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1. INTRODUCTION 

There is a complex class of optimisation problems, 
where traditional deterministic and polynomial time . . 

algorithms are not applicable. Recently, a number 
of techniques have been developed to solve such 
optimisation pr~blems '~ .  Some of these novel 
optimisation techniques include nature-based 
heuristic search techniques which give a fast but 
sub-optimal solution to a complex problem. Such 
heuristic techniques often use biased random 
search or stochastic algorithms, since exhaustive 
search methods are not efficient when tbe problem 
is nonlinear and has many variables. However, the 
solutions of stochastic algorithms may not be true 
global optimum, but near-optimum. Stochastic 
algorithms include simulated annealing, genetic 
algorithms, etc. Neural network-based techniques 
(inspired by the functionality of the brainy" provide 
another area of potential research. These nature- 
based algorithms s can be applied to a wide range 
of problems. These are easy to implement and 
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have the potential of finding near-optimal solution 
quickly. 

Continuous hopfield neural network 
approach" is a popular technique for solving 
NP-complete optimisation problems. In this 
technique, the problem is formulated in terms of a 
penalty function, which is a weighted sum of cost 
functions and the constraint terms. The penalty 
function is mapped to an energy funetion, whose 
various local minima correspond to different valid 
solutions and the global minima correspond to the 
best solution. The energy function is governed by 
several parameters that must be set in order for 
the network to converge. Improper parameter values 
can drastically affect the network performance 
(it may become unstable or converge to infeasible 
solutions). Further, the parameter values are highly 
problem-dependent and often need to be adjusted 
every time the dam values change. Also, another 
drawback of this technique is that if the energy 
function gets trapped in a local minimum, the 
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algorithm does not provide any means of getting 
out of it. 

Another optimisation technique, simulated 
annealing9'", searches for the optimal solution 
stochastically by making random changes in the 
system state, and retaining those changes that result 
in improvement of the solution. This process is 
analogous to the statistical mechanics of particles 
of a substance (either solid or liquid). To alleviate 
the problem of getting trapped at local minima, 
simulated annealing occasionally allows 'uphill 
moves' to solutions of higher costs. Unfortunately 
the random nature of this search process can result 
in long convergence times, hence this method is 
inherently slow. 

Genetic a l g ~ r i t h m ' ~ - ' ~  is a stochastic search 
algorithm that models the process of natural 
selection and genetics. It is an iterative algorithm 
that maintains a pool of feasible solutions at each 
iteration. Initially, the pool of solutions is generated 
randomly. 

Subsequently, at each iteration, a new pool of 
solutions is formed applying the so-called genetic 
operators (reproduction, crossover, mutation) on 
the solutions from the previous pool. These operators 
try to mimic the principles of evolution using a 
fitness function based on the objective function of 
the problem. A new pool of solutions may consist 
of old solutions selected because of their high 
objective function values or new solutions formed 
by combining other solutions. This process is 
repeated until convergence is achieved. 

In the typical genetic algorithm, the problem 
variables are generally integers. This causes 
adjacency. The problem of optimal weapon mix, 
deployment and allocation in a multilayer defence 
scenario", (a complex weapon target allocation 
problem) has been formulated into a 0-1 
optimisation function8. The formulation of the 
nonlinear problem into a discrete variable fitness 
function is a very important part of the solution 
process since it helps in alleviating the adjacency 
problem. In this paper, genetic algorithm is 
applied to this well-defined formulations. The 
approach is very simple and highly generalised. 

2. WEAPON ALLOCATION IN 
MULTILAYER DEFENCE SCENARIO 

The process of effectively allocating resources 
(weapons in this case) against a perceived enemy 
threat is known as battle management/command 
control and c o m m ~ n i c a t i o n ~ ~ ' ~  (BM/C3). Before 
releasing various types of weapons from the 
inventory, considerations have to be made regarding 
their total operating cost, manpower required to 
operate these, etc. Subsequently, deployment of 
these weapons involves their placement to protect 
different strategically important assets, taking 
into consideration the values of these assets and 
the area available for weapon operation. The 
moment some information is available about the 
possible incoming enemy attacking weapons, 
defending weapons have to be quickly allocated 
and launched to neutralise the threat. While 
allocating defending weapons, the factors like the 
enemy's possible attack plan, the effectiveness of 
the defending weapons and other required 
resources have to be considered. The model 
considers all these factors to formulate an objective 
function and also takes care of the constraints 

