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DGEBA-siloxane Interpenetrating Polymer Network 
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ABSTRACT 

A commercially viable polydimethylsiloxane (PDMS)-diglyceryl ether of bisphenol-A (DGEBA) 
interpenetrating network from hydroxyl-terminated PDMS and DGEBA (GYZSO-Ciba-Geigy) was synthesised. 
Epoxy resin was thoroughly mixed with PDMS to get a prepolymer, which was cured with polyamidoarnine 
(HY840. CibaGeiw), at 30 OC using y-aminopropyltriethoxysilane as cross-linker and dibutyldndilaurate as 
catalyst. It was th&-wst-cud at 70% for 10 hr. The lnterpenetrsting network obtained was characterised by 
SEM, FTIR, DSC, vkosity measurements, and mechanical,~lectrical and thermal studies. The interpenetrating 
polymer network has better electrical and thermal characteristics with high impact resistance compand to the 
virgin epoxy system. 

Keyword% Polydimethylsiloxane, siloxane, epoxy resm, DGEBA, interpenetrating polyme~ network, PDMS, 
IPN, synthesis, cross-linking agent, prepolymer 

highly adverse environment9-lo. The PDMS, 
1. INTRODUCTION because of their hydrophobicity""2, has been 

Elastomeric modification of epoxy resins has widely used for outdoor insulation owing to the 
been adopted to alleviate its brittle characteristics flexibility of Si-0 linkage and the presence of 
since advanced composites made from epoxy resins mobile silicone chains. Low surface energy of 
for application in aerospace, automobile, siloxanes imparts better hydrophobicity, and hence 
electronic, defence and other industries demand show very low leakage current in wet conditions 
superior impact resistance. Carboxy-terminated even if contaminated1'-15. Silicone resists moisture, 
butadiene-nitrile (CTBN) rubber, amine-terminated oxidation, chemical attack, biological attack, outdoor 
butadiene-nitrile (ATBN)'.~ rubber, fluoro- 
elastomers6, polysiloxanes7 and acrylate 
elastomerss have been used successfully to improve 
the toughness, while only the modest reduction 
resulted in other important properties. The 
advantage of using siloxane as modifier is that it 
improves hydrophobicity and erosion resistance, 
which makes the material suitable for insulation in 

weathering, contamination and electrical, mechanical, 
and thermal stre~ses'~. Their mechanical properties do 
not vary much over a wide range of temperature. 
However, these materials lack good mechanical 
propert ies  and they are  not r igid and 
self-supporting. To promote substantial enhanced 
toughness, development of a two-phase morphology 
is critically important while maintaining or at least 
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~ a b k  I .  ~molmt of curative, cmdbidng agent nnd eptplyst In the present study, an attempt has been made 
usedinIpN to synthesise siloxane-epoxy interpenetrating 

Ratio of epoxy Amount of Cross-linking Catalyst polymer network (IPN) using polyamidoamine as 
and siloxane curative agent r-APS DBTDL curing agent and y-aminopropyltriethoxysilane 

ts) (g) 
( y - ~ ~ ~ ) 1 8 - 2 0 .  A detailed account of characterisation 

10010 50 - - of the resulting IPN is given here. 

90110 45 0.20 0.10 
2. EXPERIMENTAL PROCEDURE 

80120 40 0.30 0.15 

70130 35 0.40 0.20 Calculated percentages of diglycidyl ether of 
bisphenol-A (DGEBA, GY250, Ciba-Geigy), 

minimising the deterioration in other important epoxy equivalent 180-190 eqkg, viscosity 10,000 
properties/parameters, such as modulus and glass cP) and hydroxyl-terminated polydimethylsiloxane 
t ransi t ion temperature.  The  method of  [PDMS, viscosity 1000 cP, average molecular 
compounding incompatible 'siloxanes and epoxy weight (M,) = 10001 were thoroughly mixed 
restns is  effective and yet remains the (Table 1). Vlscoslty of the prepolymer was 
state-of-the-art. Formation of interpenetrating measured using Brookfield viscometer and a 
network avoids phase separation, as siloxane is Fourier transform infrared (FTIR) spectrum was 
chemically bonded to epoxy resin and prov~des taken using Perkin-Elmer FTIR spectrometer. To 
materials having desired properties and with more establish the stability of the prepolymer, the sample 
consistent resultsf6"'. was allowed to stand in a stability column at 30 OC 

Table 2. Thermal, electrical sad mechaaical properties of IPN 

Siloxam (W) 
property 0 10 20 30 

Pot-life at 30 O C  (min) 

Exotherm ('C) 

Percentage weight loss by TGA 

Glrss transition temperature by DSC ( O C )  

Heat distortion temperature ("C) [ASTM-DM81 

Dielectric strength (Vlmm) [ASTM-Dl491 

Comparative tracking index (V) [ASTM-D36381 

Volume resistivity (Q-cm) [ASTM-D2571 
. 

