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ABSTRACT 

This work is a preliminary investigation on target manoeuvre estimation in real-time from 
the available measurements of noisy position data from tracking radar using an artificial neural 
network (ANN). Recently, simulation study of target manoeuvre estimation in real-time from the 
same position alone measurement using extended Kalman filter has been carried out in a simulated 
environment using measurements at 100 ms interval. The results reveal that the estimated 
acceleration consists of substantial error and lag, which is a stumbling block for guidance accuracy 
in real-time. So, the target acceleration has been estimated using the ANN with less error and 
lag than the same using Kalman estimator. 

Keywords: Kalman filter, artificial neural network, line-of-sight, feedforward neural network, target 
acceleration estimation, augmented proportional navigation 

NOMENCLATURE ( x , y , z  ) Acceleration components along 

(x ,y ,z )  Downrange, cross range, height downrange, cross range, height 

( , y ) Velocity components along downrange, (R,, A,, Em ) Measured range, azimuth and 
cross range, height elevation 
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1 .  INTRODUCTION 

The guidance problem of a pursuer flight vehicle 
(FV) to intercept a moving target is generally solved 
using well-known proportional navigation (PN) law,in 
which the line-of-sight (LOS) angular rate between 
the evader and the interceptor is used for interception1. 
This technique works well in a low-noise environment 
and also when the target maintains a constant 
velocity. However,in a noisy scenario in which the 
target initiates an evasive manoeuvre during endgame, 
the PN guidance laws are not capable of providing 
the necessary guidance commands to ensure 
interception' within given structural limit of the flight 
vehicle. 

To improve the performance of the interceptor$ 
is necessary to accurately estimate target position, 
velocity, and acceleration components. Augmented 
proportional navigation (APN) is a popular guidance 

law which performs better over the PN law because 
it uses target acceleration levels to generate guidance 
command'. So, for using APN guidance law, estimation 
of target manoeuvre is mandatory. The present 
problem addresses estimation of target position, 
velocity, and acceleration components from the 
noisy position alone measurements using an artificial 
neural network (ANN). 

In a recent work by Ananthasayanam2, et al. 
the authors have estimated the target position, velocity, 
and acceleration from noisy range, azimuth and 
elevation (R,, Am, Em). The tentative figure of 
(30 m, 0.2", 0.2") has been taken as (one o ) radar 
measurement noise. In this paper, the sinusoidal 
types of target manoeuvre at 3g, 5g, and 7g have 
been estimated using extended Kalman filter (EKF). 
Through simulation study, it has been seen that 
while tracking a target with 7 g manoeuvre, even 
during nonlinear zone, the estimation error becomes 
close to 2g. 

Open literatures on target manoeuvre estimation 
from noisy position data from tracking radar data 
are very scanty. A detailed literature survey has 
been carried out by Ananthasayanam2, et al. Though 
the Kalman filtering is a fundamental building block 
for target manoeuvre estimation, the ANN techniques 
have also been used by some researchers to improve 
the estimation accuracy of Kalman estimates. Chin3 
has proposed a neural network-aided Kalman filter 
tracker to improve the accuracy of EK estimated 
position and velocity. He has demonstrated improvement 
in estimation using ANN in planar situation.But in 
his work, he has dealt with non-manoeuvreing target 
and the details of ANN training is missing. Later 
based on his work, Vaidehi4, et al. have used ANN- 
aided Kalman filter for multi-target tracking applications. 
They have also reported that by aiding ANN with 
Kalman filter, estimation accuracy in both position 
and velocity improves considerably. 

