Defence Science Journal, Vol. 56, No. 3, July 2006, pp. 345-351 © 2006, DESIDOC

Influence of Cellulosic Binders on Sensitivity and Combustion Behaviour of *B-KNO*, Ignition System

Varsha Bhingarkar and Haridwar Singh

High Energy Materials Research Laboratory, Pune-411 021

ABSTRACT

Boron-potassium nitrate (B- KNO_3)-based compositions have been used as an effective igniter system for solid rocket propellants. A systematic study was undertaken to generate exhaustive data on B- KNO_3 (25:65)-based ignition systems with cellulosic binders, viz., nitrocellulose, ethyl cellulose and plasticised ethyl cellulose. In addition, detailed investigations were carried out with PEC as binder by varying its concentration from 2-10 per cent in the same system. The experimental compositions (B- KNO_3 : binder) were evaluated by closed-vessel firing, thermal analysis, sensitivity, mechanical properties and cal-val determination. The binders significantly influenced the sensitivity and combustion behaviour of B- KNO_3 compositions. The composition with nitrocellulose as binder produced high flame temperature and cal-val as compared to ethyl cellulose and plasticised ethyl cellulose-based compositions. The data indicated that the calculated flame temperature for all compositions was in the range 2716 K to 2957 K. As the plasticised ethyl cellulose content increased from 2 per cent to 10 per cent, the maximum pressure increased with decrease in heat of combustion.

Keywords: Ballistic properties, cal-val, thermal analysis, sensitivity, binders, ignition system, solid rocket propellants, rocket propellants, nitrocellulose, cellulogic binders, combustion behaviour

1. INTRODUCTION

The quality and reliability of the performance of pyrotechnic igniter compositions are critical in the ignition of solid rocket motor and gas generators. Earlier research work carried out on igniters focused mainly on metal powders and oxidisers without much attention on the role of binders and their effect on the performance of pyrotechnic compositions¹⁻³. Of late, the use and application of binders in pyrotechnic compositions has increased, particularly for magnesium- and titanium-based pyrotechnic compositions, due to their influence on burn rates, cal-val and other performance parameters

Revised 02 May 2005

have been determined for these compositions⁴⁻⁶. The behaviour of six different types of binders, namely phenol-formaldehyde resin, shellac, polyvinylchloride, ethylcellulose, nitrocellulose, and fluorel has been studied by Barisin⁷, *et al.* with magnesium- boron- and aluminium-based igniter compositions. Their findings indicate that the nature of binder influences burning characteristics of igniter compositions significantly. Kalontarov⁸, *et al.* have studied the effect of viton introduction on the chemical reactivity of boron-calcium chromate ignition compositions by thermal analysis and equilibrium thermodynamic calculations. They have found that

viton induced an additional weight loss and exothermic peak at 490 °C. However, very little or practically no information on comparative effect of binders alone, plasticised binders and their concentration in composition, on heat output, ballistic properties, sensitivity, and processing is available in the literature. In addition, systematic research work is essential to study the effect of degradation of binders on the kinetic and ballistic properties of igniter compositions. Hence, the present work was undertaken to study the above aspects on B-KNO, system. Both energetic and non-energetic cellulosic binders like nitrocellulose (NC), ethyl cellulose (EC) and plasticised ethyl cellulose (PEC) were used in B-KNO, system. During present investigation, data on ballistic performance, sensitivity aspects, mechanical properties, etc were also generated. Since PEC-based compositions were found to be promising, further work was extended to optimise the percentage of PEC binder in B-KNO, system. Thermal studies, ballistic performance evaluation and sensitivity studies along with mechanical property determination were also conducted for pyrotechnic composition.

2. EXPERIMENTAL PROCEDURE

2.1 Materials

Amorphous boron (purity > 97 % particle size < 1 μ m) of Ecka UK, potassium nitrate (*KNO*₃) Gr-1 (particle size < 90 μ), EC (type N-200) from Hercules Co, NC type A (nitrogen content 12 %) and analytical grade of diethylphthalate and toluene were used for processing igniter compositions. The EC was plasticised by diethylphthalate in the ratio of 77.5 : 22.5 using water as the medium.

