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Free Convection Flow of a Non-Newtonian Fluid in a Vertical Channel
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ABSTRACT

The steady two-dimensional free convection flow of a Waiters fluid (model B') in a vertical
channel one 'of whose walls is wavy, has been investigated analytically. The governing equations
of the fluid and the heat transfer havff;been solved subject to the relevant boundary conditions by
assuming that the solution consists of two parts: a mean part and disturbance or perturbed part. To
obtain the perturbed part of the solution, the long wave approximation has been used and to solve
the mean part, a well-known approximation used by Ostrach has been utilised. The relevant flow and
the heat transfer characteristics, namely the skin-friction and the rate ofheat transfer at both the walls
have been discussed in detail.

petroleum and polymer solutions. The Waiters fluid is
one of such fluids. The constitutive equation for Waiters
fluid (model B') is:

I. INTRODUCTION

ik ,0- = -pgik + 0- ik

, 2 ik 2K ,ik

0- ik = l}oe -Oe

whet;e dk is the stress tensor; p, an isotropic pressure;
gik' the metric tensor of a fixed coordinate system; .x',
v i, tqe velocity veGtor; e Ik, in the contravariant form
IS:

aeik

at
jeij -Vi,} e}k.,ik + u i eik -U

, J=

(2)

It is the convected derivative of the deformation

rate tensor (eik) defined by

(3)2e k = U k + U
k1 " ,

Here,tJo is the limiting viscosity at small rate of

shear which is given by

Viscous fluid flow over a wavy wall has attracted
the attention of relatively few researchers, although the

analysis of such flows finds application in different

areas, such as transpiration cooling of re-entry vehicles

and rocket boosters, cross-hatching on ablative surfaces

and film vaporisation in combustion chambers. Lekoudis,
Nayfeh and Saric1 presented a linear analysis of compressible
boundary layer flows over a wavy wall. Sankar and

Sinha2 studied in detail the Rayleigh problem for a wavy

wall. Lessen and Gangwani3 made a very interesting
analysis of the effect of small amplitude wall waviness
upon the stability of the laminar boundary layer. In all

these problems, the authors have" taken the wavy walls

to be horizontal. Vajravelu and Sastri4 made an analysis

of the free convection heat transfer in viscous incompressible
fluid between a long vertical wavy wall and a parallel
flat wall. Das and Ahmeds extended this problem to

magneto-hydrodynamic case. Das and Deka& discussed

a numerical approach of this problem.

Non-Newtonian fluids are of increasing importance
in modem technology due to its growing use in many
activities, such as molten plastic, paints, drilling, and

110 = Jo"' N(T)dT and ko = Jo.X.T N(T)dT (4)
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N( T) being the relaxation spectrum as introduced by

Walters7.8. This idealised model is a valid approximation
of WaIters fluid (model B') taking very short memories

into account so that terms involving

JOoo 't"nn('t")d't",n~2 :5)

are neglected

In this paper, the steady free-convective flow and

heat transfer in a Waiters fluid between a long vertical

wavy wall and a parallel flat wall has been studied. The

problem has been solved by a linearisation technique,

wherein the solution is made up of two parts: a mean

or zero-order part corresponding to the fully developed

mean flow and disturbed part. To obtain the solution of

the perturbed part, long wave approximation has been

applied and to solve the mean part, the well-known

approximation used by Ostrach9 has been utilised. Expressions
for the zero-order9 and first-order velocity, temperature,

skin-friction and heat transfer at the walls are obtained.

2. GOVERNING EQUAnON OF MOTION

The steady two-dimensionallaminar free-conv~ctive
WaIters fluid flow along the vertical channel has been
considered as shown in Figolo The X-axis is taken
vertically upwards and parallel to the flat wall, while the
Y-axis is taken perpendicular to it in such a way that
the wavy wall is represented by y = E *cos kX and
the flat wall by y = do The wavy and flat walls are

maintained at constant temperature T "' and TI, respectively.

-t y

y=

Figure Flow ConfigurationThe following assumptions are made:

(a) All the fluid properties except the density in the
buoyancy force are constant.

v=o, T=Tw on Y=e+COSkX

}V=O, T=I; on Y=d

u=
(6)

Introducing the following non-dimensional variables
in the governing equations for velocity and temperature

(b) The dissipative effects and the work of defonDation

are neglected in the energy equation.