In the present problem also Chin's idea was 
tried initially. Both Chin3 and Vaidehi4, et al. trained 
ANN with EK estimated gain,innovation sequence 
and prediction error as input and estimation error 
wrt truth model as o u t p ~ t ~ ~ ~ .  Subsequently, the required 
set of elements obtained from EK estimator was 
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used as input to ANN to obtain estimation error 
wrt truth model as o ~ t p u t ~ , ~ .  The EKF estimates 
were compensated by this ANN output which 
reduced the estimation error considerably. But 
unfortunately, this concept didn't work in the 
present scenario. The main reason behind Chin's 
idea didn't work2 as  experienced by 
Ananthasayanam2 because optimum value of Q- 
matrix has been used in filter tuning and estimation 
accuracy is within the statistical bounds of 
measurement noise. This by no means can be 
improved. So in this study, the direct radar 
measurements (R,, Am, Em ) have been used as 
input to train the ANN with actual accelerations 
as output. From the trained ANN, corresponding 
to a given (R,,, A,,,, Em ), the accelerations have 
been predicted. Here, the acceleration estimation 
error is much less than the same obtained by the 

are adaptive,learn from example, and can provide 
excellent functional approximations. An FFNN 
consists of several layers of nodes which express 
artificial neural units (Fig. I). Each node, which 
is connected by the links with all nodes in the 
adjacent layer, completes a weighted sum of 
input and then add an offset to the sum. The 
computed result is output through a nonlinear 
function. In the present network, no operation 
is performed in input layer, that is: 

Furthermore, the offset bias in each layer is 
defined by 

EKF as discussed by Ananthasayanam2. 
a:, =of+' 1s n 5 M-1 & 1 5  i 5Nn+l-l 

The paper is organised as follows. At first, 
Feedforward neural network (FFNN) type of 

(1) 

architecture used in the present application has Output of node (n+l, i) is: 
been described in brief. Then the generation of 
radar measurement (R,, Am, Em) also is described. 

' 

x;+l (t) = ( ~ 7 - 1  a;,x; (t) + ~ : + l )  Subsequently, training of the present neural network /=I 

architecture using different manoeuvre sets is discussed. 
Then corresponding to a given (R,,, Am, E ) prediction 

= / ( ~ 5 ~  xn(t)) 
of acceleration from the trained network7s discussed. i , j  i (2) 

Based on the previous and the present study, a 
combined EKF and ANN architecture has been The sigmoid activation function f(.) and its 

proposed for traget manoeuvre estimation. At last, derivative are: 
- - - 

the major research activities to be carried out in 
future to estimate the target acceleration from 1 
randomly manoeuvreing target in real-life scenario f ( x ) = - .  f'(x) = f(x)(l-Ax)) 

1+e-' ' (3) 

is discussed. 
Let the input set at layer -1 be defined as 

2. MATHEMATICAL FRAMEWORK 1 
{x: , xi ,  xi ,..., xNI ) as r(') and the output set at 

In this section, feedforward neural network 
M 

type of architecture used in the present application layer-M as { x r  , x? x y  , a s . ,  X N ~  1 as r(M = z-  Then, 
has been dm.~ibed and generation of (Rm7 A,, Em) the functional relationship between input and output 
corresponding to a typical manoeuvre has been is z = k(r('), a). Now referring to Fig. 2, one gets: 
discussed. 

q(l) = 

2.1 Feedforward Neural Network 
r(2) = f (l)(r(l)) 

Feedforward neural networks (FFNN) are 
used in a variety of applications because these qc2) = r(2) 
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Figure 1. Structure of feedforward neural network 

r ( 3 )  = f 2 ) (  f l ) ( r ( l ) ) )  2 .1 .1  Back-propagation Training Algorithm 

q ( M - l )  = a(M-1) r ( M - l )  

r ( M )  = f ( M - 1 )  (a(M-1) f ( M - 1 )  

(. . .f3)(a(3)f2)(f1)(r(')))))) (4) 

{a ( ' ) ,  a(2) , .... acM-I)) are the link-weight elements 
in different layers of network which have to be 
computed through adaptive learning process. A 
popular FFNN training algorithm is back-propagation 
(BP) algorithm. 