2.2 Preparation of Composition

 KNO_3 was dried at 110 °C and passed through 90 µm sieve. Boron powder and KNO_3 were weighed accurately as per the requirement and passed (threetimes) through 600 µm sieve for uniform mixing. To this dry mix, 10 per cent NC or EC or PEC binder solution dissolved in distilled toluene was added. These mixtures were granulated, passing through 600 µm sieve and retained on 300 µm sieve.

2.3 Evaluation of Igniter Compositions

Thermodynamic parameters of igniter compositions at equilibrium were calculated using REAL program at constant volume⁹. Parr adiabatic bomb calorimeter of 300 cc capacity was used to determine the calval of the pyrotechnic compositions in static air.

For ballistic performance evaluation, igniter compositions were fired in 700 cc closed vessel with loading density of 0.01 g/cc and pressure-time profiles were recorded. Linear burn rates of igniter compositions were determined by lead tube method.

Thermal analysis of igniter compositions was carried out on STA Mettler Toledo Star System at a heating rate of 10 °C/min in atmospheric condition. Solid combustion products were analysed using Perkin-Elmer FTIR spectrophotometer (model-1605), in KBr at room temperature. Fall Hammer apparatus was employed to measure impact sensitivity (2 kg drop weight), and sensitivity to friction was measured on Julius Peters apparatus (20 mg sample). Sensitivity to spark was determined by placing 10 mg sample between two electrodes at a distance of 2.0-2.5 mm with 15 mJ to 5 J energy. The mechanical properties of the pellets (20 x 20 mm size) were determined using Instron UTM (model-1185) as per ASTM method¹⁰.

3. RESULTS & DISCUSSIONS

3.1 Theoretical Calculations

Thermodynamic and chemical equilibrium calculations were carried out using REAL computer program at constant volume and zero internal energy. The results of flame temperature, pressure, enthalpy and entropy are given in Table 1.

It can be seen from the results presented in Table 1 that the flame temperature of binary mixture $(B-KNO_3)$ and NC-based composition were almost the same, while flame temperature (T_j) of EC and PEC-based compositions decreased significantly. With the incorporation of binder, the maximum pressure, however, increased considerably as compared to that of control composition, probably due to the formation of CO_3 , CO and H_2 . The impetus of the

Binder	Flame temp.	Pressure	Enthalpy H	Entropy S	Heat capacity	Impetus
(%)	$(T_f k)$	(MPa)	(kJ kg ⁻¹)	(kJ kg ⁻¹ K)	$(Jg^{-1}k)$	(Jg^{-1})
<i>B-KNO</i> ₃ (control)	2946	3.35	-3195	6.2	1.4	334
NC 10.0	2957	4.21	-3028	6.7	1.4	421
EC 10.0	2727	4.20	-3107	6.9	1.5	420
PEC 10.0	2716	4.15	-3114	6.8	1.5	414
PEC 7.5	2799	3.98	-3130	6.7	1.5	397
PEC 5.0	2858	3.78	-3149	6.6	1.5	378
PEC 2.0	2914	3.53	-3175	6.4	1.4	352

Table 1. Thermodynamic parameter of B-KNO₃ system with different binders

binder-containing compositions also increased by 90 units. To study the optimisation of PEC-based binder, the effect of various concentrations was studied. As the binder content decreased from 10-2 per cent, the flame temperature increased gradually, as expected. Proportionately, the impetus values also decreased linearly (414 Jg⁻¹to 352 Jg⁻¹).

The predicted combustion species of pyrotechnic compositions and their concentrations at equilibrium are given in Table 2.

With inclusion of binders, gaseous species like CO, H_2 and HBO were formed. As can be expected, NC-based composition showed a maximum amount of N_2 , whereas non-energetic binder-based compositions showed higher percentage of CO, H_2 and HBO.

