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Abstract 

The direct use of vegetable oils as a biofuel suffers from problems such as high viscosity, low 

volatility and poor cold temperature properties. 3-acetyl-1,2-diacyl-sn-glycerols (acetyl-TAGs) 

have lower viscosity and freezing temperature than regular vegetable oils. However, by 

modifying their fatty acid composition, further improvement in their fuel properties is possible. 

Our goal was to develop plants that synthesize seed oils with further improved fuel properties. 

Euonymus alatus diacylglycerol acetyltransferase (EaDAcT) synthesizes acetyl-TAGs by the 

acetyl-CoA dependent acylation of diacylglycerol (DAG). Knowledge of the substrate specificity 

of EaDAcT for its acetyl-CoA donor and DAG acceptor substrates is important to generate the 

required acetyl-TAG composition in seed oil. A rapid method to quantify acetyl-TAGs was 

developed based on electrospray ionization mass spectrometry to gain information about the 

substrate specificity of EaDAcT. This method is as accurate and more rapid than the traditional 

radiolabeled substrate based assay and additionally provides information on acetyl-TAG 

molecular species present. Using this assay, EaDAcT specificity for different chain length acyl-

CoA and DAGs was tested. It was found that although EaDAcT can use other short chain length 

acyl-CoAs as acyl donors, it has high preference for acetyl-CoA. Further, EaDAcT can acetylate 

a variety of DAGs with short, medium and long chain length fatty acids with high preference for 

DAGs containing unsaturated fatty acids. To generate acetyl-TAGs with lower molecular mass, 

EaDAcT was transformed into transgenic Camelina sativa lines producing high amounts of 

medium chain fatty acids (MCFAs). EaDAcT expression was also combined with the 

knockdown of DGAT1 and PDAT enzymes, which compete with EaDAcT for their common 

DAG substrate. High acetyl-TAG yielding homozygous T3 transgenic lines were generated but 

the incorporation of MCFAs into acetyl-TAGs was inefficient. A small increase in the viscosity 

of acetyl-TAGs from these lines was observed compared to acetyl-TAGs produced in wild type 

Camelina plant. The combined effect of insufficient lowering of molecular mass and increased 

fatty acid saturation levels of acetyl-TAGs might be responsible for this increased viscosity. 

Overall, it was concluded that the molecular mass and the saturation levels of fatty acids of 

acetyl-TAGs need to be considered at the same time in future attempts to further decrease their 

viscosity. 
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The direct use of vegetable oils as a biofuel suffers from problems such as high viscosity, low 

volatility and poor cold temperature properties. 3-acetyl-1,2-diacyl-sn-glycerols (acetyl-TAGs) 

have lower viscosity and freezing temperature than regular vegetable oils. However, by 

modifying their fatty acid composition, further improvement in their fuel properties is possible. 

Our goal was to develop plants that synthesize seed oils with further improved fuel properties. 

Euonymus alatus diacylglycerol acetyltransferase (EaDAcT) synthesizes acetyl-TAGs by the 

acetyl-CoA dependent acylation of diacylglycerol (DAG). Knowledge of the substrate specificity 

of EaDAcT for its acetyl-CoA donor and DAG acceptor substrates is important to generate the 

required acetyl-TAG composition in seed oil. A rapid method to quantify acetyl-TAGs was 

developed based on electrospray ionization mass spectrometry to gain information about the 

substrate specificity of EaDAcT. This method is as accurate and more rapid than the traditional 

radiolabeled substrate based assay and additionally provides information on acetyl-TAG 

molecular species present. Using this assay, EaDAcT specificity for different chain length acyl-

CoA and DAGs was tested. It was found that although EaDAcT can use other short chain length 

acyl-CoAs as acyl donors, it has high preference for acetyl-CoA. Further, EaDAcT can acetylate 

a variety of DAGs with short, medium and long chain length fatty acids with high preference for 

DAGs containing unsaturated fatty acids. To generate acetyl-TAGs with lower molecular mass, 

EaDAcT was transformed into transgenic Camelina sativa lines producing high amounts of 

medium chain fatty acids (MCFAs). EaDAcT expression was also combined with the 

knockdown of DGAT1 and PDAT enzymes, which compete with EaDAcT for their common 

DAG substrate. High acetyl-TAG yielding homozygous T3 transgenic lines were generated but 

the incorporation of MCFAs into acetyl-TAGs was inefficient. A small increase in the viscosity 

of acetyl-TAGs from these lines was observed compared to acetyl-TAGs produced in wild type 

Camelina plant. The combined effect of insufficient lowering of molecular mass and increased 

fatty acid saturation levels of acetyl-TAGs might be responsible for this increased viscosity. 

Overall, it was concluded that the molecular mass and the saturation levels of fatty acids of 

acetyl-TAGs need to be considered at the same time in future attempts to further decrease their 

viscosity. 
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Chapter 1 - Overview 

1.1 Plant oils as renewable feedstocks 

Plant oils are rapidly emerging as an alternative to conventional fossil fuel based sources 

of energy and industrial feedstocks. This is mainly due to the environmental concerns associated 

with increasing amounts of carbon dioxide and other harmful gases like CO, NOx, and SO2 

originating from the use of high amounts of fossil fuels. This has led to the need to develop 

domestic and renewable sources of feedstocks for fuel and industrial chemicals. The products 

derived form plant oils offer advantages like being carbon neutral, biodegradable and non-toxic 

due to their bio-based nature  [1].  Vegetable oils are made up of triacylglycerols, which consist 

of three long chain fatty acids attached to a glycerol backbone.  About 79% of total oil 

production in the world is derived from palm, soybean, rapeseed and sunflower  [2].  The 

production of plant oils has steadily doubled from 88 million metric tons in year 2001 to 176 

million metric tons in year 2015 (www.fas.usda.gov). The majority of plant oil produced is used 

as food, animal feed and for production of industrial chemicals in a ratio of 74:6:20  [3]. The 

majority of vegetable oil used in industry is for the production of biodiesel while a small part is 

used as industrial feedstock to produce fatty acid and derivatives, in cosmetics, textiles and 

leather industry, drying oils, surfactants and petroleum additives [2]. Biodiesel is produced by 

the transmethylation of vegetable oils, which converts triacylglycerols into fatty acid methyl 

esters and glycerol as a byproduct  [4].   

1.2 Fatty acid composition affects the properties of vegetable oil 

Vegetable oils used in food and feed applications mainly contain five major fatty acids 

namely palmitic acid (16:0), stearic acid (18:0), oleic acid (18:1), linoleic acid (18:2) and 

linolenic acid (18:3). These fatty acids are made up of linear hydrocarbon chains with one or 

more double bonds (Fig. 1.1). The fatty acid composition of vegetable oil determines its physical 

and chemical properties, which in turn decides its end use. For example, oils rich in saturated 

fatty acids are used in preparation of margarines and spreads while oils rich in monounsaturated 

(MUFA) and polyunsaturated fatty acids (PUFA) are useful for cooking and salad oils 

respectively due to their better nutritional and health properties.  
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Figure 1.1 Structures of common fatty acids present in vegetable oils. Fatty acids are 
represented as X:Y where X indicates the number of carbon atoms and Y represents the number 
of double bonds. 

However, certain plant oils in nature contain high amounts of fatty acids which are 

considered unusual because of their unknown role in plant physiology. Some of these fatty acids 

include ricinoleic acid with a hydroxyl group (found in castor oil), vernolic acid with an epoxy 

group (Vernonia galmensis or iron weed) and the medium chain fatty acid lauric acid (found in 

coconut and palm kernel oil) (Fig. 1.2). These unusual fatty acids provide very distinct chemical 

properties to the oil, which are useful for certain applications. For example, lauric acid present in 

the coconut oil is an excellent surfactant and is used extensively in the synthesis of detergents 

and soaps as sodium laurate. Similarly, castor oil containing 90 % ricinoleic acid is widely used 

in manufacturing of lubricants, drying oils, dyes, cold resistant plastics and pharmaceuticals due 

to its stability at high temperature and resistance to oxidation 	
  [5]. 
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Figure 1.2 Structures of unusual fatty acids present in vegetable oils.  

1.3 Acetyl-TAGs and their potential uses 

3-acetyl-1,2-diacylglycerols (acetyl-TAGs) are found abundantly in the seed of certain 

plant families such as Celasteraceae and Lardizabalaceae [6,7]. They were also found to be 

present in low quantities in buffalo milk fat  [8]. More recently they were also discovered in deer  

 

Figure 1.3 Structure of an acetyl-TAG molecule. The acetyl-TAGs contain an acetate group at 
the sn-3 position of glycerol backbone instead of a long chain fatty acid. 
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antlers  [9] and insects  [10]. They possess different chemical and physical properties compared 

to usual long chain triacylglycerols (lcTAGs) due to presence of short acetyl group instead of a 

long chain fatty acid at the sn-3 position of the glycerol backbone (Fig 1.3).   

1.3.1 Biofuel application of acetyl-TAGs  
The direct use of vegetable oil as biofuel for diesel engines suffers from problems such as 

high kinematic viscosity and poor cold temperature properties	
  [11]. This necessitates either 

modification of engines to preheat the oil or blending them with diesel oil to reduce their 

viscosity. The other method to reduce the viscosity of vegetable oils is to convert them to 

biodiesel by chemical transmethylation. All these processes add to the cost and hamper the direct 

use of vegetable oils as biofuel. Acetyl-TAGs have reduced kinematic viscosity and improved 

cold temperature properties over traditional vegetable oils that mainly consist of lcTAGs 	
  

[12,13]. For these reasons, acetyl-TAGs are considered to be useful molecules for development 

as direct use biofuel. The viscosity of acetyl-TAGs fall in the range of diesel # 4 (5-24 mm/s2), 

which is mainly used in engines requiring constant power such as low and medium speed 

engines. Any further reduction in the viscosity of acetyl-TAGs will broaden its scope for use in 

other types of diesel engines. 

1.3.2 Industrial application of acetyl-TAGs  
In addition to their use as potential biofuel, the acetyl-TAGs can also be used for other 

industrial applications. For example, acetyl-TAGs are a constituent of ACETEM, which is 

synonym for the mixture of all the possible acetic acid esters of mono-, and diglycerides of fatty 

acids. These mixtures are used in food industry as emulsifiers and food surface coating agents 

besides their other industrial applications such as lubricants, plasticizers and anti-dusting agents 	
  

[14]. ACETEM are produced by chemical reactions of glycerols with fatty acids and acetic acid 

and generate a mixture of acetic acid esters of mono and diglycerides. The degree of acetylation 

of ACETEM decides their physical properties, which in turn decides end use	
  [14]. Acetyl-TAGs 

produced in the plants can be used in conjunction with chemically produced ACETEM to further 

enhance their functionalities.  

1.3.2.1 Acetyl-TAGs as plasticizers 

Plasticizers used to make polyvinyl chloride (PVC) products are generally phthalate-

based in nature. The safety concerns associated with phthalate-based plasticizers use has led to 
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their legislative bans in products such as toys and cosmetics in European Union and Japan. In 

United States, various manufacturers have also voluntarily eliminated the use of this class of 

plasticizers. High cost are associated with manufacture of phthalates required in large amounts 

for PVC products  [15]. Plant oil derived products can offer a cheaper and environmental 

friendly functional alternative to phthalates based plasticizers. 

Castor and lesquerella seed oils from that contain hydroxyl fatty acids (HFAs) can be 

polymerized to form thermosetting polyurethanes upon reaction with diisocyanates. 3-acetyl-1,2-

diricinolein rich seed oil will provide a feedstock with monomers containing two rather than 

three reactive hydroxyls. The polymerization of such compounds will result in more linear rather 

than cross-linked polyurethanes with high thermoplastic properties. Indeed acetylated versions of 

castor oil is used to make biodegradable plasticizers such as SOFT-N-SAFETM . However, along 

with many other reasons in addition to presence of toxin ricin in the castor seed has hampered its 

suitability as an agronomic crop. Additionally, chemical processing is required for synthesis of 

biodegradable plasticizers like SOFT-N-SAFETM. The expression of EaDAcT in combination 

with the synthesis of HFA will result in to an alternate, greener method of plasticizer production 

in transgenic plants. 

 

1.3.2.2  Acetyl-TAGs as lubricants 

The use of vegetable oils as lubricants offers many advantages over petroleum-based 

products  [16]. However, their reduced oxidative stability and poor low temperature properties 

hinders their use as lubricants. Modification of the fatty acid composition of the oils was tried to 

address these issues but improvement in one property often results in exacerbation of the other. 

For example, an increase in the saturation levels of the oil to improve its oxidative stability leads 

production of oils with higher pour and cloud points  [4]. The lower freezing point of acetyl-

TAGs compared to lcTAGs makes them suitable for overcoming this problem. The incorporation 

of saturated medium chain fatty acids in acetyl-TAGs could offer improved oxidative stability 

without negatively impacting cold temperature performance. 
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1.4 TAG Biosynthesis in Plants 

An overview of the entire TAG biosynthetic pathway, from fatty synthesis to acylation of 

diacylglycerol, is presented in Chapter 4. Here I will discuss the enzymes involved in the final 

step of TAG and acetyl-TAG synthesis. 

1.4.1 DGATs and PDAT 
Diacylglycerol acyltransferases (DGATs) are the enzymes involved in the last step of 

triacylglycerol (TAG) biosynthesis and produce TAGs by transferring an acyl group from an 

acyl-CoA molecule to the sn-3 position of a diacylglycerol molecule 	
  [17]. DGATs are further 

classified in to DGAT1 and DGAT2 based on differences in their amino acid sequence.  

 The Arabidopsis DGAT1 enzyme was first discovered in three different studies 

by sequence homology studies to mammalian DGAT enzymes 	
  [18-­‐20].  Since then, a large 

number of DGAT1 have been cloned from a variety of oil seed plants such as olive 	
  [21], canola 	
  

[22], castor bean 	
  [23], soybean 	
  [24], tung tree 	
  [25], Vernonia galamensis 	
  [26], sunflower 	
  

[27], Xanthoceras sorbifolia 	
  [28] and ornamental plants such as Euonymus alatus 	
  [29], 

Tropaeolum majus 	
  [30] and Echium 	
  [31].  

 The second class of DGAT in plants was first discovered in Arabidopsis by 

sequence homology studies to the fungus Mortierella ramanniana DGAT2 and was found to 

show very low sequence similarity to the DGAT1 	
  [32]. Later on additional DGAT2 enzymes 

were isolated from castor bean 	
  [33], tung tree 	
  [25], V. galamensis 	
  [26] and olive 	
  [34].  

 Phospholipid : diacylglycerol acyltransferase (PDAT) like DGATs acts at the last 

step of TAG biosynthesis to acylate DAG at sn-3 position to form TAG. However, unlike 

DGAT, PDAT transfers the acyl group from the sn-2 position of a phospholipid molecule instead 

of an acyl-CoA. PDAT activity was first discovered in yeast and plants sunflower, castor bean 

and Crepis palaestina  	
  [35] but the encoding gene was first identified from Arabidopsis 	
  [36]. 

Later on three PDAT orthologs were identified in castor bean 	
  [37,38] and six orthologs were 

identified in flax 	
  [39]. 

1.4.2 Biochemical features and physiological roles of DGATs and PDAT 
All the DGAT1 proteins generally contain 9-10 transmembrane domains with a highly 

hydrophobic N-terminal domain 	
  [40]. In contrast, DGAT2 enzymes in plants and other 

organisms are much shorter in length with only one or two transmembrane domains	
  [17]. Tung 
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tree DGAT1 and DGAT2 were found to localize to different subdomains of ER although they 

have similar ER retrieval motifs	
  [25]. DGAT1 activity was also reported in Arabidopsis leaf 

chloroplasts during senescence 	
  [41]. 

Similar to DGAT1 and DGAT2, PDAT1 is also predicted to be a membrane bound 

enzyme and is expressed in root, stem and leaves ([36]. The knockdown studies of DGAT1 and 

PDAT1 have shown their overlapping function in Arabidopsis seed oil synthesis 	
  [42].  

However, PDAT1 can enhance fatty acid and TAG biosynthesis in leaves, but not in seeds, 

suggesting a more independent role of PDAT in leaves 	
  [43].  

Detailed investigations on the substrate specificity of DGAT and PDATs are difficult to 

perform due to their membrane bound nature and difficulties associated with enzyme purification 

and substrate solubilization. Hence, assays are generally conducted using microsomal extracts 

from plants or from yeast expressing the enzymes. The acyl-CoA donor specificities of DGATs 

from major oil seed crops indicated that they are more specific for long chain acyl-CoAs 	
  [40]. 

DAG specificity studies were mostly done with exogenously added dipalmitin and diolein, hence 

little information is available on broad range of DAG specificity of these enzymes. Studies 

conducted using endogenous DAG in microsomal extract were performed for PDAT and DGAT. 

Castor DGAT2 has high specificity for DAGs containing ricinoleic acid 	
  [44] while V. 

galamensis DGAT2 resulted in higher levels of vernolic acids in petunia leaves and soybean seed 

compared to Vernonia DGAT1	
  [26]. The PDAT ortholog from castor RcoPDAT1A is specific 

for ricinoleic acid 	
  [37]and 4 functional PDATs out of total 6 PDATs from flax specifically 

transfer linolenic acid to TAGs 	
  [39]. Evidence from the substrate specificity studies, 

overexpression studies and studies on expression levels of DGAT1, DGAT2 and PDAT in the 

developing seeds of various plant species suggest that DGAT1 seems to be the major enzyme 

responsible for the TAG biosynthesis while DGAT2 and PDAT might be responsible for 

selective accumulation of TAGs with unusual fatty acids 	
  [37-­‐39,45]. 

1.4.3 EaDAcT and its biochemical features 
The gene responsible for the synthesis of acetyl-TAGs was cloned from Euonymus alatus 

(Burning Bush) by a comparative transcriptomics approach 	
  [12].  The enzyme product of the 

gene was named Euonymus alatus diacylglycerol acetyltransferase (EaDAcT). It is a member of 

the membrane-bound O-acyltransferease (MBOAT) family of enzymes which contains other 

important enzymes such as DGATs, wax synthases and sterol acyltransferases. MBOATs are 
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classified as enzymes with several membrane embedded regions and transfer organic acids, 

usually fatty acids, onto the hydroxyl groups of different kinds of substrates including lipids, 

proteins and polysaccharides. For example, they can acylate sterols, diacylglycerols and fatty 

alcohols (lipids), Wingless and ghrelin (proteins) and alginate and lipotechoic acid 

(polysaccharides)	
  [46]. The family is further subdivided in to three subgroups with subgroup 1 

containing enzymes involved in neutral lipid biosynthesis while subgroups 2 and 3 include 

enzymes involved in protein acylation and phospholipid remodeling respectively 	
  [47]. A 

histidine residue buried in between hydrophobic residues and an asparagine residue present in 

the hydrophilic region are very well conserved between all the family members and are believed 

to be active site residues 	
  [46,47]. Like other MBOATs, EaDAcT is predicted to have several 

transmembrane domains based on the presence of several stretches of hydrophobic residues in its 

amino acid sequence. It synthesizes acetyl-TAGs by acetyl-CoA dependent acylation of DAG at 

the sn-3 position [12]. 

The substrate specificity studies of microsomal EaDAcT conducted in yeast revealed that 

EaDAcT could use acetyl-CoA but not oleyl-CoA as an acyl donor	
  [12]. Information regarding 

the specificity of EaDAcT for acyl-CoAs falling between chain length range of 2-18 carbons was 

not known. It was also shown that EaDAcT could acetylate yeast endogenous DAGs containing 

16 and 18 carbon long fatty acids and an exogenously added smaller chain DAG, 1,2-dihexanoin. 

However, there was no information available for activity of EaDAcT towards other short and 

medium chain fatty acid containing DAGs.  

It was also known from sequence alignment studies that EaDAcT is more closely related 

to the Jojoba wax synthase and Arabidopsis sterol acyltransferases than to DGAT1 although it 

acylates same DAG substrate as DGAT1	
  [12,13]. Wax synthases and sterol acyltransferases 

acylate fatty alcohols and sterols respectively to produce their alkyl esters. Also, studies 

conducted on a number of Euonymus species showed the presence of alkyl acetates in their seeds 	
  

[48] indicating that EaDAcT might also have wax synthase activity. 

In Chapter 2, a method to study substrate specificity of EaDAcT by using rather 

inexpensive unlabeled acyl-CoA substrates and rapid quantification of assay product by using 

electrospray ionization mass spectrometry (ESI-MS) is described. In Chapter 3, the results from 

the substrate specificity studies of EaDacT for various chain length acyl-CoA donor substrates 

and DAG/fatty alcohols acceptor substrates are presented. Chapter 4 is a detailed review on 
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advantages of Camelina as an oil seed crop with examples of its use for producing various 

industrially useful molecules and acetyl-TAGs. The research done in this study to further 

improve the fuel properties of acetyl-TAGs in Camelina, is presented in Chapter 5. At the end, 

overall conclusions from all these studies and future work are discussed. 
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Chapter 2 - Rapid quantification of low-viscosity acetyl-

triacylglycerols using electrospray ionization mass spectrometry 

2.1 Introduction 

3-acetyl-1,2-diacyl-sn-glycerol (acetyl-TAG) are unusual triacylglycerols (TAGs) with an 

acetate group at the sn-3 position instead of the typical long chain fatty acid. In nature, these 

molecules are abundantly present in the seeds of plant families in the Celastraceae, 

Balsaminaceae, Lardizabalaceae, Ranunculaceae and Rosaceae  [6,7]. Small quantities of acetyl-

TAG have also been discovered in animals and insects  [9,10].  

Acetyl-TAGs possess very different chemical and physical properties compared to 

regular TAGs. For example, they possess a lower viscosity and improved cold temperature 

properties  [12,13]. These altered characteristics make acetyl-TAGs useful for different 

applications, including as an improved low-viscosity straight vegetable oil biofuel. The 

identification of the EaDAcT acetyltransferase responsible for the synthesis of acetyl-TAG 

resulted in the generation of transgenic seeds capable of producing high levels of these useful 

molecules, suggesting a route to the agricultural production of acetyl-TAG  [12,13]. To aid in 

efforts to increase acetyl-TAG levels, a rapid and accurate method to quantify these valuable 

storage lipids would be very useful. Currently, the quantification of acetyl-TAG from seed oil is 

based on their separation from other components of a total lipid extract using thin layer 

chromatography (TLC). The separated TAG fractions are then transmethylated and the 

subsequent fatty acid methyl esters quantified using gas chromatography. These methods are 

laborious and time consuming. They also do not provide any information on the types of TAG 

molecular species present. 

In contrast, electrospray ionization mass spectrometry (ESI-MS) based techniques have 

become increasingly popular for the quantification of lipids, including TAG. The very different 

molecular masses of acetyl-TAG and regular TAG allow ESI-MS to easily distinguish these two 

types of TAG species without the need for chromatographic separation. Previously, we have 

used MS1 scans to successfully quantify acetyl-TAG [5], but found these methods could easily 

be confounded by the presence of other lipid species, which led to increased ion suppression and 

background noise. One way to overcome this problem is to quantify TAGs by performing scans 

for the neutral loss of a fatty acid. Such methods have been used to study relative quantification 
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of intact DAG and TAG species in mammalian cells  [49] and for the quantitative profiling of 

Arabidopsis seed oil TAGs  [50]. These particular methods suffer from the drawback that the 

neutral loss of each fatty acid needs to be scanned and accounted for in different molecular 

species. Thus, these methods require multiple scans and therefore tend to be time and 

computation intensive. However, because acetyl-TAG molecular species can all be detected by 

the neutral loss of the common sn-3 acetate group, these unusual TAG molecules can be 

quantified with a single scan. 

