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ABSTRACT

In this paper, the mathematical problem of automation of encoding a communication/
transportation network is considered for enabling design of appropriate plans for ground-troop
movement on a complex terrain that motivated to discuss a general method of constructing
infinite families of graceful signed graphs from a given gracefully numbered signed graph. This
method gives graceful numberings for signed graphs on K2 

+ K
t
c, t 

 

1, where Gc denotes the
complement of the graph G.
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1 . INTRODUCTION

Deployment and movement of ground troops
on a war front depend much on the knowledge of
roads and walk-ways, including their physical conditions
for movement. Given a map of such road links and
walk-ways (which, together are referred to as
links) on the terrain of deployment, it is necessary
to assign them weights indicative of their physical
conditions. The simplest weighting scheme to begin
with could be identifying good links or bad links
which is done by assigning +1 to each good link
and –1 to each bad link on the map. As a result,
the map of the road/walk-way network on the
frontier would look like a signed graph. As such,
the network could be quite complicated to handle
manually for the purposes of planning and, therefore,
it is necessary to lodge the network on a computer
and encode its elements (ie, vertices and edges of
the network representing bunkers and links
interconnecting them respectively) so as to enable
devising appropriate troop-movement plans. For
instance, in such a plan, it may be required to find

a path with least resistance for movement, such
as encountering least total length of bad roads to
be traversed for reaching from one point to another
on the war front.

Further, one may like to use least possible
number of symbols to be assigned to the elements
of the network to accomplish a given task on the
network. For example, if one is able to assign to
each vertex u in the network a distinct number
f(u) then one can assign |f(u) – f(v)|, the absolute
value of the difference between f(u) and f(v), to
each link uv in the network, thereby not requiring
a separate numbering process for identifying the
links. The basic question for identifying the links
would then be to require the links to receive their
labels (which are the numbers here) uniquely. Is
it always possible to attain such a numbering for
any arbitrarily given network? While it is not difficult
to see that such a numbering, which is called a
geodetic numbering scheme, is always possible for
an arbitrary network, it could be quite formidable
to obtain such an optimal numbering. The study of

801



802

DEF SCI J, VOL. 56, NO. 5, NOVEMBER 2006

graceful signed graphs1 could be one means by
which optimal encoding of the road network could
be used for automation of planning appropriate
troop-movement strategies. Most interesting aspect
of this process is that when a particular network
does not admit a desired optimal encoding, it would
be possible to expand the network to accommodate
the required type of encoding2, embedding an unyielding
network into a facilitating network. Of course, one
needs to optimise the size and complexity of so-
augmented network links. While the latter problem
would need separate consideration, the problem of
extending an existing optimal geodetic numbering
scheme to a larger integrated network will be solved
in this paper.

2 . PRELIMINARIES

For standard terminology and notation in graph
theory, refer to F. Harary3 and for signed graphs
(sigraph, in short) refer to Chartrand4 and Zaslavsky5,6.

Most of graph labelling methods trace their
origin to one introduced by Rosa7 in 1966, who
meant by a -valuation of a graph G with q edges
an injective function f from the vertices of G to
the set {0,1,2,..., q} such that when each edge uv
is assigned the number gf 

(uv) = |f(u) – f(v)|, the
resulting edge numbers form the set
{1,2,..., q}. Golomb8 subsequently called such labellings
graceful numberings of G and this is now the popular
term (note here that terms labelling and numbering
are distinguished in the sense that, while a labelling
is an assignment of any type of entities as labels,
a numbering is an assignment of numbers to the
elements of a given graph).

A (p,m,n)-sigraph is an ordered pair
S = (G, s) where G = (V, E) is a (p,q)-graph, called
its underlying graph, and s: E  {+, –} is a function
called its signing function. Let E+(S) and E–(S)
denote the sets of positive and negative edges of
S where E +(S) E–(S) = E(S) := E. Then |E+(S)|
= m, |E –(S)| = n so that m + n = q. An all-positive
sigraph S is one in which E+(S) = E(S) and an all-
negative sigraph is one in which E–(S) = E(S). A
sigraph S is said to be homogeneous if it is either
all positive or all-negative and heterogeneous otherwise9.

