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ABSTRACT 

This study examines the problem of an MHD free convection flow in the presence of a temperature- 
dependent heat source in a viscous incompressible fluid between a long vertical wavy wall and a 
parallel flat wall with constant heatflux and slip flow boundary condition. A uniform magnetic field 
is assumed to be applied perpendicular to the walls. It is assumed that the flow consists of two parts; 
amean part and aperturbedpart. Expressions for the zeroth-order and first-order velocity, temperature, 
skin friction, and Nusselt number at the wal lr ;ire obtained. The effects of different parameters entering 
into the problem, viz., free convection parameter, magnetic parameter, and heat source parameter on 
the zeroth-order and first-order velocity fields, temperature field, skin friction, and Nusselt number at 
the walls are shown graphically and discussed numerically, 

Keywords: MHD convection flow, porous medium, skin friction, Nusselt number, slip flow, free 
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1. INTRODUCTION The problem of free convective heat transfer 

Viscous fluid over a wavy wall has attracted 
the attention of relatively few researchers although 
the analysis of such flows finds applicatidns in 
different areas, such as transpiration cooling of 
reentry vehicles and rocket boosters, cross-hatching 
on ablative surfaces, and film vaporisation in 
combustion chambers. 

In view of these applications, Lekoudis', et al. 
presented a linear analysis of compressible boundary 
layer flows over a wavy wall. Shankar and SinhaZ 
studied the Rayleigh problem for a wavy wall. 
Lessen and Gangwani3 studied the effect of small 
amplitude wall waviness upon the stability of the 
laminar boundary layer. In all these problems, the . . 

authors have taken the wavy walls to be horizontal. 
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in a viscous incompressible fluid confined between 
a long vertical wavy wall and a parallel flat wall 
was considered by Vajravelu and Sastri4, and Das 
and Ahmed5. Patidar and Purohit6 studied free 
convection flow of a viscous incompressible fluid 
in porous medium between two long vertical wavy 
walls. Rao7, et al. have made an interesting analysis 
of an MBD convection flow in a vertical wavy 
channel with temperature-dependent heat source. 

The authors have studied the MHD free convection 
flow in the presence of a temperature-dependent 
heat source in a viscous incompressible fluid confined 
between a long vertical wavy wall and a parallel 
flat wall in slip flow regime with constant heat flux 
at the flat wall. The nonlinear equations governing 
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the flow have been solved numerically using finite = 0, v = 0, T  = T ,  at y  =~cos(hx) 
difference technique. Expressions for the zeroth- 
order and first-order velocity fields, temperature aT -q 
field, skin friction, and Nusselt number at the walls u = L l ( $ ) 9 v  = 0, - 

ay k 
a t y = d  

have been obtained for different values of the 
parameters involved in the solution. 

where 

2. FORMULATION & SOLUTION OF 
THE PROBLEM ( 5 )  
The two-dimensional steady laminar free convective 

hydromagnetic along a vertical has L being the mean free path and m, the Maxwell's 
been considered. The x-axis is taken parallel to the coefficient. 
flat wall and the y-axis perpendicular to it. The 
wavy and the flat walls are represented by y = E cos (hr) The following nondimensional quantities have 
and y = d ,  respectively. The flow takes place now been introduced: 
under buoyancy in the presence of temperature- 
dependent heat source. The equations governing * x r y r u d r v d  
the steady two-dimensional flow and heat transfer X =-, y  =--, u =-, v  =- 

d v v 
are: 

av av 1 + u-+v-----+" 
ax ay P ay 

2 aBOZd2 M =- Magnetic parameter 
Pv au av -+-=(I 

ay (3) 

PCP <=- Prandtl number 
k 

(4) 
edz  a=- Heat source parameter 

k 

where ( u ,  v )  is the velocity field, p is the pressure, 
a is the electrical conductivity, B, is the uniform h' = hd Nondimensional frequency 

magnetic field and the other symbols have their 
usual meanings. The last term in RHS of Eqn (4) E E =- 
denotes the heat generation varying directly with d  

Nondimensional amplitude ratio 

the temperature difference. 

The boundary conditions relevant to the problem K K =- 
d Z  

Permeability parameter 
are taken as 
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L 
h =A Rarefaction parameter 
d 

The Eqns (1) to (4) can be expressed in the 
nondimensional form after dropping the asterisks 
over them as 

ae ae a2e a2e ae p u--+v- =-+-- 
r [ ax a,] axz y (9) 

with corresponding boundary conditions: 

It has been assumed that the solution consists 
of a mean part and a perturbed part so that the 
velocity field and temperature field are: 

where the perturbed quantities u,, v,, 0, and p,  
are small compared with the mean quantities. 