( c ) The volumetric heat source/sink tenD in the energy

equation is constant.

Vd( d) The wavelength of the wavy wall is large compared
with the breadth d of the channel.

x y Ud
x=d' Y=d' u=7' v= v

(J = (T-T)/ (T -T), T is the fluid tem perature in
s (J} s s

static condition.The boundary conditions relevant to the problem
are taken as

p = p */p(U/d)2 :7)
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N( T) being the relaxation spectrum as introduced by

Walters7.8. This idealised model is a valid approximation
of WaIters fluid (model 8') taking very short memories

into account so that terms involving

Jo..' 't"nn('t")d't", n ~ 2 (5)

are neglected

In this paper, the steady free-convective flow and

heat transfer in a WaIters fluid between a long vertical

wavy wall and a parallel flat wall has been studied. The

problem has been solved by a linearisation technique,
wherein the solution is made up of two parts: a mean

or zero-order part corresponding to the fully developed

mean flow and disturbed part. To obtain the solution of

the perturbed part, long wave approximation has been

applied and to solve the mean part, the well-known

approximation used by Ostrach9 has been utilised. Expressions
for the zero-order9 and first-order velocity, temperature,

skin-friction and heat transfer at the walls are obtained.

2. GOVERNING EQUAnON OF MOnON

The steady two-dimensionallaminar free-conv~ctive

WaIters fluid flow along the vertical channel has been

considered as shown in Fig.l. The X-axis is taken

vertically upwards and parallel to the flat wall, while the

Y-axis is taken perpendicular to it in such a way that
the wavy wall is represented by y = E *cos kX and

the flat wall by y = d. The wavy and flat walls are

maintained at constant temperature T 0) and Ti' respectively.

~ y

y=

Figure Flow ConfigurationThe following assumptions are made:

(a) All the fluid properties except the density in the
buoyancy force are constant.

U=V=O T=T on Y=e"COSkX }, w

U=V=O, T=~ on Y=d (6)

Introducing the following non-dimensional variables
in the governing equations for velocity and temperature
as

Vd

(b) The dissipative effects and the work of defonnation
are neglected in the energy equation.

( c ) The volumetric heat source/sink tenn in the energy
equation is constant.

( d) The wavelength of the wavy wall is large compared
with the breadth d of the channel.

x y Ud
x=d' Y=d' u=-;-' v= v

8 = (T-T)/(T -T), T is the fluid tem perature in
s 0} s s

static condition.The boundary conditions relevant to the problem
are taken as

p = p */p(U/d)2 (7)
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o

I

One obtains the equation of continuity as
03U 03U

U~ + U-y
OxiJy Ox

iJv
u-+u

OxOu

ax

au
+-=0

ay
(8)

03u 03U

~
+2u+v

iixW+uthe momentum equation becomes

a3U

~

a3U a3V

~

a3U
-;;;1 + V-

03V

iJ:xffy2

+u Ox8y2 + U +u
a2U au

-3--

8xay ay

au a2U
--
ax ax ay

.au a2U
,---6

8uo2v
--+-- 4

Ox Ox2 8yOx2

and the energy equation as

J a(J

1'l U&+u

06

cY.au a2U
ax 8)12

~

pU2

a2U au

8y2 ax - (9)
subject to boundary conditions'
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Table 3. Skin-friction for case III (m=1)
-

0.250.15

~..-

-3.050020

-4.432580

-5.353902

-6.275443

-7.657651

-9.039715

-9.961008

0

-(1",[

3.04925

4.431813

5.353511

6.275202

7.657725

9.040231

9.961892

~~-

3.047762

4.428752

5.349091

6.269174

7.648818

9.027888

9.946945

I 0"\

-3.050499

-4.432753

-5.354051

-6.275483

-7.657771

-9.039936

-9.961308

O"wa,a

3.048357

4.429976

5.350859

6.271585

7.652380

9.032824

9.952925

-3.049820

-4.432320

-5.353890

-6.275382

-7.657475

-9.039389

-9.960568

-5

-2

0

2

5

8

10

p = Ps[I-/3 (T-~)]
u = 0, u = 0, (J = 1 on y = € cos Ax
u = 0, u = 0, (J = m on y = 1 (12)