Here, we extend previous neutral loss based methods by developing a method designed to 

specifically quantify acetyl-TAG. Because acetate represents the shortest fatty acid it was not 

clear whether the particular methods previously used for regular TAGs would still be valid. We 

also examined the effects of other fatty acids at the sn-3 position, as well as the position of the 

acetate group on the glycerol backbone. This allowed us to develop a rapid ESI-MS based 

method for the quantification of acetyl-TAGs. The method avoids the high signal background of 

MS1 based methods by only detecting acetate containing molecules. Also, because there is only 

a single scan for the neutral loss of acetate, the data analysis is relatively quick and 

straightforward. The method was validated by quantifying acetyl-TAG in different biologically 

relevant lipid samples. The increased sensitivity also allowed the quantification of acetyl-TAGs 

produced by small scale in vitro enzyme assays. This method therefore provides a rapid way to 

quantify acetyl-TAGs and other short acyl group containing TAGs. 

2.2 Material and Methods 

2.2.1 Synthesis of structured TAG standards 
The TAG standards used in this study were synthesized from their respective 

phosphatidylcholine (PC) orthologs (Avanti polar lipids, Alabaster, AL) using a two-step 

method. In the first step, PC containing the desired sn-1/2 acyl composition was converted to 

1,2-DAG using phospholipase C. Acetyl-TAG were subsequently synthesized by treating 1,2-

DAG with acetic anhydride/pyridine (3:2) overnight at room temperature  [51]. Other TAGs with 

different chain length sn-3 fatty acids were synthesized from 1,2-DAG using the appropriate 

acyl-chloride (Nu-Check Prep, Waterville, MN)  [52]. All TAGs were purified from reaction 

mixtures using preparative TLC after which they were quantified by GC-FID and their purity 

confirmed using ESI-MS. 
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2.2.2 Culture condition and lipid preparation 
The Saccharomyces cerevisiae quadruple knockout strain H1246 was kindly provided by 

Dr. Sten Stymne (Swedish Agricultural University) and transformed with the native EaDAcT 

gene in the expression vector pYES-DEST52  [12]. EaDAcT protein expression was induced by 

growing transformed yeast in selective minimal medium in the presence of galactose for 48 

hours with a starting O.D600 of 0.02. 30 ml samples were collected at 12h intervals and pelleted 

by centrifugation at 4000 rpm for 15 minutes. Cell pellets were washed with water to remove 

residual media and frozen at -20 ˚C until extraction. Lipids were extracted using a chloroform-

methanol extraction method  [12], resuspended in 500 μl of toluene and stored at -20 ˚C until 

further analysis. 

2.2.3 Quantification of acetyl-TAG by gas chromatography 
Total lipid extracts were separated on Silica gel 60 TLC plates (Merck, Kenilworth, NJ) 

using a hexane/diethyl-ether/acetic acid (70:30:1) solvent system and visualized by very brief 

exposure to iodine vapor. 5 μg triheptadecanoin (Nu-Check Prep, Waterville, MN) was added to 

the acetyl-TAG bands. Lipids were recovered by scraping the silica, extracting with 5 ml 

chloroform, drying under nitrogen and dissolving in 500 μl hexane. Acetyl-TAG were converted 

to their fatty acid methyl esters (FAMEs) using base-catalyzed transmethylation  [53]. 50 μg of 

butylated hydroxytoluene was added to each sample before transmethylation to prevent 

oxidation. FAMEs were quantified using an Agilent gas chromatograph equipped with a HP-88 

(0.25 mm x 100 m) column, a split/splitless injector and flame ionization detector. The carrier 

gas was helium with a flow rate of 16.4 ml min-1. The oven temperature was maintained at 150 

˚C for 1.0 min and then ramped to 175 ˚C at 10 ˚C min-1, kept there for 10 minutes, then ramped 

to 210 ˚C at 5 ˚C min-1 and kept there for 4 minutes. FAMEs were identified by comparing their 

retention times with those in a standard mix. 

2.2.4 Mass spectrometry analysis of TAG 
The samples for mass spectrometry were prepared by dissolving the lipid extracts in 300 

µl chloroform to obtain the desired final concentration (125 nM and 500 nM for TAG standard 

mixes and 1-2 μg/ml of acetyl-TAG purified from Euonymous oil or yeast lipid extract) and 700 

μl of methanol: 300mM ammonium acetate, 100:5.26 (v/v). 150 nM (final concentration) 

15:15:X TAG (where X=2, 4, 6 or 12) was spiked into samples as a normalization standard to 
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account for instrument variation. Samples were introduced by continuous infusion to the ESI-MS 

source on a triple quadrupole mass spectrometer (API4000, Applied Biosystem, Foster City, CA, 

USA). Samples were infused at 30 μl min-1 with an autosampler (LC mini PAL, CTC Analytics, 

AG Zwingen, Switzerland) fitted with an appropriate loop for the acquisition time. TAG were 

detected and quantified by a series of neutral loss scans targeting the loss of specific fatty acids 

as neutral ammoniated fragments: NL77.10 (C2:0 for acetyl-TAG); NL105.1 (C4:0 for butyryl-

TAG); NL133.2 (C6:0 for hexanoyl-TAG); NL217.3 (C12:0 for dodecanoyl-TAG). The scan 

speed was 100 μsec-1. The collision energy, with nitrogen in the collision cell, was +20 V; 

declustering potential was +100 V; entrance potential was +10 V and exit potential was +14 V. 

One hundred twenty continuum scans were averaged in multiple channel analyzer mode. For all 

analyses the collision gas pressure was set on ‘low’, and the mass analyzers were adjusted to a 

resolution of 0.7 unit full width at half height. The source temperature (heated nebulizer) was 

100 ˚C; the interface heater was on; +5.5 kV was applied to the electrospray capillary; the curtain 

gas was set at 20 (arbitrary units); and the two ion source gases were set at 45 (arbitrary units). 

2.2.5 Data processing and acetyl-TAG quantification 
For acetyl-TAG analyses, the background of each spectrum was subtracted, data were 

smoothed, and peak areas were integrated using Applied Biosystems Analyst software. Peaks 

corresponding to the target lipids in these spectra were identified, deconvoluted for M+2 isotopic 

overlap and corrected for isotopic variation using an inhouse script. Because ionization 

efficiency is dependent on the total number of carbons and double bonds in the TAG molecule  

[54], adjustment factors were obtained by measuring the signal from different concentrations of 

TAG standard mixes. For example, acetyl-TAG standard mixes contained the following 

molecular species in equimolar quantities (125 nM or 500 nM each species): 3-acetyl-1,2-

dipalmitoyl-sn-glycerol, 3-acetyl-1,2-distearoyl-sn-glycerol, 3-acetyl-1,2-dioleoyl-sn-glycerol, 3-

acetyl-1,2-dilinoleoyl-sn-glycerol,and 3-acetyl-1,2-arachidoyl-sn-glycerol, with 3-acetyl-1,2-

dipentadecoyl-sn-glycerol spiked at 150 nM. The relationship between signal intensity and 

concentration (referred to as “slope”) was calculated for each TAG standard. Multiple linear 

regression was then used to determine the relationship between the slope and the number of 

carbons and double bonds. This relationship was then used to correct the signal for a particular 

TAG molecular species based on number of carbons and double bonds present in that molecule. 
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2.2.6 In vitro acetyltransferase assays 
Microsomes were extracted from S. cerevisae strain H1246 expressing EaDAcT and 

acetyltransferase assays performed as previously described [5]. [1-14C] acetyl-CoA (Perkin 

Elmer Life Sciences, Waltham, MA) and [1,2-13C] acetyl-CoA (Sigma-Aldrich, St. Louis, MO) 

were used for radiolabelled based and ESI-MS based assays, respectively. For the radiolabelled-

based assay, acetyl-TAG were quantified by separating the lipid extracts from the assay using 

TLC, scraping the bands and quantifying radioactivity using scintillation counting. 

2.3 Results and Discussion 

2.3.1 Effect of number of carbons and double bonds on neutral loss signal intensity 
The signal intensity for different TAG molecular species is correlated to aliphatic chain 

length and unsaturation index  [54]. We were curious to see whether similar effects occurred for 

different acetyl-TAG molecular species, particularly when undergoing the neutral loss of acetate. 

We also wanted to study the effects of other different short fatty acids on neutral loss signal 

intensity. Combinations of structured TAGs sharing a common sn-3 acyl group but containing 

varying fatty acids at their sn-1 and sn-2 were synthesized (Table 2.1). Equimolar mixtures were 

 

Table 2.1 TAG with specific sn-3 acyl group synthesized during the study 

Type of 

TAG 
TAG molecular species* 

Acetyl-TAG 15:0/15:0/2:0 16:0/16:0/2:0 18:0/18:0/2:0 18:1/18:1/2:0 18:2/18:2/2:0 20:0/20:0/2:0 
Butyryl-

TAG 
15:0/15:0/4:0 16:0/16:0/4:0 18:0/18:0/4:0 18:1/18:1/4:0 18:2/18:2/4:0 20:0/20:0/4:0 

Hexanoyl-

TAG 
15:0/15:0/6:0 16:0/16:0/6:0 18:0/18:0/6:0 18:1/18:1/6:0 18:2/18:2/6:0 20:0/20:0/6:0 

Dodecanoyl-

TAG 
15:0/15:0/12:0 16:0/16:0/12:0 18:0/18:0/12:0 18:1/18:1/12:0 18:2/18:2/12:0 20:0/20:0/12:0 

 

* The sn position of fatty acid is in ascending order from left to right. Fatty acid is represented as 
X:Y where X is the number of carbon atoms and Y represents number of double bonds. 
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Figure 2.1 The signal intensity for neutral loss of the sn-3 acyl group is dependent on the sn-
1/2 acyl composition. ESI-MS spectra from the neutral loss scans of four different TAG 
standard equimolar mixes (500 nM final concentration for each component). TAGs were 
detected by the neutral loss of the ammoniated sn-3 acyl groups common to their respective 
mixes. Peaks correspond to the m/z values of the [M+NH4]+ adduct. Diagonal lines indicate 
common sn-1/2 moieties. sn-3 specific acetate, butyrate, hexanoate and dodecanoate esters of 
1,2-dipentadecanoyl-sn-glycerol were added as internal standards (150 nM final concentration) 
to their respective mixes. 

analyzed using an ESI-MS neutral loss scan for the common sn-3 acyl group (Fig. 2.1). The 

signal for each molecular species was normalized to that of an 3-acyl-1,2-dipentadecoyl-sn-

glycerol standard that was spiked to the same level in all the mixtures. The relationship between 
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signal intensity and concentration (referred to as slope) was calculated for each TAG species. 

Plotting this slope against the number of carbons at the sn-1 and sn-2 positions revealed a 

negative correlation, with larger fatty acids leading to a decrease in NL signal response (Fig. 

2.2a). This trend remained consistent for the loss of different chain length sn-3 acyl groups 

varying in number of carbons from 2 to 12. Such an effect might be the result of better protection 

for the sn-3 group from loss during collision by the increase in the bulkiness of groups at the 

other two positions. A similar effect was observed for the neutral loss of palmitoyl and stearoyl 

ammonium adducts from TAG  [50]. Increasing the total degree of unsaturation from 0 to 4 

double bonds at the sn-1 and sn-2 positions also decreased the NL signal intensity (Fig. 2.2b). It 

was hypothesized that ammoniation at the double bonds decreases the dissociation of TAG 

during collision induced dissociation (CID) and produces abundant MH+ ions rather than DAG+ 

moieties  [52]. Therefore more double bonds will result in less DAG+ fragments and less NL 

signal. Overall, the NL signal intensity for the loss of sn-3 acyl group decreased with increases in 

the total number of carbons and the total degree of unsaturation for a TAG. This trend remains 

constant for all series of TAG containing sn-3 acyl groups with varying short and medium chain 

lengths (2 to 12 carbons).  

 

Figure 2.2 The sn-1 and sn-2 acyl composition of TAG affects the signal intensity generated 
by the neutral loss of short chain fatty acids. The relationship between concentration and the 
normalized signal from the neutral loss of the common sn-3 acyl group shared by a set of TAG 
molecules differing in their sn-1/2 acyl composition was plotted against the total number of 
carbons (a) and double bonds (b) contained in those sn-1 and sn-2 positions. The neutral loss 
signal was normalized to a 3-acyl-1,2-dipentadecanoyl-sn-glycerol standard that possessed the 
same sn-3 acyl group as the other TAG molecules in the set. 
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For TAG molecular species containing same kind of acyl groups at sn-1 and sn-2 

positions, the NL of the sn-3 acyl groups tended to result in lower signal response as the size of 

the neutral loss fragment increased (Fig. 2.3).  The only exception was the loss of butyrate for 

which a higher signal than acetate was recorded under the constant neutral loss scan parameters. 

This trend was influenced by the instrument settings, especially collision energy and changes in 

this parameter particularly affected this trend (data not shown). Given our interest in acetyl-

TAGs, the instrument settings were optimized for the neutral loss of acetate and not for other 

acyl groups. 

 

Figure 2.3 The size of the sn-3 acyl group of TAG is negatively correlated with the neutral 
loss signal intensity. The relationship between concentration and the normalized signal 
generated from the neutral loss of the common sn-3 acyl group shared by a set of TAG 
molecules was plotted against the total number of carbons at the sn-3 position. The neutral loss 
signal was normalized to a 3-acyl-1,2-dipentadecanoyl-sn-glycerol standard that possessed the 
same sn-3 acyl group as the other TAG molecules in the set. For clarity, data from sets of TAG 
molecules containing the same sn-1/2 acyl groups are separated according to varying numbers of 
acyl carbons (a) or double bonds (b). 
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It has previously been reported that the loss of the fatty acid from the sn-2 center position 

is unfavorable in CID of TAG [55,56] We were therefore interested to determine whether the 
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sn-3 position was found to be about three times higher than the signal for loss from sn-2 position 

(Fig. 2.4). This effect is probably due to the greater ease with which the peripheral sn-3 group  

 

Figure 2.4 The position of the acetate group affects its neutral loss signal intensity. The 
signal intensity for the neutral loss of the acetate group from 3-acetyl-1,2-dipentadecanoyl-sn-
glycerol or from 2-acetyl-1,3-dipentadecanoyl-sn-glycerol was normalized to that from an 
equimolar amount of 3-acetyl-1,2-dipalmitoyl-sn-glycerol present in both the samples. 

can be dissociated from parent ion compared to the internal sn-2 acetate group which is shielded 

by bulkier acyl groups. Consequently higher fragmentation and therefore higher signal intensity 

of sn-3 acetate containing acetyl-TAG occurs than sn-2 acetate containing acetyl-TAG. The 

substrate specificity of the plant enzymes means that naturally produced acetyl-TAGs possess an 

sn-3 acetate group  [6,12]. However, this result suggests that care should be taken when 

quantifying acetyl-TAG regioisomers using this neutral loss scan procedure.  

2.3.3 ESI-MS neutral loss scan based quantification of purified acetyl-TAG 
The predictable relationship between the number of carbons and double bonds at the sn-1 

and sn-2 positions in a specific acetyl-TAG molecular species and the signal intensity from the 

neutral loss of the sn-3 acetate group suggested we could use this method to quantify more 

complex mixtures of acetyl-TAGs. To determine the accuracy of the new quantification method 

it was tested on acetyl-TAG purified from Euonymus alatus seed oil. An 1mg/ml acetyl-TAG 

stock was analyzed using the newly developed ESI-MS method and compared to the results 

obtained using standard GC-FID approach. The total acetyl-TAG content was calculated as sum 

of the different acetyl-TAG molecular species present in Euonymus oil (Fig. 2.5). The 0.97 ± 
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0.01mg/ml value obtained by GC-FID did not differ significantly from the 0.93 ± 0.02mg/ml 

value obtained using our ESI-MS analysis (Student’s t-test, P = 0.106).  

 

 

Figure 2.5 Positive ESI mass spectrum generated by scanning for the neutral loss of 
ammonium acetate from acetyl-TAGs purified from Euonymus alatus seed oil. Peaks 
correspond to the m/z values of the [M+NH4]+ adduct. The number of acyl carbons in each series 
of TAG molecules is indicated; for clarity the number of double bonds (x) is not defined. 3-
acetyl-1,2-dipentadecanoyl-sn-glycerol and 3-acetyl-1,2-dinonadecanoyl-sn-glycerol were added 
as internal standards 

2.3.4 Quantification of acetyl-TAG in yeast lipid extracts 
To further test this ESI-MS based quantification method in a relevant biological setting, 

we quantified the production of acetyl-TAG in a TAG deficient yeast strain transformed with 

EaDAcT. The subsequent acetyl-TAG producing yeast possessed a typical sigmoidal shaped 

growth curve. The exponential phase started after a lag phase of 12 h and lasted for 24 h after 

which the cells entered stationary phase. Lipids were extracted from cells collected at different 

time intervals spread across all three growth phases. The acetyl-TAG content was quantified 
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using both our new ESI-MS based method or transmethylation followed by GC-FID. Acetyl-

TAG accumulation reached its peak by 24 h and declined sharply once the yeast entered the  

 

 

Figure 2.6 The acetyl-TAG molecular species composition of yeast expressing EaDAcT does 
not change appreciably in different growth stages. Positive ESI mass spectra from the neutral 
loss scan of ammonium acetate of lipids extracted from yeast expressing EaDAcT cultured for 
different lengths of time. Peaks correspond to the  m/z values of the [M+NH4]+ adduct of the 
intact acetyl-TAG molecule. The number of acyl carbons in each series of TAG molecules is 
indicated; for clarity, the number of double bonds (x) is not defined. 3-acetyl-1,2-
dipentadecanoyl-sn-glycerol and 3-acetyl-1,2-dinonadecanoyl-sn-glycerol were added as internal 
standards. 

stationary phase (Fig. 2.7). The acetyl-TAG molecular species were dominated by molecules 

containing two double-bonds consistent with the highly monounsaturated nature of the fatty 

acids found in yeast  [57,58]. The acetyl-TAG molecular species composition changed slightly 

over the course of the different stages of culture, with a slight increase in the molecular species 

containing two double bonds at the cost of decrease in species containing one double bond (Fig. 

2.6). Importantly, there were no significant differences between the amounts of acetyl-TAG 

quantified from total lipid extracts using ESI-MS or using GC-FID quantification (Fig. 2.7). 

Therefore the ESI-MS based method can be used to accurately and rapidly quantify acetyl-TAGs 

from biological samples. 
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Figure 2.7 The ESI-MS based method provides accurate quantification of acetyl-TAG 
produced in yeast. Total lipids were extracted from S. cerevisiae H1246 expressing EaDAcT at 
different time points and acetyl-TAG content was determined using GC-FID or ESI-MS. Data 
represents the mean ±	
  SD of three independent experiments. There was no significant difference 
between values obtained from GC-FID and ESI-MS (Student’s t-test, 18h: P = 0.30; 24h: P = 
0.81; 36h: P = 0.89; 48h: P = 0.17. 

2.3.5 Comparison of ESI-MS analysis based DGAT assay with the radiolabeled 
substrate based assay 
Having demonstrated the ability to quickly and accurately quantify acetyl-TAGs, we wanted to 

determine whether the method was sensitive enough to accurately quantify the acetyl-TAG 

products of an in vitro reaction. In the past we have used radiolabeled methods to study some of 

the in vitro biochemical properties of the EaDAcT acetyltransferase enzyme responsible for the 

synthesis of acetyl-TAGs  [12]. However, an ESI-MS based method would significantly reduce 

the time required for the assay compared to a radioactivity based quantification. To demonstrate 

that the newly developed ESI-MS based method can give results comparable to the traditional 

radioactive based methods, we performed the two assays from the same batch of microsomes at 

varied concentration of acetyl-CoA, either unlabeled or [14C] labeled. Unexpectedly, the 

microsomes obtained from yeast expressing EaDAcT possessed high levels of acetyl-TAGs, 

even when no acetyl-TAGs were added (Fig. 2.8). Presumably, the relatively more polar acetyl-

TAGs are able to be incorporated into membranes after synthesis via EaDAcT. The in vitro  
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Figure 2.8 Microsomes isolated from yeast expressing EaDAcT contain acetyl-TAG. Positive 
ESI mass spectrum from scanning for the neutral loss of ammonium acetate from lipids extracted 
from microsomes of yeast expressing EaDAcT. Peaks correspond to the m/z values of the 
[M+NH4]+ adduct of the intact acetyl-TAG molecule. The number of acyl carbons in each series 
of TAG molecules is indicated; for clarity, the number of double bonds (x) is not defined. 3-
acetyl-1,2-dipentadecanoyl-sn-glycerol was added as internal standard. 

 

Figure 2.9 Microsomes containing EaDAcT incubated with [1,2-13C]acetyl-CoA produce 
acetyl-TAG with 2 mass units heavier than endogenous acetyl-TAGs. ESI mass spectrum 
from the neutral loss of [13C] ammonium acetate from total lipids extracted from an in vitro 
EaDAcT activity assay using [1,2-13C] acetyl-CoA as a substrate. Peaks correspond to m/z values 
of the [M+NH4]+ adduct of the intact acetyl-TAG molecule. The number of acyl carbons in each 
series of TAG molecules is indicated; for clarity, the number of double bonds (x) is not defined. 
[1,2-13C] 3-acetyl-1,2-dipentadecanoyl-sn-glycerol and [1,2-13C] 3-acetyl-1,2-dinonadecanoyl-
sn-glycerol were added as internal standards. 
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reaction did not produce enough additional acetyl-TAGs that could be correctly estimated above 

the endogenous background. More importantly however, these results demonstrate that the ESI-

MS assay is a rapid and accurate substitute for the more time consuming radiolabeled based 

assay for quantification of in vitro produced acetyl-TAGs that could be correctly estimated above 

the endogenous background in the ESI-MS based assay (data not shown). To overcome this,  

 

 

Figure 2.10 The ESI-MS based method is as effective in quantifying in vitro enzyme 
activity. Acetyltransferase enzyme assays were performed from the same batch of microsomes 
under similar conditions using [1-14C] acetyl-CoA for the radioactive assay and [1,2-13C] acetyl-
CoA for the ESI-MS analysis based assay. Activity values are expressed as the mean ± SD (n=3) 
of three assays. Curves were fitted using Graphpad Prism (Michaelis-Menten non-linear 
regression). 

[1,2-13C] labeled acetyl-CoA was used for the ESI-MS based assay. This enabled us to 

specifically quantify the [13C] acetyl-TAG produced during the assay over endogenous 

background of normal acetyl-TAG by scanning for the neutral loss of the heavier [13C]-labeled 

acetate group (Fig. 2.9). The two assays yielded similar enzyme activity curves (Fig. 2.10) 

resulting in similar apparent Km and Vmax values. The Km value is high given that the reported 

concentration of acetyl-CoA in plants and yeast are in range of 5 to 30 µM  [59,60]. One 
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explanation is that microsomes are relatively crude enzyme preparations and therefore contain 

other enzymes, many of which could also utilize acetyl-CoA. Indeed, problems about thioester 

hydrolases present in microsomes have long been noted  [61]. Therefore, the interference present 

from other acetyl-CoA utilizing proteins in microsomes might have caused this shift in Km value. 

More importantly however, these results demonstrate that the ESI-MS assay is a rapid and 

accurate substitute for the more time consuming radiolabeled based assay for quantification of in 

vitro produced acetyl-TAG. 

2.4 Conclusions 

We developed an ESI-MS based method for the absolute quantification of TAGs 

containing acetate and other short acyl groups. In order to achieve this, we determined the effect 

of the acyl group composition on the neutral loss signal, something which has never been 

performed for short fatty acids. The method compared well to traditional methods of 

quantification and was sensitive enough to quantify the products of a small scale in vitro enzyme 

reaction. Because this new method involves the direct infusion of total lipids, it eliminates the 

need for the laborious process of acetyl-TAG fractionation from other lipid components before 

quantification. Further, it provides information about the amount of different molecular species. 

