hour with heating to give activiated 

magnesium] 

To a mixture of magnesium (7.0 g, 227 mmol), anthracene (1.0 g, 5.6 mmol) in 100 mL 

of dry THF under argon was added 1,2-dibromoethane (0.5 mL, 5.7 mmol), and this mixture was 

heated to reflux with heat gun for 5 minutes. After cooling to 25 
o
C, the mixture stirred for 14 

hours to give green-orange color mixture (a green color normally showed up after stirring for 1 

hour). 

To this green-orange mixture was added bromide 2.87 (8.0 g, 45.5 mmol) to form the 

Grignard reagent.  Firstly, about 1 g of bromide was added into the mixture, the mixture was 

heated up to reflux with heat gun. The rest of bromide was injected slowly to maintain a gentle 

reflux of the THF. The mixture was stirred at 25 
o
C for 30 minutes after the addition of the 

bromide, heated to reflux for 2 hours and cooled to 25 
o
C to give a black color solution.  
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To a three neck flask equipped with low temperature thermometer were added cuprous 

iodide dimethyl sulfide complex (CuI
.
Me2S)

31
 (5.75 g, 27.8 mmol), 15 mL dimethlsulfide, and 

20 mL of dry ether under argon.  The mixture was cooled to -40 
o
C, and the prepared Grignard 

reagent was cannulated into this mixture slowly to maintain the temperature below -30 
o
C. The 

mixture was stirred for 40 minutes to let temperature rise to -20 
o
C.  This mixture was cooled to -

40 
o
C, and methyl vinyl ketone (1.4 g, 26.1 mmol) in 3 mL ether was added. The mixture stirred 

for 2 hours to allow the temperature raise to 10 
o
C.  To it, 200 mL mixture of NH4Cl aq. and 

NH4
.
OH aq. (4:1) was added into the reaction, and the mixture stirred for 1 minute. The crude 

product was extracted with ether (50 mL × 4). The combined organic layer was washed with 10 % 

aqueous NH4
.
OH two times, water, brine and dried over MgSO4. The ether and THF was 

distilled out at 1 atm., and the residue was purified by column using a mixture of hexane ether 

(15:1) as eluent to give pure product as a yellow oil (1.6 g, 40% yield); 1H NMR chromatography 

with δ 5.84 – 5.73 (m, 1H), 5.01 – 4.94 (m, 2H), 2.38 (t, J = 7.6 Hz, 2H), 2.12 (s, 3H), 1.94 (d, J 

= 7.6 Hz, 2H), 1.58 – 1.49 (m, 2H), 1.16 – 1.12 (m, 2H), 0.85 (s, 6H); 13C NMR δ 209.4, 135.8, 

116.9, 46.5, 44.7, 41.5, 33.3, 30.1, 27.1 (2 carbons, gem-dimethyl), 18.7. 

 

 3,3-Dimethyl-7-oxooctanal (2.46). 

Me

Me Me O

2.86

cat. OsO4, NaIO4, dioxane, H2O

56% yield
Me

Me Me O

O

H

2.46  

Caution: OsO4 is extremely toxic! 

To compound 2.86 (1.0 g, 6.0 mmol) in 30 mL dioxane and 6 mL H2O was added OsO4 

(12 mg, 0.06 mmol) at 25 
o
C. The mixture was stirred for 40 minutes to give a dark brown 

solution. To this solution, sodium perioddate (2.5 g, 12 mmol) was added slowly over 20 minutes. 

The mixture was stirred at 25 
o
C for 4 hours, diluted with water, and extracted with ether (40 

mL×4). The combined organic layer washed with water, brine, and dried over MgSO4. Ether and 

most of the dioxane were distilled off at 1 atm., and the crude product was purified by column 

chromatography with the mixture of hexane ether (1:1) to give pure product as yellow oil (0.52 g, 

56% yield). 1H NMR δ 9.83 (t, J = 3.2 Hz, 1H), 2.42 (t, J = 6.8 Hz, 2H), 2.27 (d, J = 3.2 Hz, 2H), 
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2.13 (s, 3H), 1.61 – 1.53 (m, 2H), 1.32 – 1.27 (m, 2H), 1.05 (s, 6H); 13C NMR δ 208.9, 203.8, 

54.8, 44.2, 42.2, 33.7, 30.0, 27.6 (2 carbons, gem-dimethyl), 18.5. 

 

 (-)-(4a'S,8a'R,E)-7'-(3,3-dimethyl-7-oxooctylidene)-1',1',4a',8a'-

Tetramethyldecahydro-1'H-spiro[[1,3]dioxolane-2,2'-phenanthren]-8'(3'H)-one [(-)-

2.76]. 

Me

Me Me O

O

H

2.46

O

O

OTMS

(-)-2.81

H

H
+

1. BF3.ether, DCM, 95% yield,
2. MsCl, Et3N, ether
3. DBU, toluene, DCM, 75% two steps O

Me O

O

O

(-)-2.76  

To a solution of compound (-)-2.81 (0.50 g, 1.1 mmol) and ketone aldehyde 2.46 (0.23 g, 

1.3 mmol) in 25 mL distilled DCM at -78 
o
C under argon was added BF3.ether (0.34 mL, 2.7 

mmol). This mixture stirred at -78 
o
C for 2 hours and stored in dry-ice for 10 hours. To it (at -78 

o
C) was added 5 mL saturated aqueous NaHCO3 solution to quench the reaction. The mixture 

was diluted with water, and extracted with ethyl acetate (30 mL×3). The combined organic layer 

was washed with water, brine, and dried over MgSO4. Ethyl acetate was evaporated off under 

vacuum, and the residue was column chromatographed on the silica gel column to recover the 

compound (-)-2.33 (30 mg, 9% revovery) and get desired aldol product 2.92 [430 mg, 92 % yield, 

calculated based on the recovery of ketone (-)-2.33]. 

To a solution of compound 2.92 (430 mg, 0.91 mmol) and Et3N (1.3 mL, 8.1 mmol) in 30 

mL distilled ether was added MsCl (342mg, 3 mmol) at 0 
o
C under argon. The mixture was 

stirred for 14 hours, quenched with 5 % aqueous NH4Cl, and extracted with ethyl acetate (30 

mL×3). The combined organic layer was washed with 10 % aqueous NaHCO3, water, brine, 

dried over Na2SO4, and concentrated under vacuum. The residue was dissolved in 20 mL of a 

mixture of DCM and toluene (1:1).  To it was added DBU (276 mg, 1.82 mmol) at 25 
o
C. This 

mixture was stirred for 15 hours, diluted with aqueous NH4Cl, and extracted with ethyl acetate 

(30 mL×3). The combined organic layer washed with water, brine, and dried over MgSO4. Ethyl 

acetate was evaporated off under vacuum, the crude product was purified by column 

chromatography using a mixture of hexane, DCM and ether (5:3:1) as eluent to give pure product 

as a white solid (0.35 g, 83% yield, two steps). []25= - 32.5
o
, (c = 0.385 in chloroform); 1H 
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NMR δ 6.39 (t, J = 9.6 Hz, 1H), 3.99 – 3.85 (m, 4H), 2.77 (d, J =15.6, 5.6 Hz, 1H), 2.39 (t, J = 

7.6 Hz, 2H), 2.13 (s, 3H), 2.12 – 1.62 (m, 9H), 1.58 – 1.16 (m, 10H), 1.05 (s, 3H), 0.95 (s, 3H), 

0.93 (s, 3H), 0.89 (s, 6H), 0.85 (s, 3H); 13C NMR δ 209.4, 208.0, 137.1, 135.2, 113.2 (2 carbons, 

acetal), 65.12, 65.11, 54.2, 53.1, 47.8, 44.6, 42.4, 41.7, 39.9, 38.0, 36.9, 35.9, 34.4, 30.2, 27.23, 

27.19, 27.0, 26.8, 23.1, 20.1, 19.1, 18.7, 18.3, 16.7. 

 

 (+)-(6a'R,8a'R,12a'S,12b'R,14b'R)-4',4',6a',11',11',14b'-Hexamethyl-4', 4a', 5', 6', 6a', 

8a', 9', 10', 11',12',12a',12b',13',14',14a',14b'-hexadecahydro-1'H-

spiro[[1,3]dioxolane-2,3'-picen]-8'(2'H)-one [(+)-2.45]; (-)-

(6a'R,8a'S,12a'R,12b'R,14b'R)-4',4',6a',11',11',14b'-hexamethyl-

4',4a',5',6',6a',8a',9',10',11',12',12a',12b',13',14',14a',14b'-hexadecahydro-1'H-spiro 

[[1,3]dioxolane-2,3'-picen]-8'(2'H)-one [(-)-2.94]. 

O

O

O

Me

Me

Me O

(-)-2.76

H

O

O

O

EtONa, EtOH, 60 oC

C = 0.005M O

O

O
+

(-)-2.94 (40% yield), less polar (+)-2.45 (30% yield), more polar

13

18

17

H

H

H

H

H
H

H

H
H

H

 

A solution of sodium methoxide was prepared as followed: sodium (11mg, 0.46 mmol) 

was added into 5 mL distilled ethanol at 25 
o
C under argon. The mixture was stirred until all the 

metal dissolved.  

To compound (-)-2.76 (110 mg, 0.23 mmol) in 40 mL distilled ethanol, above sodium 

ethoxide solution was cannulated. This mixture was stirred at 55 
o
C under argon for 14 hours. 1 

Drop of acetic acid was added into the yellow solution to quench the excess amount of base. 

Ethanol was evaporated off under vacuum; the residue was diluted with water, and extracted 

with ethyl acetate (30 mL×3). The combined organic layer washed with water, brine, dried over 

MgSO4, concentrated under vacuum. The crude product was purified by column chromatography 

using a mixture of hexane, DCM and ether (7.5:3:1) as eluent to give pure (-)-2.45 (35 mg, 30 % 

yield) as white solid and (-)-2.94 (45 mg, 40 %) as white solid.  (-)-2.94 (Less polar compound, 

undesired product): []25= -34.0, (c = 0.15 in chloroform); 1H NMR δ 5.81 (d, J = 2.0 Hz, 1H), 

3.98 – 3.87 (m, 4H), 2.33 – 2.25 (m, 1H), 2.17 – 2.09 (m 1H), 2.02 (ddd, J = 15.6, 8.4, 4.4 Hz, 
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1H), 1.87 – 1.57 (m, 5H), 1.52 – 1.29 (m, 9H), 1.26 – 1.09 (m, 6H),  1.09 (s, 3H), 0.94 (s, 3H), 

0.93 (s, 6H), 0.86 (s, 6H); 13C NMR δ 202.9, 174.7, 119.5, 113.2 (2 carbons, acetal), 65.1, 56.7, 

53.3, 48.5, 44.4, 42.3, 41.2, 41.1, 40.5, 38.8, 38.1, 37.9, 37.0, 33.4, 32.8, 30.6, 27.1, 24.8, 23.1, 

23.0, 21.5, 20.4, 20.1, 18.7, 16.6; (+)-2.45 (More polar compound, desired product): []25= + 

222.5
o
, (c = 0.19 in chloroform); 1H NMR δ 5.75 (s, 1H), 4.02 – 3.84 (m, 4H), 2.37 (ddd, J = 

13.2, 9.2, 4.4 Hz, 1H), 2.09 – 1.61 (m, 6 H), 1.58 – 1.17 (m, 12 H), 1.14 – 0.98 (m, 4H), 1.13 (s, 

3H), 0.94 (s, 9H), 0.87 (s, 3H), 0.84 (s, 3H); 13C NMR δ  202.7, 176.6, 118.1, 113.1 (2 carbons, 

acetal), 65.08, 65.02, 59.7, 53.7, 44.0, 43.2, 42.3, 41.9, 39.3, 38.38, 38.35, 37.9, 37.1, 36.7, 33.5, 

30.6, 28.0, 27.0, 24.2, 23.1, 22.0, 20.7, 20.1, 18.6, 16.2; the single srystal was grown from a 

mixture of diethyl ether and hexane (1:1) for X-ray analysis. 