Learning of neurons consists of adjusting all 
link weights such that error measured between the 
desired output signal, dm , and the actual output 
signal, xM, averaged over all learning examples of 
M layers will be minimum in least square sense. 
The back-propagation algorithm uses steepest-descend 
gradient approach to minimise the error function. 
The equations for link-weight updation in back- 
propagation algorithm is: 

AU$) ( k )  = 776~s)r/s-') + aAaF)(k - 1 )  

Figure 2. Block diagram representation of feedforward neural network 
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where (q, a)(q > 0 and 0 < a < 1)are learning The position and velocity components in cartesian 
and momentum update parameters for back-propagation frame (x,,y,,z,, i, , j, , if ) can be obtained by solving 
algorithm. where s denotes current layer for link- the equations Eqn 7. Tracking radar measurements 
weight updatement5. (R,, Am, Em) can be generated by contaminating 

(R, A ,  E)  obtained from (xf,yt,zt) by uncorrelated 
2.2 Target Modelling, Measurement, Data Gaussian noise (Fig.3). 

Generation 

Periodic manoeuvre sequence such as sinusoidal 
or weaving target presents a challenge for a missile 
guidance system designer1. The target manoeuvre 
in pitch and yaw planes can be of 

A constant-speed target is considered. Governing 
equations of motion of target are: 

d4t - qhtg -- 
dt < cosy, 

Figure 3. Axes system for 3-D point mass model of target 
dynamics. 

3 .  SIMULATION STUDIES 

Target data is generated as in Section 2.2. 
After generating the data for 50 s of flight time, 

dh 2 = Y,  sin y, 
dt 

it is contaminated by Gaussian noise of (a, =30 mls, 
a, = 3 mrad = 0.2O, a, = 3 mrad = 0.2"). Radar 
data sampling at 0.1 s has been considered. 

-- dy, - V, cos y, sin 4, 
dt Y,(~,)=Y,O 3.1 Target Acceleration Estimation 

In present study, V (0) = 500 mls, $10) = 90°, 
dx 
--t = V, cosy, cos $bl 
dt ~ , ( t o )=~ ,o  

y,(O) = 0° , h,(O) = 10 km has been taken. The 
target weave frequency, w, =2n/T, where T is the 

Acceleration vector in cartesian frame is: time period of manoeuvre. Obviously, choice of T 
depends on pilot's pull up and aircraft's maximum 

- - g capability. In the present context, T =I20 s has 
dJ't - 
dt 

dt 

- - 

been chosen for which w, = 0.05 r/s. Aircraft has 
been assumed to be pulling 5g at the given altitude 
in the yaw plane or in the pitch plane throughout 
(Table. 1) over 50 s. The input-output pair for the 
FFNN training is: 
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Table 1. Aircraft latar variation with altitude 

Altitude Instanteneous resultant Sustained resultant 
(km) ? (g) 7 (g) 

0.0 9.00 7.00 

5.0 9.00 7.00 

10.0 5 .oo 5 .oo 

15.0 4.00 4.00 

20.0 2.00 2.00 

In the present context, the ANN maps input 
space I to output space 0 through functional 
approximation f: I + 0. The primary requirement 
of hnctional approximation is that above mapping 
should be of one-one type. So measurements 
corresponding to both time t, and time t,, have 
been used in input space of the training vector in 
Eqn. 9. Network topology consists of 6 input and 
3 output of 6-30-30-3 type. Topology selection is 
based on optimising training time and convergence 
accuracy. RMS error of 1.OE-05 or 5000 epochs 
have been used as onvergence criteria. 

Different manoeuvres have been selected by 
generating target trajectory through Monte Carlo 
simulation using qp€ [-7,718, qy€ [-7,7] g and 
manoeuvre start time qi€ [0,10]s (Fig. 4). After 
training FFNN, a trained network has been used 
to predict the acceleration corresponding to specific 
manoeuvre using (R,, A,, Em) measurements. 

