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ABSTRACT 

This paper deals with the active vibration control of beam like structures with distributed piezoelechic 
sensor and actuator layers bonded on top and bottom surfaces of the beam. A finite element model based on 
Euler-Bernoulli beam theory has been developed. The contribution of the piezoelectric sensor and actuator layers 
on the mass and stiffness of the beam is colisidered. Three types of classical control strategies, namely direct 
proponional feedback, constant-gain negative velocity feedback and Lyapunov feedback and an optimal control 
strategy, linear quadratic regulator (LQR) scheme are applied to study their control effectiveness. Also, the 
control performance with different types of loading, such as impulse loading, step loading, harmonic and random 
loading is studied . 

Keywords: Active vibration control, beam theory, smart beams, piezoelectric sensors, piezoelectric actuators, 
active vibration, beam theory, finite element model, feedback control 

1. INTRODUCTION fai lure) .  This  technology has numerous 
applications, such as active vibration and buckling 

The increasing demand of high structural 
control, shape control, damage assessment and 

performance requirements has led to the 
active noise control. The development of these 

development of smartlintelligent materials and 
structures. A smart or intelligent structure involves smart or intelligent structures offer great potential 

distributed actuators and sensors, and one or more for use in advanced aerospace, hydrospace, nuclear, 

microprocessors that analyse the response from the defence and automotive structural applications. 
sensors and us; distributed control Typical smart materials being used as microsensors 
theory to command the actuators to apply localised and microactuators are piezoelectric materials, 
strains. A smart structure has the capability to magnetostrictive materials, electrorheological 
respond to changing external environment (such as fluids and shape memory alloys. The coupled 
loads, temperature and shape) as well as to electromechanical properties of piezoelectric 
changing internal environment (such as damage or ceramics and their availability in the form of thin 
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these types of materials. The direct piezoelectric 
effect states that a strain applied to the material is 
converted to an electric charge. On the other hand, 
the converse piezoelectric effect states that an 
'electric potential applied to the material is 
I 
converted to strain. In this work, a piezolaminated 

. beam finite element has been formulated and active 
vibration control performance of a beam with 
distributed piezoelectric sensors and actuators has 
been studied using different types of control 
strategies. 

Distributed Gibration control of beams using 
the piezoelectric effect has been studied by ~ a i l e ~ l ,  
;I. al., Crawley and L U ~ $ ~  and TZOU'. In terms of 
#thieving very high damping, only limited success 
has been achieved by these distributed control 
approaches. Baz and  oh^,^ have used modified 
independent modzl .space control method to study 
the performance of an active control system in 
beams with piezoelectric actuators. Crawley and 
Luis proposed an analytical model of the static 
interaction between a beam and segmented 
piezoilactric actuators, which were symmetrically 
bonded to the top and bottom surfaces of the beam. 
~ e v a s i a "  eet a/. have formulated actuator placement 
and sizing methodologies for vibration suppression 
in uniform beams. Several closed-loop performance 
criteria were considered to derive objective 
functions for optimum placement and sizing of 
piezoelectric actuators in uniform beams. Tzou7 has 
studied the boundary control of beams. Two control 
algorithms, namely displacement feedback and 
velocity feedback were implemented and their 
control effectiveness evaluated. It has been shown 
that velocity feedback controls were much more 
effective. A 1-D mathematical model for 
determining the nechanical responses of beams 
with piezoelectric actuators has been proposed by 
Shen. This model is based on Timoshenko beam 
theory with the host beam and piezoelectric patches 
being separately modelled using beam elements. 
Kinematic assumptions were made to satisfy the 
compatibility requirements in the vicinity' of the 

A piezoelectric laminated elastic bean 
in Fig. 1 has been considered. Two thin 1; 

' piezoelectric material are bonded on the 
bottom surfaces of the beam. One layer se 
distributed sensor and the other as a dis 
actuator. In this case, the piezoelectric matc 
been assumed to be monoaxially oriented (tl 
constant d,l # 0 and (132 = 0). The effectivc 
the piezoelectric layer is aligned with thc 
direction of the beam to ensure the m 
piezoelectric effect. The signal from the dis 
sensor is used as a feedback referenc 
closed-loop feedback control system. The 
laws determined the feedback signal to be 
the distributed actuator. In Fig. 1, F(t: 
disturbing farce, @, is the voltage generate 
sensor and @. is the voltage given to the a c  
control the structural deformations. The 
signal, @, is a function of strains in the sl 
The voltage @. , applied to the actuator, c 
effective control forces and moments. 