 

  (+)-(6a'R,8a'S,12a'R,12b'R,14b'R)-Ethyl 4',4',6a',11',11',14b'-hexamethyl-8'-oxo-

2',4',4a',5',6', 6a', 8',8a',9',10',11',12',12a',12b',13',14',14a',14b'-octadecahydro-1'H-

spiro[[1,3]dioxolane-2,3'-picene]-8a'-carboxylate [(+)-2.101]. 

LDA, ethyl cyanoformate, HMPA, THF

45% yieldO

O

O

H

H
H

O

O

O

H
H

OEt

O

(-)-2.94 (+)-2.101  

[LDA was prepared followed the same procedure of (-)-2.81 and titrated before using. 

The procedure for the titration is: to the solution of diphenylacetic acid (9.3 mg, 0.043 mmol) in 

1 mL dry THF [or ether for (-)-2.105]. When a light yellow was shown and last for 10 seconds, 

the titration was stopped, the volume of LDA solution was recorded and used to calculate the 

concentration.] 

To (-)-2.94 (173 mg, 0.38 mmol) in 2 mL THF was added freshly made LDA (0.57mmol) 

in 1 mL THF. The mixture was stirred at -78 
o
C for 1 hour. To it, HMPA (102 mg, 0.57 mmol) 

was injected, and the mixture was stirred at -78 
o
C for 15 minutes, and ethyl cyanoformate (75 

mg, 0.76 mmol) was added. The mixture was stirred at -78 
o
C for 30 minutes, diluted with aq. 

NH4Cl solution, and extracted with ethyl acetate (20 mL×3). The combined organic layer was 

washed with water, brine, dried over MgSO4. Ethyl acetate was evaporated off under vacuum, 



115 

 

and the crude product was purified by column chromatography using a mixture of hexane, DCM 

and ether (7.5:3:1) as eluent to give 90 mg (45 % yield) of pure (+)-2.101 as white solid. []25= + 

91.3
o
, (c = 0.425 in chloroform);  1H NMR δ 5.79 (s, 1H), 4.16 – 4.06 (m, 2H), 3.95 – 3.84 (m, 

4H), 2.54 (dd, J = 12.8, 4.4 Hz, 1H), 2.34 (ddd, J = 13.6, 7.2, 3.2 Hz, 1H), 2.15 (dd, J = 13.6, 3.6 

Hz, 1H), 1.92 (d, J = 12.0 Hz, 1H), 1.80 (td, J = 13.6, 3.2 Hz, 2H), 1.71 – 1.57 (m, 5H), 1.51 – 

1.28 (m, 6H), 1.24 (t, J = 7.6 Hz, 3H), 1.18 – 1.10 (m, 5H), 1.08 (s, 3H), 0.98 (s, 3H). 0.94 (s, 

3H), 0.92 (s, 3H), 0.85 (s, 3H), 0.83 (s, 3H); 13C NMR δ  197.2, 174.6, 172.3, 117.8, 113.2 (2 

carbons, acetal), 65.2, 61.4, 58.6, 55.6, 53.6, 43.6, 42.9, 42.4, 41.4, 39.5, 38.3, 38.1, 37.1, 34.96, 

34.95, 32.9, 30.6, 27.5, 27.1, 24.6, 23.2, 22.0, 21.3, 20.2, 18.7, 16.4, 14.3; the single srystal was 

grown from a mixture of diethyl ether and hexane (1:1) for X-ray analysis. 

 

 (-)-(6a'R,8a'R,12a'S,12b'R,14b'R)-ethyl 4',4',6a',11',11',14b'-hexamethyl-8'-oxo-

2',4',4a',5',6', 6a', 8', 8a', 9',10',11',12',12a',12b',13',14',14a',14b'-octadecahydro-1'H-

spiro[[1,3] dioxolane - 2, 3 '- picene]-8a'-carboxylate [(-)-2.106]. 

LDA, ethyl cyanoformate, HMPA, 

diethyl ehter, -78 oC

O

O

O

H

H
H

(+)-2.45

O

O

O

H
H

O

OEt

(-)-2.106 (assumed structure)

65% yield

 

To (+)-2.45 (40 mg, 0.088 mmol) in 1 mL distilled diethyl ether was added freshly 

prepared LDA (0.12mmol) in 1 mL diethyl ether. The mixture was stirred at -78 
o
C for 1 hour. 

To it, HMPA (24 mg, 0.12 mmol) was added, and the mixture was stirred at -78 
o
C for 15 

minutes. Ethyl cyanoformate (18 mg, 0.17 mmol) was added. The mixture was stirred at -78 
o
C 

for 30 minutes, diluted with aq. NH4Cl solution, and extracted with ethyl acetate (10 mL×3). The 

combined organic layer was washed with water, brine, and dried over MgSO4. Ethyl acetate was 

evaporated off under vacuum, the crude product was purified by column chromatography with 

the mixture of hexane, DCM and ether (6:3:1) to give 30 mg (65 % yield) of pure (-)-2.106 as 

white solid. []25= -62.8
o
, (c = 0.20 in chloroform);  1H NMR δ 5.88 (d, J = 2.4 Hz, 1H), 4.16 – 

4.05 (m, 2H), 3.96 – 3.86 (m, 4H), 2.89 – 2.82 (m, 1H), 2.59 (dt, J = 14.0, 4.4 Hz, 1H), 2.35 (dt, 

J = 13.2, 2.8 Hz, 1H), 1.90 – 1.78 (m, 2H), 1.74 – 1.60 (m, 4H), 1.50 – 1.40 (m, 5H), 1.33 – 1.23 
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(m, 8H), 1.19 (t, J = 7.6 Hz, 3H), 1.05 (s, 3H), 0.93 (s, 6H), 0.91 (s, 3H), 0.85 (s, 6H); 13C NMR 

δ  197.1, 173.3, 172.4, 120.4, 113.4 (2 carbons, acetal), 65.2, 61.4, 58.3, 57.0, 53.2, 42.4, 42.3, 

38.7, 38.2, 37.9, 37.1, 36.1, 35.6, 34.7, 33.4, 31.0, 30.4, 27.13, 27.05, 24.8, 23.8, 23.0, 20.5, 20.0, 

18.6, 16.8, 14.4. 
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USER: 

SOLVENT: cdcl3

Experiment = s2pul

Pulse length =    6.650 usec

Recycle delay =    1.000 sec

NA  =     16

Solvent  = cdcl3

FID PTS1d = 12783 

PTS1d = 16384 

F1  =  399.962158 MHz

F2  =  100.579445 MHz

SW1 =    6397.95 Hz 

AT1 =   2.00 sec

Hz per Pt 1stD =   0.39 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =    2398.5654 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A =  87.70

      B =  112.78 

      C =   0.00 

Appendix A - Chaper 1 
1
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13
C NMR 
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USER: 

SOLVENT: CDCl3

Experiment = s2pul

Pulse length =    6.650 usec

Recycle delay =    1.000 sec

NA  =     36

Solvent  = CDCl3

FID PTS1d = 12783 

PTS1d = 16384 

F1  =  399.942596 MHz

F2  =  100.574539 MHz

SW1 =    6397.95 Hz 

AT1 =   2.00 sec

Hz per Pt 1stD =   0.39 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =    2399.9854 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A = -190.70

      B =  71.55 

      C =   0.00 
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C:\NMR_nuts_2008\DATA\$sw-5-109dpcarbon.fid

Std Carbon experiment

Apr 22 2014

USER: 

SOLVENT: CDCl3

Experiment = s2pul

Pulse length =    8.050 usec

Recycle delay =    1.000 sec

NA  =  16808

Solvent  = CDCl3

FID PTS1d = 31413 

PTS1d = 32768 

F1  =  100.575584 MHz

F2  =  399.942200 MHz

SW1 =   24154.59 Hz 

AT1 =   1.30 sec

Hz per Pt 1stD =   0.74 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =   10556.6953 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A = -30.16

      B =  263.34 

      C =   0.00 

N

HN

O
Me
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C:\NMR_nuts_2008\DATA\$sw-5-90dp.fid

Std Proton parameters

Apr  5 2014

USER: 

SOLVENT: CDCl3

Experiment = s2pul

Pulse length =    6.650 usec

Recycle delay =    1.000 sec

NA  =     64

Solvent  = CDCl3

FID PTS1d = 12783 

PTS1d = 16384 

F1  =  399.942596 MHz

F2  =  100.574539 MHz

SW1 =    6397.95 Hz 

AT1 =   2.00 sec

Hz per Pt 1stD =   0.39 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =    2399.9854 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A = -201.01

      B =  73.69 

      C =   0.00 

N
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O
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S

1.3
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C:\NMR_nuts_2008\DATA\$sw-5-90dpcarbonretakee.fid

Std Carbon experiment

Apr 14 2014

USER: 

SOLVENT: CDCl3

Experiment = s2pul

Pulse length =    8.050 usec

Recycle delay =    1.000 sec

NA  =  21016

Solvent  = CDCl3

FID PTS1d = 31413 

PTS1d = 32768 

F1  =  100.575584 MHz

F2  =  399.942200 MHz

SW1 =   24154.59 Hz 

AT1 =   1.30 sec

Hz per Pt 1stD =   0.74 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =   10557.4316 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A = -35.16

      B =  258.75 

      C =   0.00 

N
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O
Me

MeOF3C

S
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C:\NMR_nuts_2008\DATA\$PQ-15.fid

Std proton;blank line

Mar 29 2012

USER: 

SOLVENT: cdcl3

Experiment = s2pul

Pulse length =    6.400 usec

Recycle delay =    1.000 sec

NA  =     16

Solvent  = cdcl3

FID PTS1d = 13102 

PTS1d = 16384 

F1  =  399.723083 MHz

F2  =  100.519333 MHz

SW1 =    6395.40 Hz 

AT1 =   2.05 sec

Hz per Pt 1stD =   0.39 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =    2404.0581 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A = -79.22

      B =  40.78 

      C =   0.00 N

HN

O
Me

MeOF3C

N

1.4



126 

 

 

 1
5

9
.7

5
6

 1
5

0
.9

7
5

 1
5

0
.7

9
1

 1
4

8
.6

0
7

 1
4

5
.4

0
4

 1
4

4
.1

3
5

 1
4

4
.0

2
5

 1
4

3
.0

9
5

 1
3

4
.0

0
5

 1
3

2
.5

5
4

 1
3

2
.3

9
2

 1
3

2
.0

7
0

 1
3

1
.6

8
9

 1
3

0
.7

2
8

 1
3

0
.2

4
5

 1
2

9
.5

9
2

 1
2

7
.1

1
5

 1
2

6
.8

5
8

 1
2

6
.7

3
4

 1
2

5
.4

2
1

 1
2

4
.6

5
9

 1
2

2
.9

8
0

 1
2

2
.7

3
9

 1
2

0
.6

7
1

 1
1

9
.5

0
6

 1
1

8
.3

7
0

 1
1

8
.3

1
8

 1
1

8
.2

8
2

 1
1

2
.2

6
4

 1
1

2
.2

2
7

 9
3

.9
4

6

 7
7

.5
5

5

 7
7

.4
4

5

 7
7

.4
0

9

 7
7

.2
4

0

 7
7

.0
8

6

 7
7

.0
5

7

 7
7

.0
4

2

 7
6

.9
2

5

 7
6

.8
1

5

 5
6

.8
7

7

 4
4

.8
7

7

 2
3

.3
5

6

150 100 50 PPM

C:\NMR_nuts_2008\DATA\$PQ-15-c13.fid

Std Carbon experiment

May  2 2014

USER: 