3.1.1 Yaw Manoeuvre Case Study 

Total 10 numbers of different manoeuvres were 
generated and used as input data set. Training data 
set was generated by randomly picking up measurement 
samples once in ten times from the input set generated 
by Monte Carlo simulation. In this case, input data 

0 

Figure 4. Schematic diagram of target wrt radar location 

was generated by randomly selecting qy from 
qy€ [-7,7]g basket. From trained network, (ax,ay,az) 
were estimated from (R,,A,,E,) corresponding to 
6 g yaw manoeuvre. In Fig. 5, the trained network 
output corresponding to ax channel is compared 
with the actual output. The training error is also 
shown in the same figure. ANN-predicted acceleration 
(bx) is compared with the true value (ax) shown 
in Fig. 6 along with the prediction error (ax-dx). 
In a similar fashion, training history, predicted acceleration, 
training, and prediction error corresponding to ay 
is shown in Figs 7 and 8. The training error in az 
channel will be minimum because indifferent yaw 
manoeuvres, a* channel time history is invariant 
wrt different' manoeuvres. From these figures it is 
clear that ANN-predicted ax and ay closely match 
true values with the minimum prediction error. 

3.1.2 Pitch Manoeuvre Case Study 

In this case, input data was generated by randomly 
selecting qp from qp€ [-7,718 basket. From trained 
network, (ax,ay,az) were estimated from (R,,A,,E,) 
corresponding to 6g manoeuvre in the pitch plane. 
The comparison of estimated target acceleration 
(az) with the true value and the estimation error- 
time history are shown in Fig. 9. 

3.1.3 Mixed Pitch & Yaw Manoeuvre Case Study 

In this study, 15 numbers of different manoeuvres 
have been generated and used as input data set. 
The training data was generated by randomly picking 
up (R,,A,,E,) samples once in five times from 
input set generated by Monte Carlo simulation. 
Input data is generated by randomly selecting qy 
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Figure 5. Training of 10 sets of data of ax&) ( t & ~  [-7,7] g, or= 0.05 rls, and yaw manoeuvre) 

: - - ESTIMATED (TRAINED NN) 

TIME (s) 
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Figure 6. Time history of (ti2a> (g) and estimation error (q, = 6 g, c u , ~  0.05 rls, and yaw manoeuvre) 
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Figure 7. Training of 10 sets of data of ay(g) ( q * ~  [-7,7] g, or= 0.05 rls, and yaw manoeuvre) 

from $E [-6,6]g basket and qp from qp€ [-6,6]g. generated by Monte Carlo study is more. Also, 
Nonlinearity in mixed manoeuvre being more than more (Rm,Am,Em) samples were taken for training 
in pitch and yaw manoeuvres separately, manoeuvres from each manoeuvre. From the trained network, 

I I I I 1 I I t I 
I I I , - - ACTUAL 

- PREDICTED (TRAINED NN) - - - -  -7 

I I I I I I I I I 

t I I I - ACTUAL . -- 

I I I I I I I I I - 
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(b) 
Figure 8. Time history of (cij, a,) (g) and estimation error (q* = 6 g, or= 0.05 rls, and yaw manoeuvre) 
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Figure 

- PREDICTED (TRAINED NN) 

7 - - - - - - -  

-80. I I I I I I I I I 

(a> 

15 I I I I I I : - ACTUAL 
ESTIMATED (TRAINED NN) - 

TIME (s) 
(b) 

9. Time history of (&$a,) Cp) and estimation error (0, = 6 g, cur= 0.05 rls), 0 .e  [-7,7] g ,  and pitch manoeuvre) 

for manoeuvre of (q,,q,) = (4 .9,-3.5)g, the channel, there is a sharp discontinuity in the 
+ accelerations were predicted and compared with true value which could not be tracked by neural 

the true values in Figs 10 to 12. From the figures network. But time duration of discontinuity is 
it is clear that the predicted acceleration follows very small. A more complex manoeuvre has been 
the true values in all channels. Specifically in a,, studied by randomly selecting manoeuvre start 