An indexer of a sigraph S = (G, s) is an injection
f: V(S) 

 
N, where V(S) is the set of vertices of

S, and N is the set of nonnegative integers. Let
I

S 
denote the set of all indexers of S. f I

S 
is

called an encoder (or, equivalently, a numbering)
of S if the induced function g

f 
: E(S) 

 
Z, where

Z is the set of nonzero integers, defined by

g f 
(uv) = s(uv)|f(u) – f(v)|,

 
uv 

 
E(S) (1)

is also injective. The set of all encoders of S will
be denoted by S

. Clearly, if f 

 

S 
then for any

positive integer t, the function f
t
: V(S) 

 

N, defined
by saying f

t 
(u) = f(u) + t,

  

u 

 

V(S), is also an

encoder of S such that 
tf

g (e) = g
f 

(e) for every

e 

 

E(S). Also, the complement f c of f defined by
saying f c(u) = M(f) – f(u) is an encoder of S,
where

M(f) = max {f(u) : u 

 

V(S)}.

Next, for any f 

 

G

 

S 
let f(S) = {f(u): u V(S)}

g
f
(S) = {g

f 
(e): e 

 

E(S)}.

Then the number

(S) = min {M(f ): f 

 

S
}

is called index of gracefulness of S. An encoder
f 

 

G

 

S 
for which M(f) = (S) is said to be optimal

and, in particular, one calls f a graceful numbering
(or, equivalently, graceful encoder) of S if f: V(S)

 

{0, 1, . . . , q = m + n} is such that in the
induced edge function defined by Eqn (1) the set
of numbers received on the positive edges of S is
{1, 2, . . .,m} and the set of numbers received on
the negative edges of S is {–1, –2, . . . , –n},
respectively; if S admits such an encoder then S
itself is called graceful. Note that if n = 0 this
notion coincides with that of a -valuation as in
Rosa 7 and, equivalently, with that of gracefulness
of graphs as in Golomb8. Some examples of graceful
sigraphs are shown in Fig. 1.

Observation 1: For any sigraph S, if f is a graceful
numbering of S then f is also a graceful numbering
of the negation (S) of S, where (S) is obtained
by reversing the sign of each edge in S.
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No characterisation of graceful sigraphs has
been discovered so far. The following two theorems
are the only general results known on graceful
sigraphs1,2:

Theorem 1
1
: Let S = (G, s) be any (p, m, n)-

sigraph with G = (V,E) as its underlying graph.
Then necessary condition for S to be graceful is
that it is possible to partition V (G):= V (S) into
two subsets Vo 

and V
e 
such that the numbers m+(V

o 
, V

e
),

m – (V
o 

, V
e
) of positive and negative edges of S,

respectively, each of which joins a vertex of V
o

with one of V
e 

are given by

and m+(V
o 

, V
e
) = 

 

(m + 1)/2 

m–(V
o 

, V
e
) = 

 

(n + 1)/2 

where 

 

x 

 

denotes the greatest integer not greater
than x.

Theorem 2
2 
: Every numbered sigraph can be embedded

as an induced subsigraph in a gracefully numbered
sigraph.

While Theorem 1 gives a necessary condition
for a sigraph S to be graceful, Theorem 2 claims
the impossibility of having a characterisation of
graceful sigraphs by means of forbidding a class
of sigraphs to be the induced subsigraphs. To date,
several families of graceful as well as non-graceful
graphs (sigraphs) have been discovered1,2,7,8,10-15

towards gaining better insight into their general
properties.

Let G = (V, E) be a (p, q)-graph with a graceful
numbering f and let r be the number of integers
which are not assigned as vertex labels in G. Let
H = G 

 

K
r
c and assign the missing numbers to

these r new vertices so augmented to G. It can
be easily seen that H is a (q + 1, q) graceful
graph. Then H is called a fully augmented graph
on G in which G is an induced subgraph.

The following results are known in the theory
of graceful graphs:

Theorem 310
: Let (G, f ) be a gracefully numbered

(p, q)-graph and let G
f 

be its full augmentation.
Then for every n 

 

1, the graph G
f 
+ K

n
c is graceful.

Theorem 4
16

: If T is any graceful tree, then T +
K

t
c, t 

 

1, is graceful.

Theorem 5
17

: Let G be a graceful graph with p
vertices and q edges. Then any graceful numbering
of G may be extended to a graceful numbering of
[G 

 

(q – p + 1)K
1
] + K

t
c, t 

 

1.