SOLVENT: cdcl3

Experiment = s2pul

Pulse length =    8.050 usec

Recycle delay =    2.000 sec

NA  =  16520

Solvent  = cdcl3

FID PTS1d = 31413 

PTS1d = 32768 

F1  =  100.575584 MHz

F2  =  399.942200 MHz

SW1 =   24154.59 Hz 

AT1 =   1.30 sec

Hz per Pt 1stD =   0.74 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =   10559.6436 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A = -36.09

      B =  271.41 

      C =   0.00 

N

HN

O
Me
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N

1.4
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C:\NMR_nuts_2008\DATA\$jyl-11-083-pure.fid

Std Proton parameters

Jun  8 2013

USER: 

SOLVENT: cdcl3

Experiment = s2pul

Pulse length =    6.650 usec

Recycle delay =    2.000 sec

NA  =     32

Solvent  = cdcl3

FID PTS1d = 12783 

PTS1d = 16384 

F1  =  399.962158 MHz

F2  =  100.579445 MHz

SW1 =    6397.95 Hz 

AT1 =   2.00 sec

Hz per Pt 1stD =   0.39 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =    2400.5210 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A = -265.57

      B =  100.41 

      C =   0.00 
N

HN

O
Me

MeOF3C

OH

1.5
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C:\NMR_nuts_2008\DATA\$LJY-2-015-Carbon.fid

Std proton;blank line

Aug 22 2010

USER: 

SOLVENT: cdcl3

Experiment = s2pul

Pulse length =    9.000 usec

Recycle delay =    1.000 sec

NA  =  14576

Solvent  = cdcl3

FID PTS1d = 31375 

PTS1d = 32768 

F1  =  100.524467 MHz

F2  =  399.738953 MHz

SW1 =   24125.45 Hz 

AT1 =   1.30 sec

Hz per Pt 1stD =   0.74 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =   10557.4961 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A = -84.27

      B =  168.66 

      C =   0.00 

N

HN

O
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OH
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C:\NMR_nuts_2008\DATA\$PQ-23.fid

Std Proton parameters

Jul  2 2012

USER: 

SOLVENT: cdcl3

Experiment = s2pul

Pulse length =    6.650 usec

Recycle delay =    1.000 sec

NA  =     16

Solvent  = cdcl3

FID PTS1d = 12783 

PTS1d = 16384 

F1  =  399.962158 MHz

F2  =  100.579445 MHz

SW1 =    6397.95 Hz 

AT1 =   2.00 sec

Hz per Pt 1stD =   0.39 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =    2400.9084 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A =  117.58

      B =  73.56 

      C =   0.00 
N

HN

O
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MeOF3C

OO

OH
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C:\NMR_nuts_2008\DATA\$PQ-23-13-C-2.fid

Std Carbon experiment

Apr 15 2014

USER: 

SOLVENT: cdcl3

Experiment = s2pul

Pulse length =    8.050 usec

Recycle delay =    3.000 sec

NA  =  12132

Solvent  = cdcl3

FID PTS1d = 31413 

PTS1d = 32768 

F1  =  100.575584 MHz

F2  =  399.942200 MHz

SW1 =   24154.59 Hz 

AT1 =   1.30 sec

Hz per Pt 1stD =   0.74 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =   10559.6436 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A = -13.32

      B =  256.59 

      C =   0.00 

N

HN
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Me

MeOF3C

OO

OH
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C:\NMR_nuts_2008\DATA\$PQ-25.fid

Std Proton parameters

Jun 27 2012

USER: 

SOLVENT: cdcl3

Experiment = s2pul

Pulse length =    6.650 usec

Recycle delay =    1.000 sec

NA  =     32

Solvent  = cdcl3

FID PTS1d = 12783 

PTS1d = 16384 

F1  =  399.962158 MHz

F2  =  100.579445 MHz

SW1 =    6397.95 Hz 

AT1 =   2.00 sec

Hz per Pt 1stD =   0.39 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =    2400.5181 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A =  106.88

      B =  86.86 

      C =   0.00 

N

HN
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Me

MeOF3C

N

1.7
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C:\NMR_nuts_2008\DATA\$PQ-25-13C-2.fid

Std Carbon experiment

Apr 18 2014

USER: 

SOLVENT: cdcl3

Experiment = s2pul

Pulse length =    8.050 usec

Recycle delay =    2.000 sec

NA  =  17148

Solvent  = cdcl3

FID PTS1d = 31413 

PTS1d = 32768 

F1  =  100.575584 MHz

F2  =  399.942200 MHz

SW1 =   24154.59 Hz 

AT1 =   1.30 sec

Hz per Pt 1stD =   0.74 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =   10561.1172 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A =  -9.84

      B =  229.22 

      C =   0.00 

N

HN

O
Me

MeOF3C

N

1.7
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C:\NMR_nuts_2008\DATA\$r-18.fid

Std Proton parameters

Apr 28 2014

USER: 

SOLVENT: CDCl3

Experiment = s2pul

Pulse length =    6.650 usec

Recycle delay =    1.000 sec

NA  =     32

Solvent  = CDCl3

FID PTS1d = 12783 

PTS1d = 16384 

F1  =  399.942596 MHz

F2  =  100.574539 MHz

SW1 =    6397.95 Hz 

AT1 =   2.00 sec

Hz per Pt 1stD =   0.39 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =    2400.2253 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A = -215.60

      B =  97.35 

      C =   0.00 

N

HN

O
Me

MeOF3C

NH2

O

1.8
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C:\NMR_nuts_2008\DATA\$r-18-13c.fid

Std Carbon experiment

Apr 17 2014

USER: 

SOLVENT: cdcl3

Experiment = s2pul

Pulse length =    8.050 usec

Recycle delay =    2.000 sec

NA  =  14956

Solvent  = cdcl3

FID PTS1d = 31413 

PTS1d = 32768 

F1  =  100.575584 MHz

F2  =  399.942200 MHz

SW1 =   24154.59 Hz 

AT1 =   1.30 sec

Hz per Pt 1stD =   0.74 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =   10559.6436 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A = -30.47

      B =  255.94 

      C =   0.00 

N

HN

O
Me

MeOF3C

NH2

O

1.8
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C:\NMR_nuts_2008\DATA\$jyl-3-048.fid

Std proton;blank line

Jan 21 2011

USER: 

SOLVENT: cdcl3

Experiment = s2pul

Pulse length =    4.900 usec

Recycle delay =    1.000 sec

NA  =      4

Solvent  = cdcl3

FID PTS1d = 13102 

PTS1d = 16384 

F1  =  399.729584 MHz

F2  =  100.520966 MHz

SW1 =    6395.40 Hz 

AT1 =   2.05 sec

Hz per Pt 1stD =   0.39 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =    2398.4280 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A = -159.99

      B =   1.89 

      C =   0.00 

N

HN

O
Me

MeOF3C

O

O

1.9
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C:\NMR_nuts_2008\DATA\$jyl-3-048-13C.fid

Std proton;blank line

Jan 21 2011

USER: 

SOLVENT: cdcl3

Experiment = s2pul

Pulse length =    8.650 usec

Recycle delay =    1.000 sec

NA  =   6900

Solvent  = cdcl3

FID PTS1d = 31375 

PTS1d = 32768 

F1  =  100.522011 MHz

F2  =  399.729187 MHz

SW1 =   24125.45 Hz 

AT1 =   1.30 sec

Hz per Pt 1stD =   0.74 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =   10553.6523 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A =  177.18

      B =  13.69 

      C =   0.00 N

HN

O
Me

MeOF3C

O

O

1.9
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C:\NMR_nuts_2008\DATA\$JN_I_59.fid

Std Proton parameters

Jul 10 2013

USER: 

SOLVENT: CDCl3

Experiment = s2pul

Pulse length =    6.650 usec

Recycle delay =    1.000 sec

NA  =     16

Solvent  = CDCl3

FID PTS1d = 12783 

PTS1d = 16384 

F1  =  399.962158 MHz

F2  =  100.579445 MHz

SW1 =    6397.95 Hz 

AT1 =   2.00 sec

Hz per Pt 1stD =   0.39 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =    2400.5188 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A =  106.68

      B =  93.67 

      C =   0.00 

N

NH2

HO

O MeF3C

1.19
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C:\NMR_nuts_2008\DATA\$jyl-13-PQ3713C-2.fid

Std Carbon experiment

Oct 19 2013

USER: 

SOLVENT: cdcl3

Experiment = s2pul

Pulse length =    8.050 usec

Recycle delay =    1.000 sec

NA  =  21936

Solvent  = cdcl3

FID PTS1d = 31413 

PTS1d = 32768 

F1  =  100.580498 MHz

F2  =  399.961731 MHz

SW1 =   24154.59 Hz 

AT1 =   1.30 sec

Hz per Pt 1stD =   0.74 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =   10560.7607 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A = -31.64

      B =  123.75 

      C =   0.00 

N

NH2

HO

O MeF3C

1.19
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C:\NMR_nuts_2008\DATA\$PQ38.fid

Std Proton parameters

Oct 21 2013

USER: 

SOLVENT: dmso

Experiment = s2pul

Pulse length =    6.650 usec

Recycle delay =    3.000 sec

NA  =     64

Solvent  = dmso

FID PTS1d = 12783 

PTS1d = 16384 

F1  =  399.964050 MHz

F2  =  100.579926 MHz

SW1 =    6397.95 Hz 

AT1 =   2.00 sec

Hz per Pt 1stD =   0.39 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =    2406.7664 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A = -200.94

      B =  76.98 

      C =   0.00 

1.10

N

HN

HO

MeOF3C

OH
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C:\NMR_nuts_2008\DATA\$PQ-38-13C.fid

Std Carbon experiment

Oct 21 2013

USER: 

SOLVENT: dmso

Experiment = s2pul

Pulse length =    8.050 usec

Recycle delay =    1.000 sec

NA  =  21616

Solvent  = dmso

FID PTS1d = 31413 

PTS1d = 32768 

F1  =  100.580971 MHz

F2  =  399.963623 MHz

SW1 =   24154.59 Hz 

AT1 =   1.30 sec

Hz per Pt 1stD =   0.74 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =   10559.8418 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A = -57.19

      B =  244.69 

      C =   0.00 

1.10
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OH
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C:\NMR_nuts_2008\DATA\$jyl-7-045.fid

Std Proton parameters

Mar 12 2012

USER: 

SOLVENT: cdcl3

Experiment = s2pul

Pulse length =    6.650 usec

Recycle delay =    3.000 sec

NA  =      4

Solvent  = cdcl3

FID PTS1d = 12783 

PTS1d = 16384 

F1  =  399.962158 MHz

F2  =  100.579445 MHz

SW1 =    6397.95 Hz 

AT1 =   2.00 sec

Hz per Pt 1stD =   0.39 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =    2400.9084 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A =  101.25

      B =  94.59 

      C =   0.00 NO2

NHAc

O

O

Me

F

1.21
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C:\NMR_nuts_2008\DATA\$JYL-7-045-13C.fid

Std Carbon experiment

Mar 12 2012

USER: 