------  - 
- - ESTIMATED (TRAINED NN) 

I I I I I 1 I I I 
TIME (s) 

(b) 

Figure 10. Time history of (a,ax) (g) and estimation error (rl, = 4.9 g, qv = -3.5 g, a,= 0.05 rls, and mixed manoeuvre) 
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Figure 11. Time history of (rif a> (g) and estimation error (q, = 4.9 g, qv = -3.5 g, wT= 0.05 rls, and mixed manoeuvre) 

time within [0,10]s along with (qy,qp) from the accelerations are compared with the true values 
domait), as discussed above. The accelerations in Figs to 
have been predicted from the trained network From all the figures containing estimated 
for a case study of manoeuvre start time at 5 acceleration components, it is seen that estimates 
s and (qy,qp) = (4.9,-3.5)g. The estimated track true values grow up to 35 s. After that, 
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- PREDICTED (TRAINED NN) 

I I I I I 

I I I I I I I I I 

6 0 3 
W 

-5 z 
g -10 
d 2 -15 
(I] 
W 

-2 0 

I I I 
I I 

I 
I 

I 
I - ACTUAL 

, I I 
I 

- - - - - - * - L - - - - - - d r " - _ - - - l . - - & - - - - - - -  , I I 
I 1 
I I 

- - - - - - - - L - . - - - - J - - - - - - - L -  
, I I 

I 
I I 

--------r------q-------T--------- 

I I , I I I 

I I I 
I I I 

I I I I I I 
TIME (s) 

(b) 
Figure 12. Time history of (a?az) &) and estimation error (q, = 4.9 g, q = -3.5 g, wT= 0.05 r/s, and mixed manoeuvre) 
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Figure 13. Time history of (8, a&) and estimation error (manoeuvre start time = 5 s, qh= 4.9 g, qp -3.5 g, or= 0.05 rls, and 

mixed manoeuvre with time delay). 

estimation error increases. So, remedy is to take 3.2 Comparison of ANN and EKF Estimated 
a more number of manoeuvres for network training. Accelerations 

But in a practical scenario, 35 s is good enough . In Section 3.1, estimation of target acceleration 
, for endgame. corresponding to different manoeuvres has been 

100-  I 1 I I I I 
I I I 0 
# I I I : - - ACTUAL 

I : - PREDICTED (TRAINED NN) 
50 - - - - - - - -  

-so--------  
I I I I I I I I I 

~ n n -  I I I I I I I I I 

------  --I--. - - ESTIMATED (TRAINED NN) 

- 

TIME (s) 
(b) 

Figure 14.Time history of (cii, a,) (g) and estimation error (manoeuvre start time = 5 s, t& = 4.9 g, = - 3.5 g, 0,= 0.05 rls, 
and mixed manoeuvre with time delay). 
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Figure 15. 
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' 

, I 8 I I I 

-80 I I I I I I I I I 

(a) 

TIME (s) 
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Time history of (ci, a=) (g) and estimation error (manoeuvre start time = 5 s, q, = 4.9 g, qv = -3.5 g, w,= 0.05 
mixed manoeuvre with time delay). 

rls, and 

discussed with results. Ananthasayanam2, et al. Ananthasayanam2, et al. have estimated the 
have estimated target acceleration of a manoeuvreing target acceleration from different types of target 
target (Fig. 16). Now the question is: manoeuvres using EKF (Fig. 17). The EKF-estimated 

acceleration errors wrt true values corresponding 
Which way and up to what extent ANN prediction 
is better than the EKF estimation in the context to (ax,ay,az) channels have been compared with the 

of target manoeuvre estimation same obtained from the trained ANN shown in 
Figs 18 and 19, respectively. From the figures it 