2.1 Mathematical Model 

For comparison, consider the well-established 
formulation8 of the problem of a multiple layer 
defence in which two types of attacking weapons 
(Type 1 and Type 2) are aimed at the three different 
assets (Asset 1, Asset 2, and Asset 3) as depicted 
in Fig. 1 .  These assets are defended by two layers, 
each containing different types of weapons. 
Attacking weapons which survive the interception 
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by all layers have a chance to cause damage to 
the asset. The problem is formulated as follows: 

D Types of defending weapons available 

S Number of assets 

A Types of attacking weapons 

kdSa Probability of successful interception by one 
defending weapon of type d deployed to 
defend an assets against an attacking weapon 
of type a (effectiveness) 

x,,', Number of defending weapons of type d 
deployed to intercept attacking weapon of 
type a to defend asset's (defence plan) 

n ,  Number of attacking weapons of type a aimed 
at asset s (attack plan) 

gsa The probability that a single attacking weapon 
of type a destroys the assets when it is able 
to penetrate the defending weapons (damage 
probability) 

vr Value of asset s 

c ,  Cost of operating one defending weapon of 
type d 

rn, Manpower required per defending weapon 
of type d 

B ,  Number of defending weapons of type d 

R Number of attacking weapons of type a 

G, Ground area available at asset s 

t ,  Ground area required by a defending weapon 
of type d 

Cmax Maximum operating cost of weapons deployed 

Mmax, Maximum available manpower to operate 
defending weapons of type d. 

Assuming that the attack plan, effectiveness 
of defending weapons and the damage probabilities 
are all known, an objective function corresponding 
to an optimal defence plan which maximises the 
total expected surviving value of all the assets, 

subject to the constraints imposed on the resources 
of the defender is defined". In such a formulation, 
the adjacency problem (discussed in Section 2.2) 
arises'$ because the objective function of x,,~ and 
ns0 is integer valued. In this paper instead of 
integer formulation, a 0-1 formulations of the 
objective function is used as the fitness function 
for the genetic algorithm. 

2.2 Adjacency Problem 

To use a genetic algorithm for solving a problem, 
all problem variables are generally in the form of 
binary stringsi9 (i.e. a sequence of I s  and 0s). The 
algorithm consists of application of certain genetic 
operators (reproduction, crossover and mutation) 
on these binary strings. Search for better solutions 
and escape from local minima is highly dependent 
on these genetic operators and their effectiveness. 
This often involves flipping the bits with a certain 
probability. In the above model, suppose the number 
of defending weapons, x, is considered to be an 
integer variable which is to be determined, and 
use its binary coding. As x,,~ changes from 
7 ( 7,,=[0111],) to 8 (8,,=[1000], ), the Hamming 
distance (number of binary digits that change 
between successive decimal numbers) will be 4, 
i.e. all the bits are flipped. Such a significant change 
using mutation operator is very unlikely even 
though integer values often have to be changed 
only slightly to get a better solution. Consequently, 
mutations in the binary representations of adjacent 
values of x , ~  will not be very effective when 
trying to find its optimum value incrementally. 

Representing 'the problem variables in 
gray-codes (which have the characteristics that 
the Hamming distance between adjacent values is 
always one)19 is sometimes helpful but it does not 
cater for the constraints implicitly. Most of the 
population strings generated through gray-codes 
lead to infeasible solutions, thus wasting a lot of 
computational effort. Hence, there is requirement 
for a discrete representation of the weapon-target 
allocation problem, which has some inherent way 
of by-passing the adjacency problem. An obvious 
solution is a string representation, where each string 
would contain xdtn number of 'on' bits and the 
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remaining 'off bid. Flipping any one bit of such 
a string would i n c d d e c r e a s e  the value of x, 
by exactly I. 

2.3 B i i  Rcpmsemtrtion of Weapon-Target 
AUoatiom Problem 

The following parameters which govern the 
objective function, and consequently determine 
the size of the strings on which the genetic 
algorithm can be applied are 'coosidered: 

(a) Assets s = 1, 2 ,..., S, where S is the total 
number of assets. 

@) Defending weapons d, = '1, 2, ..., D-, where 
d, is &e P weapon of type d and D- is the 
total number of defending weapons of all 
types, i.e. D- = B, + B, +...+ B, where B, 
(k = 1, 2, ..., D) is the total number of k" 
type of defending'weapons and D is the total 
oumber of defending weapon types. 

(e) Attacking weapons a, = 1, 2 , . . . A ,  where a, 
is the J* weapon of type a and A- is the 
total number of attacking weapon of all types, 
i.e. A- = R, + R, +...+ R,, where R, 
(k = 1,2, ..., A) -is the total number of P type 
of attacking weapon and A is the total 
number of attaeking weapon types. 