ESI-MS based quantification therefore represents a useful tool with which to understand the 

production of acetyl-TAGs in transgenic plants, as well as to better study the substrate specificity 

of unusual acetyltransferases such as EaDAcT. 

  

 

 

 

 

 

  



25 

Chapter 3 - Defining the substrate specificity of EaDAcT: a key to 

altering acetyl-TAG fatty acid composition 
 

3.1 Introduction 

The enzyme Euonymus alatus diacylglycerol acetyltransferase (EaDAcT) produces acetyl 

triacylglycerols (acetyl-TAGs) by transferring an acetyl group from acetyl-CoA to the sn-3 

position of diacylglycerol (DAG) acyl acceptor substrates 	
  [12]. EaDAcT belongs to the 

membrane-bound O-acyltransferase (MBOAT) family of enzymes, which catalyze the acyl-CoA 

dependent acylation of hydroxyl groups present on small hydrophobic substrates such as 

cholesterol and diacylglycerols, as well as small peptides and larger protein substrates 	
  [46,47]. 

EaDAcT is unusual in that it uses the shortest possible acyl-CoA and not longer chain CoAs. 

EaDAcT acylates a common DAG substrate as other important MBOAT enzyme diacylglycerol 

acyltransferase 1 (DGAT1) to synthesize triacylglycerol (TAG). Surprisingly, phylogenetic 

studies of EaDAcT and other MBOATs revealed its unusually close relationship with wax 

synthases and sterol acyltransferases instead of DGAT1  [12]. 

EaDAcT can also produce alkyl acetates by esterifying the acetate group onto a fatty 

alcohol. EaDAcT was shown to produce medium chain alkyl acetates, which act as insect 

pheromone-like compounds 	
  [62]. These small and medium chain alkyl esters can also be useful 

as direct use biodiesel 	
  [63] and in various industrial applications such as flavors, fragrances, 

solvents, cosmetics and surface coating agents 	
  [64].  

Acetyl-TAGs possess different properties than usual long chain triacylglycerols (lcTAGs) 

due to the presence of the shortest possible acyl group at the sn-3 position. The different 

chemical properties of acetyl-TAGs compared to lcTAGs, such as reduced kinematic viscosity 

and lower freezing temperatures makes them suitable candidate for a reduced viscosity straight 

vegetable oil biofuel 	
  [13,65]. The physical and chemical properties of acetyl-TAGs and alkyl 

acetates is dependent on their molecular species composition, which in turn is dependent on two 

factors: first, the availability of different acyl donors and acceptor substrates to the enzyme and 

second, the substrate specificity of EaDAcT to utilize those substrates. Therefore, the knowledge 

of the substrate specificity of EaDAcT will be helpful in achieving a desired acetyl-TAG/alkyl 
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acetate molecular species composition profile in an oil seed crop. In this study yeast was chosen 

as a model system to study the enzyme characteristics of EaDAcT because of problems obtaining 

fresh E. alatus seeds year around to extract the enzyme. The other advantage was the availability 

of a yeast strain deficient in TAG production, which meant a smaller number of DAG utilizing 

side reactions and low background for the ESI-MS analysis of longer acyl-CoA reactions. 

Therefore, EaDAcT was overexpressed in yeast and the microsomal fraction was used for 

conducting substrate specificity assays.  

  Here we describe the acyl donor and acceptor substrate specificity of EaDAcT. 

We found that in addition to acetyl-CoA, EaDAcT could also use other short chain length acyl-

CoAs as acyl donors, though it had high preference for acetyl-CoA. It was also found that 

EaDAcT can effectively esterify acetyl groups to its acyl acceptor substrates sn-1,2-DAGs and 

fatty alcohols with highly variable chain lengths to make acetyl-TAGs and alkyl acetates 

respectively. Moreover, EaDAcT showed high preference for DAGs with greater unsaturation 

levels and fatty alcohols with medium chain lengths. Overall, our results suggest that EaDAcT is 

a valuable enzyme for producing a variety of desired acetyl-TAGs and alkyl acetates. 

3.2 Materials and Methods  

3.2.1 DGAT assay for EaDAcT 
Microsomes were extracted from S. cerevisae strain H1246 expressing EaDAcT and 

DGAT assays were performed as previously described  [12]. Radiolabeled and ESI-MS based 

methods of detection were same as described in Chapter 2.   

3.2.1.1 Optimization of DGAT assay conditions  
Optimization studies were performed using radiolabeled acetyl-CoA. For the protein 

concentration optimization, total microsomal protein concentration varying from 20 µg to 100 µg 

per assay was used. Similarly, for incubation time optimization, 80 µg total microsomal protein 

was used per assay and incubated for different time periods varying from 5 minutes to 45 

minutes. An [1-14C] acetyl-CoA (Perkin Elmer Life Sciences, Waltham, MA) concentration of 

125 µM and incubation temperature of 30 oC was used for both the optimization studies. 
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3.2.1.2 Acyl-CoA specificity assays 
Unlabeled acetyl-CoA, butyryl-CoA, hexanoyl-CoA, octanoyl-CoA, decanoyl-CoA, 

dodecanoyl-CoA, tetradecanoyl-CoA, hexadecanoyl-CoA and octadecenoyl-CoA (Sigma-

Aldrich, St. Louis, MO) were used for ESI-MS based assays. A 10 mM stock in sodium acetate 

buffer (pH 5.5) was prepared for each unlabeled acyl-CoA and stored as aliquots at -80 oC. For 

acyl-CoA chain length specificity assays, a final concentration of 250 µM unlabeled acyl-CoAs 

varying in acyl chain length from 2 to18 was achieved by appropriate dilution in final reaction 

mixture (100 µl final volume). After the assay, 3-acyl-1,2-dipentadecanoin internal standard was 

added before lipid extraction to achieve a final concentration of 250 nM in 600 µl of chloroform. 

TAGs formed during the reaction were quantified using ESI-MS neutral loss scan of the sn-3 

acyl group. The operating conditions of mass spectrometer and data processing were same to as 

described in Chapter 2. The processed signal obtained for different TAG molecular was 

quantified by normalization to the internal standard. 

For detailed kinetic studies on acetyl-CoA, butyryl-CoA and hexanoyl-CoA, assays were 

conducted with different concentrations of acyl-CoAs varying from 50 µM to 1500 µM with the 

same batch of microsomes. [1,2-13C] acetyl-CoA was used instead of unlabeled acetyl-CoA to 

remove the background signal as explained in Chapter 2. 3-acyl-1,2-dinonadecanoin was added 

as an extraction standard and 3-acyl-1,2-dipentadecanoin was added as a technical standard to 

achieve final concentrations of 100 nM and 125 nM in the 600 µl of chloroform. TAG molecular 

species for all the three acyl-CoA were quantified using the ESI-MS neutral loss scan analysis of 

sn-3 acyl-group after correction using slope calculated from the TAG standard curves as 

described in detail in Chapter 2. 

3.2.1.3 DAG specificity assay 
Yeast microsomes containing EaDAcT were incubated with three different 

concentrations (200 µM, 400 µM and 800 µM) of [1,2-13C] acetyl-CoA and acetyl-TAGs species 

formed from the endogenous DAGs were quantified using ESI-MS. The endogenous sn-1,2-

DAGs from the same batch of yeast microsomes were isolated by separation of total lipid extract 

of microsomes on Silica gel 60 TLC plates (Merck, Kenilworth, NJ) impregnated with borate, 

using a chloroform/acetone (80:10) solvent system and visualized by staining with 2,7-

dichlorofluorescein. These DAGs were then chemically acetylated using acetic anhydride and 
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pyridine  [66] to determine their concentrations using the ESI-MS based quantification method 

for acetyl-TAGs (Chapter 2).  

For testing EaDAcT activity towards specific DAGs, microsomes were supplemented 

with 1,2-dilauroyl-sn-glycerol, 1,2-dimyristoyl-sn-glycerol and 1,2-distearoyl-sn-glycerol. 20 

mM stocks of 1,2-dilauroyl-sn-glycerol and 1,2-dimyristoyl-sn-glycerol (Cayman Chemical 

Company, Ann Arbor, MI) were prepared in ethanol while the stock (20 mM) of 1,2-distearoyl-

sn-glycerol was prepared in toluene. The reaction was started by adding 2 µl of DAG stock in the 

final assay volume of 100 µl (final concentration = 400 µM). Microsomes without the exogenous 

addition of DAGs were used as controls. 

For determining in vivo DAG specificity, yeast expressing EaDAcT was grown in 

synthetic medium with galactose (2 % w/v) for 24 hours. Total lipids were extracted from 50 ml 

of culture medium using a chloroform-methanol extraction [12]. sn-1,2-DAGs and acetyl-TAGs 

were separated by TLC using the chloroform/acetone (80:10) solvent system. The bands were 

visualized by staining with 2,7-dichlorofluorescein. 3-acetyl-1,2-dinonadecanoin (100 pmoles) 

was added at each spot and bands were scraped to extract the acetyl-TAGs and sn-1,2-DAGs. 

DAGs were then chemically acetylated as described above to analyze them as acetyl-TAGs using 

the developed ESI-MS neutral loss scan based method.  

3.2.2 Fatty alcohol acetyltransferase assay of EaDAcT 
Alcohol acetyltransferase assays were conducted using radiolabeled [1-14C] acetyl-CoA 

substrate. Oleyl alcohol was used for all the optimization studies for which a 1.0 mM stock was 

made in toluene and stored at -20 oC. DMSO was used as a solubilizing agent for fatty alcohols. 

The desired volume of fatty alcohol stock was added at the bottom of the tube and toluene was 

evaporated under nitrogen. DMSO (15 µl) was added over the fatty alcohol and tube was gently 

vortexed to dissolve the alcohol. Microsomes (20 µl = 80 µg total protein) were added and the 

tube was incubated on ice for 5 minutes. DGAT reaction buffer (60 µl) (pH 7.4) was added to the 

tube to make a total reaction volume of 100 µl and the components were gently mixed. The 

reaction was started by adding 5 µl of [1-14C] acetyl-CoA (final concentration = 125 µM). Lipids 

were extracted using hexane-isopropanol extraction and separated on Silica gel 60 TLC plates 

using a hexane/diethyl-ether/acetic acid (70:30:1) solvent system with oleyl acetate as a 

reference standard. The alkyl acetate product was estimated by counting radioactivity 

incorporated in to band corresponding to oleyl acetate standard.  
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Fatty alcohols varying in chain length from 8 to 22 were purchased from Nu-Chek Prep 

Inc. (Waterville, MN). Stocks (1.0 mM) were made in toluene and kept at -20 oC. A final 

concentration of 125 µM in 100 µl assay mixture was used for in vitro chain length specificity 

assay of EaDAcT.  

3.2.2.1 Optimization of alcohol acetyltransferase assay conditions 
Surfact-Amps detergent sampler (Fisher Scientific, Pittsburgh, PA) consisting of a 

number of ionic (sodium deoxycholate), non-ionic (NP-40, octyl beta-thioglycoside, octyl beta-

glycoside, Brij-35 and Brij-58) detergents was used to enhance solubility of fatty alcohols in 

alcohol acetyltransferase assay. Stocks were made in water by dilution of original 10 % (w/v) 

stock and used at required concentration in the assay in place of DMSO. Assay was conducted as 

mentioned above.  

3.2.2.2 In vivo assay for alcohol acetyltransferase activity 
The plasmid pPT534 harbouring Apis mellifera fatty acid reductase 1(AmFAR1) in yeast 

expression vector pESC-URA ([67] was kindly provided by Dr Xiao Qiu (University of 

Saskatchewan). Hemagglutinin (HA) tagged EaDAcT open reading frame (ORF) was amplified 

from pYES2/CT-EaDAcT-HA using the primers 5’-

ATGCGGCCGCGATGGATGCTCATCAAGAGATCAAG-3’ and 5’-

GGAAGATCTCACAAATCCCATGTAGGA-3’ and digested with NotI and BglII. The 

amplified fragments were cloned into corresponding sites of yeast expression vector pESC-URA 

and pPT534 to obtain the pESC-URA-EaDAcT-HA single expression and pESC-URA-

AmFAR1-EaDAcT-HA coexpression vectors respectively. The Saccharomyces cerevisiae 

quadruple knockout strain H1246 was transformed with empty vector pESC-URA, pPT534, 

pESC-URA-EaDAcT-HA and pESC-URA-AmFAR1-EaDAcT-HA. The transformants were 

grown in synthetic medium-ura-trp with 2% (w/v) galactose at 30 oC under shaking at 225 rpm 

for 72 hours to obtain an O.D600 of approximately 3.2-3.4. The yeast cells were harvested from 

50 ml culture and lypholized to calculate their dry weight. Lipids were extracted using a 

chloroform-methanol extraction method  [12]and resuspended in 1.0 ml of toluene. 

3.2.2.3 Analysis of fatty alcohol and alkyl acetates 

For fatty alcohol analysis, 300 µl of the total lipid extract was used. Heptadecanol (100 

nmoles) was added as an internal standard and lipids were transmethylated in the presence of 
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5.0% (v/v) methanolic H2SO4 at 90 oC for 1.5 hour. NaCl (1.5 ml) was added to stop the reaction 

and total FAMEs and fatty alcohols were extracted twice using 2 ml of hexane. The organic 

phase was evaporated under nitrogen. For TMS derivatization of fatty alcohols, 100 µl of 

BSTFA and 100 µl of pyridine were added to tubes. Tubes were sealed with screw caps under 

nitrogen and heated at 110 oC for 10 minutes. Solvent was evaporated under N2 and samples 

were suspended in 200 µl of hexane to be analyzed using GC-MS. 

For alkyl acetate analysis, 80 µl of total lipid extract was separated into different lipid 

components using Silica gel 60 TLC plates with a hexane/diethyl-ether/acetic acid (70:30:1) 

solvent system and oleyl acetate as a standard. Pentadecyl acetate (8.5 nmoles) was added to the 

bands corresponding to oleyl acetate. Bands were scraped and lipids were extracted using hexane 

and analyzed using GC-MS. 

FAMEs, fatty alcohols and alkyl acetates were quantified using an Agilent GC-MS 

system equipped with a DB-5ms (0.25 mm x 60 m) column, a split/splitless injector and a single 

quad mass spectrometer. The injector was operated in splitless mode with an injection volume of 

2.0 µl. The carrier gas was helium with a total flow rate of 9.0 ml min-1. The oven temperature 

was maintained at 60 ˚C for 2.0 min and then ramped to 200 ˚C at 50 ˚C min-1, kept there for 1.0 

minute, then ramped to 280 ˚C at 10 ˚C min-1 and kept there for 3 minutes. The mass quad was 

maintained at 150 oC and source temperature was 230 oC. The detector was set to detect 

fragment ions with a mass range between 50-650. FAMEs, fatty alcohols and alkyl acetates were 

identified by matching their fragmentation patterns against reported spectras present in NIST 

database. The quantification was performed by normalization to internal standard and reported as 

µg per mg dry weight of yeast. 

3.3 Results 

3.3.1 Optimization of yeast microsomal system for EaDAcT activity assay 
Before studying substrate specificity, the optimum conditions for diacylglycerol 

acetyltransferase (DAcT) activity of microsomal EaDAcT were determined. The optimum value 

for incubation temperature (30 oC) and pH (7.5) were known from previous studies and used for 

further assay optimization. The reaction was found to be linear with increasing total microsomal 

protein concentration between 20 to 80 µg (Fig. 3.1a). Hence, to keep the reaction in a linear 

range for kinetic assays and still get maximum product formation within the detection range 
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of the instrument, a concentration of 80 µg total protein/per assay was selected for further assays. 

With a total microsomal protein concentration of 80 µg, the acetyl-TAG product formation 

increased sharply for first 5 minutes after which acetyl-TAGs accumulated slowly and reached 

steady state in 20 minutes (Fig. 3.1b).   

 

Figure 3.1 Optimization of in vitro DAcT assay conditions for microsomal EaDAcT. In vitro 
assays were conducted using microsomal fractions from yeast expressing EaDAcT and incubated 
with [1- 14C] acetyl-CoA (125 µM) at 30 oC. [1- 14C] acetyl-TAG product was determined by 
quantifying the radioactivity in acetyl-TAG band. A. Effect of the amount of total microsomal 
protein on acetyl-TAG formed in 25 minutes of incubation. B. Effect of different incubation 
times on the amounts of acetyl-TAG formed using 80 µg total microsomal protein.  

The calculation of initial reaction velocity for each substrate concentration is recommended for 

doing the Michaelis-Menten analysis mainly to avoid the effects of reverse reaction for 

conversion of enzyme substrate (ES) complex to enzyme and substrate. The possibility of this 

occurring can be neglected due to the following reasons: 1) a large substrate to product ratio at 

all times due to low product accumulation and 2) low thermodynamic feasibility of reconstitution 

of acetyl-CoA from acetate and free CoA. Therefore, to maximize product accumulation, an 

incubation time of 25 minutes was selected to do the analysis under the steady state conditions.  

3.3.2 EaDAcT has high preference for acetyl-CoA as acyl donor 
The acyl-CoA preference of EaDAcT was first tested for different chain length acyl-CoAs 

varying in carbon chain length from 2 to18 carbon atoms using an ESI-MS based assay. Only 

acyl-CoA with acyl chain length up to 6 carbons showed detectable product levels (Fig. 3.2).   
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Figure 3.2 EaDAcT has negligible activity for higher chain length acyl-CoA. In vitro assays 
for microsomal EaDAcT were performed with equal amounts of unlabeled acyl-CoA of different 
acyl chain lengths. Reaction products were quantified using ESI-MS based analysis for the 
neutral loss scan of sn-3 acyl group. TAG reaction products were calculated by normalizing to 
the neutral loss signal of a 3-acyl-1,2-dipentadecanoyl-sn-glycerol standard that possessed the 
same sn-3 acyl group as the other TAG molecules.  

The activity of EaDAcT for acetyl-CoA was approximately 4 times higher compared to other 

short chain acyl-CoAs such as butyryl-CoA and hexanoyl-CoA. EaDAcT used butyryl-CoA and 

hexanoyl-CoA with equal efficiency. However, EaDAcT showed negligible activity for acyl-

CoA with acyl chain longer than 8 carbon atoms. These results are consistent with the previous 

results where no EaDAcT activity was observed for oleyl-CoA  [12]. This result clearly 

distinguishes EaDAcT from plant DGAT1 enzymes that have high preference for long chain 

acyl-CoAs and negligible activity for short chain acyl-CoAs 	
  [40].  

Further detailed kinetic studies were conducted using acetyl-CoA, butyryl-CoA and 

hexanoyl-CoA. The microsomal EaDAcT followed Michaelis -Menten kinetics for all the three 

acyl-CoAs (Fig. 3.3). The Km value was found be surprisingly high for the acetyl-CoA (590.4 

µM) followed by hexanoyl-CoA (347.2 µM) and butyryl-CoA (75.11 µM) (Table 3.1). One 

possible reason for this might be lower substrate availability to enzyme either due to rapid 

degradation of acetyl-CoA by thioesterases  [61] and/or competition from other acetyl-CoA 
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Table 3.1 Enzyme kinetic parameters for different acyl-CoA substrates for microsomal 
EaDAcT 

Acyl-­‐CoA Km	
  (µM) Vmax	
  (pmoles	
  min
-­‐1
) Vmax/Km	
  (	
  ml	
  min

-­‐1
) 

Acetyl-­‐CoA 590.4 30.8 0.52 
Butyryl-­‐CoA 75.1 6.4 0.85 
Hexanoyl-­‐CoA 347.2 5.7 0.16 

 

Figure 3.3 EaDAcT has a high preference for acetyl-CoA. Enzyme activity curves for 
EaDAcT exposed to different acyl-CoA donor substrates. Assays were performed from the same 
batch of microsomes under similar conditions using [1,2-13C2] acetyl-CoA, butryl-CoA or 
hexanoyl-CoA. Reaction products were quantified using ESI-MS by normalization to a 3-acetyl-
1,2-pentadecanoin internal standard. Curves were fitted using Michaelis-Menten non-linear 
regression fit using Graph-pad Prism software. Values are expressed as mean ± SD (n=3). 

utilizing reactions occurring simultaneously in the microsomes. The increasing incorporation of 

acetyl-CoA into non-specific products was noted in the radioactive assays with increasing acetyl-

CoA concentrations (data not shown). Thus, higher overall acetyl-CoA concentrations in the 

assay mixture would be needed to reach actual Vmax and Vmax/2, resulting in higher apparent Km. 

Kcat value could not be calculated due to inability to measure the actual enzyme concentration. 

As the same amount of total protein was used for all the assays, instead of calculating specificity 
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constant Kcat/Km, the Vmax/Km value was used to determine the specificity. As a consequence of 

the higher Km value of acetyl-CoA, Vmax/Km of acetyl-CoA was little higher than that for 

butyryl-CoA (Table 3.1). However, both the overall Vmax values and average velocity (Vav) 

values for any given substrate concentration were substantially higher for acetyl-CoA than for 

butyryl-CoA and hexanoyl-CoA (Table 3.1 and Fig. 3.3). This demonstrates that EaDAcT 

preferentially utilizes acetyl-CoA to esterify an acetyl group on to the sn-3 position of DAG 

compared to other higher chain length acyl-CoAs. 

3.3.3 DAG acyl acceptor substrate specificity of EaDAcT 
Information about EaDAcT’s preference for DAG is important in order to synthesize 

acetyl-TAG with desired fatty acid composition at the sn-1/2 positions. The two important 

parameters that are crucial to chemical and physical properties of acetyl-TAG are chain length 

and saturation indices of constituent fatty acids. Previous studies have shown that EaDAcT could 

esterify a DAG containing short chain fatty acids [12]. Hence, to further determine the 

preference of EaDAcT for DAG with different chain length fatty acid and saturation indices, in 

vivo and in vitro studies were conducted in yeast as the model system. 

3.3.3.1 EaDAcT has high preference for unsaturated fatty acid containing DAGs in vitro 
Detailed in vitro kinetic studies to determine different chain length DAG specificity for 

any membrane bound enzyme are difficult to perform due to the variable solubility of 

hydrophobic substrates containing different chain length fatty acids in the aqueous buffer 

solution. Because of this, the result of any specificity assay using different chain length DAGs  

will be dependent on both the actual enzyme specificity and accessibility of DAG substrates to 

the enzyme. We attempted three approaches to achieve equal accessibility of DAG substrates in 

a microsome based assay system. The first was to remove all the endogenous DAG from the 

microsomes and supply exogenous DAG to the enzyme by solubilizing them into microsomes. 

To achieve this, microsomes were washed with acetone to remove DAGs. Though this strategy 

successfully removed most of DAG, the enzyme lost its activity (data not shown). The second 

strategy was to purify EaDAcT by solubilization of microsomes and reconstitution into 

liposomes. However, the solubilization of EaDAcT using different detergents and its 

reconstitution in to lecithin liposomes also resulted in to loss of enzyme activity. The third 

strategy was to express the enzyme in a cell free translation system in presence of liposomes and 

then provide equivalent amount of DAGs in liposomes. Here, a commercially available 
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translation system containing all the components of protein synthesizing machinery of wheat 

germ was used. This system does not contain any membranes for insertion of membrane proteins 

and hence was supplemented with lecithin liposomes to incorporate the membrane protein. In 

this system, the protein was expressed very well but the activity assay did not result in any 

product formation, probably due to improper folding of enzyme during reconstitution in to 

liposomes.  

