
Defence Science Journal, Vol. 53, No. 3, July 2003, pp. 267-273
O 2003, DESlDOC

Agent-oriented Programming in Defence Domain

Sunil Doiphode
Research & Development Establishment (Engineers), Pune - 411 015

Research in distributed artificial intelligence has given rise to agent-oriented programming
(AOP), an advanced software modelling paradigm. It has several benefits when compared with
the existing development approaches, in particular, the ability to let agents represent high-level
abstractions of active entities in a software system. Although still young and under evolution,
this paradigm has already shown particular promise in a number of areas. This paper gives an
overview of this paradigm, its benefits over the other conventional programming paradigms
being used. It also proposes the decision support system model for the military domain.

In the proposed system there are certain critical issues, which need to be focused upon. The
existing conventional paradigms are inadequate to deal with these issues. This paper identifies
these critical issues and discusses how AOP can address these issues.

Keywo*. Agent-oriented programming , distributed artificial intelligence, artificial
intelligence, decision support system, object-oriented programming, JAVA,
intelligent agents, mobile agents, BDI agent

1 . INTRODUCTION

The agent-oriented programming (AOP) paradigm
is one of the evolving programming paradigms.
The conventional programming paradigms like structural
programming, object-oriented programming (OOP),
logical programming, etc. were inadequate in some
of the application areas. The OOP has been used
for building intelligent agents, with the limitation
that it cannot represent complex mental attitudes.
With logical programming, it is possible to represent
and infer relationships among mental attitudes, such
as intentions, goals, and beliefs, with limitations in
the usage of capabilities of action.

In the Defence domain, certain applications do
not perform up to the mark for various aspects.

Sometimes, this is not due to the poor design or
programming, but due to the incapability of the
underlined paradigm used for software modelling.

2 . AGENT-ORIENTED PROGRAMMING

The AOP is seen as an improvement and
extension of the OOP. The OOP, on the other
hand, can be seen as a successor of structured
programming'. The term AOP was introduced by
Shoham2, in 1993. In OOP, the main entity is the
object. An object is a logical combination of data
structures and their corresponding methods
(functions). Objects are successfully being used as
abstractions for passive entities in the real world,
and agents are regarded as possible successors of
obiects since these can improve the abstraction of

Revised 16 October 2002
267

DEF SCI J, VOL. 53, NO. 3, JULY 2003

active entities. Agents are similar to objects, but
they also support structures for representing mental
components (for instance, beliefs, goals, actions,
and plans). Another important difference between
the AOP and the OOP is that objects are controlled
from the outside (white box control), as opposed
to agents that have autonomous behaviour, which
is not directly controllable from the outside (black
box control).

The OOP has the limitation that it cannot represent
complex mental attitudes. Logical programming can
represent mental attitudes. It has limitations in the
usage of capabilities of action, which can be represented
in the OOP. Therefore, it can be presumed that the
OOP and the logical programming paradigms merge
to form the AOP, in the process of evolution. The
process of the evolution of programming paradigms
can be expressed diagrammatically (Fig. 1).

There are, however, various, if not contradictory,
definitions and architectures o f an intelligent
agent. As per general consensus, it is a type of
software that shows some degree of autonomy
and social ability, and combines proactive and reactive
behaviourss. One of these architectures, which is
better known and easy to understand, is belief-
desire-intention (BDI) agent architecture.

2.1 Belief-desire-intention Agent

The agent, as described here, is an autonomous
piece of software, which has explicit goals or desires
to achieve, and is preprogrammed with plans or
behaviours to achieve these goals under varying
circumstances. Set to work, the agent pursues given
goals, adopting the appropriate plans, or intentions,

according to its current beliefs about the state of
the world, so as to perform the intended role. Such
an intelligent agent is generally referred to as a
belief-desire-intention (BDI) agent (Fig. 2).