In order to overcome the adjacency problem 
in genetic algorithm, the values of variables in the 

solution space of the weapon-target allocation 
problem have to be restricted to 0 or 1. The resultant 
solution space is depicted in form of a matrix in 
Fig. 2 which is a sequence of Dm strings, each 
of size A- x S, placed one after the other to form 
a sparse matrix of 1's and 0's. 

When the algorithm converges, an element of 

this matrix, xw,, which is a bit in a string, will be 

'on' if there is an assignment of the I* defending 
weapon of type d to protect an asset s from the 

J* attacking weapon of type a. xdF, will be 'off' 

if there is no such assignment. The number of 'on' 
bits in the final &rings can then be counted to 
interpret a solution of the problem. The algorithm 
works on a population of such matrices and the 
final output of the algorithm (when it converges) 
is a similar matrix representing the defence plan. 
The attack plan (which is known) will also be 

a 2-D binary string whose element n,, being 'on' 

means that the f b  weapon of type a attacks 
asset s. If there is no such attack, then the 

corresponding n.=, is equal to 'off'. 

Taking into consideration, ,kdm (weapon 
effectiveness) and g- (damage probability), the 
objective function is formulated8 as follows: 

The probability that a single attacking weapon 
a, is not intercepted by the defending weapon d, 

CROSSOVER 

STRING HAS 
PRECISELY A 

SWGLE 1 UNIT IN IT 

P i r e  2. Popmbtim matrix corrapomding to tbc optimal dcfcncc plan 
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deployed on asset s, i.e. d, is not able to defend 
asset s against a, is given by: 

It may be observed that the nonlinear objective 
function [Eqn ( I ) ]  has several independent 
parameters and the landscape is multimodal, i.e. 
it has several locally optimal solutions. Obviously, 
the classical methods of determining the optimal 
value of a real analytical function of several 
variables may not be helpful. The multidimensional 
space of feasible solutions is bounded by the 

The probability that a single attacking co,,itraint surfaces corresponding to weapon 
a, is not intercepted by the d,any defending weapon availability, area availability, cost and manpower. 
deployed on asset s is: 

Hence the probability that a, destroys asset s 
is given by: 

The survival probability of asset s [Prob(s)], 
'when attacked by all the attacking weapons of 
all the types is given by: 

2.4 Inequality Const ra in ts  & Slack Bits 

If a population matrix contains precisely a 
single 'on' bit in each string, over-allocation of 
defending weapons may cause the co~st ra in t  on 
resources to be voilated and most of the.matrices 
will represent infeasible allocations. ~ h i s ~ r o b l e r n  
of inequality constraints is catered for by borrowing 
the concept of slack variables from traditional 
numerical programming techniques. A slack bit is 
appended to every sub-string of size Amax. In each 
such string of size (Ama: + 1) x S, any one bit may 
be 'on'. The 'on' bit m ~ g h t  correspond to the (Amax 
x S) main bits or the S slack bits. Hence, atmost 
(Amax x S) bits representing weapon assignments 
can be 'on'. A sequence of Dmax number of such 
strings forms a matrix representing the solution 
space. The dimension of this matrix can be [(Amax 
+ 1) x S)] x Dmax. To cater for the slack bits, the 
constraints are formulated8 as follows: 

2.4.1 Weapon Availability Constraint 
The total expected surviving value of all the Since Dmas = f 8 ,  , where D is the total type 

assets, M,,,, , which is to be maximised is: of defending weap&ds, weapon availability constraint 
is implicit in the matrix. It was ensured that one 

s defending weapon could be assigned to only one 

M,, = Ev, Prob(s) attacking weapon on any one of the assets by 
?=I having a single bit 'on' in each string. Therefore 

Hence, the objective function (which is the S A m T + I  

fitness function of the genetic algorithm) to be C  C X ~ , ~ ~ ,  = I  
\. maximised is given by: ,=I 0 'I 

, J ..-r 
\ 

2.4.2 Manpower Constraint  

For a given weapon type, d, this constraint is 
equivalent to: 



DEF SCI J, VOL 51, NO 3, JULY 2001 

where dmlo and dmax give the range of d, for a given 
weapon type d and 

2.4.3 Cost Constraint 

2.4.4 Area Availability Constraint 

3. GENETIC ALGORITHM FOR 
DISCRETE (0-1) PROBLEM 

Step 1. Generate initial population 

(a) Generate a matrix of dimension 
[((Amax + 1) x S) Dmax], such that each 
row of each matrix has precisely a single 
1 at a randomly determined position [may 
be at the (Amax+l)Lh column]. 