3. MODELLING & FORMULATION 
The layout of a beam with distribute1 

and actuator is shown in Fig. 1. It is assur 
the piezoelectric layers are perfectly bondt 
surface of thebeam and also the bonding la 
thin. Hence, the contribution of the bondir 
on the mass and stiffness of the beam is ne 
However, the contribution of the piezc 
sensor and actuator layers on the mass and 
of the beam is considered: Linear theories 
and perfect continuity without any slip is I 
at the interfaces. The applied voltage is ass 
be uniform along the beam. 

Figure 1. A cantilever beam with~distributed act 
sensor. 



Figure 2. Finite element discretisation of beam 

3.1 Finite Element Formulation 

The  geometry ind ica t ing  the nodal  
deformations of the beam is shown in Fig. 2 
represents the coordinate in theaxial direction. The 
transverse displacement (w) is interpolated using 
cubic polynomial in x defined over the element 
length (L,). The axial displacement (u) is 
interpolated using linear polynomial in x defined 
over the L,. The local nodal displacements for a 
typical element (Fig. 2) are given by 

where w' indicates the transverse rotat~on (slope). 
The axial and transverse displacements have been 
expressed in terms of the nodal displacements by 
finite element shape functions as 

where [N,(x)] and [N,(x)] are appropriate shape 
functions. 

Let fl be the effective flexural rigidity, given 
by the summation of the flexural rigidities of the 
beam, sensor and actuator layers and f l  the 
effective mass per unit length. The element stiffness 
and mass matrices of the beam with the 
piezoelectric layers'are evaluated from the potential 
and kinetic energies due to the beam deformations 
and the element force vector due to external 
disturbance forces is evaluated from the virtual 
work, in the usual way. For 1-D structures with 
uniaxial loading, the constitutive equation of the 
piezoelectric materials coupling elastic and electric 
fielhs (IEEE Standard on Piezoelectricity, 1987) 
can be written as 

where D is the electrical displacement [chargelarea 
inthe beam transverse direction (z-direction)], E is 
the electrical field (voltagellength along the z 

direction), E is the mechanical strain in the axial 
direction (x-direction), and r~ is the mechanical 
stress in x-direction. SPl1 is the elastic cpmpliance 
constant, E:, is the dielectric constant, and dj ,  is the 
piezoelectric strain constant. 

whe re  E, i s  the Young ' s  modulus  o f  the 
piezoelectric material, $, is the voltage applied (in 
the case of actuator)/induced (in the case of sensor) 
in the piezoelectric material and h, is the thickness 
of the piezoelectric material. [The subscript p 
represents the actuator or sensor piezoelectric 
layer]. 

The virtual work done by the induced strain 
(force) in the actuator is given by 

where {P,), is the piezoelectric element force 
vector which maps the applied actuator voltage to 
the induced displacements and r, is the distance 
measured from the neutral axls of the beam to the 
mid-plane of the actuator layer. (The subscript a 



where F, and Ma are the axla1 control forces and the 
bending control moments, respectively. It can be 
noted that the piezoelectric-induced force and 
moment results in boundary actlons at the ends of 
the p~ezoelectric layer due to the force cancellation 
at  common nodes when co.ntinutty between 
elements is enforced. 

Using Hamilton's principle, the equations of 
motion for an element can be obtained as 

where, [ M ] ,  is the element mass matrix and [q, is 
the element stiffness matrix obtained from the 
kinetic and potential energies of the beam with the 
piezoelectric sensor and actuator layers due to axial 
and bending deformations. The global equation of 
motion obtained by assembling the elemental 
equations is given by 

where [C ] is the structural damping included via 
Raleigh damping. 

Assuming that the system response is governed 
by the first m modes of the system, the displacement 
{6(t))can be approximated by 

where {11(t)) are the modal coordinates, {p}, is the 
modal vector of the jth mode and [@I is the truncated 
modal matrix with m retained modes. Using the 
above approximation, the equation of motion [Eqn 
(8)] can be transformed to the reduced modal space 
form as 

[MI{VJ + [Clllj) + [FI {VJ  - ' {P ,  ) k t ( r ) )  + (f,) (10) 

