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ABSTRACT

This paper analyses the propagation of converging cylindrical shock waves in a nonideal
gas, in the presence of an axial magnetic field. Chester-Chisnell-Whitham’s method has been
employed to determine the shock velocity and the other flow-variables just behind the shock
in the cases, when (i) the gas is weakly ionised before and behind the shock front, (ii) the  gas
is strongly ionised before and behind the shock front, and (iii) nonionised gas undergoes intense
ionisation as a result of the passage of the shock. The effects of the nonidealness of the gas,
the conductivity of the gas, and the axial magnetic field have been investigated. It is found that
in the case (i), an increase in the value of parameter ( ) characterising the nonidealness of the
gas accelerates the convergence of the shock. In the case (ii), the shock speed and pressure
behind the shock increase very fast as the axis is approached; and this increase occurs earlier
if the strength of the initial magnetic field is increased. In the case (iii), for smaller values of the
initial magnetic field, the shock speed, and pressure behind the shock decrease very fast after
attaining  a maximum; and for higher values of the initial magnetic field, the tendency of decrease
appears from the beginning. This shows that the magnetic field has damping effect on the shock
propagation. In the case (iii), it was also found that the growth of the shock in the initial phase
and decay in the last phase were faster when it was converging in a nonideal gas in comparison
with that in a perfect gas. Further, it has been shown that the gas-ionising nature of the shock
has damping effect on its convergence.
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1 . INTRODUCTION

The converging shock and detonation waves
offer interesting possibilities of attaining extremely
high temperature, pressure, and density. In fact,
even the applications to thermonuclear fusion,
synthesising materials, phenomenon of
sonoluminescence,  and treatment of  stones in the
human body (lithotripsy) were considered1-6. The
problem of converging shock was first solved by
Guderley 7. The similarity solution was presented
and the self-amplifying character of the wave was

suggested. This gives a shock of infinite strength
at the centre of convergence. Payne8 has given a
numerical solution for a converging cylindrical shock.
Stanyukovich9 has discussed the problem of a contracting
spherical or cylindrical shock front propagating
into a uniform gas at rest. Zeldovich and Raizer10

have summarised two kinds of self-similarity, and
in the second kind, have described the implosion
of a spherical shock in a gas and the collapse of
spherical bubbles in a liquid.  The problem has
been further extended wrt simple and accurate
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determination of similarity exponent or to include
the effects of non-homogenity or nonidealness of
the medium or the effects of thermal radiation and
magnetic field3,4,11-16. The self-similar solution, describing
imploding shocks, have asymptotic character because
they describe the process of implosion in a region
near the axis (or centre) in which it is no more
influenced by the initial conditions. The global solution,
that is, a solution that can describe the whole
history of the fluid motion, from the initial stage to
the focusing stage, was presented by Mastuo17 by
a non-similar approximated method.

Whitham18 has given a very simple and effective
rule for the analysis of imploding shocks. This
method has found numerous applications9, eg, the
description of the propagation process of converging
shock waves through a channel of variable section19

in a dusty gas with variable density20 and in a
solid 21 and the analysis of imploding detonation
waves22. Although the Whitham’s rule is approximate,
but it agrees well with exact solutions and with
experimental results22-24.

Nagayama25 has given and experimentally verified
(Nagayama and Mashimo26) a method for achieving
very high pressure by compression of magnetic
flux by means of a converging shock wave in a
semiconducting material, which becomes highly
conductor due to passage of shock wave.  Tyl and
Wlodarczyk27 has given a relatively wide theoretical
analysis of this compression process of magnetic
flux.  The analysis was made by Whitham’s rule18,
the computation was performed for crystalline silicon
and silicon powder, and the results are found in
good agreement with the experimental results26 Tyl
and Wlodarczyk 28 have suggested to use the above
method for a system for isentropic compression of
materials.  They indicated that the experimental
realisation of the proposed system is simpler and
the degree of compression of the material is higher
than achieved with systems in which traditional
methods are used.  In continuation of these works,
Tyl29 has presented a detailed theoretical analysis
of implosion process of a cylindrical shock wave
in an ideal gas in the presence of a magnetic field.

When the flow takes place at high temperatures,
the assumption that the gas is ideal is no more

valid. Anisimov and Spiner30 have taken an equation
of state for low-density nonideal gases in a simplified
form, and investigated the effect of parameter for
nonidealness on the problem of a strong point explosion.
Ranga Rao and Purohit31 and Ojha32 have also
studied the propagation of shock waves in gases
with the above equation of state. In the present
work, the convergence of a cylindrical shock wave
in a nonideal gas has been analysed with the equation
of state given by Anisimov and Spiner30, in the
presence of an axial magnetic field. The effects
of the nonidealness of the gas, the conductivity of
the gas, and the axial magnetic field have been
investigated.