3. PROPOSED MODEL OF DECISION
SUPPORT SYSTEM FOR DEFENCE

The proposed model increases the coordination
and cooperation between all the constituents of the
Defence, which are necessary to take any decision
(Fig. 3). It automates certain defence actions. Some
commands passed on in this model are automatic
in nature and some are suggestive in nature. For
training purpose, in this model, the other human
beings can be simulated to agents. The proposed
model includes the following components:

3.1 Defence Forces

The Defence Forces have interoperating agents
(Adl , Ad2, Ad3) as well as intraoperating agents
(Ar l , Ar2 ,...., A m for the Army)(Afl, Af2 ,....,
Afk for the Air Force) (Avl , Av2 ,... ., Avl for the
Navy). If there are n entities in a force, then in
an ideal case, the intraoperating agents working in
that force will be n(n-1)/2. These agents exhibit
the social behaviour of team working. Here, the
data collection can be through various sensors and
human interaction. The data dissipation can be in
terms of commands, opinions/suggestions for
automated actions or the human actions. All the
forces communicate among each other either by
the agents like Adl , Ad2, and Ad3 or through
coordinator agent. The model includes the following
components for the Defence Forces:

PROGRAMMING I L/ OBJECT-ORIENTED I_
PROGRAMMING

AGENT-ORIENTED 1
PROGRAMMING

LOGICAL / PROGRAMMING I
Figure 1. Programming paradigm evolution

UUIYHUUt: AObN 1 - O K l t N r t U PRVtiRAMMINti IN DEFENCE DOMAIN

HUMAN .-b BELIEF-DESIRE-INTENTION AGENT

BELIEF-PERCEIVED
UNDERSTANDING OF THE WORLD

GOALS OR

ACCUMULATED EXPERIENCE
AND BEHAVIOURS

BELIEFS-DATABASE
OF PERCEIVED WORLD

GOALS OR DESIRES

EXECUTION
ENGINE

INTENTIONS-CURRENTLY

T
EXECUTING PLANS

BEHAVIOURS-PRE-COMPILED PLANS

Figure 2. An agent-intentional or belief-desire-intention agent

ARMY N A V Y

HETEROGENEOUS
DATABASES

COORDINATOR I AGENT 1-

HIGHER-LEVEL
STRATEGIC DECISIONS

HETEROGENEOUS
KNOWLEDGE BASES

Figure 3. Proposed model of decision support system for Defence

269

DEF SCI 1, VOL. 53, NO. 3, JULY 2003

Army

Air Force

Navy

3.2 Data

The source of data is not only agents but also
the other applications, which may not be agent-
oriented. The model includes the following components
for data storage:

Heterogeneous databases

Heterogeneous knowledge bases

The data in this model is stored in the different
databases and knowledge b&ls, which are
geographically scattered and heterogeneous in
nature. The Defence Forces may have their own
different data (databases and knowledge bases).
Databases and knowledge bases are made logically
one entity using the agents Abl,Ab2..Abm and
Akl,Ak2,.. Akp respectively. All the forces interact
with these logical entities through agents Ad4 and
Ad5 or through coordinator agent.

3 .3 Coordinator Agent

The main role ofthis agent, as its name suggests,
is to coordinate communications among the Defence
Forces, databases, knowledge bases, and the higher-
level executives who take the strategic decisions.
This agent, for this purpose uses the other agents
Acl , Ac2, Ac3, and Ac4.

3.4 Higher-level Stra tegic Decisions

Higher-level executive authority considers all
the factors projected by this model and the other
factors, which are not taken care of by the system,
and the strategic decisions are communicated to
the system through the agent Ac4.

4. ISSUES ADDRESSED BY AOP IN T H E
PROPOSED MODEL

4.1 Simulation of Human Behaviour & Team
Behaviour

In the past, computer simulation has been
used in the Defence domain to support procurement,

force development, evaluation of C3 (communicate,
command, and control) structures and for training.
But, modelling and simulation became complex as
multirole, multi-platform, and multisystem aspects
are considered. The complexity of this task is
further increased by the difficulty in modelling
human decision-making with sufficient fidelity,
using conventional software approaches. Current
implementations of computer-generated forces
within simulations, such as CAEN or ModSAF4
have proven to be very useful, but do not model
human reasoning and also cannot easily model
team behaviour. Early applications of the AOP in
simulation to represent operational military
reasoning, have proved highly effective. This success
comes from the capability of agents to represent
individual reasoning.

Within Defence, the contemporary trend towards
the integration of multirole forces, together
with the high cost o f live exercises, has
required the development of more realistic training
environment. However, these synthetic environment
have not been able to model the behaviour of the
human being involved, other than in a very
simple manner. In particular, they find difficulty in
modelling team behaviour.

The AOP allow the computer-generated forces
in training systems to behave in a more human-like
manner, with a much richer set of behaviours,
including team responses and dynamic role re-
allocation. The result is a more effective training
environment with realistic tactical behaviour
represented, whilst avoiding the expense of having
humans-in-the-loop (HIL) involved to provide this.