Therefore, to determine DAG preference of EaDAcT, we performed selectivity assays 

instead of specificity assays. These assays were performed by providing different DAGs at 

equivalent concentrations all in a single assay instead of using one substrate at a time. The 

enzyme preference of different DAGs can then be determined by comparing their relative 

incorporation in to acetyl-TAG product.   

DAG molecular species containing monounsaturated 16 and 18 carbon fatty acids were 

found to be the dominant species in yeast microsomes (Fig 3.4a). In vitro selectivity assays were 

performed for these DAG species using different concentrations of [1,2-13C] labeled acetyl-CoA. 

The concentration of acetyl-TAG species formed during the reaction was very low (100-200 

pmoles) compared to corresponding DAG species initially present in microsomes (µmoles) (Fig 

3.4 a and b). The low amount of acetyl-TAG synthesis in the assay might be due to factors such 

as utilization of acetyl-CoA in side reactions of other proteins in microsomes, partial degradation 

of added acetyl-CoA and low accessibility of microsomal DAGs to the enzyme. Although the 

initial amounts of DAG molecular species with same number of carbons with two double bonds 

was lower than DAGs with one double bond, incorporation of the former into acetyl-TAGs was 

significantly higher than the latter for all the different concentrations of acetyl-CoA (Fig 3.4 a 

and b). These results indicate that EaDAcT preferentially acetylates DAG species with higher 

unsaturation levels than those with lower saturation levels. The DAG species containing only 

saturated fatty acids were not incorporated at all in acetyl-TAGs (Fig. 3.4b). This might be be 

due to their very low abundances in microsomes (Fig 3.4a), due to low preference of EaDAcT 

for these DAGs or a combination of both effects. 
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Figure 3.4 EaDAcT has high preference for unsaturated fatty acid containing DAGs in 
vitro. Graphs representing the amount of different molecular species of (a) sn-1,2-DAG initially 
present in microsomes and (b) acetyl-TAGs formed during the reaction in vitro. The acetyl-
TAGs and sn-1,2-DAGs were analyzed from same batch of microsomes from yeast expressing 
EaDAcT grown for 24 h in synthetic medium with galactose. Asterisks represent significant 
difference between levels of either DAG species or acetyl-TAG molecular species (* p<0.05; 
unpaired t-test). Values are expressed as mean ± SD (n=3 for DAGs and n=6 for acetyl-TAG). 
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Figure 3.5 EaDAcT can acetylate sn-1,2-DAGs containing different chain length fatty acids. 
Positive ESI mass spectra obtained from the neutral loss of [1,2-13C2] ammonium acetate from 
total lipids extracted from an in vitro EaDAcT activity assay using [1,2-13C] acetyl-CoA 
incubated with or without any exogenous sn-1,2-DAGs as substrates. Peaks correspond to m/z 
values of the [M+NH4]+ adduct of the intact acetyl-TAG molecule. The number of acyl carbons 
in each series of TAG molecules is indicated; for clarity, the number of double bonds (x) is not 
defined. 

3.3.3.2 EaDAcT can acetylate sn-1,2-DAGs with medium chain length fatty acids in vitro 

One of goal of my work is to synthesize low molecular weight acetyl-TAGs by 

incorporating medium chain length fatty acids (MCFA) to lower their viscosity further (see 

chapter 5). However, no previous information regarding EaDAcT preference for DAG 
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containing MCFAs was available.  Hence EaDAcT activity for DAGs containing MCFA was 

tested in yeast microsomes containing EaDAcT. 

Very low amounts of DAG species containing the MCFAs lauric acid (12:0) and myristic 

acid (14:0) were also noted in the microsomes probably due to low amounts of 12:0 and 14:0 

fatty acids in the yeast 	
  [58,68]. To increase the concentration of DAGs containing MCFA, 1,2-

dilauroyl-sn-glycerol and 1,2-dimyristoyl-sn-glycerol DAGs were added to the microsomes, but 

levels equivalent to endogenous DAGs could not be achieved (data not shown). Hence, 

selectivity assays comparing DAGs containing MCFAs with endogenous DAGs were not 

possible.  Therefore, qualitative in vitro assays using microsomes were done to demonstrate 

activity of EaDAcT towards sn-1,2-DAGs containing medium chain fatty acids. The ESI-MS 

spectra showed peaks corresponding to the presence of 3-acetyl-1,2- dilauroyl-sn-glycerol and 3-

acetyl-1,2- dimyristoyl-sn-glycerol when microsomal EaDAcT was incubated with exogenous 

DAGs containing lauric acid and myristic acid respectively (Fig. 3.5). This indicates that 

EaDAcT could esterify sn-1,2-DAGs containing lauric acid, myristic and stearic acid. These 

results suggest that EaDAcT should be able to synthesize MCFA containing acetyl-TAGs in oil 

seed crops.   

3.3.3.3 EaDAcT can acetylate sn-1,2-DAGs containing an sn-2 acetyl group 
To test the effect of the presence of another acetate group in a DAG on EaDAcT activity, 

we tested a DAG with an acetate group at sn-2 position. The results showed that even a DAG 

with an acetate group at sn-2 position could be acetylated by EaDAcT at sn-3 position (Fig. 3.6).  

The results from these in vitro studies along with results from previous study 	
  [12] 

proved that EaDAcT could potentially acetylate any sn-1,2-DAGs containing saturated and 

unsaturated fatty acids with chain length varying from 2-18. However, EaDAcT did not show 

any activity towards sn-1 MAGs, sn-2 MAGs or sn-1,3-DAGs (data not shown). These results  

suggest that EaDAcT is highly specific for esterifying acetyl group to only the sn-3 positions of 

an sn-1,2-DAG acceptor substrates. 
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Figure 3.6 EaDAcT can acetylate sn-1,2-DAGs containing an sn-2 acetyl group. Positive ESI 
mass spectra obtained from the neutral loss of [1,2-13C2] ammonium acetate from total lipids 
extracted from an in vitro EaDAcT activity assay using [1,2-13C] acetyl-CoA incubated with or 
without any exogenous 1-oleyl-2-acetyl-sn-glycerol as substrates. Peaks correspond to m/z 
values of the [M+NH4]+ adduct of the intact acetyl-TAG molecule. The number of acyl carbons 
in each series of TAG molecules is indicated; for clarity, the number of double bonds (x) is not 
defined. 

3.3.3.4 EaDAcT can acetylate sn-1,2-DAGs with MCFAs in yeast 

The ability of of EaDAcT to acetylate DAGs with different chain lengths in vivo was 

tested in the quadruple knockout yeast strain H1246 that lacks endogenous TAG production  

[69]. The total lipid fraction of this yeast strain overexpressing EaDAcT was analyzed using 

ESI-MS neutral loss scan to detect acetyl-TAGs and residual DAGs. The DAGs extracted from 

the yeast were chemically acetylated to convert them to corresponding acetyl-TAG, which can be 

easily quantified using our established ESI-MS neutral loss scan based method.  

The results showed that 16 and 18 carbon fatty acid containing acetyl-TAGs molecular 

species were the most abundant molecular species in yeast. Acetyl-TAG species with MCFAs  

(12 and 14) were also present in lipid extract, but in very small amounts (Fig. 3.7a and c).  
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Figure 3.7 The abundance of an acetyl-TAG molecular species and its corresponding sn-1,2-
DAG in vivo. Positive ESI mass spectra generated by scanning for the neutral loss scan of 
ammonium acetate from the acetyl-TAG (a) or chemically acetylated sn-1,2-DAG fraction (b)  
from yeast expressing EaDAcT. Peaks correspond the to m/z values of the [M+NH4]+ adduct of 
the intact acetyl-TAG or chemically acetylated sn-1,2-DAG molecule. The number of acyl 
carbons in each series of TAG molecules is indicated; for clarity, the number of double bonds (x) 
is not defined. Quantification of different acetyl-TAG molecular species (c) and chemically 
acetylated sn-1,2-DAG molecular species (d) was done by normalizing their signal to 3-acetyl-
1,2-dinonadecanoyl-sn-glycerol internal standard signal spiked to same amounts in both 
fractions. DAG and acetyl-TAGs molecular species are represented as X:Y, where X represents 
the total number of  carbons and Y represents the number of double bonds. Values are expressed 
as mean ± SD (n=3). 

A similar trend was observed for the amounts of long and medium chain fatty acid containing 

DAGs. The relatively low amounts of MCFA-containing acetyl-TAGs and DAGs might be due 

to the relatively low amount of C12:0 and C14:0 fatty acids compared to long chain fatty acids in 

yeast 	
  [58,68]. However, these results indicate that EaDAcT can acetylate a variety of sn-1,2-

DAGs containing medium and long chain fatty acids in vivo. These results are consistent with 
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the in vitro results and again emphasize that EaDAcT could be used for producing low molecular 

weight acetyl-TAGs in plants. 

3.3.3.5 EaDAcT preferentially acetylates DAGs with high saturation indices in vivo 

The estimation of DAG selectivity of EaDacT based on the amounts of corresponding 

acetyl-TAG species in this in vivo system would not be accurate due to large variability in 

amounts of sn-1,2-DAGs available to EaDAcT (Fig 3.7). Hence, a normalized value of acetyl-

TAG molecular species to the corresponding residual sn-1,2-DAGs species was calculated to 

determine relative selectivity of EaDAcT for endogenous DAGs. A higher acetyl-TAG/sn-1,2-

DAG ratio for a particular DAG species would be directly correlated to greater conversion of 

that DAG to its corresponding acetyl-TAG species and hence is a better substrate for EaDAcT 

compared to other DAGs. Results of analysis of acetyl-TAG/sn-1,2-DAG ratio for abundant 

acetyl-TAG molecular species showed higher activity of EaDAcT towards DAGs with higher  

 

 
 

Figure 3.8 EaDAcT preferentially acetylates DAGs with higher unsaturation indices in vivo. 
A plot of ratios of amounts of acetyl-TAGs to corresponding sn-1,2-DAG molecular species 
relative to internal standard 3-acetyl-1,2-dinonadecanoyl-sn-glycerol.  The acetyl-TAGs and sn-
1,2-DAGs were analyzed from same amount of total lipids extracts of yeast expressing EaDAcT 
grown for 24 h in synthetic medium with galactose. Acetyl-TAGs molecular species are 
represented as X:Y, where first letter represents total number of  carbons and second letter 
represents number of double bonds. Asterisks represent significant difference (*p<0.05; unpaired 
t-test). Values are expressed as mean ± SD (n=3).  
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unsaturation levels (Fig. 3.8). These results are consistent with the in vitro results, which also 

showed high preference of EaDAcT for DAGs with high unsaturation levels (Fig. 3.4). Low 

abundance DAGs containing lauric, myristic, palmitic and stearic acid are not included in this 

analysis because of high possibility of error in their measurement. 

Together, these studies showed that EaDAcT can acetylate a wide variety of sn-1,2-

DAGs with differences in chain lengths and saturation indices under in vivo and in vitro 

conditions. Although, the actual specificity of EaDAcT for the different DAG species could not 

be determined due to differential solubility and availability of these DAGs, a relative estimate of 

DAG acceptor preference was gained from acetyl-TAG/DAG ratio obtained from in vivo and in 

vitro assays. Based on these results, it appears that preference of EaDAcT for DAG increases 

with an increase in the unsaturation index of the substrate. 

3.3.4 Fatty alcohol acyl acceptor substrate specificity of EaDAcT 
Based on sequence alignment, the EaDAcT protein shows high similarity and identity to 

the Jojoba wax synthase and the Arabidopsis sterol acyltransferase 	
  [12]. Hence, the activity of 

EaDAcT towards various alcohols and sterols was tested under in vitro and in vivo conditions. In 

earlier in vitro assays, we did not see formation of any [1-14C] sterol acetate from endogenous 

sterols in microsomes. To eliminate the possibility that no sterols are present in microsomes, we 

also tested sterol acyltransferase activity with exogenous addition of cholesterol. However, no 

cholesterol acetate product was observed, further confirming that EaDAcT does not possess 

sterol acetyltransferase activity. 

3.3.4.1 EaDAcT can acetylate a variety of aliphatic chain fatty alcohols in vitro 
Before studying the substrate specificity, the assay conditions for alcohol 

acetyltransferase using yeast microsomes containing EaDAcT were optimized. Unlike DAGs, 

fatty alcohols are not present endogenously in the yeast microsomes and needed to be supplied 

exogenously. The addition of DMSO was found to be necessary to provide the activity due to 

insoluble nature of fatty alcohols in an aqueous buffer system (Fig. 3.9a). A concentration of 10-

15 % (v/v) in the assay mixture was optimal for activity. The alkyl acetate product was found to  
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Figure 3.9 Optimization of in vitro wax synthase assay conditions for microsomal EaDAcT. 
Autoradiograms of TLC separation of total lipids extract microsomal EaDAcT incubated with 
different fatty alcohols and [1-14C] acetyl-CoA (a) Effect of addition of DMSO on alkyl acetate 
synthesis (b) Effect of different detergents on the activity of EaDAcT for oleyl acetate synthesis. 
In two numeral code nomenclature of fatty alcohols first and second numeral represent number 
of carbons and number of double bonds respectively. NP-40, nonyl phenoxypolyethoxylethanol-
40; OTG, octyl beta-thio-glucoside; OBG, octyl-beta-glucoside; SD, sodium deoxycholate.  

be much lower than the acetyl-TAG product. This might either be due to lower reactivity of 

EaDAcT towards alcohols than towards DAGs or low solubility and accessibility of alcohol 

substrate to microsomal EaDAcT. Hence, a number of detergents at concentrations which did not 

result in loss of enzyme activity, were tested to increase the alkyl acetate product formation. The 

product accumulation was maximum when DMSO was used, followed by addition of non-ionic 

detergents in the order brij-35 (0.3%) > NP-40 (0.005%) > OTG (0.05%) > OBG (0.025%) (Fig. 

3.9b).  Addition of the ionic detergent sodium deoxycholate was also not effective in producing 

alkyl acetate product. DMSO was still found to provide the best product formation and was used 

for later studies. EaDAcT produced alkyl acetate product for a pH range between 7.0-8.5 with 

maximum oleyl acetate production at a pH 7.5 (Fig. 3.10a). The oleyl acetate accumulated 

sharply with an increase in the oleyl alcohol substrate concentration from 25 µM to 125 µM. A 

gradual decrease was observed when the oleyl alcohol concentration was increased from 125 µM 

to 1000 µM probably due to detergent effects of the hydrophobic fatty alcohol substrate (Fig. 

3.10b). Hence, a pH of 7.5 and an oleyl alcohol concentration of 125 µM were selected for 

further assays. Once the assay conditions were optimized, specificity assays for fatty alcohol 

acceptors were done for alcohols with carbon chain lengths varying from 8 to 22. No product 
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was detected for either very short chain fatty alcohols 8:0-OH and 10:0-OH or very long chain 

18:0-OH and 22:0-OH.  

 

Figure 3.10 Optimization of in vitro wax synthase assay conditions for microsomal 
EaDAcT. Plots of EaDacT activity at different pH and oleyl alcohol concentrations. (a) Effect of 
assay pH on oleyl acetate synthesis. (b) Effect of different oleyl alcohol concentrations on oleyl 
acetate synthesis by EaDAcT.  

Higher amount of alkyl acetates were produced from 12:0-OH and 14:0-OH with only a very 

small amount for longer chain fatty alcohols 15:0-OH, 16:0-OH and 17:0-OH (Fig. 3.11). These 

results suggest that EaDAcT has higher specificity towards fatty alcohols with medium chain 

length as compared to either short or long chain fatty alcohols. Aromatic alcohols such as 

cinnamyl alcohol, benzyl alcohol and 3-phenyl-1-propanol were also tested as substrates but no 

products were detected (data not shown). 

 Further characterization of the alcohol acetyltransferase activity of EaDAcT along with 

characterization of another native yeast acetyltransferase was done in collaboration with a 

partner group in Sweden. In addition to producing low amounts of alkyl acetates, in vitro alcohol 

acetyltransferase enzyme assay using yeast microsomes also resulted in the formation of 

comparatively large amounts of acetyl-TAGs due to presence of endogenous DAGs (Fig. 3.9 a 

and b). This complicated the interpretation of alcohol specificity results due to competition 

between two activities of EaDAcT for the same acyl-CoA donor substrate. Ideally, a microsomal 

assay system devoid of endogenous DAGs would provide better measure of specificity of 

EaDAcT for alcohols by avoiding any competing DAcT reactions. Washing of microsomes with 

cold (-80 oC) acetone removes neutral lipids from microsomes without greatly affecting the 

enzyme activity 	
  [70]. Our partner group in Sweden tested a large variety of saturated and 

unsaturated fatty alcohols varying in chain length and number and position of double bonds in a 
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better in vitro system using acetone washed microsomes. Additionally, feeding assays were 

performed by adding different fatty alcohols in the yeast growing medium. In their study, similar 

trends to ours were observed for different chain length saturated alcohols. Also, it was found that 

EaDAcT showed higher activity towards unsaturated fatty alcohols than their corresponding 

saturated counterparts 	
  [71]. 

 

 
 

Figure 3.11 EaDacT has high specificity for medium chain length alcohols compared to 
short and long chain alcohols in vitro. Autoradiogram of total lipids extracted from in vitro 
assay of microsomal EaDAcT incubated with equal amounts of different chain length alcohols 
and [1-14C] acetyl-CoA.  

3.3.4.2 EaDAcT can acetylate fatty alcohol produced in yeast to form alkyl acetates in vivo 
The in vivo alcohol acetyltransferase activity of EaDAcT was also examined by 

heterologous coexpression of EaDAcT and honeybee fatty alcohol reductase (AmFAR1) genes to 

produce the fatty alcohols in vivo. AmFAR1 was previously reported to produce fatty alcohols in 

the yeast background H1246 hence was used for this study [67]. The results showed that the 

yeast expressing AmFAR1 produced hexadecanol (16:0-OH) and octadecanol (18:0-OH) (Fig. 
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3.12a). The amount of 18:0-OH was almost 9 fold greater than levels of 16:0-OH (Fig. 3.12b) 

which was in agreement with the results reported before in this yeast strain expressing AmFAR1 	
  

[67]. Two extra peaks were observed for the yeast coexpressing EaDAcT and AmFAR1  

 

 
 

Figure 3.12 Yeast expressing AmFAR1 produce fatty alcohols in vivo. Total lipids were 
extracted from S. cerevisiae H1246 expressing empty vector, Apis mellifera fatty acid reductase 
(AmFAR1), EaDAcT or EaDAcT+AmFAR1 genes and separated by TLC. (a) GC-MS 
chromatograms of fatty alcohol fraction after TMS derivatization. (b) Quantification of fatty 
alcohols using GC-MS. Values are expressed as mean ± SD (n=3). 
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Figure 3.13 EaDAcT can acetylate fatty alcohols in vivo. Total lipids were extracted from S. 
cerevisiae H1246 expressing empty vector, Apis mellifera fatty acid reductase (AmFAR1), 
EaDAcT or EaDAcT+AmFAR1 genes and separated by TLC. (a). GC-MS chromatograms of 
alkyl acetate fraction. (b). Mass spectrum of stearyl acetate (M=312.2) labeled with 
acharacteristic fragment ions such as acetate [CH3COOH2]+, loss of an acetyl group from parent 
ion [M-60] and loss of an acetyl and an ethylene group [M-60-28]. (c). Quantification of alkyl 
acetates using GC-MS. Values are expressed as mean ± SD (n=3). 

compared to empty vector, AmFAR1 and EaDAcT alone controls (Fig. 3.13a). The mass spectra 

of bigger peak matched the characteristic fragmentation pattern of stearyl acetate confirming the 

production of alkyl acetate by EaDacT in vivo (Fig. 3.13b). However, the amounts of alcohol 

acetates produced were significantly lower than the alcohols produced (Fig 3.13c). This might 
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indicate the low preference of EaDAcT for these long chain saturated alcohols, again in 

agreement with the in vitro assay results.  

3.4 Discussion 

EaDAcT is an unusual MBOAT in that it is the only known member of the enzyme 

family which uses the shortest possible acyl-CoA donor, namely acetyl-CoA. Previous work 

showed that it could not utilize oleyl-CoA as substrate, but no information was available 

regarding its ability to use acyl-CoAs with chain lengths falling in between the range of 2 to18 

carbons. Another unusual aspect of this enzyme is its rather close phylogenetic relationship with 

the jojoba wax synthase and Arabidopsis sterol acyltransferase rather than with the 

triacylglycerol producing diacylglycerol acyltransferase (DGAT1) enzymes, given that EaDAcT 

produces unusual TAG molecules called acetyl-TAGs. Hence, the presented work was done to 

better define the substrate specificity of EaDAcT to further understand its unusual activity, 

which will be useful in its future use for various applications.  

This study showed that though EaDAcT can utilize other acyl donors with short acyl 

chains, it had a high preference for acetyl-CoA (Fig. 3.3).  Unexpectedly, the Km values obtained 

were substantially higher (Table 3.1) than the endogenous acetyl-CoA concentrations in plant 

and yeast. Interference from other enzymes and proteins in the microsomal system competing for 

externally added acetyl-CoA substrate might be the reasons for the high apparent Km. A purified 

enzyme system is therefore required for the assay to determine the actual Km. But the more 

valuable result was that EaDAcT was able to produce large amounts of acetyl-TAGs by 

esterifying acetate from acetyl-CoA on to DAG molecules (Fig. 3.3). This was a very useful 

result especially for a future strategy where very high acetyl-TAGs production will need to be 

achieved in oil seed crops by overexpression of EaDAcT and providing it with increased flux of 

acetyl-CoA using other metabolic engineering strategies. Also, EaDAcT showed no activity with 

acyl-CoA molecules with acyl groups containing more than 6 carbons.  (Fig. 3.2). This means 

that in any oil seed crop designed to produce acetyl-TAGs by EaDAcT expression, there will be 

no competing side reactions of EaDAcT with abundantly available long chain acyl-CoA. This 

increases the probability of achieving future goals of very high acetyl-TAGs production in 

engineered oil seed crops. A goal of my study is to produce low molecular weight acetyl-TAGs 

by incorporating MCFAs in them. For that, EaDAcT will be expressed in Camelina lines 
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producing high amounts of MCFAs. Results from this study suggest that EaDAcT will not able 

be to use medium chain acyl-CoAs present in those lines on to DAGs. Hence the synthesis of  

undesirable MCFA containing TAGs by EaDAcT as a side reaction will be completely avoided.  

Similarly, the knowledge of DAG acceptor specificity was important for producing oil 

seed lines with high amounts of short and medium chain fatty acids containing acetyl-TAG in 

final part of project. The initial plan was to conduct the DAG acceptor specificity study for 

different chain length DAG substrates by providing equivalent amounts of short, medium and 

long chain DAGs. Yeast microsomes were found to have endogenous sn-1,2-DAGs which were 

useful for conducting acyl-CoA assay without the need to add any exogenous DAGs. However, it 

was difficult to outcompete these endogenous DAGs due to differential solubility of added 

DAGs. A few other possible strategies to control for the availability of DAG substrate were tried 

in this study but proved to be unsuccessful. Hence, preference of EaDAcT the for DAGs 

abundantly available endogenously in microsomes and yeast cells was determined using in vitro 

and in vivo assays respectively. The levels of each endogenous sn-1,2-DAGs species initially 

present in the microsomes were determined and compared to the acetyl-TAGs formed during the 

assay for different acetyl-CoA concentrations. From the data it was inferred that EaDAcT 

preferentially acetylated DAGs with two double bonds instead of DAGs with one double bond 

even though the latter was present at higher concentrations (Fig. 3.4). Under in vivo conditions, 

the ratio of amount of acetyl-TAG species produced to the residual amount of corresponding 

DAG species was calculated to get a better measure of specificity (Fig. 3.8). This ratio provided 

a normalized value of acetyl-TAG and accounted for initial variability in amounts of different 

DAG species. The results from in vivo studies matched with the in vitro results, which suggested 

that EaDAcT prefers DAGs with high unsaturation indices. Results from both of these studies 

suggested that EaDAcT preference for a DAG increases with an increase in its unsaturation 

index. However, EaDAcT specificity towards DAGs containing MCFAs, could not be 

determined due to their very low abundances as endogenous DAGs in yeast microsomes and low 

solubility as exogenous DAGs. Hence qualitative in vitro assays were performed to determine 

whether EaDAcT could acetylate the DAGs containing MCFAs. Indeed, it was found that 

EaDAcT could acetylate DAGs containing MCFAs to produce acetyl-TAGs (Fig 3.5). However, 

very low amount of acetyl-TAGs produced might indicate either low specificity of EaDAcT for 

these DAGs or low accessibility of these DAGs to enzyme. With the knowledge that EaDAcT 
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can produce acetyl-TAGs containing MCFA and the urgency to start plant transformations early 

to obtain homozygous lines, we went ahead and expressed EaDAcT in Camelina lines producing 

DAG containing MCFAs to produce acetyl-TAG with lower molecular mass. 