In view of the form Eqn ( l l ) ,  the governing 
Eqns (6) to (9) assume the form: 

to the zeroth-order and 

I aeI (17) 

to the first-order, where 

The boundary conditions [Eqn (lo)] reduce to: 

u = h u  ', 
I 1 1  v, = 0, 8' = 0 

1 
a t y = l  (19) 

where prime denotes differentiation wrt y. 
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Introducing the stream function v defined by 

Eliminating p, from Eqns (14) and (15) 

In view of Eqn (19) ,  it has been assumed that 
the general solution for v and 0 ,  is: 

Substituting these results into Eqns (20) and 
(21),  one obtains the following sets of ordinary 
differential equations to the order of hZ: 

a 2 yo - N  y " = G t r  
O r O  (24) 

e "  

t  "-at  = O  
0 0 (25) 

yr - N ~ W :  + i(u;yo - uoyi ) = G r l  t' (26) 

f -  at, = iP (uoto + yOOi) (27) 

The boundary conditions [Eqn (19)l reduce to: 

The differential Eqns (12)  and (13) are solved 
with the boundary conditions [Eqn ( I S ) ]  to obtain 
the mean velocity (u,) and temperature (0,). 

1 
u = Acosh(Ny) t Bsinh(Ny) - ' O + - 

0 (a -  N 2 )  NZ 

where 

The differential Eqns (24) to (29) with conditions 
[Eqns (30) and (31)J are solved numerically by 
finite difference technique. 
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The perturbed velocity components u,, v,, and The nondimensional skin friction 'cXy is given 
temperature 8, are given by by 

i At the wavy wall, y = E cos(hx) and the flat 
sin(L) t c o s ( ~ ) ]  (32) wall, y =1, zq becomes: 

- VELOCITY FIELD (a = 5.0, h, = 0.5, K = 1.0) 

O.." 1 --- TEMPERATURE FIELD (FOR DIFFERENT VALUES OF a) 

Figure 1. The zeroth-order velocity field (u,) for different values of G, and M and zeroth-order temperature field (0,) 
for different values of a plotted against y. 



Figure 2. 
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y for different 

where At the wavy wall, y = E cos(hr) and the flat 
wall y =1, Nu takes the form: 

2; = % (o), Zp = u; (I) 

NU =[NU: - E ( ~ s ( L ) $ ( o ) ~  s i n ( m  (o))] -I 
are the zeroth-order skin frictions at the walls. w 

(37) 
The nondimensional Nusselt number (Nu) is 

given by Nu, =[NU: t ~{cos(hr)t,(l) - sin(hr)f(l)]] -I (38) 
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8 - Pr = 0.7, 1 = 0.01, x = 

- SKIN FRICTION (7 )  

--- NUSSELT NUMBER (Nu) 

-8-  

F'igure 3. Skin friction (T) and Nusselt number (Nu) plotted against a for different 

where 

are the zeroth-order Nusselt numbers at the walls. 

3. DISCUSSION & CONCLUSION 

To understand the physical solution, the numerical 
values have been calculated for the zeroth-order 
velocity and temperature fields (Fig. l), the first- 
order velocity field and temperature field (Fig. 2), 
skin friction, and Nusselt number (Fig. 3) for different 
values of Gr (free convection parameter), M (magnetic 
parameter), and a (heat source parameter). 

values of G, and M 

In the Fig. 1, the zeroth-order velocity 
field (u,) is plotted against,y for fixed values 
of a = 5.0, h ,  = 0.5, K = 1.0 and different 
values of GI and M. It has been observed that 
for G,2 0, the velocity u, decreases throughout 
the channel when M increases. For G ,  = 0, 
velocity u, becomes negative near thk flat 
wall while it remains positive near the wavy 
wall. Further, it is seen from the graph numbers 
6, 7 and 8 (in Fig. 1)  that for G, < 0, the 
velocity u, becomes negative throughout the 
channel. In this case when M is increased, 
velocity u, is increased. In this figure the 
zeroth-order temperature field (0,) is also plotted 
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against y for different values of a. It  is being 
observed that when a is increased, temperature 
8 ,  is increased. 

In the Fig. 2, the first-order velocity and temperature 
fields (u , ,  v , ,  8 , )  are plotted against y for fixed 
values of P , =  0.7, h = 0.01, x = 1.0, 
h,  = 0.5, K = 1.0 and different values of Gr , M 
and a. It is being observed that when M and a 
are increased, velocity u ,  and temperature 8 ,  are 
increased but the phenomena reverses for the case 
of G,. Further, it is seen that when G, and M are 
increased, velocity v ,  is decreased but the phenomena 
reverses for the case of a. 

In the Fig. 3 the skin friction (7) and Nusselt 
number (Nu) are plotted against a for fixed values 
of P,=  0.7, h = 0.01, x = 1.0, h, = 0.5, K = 1.0 
and different values of G, and M. It is being observed 
that when M is increased, skin friction (zw ) and 
Nusselt number (Nuw) at the wavy wall are decreased 
but the phenomena reverses for the case G,. Further, 
it is seen that when M is increased, skin friction 
(2,) and Nusselt number (Nu,)  at the flat wall are 
increased but the phenomena reverses for the case 
of Gr. 
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