Complementing the use of human instructors
and teammates with intelligent agents that can
take their place when they are not available, could
be useful. The intelligent agents cohabit the virtual
world with human beings and collaborate (or compete)
with them on training scenarios. Intelligent agents
have already proven valuable in this role as fighter
pilots in large battlefield simulations3. The AOP
enables the programmer to choose the level of
granularity in the simulation of a group by allowing
the collapsing of single entities within the team
instance.

DOIPHODE: AGENT-ORIENTED PF LOGRAMMINO IN DEFENCE DOMAIN

4.2 Constraints on Network Reliability &
Bandwidth

Mostly in the battlefield, the military forces
use wireless communication. The wireless
commnunication has the drawback of bandwidth,
which needs to be resolved. The AOP is a paradigm
that enables the programs to move from one host
to another, do the processing locally, and return
results asynchronously. Thus, it can overcome
the barriers posed by network congestion and
unreliability.

Soldiers in the battlefield may receive reports
from organic sensors and may generate reports
based on their own observations. It is important to
pass on the critical information gathered by deployed
soldiers to other squad members and to echelons
above, so that based on the critical information
action could be taken as quickly as possible. Agents
can be used to disseminate high-priority reports to
upper echelons and to other soldiers in a unit based
on their information needs.

To nlinimise load over the very low bandwidth
network, an analysis agent determines which soldier
in the squad needs a given piece of information
(primarily based on location constraints) and agents
deliver the reports to the recipients. The delivery
agents handle connection failures by retrying at
intervals, then informing the sender of a severed
connection upon unrecoverable failure. Agents
can fulfil an important requirement on robust
information dissemination across unreliable
networks.

In object-oriented systems, aggregation is
defined as a part of relationship in which objects
representing components of other objects are
associated as an assembly. Aggregation can be
classified into two parts-static and dynamic. Static
aggregation of objects can be achieved through,
for example, inheritance. Static aggregation in
object-oriented programs is formed at the compiling
phase and irregularities in inheritance or object-
containment are detected during this phase.
On the other hand, dynamic aggregation refers to
enhancing the properties of an object at runtime
i n unforeseen ways. During an object's execution

phase, it can form relationship with other objects
of unrelated classes to enhance its functionality.
Looking from a mobile agent's perspective, dynamic
aggregation helps in reducing the amount of code
that goes along with the agent by allowing the
agent to attach extra code on need basis, hence.
reducing the network bandwidth requiremenrs and
also speeding up the process of packing the agent
to transfer it from one host to another.

Network class-loading is a feature by which
the place server can receive an agent even if it
does not have the class information of the agent
for de-serialisation. This is an important feature
for a mobile agent platform as it relieves the burden
of pre-installing the agent and other related class
information on all the sites the agent is going to
visit. Sometimes, it may not be possible to
determine the itinerary of the agent before hand.

The code for the network-class loaders is installed
as part of the place server because the place
server is responsible for de-serialising an agent. If
the place does not find the agent class information
for de-serialisation, it invokes the network-class
loader to get the class information from the place
server where the agent was created. The network-
class loader downloads the agent's class-information
and defines the class. In the process of defining
a class from the class information, the network-
class loader may come across some more classes
whose information is not available in the local
class path. In such cases, the network class-loader
recursively applies.

Most applications involving communications
over a network use traditional client-server
paradigm in which a connection is established
between the clients and the server or the data-
grams are sent across the network. This traditional
approach becomes expensive and unreliable when
lots of messages have to be sent between the
client and the server, i.e., when the application
consumes a lot of network bandwidth. In such
situations, sending the client to the server's machine
for performing the job locally rather than shouting
the commands across the network will be more
efficient and reliable. This forms the basis for

DEF SCI J, VOL. 53, NO. 3, JULY 2003

mobile agents. Mobile agents are software agents
that have the basic capability to move themselves
from host-to-host and continue execution from the
point they stopped on the previous host.

Mobile agents overcome most of the inherent
limitations in client-server paradigm. First and
foremost, the mobile agent paradigm shatters the
very notion of client and server. With mobile agents,
the flow of control actually moves across the network,
instead of using the requestlresponse architecture
of client-server paradigm. In effect, every node is
a server in the agent network and the agent (program)
moves to the location where it may find the services
it needs to run at each point.in its execution. For
example, the same agent interacts with the user
via a GUI to obtain request keys, and then travels
to a database server to make its request.