Given the phylogenetic similarity of EaDAcT to jojoba wax synthase, the fatty alcohol 

esterification activity of EaDAcT was tested. The results from this study (Fig 3.11) and a 

collaborative study  [62] concluded that EaDAcT has high preference for medium chain 

saturated and unsaturated alcohols. This activity was later successfully tested by our 

collaborators through transient expression in tobacco plant to produce variety of saturated and 

unsaturated alcohol acetates, which are major components of insect pheromones 	
  [62]. Yeast 

expressing EaDAcT fed with different chain length fatty alcohols also showed higher specificity 

for the medium chain length fatty alcohols compared to long chain fatty alcohols	
  [71].  

Interestingly, small but significant amounts of saturated and unsaturated alkyl acetates were 

observed in the seed and arils of various Euonymous species 	
  [48]. Given this additional activity 

of EaDAcT, it is tempting to speculate that orthologs of this enzyme might also be involved in 

the in vivo production of these alkyl acetates in these acetyl-TAG producing species. 

3.5 Conclusions 

Overall, it can be concluded that EaDAcT can use a variety of acyl donor and acceptor 

substrares but it has high preference for acetyl-CoA and DAGs. For DAGs it prefers more 

unsaturated molecules. However, it can acetylate DAGs containing MCFA to produce acetyl-

TAGs. This enzyme has already been expressed successfully in the model plant Arabidopsis and 

the oil seed crop Camelina and soybean for modification of physical properties of their seed oil	
  

[13]. The results from this study provided important information regarding the enzyme’s ability 

to use DAGs containing medium chain fatty acids to produce reduced molecular mass acetyl-

TAGs. As discussed in the next chapter, this feature will be utilized to produce MCFA acetyl-

TAGs in Camelina in order to produce a low viscosity straight vegetable oil biofuel. 
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Chapter 4 - Camelina sativa: an ideal platform for the metabolic 

engineering and field production of industrial lipids 

4.1 Introduction 

Dwindling cheap fossil fuel reserves and concerns about climate change have increased 

the need to obtain fuel and chemical products from renewable sources. While plant oils have 

long been used as sources of fuel and as feedstocks for industrial chemistry, commercially grown 

oil seed crops only synthesize a low diversity of fatty acids, limiting the chemical functionality 

of the oil. However, within the plant kingdom a great diversity of lipids has been found with 

different structures and fatty acids, many of which confer chemically useful functions  [72]. The 

isolation of enzymes from different plants and an increased understanding of metabolic fluxes in 

developing seeds have allowed the production of high levels of unusual lipids in transgenic 

seeds. Until recently, much of this work was pioneered in the model plant Arabidopsis thaliana, 

which is easily transformed and possesses a great many mutants affecting different aspects of 

lipid biosynthesis  [73,74]. Not only have these mutants provided insights into the synthesis of 

fatty acids and subsequent flux into storage lipids, but they have also provided a useful genetic 

background for the synthesis of unusual fatty acids. However, the small seed yield and lack of 

large scale field growth options have limited the ability to test the functionality of any transgenic 

oil produced in Arabidopsis. Instead, insights obtained from work with this model species 

typically have had to be transferred to oil seed crops. Here we describe the use of the emerging 

oil seed crop Camelina sativa as an appealing alternative for the production of modified lipids in 

transgenic plants. We will discuss why Camelina is particularly attractive as an industrial seed 

crop, both from an agronomic perspective as well as from a seed metabolic engineering system. 

To illustrate this potential of Camelina, we will describe examples of the metabolic engineering 

of unusual lipids in this oil seed crop. In particular, we focus on the synthesis of very high levels 

of acetyl-TAGs in Camelina, the highest accumulation of unusual lipids achieved so far in 

transgenic seeds. Further, the field growth of these high acetyl-TAG lines allowed the production 

of large quantities of these unusual lipids, permitting meaningful property testing. 
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4.2  Camelina sativa: an underdeveloped oil seed crop 

Camelina sativa, also known as false flax or gold of pleasure, is a member of the Brassicaceae 

family. Despite appearing to have been used as an oil seed crop since the Iron Age, Camelina’s 

use waned during the Middle Ages  [75]. However, its various positive agronomic and 

environmental features, along with the development of tools for genetic manipulation, have 

contributed to an increased interest of scientists and farmers in Camelina for use as an industrial 

oilseed crop.  

 

Figure 4.1 Fatty acid composition of seed oil from canola, soybean and Camelina. Values are 
from Putnam et al. (1993). 

4.2.1 Fatty acid profile of Camelina 
Camelina oil contains high proportions of the polyunsaturated fatty acids (PUFAs) 

linoleate (18:2)1 and linolenate (18:3) compared to soybean and canola oil (Fig. 4.1). This high 

degree of unsaturation renders Camelina oil highly prone to oxidation making it less suitable for 

certain applications. For example, biodiesel derived from Camelina possesses a lower oil 

stability index (OSI) compared to biodiesel from other feedstocks  [76]. Below we describe 

successful mutagenic and biotechnology approaches to decrease the PUFA content of Camelina 

oil to make it more oxidatively stable. 

4.2.2 Agronomic advantages of Camelina 
Camelina has a number of excellent agronomic properties which make it valuable as an 

oilseed crop. For example, Camelina has a relatively short growing season (85 to 100 days), and 

possesses winter and spring variaties, facilitating rotation with other crops  [77]. Further, the oil 
                                                
1 Fatty acids are represented as X:Y where X indicates the number of carbon atoms and Y represents the number of 

double bonds. In some situations, the position of double bonds from the carboxyl group is designated by delta (∆). 

Therefore linoleate can be represented as 18:2 or 18:2∆9,12. 

Soybean CamelinaCanola

16:0
18:0
18:1
18:2
18:3
20:1
22:1
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yield of Camelina (variable from 400 to 850 kg ha-1, depending on the study) is typically 

comparable with that of Brassica juncea and Brassica rapa and higher than that of soybean  

[77,78]. While the oil yield is somewhat lower than that of canola, studies have shown that the 

cost of production of seed oil from Camelina can be less than half that from rapeseed due to 

comparatively low input requirements  [79]. For example, Camelina requires only low amounts 

of fertilizer, with optimum nitrogen and phosphorus requirements of about 80-100 kg ha-1 and 50 

kg ha-1, respectively  [80,81]. Increasing the nitrogen content above optimum was found to 

increase seed yield depending on soil potential and precipitation  [82,83]. Camelina is also 

capable of tolerating conditions of water stress and is therefore less dependent on irrigation. For 

example, in one drought stress study, Camelina possessed a higher seed yield (1383 kg h-1) than 

B. juncea (933 kg ha-1) and Brassica carinata (711 kg ha-1)  [84]. Similarly, a two-year study in 

western Canada showed high drought and flea beetle resistance of Camelina over commercially 

grown crops such as B. rapa and canola  [85]. The evapotranspiration of Camelina was found to 

be 332 to 371mm, much lower than that of vegetable and grain crops (600-655mm), offering one 

explanation for the increased tolerance of low water stress  [86]. Camelina also appears to be 

more resistant to diseases like black spot (Alternaria brassicae) and blackleg (Leptosphaeria 

maculans) which are important pathogens of rapeseed and canola  [87-89]. Additionally, some 

Camelina genotypes are resistant to other common Brassicaceae diseases like sclerotinia stem 

rot, brown girdling rot and downy mildew  [90]. Such germplasm could therefore be used to 

breed for resistance in other backgrounds.  

4.2.3 Environmental benefits of Camelina as an industrial oilseed crop. 
Ideally, crops grown for industrial feedstocks or biofuel purposes should not displace 

other crops grown for food. The agronomic features of Camelina mean that it is well suited for 

this role. For example, its low water and fertilizer requirements mean it can be cultivated on 

marginal lands. However, recent work has shown that other alternative biofuel crops, such as 

Jatropha curcas, require some irrigation for optimal growth and need to be supplemented with 

fertilizers to produce seed oil if grown on marginal lands  [91]. These results suggest that even 

for crops supposedly suitable for growth on marginal lands, yield under unfavorable conditions 

without some sort of agricultural input will be low. 

Therefore, instead of trying to grow Camelina on marginal lands, a more effective 

strategy would be to take advantage of its short generation time and cultivate it on currently used 
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cropland as part of multi crop rotation system. For example, Camelina can be grown as a rotation 

crop during the fallow years with wheat and dryland cereals, like oats and barley, without 

affecting the yield of these crops  [92]. The same study predicted that the roughly 5-7 million 

acres of land available through such a fallow rotation would provide a Camelina oil yield of 750 

to 1000 million gallons per year. Yield returns of Camelina- soybean and Camelina-sunflower 

were 82% and 72% respectively of their monocropped counterparts however the net economic 

returns for Camelina-soybean double crop were higher than soybean alone  [93]. In a subsequent 

study, winter Camelina grown as double crop and relay crop with soybean showed similar net 

economic returns compared to the mono-cropped full season soybean  [94]. Further, life cycle 

assessments of biodiesel produced from camelina grown under different conditions, showed 

reduced energy, non-renewable energy inputs and overall green house gas emissions compared 

to diesel fuel as well as biodiesel from other oilseed crops  [95,96], making Camelina a more 

environmental friendly substitute than other biofuel crops.  

4.2.4 Manipulating lipid metabolism in Camelina 
In addition to its useful agronomic traits, the recent development of tools and resources 

for Camelina have facilitated its emergence as an ideal platform for the metabolic engineering of 

oil composition and subsequent growth in the field. Importantly, Camelina can be rapidly and 

easily transformed using agrobacterium-mediated floral-dip methods  [97,98]. The development 

of these methods makes Camelina transformation much simpler and quicker compared to the 

tissue-culture based approaches required for the transformation of other oilseed crops. 

Transgenic seeds are easily identified using a variety of selectable markers, including seed 

fluorescence and resistance to specific herbicides or antibiotics  [98]. The existence of multiple 

selectable markers is useful for stacking different transgenic traits. Additionally, knowledge of 

the seed transcriptome  [99] and the recent sequencing of the genome  [100] allow current and 

future work in Arabidopsis to be easily applied to Camelina. For example, analysis of genomic 

sequence revealed that over 90% of the Arabidopsis genes involved in lipid metabolism were 

also present in the Camelina genome  [73,100]. Similar results were also obtained through 

analysis of the seed transcriptome, which suggested that approximately 80% the expressed lipid 

related genes were 80% or more identical compared to their Arabidopsis orthologs  [99]. 

4.2.4.1 Overcoming the hexaploid genome of Camelina 
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One potential drawback to engineering metabolic fluxes in Camelina, is its remarkably 

undifferentiated hexaploid genome  [100]. Therefore, enzymatic activity could be encoded by up 

to three similar gene homeologues making modifying endogenous metabolic fluxes more 

difficult. Indeed, earlier work has demonstrated that all three copies of CsFAD2 and CsFAE1 are 

expressed in developing seeds  [101,102]. Further, all three CsFAD2 genes encode functional 

desaturase enzymes based on their ability to synthesize linoleic acid when expressed in yeast  

[102]. 

Consequently, RNA interference (RNAi) has been used to facilitate post-transcriptional 

gene silencing of targeted genes. The high similarity of the three Camelina sub-genomes  

[99,100] means that all three homeologues can be targeted with a single RNAi construct. Thus 

RNAi against CsFAD2 was successful in increasing oleic acid levels to around 50% compared to 

about 15% in wild type seeds  [99,103]. The simultaneous silencing of both CsFAD2 and 

CsFAE1 further increased the levels of oleic acid to 70% in the best lines  [99]. As we describe 

below, other RNAi based strategies have been successfully used to target specific endogenous 

Camelina activities that compete with the production of a desired lipid. 

While RNAi-based approaches have the advantage of targeting all homeologues encoding 

a particular enzyme activity, in some cases mutagenesis of the genes might be more desirable. 

For example, the phenotype in a mutant background would be more genetically stable than that 

achieved through RNAi. Further, some farmers and markets might be more receptive to the 

adoption of a non-transgenic biofuel crop, such as high-oleic Camelina. Given the hexaploid 

genome of Camelina, in most cases three separate mutagenic events will be required for 

complete elimination of enzymatic activity. For example, mutation of the CsFAD2-2 gene 

increased oleic acid content from 17% to 27%, lower than the 38-51% range observed with 

RNAi of CsFAD2  [102]. This is not surprising given that more than 80% of Camelina genes 

potentially involved in different aspects of acyl-lipid metabolism were present in three 

homeologous copies  [100]. However, the fact that even a small increase was observed suggests, 

at least for the case of CsFAD2, that the three genes contribute additively to activity. Further, the 

presence of phenotype, albeit small, suggests that high throughput screening for mutants with 

altered fatty acid composition is a viable approach towards obtaining mutations in different 

homeologues. 
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The emergence of a number of different genome editing technologies offers new 

strategies with which to generate mutants in a target gene. The CRISPR/Cas9/sgRNA-mediated 

targeted gene modification method has been shown to be effective in inducing targeted gene 

mutations in Arabidopsis and other plant systems  [104]. This method relies on expression of the 

nuclease domain containing Cas9 protein and a single-stranded guide RNA (sgRNA) that confers 

DNA target specificity. Binary vectors expressing both Cas9 and a sgRNA have been developed 

and successfully transformed into Arabidopsis using a standard floral dip method  [105]. 

Importantly, the mutations can be stably inherited and the process appears specific as other genes 

are not mutated  [106]. However, if desired, careful selection of the sgRNA allows for the 

selective targeting of multiple genes containing identical stretches of sequence  [107,108]. Thus, 

given the high degree of similarity between all three Camelina sub-genomes, in most cases it 

should be possible to simultaneously mutate all three homeologues of a specific gene. 

With the demonstrated effectiveness of RNAi and the promise of CRISP/Cas9 genome 

editing, altering endogenous lipid biosynthetic fluxes can now be achieved seemingly at will. 

Thus mutants analogous to those in Arabidopsis should be easily generated, further facilitating 

the use of Camelina as an ideal oil seed metabolic engineering platform. Before discussing 

specific examples of Camelina metabolic engineering, a brief overview of fatty acid and TAG 

biosynthesis is presented. 

4.3 TAG Biosynthesis in Plants 

TAGs are the major seed storage lipids of most plants and are used to provide energy and carbon 

during germination. The overall pathway for the synthesis of TAG in the seeds of higher plants is 

complex (Fig. 4.2); for a more detailed description of this important process, readers are 

encouraged to refer to recent and more in-depth reviews  [73,109,110].  

4.3.1 Fatty acid synthesis 
Briefly, fatty acids are synthesized in the plastids by a type II fatty acid synthase complex 

similar to that found in prokaryotes  [111]. A repeated series of condensation, reduction and 

dehydration reactions add two carbon units to the elongating fatty acid chain, which is connected 

to an acyl carrier protein (ACP). Typically, fatty acids up to 16 or 18 carbons in length are 

synthesized, though shorter molecules are possible in other species. Introduction of a double 

bond through the action of a ∆9-desaturase can also occur in the plastid. Acyl-ACP thioesterases 
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are responsible for the removal of the growing fatty acid from ACP. Of the two types of 

thioesterases, FatA enzymes preferentially remove oleate (18:1) whereas FatB thioesterases tend 

to remove shorter, saturated fatty acids. The fatty acids synthesized in the plastid are exported to 

the cytosol and converted to CoA forms, which can be used as acyl donor substrates by 

acyltransferases.  

4.3.2 Incorporation of fatty acids into TAGs 
Newly synthesized fatty acids are rapidly incorporated into phosphatidylcholine (PC) 

[51,112]. There they can be further modified by additional desaturation or the incorporation of 

other functional groups. An acyl editing pathway cycles fatty acids between PC and the acyl-

CoA pool without the net synthesis of PC. Recent work has suggested that the movement of fatty 

acids both into and out of the PC pool is mediated by the forward and reverse reactions of 

lysophosphatidylcholine acyltransferases (LPCAT)  [112-114]. Incorporation of fatty acids into 

TAG occurs via the Kennedy Pathway  [115], which starts with sequential acylation of glycerol-

3-phosphate by glycerol-3-phosphate acyltransferases (GPATs) and lysophosphatidic acid 

acyltransferases (LPAATs) using acyl-CoA to produce phosphatidic acid (PA). PA is then 

dephosphorylated by PA phosphatases to create de novo diacylglycerol (DAG). DAG can then be 

used as a substrate in two different acyltransferase reactions that synthesize TAG. Diacylglycerol 

acyltransferases (DGAT) transfer the acyl group from acyl-CoAs to the sn-3 position of DAG to 

produce TAG  [116]. Alternatively, phospholipid:diacylglycerol acyltransferases (PDAT) 

transfer the sn-2 acyl group from phospholipids to DAG to form TAG  [36,117]. In Arabidopsis, 

DGAT1 is responsible for the synthesis of the majority of TAG  [42], but in other species, such 

as flax, PDAT activity also plays an important role  [39].  

In addition to the de novo DAG pool formed via the Kennedy Pathway, labeling 

experiments have suggested the existence of a second, PC-derived DAG pool  [51,112]. In 

Arabidopsis, phosphatidylcholine: diacylglycerol cholinephosphotransferase (PDCT), which 

transfers the phosphocholine headgroup from PC to DAG, appears to be responsible for the bulk 

of the interconversion between PC and DAG  [118]. However, other mechanisms to convert PC 

to DAG, such as the action of a phospholipase C or the reverse reaction of CDP- 

choline:diacylglycerol cholinephosphotransferase (CPT), are also possible  [119]. This PC-

derived DAG pool can then converted to TAG via DGAT or PDAT activity.  
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Figure 4.2 Overview of triacylglycerol biosynthesis in seeds. Dashed borders are used to 
indicate different metabolite pools within the endoplasmic reticulum.  

Compound abbreviations: ACP, acyl carrier protein; CoA, coenzyme A; DAG, diacylglycerol; 
DHAP, dihydroxyacetone phosphate; G-3-P, glycerol-3-phosphate; LPA, lysophosphatidic acid; 
LPC, lysophosphatidylcholine; PA, phosphatidic acid; PC, phosphotidylcholine; PUFA, 
polyunsaturated fatty acid; TAG, triacylglycerol 

Enzyme abbreviations: CPT, CDP-choline:diacylglycerol cholinephosphotransferase; CPTr, 
reverse activity of CPT; DGAT, diacylglycerol acyltransferase; FAD, fatty acid desaturase; Fat, 
fatty acid thioesterase; GPAT, glycerol-3-phosphate acyltransferase; KAS, ketoacyl-ACP 
synthase; LPAAT, lysophosphatidic acid acyltransferase; LPCAT, lysophosphatidylcholine 
acyltransferase; PAP, phosphatidic acid phosphatase; PDAT, phosphatidylcholine: 
diacylglycerol acyltransferase; PDCT, phosphatidylcholine: diacylglycerol 
cholinephosphotransferase; PLC, phospholipase C; SAD, stearoyl desaturase. 

4.3.3 Production of TAG containing unusual fatty acids in Arabidopsis 
A large number of plants also contain unusual fatty acid in TAGs  [72]. These FA are 

typically derived from the further modification of fatty acids on PC molecules. Interestingly, 

many of the enzymes that catalyze these modifications like hydroxylation or epoxylation are 

variants of the membrane-bound desaturases responsible for the synthesis of polyunsaturated 

fatty acids  [120]. One of the most highly studied unusual fatty acids is ricinoleic acid, a 

hydroxylated fatty acid which accounts for up to 90% of the fatty acids found in castor oil  [72]. 
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Ricinoleic acid is synthesized from oleic acid esterified to the sn-2 position of PC by the castor 

oleate ∆-12 hydroxylase (RcFAH12)  [121,122]. However, expression of RcFAH12 in 

Arabidopsis led to seed oil containing relatively low levels (around 17%) of hydroxy fatty acids  

[123]. Similar low results were also noted in efforts to engineer the synthesis of other unusual 

fatty acids in Arabidopsis  [124]. These low levels of modified fatty acids in the seeds of 

transgenic plants appear to be caused by their inefficient removal from the site of their synthesis 

on PC and subsequent incorporation into TAG  [38,112,125]. Indeed, the coexpression of castor 

derived enzymes with higher specificity for hydroxy fatty acid containing substrates increased 

the accumulation of these unusual fatty acids in the transgenic seed oil. For example, expression 

of a castor DGAT2 ortholog (RcDGAT2) along with RcFAH12 increased hydroxy fatty acid 

levels from 17% to 28%  [44]. Likewise, co-expression of a castor PDAT led to similar sized 

increases  [38]. Stacking these two acyltransferases with RcFAH12 only led to a small, but 

significant, further increase over either acyltransferase alone  [38]. Finally, the addition of PDCT 

cloned from castor increased hydroxy fatty acids from 10% with only CsFAH12 to ~20%  [126]. 

An increased understanding of the flux of fatty acids from the site of synthesis to incorporation 

will lead to even higher increases of industrially useful fatty acids in the future. 

4.4 Synthesis of unusual lipids in Camelina 

Much of what we have learned from engineering oil seed metabolism in Arabidopsis has 

translated remarkably well to Camelina, not only with regard to hydroxy fatty acids but also with 

the production of omega-7 fatty acids and acetyl-TAGs.  

4.4.1 Production of high levels of hydroxy fatty acids in Camelina 
Transformation of Camelina with RcFAH12 under control of the seed specific phaseolin 

promoter yield lines capable of accumulating just over 6% ricinoleic acid along with smaller 

quantities of other hydroxy fatty acids  [98]. Combining the expression of RcFAH12 with a fatty 

acid condensing enzyme from Physaria fendleri (LfKCS), responsible for the elongation of 

hydroxy fatty acids, increased the accumulation of the elongated hydroxy fatty acids such as 

lesquerelic acid to 8%  [103]. Interestingly, these seeds also accumulated slightly higher levels of 

ricinoleic acid leading to an overall increase in total hydroxy fatty acids from an average of 14% 

with RcFAH alone to 19% with the addition of LfKCS. The increase was attributed to a more 

efficient removal of the elongated hydroxy fatty acids from PC, thus helping overcome the 
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bottleneck in this process. Presumably, coexpression of castor acyltransferases in Camelina will 

lead to similar increases to hydroxyl fatty acids, similar to what was observed in Arabidopsis. 

4.4.2 Production of omega-7 unsaturated fatty acids 
Omega-7 unsaturated fatty acids such as palmitoleic acid (16:1∆9) and vaccenic acid 

(18:1∆11) possess a number of physical properties that make them useful for industrial and 

biofuel applications. For example, it is predicted that shorter, monounsaturated fatty acids such 

as palmitoleic acid contain the optimal balance of chain length and double bonds to allow 

improved biodiesel cold-temperature properties and reduced NOx emissions while maintaining 

ignition quality and oxidative stability  [4]. Omega-7 fatty acids can also be used as a source of 

valuable chemical precursors for industrial applications. In particular, the location of the single 

double bond in these fatty acids allows them to be used for the metathesis based production of 1-

octene, a monomer in the synthesis of polyethylene. 