SOLVENT: cdcl3

Experiment = s2pul

Pulse length =    8.050 usec

Recycle delay =    1.000 sec

NA  =   3032

Solvent  = cdcl3

FID PTS1d = 31413 

PTS1d = 32768 

F1  =  100.580498 MHz

F2  =  399.961731 MHz

SW1 =   24154.59 Hz 

AT1 =   1.30 sec

Hz per Pt 1stD =   0.74 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =   10558.5488 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A =  17.47

      B =  299.94 

      C =   0.00 

NO2

NHAc

O

O

Me

F

1.21
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C:\NMR_nuts_2008\DATA\$an.fid

Std Proton parameters

Mar 20 2012

USER: 

SOLVENT: cdcl3

Experiment = s2pul

Pulse length =    6.650 usec

Recycle delay =    1.000 sec

NA  =     32

Solvent  = cdcl3

FID PTS1d = 12783 

PTS1d = 16384 

F1  =  399.962158 MHz

F2  =  100.579445 MHz

SW1 =    6397.95 Hz 

AT1 =   2.00 sec

Hz per Pt 1stD =   0.39 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =    2400.5181 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A = -249.25

      B =  88.91 

      C =   0.00 

NO2

NHAc

O

O

Me

1.22
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C:\NMR_nuts_2008\DATA\$an-13.fid

Std Carbon experiment

Mar 20 2012

USER: 

SOLVENT: cdcl3

Experiment = s2pul

Pulse length =    8.050 usec

Recycle delay =    1.000 sec

NA  =  23428

Solvent  = cdcl3

FID PTS1d = 31413 

PTS1d = 32768 

F1  =  100.580498 MHz

F2  =  399.961731 MHz

SW1 =   24154.59 Hz 

AT1 =   1.30 sec

Hz per Pt 1stD =   0.74 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =   10559.8691 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A =  66.56

      B =  216.56 

      C =   0.00 

NO2

NHAc

O

O

Me

1.22
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C:\NMR_nuts_2008\DATA\$jyl-7-051.fid

Std Proton parameters

Mar 13 2012

USER: 

SOLVENT: cdcl3

Experiment = s2pul

Pulse length =    6.650 usec

Recycle delay =    1.000 sec

NA  =     32

Solvent  = cdcl3

FID PTS1d = 12783 

PTS1d = 16384 

F1  =  399.962158 MHz

F2  =  100.579445 MHz

SW1 =    6397.95 Hz 

AT1 =   2.00 sec

Hz per Pt 1stD =   0.39 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =    2400.1274 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A =  115.78

      B =  82.97 

      C =   0.00 

NO2

NH2

O

O

Me

F

1.23
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C:\NMR_nuts_2008\DATA\$JYL-7-051-13C.fid

Std proton;blank line

Mar 14 2012

USER: 

SOLVENT: cdcl3

Experiment = s2pul

Pulse length =    7.800 usec

Recycle delay =    1.000 sec

NA  =    556

Solvent  = cdcl3

FID PTS1d = 31375 

PTS1d = 32768 

F1  =  100.520370 MHz

F2  =  399.722687 MHz

SW1 =   24125.45 Hz 

AT1 =   1.30 sec

Hz per Pt 1stD =   0.74 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =   10546.8574 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A =   1.41

      B =  158.91 

      C =   0.00 

NO2

NH2

O

O

Me

F

1.23



147 

 

 

  
7

.6
4

4

  
7

.4
3

7

  
7

.4
1

7

  
7

.4
1

5

  
7

.3
9

7

  
7

.2
6

0

  
7

.2
4

1

  
7

.2
2

3

  
7

.1
0

7

  
7

.1
0

4

  
7

.0
8

4

  
7

.0
8

2

  
6

.0
0

2

  
3

.8
9

4

8 6 4 2 0 PPM

C:\NMR_nuts_2008\DATA\$jyl-7-064.fid

Std Proton parameters

Mar 21 2012

USER: 

SOLVENT: cdcl3

Experiment = s2pul

Pulse length =    6.650 usec

Recycle delay =    3.000 sec

NA  =     16

Solvent  = cdcl3

FID PTS1d = 12783 

PTS1d = 16384 

F1  =  399.962158 MHz

F2  =  100.579445 MHz

SW1 =    6397.95 Hz 

AT1 =   2.00 sec

Hz per Pt 1stD =   0.39 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =    2401.2991 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A =  114.48

      B =  68.47 

      C =   0.00 

NO2

NH2

O

O

Me

1.24
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C:\NMR_nuts_2008\DATA\$jyl-7-064-13C.fid

Std Carbon experiment

Mar 21 2012

USER: 

SOLVENT: cdcl3

Experiment = s2pul

Pulse length =    8.050 usec

Recycle delay =    1.000 sec

NA  =    824

Solvent  = cdcl3

FID PTS1d = 31413 

PTS1d = 32768 

F1  =  100.580498 MHz

F2  =  399.961731 MHz

SW1 =   24154.59 Hz 

AT1 =   1.30 sec

Hz per Pt 1stD =   0.74 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =   10556.3379 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A =  26.72

      B =  258.75 

      C =   0.00 

NO2

NH2

O

O

Me

1.24
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C:\NMR_nuts_2008\DATA\$jyl-7-055.fid

Std proton;blank line

Mar 15 2012

USER: 

SOLVENT: cdcl3

Experiment = s2pul

Pulse length =    6.400 usec

Recycle delay =    1.000 sec

NA  =      4

Solvent  = cdcl3

FID PTS1d = 13102 

PTS1d = 16384 

F1  =  399.723083 MHz

F2  =  100.519333 MHz

SW1 =    6395.40 Hz 

AT1 =   2.05 sec

Hz per Pt 1stD =   0.39 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =    2410.3040 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A = -62.64

      B =  16.34 

      C =   0.00 

NO2

O

O

Me

F

N

Me

1.25
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C:\NMR_nuts_2008\DATA\$jyl-7-055-C13.fid

Std proton;blank line

Mar 15 2012

USER: 

SOLVENT: cdcl3

Experiment = s2pul

Pulse length =    7.800 usec

Recycle delay =    1.000 sec

NA  =   1064

Solvent  = cdcl3

FID PTS1d = 31375 

PTS1d = 32768 

F1  =  100.520370 MHz

F2  =  399.722687 MHz

SW1 =   24125.45 Hz 

AT1 =   1.30 sec

Hz per Pt 1stD =   0.74 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =   10550.5391 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A = -11.72

      B =  165.94 

      C =   0.00 NO2

O

O

Me

F

N

Me

1.25
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C:\NMR_nuts_2008\DATA\$jyl-7-065.fid

Std Proton parameters

Apr 29 2014

USER: 

SOLVENT: cdcl3

Experiment = s2pul

Pulse length =    6.650 usec

Recycle delay =    2.000 sec

NA  =     32

Solvent  = cdcl3

FID PTS1d = 12783 

PTS1d = 16384 

F1  =  399.942657 MHz

F2  =  100.574539 MHz

SW1 =    6397.95 Hz 

AT1 =   2.00 sec

Hz per Pt 1stD =   0.39 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =    2435.5234 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A = -225.82

      B =  115.56 

      C =   0.00 

NO2

O

O

Me

N

Me

1.26
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C:\NMR_nuts_2008\DATA\$jyl-7-065-13C.fid

Std Carbon experiment

Mar 22 2012

USER: 

SOLVENT: cdcl3

Experiment = s2pul

Pulse length =    8.050 usec

Recycle delay =    1.000 sec

NA  =    844

Solvent  = cdcl3

FID PTS1d = 31413 

PTS1d = 32768 

F1  =  100.580498 MHz

F2  =  399.961731 MHz

SW1 =   24154.59 Hz 

AT1 =   1.30 sec

Hz per Pt 1stD =   0.74 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =   10554.8633 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A =  52.50

      B =  236.25 

      C =   0.00 

NO2

O

O

Me

N

Me

1.26
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C:\NMR_nuts_2008\DATA\$jyl-7-056.fid

Std Proton parameters

Mar 17 2012

USER: 

SOLVENT: cdcl3

Experiment = s2pul

Pulse length =    6.650 usec

Recycle delay =    3.000 sec

NA  =     16

Solvent  = cdcl3

FID PTS1d = 12783 

PTS1d = 16384 

F1  =  399.962158 MHz

F2  =  100.579445 MHz

SW1 =    6397.95 Hz 

AT1 =   2.00 sec

Hz per Pt 1stD =   0.39 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =    2401.2991 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A =  96.08

      B =  111.06 

      C =   0.00 

NH2

O

O

Me

F

N

Me

1.27
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C:\NMR_nuts_2008\DATA\$jyl-7-056-13C.fid

Std Carbon experiment

Mar 17 2012

USER: 

SOLVENT: cdcl3

Experiment = s2pul

Pulse length =    8.050 usec

Recycle delay =    1.000 sec

NA  =  34896

Solvent  = cdcl3

FID PTS1d = 31413 

PTS1d = 32768 

F1  =  100.580498 MHz

F2  =  399.961731 MHz

SW1 =   24154.59 Hz 

AT1 =   1.30 sec

Hz per Pt 1stD =   0.74 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =   10557.0742 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A =  63.75

      B =  213.75 

      C =   0.00 NH2

O

O

Me

F

N

Me

1.27
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C:\NMR_nuts_2008\DATA\$jyl-7-066.fid

Std proton;blank line

Mar 23 2012

USER: 

SOLVENT: cdcl3

Experiment = s2pul

Pulse length =    6.400 usec

Recycle delay =    1.000 sec

NA  =     16

Solvent  = cdcl3

FID PTS1d = 13102 

PTS1d = 16384 

F1  =  399.723083 MHz

F2  =  100.519333 MHz

SW1 =    6395.40 Hz 

AT1 =   2.05 sec

Hz per Pt 1stD =   0.39 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =    2402.3093 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A = -42.31

      B = -26.17 

      C =   0.00 

NH2

O

O

Me

N

Me

1.28
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C:\NMR_nuts_2008\DATA\$jyl-7-066-13C.fid

Std proton;blank line

Mar 23 2012

USER: 

SOLVENT: cdcl3

Experiment = s2pul

Pulse length =    7.800 usec

Recycle delay =    1.000 sec

NA  =    424

Solvent  = cdcl3

FID PTS1d = 31375 

PTS1d = 32768 

F1  =  100.520370 MHz

F2  =  399.722687 MHz

SW1 =   24125.45 Hz 

AT1 =   1.30 sec

Hz per Pt 1stD =   0.74 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =   10549.0664 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A =  -7.02

      B =  160.34 

      C =   0.00 

NH2

O

O

Me

N

Me

1.28
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C:\NMR_nuts_2008\DATA\$jyl-7-095.fid

Std Proton parameters

Apr 25 2012

USER: 

SOLVENT: cdcl3

Experiment = s2pul

Pulse length =    6.650 usec

Recycle delay =    1.000 sec

NA  =     16

Solvent  = cdcl3

FID PTS1d = 12783 

PTS1d = 16384 

F1  =  399.962158 MHz

F2  =  100.579445 MHz

SW1 =    6397.95 Hz 

AT1 =   2.00 sec

Hz per Pt 1stD =   0.39 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =    2400.1274 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A =  105.42

      B =  90.94 

      C =   0.00 

NO2

NH2

O
Me

1.29
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C:\NMR_nuts_2008\DATA\$jyl-7-096-crude.fid

Std Proton parameters

Apr 26 2012

USER: 

SOLVENT: cdcl3

Experiment = s2pul

Pulse length =    6.650 usec

Recycle delay =    1.000 sec

NA  =     32

Solvent  = cdcl3

FID PTS1d = 12783 

PTS1d = 16384 

F1  =  399.962158 MHz

F2  =  100.579445 MHz

SW1 =    6397.95 Hz 

AT1 =   2.00 sec

Hz per Pt 1stD =   0.39 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =    2400.1274 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A = -264.95