and also adopting the perturbation scheme

where
u(x,y} = Uo(y)+SU1(X,y), U(X,y) = SU1(X,y)

p(X,y) = Po(X)+ S PI (X,y), (}(X,y) = (}O(y)+ S(}l(X,y)(13)

where the perturbations uI' uI' Pj and 81 are small
compared with the mean or zero-order quantities, Eqns
(8) to (11) yield the following non-dimensional equations:

a = Q d2/k(T -T), the non-dimensional heat
0) s

source/sink parameter

p = 11oCp/k, the Prandtl number

F. = E* / d, the non-dimensional amplitude parameter

).. = kd, the non-dimensional frequency parameter

d2(Jo

~

m = (T l -T)/(T -T), the wall temperature ratio
s (j) s

(14)~+Geo=o,
dy2

=-a

K = 2Ko/(pd2)
to the zero-order and

and Pgx is the buoyancy term in X-direction, where the
subscript s denotes quantities in the static fluid condition.
Now introducing the non-dimensional quantity as: iJul

ax

(15)OUl =0
+-

8y

G = d3gxJ3(Tw-Ts)/d

the Grashof number and using the equation of state, one

has
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0.250.150

O"wa;. I a.(Jw I ~l

-0.3482771 1.9554200

0.3429959 1.2644910

0.8037955 0.8039041

1.2645560 0.3432728

1.9556230 -0.3476755

2.6466020 -1.0385890

3.1072050 -1.4991780

-0.3482697

0.3429876

0.8037456

1.2644400

1.9553600

2.6461370

3.1065740

1.9553790

1.2644130

0.8038786

0.3477632

-0.3477632

-1.0387340

-1.4993640

1.9555300

1.2645570

0.8039326

0.3433274

-0.3475443

-1.0383720

-1.4989000

-5

-2

0

2

5

8

10

-0.3482883

0.3430082

0.8038702

1.2647300

1.9560170

2.6472990

3.1081520

Table 6. Skin-friction for case II (m= -I)

0.15

I <11

1.9548170

1.2642500

0.8038772

0.3435357

-0.3470676

-1.0375990

-1.4979120

Ostrach2, In view of Eqn (13), the boundary condition
in Eqn (12) can be split up into the following two parts:

uo=O,eo=l ony=O

}uo=o,eo=m ony=l (19)

(16) u,=-Re(uOei).x}u, =0, e =-R~eOei).x) ony=O-l

au1 -
Uo-;i;-

where the prune denotes differentiation wrt y.

a2UO ~

-aT ax

l

au~~

By Ox By
-2--2 (17)

3. MEmOD OF SOLUTION

The solution for the zero-order velocity ( uo) and the
zero-order temperature (eo) satisfying the differential
Eqn (14) and the boundary conditions (19) are given by

and

!!-!!J-+= 2

ax

a2e1

~
ael

uu -+ 1 ~,
o ax vy

aoop

to the first-order. In deriving the first equation in Eqn
(14), the constant pressure gradient term
a/8x(po-pJ has been taken equal to zero following

eo =1+Hy+HIY2

41

Ul = 0, Ul =0, eo = ° on y = 1 J
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0.25

-L

0.15

-L

0

I a.. l

-0.3482883

0.3430082

0.8038702

1.2647300

1.9560170

2.6472990

3.1081520

K

a,O'wa,a

1.955

1.264

0.803
0.347

-0.347

-1.038

-1.499

-0.3482771

0.3429959

0.8037955

1.2645560

1.9556230

2.6466020

3.1072050

1.9555300

1.2645570

0.8039326

0.3433274

-0.3475443

-1.0383720

-1.4989000

-5

-2

0

2

5

8

10

Table 6. Skin-friction for case II (m= -I)

0.250.150K

(fw 'l

-0.3482946

0.3430069

0.8038698

1.2647290

1.9560110

2.6472840

3.1081290

crw I

-0.3482575

0.3429657

0.8036208

1.2641480

1.9541480

2.6449590

3.1049740

(1,(jw 0".