The aim here is to describe a method of constructing
infinite families of connected graceful sigraphs
embedding the given gracefully numbered sigraph
as one of its induced subsigraphs. Such a construction
is useful in expanding the facility of graceful addressing
and identification systems to larger communication
networks as elucidated in the introduction.

3 . RESULTS

Every graceful (p, m, n)-sigraph S of size
q = m + n can be embedded in a graceful
(q+1, m, n)-sigraph S . This may be achieved as
follows: let f be a graceful numbering of S. Then
{0, 1, 2, ..., q} – f(S) has f 

(S) = q – p + 1
numbers each of which does not appear as a vertex
number in (S, f ), called missing vertex integers.
Then adjoin f 

(S) isolated vertices (or  isolates)
to S and assign them the numbers from
{0,1, . . . , q} – f(S). For example, two sigraphs
on K4 

which can be gracefully numbered satisfy

f 
(K

4
) = 3 and they can be augmented by K

3
c as

shown in Fig. 2.

Theorem 6: Let (S, f ) be a gracefully numbered
sigraph on a (p, q)-graph. Then for any integer
1 

 

r 

 

q – p + 1, S 

 

K
r
c is also graceful.

Proof: Let S be a graceful sigraph and f be a
graceful numbering of S. Then, the vertices of S

Figure 1. Some examples of graceful sigraphs.
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can be labelled from {0, 1, 2, . . . , q = m + n}
and from the definition of graceful sigraph the
edge labels are given by g

f 
(S) = {1, 2, . . .,m,

–1, –2, . . . , –n}. Therefore, the vertices of K
r
c

can be labelled from {0, 1, 2, . . . , q = m+ n}
– f(S) in a one-to-one manner. Let f *: V (S K

r
c)

{0, 1, . . . , q = m + n} denote the so extended
numbering of S K

r
c. Clearly, adjoining of

r 

 

q – p + 1 isolated vertices do not change the
original edge labels. So, f * is also a graceful numbering
of S K

r
c. Hence, S K

r
c is graceful.

Let S 1 
= (V

1
, E

1
, 

1
) and S

2 
= (V

2
, E

2
, 

2
) be

any two sigraphs. Their sum S
1 

+ S
2 

has been
defined

9 
as a sigraph S = (V, E, 

 

) in which V
= V

1
V

2
, E = E

1
E

2 

 

(E
1 

 

E
2
), E

1 

 

E
2

= {uv : u 

 

V
1 

and v V
2
} and (xy) = –1 if

and only if exactly one of the following three conditions
is satisfied:

(a) xy E
1 

and 
1
(xy) = –1

(b) xy E
2 

and 
2
(xy) = –1

(c) x 

 

V
1
, y V

2 
and

 

(
1 

(e) : x 

 

e E
1
(x)) = 

 

(
2 

(f): y

 

f E
2
(y)) = –1

where E
i
(w) = {g E

i 
: w

 

g}, i {1, 2}, is
the edge-neighbourhood of the vertex w in S

i
.

Theorem 7: Let (S, f ) be a gracefully numbered

sigraph. Then the sigraph S

 

= [S 

 

(q – p + 1)K
1
]

+ K
t
c, t 

 

1, is graceful.

Proof: Let (S, f) be a gracefully numbered sigraph.
Let vp+1

, v
p+2

, . . . , v
q+1 

be the isolated vertices.
Then, by Theorem 6, one can extend f : V (S) 
{0, 1, ..., q} to f * : V (S (q – p + 1)K

1
) 

{0, 1, ..., q = m+n} so that f * is bijective. Now,
label the vertices x

1
, x

2
, ..., x

t 
of K

t
c
, 
t 

 

1, with

t new numbers i(q + 1) + m, 1 

 
i 

 
t, and let f **

denote the so extended numbering of S . It is easy

to verify that f ** is a graceful numbering of S .

In Fig. 3, the proof is illustrated by taking an
example.

Theorem 8: All the sigraphs on K2 
+ K

t
c , t 

 
1,

are graceful.