      B =  104.92 

      C =   0.00 

NO2

O
Me

N

Me

1.30



159 

 

 

 1
5

6
.2

3
4

 1
4

9
.9

0
8

 1
4

3
.3

5
5

 1
3

5
.4

6
1

 1
3

0
.3

3
0

 1
2

3
.8

3
5

 1
1

5
.5

6
6

 1
0

6
.3

2
3

 7
7

.5
5

2

 7
7

.2
3

7

 7
6

.9
2

2

 5
6

.3
6

8

 1
9

.3
2

1

150 100 50 0 PPM

C:\NMR_nuts_2008\DATA\$jyl-7-096-13C.fid

Std Carbon experiment

Apr 25 2014

USER: 

SOLVENT: cdcl3

Experiment = s2pul

Pulse length =    8.050 usec

Recycle delay =    2.000 sec

NA  =  16752

Solvent  = cdcl3

FID PTS1d = 31413 

PTS1d = 32768 

F1  =  100.575584 MHz

F2  =  399.942200 MHz

SW1 =   24154.59 Hz 

AT1 =   1.30 sec

Hz per Pt 1stD =   0.74 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =   10559.3271 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A = -46.41

      B =  289.69 

      C =   0.00 

NO2

O
Me

N

Me

1.30
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C:\NMR_nuts_2008\DATA\$jyl-7-097.fid

Std Proton parameters

Apr 26 2012

USER: 

SOLVENT: cdcl3

Experiment = s2pul

Pulse length =    6.650 usec

Recycle delay =    1.000 sec

NA  =     16

Solvent  = cdcl3

FID PTS1d = 12783 

PTS1d = 16384 

F1  =  399.962158 MHz

F2  =  100.579445 MHz

SW1 =    6397.95 Hz 

AT1 =   2.00 sec

Hz per Pt 1stD =   0.39 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =    2400.5181 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A = -269.88

      B =  116.28 

      C =   0.00 

NH2

O
Me

N

Me

1.31
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C:\NMR_nuts_2008\DATA\$jyl-7-097-13C.fid

Std Carbon experiment

Apr 26 2012

USER: 

SOLVENT: cdcl3

Experiment = s2pul

Pulse length =    8.050 usec

Recycle delay =    1.000 sec

NA  =    512

Solvent  = cdcl3

FID PTS1d = 31413 

PTS1d = 32768 

F1  =  100.580498 MHz

F2  =  399.961731 MHz

SW1 =   24154.59 Hz 

AT1 =   1.30 sec

Hz per Pt 1stD =   0.74 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =   10556.3379 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A = -299.53

      B =  210.94 

      C =   0.00 

NH2

O
Me

N

Me

1.31
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C:\NMR_nuts_2008\DATA\$jyl-7-062.fid

Std proton;blank line

Mar 23 2012

USER: 

SOLVENT: cdcl3

Experiment = s2pul

Pulse length =    6.400 usec

Recycle delay =    1.000 sec

NA  =     16

Solvent  = cdcl3

FID PTS1d = 13102 

PTS1d = 16384 

F1  =  399.723083 MHz

F2  =  100.519333 MHz

SW1 =    6395.40 Hz 

AT1 =   2.05 sec

Hz per Pt 1stD =   0.39 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =    2404.8389 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A = -82.50

      B =  22.30 

      C =   0.00 

N

HN

O
Me

O Me

N

O

O

F

1.33
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C:\NMR_nuts_2008\DATA\$jyl-7-062-13C.fid

Std proton;blank line

Mar 23 2012

USER: 

SOLVENT: cdcl3

Experiment = s2pul

Pulse length =    7.800 usec

Recycle delay =    1.000 sec

NA  =  25996

Solvent  = cdcl3

FID PTS1d = 31375 

PTS1d = 32768 

F1  =  100.520370 MHz

F2  =  399.722687 MHz

SW1 =   24125.45 Hz 

AT1 =   1.30 sec

Hz per Pt 1stD =   0.74 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =   10553.4844 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A = -36.36

      B =  206.13 

      C =   0.00 

N

HN

O
Me

O Me

N

O

O

F

1.33
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C:\NMR_nuts_2008\DATA\$jyl-7-067.fid

Std Proton parameters

Apr 13 2012

USER: 

SOLVENT: cdcl3

Experiment = s2pul

Pulse length =    6.650 usec

Recycle delay =    1.000 sec

NA  =     20

Solvent  = cdcl3

FID PTS1d = 12783 

PTS1d = 16384 

F1  =  399.962158 MHz

F2  =  100.579445 MHz

SW1 =    6397.95 Hz 

AT1 =   2.00 sec

Hz per Pt 1stD =   0.39 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =    2400.5181 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A =  106.45

      B =  92.42 

      C =   0.00 

N

HN

O
Me

O Me

N

O

O

1.34
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C:\NMR_nuts_2008\DATA\$jyl-7-067-13C.fid

Std Carbon experiment

Apr 13 2012

USER: 

SOLVENT: cdcl3

Experiment = s2pul

Pulse length =    8.050 usec

Recycle delay =    1.000 sec

NA  =  25128

Solvent  = cdcl3

FID PTS1d = 31413 

PTS1d = 32768 

F1  =  100.580498 MHz

F2  =  399.961731 MHz

SW1 =   24154.59 Hz 

AT1 =   1.30 sec

Hz per Pt 1stD =   0.74 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =   10557.0742 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A =  58.13

      B =  213.75 

      C =   0.00 

N

HN

O
Me

O Me

N

O

O

1.34
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C:\NMR_nuts_2008\DATA\$jyl-7-098.fid

Std Proton parameters

Apr 30 2012

USER: 

SOLVENT: cdcl3

Experiment = s2pul

Pulse length =    6.650 usec

Recycle delay =    1.000 sec

NA  =     16

Solvent  = cdcl3

FID PTS1d = 12783 

PTS1d = 16384 

F1  =  399.962158 MHz

F2  =  100.579445 MHz

SW1 =    6397.95 Hz 

AT1 =   2.00 sec

Hz per Pt 1stD =   0.39 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =    2400.9084 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A =  99.83

      B =  99.38 

      C =   0.00 

N

HN

O
Me

Me

N

O

O

1.35
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C:\NMR_nuts_2008\DATA\$JYL-7-098-13C.fid

Std Carbon experiment

Apr 30 2012

USER: 

SOLVENT: cdcl3

Experiment = s2pul

Pulse length =    8.050 usec

Recycle delay =    1.000 sec

NA  =  15744

Solvent  = cdcl3

FID PTS1d = 31413 

PTS1d = 32768 

F1  =  100.580498 MHz

F2  =  399.961731 MHz

SW1 =   24154.59 Hz 

AT1 =   1.30 sec

Hz per Pt 1stD =   0.74 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =   10558.5488 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A =  83.91

      B =  165.94 

      C =   0.00 

N

HN

O
Me

Me

N

O

O

1.35
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C:\NMR_nuts_2008\DATA\$jyl-7-075.fid

Std Proton parameters

Apr 11 2012

USER: 

SOLVENT: cdcl3

Experiment = s2pul

Pulse length =    6.650 usec

Recycle delay =    1.000 sec

NA  =     16

Solvent  = cdcl3

FID PTS1d = 12783 

PTS1d = 16384 

F1  =  399.962158 MHz

F2  =  100.579445 MHz

SW1 =    6397.95 Hz 

AT1 =   2.00 sec

Hz per Pt 1stD =   0.39 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =    2400.5181 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A =  89.91

      B =  120.38 

      C =   0.00 

N

HN

O
Me

MeOF

NH2

1.11



169 

 

 

 1
6

5
.1

9
8

 1
6

2
.7

2
1

 1
5

1
.1

6
9

 1
4

4
.9

2
4

 1
4

4
.6

0
9

 1
4

2
.9

0
1

 1
3

3
.8

2
6

 1
3

0
.4

6
9

 1
3

0
.3

6
7

 1
2

6
.0

4
9

 1
2

5
.1

4
1

 1
2

4
.5

5
4

 1
1

0
.9

8
7

 1
1

0
.9

5
7

 1
0

8
.3

6
3

 1
0

8
.1

5
0

 1
0

2
.9

6
8

 1
0

2
.7

1
1

 9
3

.1
3

1

 7
7

.5
5

5

 7
7

.2
4

0

 7
6

.9
1

7

 5
6

.8
8

5

 4
1

.4
1

9

 4
0

.0
1

9

 3
2

.0
9

5

 2
3

.2
8

5

150 100 50 PPM

C:\NMR_nuts_2008\DATA\$jyl-7-075-13C.fid

Std Carbon experiment

Apr 11 2012

USER: 

SOLVENT: cdcl3

Experiment = s2pul

Pulse length =    8.050 usec

Recycle delay =    1.000 sec

NA  =  20416

Solvent  = cdcl3

FID PTS1d = 31413 

PTS1d = 32768 

F1  =  100.580498 MHz

F2  =  399.961731 MHz

SW1 =   24154.59 Hz 

AT1 =   1.30 sec

Hz per Pt 1stD =   0.74 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =   10557.8125 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A =  29.16

      B =  258.66 

      C =   0.00 

N

HN

O
Me

MeOF

NH2

1.11
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C:\NMR_nuts_2008\DATA\$jyl-7-084.fid

Std Proton parameters

Apr 17 2012

USER: 

SOLVENT: cdcl3

Experiment = s2pul

Pulse length =    6.650 usec

Recycle delay =    1.000 sec

NA  =     32

Solvent  = cdcl3

FID PTS1d = 12783 

PTS1d = 16384 

F1  =  399.962158 MHz

F2  =  100.579445 MHz

SW1 =    6397.95 Hz 

AT1 =   2.00 sec

Hz per Pt 1stD =   0.39 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =    2400.1274 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A =  112.53

      B =  85.47 

      C =   0.00 

N

HN

O
Me

MeO

NH2

1.13
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C:\NMR_nuts_2008\DATA\$jyl-7-084-13C.fid

Std Carbon experiment

Apr 17 2012

USER: 

SOLVENT: cdcl3

Experiment = s2pul

Pulse length =    8.050 usec

Recycle delay =    1.000 sec

NA  =  16976

Solvent  = cdcl3

FID PTS1d = 31413 

PTS1d = 32768 

F1  =  100.580498 MHz

F2  =  399.961731 MHz

SW1 =   24154.59 Hz 

AT1 =   1.30 sec

Hz per Pt 1stD =   0.74 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =   10557.8125 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A =  35.16

      B =  266.48 

      C =   0.00 

N

HN

O
Me

MeO

NH2

1.13
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C:\NMR_nuts_2008\DATA\$jyl-7-103.fid

Std Proton parameters

May  1 2012

USER: 

SOLVENT: cdcl3

Experiment = s2pul

Pulse length =    6.650 usec

Recycle delay =    1.000 sec

NA  =     16

Solvent  = cdcl3

FID PTS1d = 12783 

PTS1d = 16384 

F1  =  399.962158 MHz

F2  =  100.579445 MHz

SW1 =    6397.95 Hz 

AT1 =   2.00 sec

Hz per Pt 1stD =   0.39 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =    2400.5181 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A =  118.06

      B =  71.47 

      C =   0.00 

N

HN

O
Me

Me

NH2

1.15



173 

 

 