To apply the optimal control schemes like 
linear quadratic regulator (LQR), it is convenient to 
have the equations representing the dynamics of the 
system in a state space form. Introducing the state 

space variable (5) as (5) = 

dynamics can be written in state space form as 

($1 = [Al{E) + [El + [illu,) (11) 

where [A] is the system matrix, [B] is the control 
matrix, and [i] is the disturbance matrix. These 
matrices are given by 

r-[a]-' [ c l  -[MI-' [KII  MI-I { P ,  1-1 
=1 [I1 [O] 1; =/. [O] 1; 

{ud) is the disturbance input vector and {@.) is the 
control input (to actuator). The output equation can 
be written in the physical coordinates as 

where [C,] 1s the output matnx. On transforming to 
modal coordinates and then to state space 
coordmates, Eqn (13) becomes: i 

1 

The state space model of the system dynamics 
is thus represented by Eqns (1 I) and (14). 
3.2 Sensor Equations 

If the sensor is extending on the beam from 
x = x ,  to x = x,and x, > x ,  ,(Fig. 3) then the sensor 
voltage (4,) contributed by the bending effect can 
be estimated by the normal strains in the axial 



Figure 3. Layout of beam with partially covered distributed 
piezoelectric actuator and sensor. 

direction of the beam. Thus, the sensor voltage is 
given by 

where h, is sensor thickness, g31 is the piezoelectric 
stress constant, r, is the distance measured from the 
neutral axis of the beam to the mid-plane of the 
sensor layer and E, is the Young's modulus of the 
sensor. It can be noted from the sensor equation that 
the output signal is proportional to the rotation of 
the beam at both ends of the sensor layer. For a fully 
distributed sensor, that is, xi  = 0 and x~ = L, where L 
is the length of the beam, the sensor voltage 
becomes: 

Note that the sensor voltage is zero if the slopes 
at both ends of the sensor become equal, for 
example, antisymmetrical modes of a simply 
supported beam laminated with a symmetrically 
distributed sensor layer. In such circumstances, 
segmented sensors  and  ac tua tors  with 
multiinput-multioutput (MIMO) controllers can be 
used. After obtaining the sensor voltage @,, the 
actuator voltage 6, to be applied across the actuator 
can be determined using any one of the control 
laws. 

control laws oasea on ourpur IeeooacK ana one 
optimal control law based on full-state feedback are 
considered. The classical control laws considered 
are direct proportional feedback, constant-gain 
negative velocity feedback and Lyapunov 
feedback. The optimal control law considered is 
LQR scheme. Inclassical control laws, the gains are 
arbitrarily chosen, whereas in the optimal control 
law, an optimal control gain is obtained, which 
minimises an objective function. 

3.3.1 Direct Proportional Feedback Control 

The direct proportional feedback control is a 
displacement feedback control in which the 
actuator voltage is generated by amplifying the 
sensor output directly. The control law can be 
expressed as 

where G, denotes the voltage amplification ratio - 
a feedback control gam-which can be adjusted 
depending on the performance requirements of the 
system. Since the sensor signal is a function of 
strains, that is, displacements in the structure, this 
control scheme usually controls the system's 
natural frequencies. The amplitude can also change 
due to the frequency change. 

3.3.2 Constant-Gain Negative Velocity Feedback 
Control 

In this method of control, the sensor voltage 6, 
is differentiated so [that a ,strajnrate (related to the 
velocity) information is obtained and the actuator 
voltage (9,) is given by 

The velocity feedback can enhance the system 
dam ping^ and therefore effectively control the 
oscillation amplitude. But as the velocity amplitude 
decays, the feedback voltage also decreases. This 
will reduce the effectiveness at low vibration levels 
for a given voltage limit. 
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the velocity. The amplitude of feedback signal can 
he expressed as and [PI satisfies the Riccati equation 

where sgn[.] is a signum function and @,,, is the 
magnitude of the control voltage. This is also called 
bang-bang control. Note that the Lyapunov control 
scheme can introduce unstable oscillations due to 
sudden change of feedback voltage and hence a 
dead zone is setup, as in 'the following equation to 
prevent excessive chattering 

3.3.4 Linear Quadratic Regulator Optimal 
Control 

LQR optimal control t h e ~ r - y ~ - ' ~  is used to 
determine the control gains. In this, the feedback 
control system is designed to minimise a cost 
function br a performance index which is 
proportional to the required measure of the system's 
response. A state feedback rather than output 
feedback is adopted to enhance the control 
performance. The cost function used in this case is 
given by 

where, [Q] and [R] are the semi-positive-definite 
and positive-definite weighting matrices on the 
outputs and control inputs, respectively. In this 
case, larger (relatively) elements in [Q] mean that 
more vibration suppression ability was demanded 
from the controller. The purpose of the second term 
in Eqn (21) is to account for the effort being 
expended by the control system, so that small 
reductions in the output response are not obtained at 
the expense of physically unreasonable actuator 
input levels. Assuming full-state feedback, the 
control law is given by 

The closed-loop system dynamics is given bq 

where [A,,] is the closed-loop system matrix. Th 
,eigenvalues of [A,,] gives the damped natura 
frequencies and damping ratios. 