Surface resistivity (Q-cm) [ASTM-D2571 

Arc resistance (s) [ASTM-D4951 

Tensile strength (psi) [ASTM-D6381 

Tensile modulus (psi x lo4) [ASTM-D6381 

Percentage elongation [ASTM-D6381 

Flexural strength (psi) [ASTM-D7901 

Flexural modulus (psi x 103 IASTM-D7901 

Hardness (Shore D) [ASTM-D22401 

Impacf strength (kglcmlcml) [ASTM-D2561 
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Figure I. PDMS-DGEBA premix before and alter six months 
of ageing. 

for six months and viscosity and spectral studies 
were made on the  sample  thereaf te r .  
Polyamidoamine hardnerer (HY840, Ciba-Geigy) 
were used for curing the epoxy resin. For 
cross-linking DGEBA and PDMS, y-APS was used 
as cross-linking agent with dibutyltindilaurate 
(DBTDL) as a catalyst. Stoichiometric quantities 
of polyamidoamine, y-APS and DBTDL were added 
sequentially to the prepolymer blend. After 
evacuating the entrapped air, the resulting product 
was cast in a mould. Post-curing of the cured 
material was done at 70 OC for 10 hr. 

Thermogravimetric analysis (TGA) was 
carried out using TGA-Mettler TA3000. Glass 
transition temperature was determined using a 
differential scanning calorimeter (DSC, Dupont 
2000). The measurements were carried out from 
0 "C to 350 OC under nitrogen gas at 25 'Clmin. The 
morphology of the samples was examined by 
scanning electron microscopy (SEM). 

Table 3. Viscosity of the prepolymer mix 

Ratio of epoxy Viscosity (cP) at 30 "C 
and siloxane 

Initial After 6 months 

10000 10500 

4000 3000 2000 (000 

W W E  NUMBER (rm') 

Figure 2. FllR spectrum of PDMS-DGEBA IPN 

Heat distortion temperature, tensile properties, 
flexural properties, impact strength, hardness 
(Shore D), dielectric strength, arc resistance, 
comparative track~ng index and surface and volume 
resistivities were determined as per ASTM 
standards (Table 2). 

Figure 3. SEM phitograph of PDMSDGEBA IPN 

3. RESULTS & DISCUSSION 

Viscosity measurements (Table 3) and Fourier 
transform infrared (FTIR) spectral studies (Fig. 1) 
confirmed that the PDMS-DGEBA prepolymer was 
stable after six-month storage at 30 O C :  in a stability 
column. 

When PDMS-DGEBA is cured, epoxy groups 
begin to cross-link, PDMS dispersed in the 
prepolymer on a molecular level also gets bonded to 
the cross-linked epoxy matrix forming an IPN. 
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From the FTIR spectral studies, it is evident 
that the epoxide ring is opened during the formation 
of network structure which is confirmed by the 
absence of absorption in the range 860-770 cm-' 
and 1280-1230 cm-' peaks (Fig. 2). The absorption 
peak between 2980-2850 cm-' confirms the 
presence of asymmetric methyl group stretching in 
Si-CH,. Peaks at 1370 cm-' and 960 cm-' confirm 
the presence of Si-(CH2) 3 group and residual Si-OH 
group, respectively. The SEM photographs of the 
IPN with 10 per cent PDMS (Fig. 3) show that the 
siloxane micro-domains are distributed all over the 
epoxy regions. DSC curves obtained for cured 
epoxy2' and siloxane-epoxy IPN show only single 
glass transition temperature, indicating the 
formation of a single polymer network (Fig. 4). 
Glass transition temperature is increased with the 
incorporation of PDMS (Table 2). Increase in glass 
transition temperature is attributed to the increase 

in cross-link density, due to the presence of y-APS, 
which acts as a co-curing agentz2 in the presence of 
DBTDL catalyst. 