  
8

.4
1

3

  
8

.4
0

2

  
7

.2
9

1

  
7

.2
7

0

  
7

.2
6

0

  
7

.2
1

3

  
7

.1
9

3

  
7

.1
7

5

  
7

.1
5

5

  
7

.1
0

1

  
7

.0
9

9

  
7

.0
9

0

  
6

.8
0

3

  
6

.7
8

3

  
6

.6
9

0

  
6

.6
8

8

  
6

.6
6

9

  
6

.6
6

7

  
6

.6
4

9

  
6

.6
4

2

  
6

.6
2

5

  
6

.6
2

0

  
6

.6
0

5

  
6

.6
0

5

  
6

.5
1

1

  
6

.5
0

0

  
6

.4
7

4

  
6

.4
6

8

  
4

.4
3

7

  
3

.7
8

7

  
2

.6
4

2

8 6 4 2 PPM

C:\NMR_nuts_2008\DATA\$sw-3-63dp.fid

Std Proton parameters

Jun 24 2013

USER: 

SOLVENT: cdcl3

Experiment = s2pul

Pulse length =    6.650 usec

Recycle delay =    1.000 sec

NA  =     56

Solvent  = cdcl3

FID PTS1d = 12783 

PTS1d = 16384 

F1  =  399.962158 MHz

F2  =  100.579445 MHz

SW1 =    6397.95 Hz 

AT1 =   2.00 sec

Hz per Pt 1stD =   0.39 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =    2400.9084 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A =  97.62

      B =  86.00 

      C =   0.00 

N

HN

O
Me

MeOF

OH

1.12
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C:\NMR_nuts_2008\DATA\$sw-3-63dpcarbon.fid

Std Proton parameters

Jun 24 2013

USER: 

SOLVENT: cdcl3

Experiment = s2pul

Pulse length =    8.050 usec

Recycle delay =    1.000 sec

NA  =   5000

Solvent  = cdcl3

FID PTS1d = 31413 

PTS1d = 32768 

F1  =  100.580498 MHz

F2  =  399.961731 MHz

SW1 =   24154.59 Hz 

AT1 =   1.30 sec

Hz per Pt 1stD =   0.74 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =   10559.2305 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A =  58.59

      B =  187.03 

      C =   0.00 

N

HN

O
Me

MeOF

OH

1.12
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C:\NMR_nuts_2008\DATA\$sw-3-73DPcorrect.fid

Std Proton parameters

Jun 26 2013

USER: 

SOLVENT: cdcl3

Experiment = s2pul

Pulse length =    6.650 usec

Recycle delay =    1.000 sec

NA  =     64

Solvent  = cdcl3

FID PTS1d = 12783 

PTS1d = 16384 

F1  =  399.962158 MHz

F2  =  100.579445 MHz

SW1 =    6397.95 Hz 

AT1 =   2.00 sec

Hz per Pt 1stD =   0.39 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =    2400.5181 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A =  96.78

      B =  109.06 

      C =   0.00 

N

HN

O
Me

MeO

OH

1.14
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C:\NMR_nuts_2008\DATA\$sw-3-73-dpcarbon-13.fid

Std Carbon experiment

Jun 26 2013

USER: 

SOLVENT: cdcl3

Experiment = s2pul

Pulse length =    8.050 usec

Recycle delay =    1.000 sec

NA  =  20768

Solvent  = cdcl3

FID PTS1d = 31413 

PTS1d = 32768 

F1  =  100.580498 MHz

F2  =  399.961731 MHz

SW1 =   24154.59 Hz 

AT1 =   1.30 sec

Hz per Pt 1stD =   0.74 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =   10559.2861 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A =  15.47

      B =  265.78 

      C =   0.00 

N

HN

O
Me

MeO

OH

1.14
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C:\NMR_nuts_2008\DATA\$PQ-36.fid

Std Proton parameters

Nov 11 2013

USER: 

SOLVENT: cdcl3

Experiment = s2pul

Pulse length =    6.650 usec

Recycle delay =    1.000 sec

NA  =      3

Solvent  = cdcl3

FID PTS1d = 12783 

PTS1d = 16384 

F1  =  399.962158 MHz

F2  =  100.579445 MHz

SW1 =    6397.95 Hz 

AT1 =   2.00 sec

Hz per Pt 1stD =   0.39 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =    2400.1274 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A = -227.86

      B =  115.03 

      C =   0.00 

N

HN

O
Me

Me

OH

1.16
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C:\NMR_nuts_2008\DATA\$JYL-14-096-13C-2.fid

Std Carbon experiment

Apr 26 2014

USER: 

SOLVENT: cdcl3

Experiment = s2pul

Pulse length =    8.050 usec

Recycle delay =    2.000 sec

NA  =   7560

Solvent  = cdcl3

FID PTS1d = 31413 

PTS1d = 32768 

F1  =  100.575584 MHz

F2  =  399.942200 MHz

SW1 =   24154.59 Hz 

AT1 =   1.30 sec

Hz per Pt 1stD =   0.74 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =   10559.6436 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A = -57.19

      B =  299.53 

      C =   0.00 

N

HN

O
Me

Me

OH

1.16
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E:\Thesis\NMR\NMR_nuts_2008\DATA\$jyl-13-094-SM.fid

Std Proton parameters

Jan 22 2014

USER: 

SOLVENT: dmso

Experiment = s2pul

Pulse length =    6.650 usec

Recycle delay =    1.000 sec

NA  =     32

Solvent  = dmso

FID PTS1d = 12783 

PTS1d = 16384 

F1  =  399.944519 MHz

F2  =  100.575020 MHz

SW1 =    6398.00 Hz 

AT1 =   2.00 sec

Hz per Pt 1stD =   0.39 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =    2405.5459 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A = -191.94

      B =  91.66 

      C =   0.00 O OH

Me

2-Methyl-1,3-cyclohexandione

Appendix B - Chaper 2 
1
H NMR and 

13
C NMR 

O O

Me

2-Methyl-1,3-cyclohexandione
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C:\NMR_nuts_2008\DATA\$JYL-13-tworingTBS-13C.fid

Std Proton parameters

Nov 13 2013

USER: 

SOLVENT: cdcl3

Experiment = s2pul

Pulse length =    6.650 usec

Recycle delay =    1.000 sec

NA  =     24

Solvent  = cdcl3

FID PTS1d = 12783 

PTS1d = 16384 

F1  =  399.962158 MHz

F2  =  100.579445 MHz

SW1 =    6397.95 Hz 

AT1 =   2.00 sec

Hz per Pt 1stD =   0.39 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =    2400.5181 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A = -192.24

      B =  45.11 

      C =   0.00 

OTBS
Me

O

(-)-2.53
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C:\NMR_nuts_2008\data\$JYL-13-tworingtbs-13C-new.fid

Std Carbon experiment

Nov 13 2013

USER: 

SOLVENT: cdcl3

Experiment = s2pul

Pulse length =    8.050 usec

Recycle delay =    1.000 sec

NA  =  14536

Solvent  = cdcl3

FID PTS1d = 31413 

PTS1d = 32768 

F1  =  100.580498 MHz

F2  =  399.961731 MHz

SW1 =   24154.59 Hz 

AT1 =   1.30 sec

Hz per Pt 1stD =   0.74 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =   10560.0234 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A = -129.94

      B =  234.16 

      C =   0.00 
OTBS

Me

O

(-)-2.53
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E:\Thesis\NMR-whole data\NMR_nuts_2008\DATA\$SK-1-026.fid

Std Proton parameters

Mar  5 2014

USER: 

SOLVENT: cdcl3

Experiment = s2pul

Pulse length =    6.650 usec

Recycle delay =    3.000 sec

NA  =     16

Solvent  = cdcl3

FID PTS1d = 12783 

PTS1d = 16384 

F1  =  399.942596 MHz

F2  =  100.574539 MHz

SW1 =    6397.95 Hz 

AT1 =   2.00 sec

Hz per Pt 1stD =   0.39 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =    2403.5942 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A = -167.22

      B =  59.03 

      C =   0.00 

 T M S

TMS
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E:\Thesis\NMR-whole data\NMR_nuts_2008\DATA\$jyl-14-022-secdis.fid

Std Proton parameters

Mar 17 2014

USER: 

SOLVENT: cdcl3

Experiment = s2pul

Pulse length =    6.650 usec

Recycle delay =    1.000 sec

NA  =     16

Solvent  = cdcl3

FID PTS1d = 12783 

PTS1d = 16384 

F1  =  399.942596 MHz

F2  =  100.574539 MHz

SW1 =    6397.95 Hz 

AT1 =   2.00 sec

Hz per Pt 1stD =   0.39 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =    2403.9846 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A = -175.36

      B =  63.98 

      C =   0.00 

T M S

B r

2 .7 0

TMS

Br

2.70
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C:\NMR_nuts_2008\DATA\$jyl-allylTMSalcohol.fid

Std Proton parameters

Mar 20 2014

USER: 

SOLVENT: cdcl3

Experiment = s2pul

Pulse length =    6.650 usec

Recycle delay =    4.000 sec

NA  =     16

Solvent  = cdcl3

FID PTS1d = 12783 

PTS1d = 16384 

F1  =  399.942596 MHz

F2  =  100.574539 MHz

SW1 =    6397.95 Hz 

AT1 =   2.00 sec

Hz per Pt 1stD =   0.39 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =    2403.9846 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A = -196.03

      B =  57.42 

      C =   0.00 

 

Me

OH

TMS

2 .7 1

Me

OH

TMS

2.71
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C:\NMR_nuts_2008\DATA\$jyl-14-allylTMSalcool-13C.fid

Std Carbon experiment

Mar 20 2014

USER: 

SOLVENT: cdcl3

Experiment = s2pul

Pulse length =    8.050 usec

Recycle delay =    1.000 sec

NA  =    980

Solvent  = cdcl3

FID PTS1d = 31413 

PTS1d = 32768 

F1  =  100.575584 MHz

F2  =  399.942200 MHz

SW1 =   24154.59 Hz 

AT1 =   1.30 sec

Hz per Pt 1stD =   0.74 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =   10559.3271 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A = -13.59

      B =  209.53 

      C =   0.00 

2.71

Me

OH

TMS

Me

OH

TMS

2.71
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C:\NMR_nuts_2008\DATA\$jyl-12-056.fid

Std Proton parameters

Aug  7 2013

USER: 

SOLVENT: cdcl3

Experiment = s2pul

Pulse length =    6.650 usec

Recycle delay =    3.000 sec

NA  =     32

Solvent  = cdcl3

FID PTS1d = 12783 

PTS1d = 16384 

F1  =  399.962158 MHz

F2  =  100.579445 MHz

SW1 =    6397.95 Hz 

AT1 =   2.00 sec

Hz per Pt 1stD =   0.39 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =    2405.2988 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A = -225.52

      B =  83.83 

      C =   0.00 

DCM

-Trimethylsilyl vinyl ethyl ketone

Me

O

TMS

Me

TMS

-Trimethylsilyl vinyl ethyl ketone

O
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C:\NMR_nuts_2008\data\$sk-1-37-2cc-13c.fid

Std Carbon experiment

Mar 14 2014

USER: 

SOLVENT: cdcl3

Experiment = s2pul

Pulse length =    8.050 usec

Recycle delay =    1.000 sec

NA  =    372

Solvent  = cdcl3

FID PTS1d = 31413 

PTS1d = 32768 

F1  =  100.575584 MHz

F2  =  399.942200 MHz

SW1 =   24154.59 Hz 

AT1 =   1.30 sec

Hz per Pt 1stD =   0.74 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =   10559.6436 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A =  -3.65

      B =  223.25 

      C =   0.00 

Me

TMS

-Trimethylsilyl vinyl ethyl ketone

O
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E:\Thesis\NMR-whole data\NMR_nuts_2008\DATA\$jyl-12-028-fr1.fid