The formation of combustion products like B_2O_2 , B_2O_3 and KBO_2 were confirmed by analysing slag using FTIR spectroscopy (Fig.1). The solid combustion products of all compositions showed peaks at 1312 cm⁻¹, corresponding to *B-O* linkage, at 1004 cm⁻¹ and 3500 cm⁻¹ for *OH*⁻¹ group¹¹(Fig.1). In all the cases, oxides of boron and hydrated salts of boron were identified.

3.2 Ballistic Properties

The igniter compositions were subjected to closed-vessel evaluation at loading density 0.01 g/cc to obtain the information on maximum pressure (P_{max}) , ignition delay, burning time up to maximum pressure $(B_t P_{\text{max}})$ and rate of change of pressure (dP/dt). The results are presented in Table 3.

The results of closed-vessel firing (Table 3) indicate that binder-containing compositions produced higher peak pressure as compared to control, as theoretically predicted. Ignition delay was invariably much lower for binder-based compositions (13-35 ms) as compared to the control (60 ms). Burn rates were higher for NC-based pyrotechnic compositions (11.6 mm/s) as compared to EC and PEC-based formulations (6-7 mm/s) due to energetic nature of the former. Likewise, cal-val were higher for NC-based proportionately with inclusion of inert binder (EC and PEC).

The presence of energetic group - ONO_2 in polymer gave high energy release as oxygen was weakly bonded to the nitrogen in this group. Therefore, it increased both cal-val and flame temperature.

Binder	B_2O_2	B_2O_3	BO	СО	H_2	HBO	KBO ₂	N_2
%								
B-KNO ₃ (control)	3.95	0.27	0.27				6.15	1.86
NC 10.0	3.82	0.25	0.44	2.26	1.02	0.70	5.47	2.02
EC 10.0	2.03	0.12	0.15	4.71	3.75	0.87	5.54	0.28
PEC 10.0	1.96	0.12	0.15	4.86	3.53	0.82	5.55	0.26
PEC 7.5	2.42	0.15	0.22	3.64	2.52	0.81	5.65	0.55
PEC 5.0	2.86	0.18	0.28	2.44	1.59	0.72	5.78	0.91
PEC 2.0	3.44	0.22	0.37	0.97	0.52	0.47	5.98	1.43

Table 2. Concentration of chemical species formed at equilibrium (mol/kg) (B-KNO₂)-binder

Figure 1. IR spectra of solid combustion products of *B-KNO*₃ system with different binders.

These results are in agreement with the findings of Russel¹³.

3.3 Thermal Analysis

Results of thermal analysis are presented in Table 4 and are depicted in Figs 2 to 7. TG/DTA of all pyrotechnic compositions were carried out to understand their combustion behaviour. DTA curve of binary mix B-KNO₃ (Fig. 2) registered two endothermic peaks, first at 136 °C for crystalline transition of KNO_3 from orthorhombic to trigonal, while second at 333 °C for melting of KNO_3 . A small exothermic peak was observed at 496 °C, which may be attributed to surface oxidation of boron into B_2O_3 , BO, etc. which further enhanced into a single sharp exothermic peak at 518 °C for ignition of boron in the presence of oxidiser. The TG of the binary mix showed a continuous weight gain of about 12 per cent up to 487 °C due to oxidation of boron. As the temperature increased, the oxide layer of boron was separated, resulting into a highly exothermic reaction with a weight loss of 7.5 per cent in the range 489-587 °C. The activation energy calculated for weight loss of binary mix was 113 kcal/mol.

TG curve of B- KNO_3 -NC (Fig. 3) composition showed single-stage weight loss of about 10 per cent in the temperature range 462–547 °C. The activation energy, as calculated from TG curve, was 37 kcal/mol. The DTA curve (Fig. 3) of this mix had a sharp exothermic peak at 515 °C with a shoulder at 484 °C due to oxidation of fuel.