During the experiments involving the implosion
of a shock wave in a gas, the following states may
occur 29:

(a) The gas is weakly ionised before and behind
the shock front, ie, R

m 
<< 1, where R

m 
is the

magnetic Reynolds number.

(b) The gas is strongly ionised before and behind
the shock front, ie, Rm 

>> 1 or 

  

,
where 

 

is the electrical conductivity.

(c) Nonionised (or weakly ionised) gas undergoes
intense ionisation as a result of the passage
of the shock, ie, 

 

increases in a jump like
manner from 0 to .

In the present, all the three cases have been
analysed by taking a constant axial magnetic field.
Chester-Chisnell-Whitham’s method18,19,33 (Whitham’s
rule) was employed to determine the shock velocity
and the other flow variables just behind the shock.

2 . FUNDAMENTAL EQUATIONS AND
BOUNDARY CONDITIONS

The equation of state for a nonideal gas is
borrowed from the statistical physics34 which has
been simplied by Anisimov and Spiner30 in the
form:

p = R* 

 

T  (1 + b ) (1)

where b (<< 1) is the internal volume of the
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molecules and R* is the gas constant. p, 

 
and T

are the pressure, density, and temperature of the
gas, respectively. Roberts and Wu3, 4 have used an
equivalent equation of state to study the shock
wave theory of sonoluminescence.

The internal energy (E) per unit mass is
given by Singh and Singh35, Ojha32, as

)1)(1( b

p
E (2)

which implies that

*
21

1*
22

R
b

b
RCC vp (3)

neglecting the term b 2 2. Here C
p 

and C
v 

are the

specific heats of the gas at constant pressure and
constant volume, respectively.

The basic equations governing the unsteady
and cylindrically symmetric motion of a weakly
conducting  nonideal gas  (Case I, Rm 

<< 1) are
given  by Tyl 29 and Sakurai36 as
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where u, B are the velocity and axial magnetic
induction at distance r from the axis of symmetry;
B 0 

is the value of B in the undisturbed state; 

 

is

the ratio of specific heats;  is the magnetic permeability;
and a the speed of sound in the nonideal gas, is
given by

b

bp
a

1

212

Equations (4) to (6) can be combined to obtain
the characteristic equation18,29 as
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along the negative characteristic
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(9)

The fundamental equations governing the unsteady
flow behind a cylindrical magnetogasdynamic
(Case II, R m 

>> 1) or gas-ionising (Case III, 

 

:
0 

 

) shock are given by Whitham18, Vishwakarma
and Yadav 37 as
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Equations (10) to (13) can be combined to
obtain the characteristic equation18 as

0
1 2
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cduBdBdp (14)

along the negative characteristic
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cu
dt

dr
(15)

where c is the effective speed of sound given by
c 2 = a2 + b2 and  b2 = B2/ .

Since 

 
is small in the Case I, and 

 
is zero

ahead of the shock in the Case III, the magnetic
induction may be taken continuous across the shock
in these cases 36,38  The strong shock conditions (ie,
the pressure ahead of the shock is assumed negligible)
in the Cases I and III are, therefore,

D
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u
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1

2
01
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(16)

where D is the speed of the shock front, and the
indices 1 and 0 refer to the states just behind and
just ahead of the shock.

Also

)1(2

)1(4)1()1(1
2

and b

In the pure magnetogasdynamic case
(Case II), the gas is strongly ionised, ie, highly
conducting, before and behind of the shock front,
upon which the magnetic induction may be discontinuous
at the shock front resulting from a sheet current
there36 considering the constant ambient pressure
p

o, 
the shock conditions, in this case, may be written

in the form (Whitham18 and Tyl29 :
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In the Case III, where a non-conducting (or
weakly conducting) gas becomes highly conducting
due to passage of a strong shock, and there is no
jump of the magnetic induction across the shock,
the medium behind the shock acts as a piston
compressing the magnetic flux and pushing it into
the region ahead of the shock. In fact, the speed
of the shock is higher than the speed of the conducting
medium behind the shock, therefore the magnetic
flux is transported by the convection from the compression
region even if the medium behind the shock in an
ideal conductor. The convection of the magnetic
flux leads to the formation of a current-carrying
layer of considerable thickness behind the shock
front, and this fact increases the compression of
the magnetic flux. In this way, the magnetic flux
decreases in the compression region and increases
infront of the shock during the implosion process,
and therefore, there is an additional law of conservation
of magnetic flux in the form25,27,29 as

R

dR

D

u

B

dB 12
(18)

where R is the shock radius.
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3 . SOLUTION OF THE PROBLEM

The shock speed D and the flow variables just
behind the shock are obtained using the Whitham’s
rule in all the three cases. For converging shocks,
the rule is to apply the characteristic equation
(valid along a negative characteristic) to the flow
quantities just behind the shock front.