 Accumulation of high levels of omega-7 fatty acids was achieved in transgenic 

Arabidopsis seeds through the expression of a ∆9-18:0-ACP desaturase engineered with 

enhanced specificity towards 16:0-ACP and an extraplastidial ∆9-16:0-CoA desaturase. 

Additionally, the activity of KASII which also uses 16:0-ACP as a substrate was suppressed and 

the elongation of 16:1∆9 was prevented by using an fae1 mutant background. Through this 

expression of exogenous genes combined with the elimination of competing pathways, omega-7 

fatty acid levels as high as 67 mol % were achieved, essentially the same as the levels achieved 

in seeds that naturally accumulate these unusual fatty acids  [127]. 

 A similar strategy was subsequently employed in Camelina. However, instead of 

using mutant backgrounds, RNAi was used to suppress expression of the endogenous KASII and 

FAE1 genes. This suppression, combined with the expression of the same substrate-optimized 

∆9-18:0-ACP desaturase as before and a ∆9-16:0-CoA desaturase from C. elegans, led to total 

omega-7 fatty acid levels of 44 mol %  [128]. Retransformation of this line with another copy of 

the ∆9-18:0-ACP desaturase and RNAi against FatB expression resulted in omega-7 fatty acids 

levels of 66%, one of the highest levels of unusual fatty acids synthesized in a transgenic oil seed  

[128]. Initial data from greenhouse-grown plants suggest that this high accumulation of omega-7 

fatty acids did not affect the oil content, seed weight or germination efficiency  [127]; future 

work will confirm whether these results translate under field conditions. 
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4.4.3 Production of high levels of acetyl-TAGs in Camelina 
The seeds of Euonymus alatus (Burning Bush) and a few other plant species synthesize 3-acetyl-

1,2-diacyl-sn-glycerols (acetyl-TAGs), unusual TAGs with an sn-3 acetate group  [6,7]. Acetyl-

TAGs possess different physical properties compared to regular seed oils, making them 

potentially useful for a number of different applications. For example, acetyl-TAGs possess a 

kinematic viscosity that is approximately 40% lower than that of typical TAGs  [12]. As the high 

viscosity of vegetable oils prevents their direct use in standard diesel engines  [129], one 

potential application for acetyl-TAGs is as an improved low-viscosity straight vegetable oil 

(SVO) biofuel. Indeed, acetyl-TAGs possess a viscosity in the range of Diesel #4, a heavier 

grade diesel used in the constant speed engines found in locomotives, ships and heavy 

generators. Further, acetyl-TAGs also possess improved cold temperature properties compared to 

regular TAGs  [13,65], an important consideration, especially in colder climates. In addition to 

being used as a fuel, these properties of acetyl-TAGs lend themselves to other useful applications 

such as biodegradable lubricants, transformer oils and other products. 

The gene encoding the diacylglycerol acetyltransferase (DAcT) activity required for the 

synthesis of acetyl-TAGs in Euonymus alatus (Burning Bush) was cloned using a comparative 

transcriptomic approach  [12]. Expression of EaDAcT in wild-type Arabidopsis seeds resulted in 

the accumulation of up to 45 mol % of acetyl-TAGs in the transgenic seed oil. Similar results 

were obtained in Camelina where lines transformed with EaDAcT accumulating on average 55 

mol % acetyl-TAGs  [13]. Because EaDAcT uses the same DAG substrate as the endogenous 

DGAT1 and PDAT enzymes responsible for the synthesis of regular triacylglycerols, the 

elimination of this competing pathway represents one approach to increasing acetyl-TAG levels. 

Indeed, expression of EaDAcT in the Arabidopsis dgat1 background led to acetyl-TAG levels of 

60 – 65 mol % in the highest accumulating lines. Further, this result could be replicated in 

Camelina: EaDAcT expression combined with the RNAi-mediated suppression of the three 

Camelina DGAT1 homeologues led to transgenic lines capable of synthesizing up to 85 mol % 

acetyl-TAGs  [13]. Further analysis of the high acetyl-TAG lines revealed that the trait was 

stable through multiple generations. The average seed mass was not altered relative to wild-type 

controls and seed oil content was reduced only slightly. Importantly, germination rates of the 

seeds accumulating high levels of acetyl-TAGs were not greatly different from wild-type seed. 

These results stand in contrast to the synthesis of other unusual lipids in transgenic seeds where 
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major reductions in seed size, oil content and germination were noted  [26,38,125,130]. 

Typically these problems are associated with bottlenecks in the flux of unusual fatty acids from 

the PC pool where they are synthesized  [131]. The synthesis of acetyl-TAGs avoids such 

constraints because EaDAcT functions at the end of a biosynthetic pathway and uses the readily 

available acetyl-CoA as a direct substrate. Further, because it appears that germinating seedlings 

can metabolize acetyl-TAGs as well as the regular TAGs stored in a seed  [13], the complete 

replacement of regular TAG storage reserved with these unusually structured molecules should 

not pose a problem during the germination process. 

4.4.3.1 Enhancing the functionality of acetyl-TAGs 

The fatty acid composition of the acetyl-TAGs produced in different transgenic plant species is 

reflective of DAG molecular species found in those plants. By altering the composition of the 

DAG pool it should therefore be possible to incorporate different fatty acids at the sn-1/2 

positions of acetyl-TAGs and further modulate the properties of these unusual lipids. 

 This scenario has already been successfully demonstrated with the production of high-

oleic acetyl-TAGs  [65]. High oleic Camelina lines generated using RNAi against CsFAD2 and 

CsFAE1  [99] were transformed with EaDAcT and RNAi against DGAT1 and PDAT. The 

resultant lines produced up to 70 mol % acetyl-TAGs. Further, 3-acetyl-1,2-dioleoyl-sn-glycerol 

was the most abundant acetyl-TAG molecular species, comprising 47% of all acetyl-TAG 

molecular species  [65]. The high proportion of oleic acid in the sn-1 and sn-2 positions of the 

acetyl-TAGs changed the physical properties of these molecules. For example, high-oleic acetyl-

TAGs possessed a high oxidative stability index  [132] reflective of the replacement of 

polyunsaturated fatty acids with the more stable mono-unsaturated oleic acid.  

 The ability to incorporate unusual fatty acids into acetyl-TAGs therefore allows a 

combinatorial approach in order to achieve a wider range of molecules with desired properties 

and increased value. For example, because viscosity appears to primarily depend on molecular 

weight  [133], it is tempting to speculate that the incorporation of medium chain fatty acids at sn-

1/2 will lead to further reductions in the viscosity of acetyl-TAGs. In vitro experiments suggest 

that EaDAcT is capable of acetylating diacylglycerol molecules with fatty acids as short as 

caproic acid  [12] suggesting that the synthesis of acetyl-TAGs with a wide variety of fatty acids 

at sn-1/2 is not excluded from a substrate specificity point of view. 
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4.4.4 Functional testing of modified oil from transgenic Camelina 
The larger seeds of Camelina compared to Arabidopsis offer an obvious advantage in terms of 

producing larger quantities of seed oil for physical and chemical property testing. Thus, analysis 

of Camelina oil using differential scanning calorimetry (DSC) containing high levels of omega-7 

fatty acids revealed alterations in thermal properties, such as a lower crystallization onset 

temperature, compared to seed oil from wild-type plants  [128]. Similar analyses revealed that 

acetyl-TAGs possess improved cold-temperature properties, with crystallization of the α-

polymorphic form occurring 18 ˚C lower than typical triacylglycerols  [13]. Further, the ability to 

grown Camelina in the field allows for the generation of large quantities of modified oil seeds, 

permitting analyses that require larger amounts of material. For example, the standard tests for 

quantifying the cloud point or the pour point of a fuel each require 40ml of sample. Other, more 

elaborate analyses such as cetane number determination consume up to 1L of the test fuel. Thus, 

the field growth of high acetyl-TAG Camelina lines allowed the generation of large quantities of 

modified oil, allowing the demonstration that transgenically produced acetyl-TAGs also possess 

a 40% reduction in kinematic viscosity compared to regular seed oil  [13]. Interestingly, high-

oleic acetyl-TAGs possessed a higher viscosity than acetyl-TAGs synthesized in a wild-type 

Camelina background, probably due to the reduced levels of polyunsaturated fatty acid levels in 

the high-oleic acetyl-TAGs  [65]. Such physical property information is particularly valuable as 

it suggests that additional factors beyond molecular weight are important for viscosity. 

Importantly, insights such as this would not have been achievable without the ability to 

specifically engineer a designed oil trait in Camelina and then obtain large quantities of the 

resulting oil.  

 

4.5 Future Directions 

While Camelina already possesses many positive agronomic traits, it has not been the subject of 

much breeding, suggesting that further improvements in these characteristics are still possible. 

For example, increasing yield and seed oil content will enhance the competitiveness of Camelina 

compared to other oil seed crops. Improving tolerance to heat and other abiotic stresses will 

increase options for growth, both geographically and with regard to seasonal timing. A number 

of studies surveying different Camelina genotypes have demonstrated significant genetic 
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variation in a number of important traits  [134-137], providing a basis for future breeding 

programs. However, the undifferentiated allohexaploid nature of the Camelina genome with 

multiple homeologues expressed will mean a complex mode of inheritance for various 

phenotypes, complicate breeding efforts. In this regard, the application of next generation 

sequencing technologies to develop dense marker maps and rapidly genotype individuals should 

allow the implementation of genomic selection models to speed up the breeding process  [138]. 

 

4.6 Conclusion 

Based on its ease of transformation and knowledge of its lipid biosynthetic pathways, 

Arabidopsis has long been used as the preferred model system with which to engineer the 

production of modified lipids. In addition to the examples that we detail, the production of many 

other unusual lipids, such as wax esters and epoxy-fatty acids, has been demonstrated in 

Arabidopsis  [139,140]. However, the development of an effective transformation method has 

allowed transgenic Camelina lines to be developed almost as easily as with Arabidopsis. Further, 

by allowing the manipulation of endogenous pathways, RNAi-mediated suppression and the 

potential of genome-editing techniques has effectively compensated for the lack of Camelina 

lipid biosynthetic mutants. The ease therefore of manipulating lipid composition, combined with 

the ability to grow Camelina in the field, make it an ideal platform to develop industrial lipids in 

transgenic oil seed crops. While this review has focused on the production of industrial lipids, it 

is worthwhile noting that Camelina has recently also been used for the production of  

nutritionally valuable omega-3 fatty acids  [141,142]. This work involved the expression of 

multiple desaturase and elongase genes to successfully reconstitute eicosapentaenoic acid (20:5) 

or docosahexaenoic acid (22:6) biosynthetic pathways. Likewise, Camelina has also been used as 

a platform for the synthesis of the polymer poly-3-hydroxybutyrate (PHB)  [143]. It is therefore 

tempting to speculate that much future seed metabolic engineering will be performed in 

Camelina rather than Arabidopsis, allowing for more rapid introduction of plants capable of 

producing industrial seed oils into the field. 
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Chapter 5 - Metabolic engineering of the oil seed crop Camelina 

sativa to generate acetyl glycerides containing medium chain fatty 

acids 

5.1 Introduction 

Seed oil from some species in the Celastraceae and Lardizabalaceae plant families 

contain high amounts of 3-acetyl-1,2-diacyl-sn-glycerol (acetyl-TAG)	
  [6,7,144]. The presence 

of an acetyl group instead of a fatty acyl group at the sn-3 position of acetyl-TAGs provides 

them with different physical and chemical properties compared to conventional triacylglycerol 

(refered to as lcTAGs). For example acetyl-TAGs possess low calorific values, reduced viscosity 

and lower freezing temperatures than lcTAGs, which makes them suitable for applications such 

as a low viscosity biofuel 	
  [12,13]. In addition, synthetic acetyl glyceride mixtures are also used 

in various other industrial aplications such as emulsifiers, food coating agents and plasticizers 	
  

[14].  

The enzyme responsible for the production of acetyl-TAGs was identified from 

Euonymus alatus (Burning Bush) and named Euonymus alatus diacylglycerol acetyltransferase 

(EaDAcT). It belongs to the membrane-bound O-acyltransferase (MBOAT) family and catalyzes 

the acetyl-CoA dependent acetylation of sn-1,2-DAGs at the sn-3 position 	
  [12]. DGAT1 and 

DGAT2  are two enzymes which produce lcTAGs by the acyl-CoA dependent acylation of 

DAGs 	
  [40]. While DGAT1 is also a member of MBOAT family 	
  [46], DGAT2 belongs to a 

different enzyme class due to low sequence similarity with DGAT1. Phospholipid : 

diacylglycerol acyltransferase (PDAT) also acylates DAG by transfering an acyl group from the 

sn-2 position of phosphotidylcholine (PC) or phosphotidylethanolamine (PE) to produce lcTAG 	
  

[35]. The exact role of DGATs and PDAT in plant is still unknown but certain evidence suggest 

that DGAT1 is the major enzyme reponsible for TAG biosynthesis while DGAT2 and PDAT are 

more active in plants which accumulate unusual fatty acids 	
  [45]. Surprisingly, EaDAcT was 

found to be more closely related to wax synthase and sterol acyltransferases 	
  [12,13] instead of 

DGAT1 with which it shares a common DAG substrate. EaDAcT was successfully 

overexpressed in seeds of Arabidopsis, Camelina and  Soybean without drastically affecting any 
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seed traits 	
  [13,65] and with high production levels of acetyl-TAGs (85 mol %) in Camelina 

indicating that EaDAcT is a suitable candidate for producing acetyl-TAGs in seed oil crops. 

The term straight vegetable oil (SVO) biofuel refers to the direct use of vegetable oil 

without any processing as a fuel in diesel engines. SVO offers various advantages over diesel oil 

such as being biodegrable, non-toxic and carbon neutral with low SO2 and NOx emissions due to 

their plant origin 	
  [145]. However, SVO biofuels suffer from problems such as high viscosity 

and poor cold temperature properties 	
  [11]. The high kinematic viscosity (30-40 mm/s2 at 40oC) 

of vegetable oils leads to their poor flow, atomization and vaporization causing injector nozzle 

deposits, incomplete combustion and high particulate emissions 	
  [146]. Either the use of 

modified engines which involve preheating of the oil or blending with diesel is required to avoid 

these difficulties 	
  [147,148].  Another option is to convert the oil to biodiesel (fatty acid methyl 

esters) by transmethylation 	
  [4]. However, these methods comes with the disadavntages such as 

the high cost involved with the modification of engines and environmental hazards associated 

with the disposal of crude glycerol generated during biodiesel production. 

The viscosity of acetyl-TAGs falls in the range of diesel #4  (5-24 mm/s2 at 40 oC) 

suggesting they can be used as SVO biofuels for low and medium speed engines 	
  [12,13]. The 

fact that acetyl-TAGs can be produced in high quantities in the emerging oil seed crop Camelina 	
  

[149] make them as ideal candidate for research involving further reduction in viscosity and 

improvement of other fuel properties. The kinematic viscosity of a triacylglycerides (TAGs) 

increases linearly with increasing  molecular mass of constituent fatty acids 	
  [150,151]. Further, 

the reduced viscosity of acetyl-TAGs with lower average molecular mass compared to lcTAGs 	
  

[12,13] is additional evidence that molecular mass is an important factor which determines the 

viscosity of TAGs.  Hence, decreasing the average molecular mass of acetyl-TAGs is predicted 

to lead to further reduction in viscosity.  

Medium chain length fatty acids (MCFAs) having carbon chain lengths between C8 to 

C14 are produced in high quantities in the seed oil of plants such as Cuphea, palm kernel and 

coconut 	
  [2,152]. They are produced by the action of specific thioesterases which cleave the 

growing acyl-ACP to release shorter fatty acids 	
  [153,154]. MCFAs were successfully produced 

and incorporated in the seed oil of Camelina by transgenic coexpression of MCFA specific 

thioesterases and acyltransferases 	
  [155]. For example, coexpression of California Bay 

thioesterase (UcFatB1) and coconut lysophophatidyl acyltransferase (CnLPAAT) genes, specific 
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for the production and eventual transfer of lauric acid to lysophosphatidic acid respectively, in 

Camelina resulted in nearly 28% lauric acid (12:0) production. Similarly, expression of Cuphea 

thioesterases ChFatB2 and CpFatB2 alone or in combination resulted in 10% of capric acid  and 

25% of lauric and myristic acid in Camelina, respectively.  

This study was conducted with the aim of further reducing the viscosity of acetyl-TAGs 

further by incorporation of medium chain fatty acids (MCFAs). Overexpression of EaDAcT 

combined with DGAT1 and PDAT downregulation in oil seed crop Camelina lines producing 

high levels of MCFAs was successful in achieving high amounts of acetyl-TAG levels. 

However, incorporation of MCFAs in to acetyl-TAGs was inefficient in these lines. The 

accumulation of high acetyl-TAGs did not affect germination but caused a small reduction in 

seed oil content. The kinematic viscocity of acetyl-TAGs containing small amounts of MCFAs 

was also found to be increased compared to acetyl-TAGs produced in wild type Camelina. The 

possible reasons for low incorporation of MCFAs in acetyl-TAGs and increase in their viscosity 

are discussed. 

5.2 Materials and Methods 

5.2.1 Materials 
The agrobacterium strain GV3101 was kindly provided by Dr Kathrin Schrick (Kansas 

State University). Heptadecanoin and pentadecanoin were purchased from Nu Chek Prep Inc. 

(Waterville, MN).  

5.2.2 Plant transformation vectors and generation of transgenic plants 
Binary expression vectors of pBlb series (pBinGlyRed2 backbone) were kindly provided by Dr 

John Ohlrogge (Michigan State University). Plasmids expressing EaDAcT alone or also with 

DGAT RNAi and/or PDAT RNAi 	
  [13,65] were modified by insertion of basta herbicide 

resistance gene (BAR) from Streptomyces hygroscopicus 	
  [156]. The BAR gene along with NOS 

promoter was amplified from the plasmid pBinGlyBar1 	
  [99] using the primer sequences         

5’-GCAGAGCTCGATCTCGGTGACGGGCAGGACCGGA-3’ and                                         

5’-AGCGATCGGCACGCTGCCGCAAGCACTCAGGGC-3’ digested with Sac1 and Pvu1. 

The amplified fragments were cloned in to corresponding sites in the pBlb series of vectors. The 

orientation of transgenes and promoters used for EaDAcT expression and for RNAi constructs 

are summarized schematically in Fig. 5.1. 
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Figure 5.1 Constructs used to express EaDAcT and suppress Camelina acyltransferases. 

Shown are the regions flanked by T-DNA borders (vertical red lines). Promoter regions are 
indicated by white arrows, terminator sequences are represented by dark gray lines. DGAT1, 
portion of Camelina DGAT1 gene; BAR, Streptomyces hygroscopicus protein phosphinothricin 
acetyltransferase; EaDAcT, native EaDAcT coding sequence; pCMV, Cauliflower Mosaic virus 
35S promoter; PDAT1, portion of Camelina PDAT1 gene; pdk, pdk intron from pHANNIBAL; 
soybean glycinin promoter; pOleo, Brassica napus oleosin promoter. 

 Transgenic Camelina lines producing medium chain fatty acids 	
  [155] were kindly 

provided by Dr. Edgar Cahoon (University of Nebraska, Lincoln). Each of the four lines, 

ChFatB2, ChFatB2 + CpFatB2, UcFatB1 + CnLPAAT, and CpFatB2 + UcFatB1 was 

transformed with all four different vectors using Agrobacterium mediated floral dip vacuum 

infiltration 	
  [98].  Positive transformants were selected based on Basta herbicide resistance in T1 

seedlings. All the T1 seeds were grown to the 4 leaf stage after which they were sprayed with 

0.01 % (w/v) Basta herbicide solution (Bayer crop science, Raleigh, NC) four times at intervals 

of 2 days between each spray. The survivors were selected and further propagated to obtain T2 

seeds. 16 T2 seeds from survivors were planted and screened for Basta resistance. The T3 plants 

from the lines segregating with 3:1 (survivors: non survivors) ratio and passing the chi-square 

test were further propagated to collect T3 seeds.  16 seeds from each surviving plant of a T3 line 

were further screened. The plant with all the seeds surviving the Basta spray was designated as a 
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homozygous plant. All the homozygous lines obtained from each independent transformation 

event were further tested for acetyl-TAG content.  

5.2.2 Lipid analysis 
Approximately 30 mg of dried seeds were ground in 2.0 ml of hot isopropanol using a 7.0 

mm Polytron probe (Kinematica Inc. Bohemia, NY). Tripentadecanoin (100 µg ) was added as 

internal standard. To the ground seeds, 3.0 ml of hexane and 2.5 ml of 6.6 % w/v K2SO4 were 

added. Tubes were vortexed and organic phase was separated by centrifugation and collected in a 

separate tube. Lipids were extracted one more time with 2 ml hexane/ isopropanol (7:2). The 

organic phases were combined and evaporated under nitrogen. The lipids were resuspended in 

1.0 ml of toluene and stored at -20 oC till further analysis.  

 Lipid extract (100 µl) was loaded on Silica gel 60 TLC plates and developed 

using a hexane/diethyl-ether/acetic acid (70:30:1) solvent system to separate acetyl-TAGs and 

lcTAGs. The TAGs were stained with 2,7- dichlorofluorescein and visualized under UV light. 

Heptadecanoin (100 µg) was added to each band. The bands were scraped, resuspended in 1.0 ml 

of hexane and directly transmethylated using a base catalyzed mechanism 	
  [53].  FAMEs were 

analysed by gas chromatography using a DB-23 capillary column with a flame ionization 

detector	
  [73]. The area of FAMEs peaks were corrected for FID response, normalized to the 

internal standard and summed to quantify total FAMEs as moles. The moles of acetyl-TAGs and 

lcTAGs were calculated by dividing the number of moles of FAMEs by 2 and 3 respectively.  

For the ESI-MS analysis, samples were prepared by dissolving total lipid extract from 

transgenic seeds in 300 µL of chloroform and 700 µL of methanol/ammonium acetate (100:5.26) 

was added. The samples were then directly infused in to a triple quadrupole mass spectrometer 

(API4000, Applied Biosystems, Foster City, CA) operated under preset condition for MS1 

positive scan mode to detect all the acetyl-TAGs and lcTAGs. Samples were also scanned for the 

neutral loss of ammonium acetate (77.10) in a MS/MS mode under the conditions described in 

chapter 2 to specifically detect acetyl-TAG molecular species.  

5.2.3 Positional analysis of TAGs 
The sn-2 fatty acid composition of acetyl-TAGs and lcTAGs in T4 seed oil were determined by 

using the sn-2 specific lipase of Thermomyces lanuginosus (Sigma- Aldrich, St. Louis, MO). 1.5 

mg of TLC purified acetyl-TAGs and lcTAGs was dissolved in 1.0 ml of diethyl ether. Lipase 
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(5000 units) in 1.0 ml of Tris buffer (50 mM, pH 7.2) was then added. The digestion was 

performed by incubating the samples at 37 oC for 30 minutes under shaking conditions.  After 

the reaction, lipids were extracted twice using 3.0 ml of diethyl ether. The solvent was 

evaporated under N2 and lipids were resuspended in 100 µl of chloroform. The lipids were 

separated on a boric acid impregnated silica gel plates using a chloroform/acetone (80:10) 

solvent system to separate 1-monoacylglycerol (MAG) and 2-MAG. Tripentadecanoin (10 µg) 

was added to the bands corresponding to 2-MAG. Bands were scraped and lipids were extracted 

using 2.0 ml of toluene. The solvent was evaporated and lipids were redissolved in 500 µl of 

hexane and transmethylated using base catalyzed reaction as described earlier. FAMEs were 

quantified by gas chromatography and represented as mol %.   