Fig. 4 shows DTA curves of B- KNO_3 compositions containing 10 per cent EC and PEC. These compositions registered two exothermic peaks, first at 225 °C

Binder	$P_{\rm max}$	BtP_{max}	Ignition delay	dP/dt	Burn rate	Cal-val
%	(MPa)	(ms)	(ms)	(kg/cm ² /s)	(mm/s)	(cal/g)
<i>B-KNO</i> ₃ (control)	3.06	27.0	60.0	3274		
NC 10	3.53	13.0	13.0	5940	11.6	1966
EC 10	4.37	15.6	26.6	3558	5.9	1768
PEC 10	4.40	14.3	21.6	3624	6.5	1772
PEC 7.5	3.88	11.0	31.4	3822	6.7	1801
PEC 5	3.78	12.0	34.6	4239	6.9	1881
PEC 2	3.54	13.0	23.3	4453	10.0	1920

Table 3. Results of ballistic properties, burn rate, and cal-val of B-KNO, system with different binders

Binder %	Stage	Wt. loss (%)	Temp. range (°C)	Activation engery (kcal/mol)	Endothermic peak (°C)	Exothermic peak (°C)
B-KNO ₃	Ι	12 % Wt. Gain	Up to 487		136	496
(control)	II	7.5 %	489-587	113	333	518
NC 10.0	I	10.7	462- 547	37	137	484
					334	515
EC 10.0	T	6 2	220.242	15	127	255
EC 10.0	і П	0.2	239-342 182-531	15	137	233
	11	15.1	402-331	109	554	515
PEC 10.0	Ι	6.3	238-347	14.0	137	255
	II	14.9	477-528	194	334	495
						527
PEC 7.5	Ι	5.3	240-362	15.0	136	257
	II	14.6	472-528	140.0	334	496
						527
PEC 5.0	Ι	5.0	239-360	15.9	136	255
	II	14.4	475-544	128	334	495
						517
PEC 2.0	Ι	13.6	477-537	114	136	487
					333	514

Table 4. Results of thermal analysis B-KNO₃ system with different binders

followed by main peak at 527 $^{\circ}$ C with a small shoulder at 496 $^{\circ}$ C. The TG curve showed two regions of weight loss (Fig. 5). Initially weight loss of 6 per cent was observed in the temperature range 238–347 $^{\circ}$ C, with activation energy 14–15 kcal/mole. The second weight loss was approx. 15 per cent in the temperature range 477–531 $^{\circ}$ C. Plasticisation of EC by diethylphthalate increased the activation energy of second-stage weight loss by 25 kcal/mole.

Figure 2. STA curves of *B-KNO*₃ (1:1) atmohpheric static air, HR 10 °C/min.

The STA curves (Figs 6-7) of all PEC-based compositions indicate that intensity of first exothermic peak (255 °C) and magnitude of first stage weight loss (238–360 °C) were decreased with the reduction in PEC content.

3.4 Sensitivity & Mechanical Properties

To ensure safe processing of the pyrotechnic compositions, these were tested for impact, friction,

Figure 3. STA curves of *B-KNO*₃–NC composition atmospheric static air, HR 10 °C/min.

Figure 4. DTA curves of *B-KNO*₃₃ system with different binders, HR 10 °C/min.

Figure 5. TG curves of *B-KNO*₃ system with different binders, HR 10 °C/min.

and spark sensitivity. The mechanical properties were determined to obtain information on the strength of pellets, and also to avoid the metalloid segregation problem. The results are given in Table 5.

All compositions studied were found to be insensitive to friction up to 36 kg and to spark up to 5 joule. $B-KNO_3$ -NC composition was comparatively more sensitive to impact and showed crushing strength of 4.1 kg/cm². With the incorporation of EC, crushing strength increased marginally from 4.1 kg/cm² to 4.6 kg/cm². The compressive strength for EC- based composition was higher than that of NC-based pyrotechnic composition and plasticisation gave higher compressive strength than non-plasticised EC.

Figure 6. DTA curves of *B-KNO*₃ system with various percentage of PEC binder atmospheric static air, HR 10 °C/min.

Figure 7. TG curves of *B-KNO*₃ system with various percentage of PEC atmospheric static air, HR 10 °C/min.

