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ABSTRACT 

In a constrained-layer damping system, a thin layer of a viscoelastic material is applied over 
the vibrating substrate. and covered with a stiff constraininglayer of a metal or a fibre-reinforced 
plastic. Several viscoelastic materials based on elastomeric blends of copoly (acrylonitrile- 
butadiene) and polyvinyl chloride were developed. These materials were characterised for 
hardness, tensile properties, ozone resistance, and electrical and dynamic mechanical properties. 
Two polymer compositions were used to fabricate 1 mm sheets. The sheets were fixed on an 
aluminium substrate with a rigid epoxy glue. A fibre-reinforced plastic sheet of 300 p was fixed 
on the viscoelastic layer by a rigid epoxy glue. The experimental setup for the measurement of 
vibration response has been elaborated. The study was carried out with and without the 
constrained-layer damping system. The vibration attenuation achieved was to a minimum of 
5-7 dB at 200-500 Hz and to a maximum of 9- 16 dB at 3000 - 4000 Hz for the selected constrained- 
layer damping system. 
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1 .  INTRODUCTION 

The vibrations in structures and machines cause 
component fatigue and human discomfort, if not 
properly controlled. For ship structures, vibrations 
due to the mounted machinery, propellers, etc, are 
likely to be transmitted into the seawater through 
the hull vibration, and these can be detected by a 
passive sonar. The elimination of vibrations in a 
ship structure, is thus an important acoustic stealth 

at  source, (ii) changing of mass and/or stiffness to 
avoid resonance, and (iii) using damping materials' '. 
The conventional approaches for the control of 
vibrations avoid resonance due to coincidence of 
excitation frequency, and any natural frequency of 
a system. This is not practical if vibrations occur 
over a wide range of frequencies, eg, in the case 
of turbo engines or  diesel generators, where the 
frequencies vary from very small to over 5000 Hz. 

measure. The common methods of controlling unwanted The intensity o f  mounted machinery vibrations 
vibrations are: (i) proper design to reduce the excitation to some extent can be reduced by shock mounts. 
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However, residual vibrations of the base, in some 
cases, can be considerably high enough for generating 
radiated noise. In the case of ship structure, the 
vibrations of the hull plates due to machinery cause 
radiation of noise into the seawater, and this acoustic 
signal can be picked up by an efficient passive 
sonar. Thus, the reduction of ship structural vibrations 
and associated noise is of immense importance to 
acoustic stealth design of shipslsubmarines. 

The availability of a wide range of polymeric 
materials, which are essentially viscoelastic in nature, 
with high damping capabilities has made it possible 
to control the structural vibrations. The polymers 
are commonly used in two basically different 
configurations to dissipate the mechanical energy 
of vibrations as h e a P .  The first configuration is 
the free-layer damping' (FLD), where the energy 
is dissipated due to direct strains, ie, alternate extension 
and compression of the viscoelastic layer. The second 
configuration is the constrained-layer damping (CLD), 
where the shear strains in the viscoelastic layer 
cause damping of vibrations. Generally, the constrained- 
layer damping system is used for very stiff structures. 
The constrained-layer damping application uses a 
three-layered sandwich system, that is formed by 
laminating the base plate to a viscoelastic layer 
and then adding a constraining layer, such as metal 
or fibre-reinforced plastic. 

A schematic diagram of a constrained-layer 
damping system is shown in Fig. I. Some of the 

applications of constrained-layer damping are in 
aircraft and missile substructures, machinery supports, 
mounting platforms of electronic equipment, and 
bridges and buildings. Though constrained-layer 
damping treatment provides better damping compared 
to free-layer damping, the latter is more convenient 
to apply and retain damping over a wider 
temperature range'? This paper discusses the 
development of a polymeric material for use in a 
constrained-layer damping system. 

2. EXPERIMENTAL PROCEDURE 

The base polymer used was a blend (50:50 or 
30:70) of polyvinyl chloride (PVC) and acrylonitrile- 
butadiene rubber (NBR). Different compounding 
ingredients, such as filler (up to 20 phr) and sulphur 
curatives (2-4 phr) were mixed into the polymei 
using a two-roll mill and sheets were molded in a 
compression molding press at 150 "C. Two polymer 
compositions, EAPl and EAP2 were prepared which 
differ in their filler compositions. The polymers 
were characterised for hardness, tensile, and electrical 
properties. The dynamic mechanical properties of 
the polymer were studied using a dynamic mechan~cal 
thermal analyser over a temperature range -50 "C 
to +I00 "C at various frequencies. 

To study the vibration damping behaviour of 
the polymer, a constrained-layer damping system 
was constructed using a base plate of aluminium 
and the constraining layer of a fibre-reinforced 

Figure 1. Schematic diagram of a constrained-layer damping system 

ADHESIVE . 
POLYMER (1 .2  mm) 

ALUMINIUM ( 3  0 mm) 

Figure 2. Construction of a constrained-layer damping system 
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However, residual vibrations of the base, in some 
cases, can be considerably high enough for generating 
radiated noise. In the case of ship structure, the 
vibrations of the hull plates due to machinery cause 
radiation of noise into the seawater, and this acoustic 
signal can be picked up by an efficient passive 
sonar. Thus, the reduction of ship structural vibrations 
and associated noise is of immense importance to 
acoustic stealth design of ships/submarines. 