5.2.4 Seed trait analysis 
Seeds from T3 homozygous lines showing high acetyl-TAGs/lcTAG ratios were further 

propagated to the T4 generation. Four seeds were planted from each of wild type, 3 parental lines 

(T6 seeds) and 5 different transgenic lines (T4 seed) in 4 pots (3.5” x 6” deep). 36 pots were 

arranged in a random fashion in two flats (10” x 20”) and kept at 21 oC under 18 hours light and 

6 hours dark cycles in a growth chamber. The two highest acetyl-TAGs producing lines were 

again selected to grow up to T5 generation under similar conditions. The acetyl-TAG contents 

(mol %) were analyzed as described above. The oil content of the seeds was analyzed 

gravimetrically. Approximately 100 mg of T4 seeds were dried to a constant weight in a 

desiccator. Dried seeds were ground using a polytron and lipids were extracted using 

hexane/isopropanol as described earlier. The lipids were dried to constant weight in a desiccator 

and weighed in a precision balance (Mettler Toledo XS105, Mettler-Toledo LLC, Columbus, 

OH) with an accuracy of ± 0.1 mg.  The oil content is calculated as percent dry seed weight 

basis.  

Germination testing was performed using T4 seeds on soil and on MS medium. 36 seeds 

were sterilized using fumigation and planted on ½ strength MS medium without sucrose. Plates 

were incubated 21 oC under 18 hours light and 6 hours dark cycle in an incubator. Similarly, 36 

seeds were planted on the soil in pots and incubated in the growth chamber at 21 oC under 18 

hours light and 6 hours dark cycle. The plates and pots were monitored every day for the 

emergence of cotyledons. 
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5.2.5 Purification of acetyl-TAGs and lcTAGs and viscosity analysis  
To generate large amount of oil for viscosity analysis, T5 plants from the two highest 

acetyl-TAG yielding lines and T7 plants from corresponding parental lines were grown on a 

bigger scale, first in the growth chamber up to flowering stage and then in a green-house under 

conditions mentioned above. For a single round of oil extraction, 25 g seeds were ground and 

packed in to a cellulose thimble (33 x 118 mm). The thimble was fitted into a soxhlet apparatus 

and the oil was extracted by continuous reflux of hexane through the seeds. The samples were 

reduced in volume using a rotavap and dried to a constant weight in 50 ml glass tubes under N2 

gas. The oil was stored at 4 oC until further purification.  

 The crude oil was fractionated on a 1000 ml silica gel column (diameter 64 mm). For 

every 20 g of oil, 400 g of silica gel was used. The silica gel was first saturated with hexane. 50 

ml fractions were collected using step gradient with increasing diethyl ether in hexane: from 

100:0, 95:5, 90:10, 80:20 to 70:30 (v/v). Fractions were tested for purity using TLC and a 

hexane/diethyl ether/acetic acid (70:30:1) solvent system. The fractions containing either pure 

acetyl-TAGs or lcTAGs were combined. Samples were reduced in volume using a rotavap and 

dried to constant weight under N2 to obtain purified acetyl-TAGs and lcTAGs. The purity of the 

fractions was confirmed using ESI-MS. The kinematic viscosity of purified acetyl-TAGs and 

lcTAGs was measured using a calibrated Ubbelohde viscometer (Cannon Instruments, State 

College, PA) according to the ASTM D445 method  [157].  

5.3 Results and Discussion 

5.3.1 DGAT1 knockdown resulted in high levels of acetyl-TAGs in Camelina  
In our yeast studies it was seen that EaDAcT could acetylate medium chain fatty acids 

containing DAGs to produce acetyl-TAGs. Hence, EaDAcT was expressed in Camelina lines 

producing high levels of medium chain fatty acids (MCFA) to produce acetyl-TAGs with low 

molecular weight. These MCFA lines were generated by the seed specific expression of MCFA 

producing thioesterases (FatBs) and MCFA specific lysophosphatidic acid acyltransferases 

(LPAATs) and can produce up to 53 mol % MCFAs in their seed lipids 	
  [155]. EaDAcT was 

expressed in four different Camelina genetic backgrounds each producing different types and 

amounts of MCFAs (Table 5.1). 
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Table 5.1 Fatty acid compositions of seed lipids from MCFA producing Camelina 
background used in this study 

Genotype  8:0 10:0 12:0 14:0 16:0 18:0 18:1 18:2 18:3 20:0 20:1 22:1 MCFA 

(C8-

C14) 

Wild type - - - - 8.9	
  

±	
  

0.9 

4.0	
  

±	
  

0.7 

10.6	
  

±	
  

0.7 

25.1	
  

±	
  

1.1 

40.5	
  

±	
  

2.0 

1.6	
  

±	
  

0.0 

7.5	
  

±	
  

0.5 

1.8	
  

±	
  

0.1 

0 

ChFatB2 0.7 

±	
  

0.1 

10.3 

± 

0.9	
  

±	
  

0.0	
   

0.7	
  

±	
  

0.0 

9.0	
  

±	
  

0.3	
   

4.7	
  

±	
  

0.3	
   

14.8	
  

±	
  

0.6	
  	
  

30.0	
  

±	
  

0.3	
   

19.9	
  

±	
  

0.8	
   

1.9	
  

±	
  

0.1 

5.8	
  

±	
  

0.1	
   

1.2	
  

±	
  

0.0 

12.6 

ChFatB2 + 

CpFatB2 

- 8.7	
  

±	
  

0.5 

0.8	
  

±	
  

0.5 

9.3	
  

±	
  

0.0 

12.4	
  

±	
  

0.2	
   

3.4	
  

±	
  

0.0 

21.6	
  

±	
  

0.9	
   

16.2	
  

±	
  

0.4	
   

16.1	
  

±	
  

0.5 

2.1	
  

±	
  

0.0 

7.4	
  

±	
  

0.1 

1.9	
  

±	
  

0.0	
   

18.8	
   

UcFatB1 + 

CnLPAAT 

- - 28.4	
  

±	
  

1.5 

3.8	
  

±	
  

0.2 

5.6	
  

±	
  

0.4 

3.1	
  

±	
  

0.6	
   

7.4	
  

±	
  

0.4	
   

13.6	
  

±	
  

0.3	
   

30.4	
  

±	
  

0.7	
   

1.2	
  

±	
  

0.1 

4.9	
  

±	
  

0.3 

1.5	
  

±	
  

0.1 

32.2 

CpFatB2 + 

UcFatB1 

- -  36.9	
  

±	
  

1.9 

16.8	
  

±	
  

0.6	
   

3.0	
  

±	
  

0.3 

3.1	
  

±	
  

0.3 

19.2	
  

±	
  

0.6 

16.0	
  

±	
  

2.0 

1.9	
  

±	
  	
  

0.2 

2.3	
  

±	
  

0.2 

0.9	
  

±	
  	
  

0.1 

53.7 

Adapted from Kim et al., 2015  

 

EaDAcT might compete with DGAT1 and PDAT enzymes for the same DAG pool in 

seeds for acetyl-TAG synthesis	
  [13,65]. Hence, it was hypothesized that knocking down these 

two enzymes might increase DAG flux to EaDAcT, resulting in higher acetyl-TAG synthesis. 

Therefore, EaDAcT expression was combined with the RNAi mediated suppression of either 

DGAT1 or PDAT alone or in combination. Because of the hexaploid nature of the Camelina 

genome 	
  [100], each gene is present as three homeologous copies. Hence, to effectively reduce 

gene expression, RNAi constructs designed to have common complementary sequence from all 

the three homoeologues of DGAT1 and PDAT RNAi gene were used to knockdown all the three 

copies of the DGAT1 and PDAT genes in transgenic Camelina [12].  
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Figure 5.2 EaDAcT expression with simultaneous DGAT1 knockdown results in high levels 
of acetyl-TAGs in Camelina. Scatter plots of the distribution of acetyl-TAG composition of T3 
seeds from independent homozygous Camelina lines expressing medium chain specific fatty acyl 
thioestersases (FatB),  lysophosphatidyl acyltransferases (LPAAT) along with EaDAcT alone or 
in combination with RNAi constructs targeting Camelina DGAT11 and PDAT homeologues. 
Horizontal lines represent the mean values for each sample group. Asterisks indicate significant 
difference (p<0.05; t-test). ns, not significant. 

The number of independent T3 lines needed to test our hypothesis with statistical 

significance was obtained for one Camelina line with the genotype UcFatB1 + CnLPAAT. The 

acetyl-TAG contents of a total of 23 independent T3 homozygous or near homozygous lines were 

determined. The levels of acetyl-TAG achieved in some of the best T3 lines were in the range of 

64-77 mol %. These acetyl-TAG levels are consistent with levels reported (74-86 mol %) for 

wild type Camelina expressing EaDAcT 	
  [13]. The results showed that only DGAT1 knockdown 

resulted in significant increase in the acetyl-TAG accumulations over EaDAcT expression alone 

(Fig. 5.2). EaDAcT expression along with PDAT knockdown produced similar acetyl-TAG 

levels as EaDAcT alone expressing lines while PDAT knockdown combined with DGAT1 

knockdown did not result in any further acetyl-TAG increase over DGAT1 knockdown alone. 

Previous studies in Arabidopsis and Camelina showed similar results 	
  [13,65]. The authors 
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attributed these effects to either detrimental effects of the combined knockdown of PDAT and 

DGAT1 on embryo and seedling development or inefficient suppression of PDAT expression by 

RNAi mediated knockdown. Future work will involve expression of EaDAcT in DGAT1 and 

PDAT complete knockout lines for these MCFA Camelina lines to achieve even higher levels of 

acetyl-TAGs. The generation of such DGAT1 and PDAT knockout lines can be achieved by 

emerging precise genome editing technique like CRISPR/Cas9 [158] in the near future. 

No transformants expressing EaDAcT in combination with DGAT1 and/or PDAT RNAi 

constructs were observed for Camelina with CpFatB2 + UcFatB1 genetic background. It might 

be due the strong lethal effects of DGAT1 and PDAT knockdown on seed and embryo viability 

even in heterozygous conditions in this particular background. However, two independent T3 

lines expressing EaDAcT alone was obtained for this background with acetyl-TAG levels of 3 

mol % and 17 mol % (data not shown). Only a small number of independent T3 homozygous 

lines for EaDAcT and RNAi expression were obtained for two of the other three transgenic 

MCFA producing Camelina parental lines (Fig. 5.2). The best lines from background CpFatB2+ 

ChFaTB2 and ChFaTB2 have acetyl-TAG levels of 69 mol % and 42 mol % respectively. 

Although a higher number of T2 heterozygous lines were obtained for these two parental lines but 

for most of them we were unable to isolate homozygous T3 lines (data not shown). This might 

due to enhanced negative effects of DGAT1 and PDAT knockdown on the seed viability in T3 

generation due to increased gene dosage effect in these genotypes.  

5.3.2 EaDacT can produce medium chain acetyl-TAGs in Camelina 
T3 seeds from homozygous transgenic lines were tested for the presence of medium chain 

acetyl-TAGs. The ESI-MS analysis of total lipids from these transgenic lines showed the 

presence of acetyl-TAG with lower molecular mass peaks compared to wild type Camelina 

expressing EaDAcT  (Fig 5.3a). The lower molecular mass of these peaks suggested the 

incorporation of MCFAs in to acetyl-TAGs. Further confirmation of presence of MCFAs in these 

low molecular mass acetyl-TAG species was revealed by daughter ion scans of the parent 

molecule (Fig. 5.3b).  

These results proved that EaDAcT could synthesize acetyl-TAGs containing MCFAs. 

EaDAcT was able to acetylate DAGs such as 1,2-dilaurin-sn-3-glycerol and 1,2-myristoyl-sn-3- 
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Figure 5.3 EaDacT can produce medium chain acetyl-TAGs in Camelina. (a) Positive ESI-
MS2 spectra scanning from the neutral loss of ammonium acetate to detect acetyl-TAGs 
molecular species. Lipids were extracted from wild type plant and MCFA producing Camelina 
T3 transgenic seeds expressing EaDAcT. Signal peaks possess the m/z value of [M+NH4]+ 
adduct. For clarity, only the number of acyl carbons and not the number of double bonds (x) in 
each series of acetyl-TAG molecular species is indicated. (b) ESI-MS2 daughter scans of medium 
chain acetyl-TAGs from Camelina seed expressing EaDAcT. Shown are the fragment peaks for 
acetyl-TAGs with [M+NH4]+ adducts with masses of 516.5 and 572.7. 
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glycerol to synthesize acetyl-dilaurin (26:0) and acetyl-dimyristin  (30:0) respectively. These 

results are consistent with our in vitro and in vivo results in yeast (Chapter 3). 

 

 
 
Figure 5.4 Acetyl-TAGs contain lower levels of MCFA than lcTAGs. Mean fatty acid 
composition of acetyl-TAGs and lcTAG fractions from the T3 seed of 23 independent 
homozygous lines expressing EaDAcT and DGAT RNAi. Error bars represent SD from mean. 
** indicates p< 0.01; unpaired t-test. 

5.3.3 Acetyl-TAGs contain lower levels of MCFA than lcTAGs 
The Camelina line with genotype UcFatB1 + CnLPAAT produces 28 mol % 12:0 as the major 

MCFAs in the seed lipids 	
  [155]. To determine the amount of MCFAs incorporated in to acetyl-

TAGs, fatty acid compositional analysis of acetyl-TAGs and lcTAGs from all the EaDAcT 

expressing transgenic lines obtained from this background line was performed. Acetyl-TAGs 

were found to have lower concentrations of lauric acid (12.2 ± 3.5 mol %) compared to lcTAGs 

(23.2 ± 6.2 mol %) (Fig. 5.4).  

The unsaturated fatty acids oleic acid and linolenic acid were significantly higher in 

acetyl-TAGs than lcTAGs. This is consistent with in vitro results where EaDAcT showed high 

preference for DAGs containing unsaturated fatty acid (Chapter 3). This relative enrichment of 

unsaturated fatty acid and reduction of very long chain fatty acids (VLCFA) in acetyl-TAGs 

compared to lcTAGs is consistent with previous results 	
  [13]. This effect is proposed to be a 

consequence of expected enrichment of VLCFA at sn-1 and sn-3 positions of lcTAGs	
  [159].  A 

similar trend of medium and long chain fatty acid incorporation in acetyl-TAGs and lcTAGs was 

observed in lines with other backgrounds. 
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5.3.4 Inefficient incorporation of MCFAs in acetyl-TAGs is due to their low 
abundances at sn-2 position 
DAGs are synthesized in the Kennedy pathway by sequential acylation of glycerol-3-phosphate 

at sn-1 position by GPAT and sn-2 position by LPAAT [115]. In Brassica napus, a close relative 

of Camelina, endogenous GPATs and LPAATs are known to preferentially acylate unsaturated 

16 and 18 carbon-containing acyl groups on sn-1 and sn-2 positions respectively 	
  [160].  In the 

Camelina line UcFatB1 + CnLPAAT used in this study, medium chain acyl-CoA specific 

CnLPAAT 	
  [161,162] is expected to be in competition with endogenous LPAATs to produce 

DAG. Due to three copies of endogenous LPAAT compared to one copy of CnLPAAT, a higher 

endogenous LPAAT activity than CnLPAAT activity is a strong possibility. This lower 

CnLPAAT activity might further result in to low incorporation of MCFA at sn-2 position of 

DAGs. The low incorporation of MCFA at sn-2 positions of DAGs will result in their lower 

incorporation in acetyl-TAGs and lcTAGs. The effect was expected to affect MCFA 

incorporation in to acetyl-TAG more than lcTAGs due to the simple reason that DGAT1 can add 

one more MCFAs in to lcTAGs by acylation at sn-3 position whereas EaDAcT will only transfer 

an acetate group at sn-3 position. Because of this reason, incorporation of high levels of MCFAs 

into acetyl-TAGs is particularly dependent on the efficient incorporation of MCFAs at the sn-2 

position of DAGs.  

Indeed, analysis of stereospecific fatty acid composition revealed relatively low amounts 

of lauric acid compared to 18 carbon unsaturated fatty acids at the sn-2 positions of acetyl-TAGs 

and lcTAGs (Fig. 5.5) suggesting that endogenous LPAAT activity dominated over CnLPAAT 

activity. This in turn means that DAG pools in seeds had lower concentration of DAGs 

containing MCFA compared to DAGs with 18 carbon unsaturated fatty acids. The lower 

amounts of DAGs containing MCFAs could also be a result of insufficient MCFA available for 

CnLPAAT.  

 This trend of DAG composition might be directly related to acetyl-TAG fatty acid 

composition with low abundance of 12:0 compared to unsaturated fatty acids (Fig 5.3). 

Incorporation of low amounts of 20:0 and 22:1 in to acetyl-TAGs can be also be explained by 

their low enrichment at sn-2 positions (Fig 5.5). Similarly, higher incorporation of 18:3 fatty acid 

in to acetyl-TAGs can be directly correlated to its high abundance at the sn-2 position of TAGs 

as reported in Arabiodopsis 	
  [159]. One of the Camelina transgenic line CpFatB2 + ChFaTB2 
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without any CnLPAAT showed even lower amounts of MCFA at sn-2 positions which was 

reflected in very low incorporation of MCFA in the acetyl-TAGs and lcTAGs in that line (data 

not shown). This further substantiates the fact that sn-2 incorporation of MCFA is crucial for  

 

 

Figure 5.5 Inefficient incorporation of MCFAs in acetyl-TAGs is partially due to their low 
abundance at sn-2 position. Mean fatty acid composition at sn-2 positions of lcTAGs and 
acetyl-TAGs from the T4 seed of 4 independent homozygous Camelina UcFatB1 + CnLPAAT 
lines expressing EaDAcT gene in combination with DGAT1 RNAi. Error bars represent SD 
from mean (n=4) 

their final incorporation in to acetyl-TAGs. This result is also consistent with results from 

previous study 	
  [13]. It will be interesting to see if knockdown of native LPAATs in these 
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Camelina lines can enhance the MCFA incorporation at sn-2 position in DAGs and subsequently 

in acetyl-TAGs.  Another approach could be expression of newer LPAATs from Cuphea 	
  [163] 

along with CnLPAAT to further enhance MCFA incorporation in to DAGs. 

5.3.5 Analysis of seed traits of acetyl-TAG producing transgenic lines  
To determine the effect of high acetyl-TAG accumulation in the MCFA producing parental lines 

on seed, various performance parameters were tested. 

5.3.5.1 High acetyl-TAG production trait is stable 

The problem of foreign gene silencing in transgenic crops due to epigenetic effects is 

very well known	
  [164,165]. As our high yielding Camelina lines are harbouring at least 6  

 

 

Figure 5.6 High acetyl-TAG production trait is stable. Acetyl-TAG content of 5 independent 
homozygous high yielding medium chain acetyl-TAGs producing Camelina lines across different 
generations.  

different transgenes, either diminished trait or complete loss of transgenic trait over generations 

is highly plausible. Hence we monitored acetyl-TAG levels in some of the high acetyl-TAG 

yielding lines up to the T5 generation.  
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The acetyl-TAG content of 3 out of 5 independent high yielding homozygous lines 

showed small variations from T3 to T4 generation (Fig. 5.6). The small changes in acetyl-TAG 

levels in most lines between generations might have been caused by effect of variability in the 

growing conditions and/or differential levels of suppression of DGAT1 and PDAT by their 

RNAi. However, for the two highest acetyl-TAG yielding lines, acetyl-TAG levels were 

relatively stable up to the T5 generation. This is important especially in a case where these lines 

need to be further improved by breeding with lines possessing other important commercial seed 

traits. The large change in one line may be due to partial gene silencing either due to epigenetic 

factors or transcriptional gene silencing. Overall, these results indicated that the acetyl-TAG 

production trait was inherited quite stably across generations in these transgenic lines. 

5.3.5.2 Oil content was reduced slightly in the high acetyl-TAGs yielding lines 

To determine the effect of EaDAcT expression and DGAT1 and PDAT knockdown on 

total seed oil content in MCFAs producing lines, the oil content of T4 seeds from high yielding 

lines was analyzed gravimetrically. The value of oil content for wild type seeds was 27.6 % DW 

which was much lower than that of reported values of ~39% 	
  [13,65].  

 

 

Figure 5.7 Oil content was reduced slightly in the high acetyl-TAGs yielding lines. Seed oil 
content of wild type Camelina, MCFA Camelina line (UcFatB1+CnLPAAT) and three 
independent homozygous lines (T4 seeds) expressing EaDAcT and DGAT1 RNAi 
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This might be due to different growing conditions from those studies which were conducted at 

large scale levels in the fields compared to our studies which were done in growth chambers in 

pots. However, a small decrease was observed between the high acetyl-TAG yielding lines and 

the control parental line (Fig. 5.7).  

For example the parental line with CnLPAAT and UcFatB1 genes has oil content of 

26.1% of DW while the high yielding lines obtained from this parental line showed oil contents 

in the range between 23.7 to 24.2% with a decrease of 7.1 to 9.0%. Previous studies have also 

reported similar level of reductions in a DGAT1 mutant line in Arabidopsis 	
  [20] and DGAT1 

knockdown lines in Camelina 	
  [13,65]. Two possible reasons for low oil contents were 

suggested in the latter Camelina studies. One was that substrates such as acetyl-CoA and 

glycerol-3-phosphate for the synthesis of acetyl-TAG might be limiting.  The other reason might 

be the relatively late expression of EaDAcT under the glycinin promoter versus the earlier 

knockdown of DGAT1 that is under the oleosin promoter 	
  [65]. These hypotheses might be 

tested in future in acetyl-CoA overproduction lines or by expression of both EaDAcT and 

DGAT1 RNAi under the same promoter. 

5.3.5.3 Germination is not affected in high yielding transgenic lines 

TAGs are a major metabolic reserve in seeds and are required for proper germination. To 

test the effect of presence of high levels of acetyl-TAGs on seed germination, T4 seeds from high 

acetyl-TAGs yielding lines were tested for germination on soil and MS medium. Germination 

was defined as complete emergence of cotyledons 	
  [166].  

      Seeds from two parental MCFA lines germinated at a rate of 89% and 97% on soil. 

All the high acetyl-TAG yielding lines showed germination rates of 89% or above, except for 

one line with a lower (81%) rate of germination (Table 5.2). Because the other lines expressing 

the same genes are not affected, the lower germination rate might be due to a deleterious 

insertion effect in that particular line. A smaller seed size and lower oil content compared to the 

other transgenic line was also noted for this line (data not shown). Similar trends were also 

observed when the seeds were germinated on MS medium with an even higher germination 

percentage for most of lines (Table 5.2). Because TAGs are major storage reserve and need to be 

mobilized during the germination it can be concluded that all TAGs were mobilized in these 

lines. Previous studies have also reported efficient breakdown of acetyl-TAGs and lcTAGs 

during germination in high acetyl-TAG yielding Camelina lines 	
  [13]. 
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 Table 5.2 Germination test of seeds from high acetyl-TAG yielding transgenic lines 

Genotype Line number Germination (%) 

On soil On MS media 

Wild type  86	
   97	
  

UcFatB1 + CnLPAAT 

(T6) 

	
   97	
   97	
  

UcFatB1 + CnLPAAT + 

EaDAcT + DGAT RNAi  

(T4) 

43	
   97	
   94	
  

83	
   81	
   86	
  

119 92	
   94	
  

132 100	
   92	
  

CpFatB2 + ChFatB2 (T6)  89	
   97	
  

CpFatB2 + ChFatB2 + 

EaDAcT + DGAT RNAi 

+ PDAT RNAi (T4) 

134 89	
   94	
  

Seeds were grown in growth chambers under 16 hours light and 8 hours dark cycle. 
Germination is defined as complete emergence of cotyledons. 
Abbreviation: Ch- Cuphea hookeriana; Cn- Coccus nucifera; Cp- Cuphea palustris; 
DAcT- Diacylglycerol acetyltransferase; DGAT- diacylglycerol acyltransferase;  
Ea- Euonymus alatus; Fat- fatty acid thioesterase; LPAAT- lysophosphatidic acid 
acyltransferase; PDAT- Phospholipid:diacylglycerol acyltransferase; Uc- Umbellularia 
californica. 