1.9548170

1.2642500

0.8038772

0.3435357

-0.3470676

-1.0375990

-1.4979120

(1,a

-5

-2

0

2

5

8

10

-0.3482723

0.3429822

0.8037204

1.2643800

1.9552230

2.6458890

3.1062360

1.9545370

1.2641950

0.8038160

0.3434630

-0.3472422

-1.0378860

-1.4982810

1.9550360

...2643820

0.8039941

0.3436446

-0.3468069

-1.0371710

-1.4973640

Ostrach2. In view of Eqn (13), the boundary condition
in Eqn (12) can be split up into the following two parts:

uo=O,eo=l ony=O

}Uo =0, eo =m on y= 1

(16) Ut=-Re(uOeiAx~ol =0,()=-R~()oejAx) ony=O

UI = 0, 01 =0, ()o = 0 on y = 11

a3Ul
Uo -a;;-~+~+~-K

[ UO~

fJy Ox2 fJy2 OxfJy2

8ul -

Uo-a;-

where the prime denotes differentiation wrt y,

(17)
3. MEmoD OF SOLUTION

The solution for the zero-order velocity ( uo) and the
zero-order temperature (8o) satisfying the differential
Eqn (14) and the boundary conditions (19) are given by

and

p (u ~+u ~
) =~+~

o ax lay ax2 ay2 (18)

to the first-order. In deriving the first equation in Eqn
(14), the constant pressure gradient term
a/8x(po-p.) has been taken equal to zero following

2
()O =1+Hy+H1y

41
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0.25K 0

O"w c GjO"w

-0.6965906

0.6860130

1.6077390

2.5294580

3.9120220

5.2945700

6.2162590

a, 0",

3.9098360

2.5285020

1.6077560

0.6870721

-0.6941354

-2.0751980

-2.9958250

-0.6965162

0.6859305

1.6072410

2.5282950

3.9093960

5.2899200

6.2099490

3.9096760

2.5284720

1.6076330

0.6869266

-0.6944846

-2.0757740

-2.9965630

-0.6965460

0.6859635

1.6074400

2.5287610

3.9104470

5.2917800

6.2124730

0

2

5

8

10

where H 1 =
a a
-H=m+-+l
2' .2

into Eqns(22), (23) and (24), to the order of ).2, the
following sets of ordinary differential equations and
corresponding boundary conditions are obtained:

In order to solve Eqns(15) to (18) for the first-order
quantities, it is convenient to. introduce the stream

function "\ii 1 denoted by

to = 0IU Gt '
\fIo = 0

~"I = -a y 8iji
VI =a;

= iUoI/'~-i~'I/fo +ik(UoI/'~u -~ul/'o]+Gt:.

= Pi[ uoto + I/' le~ ] + to

1fI:V

t"
1

"

'1'2

t"
2

'J = 2'Il'~+iUo'Il';'-iU.;'\Ifl +KzfUo'Il"':

= PlfUotl +'11'IO~]+to
;).Xt(Y)"Iii(x,y) = eiAx",(Y), Bl(x,y)=e'

these equations can be reduced to the ordinary differential

equations:
(27)

and
III iu -III ',[ 2A 2 + iAuo ] + III[ A 4 + iAub' + iuoA 3] + Ki[ -Auol11

+2uoA3111"-2i3ubl11'-3A3ub'111 +Au~u111 -"
ony=o

}ony=1

'II'~=U~, '11'0=0, 10=-fJ~

'II'~=O, '110=0,10=0
A 5UO'I' ] = GI

(22)
'11;=0, '11,=0,1,=0

'II;=Oi '11,=0, 1t=O

an y = O

any=
and

t" -).2t=Pi).(uot + VfO~) (23)
'112 =0, '112 =0, t2 =0

'II 2 = 0, 'II 2 = 0, t2 = 0

on y = O

ony=lsubject to boundary conditions

Solution for Eqns (251 to (27) consistent
with the boundary conditions, (28) to (30) have
been obtained but not presented here for the
sake of brevity. From these solutions, the first-
order velocity components are given by

t=-(Jo ony=o

}t=-(Jo ony=1 (24)