The availability of a wide range of polymeric 
materials, which are essentially viscoelastic in nature, 
with high damping capabilities has made it possible 
to control the structural vibrations. The polymers 
are commonly used in two basically different 
configurations to dissipate the mechanical energy 
of vibrations as heat4.5. The first configuration is 
the free-layer damping' (FLD), where the energy 
is dissipated due to direct strains, ie, alternate extension 
and compression of the viscoelastic layer. The second 
configuration is the constrained-layer damping (CLD), 
where the shear strains in the viscoelastic layer 
cause damping of vibrations. Generally, theconstrained- 
layer damping system is used for very stiff structures. 
The constrained-layer damping application uses a 
three-layered sandwich system, that is formed by 
laminating the base plate to a viscoelastic layer 
and then adding a constraining layer, such as metal 
or fibre-reinforced plastic. 

A schematic diagram of a constrained-layer 
damping system is shown in Fig. 1. Some of the 

applications of constrained-layer damping are in 
aircraft and missile substructures, machinery supports, 
mounting platforms of electronic equipment, and 
bridges and buildings. Though constrained-layer 
damping treatment provides better damping compared 
to free-layer damping, the latter is more convenient 
to apply and retain damping over a wider 
temperature r a ~ ~ g e ~ - ~ .  This paper discusses the 
development of a polymeric material for use in a 
constrained-layer damping system. 

2. EXPERIMENTAL PROCEDURE 

The base polymer used was a blend (50:50 or 
30:70) of polyvinyl chloride (PVC) and acrylonitrile- 
butadiene rubber (NBR). Different compounding 
ingredients, such as filler (up to 20 phr) and sulphur 
curatives (2-4 phr) were mixed into the polymer 
using a two-roll mill and sheets were molded i n  a 
compression molding press at 150 "C. Two polymer 
compositions, EAPl and EAP2 were prepared which 
differ in their filler compositions. The polymers 
were characterised for hardness, tensile, and electrical 
properties. The dynamic mechanical properties of 
the polymer were studied using a dynamic mechanical 
thermal analyser over a temperature range -50 "C 
to +I00 "C at various frequencies. 

To study the vibration damping behaviour of 
the polymer, a constrained-layer damping system 
was constructed using a base plate of aluminium 
and the constraining layer of a fibre-reinforced 
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Figure 1. Schematic diagram of a constrained-layer damping system 
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Figure 2. Construction of a constrained-layer damping system 
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SUBSTRATE 

Figure 3. Experimental setup for measurement of vibration response 

plastic sheet. The three pieces were fixed together 
as shown in Fig. 2, using a rigid epoxy adhesive. 

The experimental setup to measure the vibration 
response is shown in big. 3. An electrodynamic 
shaker atthe free-end excited the aluminium substrate 
and the vibration was picked up at the other end 
by an accelerometer and was recorded by a dynamic 
signal analyser (DSA). 

3. RESULTS & DISCUSSION 

The physical properties of the polymer 
compositions EAPl  and EAP2 are shown in 
Table 1. These polymers have good physical 
properties and ozone resistance, suggesting their 
possible use in stringent conditions. The difference 

Table 1. Physical properties of polymer for CLD 
application 

Polymer composition 
PmPerty 

EAPl EAPZ 

Density (glee) 1.16 1.16 

Hardness (Shore A) 56 55 

Tensile strength (MPa) 9.4 7.3 

Elongation at break (9%) 405 350 

Ozone resistance 
No cracks No cracks 

(100 pphmI48 hI20 % strainN0 'C) 

Abrasion resistance index 100 100 

Volume resistivity (ohm-cm) 
5.05 x 10'O 4.35 x 10" 

(RTISOOV) 

in the mechanical properties and resistivity of 
the two polymer compositions is attributed to the 
type and amount of filler used in the blends. 

The dynamic mechanical properties of tlie 
polymer compositions EAPl  and EAP2 are shown 
in Fig. 4, where the loss factor is plotted against 
the frequency. The master curve is drawn using 
the Will iam-Landel-Ferry equation of time- 
temperature superposit ioning at  a reference 
temperature of 25 " C .  Such curves are useful in 
vibration damping applications since these provide 
an estimation of damping capability at low and 
high frequencies not measurable using instruments. 

The loss factor (0.55-1.00) is in the frequency 
range 100-1000 Hz. It goes through a maximum 
in the vicinity of the glass transition temperature. 
The combination of high storage modulus (10-20 MPa) 
and high loss factor (0.40-0.55) at 1 Hz125 "C 
indicates that the polymer is suitable for constrained- 
layer damping applications. It gives a good compliance 
to the material for producing maximum shearing- 
the mechanism of energy dissipation-on flexing 
of the system due to  incoming vibrationslO. 

The vibration attenuation of the two polymer 
compositions in the constrained-layer damping 
mode against a bare aluminium plate is shown in 
Figs 5 and 6. It is evident that both the polymer 
compositions EAPl  and EAP2 exhibit good damping 
properties in the frequency range 300 Hz and 
above. However, EAP2 shows better damping at 
lower frequencies as compared to EAPI,  which 
is due to higher loss factor of EAP2 in lower 
frequencies, while the dynamic moduli of both 
the polymer compositions are almost the same. 
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Figure 4. Dynamic mechanical properties of the two polymer compositions EAPl and EAPZ 
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Figure 5. Plot of CLD acceleration data of a bare aluminium plate and a CLD system containing EAPl as the damping layer 
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Figure 6. Plot of CI,D acceleration data of a bare aluminium plate and a CLD system containing EAPZ as the damping layer 

4 .  CONCLUSION 

The two polymer compositions based on polyvinyl 
chloride and acrylonitrile-butadiene rubber were 
prepared for use as the damping layers in constrained- 
layer damping applications. The experimental 
setup to measure the vibration response of the 
constrained-layer damping system has been 
elaborated. Both the polymer compositions show 
excellent physical properties. The damping properties 
of the polymer compositions as measured on 
DMTA and the vibration response as measured 

Laboratory(NPOL), Kochi, for their support and 
encouragement for publication of this research 
work. 
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