Figure 3. Example of graceful sigraph [S 

 

(q-p+1)K
1
]+K

3
C.

Proof : It is enough to provide a graceful numbering
of the sigraph S on K

2 
+ K

t
c , t 

 

1, with m and
n denoting the number of positive and the number
of negative edges in the sigraph, respectively. Without
loss of generality, one takes m 

 

n. Let u, v denote
the vertices of K

2 
and let t = a + b + c + d, where

a, b, c and d are the number of vertices of K
t
c of

the following varieties: Each of the vertices x
1
, x

2
,

. . . , x
a 

is joined to u by a negative edge and to
v by a positive edge; each of the vertices y

1
, y

2
,

. . . , y
b 

is joined to u by a positive edge and to
v by a negative edge; each of the vertices z

1
, z

2
,

. . . , z
c 
is joined to both u and v by negative edges;

and each of the vertices w
1
, w

2
, . . ., w

d 
is joined

to both u and v by positive edges. If any of a, b,
c and d is zero then the corresponding subset of
the vertex-set of Kt

c will be assumed to be empty.
First, one assumes that K

2 
is positive and without

loss of generality, let a 

 

b. Let f be a numbering
of S defined as follows:

f(u) = a, f(v) = a + 1

f(x i
) = i – 1, for 1 

 

i 

 

a

f(y
i
) = 2a +1 + i, for 1 

 

i 

 

b

f(z
i
) = 2a + b + 2i, for 1 

 

i 

 

c

f(w
i
) = 2a + b + (2i + 1), for 1 

 

i 

 

d.

Figure 2. Full augmentation of graceful sigraphs.
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Then the induced edge function g
f 

yields the
numbers on the positive edges as

g f 
(uv) = 1

{g
f 

(uy
i
) = s(uy

i
)|f(u) – f(y

i
)| = (a + i + 1), 1 

i 

 
b} = {a + 2, a + 3, ..., a + b + 1};

{g
f 

(uw
i
) = s(uw

i
)|f(u) – f(w

i
)| = (a + b + 1 + 2i),

1 

 

i 

 

d} = {a + b + 3, a + b + 5, ..., a + b
+ 2d + 1};

{gf 
(vx

i
) = s(vx

i
)|f(v) –f(x

i
)| = (a+2-i), 1 

 

i 
a} = {a+1, a, a–1. . . , 2};

{g
f 

(vw
i
) = s(vw

i
)|f(v) –f(w

i
)| = (a+b+2i), 1 

 

i

 

d} = {a+b+2, a+ b + 4, . . . , a + b + 2d};

and the numbers on the negative edges as

{gf 
(ux

i
) = s(ux

i
)|f(u) – f(x

i
)| = – (a + 1 – i), 1

 

i 

 

a} = {–1, –2, . . . , –a};

{g
f 

(uz
i
) = s(uz

i
)|f(u) – f(z

i
)| = – (a + b + 2i),

1 

 

i 

 

c} = {– (a + b + 2), – (a + b + 4), ...,
– (a + b + 2c)};

{gf 
(vy

i
) = s(vy

i
)|f(v) – f(y

i
)| = – (a + i), 1 

 

i

 

b} = {– (a + 1), – (a + 2), ..., – (a + b)};

{g
f 

(vz
i
) = s(vz

i
)|f(v) – f(z

i
)| = – (a + b + 2i –

1), 1 

 

i 

 

c} = {– (a + b + 1), – (a + b + 3),
. . . , – (a + b + 2c – 1)}.

Clearly, the numbers on positive edges and
negative edges so defined are all distinct (Fig. 4).

If a = 0, then the graceful numbering of S is
as follows:

f(u) = 0, f(v) = 1

f(y
i
) = i + 1, for 1 

 
i 

 
b

f(z
i
) = b + 2i, for 1 

 
i 

 
c

f(w
i
) = b + 1 + 2i, for 1 

 
i 

 
d.