(b) Check feasibility ofthis matrix. If infeasible, 
discard. 

(c) Go tostep I(a) and repeat until W 2  feasible 
matrices are available. 

Step 2. From the resultant population, select N 
best possible solutions. 

Step 3. Perform crossover by selecting the 
crossover points at the end of B, for 
k = 1, 2 ,..., 0-1 .  Take all possible NfJ 
combinations of sub-matrices, e.g. for 
D = 2, B, part of the first matrix and B, 
part of one of the N matrices is linked up 
to form the resultant matrix. Of these 
N" matrices thus generated, consider only 

N best possible matrices that lead to 
feasible solutions and discard the remaining. 

Step 4. Perform mutations by randomly 
changing the position of the 'on' bit in 
each string with mutation probability, PI. 

Step 5. Repeat by going to Step 3 until the 
difference between the maximum fitness 
of the population between 100 successive 
iterations is infinitely small. 

4.  ILLUSTRATION 

An example similar to the one defined by 
Jaiswa18 is considered to compare the results. Two 
types of weapons available to defend three assets 
(Asset 1, Asset 2, and Asset 3) against two types 
of attacking weapons (Type 1 and Type 2) are 
considered. It is supposed that the maximum 
number of defending weapons available of 
the first type (Type 1) is 7 and that of the 
second type (Type 2) is 8. The number of 
attacking weapons of the first and second types 
are 6 each. The value of the first, second and third 
assets (Asset 1, Asset 2, and Asset 3) are 
400, 300 and 200, respectively. The cost of 
operating the defending weapons, C, and C, 
is 20 and 30, respectively while the maximum cost 
(Cmax) is 380. The area required for defending 
weapons of Type I(t,) and Type 2 (t,) is 34 and 
5 1, respectively. 

B b l e  1. Effectiveness values and damage probabilities 

Defending weapon Asset Attacking weapon Pd," Pa_ 
type (4 (8)  type (a) 
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The area available for Asset l(G,), Asset 
2(G2) and Asset 3(G3) is 225,150 and 195, respectively. 
The maximum manpower availasle for defending 
weapons 1 and 2 are M m?x, = 35 and MFm, = 32 
while the manpower requ~red for operatmg each 
defending weapon weapon Type I(m,) and weapon 
Type 2 (m,) is 5 and 4, respectively. Effectiveness 
values of defending weapons and damage 
probabilities of attacking weapons used for 
evaluating the fitness function are given in Table 1. 

A population matrix consists of 15 strings each 
containing (12 + 1) x 3 = 39 bits. The attack plan 

is given in Table 2. An element nsn, is 1 in the table 

if the? weapon of type a attacks assets. Otherwise 

the corresponding n,, is 0. 

Table 2. Attack plan 

Weapon type 1 Weapon type 2 

For this input data, the algorithm converged 
with the normalised value of the obiective function .. 
as 0.901756. This is much better as compared 
to 0.889642 value, which was obtained using 
continuous Hopfield neural network8 as applied 
on the same binary mathematical model. For the 
attack plan in Table 2, five defending weapons 
of the first type (Type 1) and seven of the second 

,/type .-. (Type 2) are assigned as given in Table 3. 
The corresponding matrix is represented in Fig. 2. 

\ A total of 12 assignments are made. Three slack ' bits are assigned [2 for first type (Type 1) of 

Table 3. Optimal defence plan 

Defending Asset Attacking Optimal 
weapon ( 4  weapon defence 
tYPe (4 type (0) Plan 

1 I I 0 
2 1 1 0 

I I 2 3 

2 I 2 2 

1 2 I I 

2 2 I 2 

I 2 2 0 

2 2 2 0 

I 3 I 1 

2 3 I 1 

I 3 2 0 

2 3 2 2 

this case, extra slack bits were assigned to take 
care of the more constrained manpower 
requirement. This illustrates how easily any 
constraint can be imposed and incorporated into 
the genetic algorithm. Imposing this reduced 
manpower availability in the neural networks 
model violates the weapoh and area availability 
constraint. To arrive at a reasonable solution, 
network parameters have to he re-selected, which 
is a laborious process of trial and error. 

5.  CONCLUSION 

Efforts have been made to evolve an improved 
methodology which is simple, flexible and rugged 
for solving a well defined complex weapon-target 
allocation problem. The methodology so developed 
is general and can be used for any similar problem. 
The rate of convergence is very fast provided the 
mapping of the problem into population strings and 
fitness function is done correctly. 

: defending weapon and 1 for second type (Type 2) ACKNOWLEDGEMENTS 
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