4. CONCLUSION

The three cellulosic binders have been studied using B- KNO_3 system successfully. The following conclusion have been drawn from the data:

 B-KNO₃-NC composition gave high cal-val and flame temperature with low ignition delay and high burn rates.

Binders %	Height of 50 % explosion (cm)	Crushing strength (kg/cm ²)	Compression (%)
<i>B-KNO</i> ₃ (control)	82		
NC 10	75	4.1	204
EC 10	100	4.6	246
PEC 10	113	5.7	269
PEC 5	109	3.6	174
PEC 2	84	3.1	105

 Table 5. Results of sensitivity and mechanical properties of

 B-KNO₃ system with different binders

- Plasticisation of EC improved the sensitivity and 10 per cent PEC produced better mechanical properties.
- All pyrotechnic compositions based on *B-KNO₃*energetic and non-energetic binders, were insensitive to friction and spark.
- The efficiency of binder in wetting mix for granulation can be graded as PEC > EC > NC.

ACKNOWLEDGEMENTS

The authors thank Shri A. Subhananda Rao, Director, HEMRL, Pune, for allowing to publish the paper. The authors also acknowledge Sarvashri P.G. Shrotri and R.K. Pandey, R. Daniel and C.K. Ghatak for their help.

REFERENCES

- 1. Cackett, J.C. Monograph of pyrotechnics. Royal Armament Research and Development Establishment, 1965. pp. 10.
- Bernard, M.L.; Espagnacq, A. & Branka, R. On the importance of thermochemical parameters in solid-solid pyrotechnic reactions. Proceeding of the 7th International Pyrotechnics Seminar, 1980. pp. 826-45.
- Lindsley, G.I.; Robinson, E.A.; Charsley, E.L. & Warrington, S.B. Comparison of the ignition characteristics of selected metal/oxidant system. *In* Proceedings of the 11th International Pyrotechnics Seminar, Colorado, 1986. pp. 425-46.

- Barton, T.J.; Griffiths, T.T.; Charsley, E.L. & Rumesy, J. The influence of binders in pyrotechnic reaction-1: Magnesium oxidant system. *In* Proceedings of the 9th International Pyrotechnics Seminar, Colorado, 1984. pp. 723-41.
- Barton, T.J.; Griffiths, T.T.; Charsley, E.L. & Rumesy, J. The influence of binders in pyrotechnic reaction-II: Titanium-oxidant system. *In* Proceeding of the 9th International Pyrotechnics Seminar, Colorado, 1984. pp. 743-58.
- Griffiths, T.T.; Charsley, E.L. & Hider, J.A. A study of pyrotechnic performance of the magnesium oxide-binder system. *In* Proceeding of the 13th International Pyrotechnics Seminar, Grand Junction, 1978. pp. 393-10.
- Barisin, D. & Haberle, I.B. The influence of the various type of binder on the burning characteristics of magnesium-boron and aluminiumbased igniters. *Propell. Explos. Pyrotech.*, 1994, 19, 127-32.
- 8. Kalontarov, L. & Borokowski, J. Thermoanalytical characterisation of $B/CaCrO_4$ with viton. In Proceeding of the 23rd International Pyrotechnics Seminar, Tuskuba, Japan, 1997. pp. 325-37.
- 9. Belov, G.V. Computer simulation of complex chemical equilibrium at high pressure and temperature, REAL Version 2.2. Moscow (USSR), 1996.
- 10. American Society for Testing and Materials. ASTM-D-698, 1993.
- Nyquist, A. & Kagel, R.O. Infrared spectra of inorganic compounds. Academic Press, New York, 1971.
- Chen, J.K. & Brill, T.B. Thermal decomposition of energetic materials 50 kinetics and mechanics of nitrate ester polymers. *Combustion Flame*, 1991, 85(34), 479-88.
- Russel, R. A review of liquid curable pyrotechnic binders. *In* 13th International Pyrotechnics Seminar, 1988. pp. 661-78.

This document was created with Win2PDF available at http://www.daneprairie.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only.