The TGA data shows that the siloxane-epoxy 
IPN decomposes exothermally (Fig. 5). The 
decomposition exothenn follows the same pattern 
with different percentages of PDMS in the IPN. The 
decomposition of the cured resins begins at 300 OC 
and peaks around 350 "C. It is observed from Fig. 5 
and Table 2 that the decomposition exotherm of the 
IPN increases with increase in siloxane. Higher 
cross-link density and higher percentage of 
thermally stable silicone in the IPN play an 
important role in reducing the decomposition of the 
organic moiety. Low weight loss is encountered 
with increase in PDMS content in TGA (Table 2). 
Due to these factors, the material is suitable for 
application in high temperature operation inclusive 
of high voltage insulation, for an insulating material 
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Figure 4. DSC curve$ of cured IPN 

0 - 

T -0.2 - 
E - 
3: 

S 
f 

.0.4 - 

-0.6 - 

." 8 . 

is expected to have high thermal stability to resist 
any damage due to dielectric heating2'. The heat 
distortion temperature is increased by the 
incorporation of siloxane in the matrix (Table 2), 
which is explained by the higher cross-link density. 
From the viscosity studies, it is observed that the 
viscosity increases with the increase in percentage 
of siloxane in the IPN (Table I), while pot-life is 
lowered (Table 2). Low viscous polyamidoamine 
helps in maintaining the viscosity of the PDMS and 
there is no reduction in its particle size due to rise in 
temperature. Curing is initiated by the DBTDL at 
room temperature. As the curing starts, it is 
observed that viscosity increases gradually, and 
hence, there is a possibility of phase separation. 
However, increase in the cross-link density between 
PDMS .and epoxy resin by the action of y-APS, 
which also serves the purpose of a co-curing agent 
apart from the function of compatibiliser and the 
catalytic activity of DBTDL, contributes to the 
lowering of pot-life24. The decrease in exothenn 
and pot-life reduces the shrinkage and hence lowers 
the internal stress, which favours the material for 

om PDYS 

MI PDMS 

. . 
'.... . ..._.._.. ...... .. 

encapsulation purposes to withstand high 
temperature and high voltagezs. 

Incorporation of PDMS drastically reduces the 
tensile and flexural strengths and the hardness as 
expected (Table 2). This may be due to the large 
size of the polyamidoamine molecules involved in 
the cross-linking, elastomeric nature of siloxane, 
reduction in interlaminar carbon-carbon 
cross-linking density and lowering of internal stress 
by siloxane. This also influences the lowering of 

WElWT GAIN - 
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$400 
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tensile and flexural modulus and increasing the 
percentage elongation and impact strength 
(Table 2). The energy dissipating character of the 
siloxane moiety also increases the impact strength, 
percentage elongation, and reduces the tensile and 
flexural strengths. 

The presence of PDMS content greatly 
influences dielectric strength of the IPN. It 
increases the electric potential gradient of the IPN 
to withstand wi;hout breakdown. Dielectric 
strength increases with increase in percentage 
siloxane content in the IPN (Table 2). The 
organo-inorganic moiety Si--0-Si, present in the IPN 
interrupts the continuity of carbon-carbon linkage, 
and hence reduces the possibility of forming 
carbonised path in the organic insulating material. 
Hence the tracking index is improved (Table 2). 
This characteristic indicates that the material will 
exhibit good electrical insulation even in a 
contaminated environment. From Table 2, it is 
observed that the volume and surface resistivities of 
the IPN also increase with the incorporation of 
PDMS. Hydrophobic nature of the siloxane is 
responsible for improving the resistivity of the 
IPN'~. It is also observed that increase in PDMS 
content increases the ability of the IPN to withstand 
the discharge ofhigh voltage, low current arc across 
the surface without rendering it conductive2'. 

Ciba-Geigy) was used as a curative with .I-APS as a 
cross-linker and dibutyltindilaurate as a catalyst. The 
IPN was characterised by FTIR, SEM, viscosity, 
thermal, mechanical and electrical properties. 
Incorporation of PDMS in the epoxy matrix 
increased the viscosity and lowered the exotherm 
and pot-life. PDMS in the IPN increased both the 
glass transition temperature and the heat distortion 
temperature. Percentage weight.loSs was reduced on 
exposure to higher temperature conditions. 
Incorporation of PDMS reduced the tensile and 
flexural strengths and hardness. By reducing the 
tensile and flexural modulus, the siloxane moiety 
reduced the internal stress of the IPN, thereby 
improving its impact strength and percentage 
elongation. PDMS present in the IPN improved the 
dielectric strength, tracking hdex, arc resistance, 
and volume and surface resistivities. The siliconised 
epoxy IPN, with better impact and thermal 
resistance, may have applications in automobile and 
aerospace industries to withstand high temperature, 
and mechanical stress. With the improved electrical 
characteristics, the IPN may be used for hjgh 
performance electrical insulation, insulator 
housings, and encapsulation to withstand high 
voltage, moisture, oxidation, chemical .attack, 
biological  a t t ack ,  outdoor  weathering, 
contamination, and electrical, mechanical and 
thermal stresses. 
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