Then the induced edge function g
f 
yields the

numbers on the positive edges as

g f 
(uv) = 1

{g
f 

(uy
i
) = s(uy

i
)|f(u) – f(y

i
)| = (i + 1), 1 

 

i 
b} = {2, 3, . . . , b + 1};

{g
f 

(uw
i
) = s(uw

i
)|f(u) – f(w

i
)| = (b + 1 + 2i),

1 

 

i 

 

d} = {b + 3, b + 5, . . . ,b + 2d + 1};

{g
f 

(vw
i
) = s(vw

i
)|f(v) – f(w

i
)| = (b+2i), 1 

 

i 
d} = {b+2, b+4, . . . , b+ 2d};

and the numbers on the negative edges as

{gf 
(uz

i
) = s(uz

i
)|f(u) – f(z

i
)| = – (b + 2i), 1 

i 

 

c} = {– (b + 2), – (b + 4), ..., – (b + 2c)};

{g
f 

(vy
i
) = s(vy

i
)|f(v) – f(y

i
)| = –i, 1 

 

i 

 

b} =
{–1, –2, ..., –b};

{g f 
(vz

i
) = s(vz

i
)|f(v) –f(z

i
)| = –(b+2i–1), 1 

 

i

 

c} = {– (b+1), – (b+3), ..., – (b + 2c – 1)}.

Clearly, the numbers on positive edges and
those on negative edges so defined are all distinct.

In case, when any one of the possibilities
b = 0, c = 0 and d = 0 occurs, one can obtain a
graceful numbering of S in the similar manner as
stated above.

If a = 0 and b = 0, then one can see that the
following numbering of S is graceful:

f(u) = 0, f(v) = 1

f(zi
) = 2i, for 1 

 

i 

 

c

f(w
i
) = 2i + 1, for 1 

 

i 

 

d.

Then the induced edge function g
f 

yields the
numbers on the positive edges as

g f 
(uv) = 1

Figure 4. Example of graceful sigraphs on K
2
+K

10
C.
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{g
f 

(uw
i
) = s(uw

i
)|f(u) –f(w

i
)| = (1+2i), 1 

 
i 

d} = {3, 5, ..., 2d+1};

{g
f 

(vw
i
) = s(vw

i
)|f(v) – f(w

i
)| = (2i), 1 

 
i 

 
d}

= {2, 4, . . . , 2d};

and the numbers on the negative edges as

{g f 
(uz

i
) = s(uz

i
)|f(u) – f(z

i
)| = –2i, 1 

 
i 

 
c}

= {–2, –4, . . . , –2c};

{g f 
(vz

i
) = s(vz

i
)|f(v) – f(z

i
)| = – (2i – 1), 1 

 

i

 

c} = {–1, –3, . . . , – (2c – 1)}.

Clearly, the numbers on positive edges and
those on negative edges so defined are all distinct.

In this case, when any two of the numbers a,
b, c and d are zero, one can prove the result in
the similar manner as stated above.

If a = 0, b = 0 and c = 0, then a required
numbering f may be defined as follows:

f(u) = 0, f(v) = 1

f(wi
) = 2i + 1, for 1 

 

i 

 

d.

In this case, it is easy to verify that f is a
graceful numbering of S.

In case any three of a, b, c and d are zero,
one can prove the result in the similar manner as
above.

Next, it is assumed that K2 
is negative and a

 

b. Let f be defined as follows:

f(u) = a + 1, f(v) = a

f(xi
) = i – 1, for 1 

 

i 

 

a

f(y
i
) = 2a + 1 + i, for 1 

 

i 

 

b

f(z
i
) = 2a + b + (2i + 1), for 1 

 

i 

 

c

f(w
i
) = 2a + b + 2i, for 1 

 

i 

 

d.

It is easy to verify, as described above in each
case, that the given numbering f of S is indeed a
graceful numbering (Fig. 5).

The injectivity of f can be seen straightforwardly
by its very definition, in each of the above cases.
Also, in each case, the induced edge labelling g

f

has been verified to be injective. Thus, f in each
case is a graceful labelling of the corresponding
sigraph, completing the proof.

4 . CONCLUSION

Given a gracefully numbered sigraph S, a method
of constructing an infinite sequence ( S

 

= S
1
, S

2
, ...)

of gracefully numbered connected graceful sigraphs
S

i 
has been given such that S

i 
is in S

i+1 
as an

induced subsigraph for i = 1, 2, .... If S is non-
graceful, one can obtain an infinite sequence (H =
S 1

, S
2
, ...) of gracefully numbered sigraphs S

i 
with

the said property by the above mentioned method,
where H contains S as an induced subsigraph; that
such an imbedding exists has been shown2. Invoking
this method, it has been shown that all sigraphs on
K 2 

+ K
t
c are graceful.
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