Case I

Shock Wave in a Weakly Conducting Nonideal
Gas,  Rm 

<< 1

Using the values of the flow variables just
behind the shock, given by the Eqn (16), into the
characteristic [Eqn (8)] bearing in the mind that
D and u are negative, one obtains:

0
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and
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Integrating the Eqn (19), with the initial conditions
D = D

i 
at R = R

i
, one obtains the solution as

55
6)1( KK

D

D K

i
(20)

where 
iR

R

1

2
6

1

21

3
2
10

2
0

5 )()1(2

K

K
K

RuR

KK

K

D

RB
K

iim

m

and u
1i 

is the value of u
1  

at R = R
i
. Also, from the

shock conditions [ Eqn(16)], one obtains:
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where p 1i 
is the values of p

1 
at R = R

i
.

Case II

Pure Magnetogasdynamic Shock Wave, Rm 
>> 1

Using the values of flow variables just behind
the shock, given by Eqn (17), into the characteristic
equation [Eqn (14)], one obtains after some
simplifications:
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0
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Also, from Eqn (17), one has:
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where 1i
, B

1i
, D

i 
and 

i 
are respectively the

values of 
1, 

B
1
, D and 

 

at  

 

= 1.

Numerical integration of the differential
Eqn (22) with initial conditions 

 

= 
i
, 

 

= 1 gives
the  values of 

 

as 

  

decreases from  1  to   zero.

Then   the  values of 
iii u

u

P

P
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1 ,, and 
iD

D

can be obtained from the Eqns (23) and (24).

Case III

Gas-ionising Shock Wave (

 

: 0 

 

)

Making  use of the first of the equation
[Eqn (16)], one can write the Eqn (18) in the form:

R

dR

B

dB )1(
2 (25)

which on integration gives 

/)1(2
0BB , where B = B

0 
at R = R

i
(26)

Equation (26) shows that the magnetic induction
just ahead of the shock (= magnetic induction just
behind of the shock) does not remain constant but
increases according as R -2(  –1)/  during the convergence
process. This phenomenon is due to the fact that
there is transport of the magnetic flux from the
region behind the shock to the region ahead of it
(as indicated in Section 2).

Using the flow variables just behind the shock
given by the Eqns (16) and (25) for the flow variables
in the characteristic equation [Eqn (14)], one obtains

after some simplifications:

),(
),(21)1(

DF

DFD

d

dD
(27)

)1()1(
2

)2(
),(2

2
0

222

D

B

q

q
q

q
DF

2

1

2
0

2

2

)1()21(
)1(1

1

)1(
)1(
)21(

D

B
q

and B, in terms of 

 

is given by Eqn (26).

Further, from equations (16) and (26), one has:
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where B 1i 
= B
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and 
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By numerical integration of the differential equation
[Eqn(27)] with initial conditions D = D

i  
at 

 

= 1,
one can calculate the values of
D/D

i
, u

1
/u

1i
, p

1
/p

1i 
in terms of .

4 . RESULTS AND DISCUSSION

For the purpose of numerical calculations,  the
values of R

m
, , , B

0
, , 

0
, u

1i
, p

0 
given by Tyl

29

were used.

R
m 

= 0.001 (in the Case I only);  

 

= 0, 0.025,
0.05; 

 

= 1.4;  B
0 

= 0.5, 5.0 Tesla 

 

= 4

 

x 10-7 Henary/metre;   
0 

= 1 kg/m3;
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u
1i

 
= 4 x 103 m/s; and p

0 
= 105 pascal (in

the Case II, only). The value 

 
= 0 corresponds

to the case of a perfect gas. 

In the Case I, the value of  D/Di 
are calculated

from  the Eqn (20) in terms of . It is found that
an increase in the value of the parameter  characterising
the nonidealness of the gas, accelerated the convergence
of the shock (Fig. 1). The effect of a change in
the strength of the initial magnetic induction (B0

)
is negligible (not shown in the figure). This is due
to the fact that  R

m 
<< 1, in this case.

In the Case II, 

 

the density ratio across the
shock varies as the shock propagates, which is in
contrast with the cases using strong shock assumptions
(Cases I and III), where it is equal to , a constant
given in the Eqn (16). Values of 

 

are obtained by
numerical integration of the differential equation
[Eqn (22)] and then P1

/P
1i 

and D/D
1 

are calculated
from Eqn (23) and (24) in terms of 

 

(Fig. 2 and
3). It is found that, in general, the shock speed and
the pressure behind the shock increase very fast
as the axis is approached. This increase occurs
earlier if the initial magnetic induction, B0

 is increased.
Earlier increase of shock speed means that the fall
of the total pressure (gas pressure + magnetic
pressure) ahead of the shock is more rapid in
comparison with that behind of the shock for higher
values of B 0

. This fact is verified from Table 1
which shows that the density ratio across the shock
(a measure of shock strength) increases rapidly
during the convergence of the shock for higher
values of B0

. The reduction of shock frontal areas
also causes the increase in shock speed near the
axis, in general. A change in the value of the
parameter of nonidealness of the gas, 

 

has small
effect on the shock velocity and the pressure behind
the shock (Figs 2 and 3).