If one considers only small values of). ( or k«

substituting

then

4;2



CHOUDHURY & DAs: FREE CONVECTION FLOW OF A NON-NEWTONIAN FLUill IN A VERTICAL CHANNEL

o

I

0.25
,

O"w a,

3.9087300

2.5280100

1.6074790

0.6866832

-0.6951095
-2.0772470
-2.9988580

-5

-2

0

2

5

8

10

-0.6967614

0.6859352

1.6076720

2.5293620

3.9118590

5.2941730

6.2156980

.0.6967188

0.6858828

1.6073710

2.5286620

2.9102420

5.2914240

6.2120160

-0.6966904

0.6858478

1.6071700

2.5281960

3.9091940

5.2895910

6.2095620

3.9085710

2.5278000

1.6073570

0.6865380

-0.6944846
-2.0778340
-2.9996220

At the wavy wall, y = B cosAx and at the flat wall

I, <J"rv becomes(31) y=
, .,- , ,-

Ul = 'I'; SIn /\.A. -'I' r COS /\.A.

Ul = -A'1'rsinAx-A\fJ;cosAxj

where 'l'r='1'o+A2'1'2' 'I' ;=-AG'1'3 where 'l'3=0.:.i'1'I/G

The flrSt-order temperature is given by

a", =a~ +6[U;;(O)cosAx-'1'~(O)cosAx+W'1'~(O)sinAx

-A2'1'2(O)cos Ax] -26 Aa~K[ 'I'~(O)sinAx

+ ).GIll ; (0) cas Ax ]it,
6) =(to + ;.,2t2 )cas Ax -Pt3 sin Ax, t3 =- '32)

(37)
The velocity components (u,l!) of the non-Newtonian

fluid are as follows: and

G
[( ) 4 2

12 HI +2H+6 y-Hly -2Hy-6y

-s[l/'~ cosAx +I/' i sin Ax ]

u=-

(33)

0- 1 =0-~ +1; [ J..G1/f~(1)sin Ax -1/f~(l)cos Ax -).21/f~(1)cos Ax]

+ kKi AGu::(1)1/f3(1)cos Ax- 20-~ {1/f;(l)sinAx

AG1/f;(I)cos)..x }]u = -s J..[ 'I' r sinAx -'I' ; cos Ax ] (34)
(38)

The temperature field for the flow is given by
respectively, where o-g = uo(O) and 0-? = uo(O) are the

zero-order skin-friction at the walls, and ill (y) and Ul(y)are

given by

()=1 +Hy+H;y2 +G[(to +kt2)COsAx-Pt3SinAx]

4. RESULTS & DISCUSSION

The shearing stress 0- at any point in the fluid is
\ xy

given in non-dimensional form by

(40)2
d a). ).

-3f = U~(y) + 6e' Xu{(y) + ;6 }..e' Xvl(y)

pu

a =
xy

At the wavy wall, y = £cosAx and at the flat wall,

I, N takes the formuy=
+Ks[3u~e;).xu;(y) + u~(y)(iA)eiAx Ul (y)

-UO(y)e;).XUt (y) + uo(y)A2 eiA XUt (y)

-UO(y)(iA)eiAXu{(y)J (36)
Nuw

= N~ + E[(J"O (O)cosA.x + f'O (O)cosl.x
o

+I. 2 cosA.xf2 (0) -Pf'3 (O)sinA.xJ (41)
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0" is an increasing function of G, P, ).., a
w .

while the reverse behaviour occurs at the flat
wall O"I-for K = 0, 0.15, 0.25. Again in case

of equal wall temperature (m =1), the skin-
friction at both the walls decreases for increasing
a and Kbut when the average of the temperatures
of the two walls is equal to that of the static
fluid (m=-I), both I O"wl and 0"\ decrease with
increase of a and K.

and

Nu, =N:, +F.[to(1)cos).X+t~(1)A.2cos).x
(42)

-Pt3(1)sinJ...x ]

N° =9' ( I ) ."1 O=(}~(O),respectively, when N

The purpose of this study is to bring out
the effects of non-Newtonian parameter on
the flow and heat transfer characteristics as
the effects of other parameters have been
discussed in detail by Vajravelu and Sastri4.
The non-Newtonian effect is exhibited through
the non-dimensional parameter (K). :All the
corresponding results for Newtonian fluid are
obtained by setting K = 6.
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