How much extra price has to be paid for getting is clear that estimation errors in acceleration estimates 
better estimate from ANN? reduce substantially when trained ANN is used 

TRACKING RADAR I . . . . . . . . . (2,2,2,j,j,j,2,2,2) 
+ -b 

ESTIMATED 
OUTPUT 

<a,j,j 
F 

7 

KALMAN ( ? , P , p , j , ; , ; )  L 

- 

Figure 16. Proposed neural network-aided Kalman filter architecture for target acceleration estimation 

FILTER r I 
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Figure 17. Comparison of ax (g) estimation error using ANN and EKF corresponding to horizontal manoeuvre (rl, = Jg, or= 0.05 rls) 

compared to the EK route. In Fig. 18, it was seen points are used while training ANN. In the present 
that ANN-predicted estimation error of ay grows context, only 10 different manoeuvres have been 
up at the end. This can be reduced if more data used,for trained neural network. It is worth to note 

TIME (s) 

Figure 18. Comparison of ay (g) estimation error using ANN and EKF corresponding to horizontal manoeuvre (q, = Sg, or= 0.05 rls) 
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Figure 19. Comparison of az(g) estimation error using ANN and EKF corresponding to horizontal manoeuvre (qk = 5g, or= 0.05 rls) 

that ANN-predicted az error is zero, whereas the time. Using EKF, the position (x,y,z)  and velocity 
same using EK estimator is quiet high (Fig.19). components ( f , y , i  ) can be estimated with good 
This is because of the fact that for different yaw accuracy from ( R ~ , A ~ , O ) .  N~~ the acceleration 
manoeuvres, az is invariant and while training ANN 

components (x, y, z ) from the trained neural network 
learns it and reproduces the same value in the 
context of a specific manoeuvre. But while processing can be estimated from (i,A,&) obtained via EKF 

the data using EKF, there has to be some estimation estimated (i,?,? ). This removes the oscillations 
error based on the statistical uncertainty of the in the network-estimated acceleration components 
measurement signal. as seen in previous figures. The proposed estimator 

architecture is shown in ~ i ~ . l 6 .  - 
The next question to be answered is about the 

extra price to be paid for getting more accurate 
estimate using ANN. Performance of ANN depends 
on the choice of input-output pair and selection of 
train ing points. So, a judicious selection of training 
pairs to take care of variation of different parameters 
in the system dynamics is mandatory. This depends 
mainly on understanding the physics of the problem. 
Also, as the offline training process takes substantial 
amount of time, a fast and best training algorithm 

4. FUTURE ACTIVITIES & CONCLUSION 

The present study is basically an investigation 
of using ANN to estimate the target acceleration 
from radar position measurements. Though the total 
study is of preliminary in nature, the results are 
very encouraging and throws a new avenue for 
further practical implementable research in this 
domain which are as follows: 

from functional approximation point of view, has to 
be chosen. In a practical situation, target manoeuvre is of 

random nature. So, the mathematical modelling 
Based in the present and earlier studies, a of generation of tracking radar data from random 

combined EK and ANN-based estimator seems to target manoeuvre is mandatory. So, if target 
be feasible for target manoeuvre estimation from flight-path angles (y,@), weave frequency w, 
tracking radar measurements of (Rm,Am,Em) in real- target velocity, altitude and latax levels are 
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varied in Monte Carlo simulation, outcome should 
be a random target manoeuvre. For the selection 
of lower and upper bounds on Monte Carlo 
input, interactions with the test pilots are required. 

Learning algorithm used in the present context 
is the BP algorithm. Use of radial basis network6*' 
(RBN), cerebellar model neural networPp9 (CMNN) 
for enhanced training speed can be explored 
also. 

If input space data from a large number of 
manoeuvres are generated, physical intuition indicates 
that many of them can be clustered in different 
groups and rule-based learning should simplify the 
total learning process. Possibility of study of this 
aspect while neural network learning, has also to 
be explored. 
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