It can be noted that only few states of th 
system could he measured as the output of th 
sensor, while all states of the system were used i: 
obtaining the actuator voltage. Hence, a stat 
observer or estimator is to he designed which coult 
estimate all the state values from the measure, 
signal. One such observer is the Kalman filte 
which is an optimal state observer for a syster 
contaminated with process and measurement noise 
An optimal control procedure that uses a Kalma~ 
filter as an observer and a controller that minimise 
a cost function of quadratic form is called linea 
quadratic gain (LQG) control r n e t h ~ d ~ . ' ~ .  Th' 
MATLAB software has in-built functions fo 
estimating the control gains using LQR and LQ( 
methods. In the present work, MATLAB softwar, 
has been used for solving the associated Riccat 
equation and obtaining the control gains in LQI 
control methods. 

3.4 Actuator Equations 
For a distributed piezoelectric actuator, a 

discussed in Eqns (5) and (6 ) ,  the distributed axia 
control forces (Fa) and bending control moment 
(M,) acting on the beam are given by 

It can be noted that the control forces an( 
moments are spatially distributed when the actuato 
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lure 6. Tip displacement of piezolaminated cantilever beam 
subjected to 0.2 N impact load at  the tip and 
controlled using direct proportional feedback 
(eain = 1). 

TlME (s)  

pre  7. Tip displaceme?t of piezolaminated cantilever beam 
subjected to 0.2 N impact load a t  the tip and 
controlled using direct proportional feedback 
(gain = SO). 

-loo: 0 5  1.0 I 2.b 2.i 3.0 3.; 
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p r e  8(a). Tip displacement of piezolaminated cantilever 
beam subjected to 0.2 N impact load at  Ule tip and 
controlled using constant-gain negative velocity 
feedback (gain = 1). 

~e properties4 of PZT are presented in Table 1. 
ne beam is divided into 10 elements. The stiffness 
~d the mass of the piezoelectric layers are included 
the model. The structural damping is neglected, 
the aim is to access the effectiveness ofthe active 

mtrol. The first six natural frequencies of the 

TIHE (5) 

Figure 8(b). Actuator voltage corresponding to figure 8(a) 

Figure 9(a). Tip displacement of piezolaminated cantilever- 
beam subjected to 0.2 N impact load at the tip and 
controlled using constant-gain negative velocity 
feedback (gain = 2). 

beam were 6.890 Hz, 43.285 Hz, 121.225 Hz, 
237.720 Hz, 393.580 Hz and 589.630 Hz. 

An external impulse load of 0.2 N is assumed 
to act at the free end of the beam for one 
millisecond. The control is applied after 0.5 s of the 
application of the load so as to have a comparison 
between the controlled and uncontrolled response. 
Figures 6 and 7 indicate the vibration control 
performance using direct proportional feedback 
with gain 1 and 50, respectively. The control 
performance with constant-gain negative velocity 
feedback with gain 1 and 2 are shown in Figs 8 and 
9, respectively. It can be noted from Figs 6 and 7 
that the direct proportional feedback (displacement 
feedback) controls are insignificant even for higher 
gain values. It is evident from Figs 8 and 9, that the 
velocity feedback controls are much more effective 
thin the displacement feedback controls. It is 
because the former changes the system damping, 
whereas the latter changes the system's natural 
frequency. 



Figure 14(a). Tip displacement of piemlaminated cantilever 
beam subjected to 0.2 N impact load at the tip 
and controlled using LQR control (Q =lo8 and 
R = 1). 