Std Proton parameters

Jul 12 2013

USER: 

SOLVENT: cdcl3

Experiment = s2pul

Pulse length =    6.650 usec

Recycle delay =    2.000 sec

NA  =     16

Solvent  = cdcl3

FID PTS1d = 12783 

PTS1d = 16384 

F1  =  399.962158 MHz

F2  =  100.579445 MHz

SW1 =    6398.00 Hz 

AT1 =   2.00 sec

Hz per Pt 1stD =   0.39 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =    2404.5137 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A =  102.25

      B =  90.09 

      C =   0.00 

O T B S

O

(+ ) -2 .7 2

OTBS

Me

O

(+)-2.72
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C:\NMR_nuts_2008\data\$JYL-12-062-13C.fid

Std Carbon experiment

Aug 14 2013

USER: 

SOLVENT: cdcl3

Experiment = s2pul

Pulse length =    8.050 usec

Recycle delay =    1.000 sec

NA  =    972

Solvent  = cdcl3

FID PTS1d = 31413 

PTS1d = 32768 

F1  =  100.580498 MHz

F2  =  399.961731 MHz

SW1 =   24154.59 Hz 

AT1 =   1.30 sec

Hz per Pt 1stD =   0.74 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =   10559.2861 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A = -124.78

      B =  253.00 

      C =   0.00 

OTBS

Me

O

(+)-2.72
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C:\NMR_nuts_2008\data\$jyl-12-087.fid

Std Proton parameters

Sep  5 2013

USER: 

SOLVENT: cdcl3

Experiment = s2pul

Pulse length =    6.650 usec

Recycle delay =    3.000 sec

NA  =     32

Solvent  = cdcl3

FID PTS1d = 12783 

PTS1d = 16384 

F1  =  399.962158 MHz

F2  =  100.579445 MHz

SW1 =    6397.95 Hz 

AT1 =   2.00 sec

Hz per Pt 1stD =   0.39 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =    2400.5181 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A = -195.91

      B =  79.27 

      C =   0.00 

OTBS

O

(+)-2.73
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C:\NMR_nuts_2008\data\$MA-3-13C.fid

Std Carbon experiment

Nov 14 2013

USER: 

SOLVENT: cdcl3

Experiment = s2pul

Pulse length =    8.050 usec

Recycle delay =    1.000 sec

NA  =  17164

Solvent  = cdcl3

FID PTS1d = 31413 

PTS1d = 32768 

F1  =  100.580498 MHz

F2  =  399.961731 MHz

SW1 =   24154.59 Hz 

AT1 =   1.30 sec

Hz per Pt 1stD =   0.74 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =   10560.7607 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A = -83.91

      B =  201.09 

      C =   0.00 

OTBS

O

(+)-2.73
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C:\NMR_nuts_2008\data\$jyl-13-023.fid

Std Proton parameters

Nov 13 2013

USER: 

SOLVENT: cdcl3

Experiment = s2pul

Pulse length =    6.650 usec

Recycle delay =    1.000 sec

NA  =     32

Solvent  = cdcl3

FID PTS1d = 12783 

PTS1d = 16384 

F1  =  399.962158 MHz

F2  =  100.579445 MHz

SW1 =    6397.95 Hz 

AT1 =   2.00 sec

Hz per Pt 1stD =   0.39 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =    2400.5181 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A = -208.31

      B =  67.63 

      C =   0.00 

OTBS

(-)-2.74

O

O
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C:\NMR_nuts_2008\data\$JYL-13-023-13C.fid

Std Carbon experiment

Nov 13 2013

USER: 

SOLVENT: cdcl3

Experiment = s2pul

Pulse length =    8.050 usec

Recycle delay =    1.000 sec

NA  =   5748

Solvent  = cdcl3

FID PTS1d = 31413 

PTS1d = 32768 

F1  =  100.580498 MHz

F2  =  399.961731 MHz

SW1 =   24154.59 Hz 

AT1 =   1.30 sec

Hz per Pt 1stD =   0.74 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =   10560.7607 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A = -84.84

      B =  194.06 

      C =   0.00 

OTBS

(-)-2.74

O

O
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C:\NMR_nuts_2008\DATA\$jyl-12-096.fid

Std Proton parameters

Sep 18 2013

USER: 

SOLVENT: cdcl3

Experiment = s2pul

Pulse length =    6.650 usec

Recycle delay =    3.000 sec

NA  =     32

Solvent  = cdcl3

FID PTS1d = 12783 

PTS1d = 16384 

F1  =  399.962158 MHz

F2  =  100.579445 MHz

SW1 =    6397.95 Hz 

AT1 =   2.00 sec

Hz per Pt 1stD =   0.39 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =    2404.1270 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A = -186.36

      B =  66.19 

      C =   0.00 

(-)-2.32

O

O

OH
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C:\NMR_nuts_2008\DATA\$jyl-13-030-13c.fid

Std Carbon experiment

Nov 17 2013

USER: 

SOLVENT: cdcl3

Experiment = s2pul

Pulse length =    8.050 usec

Recycle delay =    1.000 sec

NA  =  15888

Solvent  = cdcl3

FID PTS1d = 31413 

PTS1d = 32768 

F1  =  100.580498 MHz

F2  =  399.961731 MHz

SW1 =   24154.59 Hz 

AT1 =   1.30 sec

Hz per Pt 1stD =   0.74 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =   10559.8418 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A = -89.53

      B =  202.50 

      C =   0.00 

(-)-2.32

O

O

OH



200 

 

 

  
3

.9
6

9

  
3

.9
5

7

  
3

.9
5

2

  
3

.9
4

0

  
3

.9
2

5

  
3

.9
0

1

  
2

.5
8

5

  
2

.5
6

8

  
2

.5
5

0

  
2

.5
3

2

  
2

.5
1

5

  
2

.4
9

8

  
2

.2
0

9

  
2

.1
6

8

  
2

.1
0

3

  
2

.0
0

8

  
1

.8
2

2

  
1

.7
0

5

  
1

.6
9

6

  
1

.6
8

7

  
1

.6
7

9

  
1

.6
7

1

  
1

.6
6

2

  
1

.6
3

3

  
1

.6
2

5

  
1

.6
1

7

  
1

.5
9

9

  
1

.5
9

1

  
1

.5
8

3

  
1

.5
7

4

  
1

.5
6

5

  
1

.5
6

3

  
1

.5
5

1

  
1

.5
2

6

  
1

.5
1

7

  
1

.5
0

7

  
1

.4
9

0

  
1

.4
8

3

  
1

.4
7

3

  
1

.3
4

7

  
1

.2
8

5

  
1

.2
8

0

  
1

.2
5

3

  
1

.2
4

9

  
1

.2
0

5

  
1

.1
9

7

  
1

.1
7

5

  
1

.1
6

7

  
1

.1
4

5

  
0

.9
8

9

  
0

.9
4

2

  
0

.8
5

0

 4.00

 1.09  1.12  1.23  1.26

 6.11

 4.22

 1.84
 1.38

 2.59  2.70
 2.94  3.02

7 6 5 4 3 2 1 0 PPM

C:\NMR_nuts_2008\DATA\$jyl-13-037.fid

Std Proton parameters

Nov 19 2013

USER: 

SOLVENT: cdcl3

Experiment = s2pul

Pulse length =    6.650 usec

Recycle delay =    3.000 sec

NA  =     32

Solvent  = cdcl3

FID PTS1d = 12783 

PTS1d = 16384 

F1  =  399.962158 MHz

F2  =  100.579445 MHz

SW1 =    6397.95 Hz 

AT1 =   2.00 sec

Hz per Pt 1stD =   0.39 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =    2403.7366 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A = -202.08

      B =  59.14 

      C =   0.00 

(-)-2.33

O

O

O
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C:\NMR_nuts_2008\DATA\$jyl-13-037-13c.fid

Std Carbon experiment

Nov 18 2013

USER: 

SOLVENT: cdcl3

Experiment = s2pul

Pulse length =    8.050 usec

Recycle delay =    1.000 sec

NA  =  13596

Solvent  = cdcl3

FID PTS1d = 31413 

PTS1d = 32768 

F1  =  100.580498 MHz

F2  =  399.961731 MHz

SW1 =   24154.59 Hz 

AT1 =   1.30 sec

Hz per Pt 1stD =   0.74 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =   10559.8418 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A = -85.28

      B =  206.81 

      C =   0.00 

(-)-2.33

O

O

O
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C:\NMR_nuts_2008\data\$jyl-distall ization-residue.fid

Std proton;blank line

Mar 13 2011

USER: 

SOLVENT: cdcl3

Experiment = s2pul

Pulse length =    4.900 usec

Recycle delay =    2.000 sec

NA  =     20

Solvent  = cdcl3

FID PTS1d = 13102 

PTS1d = 16384 

F1  =  399.729584 MHz

F2  =  100.520966 MHz

SW1 =    6395.40 Hz 

AT1 =   2.05 sec

Hz per Pt 1stD =   0.39 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =    2410.7415 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A = -91.09

      B =  10.75 

      C =   0.00 

(-)-2.78

N

Me

Me
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C:\NMR_nuts_2008\DATA\$jyl-13-116.fid

Std Proton parameters

Feb 18 2014

USER: 

SOLVENT: cdcl3

Experiment = s2pul

Pulse length =    6.650 usec

Recycle delay =    1.000 sec

NA  =     32

Solvent  = cdcl3

FID PTS1d = 12783 

PTS1d = 16384 

F1  =  399.942596 MHz

F2  =  100.574539 MHz

SW1 =    6397.95 Hz 

AT1 =   2.00 sec

Hz per Pt 1stD =   0.39 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =    2403.9846 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A = -180.53

      B =  55.99 

      C =   0.00 

O

O

OTMS

(-)-2.81
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C:\NMR_nuts_2008\DATA\$JYL-13-116-13C.fid

Std Carbon experiment

Feb 18 2014

USER: 

SOLVENT: cdcl3

Experiment = s2pul

Pulse length =    8.050 usec

Recycle delay =    1.000 sec

NA  =   1804

Solvent  = cdcl3

FID PTS1d = 31413 

PTS1d = 32768 

F1  =  100.575584 MHz

F2  =  399.942200 MHz

SW1 =   24154.59 Hz 

AT1 =   1.30 sec

Hz per Pt 1stD =   0.74 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =   10559.3271 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A =   3.28

      B =  203.91 

      C =   0.00 

O

O

OTMS

(-)-2.81
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C:\NMR_nuts_2008\DATA\$ALdehyde.fid

Std Proton parameters

Nov 30 2013

USER: 

SOLVENT: cdcl3

Experiment = s2pul

Pulse length =    6.650 usec

Recycle delay =    3.000 sec

NA  =     32

Solvent  = cdcl3

FID PTS1d = 12783 

PTS1d = 16384 

F1  =  399.962158 MHz

F2  =  100.579445 MHz

SW1 =    6397.95 Hz 

AT1 =   2.00 sec

Hz per Pt 1stD =   0.39 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =    2399.7554 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A =  125.97

      B =  89.23 

      C =   0.00 

Mesitylene

Mesitylene

Mesitylene

Me Me
H

O

2.89
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C:\NMR_nuts_2008\DATA\$jyl-6-071.fid

Std Proton parameters

Dec 13 2011

USER: 

SOLVENT: cdcl3

Experiment = s2pul

Pulse length =    6.650 usec

Recycle delay =    1.000 sec

NA  =     32

Solvent  = cdcl3

FID PTS1d = 12783 

PTS1d = 16384 

F1  =  399.962158 MHz

F2  =  100.579445 MHz

SW1 =    6397.95 Hz 

AT1 =   2.00 sec

Hz per Pt 1stD =   0.39 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =    2404.9080 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A =  137.93