 

5.3.6 Physical properties of transgenic acetyl-TAGs 
  The viscosity of vegetable oils is an important parameter for its use as fuel, 

biodegradable lubricant, and other industrial applications. The kinematic viscosity of aliphatic 

hydrocarbons increases with increase in fatty acid chain length 	
  [147]. Also, tests conducted on 

mixtures of pure lcTAGs and short chain length TAGs showed a positive linear relationship 

between average molecular mass of TAG species and their kinematic viscosities 	
  [150,151].  

Similarly, we hypothesized that reducing the average molecular weight of acetyl-TAG molecular 

species might decrease their kinematic viscosity. This was done by the incorporation of MCFAs 

into acetyl-TAGs, reducing the overall molecular weight of the acetyl-TAGs and thus eventually 

further lowering their viscosity. To test this idea, T4 seeds from two high medium chain acetyl-
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TAG yielding lines from two different MCFA background lines were grown on a scale to yield 

enough oil (~20 ml) for viscosity testing. The oils from the mature seeds of parental lines and 

transgenic lines were extracted using organic solvents and further fractionated in to pure acetyl-

TAGs and lcTAGs.  

5.3.6.1 Purification of acetyl-TAGs and lcTAGs 

Acetyl-TAGs were purified using silica gel fractionation and a solvent gradient. Because 

of involvement of a solvent gradient and collection of various small fractions, there was a 

  

 

Figure 5.8 Large scale purification of acetyl-TAGs from crude seed oil of high acetyl-TAG 
yielding Camelina line. Representative positive ESI mass spectra of (a) total lipid extract and 
(b) purified acetyl-TAG fraction of transgenic T5 seeds from one of high yielding MCFAs 
producing Camelina line expressing EaDAcT. Signal peaks possess the m/z value of [M+NH4]+ 
adduct. For clarity, only the number of acyl carbons and not the number of double bonds (x) in 
each series of TAG molecular species is indicated. 
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possibility of losing different MCFA containing acetyl- TAGs molecular species. Hence, the 

acetyl-TAG containing fractions obtained during the fractionation were combined and tested for 

purity and fatty acid composition. All the acetyl-TAG molecular species present in the original 

oil were also present in the purified acetyl-TAGs (Fig. 5.8).  

The fatty acid composition also matched closely with the original acetyl-TAG 

composition (Table 5.3). Similar tests were done to confirm the purity of lcTAGs obtained from 

the seed oil of parental lines.  
 

Table 5.3 Fatty acid composition of the purified acetyl-TAG and lcTAGs from seed oil of 
transgenic lines  

 
Abbreviation: Ch- Cuphea hookeriana; Cn- Coccus nucifera; Cp- Cuphea palustris; 
DAcT- Diacylglycerol acetyltransferase; DGAT- diacylglycerol acyltransferase;  
Ea- Euonymus alatus; Fat- fatty acid thioesterase; LPAAT- lysophosphatidic acid 
acyltransferase; PDAT- Phospholipid:diacylglycerol acyltransferase; Uc- Umbellularia 
californica. 
 
5.3.6.2 Decreasing the molecular weight of acetyl-TAGs is not sufficient to reduce their 
viscosity  

  The viscosities of purified lcTAGs from wild type Camelina oil and parental 

MCFA producing lines and acetyl-TAGs obtained from their EaDAcT expressing transgenic 

lines were measured according to the standard ASTM D445 method. The viscosity value of the 

purified lcTAGs (32.5 ± 0.1 mm2/s) from Camelina wild type seed oil showed a small increase 

from the previously reported values of 30.6 mm2/s 	
  [13,167]. This might be due to small 

Genotype		 Fatty	acid	composition	(Mol	%)	

Wild	type	(LcTAGs)	
Fatty	acid	 8:0	 10:0	 14:0	 16:0	 18:0	 18:1	 18:2	 18:3	 20:0	 20:1	 22:0	 22:1	

Original		 -	 -	 -	 7.7	 3.3	 12.9	 21.7	 32.0	 2.3	 13.8	 0.4	 2.5	
	Purified		 -	 -	 -	 8.0	 3.3	 11.7	 21.9	 33.3	 2.2	 13.0	 0.4	 2.5	

CpFatB2	+	ChFatB2	
(LcTAGs)	

Fatty	acid	 8:0	 10:0	 14:0	 16:0	 18:0	 18:1	 18:2	 18:3	 20:0	 20:1	 22:0	 22:1	
Original		 0.7	 6.7	 7.0	 10.9	 3.7	 17.2	 15.2	 21.8	 2.3	 9.5	 0.5	 2.3	
	Purified		 0.7	 6.5	 6.8	 10.6	 3.5	 17.0	 15.5	 23.1	 2.2	 9.1	 0.5	 2.3	

CpFatB2	+	ChFatB2	
+	EaDAcT	+	DGAT	
RNAi	+	PDAT	RNAi	

(acetyl-TAGs)	

Fatty	acid	 8:0	 10:0	 14:0	 16:0	 18:0	 18:1	 18:2	 18:3	 20:0	 20:1	 22:0	 22:1	
Original		 0	 0.1	 5.9	 12.3	 3.9	 19.6	 20.2	 26.6	 1.7	 7.6	 0.2	 0.8	

	Purified		 0	 0.3	 5.7	 12.0	 3.8	 19.0	 20.4	 27.8	 1.6	 7.4	 0.1	 0.7	

UcFatB	+	CnLPAAT	
(LcTAGs)	

Fatty	acid	 8:0	 12:0	 14:0	 16:0	 18:0	 18:1	 18:2	 18:3	 20:0	 20:1	 22:0	 22:1	
Original		 -	 30.6	 4.0	 5.1	 2.3	 7.5	 11.3	 29.0	 1.4	 6.5	 0.2	 2.0	
	Purified		 -	 26.1	 3.7	 5.5	 2.8	 9.4	 12.1	 26.6	 1.9	 9.0	 0.4	 2.6	

UcFatB	+	CnLPAAT	
+	EaDAcT	+	DGAT	
RNAi	(acetyl-TAGs)	

Fatty	acid	 8:0	 12:0	 14:0	 16:0	 18:0	 18:1	 18:2	 18:3	 20:0	 20:1	 22:0	 22:1	
Original		 -	 11.4	 2.9	 6.0	 3.3	 15.1	 13.8	 33.7	 1.9	 10.3	 	0	 1.6	
	Purified		 -	 14.2	 3.3	 6.1	 2.9	 12.1	 13.6	 36.6	 1.6	 8.2	 0		 1.4	
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differences in the method of oil extraction and purification. The viscosity of lcTAGs from the 

parental lines CpFatB2+ChFatB2 was 6.0% more than wild type while lcTAGs from parental 

lines UcFatB1+CnLPAAT had 9.5% lower viscosity than wild type. This might be due to high 

levels of long and saturated fatty acids 16:0 and 14:0 in first line compared to second line, which 

have more lauric acid. The acetyl-TAGs containing MCFAs from two different parental lines 

showed viscosity values of 25.6 and 22.7 mm2/s (Table 5.4). As expected acetyl-TAGs from the 

both the lines showed reduced viscosities compared to lcTAGs from the  

 

Table 5.4 Kinematic viscosity of purified acetyl-TAGs and lcTAGs 

Genotype TAG Type 
Kinematic Viscosity 

(mm2/s) at 40 0C 

Wild type LcTAGs 32.5 ± 0.1 

CpFatB2 + ChFatB2 LcTAGs 34.5 ± 0.5 

CpFatB2 + ChFatB2 + EaDAcT + 

DGAT RNAi + PDAT RNAi 
Acetyl-TAGs 25.6 ± 0.2 

UcFatB1 + CnLPAAT LcTAGs 29.4 ± 0.1 

UcFatB1 + CnLPAAT + EaDAcT + 

DGAT RNAi 
Acetyl-TAGs 22.7 ± 0.1 

      Viscosity was determined according to standard method ASTM D445. 
Abbreviations: Ch- Cuphea hookeriana; Cn- Cocos nucifera; Cp- Cuphea palustris; 
DAcT- Diacylglycerol acetyltransferase; DGAT- diacylglycerol acyltransferase; Ea- 
Euonymus alatus; Fat- fatty acid thioesterase; LPAAT- lysophosphatidic acid 
acyltransferase; PDAT- Phospholipid:diacylglycerol acyltransferase; Uc- Umbellularia 
californica 
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parental lines. These reductions were in the range of 22.5% to 25.8%. The previously reported 

values of acetyl-TAGs of Camelina wild type seed oil is 20.6 mm2/s 	
  [13]. Our expectations 

were to decrease the viscosity of acetyl-TAGs further by incorporating MCFAs in to acetyl-

TAGs. Instead, increase of 26.2% and 11.8 % were observed over the acetyl-TAGs from wild 

type Camelina.  

The increase observed might be due to increased saturation levels of acetyl-TAGs due to 

incorporation of lauric and palmitic acids in these lines. A previous study from our group has 

also reported increase in viscosity with high oleic acid containing acetyl-TAGs 	
  [65]. In these 

lines, higher oleic acid levels were achieved at a cost of decreased levels of linoleic and linolenic 

acids which resulted in increase in overall saturation levels of acetyl-TAGs. Also a positive 

correlation was observed between viscosities of oils and increasing levels of saturation 	
  [168]. 

The second reason could be low incorporation of MCFA in to acetyl-TAGs, which did not lower 

their overall molecular weight appreciably. Both of these problems may be overcome by finding 

desaturases specific for MCFAs to produce monounsaturated MCFAs and LPAATs specific for 

these MUFA MCFAs with higher activities to acylate them on to sn-2 position. It can be 

concluded that a balance between saturation levels and the molecular weight of oil acetyl-TAGs 

might might be critical and have to be considered at same time before any future attempts to 

decrease the viscosity further. 

5.4 Conclusions 

This study successfully achieved high levels of production of acetyl-TAGs in MCFA 

producing lines of Camelina. Although levels of acetyl-TAGs molecular species containing 

MCFAs were low, one advantage of producing them in the oil seed crop Camelina is that large 

amounts of acetyl-TAGs can be obtained from these lines by field growth. From these large 

amounts of acetyl-TAGs, MCFAs containing acetyl-TAGs, which are expensive to synthesize 

chemically, can be obtained by further purification. A detailed future study can be planned from 

these purified acetyl-TAGs containing either long or medium chain fatty acids. Viscosity values 

can be obtained from mixture of known compositions to build a model relating composition of 

acetyl-TAGs with viscosity. Based on the prediction of that model, desired combination of 

acetyl-TAG molecular species can be generated using engineered Camelina backgrounds 

producing appropriate amounts of those fatty acids. 
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Chapter 6 - Conclusions and Future work 
 

Vegetable oils mainly consisting of long chain triacylglycerols (lcTAGs) have the 

potential to be used as direct use biofuel but they suffer from problems such as high viscosity 

and poor cold temperature properties	
  [11]. 3-acetyl-1,2-diacyl-sn-glycerol (acetyl-TAGs) are 

different from lcTAGs due to the presence of an acetyl group at the sn-3 position instead of a 

long chain fatty acid. Acetyl-TAGs possess lower viscosity and improved cold temperature 

properties compared to lcTAGs	
  [12,13]. Further improvement in their properties can be achieved 

by modifying the fatty acid composition of acyl-chains present at the sn-1 and sn-2 positions of 

the molecule. The substrate specificity of EaDAcT for its acyl-CoA donor and acceptor 

substrates was studied in a yeast model system. This was done with a novel ESI-MS based 

method for quantification of DGAT assay products, enabling use of non-radiolabeled substrates. 

Based on the knowledge of substrate specificity, EaDAcT was expressed in Camelina transgenic 

lines producing abundant medium chain fatty acids (MCFAs) to synthesize acetyl-TAGs with 

improved fuel properties.  

Typically, substrate specificity of acyltransferases is tested by incubating microsomal 

extract containing desired enzyme with radiolabeled acyl-CoA and DAG and measuring the 

amount of radioactive product. This microsomal assay for EaDAcT had certain limitations: for 

example, due to non- specific reactions from other enzymes in microsomes, the desired assay 

product need to be separated by performing TLC which is time consuming. Also, unavailability 

and high cost of synthesis of all different chain length radiolabeled acyl-CoAs made the substrate 

specificity studies highly difficult. Hence, we developed a DGAT assay based on the use of non-

radiolabeled substrates and quantification of product by electrospray ionization mass 

spectrometry (ESI-MS) (Chapter 2). This method was based on the detection of all the TAGs 

molecular species containing same sn-3 acyl group by neutral loss scan of sn-3 acyl group in a 

single scan. As the neutral loss signal is affected by the chain length and saturation indices of the 

fatty acids	
  [54], a series of TAG standards with a specific sn-3 acyl group and fatty acids of 

different chain length and saturation levels at sn-1 and sn-2 positions were synthesized. The 

response factors calculated from these standards were used to correct and quantify the signal for 

TAGs present in the samples.  This accuracy of this method was further tested to quantify 

purified acetyl-TAGs of Euonymus alatus seed oil and acetyl-TAGs present in the lipid extract of 
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yeast expressing EaDAcT. The values closely matched with the values obtained from GC-FID 

quantification. This method was next tested by quantification of acetyl-TAG produced in an in 

vitro enzyme assay.  The results obtained from this method were found to be highly comparable 

to results obtained from the radioactive assay.  

EaDAcT is a member of MBOAT family of enzymes and synthesizes acetyl-TAG by the 

acetyl-CoA dependent acylation of diacylglycerol (DAG)	
  [12]. To test the acyl-CoA specificity 

of EaDAcT under in vitro conditions, microsomes from the yeast expressing EaDAcT were 

incubated with a series of different unlabeled acyl-CoAs varying in acyl group chain length from 

2 to 18 carbons.  The product formed was quantified using ESI-MS neutral loss scans of sn-3 

acyl group with the method described in Chapter 2. It was found that although EaDAcT can use 

other small chain acyl-CoAs such as butryl-CoA and hexanoyl-CoA, it has high specificity for 

acetyl-CoA. Further, EaDAcT has negligible activity for acyl-CoAs with chain length greater 

than 6 carbons. Detailed studies were conducted with acetyl-CoA, butyryl-CoA and hexanoyl-

CoA using a wide range of acyl-CoA concentrations to determine kinetic parameters. The 

substrate conversion rate for any concentration of acetyl-CoA was higher than that for butyryl-

CoA and hexanoyl-CoA, again confirming higher specificity of EaDAcT for acetyl-CoA. 

However, the higher apparent Km recorded for acetyl-CoA than butyryl-CoA and hexanoyl-CoA 

might be caused by side reactions utilizing acetyl-CoA and rapid acetyl-CoA hydrolysis by the 

enzymes present in the microsomal system. Future work will involve development of a purified 

enzyme system to more accurately determine the enzyme kinetic parameters using surface 

dilution kinetics. 

The activity of EaDAcT for DAG acceptor substrates with different chain length and 

saturation indices was tested under in vitro and in vivo conditions using endogenously present 

DAGs. However, the presence of very low amounts of DAG containing medium chain length 

fatty acids (MCFAs) in yeast microsomes and their low solubility in aqueous buffer allowed only 

qualitative tests for these DAGs. However, results from both in vitro and in vivo studies 

indicated that EaDAcT could acetylate a variety of DAGs with highly variable fatty acid chain 

lengths but has high preference for DAGs with high unsaturation levels. Substrates such as 1-

monoacylglycerols (MAGs), 2-MAGs, and sn-1,3-DAGs did not get acetylated by EaDAcT in 

vitro suggesting that EaDacT specifically acetylates sn-1,3-DAGs. 
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Phylogenetic evidences demonstrated that EaDAcT has high sequence similarity with 

wax synthases and sterol acyltransferases	
  [12]. Hence, we decided to test the EaDAcT ability to 

acetylate fatty alcohols and sterols.  DMSO as a solubilizing agent for fatty alcohols was found 

to be essential to observe alcohol acetyltransferase activity under in vitro conditions. Other assay 

conditions such as type of solubilizing agent, pH and fatty alcohol concentration were also 

optimized. Fatty alcohols with chain length ranging between 8 to 22 carbons were tested under 

optimized assay conditions. EaDAcT was found to show higher activity for medium chain fatty 

alcohols such as 12:0-OH and 14:0-OH. The ability of EaDAcT to acetylate fatty alcohol 

produced in vivo was also tested in yeast. The yeast expressing EaDAcT and honey bee fatty 

acid reductase (AmFAR1) genes was able to produce alkyl acetates further confirming wax 

synthase activity of EaDAcT.  Similar results were obtained from further studies done in 

collaboration using endogenous DAG free microsomes in vitro and by fatty alcohol feeding 

assays in vivo	
  [71]. EaDAcT did not show any activity either for the exogenously added 

cholesterol or for any other sterols endogenously present in the yeast suggesting that EaDAcT 

has no sterol acetyltransferase activity. 

The viscosity of vegetable oils is an important parameter that governs their use as a direct 

use biofuel. The viscosity of acetyl-TAGs produced in wild type Camelina (20 mm2/s) falls in 

the range of diesel #4 (5-24 mm2/s) used in low and medium speed engines	
  [13]. Any further 

reduction in the viscosity of acetyl-TAGs will increase their usefulness. Previous studies have 

suggested that molecular mass of constituent TAGs is directly correlated to their viscosity	
  

[150,151]. Based on this and the fact that EaDAcT can acetylate DAG containing MCFAs 

(Chapter 3), lower molecular mass acetyl-TAGs were synthesized in oil seed crop Camelina by 

incorporation of MCFAs in them to further reduce their viscosity. 

Transgenic Camelina lines producing high levels of MCFAs were used to produce acetyl-

TAGs. These lines were obtained by the expression of medium chain specific fatty acyl 

thioesterases  (FatBs) and lysophosphatidyl acyltransferases (LPAATs) isolated from plants 

producing high levels of MCFAs in their TAGs 	
  [155]. Four lines producing high levels of 

capric acid, lauric acid and myristic acid were transformed with EaDAcT. In addition, 

diacylglycerol acyltransferase 1 (DGAT1) and and phospholipid : diacylglycerol acyltransferase 

(PDAT) enzymes, which utilize the same DAG substrate as EaDAcT, were also knocked down 

alone or in combination to minimize the competition and enhance acetyl-TAG production. 
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Homozygous T3 lines producing high levels of acetyl-TAGs (64 – 77 mol %) were obtained for 2 

out of 4 MCFAs producing genetic backgrounds. DGAT1 knockdown was effective in 

increasing the acetyl-TAG levels over the lines with EaDAcT expression alone. The fatty acid 

compositions of acetyl-TAGs and lcTAGs from these lines showed poor incorporation of 

MCFAs in the acetyl-TAGs compared to lcTAGs. sn-2 fatty acid compositional analysis of 

acetyl-TAGs showed low abundance of MCFAs at their sn-2 position which in turn indicates 

poor incorporation of MCFAs at the sn-2 position of DAGs. Either the low concentration of 

DAGs containing MCFAs and/or low specificity of EaDAcT for these DAGs might be reasons 

for inefficient concentrations of acetyl-TAGs containing MCFAs.  

The seed traits of some of the high acetyl-TAG yielding lines were tested. The acetyl-

TAG producing trait was consistent upto T5 generation for the two highest acetyl-TAGs yielding 

lines. There was no effect on seed germination. However, the oil contents of these lines were 

reduced compared to wild type Camelina. 

T5 seeds from two of the highest acetyl-TAG yielding lines and corresponding parental 

lines (T7 seeds) were produced at a scale to yield enough acetyl-TAGs and lcTAGs for testing 

viscosity. The oil was extracted with hexane using soxhlet extraction and fractionated into 

acetyl-TAG and lcTAGs by column purification using silica gel and a step gradient of diethyl 

ether in hexane. The viscosity of acetyl-TAGs from two lines with different MCFA backgrounds 

(25.6 and 22.7 mm2/s at 40 oC) were found to 26.2 % and 11.8 % higher than viscosity of acetyl-

TAGs produced in wild type Camelina (20.2 mm2/s). Inefficient lowering of molecular mass due 

to low incorporation of MCFAs and/or increase in relative amount of saturated fatty acids 

compared to acetyl-TAGs produced in wild type Camelina might be the reasons for this increase.  

The other possibility is difference in techniques used for oil extraction, purification and viscosity 

testing used in this and previous studies. Overall, it was concluded that saturation levels of fatty 

acids of acetyl-TAGs needs to be considered in addition to lowering the molecular mass.  

 

Future directions 
Increasing MCFAs incorporation into acetyl-TAGs 

One possible explanation for the insufficient decrease in the viscosity of acetyl-TAGs is 

inefficient lowering of average molecular mass of acetyl-TAGs. It was because of low 

incorporation of MCFA in to acetyl-TAGs. One of the possible reasons for this was low sn-2 
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incorporation of MCFAs in to the DAGs. This in turn might be the result of either low activity of 

medium chain specific CnLPAAT or higher activity of Camelina endogenus LPAATs 

outcompeting CnLPAAT activity or both effects.   

Future work will involve generation of Camelina lines where endogenous LPAAT 

activity will be suppressed to see its effect of MCFA incorporation in to acetyl-TAGs. For this, 

endogenous LPAATs orthologs of Camelina need to be identified using Camelina transcriptome 

and genome databases [99,100]. Once known, LPAATs knockout lines can be generated using 

the CRISPR/Cas9 genome editing techniques  [158]. In the event that endogenous LPAATs 

knockout is lethal for the plant, RNAi based suppression of endogenous LPAATs can be tried 

instead of complete knockout.  

The other option is to express MCFA specific LPAATs with higher activities than 

CnLPAAT or add more number of MCFA specific LPAATs in CnLPAAT backgrounds. 

Recently, novel LPAATs specific for capric acid (10:0) and myristic acid (14:0) from Cuphea 

were discovered and successfully expressed in Camelina 	
  [163]. Those lines can be crossed with 

the high yielding acetyl-TAG producing lines obtained from this study to possible imcorporate 

more MCFA incorporation in acetyl-TAGs. 

 

Increasing the unsaturation levels of acetyl-TAGs 

The other possible explanation of increase in viscosity of acetyl-TAGs containing MCFA 

was increase in the saturation levels due to incorporation of saturated fatty acids such as lauric 

acid (12:0), myristic acid (14:0) and palmitic acid (16:0).  Maintaining high unsaturation levels 

and reduction of the molecular weight of acetyl-TAGs can be achieved by expressing 

desaturases, which can produce unsaturated MCFAs.  

A fatty acyl-ACP desaturase, which acts on 14:0-ACP to produce 14:1-ACP was cloned 

from Pelargonium x hortorum  [169].  This enzyme can be further used as a model to develop 

desaturases, which can produce unsaturated MCFAs, by protein engineering.  Another way to 

find MCFA specific desaturases is to screen mutant population of this plant or related species. 

However, the first step will be to test the EaDAcT ability to acylate the DAGs containing 

unsaturated MCFAs which can be determined by assay techniques developed in this study. 
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