%@re 14(b). Actuator voltage corresponding to figure 14(a) 

Figures 14, 15 <.and 16 indicate the control 
'fectiveness using LQR optimal control with 

ble 3. Damping ratio and peak actuator voltages for 
constant-gain negative velocity feedback and LQR 
control with different values of control parameters 

pe of control strategy First mode Peak actuator 
damping voltages 

ratios 

nstant-gain negative 0.0391 14.3440 
ocity feedback control 
in = 0.5) 

lstant-gain negative 0.0781 28.6880 
Jcity feedback control 
In = 1.0) 

1sta.t-gain negative 0.1560 57.3760 
city feedback control 
n = 2.0) 

stant-gain negative 0.2330 86.0640 
city feedback control 
1 = 3.0) 

8 : control (Q = I0 , R = I) 0.0589 0.9480 

control (Q = 10'. R = 2) 0.0421 0.6696 

control (Q = lo9, R = 1)  0.1742 3.0000 

control (Q R = 1) 0.3815 8.9800 

TIME is) 

Fignre 15(a). Tip displacement of piemlaminated cantilever 
beam subjected to 0.2 N impact load at the tip 
and controlled using LQR control (Q = lo9 and 
R = 1). 

Figure IS@). Actuator voltage corresponding to figure 15(a) 

weighting factor Q to be lo8, lo9 and lo", 
respectively. The first mode damping factors in 
these cases are 0.0589, 0.1742 and 0.3815, 
respectively. The damping ratios and the peak 
actuator voltages for constant-gain negative 
velocity feedback and LQR control are shown in 
Table 3. 1't can be noted that LQR optimal control 
offered an effective control with lesser peak 
actuator voltages. In the present case, the gain of 
the constant-gain negative velocity feedback should 
be < 2, due to the limitation of the maximum 
allowable voltage of the PZT used (that is, 1 Vlpm). 

The effectiveness of the active control strategy 
in controlling the response of the beam subjected to 
harmonic load is demonstrated in Figs 17 and 18 
wherein harmonic loads of 0.2 sin (250 t) N and 
0.2 sin (43.3 t) N are applied respectively at the free 
end. It can be noted that in the case indicated by 
Fig. 18, the harmonic load applied is near the first 
natural frequency. 
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16(a). Tip displacement of piemlaminated cantilever 
beam subjected to 0.2 N impact load at the tip 
and controlled using LQR control (Q = 10" and 
R = 1). 

re 16(b). Achlator voltage cormsponding to figure 16(a) 
. , 

SUMMARY & CONCLUSIONS 

In this work, the active vibration control of 
n like structures with distributed piezoelectric 
or and actuator layers bonded to top and bottom 
ices of the beam has been studied. A 
olaminated beam finite element has been 
:loped and the model is validated. The active 
ation control performance has been studied 
g classical control laws, like direct proportional 
[back, constant-gam negative velocity feedback 

i Lyapunov feedback and also using optimal 
trol law based on LQR theory. 

From the results it can be noted that the control 
xtiveness offered by direct proportional 
iback, which is a displacement feedback, 1s 

~gnificant when compared to the constant-gain 
lative velocity feedback and Lyapunov feedback 
ich are velocity feedbacks. Velocity feedbacks 
more effective than displacement feedbacks 

ich is due to the fact that the former changes the 
item damping while the latter changes the system 
rural frequencies. 

I d - - i!,/V[F LOO 

Figure 17. Tlp displacement of piemlaminated cnntllevu beam 
subjected Lo harmonic load 010.2 sin (250 1) N at the 
tip and controlled using constant-gain negative 
veloctiy feedback (gain = 1). 

Figure 18. Tip displacement of piezolaminated cantilever beam 
subjected la harmonic load of 0.2 sin (43.3 1) N at the 
tip and controlled using constant-gain negative 
veloctiy feedback (gain = 1). 

In the case of constant-gain negative velocity 
feedback, the damping ratio increased and reached 
a maximum value and then decreased, which was 
due to high boundary feedback voltage. Also care 
should be exercised such that the peak actuator 
voltage does not exceed the breakdown voltage of 
the piezoelectric layer at which the actuator looses 
its piezoelectric property. It can be noted from the 
results that Lyapunov feedback are more effective 
In controlling th vibration and simpler to apply, 
but it may introduce unstable oscillations due to 
sudden changes of feedback voltages, especially at 
high feedback voltages, and hence a dead zone is set 
up as in Eqn. (20), wherein the actuator voltage IS 

maintained at zero. 

The study also revealed that the LQR optimal 
control offers an effective control with lesser peak 
actuator voltages when compared to classical 
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using distributed sensors/actuators is effective in 
controlling the oscillations due to impact and 
harmonic loading. 
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