      B =  53.19 

      C =   0.00 

Mesitylene

Mesitylene

Me Me
OH

2.88
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C:\NMR_nuts_2008\DATA\$jyl-7-033.fid

Std Proton parameters

Feb 28 2012

USER: 

SOLVENT: cdcl3

Experiment = s2pul

Pulse length =    6.650 usec

Recycle delay =    1.000 sec

NA  =     32

Solvent  = cdcl3

FID PTS1d = 12783 

PTS1d = 16384 

F1  =  399.962158 MHz

F2  =  100.579445 MHz

SW1 =    6397.95 Hz 

AT1 =   2.00 sec

Hz per Pt 1stD =   0.39 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =    2404.5176 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A = -226.09

      B =  57.59 

      C =   0.00 
Me Me

Br

2.87
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C:\NMR_nuts_2008\data\$jyl-7-035.fid

Std Proton parameters

Mar  1 2012

USER: 

SOLVENT: cdcl3

Experiment = s2pul

Pulse length =    6.650 usec

Recycle delay =    3.000 sec

NA  =      4

Solvent  = cdcl3

FID PTS1d = 12783 

PTS1d = 16384 

F1  =  399.962158 MHz

F2  =  100.579445 MHz

SW1 =    6397.95 Hz 

AT1 =   2.00 sec

Hz per Pt 1stD =   0.39 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =    2400.5181 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A =  130.30

      B =  65.92 

      C =   0.00 

Me Me

Me

O

2.86
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C:\NMR_nuts_2008\DATA\$jyl-7-035-13C.fid

Std Carbon experiment

Mar  1 2012

USER: 

SOLVENT: cdcl3

Experiment = s2pul

Pulse length =    8.050 usec

Recycle delay =    1.000 sec

NA  =    216

Solvent  = cdcl3

FID PTS1d = 31413 

PTS1d = 32768 

F1  =  100.580498 MHz

F2  =  399.961731 MHz

SW1 =   24154.59 Hz 

AT1 =   1.30 sec

Hz per Pt 1stD =   0.74 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =   10559.8418 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A = -284.66

      B =  195.66 

      C =   0.00 Me Me

Me

O

2.86
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dioxane

C:\NMR_nuts_2008\data\$jyl-13-115.fid

Std Proton parameters

Feb 17 2014

USER: 

SOLVENT: cdcl3

Experiment = s2pul

Pulse length =    6.650 usec

Recycle delay =    1.000 sec

NA  =     20

Solvent  = cdcl3

FID PTS1d = 12783 

PTS1d = 16384 

F1  =  399.942596 MHz

F2  =  100.574539 MHz

SW1 =    6397.95 Hz 

AT1 =   2.00 sec

Hz per Pt 1stD =   0.39 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =    2399.9854 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A = -213.61

      B =  123.11 

      C =   0.00 

Me Me

Me

O

2.86

H

O
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C:\NMR_nuts_2008\data\$jyl-13-115-13C.fid

Std Carbon experiment

Feb 17 2014

USER: 

SOLVENT: cdcl3

Experiment = s2pul

Pulse length =    8.050 usec

Recycle delay =    1.000 sec

NA  =  17268

Solvent  = cdcl3

FID PTS1d = 31413 

PTS1d = 32768 

F1  =  100.575584 MHz

F2  =  399.942200 MHz

SW1 =   24154.59 Hz 

AT1 =   1.30 sec

Hz per Pt 1stD =   0.74 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =   10560.3809 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A = -31.88

      B =  258.75 

      C =   0.00 

Me Me

Me

O

2.86

H

O
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C:\NMR_nuts_2008\data\$jyl-8-027-A.fid

Std Proton parameters

May 22 2012

USER: 

SOLVENT: cdcl3

Experiment = s2pul

Pulse length =    6.650 usec

Recycle delay =    3.000 sec

NA  =     16

Solvent  = cdcl3

FID PTS1d = 12783 

PTS1d = 16384 

F1  =  399.962158 MHz

F2  =  100.579445 MHz

SW1 =    6397.95 Hz 

AT1 =   2.00 sec

Hz per Pt 1stD =   0.39 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =    2399.7371 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A = -247.71

      B =  90.97 

      C =   0.00 

O

Me O

(-)-2.76

O

O
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C:\NMR_nuts_2008\data\$JYL-8-027-13C.fid

Std Carbon experiment

May 22 2012

USER: 

SOLVENT: cdcl3

Experiment = s2pul

Pulse length =    8.050 usec

Recycle delay =    1.000 sec

NA  =   5760

Solvent  = cdcl3

FID PTS1d = 31413 

PTS1d = 32768 

F1  =  100.580498 MHz

F2  =  399.961731 MHz

SW1 =   24154.59 Hz 

AT1 =   1.30 sec

Hz per Pt 1stD =   0.74 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =   10559.0859 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A = -290.97

      B =  204.84 

      C =   0.00 

O

Me O

(-)-2.76
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C:\NMR_nuts_2008\data\$jyl-7-031-fr1.fid

Std Proton parameters

Feb 21 2012

USER: 

SOLVENT: cdcl3

Experiment = s2pul

Pulse length =    6.650 usec

Recycle delay =    5.000 sec

NA  =    108

Solvent  = cdcl3

FID PTS1d = 12783 

PTS1d = 16384 

F1  =  399.962158 MHz

F2  =  100.579445 MHz

SW1 =    6397.95 Hz 

AT1 =   2.00 sec

Hz per Pt 1stD =   0.39 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =    2400.5181 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A =  114.19

      B =  74.34 

      C =   0.00 
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O
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C:\NMR_nuts_2008\data\$jyl-8-060-isomer1-13C.fid

Std Carbon experiment

Jul  2 2012

USER: 

SOLVENT: cdcl3

Experiment = s2pul

Pulse length =    8.050 usec

Recycle delay =    1.000 sec

NA  =  16332

Solvent  = cdcl3

FID PTS1d = 31413 

PTS1d = 32768 

F1  =  100.580498 MHz

F2  =  399.961731 MHz

SW1 =   24154.59 Hz 

AT1 =   1.30 sec

Hz per Pt 1stD =   0.74 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =   10557.8125 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A = -293.71

      B =  202.28 

      C =   0.00 
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C:\NMR_nuts_2008\data\$jyl-8-060-isomer2.fid

Std Proton parameters

Jul  2 2012

USER: 

SOLVENT: cdcl3

Experiment = s2pul

Pulse length =    6.650 usec

Recycle delay =    3.000 sec

NA  =     32

Solvent  = cdcl3

FID PTS1d = 12783 

PTS1d = 16384 

F1  =  399.962158 MHz

F2  =  100.579445 MHz

SW1 =    6397.95 Hz 

AT1 =   2.00 sec

Hz per Pt 1stD =   0.39 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =    2399.7371 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A =  107.93

      B =  90.53 

      C =   0.00 
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C:\NMR_nuts_2008\data\$jyl-8-060-isomer2-C13.fid

Std Carbon experiment

Jul  2 2012

USER: 

SOLVENT: cdcl3

Experiment = s2pul

Pulse length =    8.050 usec

Recycle delay =    1.000 sec

NA  =    488

Solvent  = cdcl3

FID PTS1d = 31413 

PTS1d = 32768 

F1  =  100.580498 MHz

F2  =  399.961731 MHz

SW1 =   24154.59 Hz 

AT1 =   1.30 sec

Hz per Pt 1stD =   0.74 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =   10554.1260 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A = -280.78

      B =  198.28 

      C =   0.00 
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C:\NMR_nuts_2008\data\$jyl-fentaester-undesired.fid

Std Proton parameters

May  3 2014

USER: 

SOLVENT: cdcl3

Experiment = s2pul

Pulse length =    6.650 usec

Recycle delay =    1.000 sec

NA  =     64

Solvent  = cdcl3

FID PTS1d = 12783 

PTS1d = 16384 

F1  =  399.942596 MHz

F2  =  100.574539 MHz

SW1 =    6397.95 Hz 

AT1 =   2.00 sec

Hz per Pt 1stD =   0.39 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =    2399.9854 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A = -195.47

      B =  70.31 

      C =   0.00 

O

O

O

H
H

OEt

O

(+)-2.101



219 

 

 

 1
9

7
.1

9
1

 1
7

4
.6

0
7

 1
7

2
.2

6
1

 1
1

7
.7

8
3

 1
1

3
.1

7
3

 7
7

.5
5

5

 7
7

.2
4

0

 7
6

.9
2

5

 6
5

.1
7

4

 6
1

.3
9

2

 5
8

.6
2

1

 5
5

.6
3

8

 5
3

.6
2

9

 4
3

.6
0

2

 4
2

.9
2

7

 4
2

.4
1

4

 4
1

.4
2

5

 3
9

.5
4

8

 3
8

.3
3

1

 3
8

.1
2

6

 3
7

.1
0

0

 3
4

.9
5

9

 3
4

.9
4

5

 3
2

.9
1

4

 3
0

.5
9

1

 2
7

.4
9

7

 2
7

.0
8

7

 2
4

.5
6

5

 2
3

.1
5

8

 2
2

.0
0

7

 2
1

.3
1

8

 2
0

.1
6

0

 1
8

.6
9

4

 1
6

.3
8

5

 1
4

.2
9

6

200 150 100 50 0 PPM

C:\NMR_nuts_2008\DATA\$2-101-13C.fid

Std Carbon experiment

May  6 2014

USER: 

SOLVENT: cdcl3

Experiment = s2pul

Pulse length =    8.050 usec

Recycle delay =    1.000 sec

NA  =  23140

Solvent  = cdcl3

FID PTS1d = 31413 

PTS1d = 32768 

F1  =  100.575584 MHz

F2  =  399.942200 MHz

SW1 =   24154.59 Hz 

AT1 =   1.30 sec

Hz per Pt 1stD =   0.74 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =   10559.6436 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A = -56.48

      B =  282.09 

      C =   0.00 
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C:\NMR_nuts_2008\DATA\$jyl-14-023.fid

Std Proton parameters

Mar  7 2014

USER: 

SOLVENT: cdcl3

Experiment = s2pul

Pulse length =    6.650 usec

Recycle delay =    3.000 sec

NA  =     32

Solvent  = cdcl3

FID PTS1d = 12783 

PTS1d = 16384 

F1  =  399.942596 MHz

F2  =  100.574539 MHz

SW1 =    6397.95 Hz 

AT1 =   2.00 sec

Hz per Pt 1stD =   0.39 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =    2400.3760 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A = -168.54

      B =  37.74 

      C =   0.00 
O
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C:\NMR_nuts_2008\data\$jyl-14-023-13C.fid

Std Carbon experiment

Mar  7 2014

USER: 

SOLVENT: cdcl3

Experiment = s2pul

Pulse length =    8.050 usec

Recycle delay =    1.000 sec

NA  =  24876

Solvent  = cdcl3

FID PTS1d = 31413 

PTS1d = 32768 

F1  =  100.575584 MHz

F2  =  399.942200 MHz

SW1 =   24154.59 Hz 

AT1 =   1.30 sec

Hz per Pt 1stD =   0.74 Hz 

SW2 =       1.00 Hz 

Hz per Pt 2ndD =   1.00 Hz 

O1  =   10560.3809 Hz 

O2  =      -0.5000 Hz 

LB1 =  0.00      Hz 

TP    A =  21.98

      B =  179.28 

      C =   0.00 O
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