In  the Case III, the values of D/Di 
and

P
1
/P

1i 
are obtained in terms of , by numerical

integration of the Eqn (27) and  using Eqn (28).
It was found that for smaller values of B0

, the
shock speed and the pressure behind the shock
decrease very fast after attaining a maximum; and
for higher values of B 0 

the tendency of decrease
appears from the beginning (Figs 4 and 5). This
shows that the magnetic field has damping effect

on the convergence of gas-ionising shock. The
phenomenon of decrease of the shock speed and
post-shock pressure near the axis, which is in
contrast with the Cases I and II, may be physically
interpreted in the following way.

• During the convergence of a gas ionising shock,
the magnetic flux in the conducting region
behind the shock is compressed and pushed
into the region ahead of the shock (Sections
2 and 3). This results in rapid increase of the
ambient magnetic induction near the axis [according
to Eqn (26)], which increases the magnetic
pressure in the region ahead of the shock very
fast in comparison with that behind of it, causing
the strong decay of the shock.

• Due to cumulation of magnetic flux near the
axis during the convergence of a gas-ionising
cylindrical shock wave, a very high pressure
may be achieved, there. This pressure may be
used for isentropic compression of materials,
in a simpler way, as suggested by Tyl and

Figure 1. Variation of shock velocity with distance in
Case I (R

m
<<1).

PERFECT GAS
NONIDEAL GAS

=0.050 B
0
=0.5

=0.025 B
0
=0.5

=0, B
0
=0.5

D
/D

i 
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Wlodarczyk
28

. In the case of a nonideal gas,
the cumulation rate of magnetic flux, near the
axis, is higher in comparison with that of a
perfect gas, as the index 2(

 

– 1)/

 

in the
Eqn (26) is smaller for a nonideal gas (Table 2).
Thus, one may achieve comparatively higher
pressure near the axis, when a shock is converging
in a nonideal gas rather than in a perfect gas.

• Figure 4 also shows that the growth of the
shock in the initial phase and the decay in
the last phase are faster when the shock is
converging in a nonideal gas (

 

= 0.025, 0.05)
in comparison with that in a perfect gas (

 

= 0).
This also confirms the generation of higher pressure
near the axis in the case of a nonideal gas.

• On comparison of the curves in Figs 1, 2, and
4, it has been found that the conductivity of the
gas has significant effect on the shock propagation.
When conductivity (

 

is very high before and
behind the shock (Case II), the velocity of the

Table 1. Variation of , the density ratio across the shock
with 

 

at different values of  B
0 

and , in the
Case II  (R

m 
>> 1)

B
0 

= 0.5 B
0 

= 5.0

 

= 0    

 

= 0.05

 

= 0

 

=0.05

1.0 5.3500 4.0700 1.9900 1.9620

0.9 5.4455 4.0988 2.1341 2.0918

0.8 5.5374 4.1261 2.3217 2.2550

0.7 5.6247 4.1518 2.5712 2.4610

0.6 5.7064 4.1757 2.9086 2.7196

0.5 5.7814 4.1975 3.3643 3.0343

0.4 5.8483 4.2169 3.9557 3.3918

03 5.9058 4.2337 4.6475 3.7507

0.2 5.9522 4.2474 5.3220 4.0456

0.1 5.9851 4.2573 5.8165 4.2184

Figure 2. Variation of shock velocity with distance in
Case II (R

m
>>1).

PERFECT GAS
NONIDEAL GAS

=0.05 B
0
=5.00

=0 B
0
=5.00

=0 B
0
=0.50

=0.05, B
0
=0.50

D
/D

i

PERFECT
NONIDEAL GAS

=0, B=5.0
=0.05, B=5.0
=0, B=0.5
=0.05, B=0.5

Figure 3. Variation of pressure with distance in Case II
(R

m
>>1).

P
/P

1i
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shock increases very fast as it converges towards
the axis (Fig. 2).  In the Case I, where 

 

is
very small (or zero) before and behind the
shock, the shock velocity increases towards
the axis, but slowly in comparison to the shock
velocity increase in the Case II (Fig. 1). On the
other hand, in  Case III where 

 

is very small
before the shock front and very high behind it,
the shock decays very fast near the axis (Fig.
4).  Thus, the gas-ionising nature of the shock
has damping effect on its propagation.
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