The problem of robust networks is greatly
reduced for several reasons. The hold time for
connections is reduced to only the time required to
move the agent in or out of the machine. Because
the agent carries its own credentials, the connection
is simply a conduit, not tied to user authentication
or spooling. No request flows across the connection,
the agent itself moves only once, in effect, carrying
a greater payload for each traversal. This allows
for efficiency and optimisation at several levels.

4.3 He t e rogeneous D a t a Resou rce s &
Env i ronm en t

Since an agent can travel from a machine of
one type to the machine of another type, it is
necessary that agent should be platform-
independent. This will relieve the programmer of
the problems arising due to heterogeneous data
sources and environment. Most of the agent
architectures are achieving this using JAVAtechnology,
since this technology provides one of the most
important features, i.e., platform-independence.

Recent studies have shown a need for compliance
between agents developed on various platforms
and in heterogeneous environment. For this purpose,
a large consortium of research organisations and
companies have developed a specification known
as mobile agent facility (MAF). Currently, the MAF

specification is at its infancy, and still, a lot of
refinements are needed to make it a better and
complete industrial6. To enable the agents of different
designers to interact with each other, it is necessary
to standardise the basic services that are provided
by agent management system. One such standard
is FIPA7-8.

4.4 Information Push, Information Pull, &
Sentinel Information Monitoring

When the agents automatically send information
to other agents or entities that may need it, it is
information push. When agents retrieve relevant
information from distributed sources, it is information
pull, and sentinel information monitoring, means
one or more agents persistently checking for an
event or existence o f a condition and reacting
to its occurrence. These three behaviours are needed,
either individually or in combination, in nearly all
the military applications9. The AOP significantly
reduces information dissemination and retrieval
latencies. It allow a user to make abstract queries,
information requests for which the user could specify
query parameters in high-level concepts rather than
in exact database schemata. The abstract query
mechanism provides mobile agents with tasks to be
executed at individual databases. With this capability,
operators can avoid exhaustive searches of all data
sources, and instead, search the sources that are
actually relevant to the query.

5. CONCLUSION

The proposed model of decision support system
demonstrates the potential for extensive use of the
AOP in Defence domain. Many hurdles like
low bandwidth, network reliability, complex
autonomous information processing involving large
heterogeneous data sources, and heterogeneous
operating environment, which are faced during use
of traditional OOP and client-server approach, can
be overcome using the AOP. The ability of AOP
to exhibit social behaviour, reactivity, and pro-activity
are additional advantages.

The proposed model of decision support system,
which can be introduced phasewise, without affecting
existing applications and the environment used in

the Defence domain, will certainly be helpful in
increasing the coordination between the Defence
Forces and reducing the strategic communication
gap.

REFERENCES

1 . Wagner, G. Agent-object-relationship modelling
from agent theory to agent implementation
together with EMCRS 2000. In Proceedings of
Second International Symposium, April 2000.

5. Jones, R.M.; Laird, J.E. & Nielsen, P. E.
Automated intelligent pilots for combat flight
simulation. In Proceedings of the Tenth Conference
on Innovative Applications ofArtificial Intelligence
(IAAI-98), Menlo Park, CA. AAAl Press, 1998.
pp. 1047-054.

6. Johnny, Wong; Guy, Helmer; Venkatraman,
Naganathan; Sriniwas, Polavarapu; Vasant,
Honavar & Les Miller. SMART mobile agent
facility. J. Syst. Software, 2001, 56, 9-22.

2. Sfioham,Y. Agent-orientedprogramming. Arrifcial 7. http://www.agentlab.de
Intelligence, 1993, 60, 5 1-92.

8. http://www.fipa.org
3. Wooldridge, M. & Jennings, N.R. Intelligent

agents: Theory and practice. Knowledge Engg. 9. Susan, McGrath; Dara, Chacon&Kenneth,
Rev., 1995, 10(12), 115-52 Whitebresd. Intelligent mobile agents in the

military domain: www.atl.lmco.com
4. http://www.aaii.com.au

Contributor

M r Suoil Doiphode received his BE (Computer Science) from the B. N. College
of Engineering in 1992. He worked as Lecturer in the B.N. College of Engineering
from 1992 to 2000. He joined the DRDO at the Research & Development Establishment
(Engrs), Pune, in 2000. His areas of research include: Agent-oriented programming,
artificial intelligence, operating system, and office automation. He is a life member.
of the Computer Society of India and the Indian Society of Technical Education.

