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SHORT COMMUNICATION

Creep Transition in a Thin Rotating Disc with Rigid Inclusion

S.K. Gupta and Pankaj
H.P. University, Shimla-171 005 

ABSTRACT

Creep stresses and strain rates  have been obtained for a thin rotating disc with inclusion
using Seth’s transition theory. Results have been discussed numerically and depicted graphically.
It has been observed that radial stress has maximum value at the internal surface of the rotating
disc made of incompressible material as compared to circumferential stress and this value of
radial stress further increases with the increase in angular speed. Strain rates have maximum
values at the internal surface for compressible material. Rotating disc is likely to fracture by
cleavage close to the inclusion at the bore

 Keywords: Creep stress, thin rotating disc, stress, strain, rotors, turbines, creep transition, solid
mechanics

NOMENCLATURE

ii

A

e Principal finite strain components

a,b Internal and external radii of the disc

u,v,w Displacement components

r, ,z Radial, circumferential and axial directions

Angular velocity of rotation

i j
Kronecker's delta

Density of material

C Compressibility factor

ije Strain rate tensor

Y Yield stress

i j
Swainger strain components

v Poisson's ratio
2b2/E (Speed factor); R=r/b; R

0
=a/b

1 . INRODUCTION

Rotating disc forms an essential part of the
design of rotating machinery  namely, rotors, turbines,
compressors, fly wheels and computer disc drives,
etc. The analytical procedures presently available
are restricted to problems with simplest configurations.
The use of rotating disc in machinery and structural
applications has generated considerable interest in
many problems in domain of solid mechanics. Solutions
for thin isotropic discs can be found in most of the
standard creep text books2-7. Wahl1 has investigated
creep deformation in rotating discs assuming small
deformation, incompressibility condition, Tresc'a
yield criterion, its associated flow rule and a power
strain law. Seth's transition theory8  does not acquire

r
Radial stress component (T

rr
/E)

Circumferential stress component (T /E)
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any assumptions like an yield condition, incompressibility
condition and thus poses and solves a more general
problem from which cases pertaining to the above
assumptions can be worked out.

Seth9 has defined the generalised principal strain
measure as
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( i,j=1,2,3 )                                                             (1)

where n is the measure and 

 

is the Almansi

finite strain components. In this study, creep stresses
and strain rates for  a thin rotating disc with rigid
inclusion have been obtained using Seth's transition
theory. Results have been discussed numerically
and depicted graphically.

2 . GOVERNING EQUATIONS

A thin disc of constant density was considered
with central bore of radius a and external radius
b. The annular disc was mounted on a shaft. The
disc was rotating with angular speed 

 

about an
axis perpendicular to its plane and passed through
the centre as shown in Fig. 1. The thickness of
disc was assumed to be constant and was taken
to be sufficiently small  so that it  is effectively
in a state of  plane  stress,  that is, the axial stress
T

zz 
is zero.

The displacement components in cylindrical
polar coordinate are given by9

u = r(1– , v = 0, w = dz,               (2)

where 

 

is function of  r = (x2 +y2)1/2 only and d
is a constant.

The finite strain components are given by Seth9 as
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where drd .

Substituting Eqn (3) in Eqn (1), the generalised
components of strain are:
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Figure 1. Geometry of rotating disc.
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where drd

The stress-strain relations for isotropic material
are given by

ijijij eIT 21 , (i, j = 1, 2, 3),                 (5)

where 

 
and 

 
are lame's constants and e

kk 
is the

first strain invariant. 
ij 

is the Kronecker's delta.
Equation (5) for this problem becomes
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where drd

Substituting Eqn (4) in Eqn (6), one gets the
stresses as
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where r p and .

Equations of equilibrium are all satisfied except

                

(8)

where 

 

is the density of the material of the disc.

Using Eqn (7) in Eqn (8), one gets a nonlinear
differential equation in 

 

as
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Transition points of 

  
in Eqn (9) are

P 

 

1 and P ± 

The boundary conditions are

u = 0 at r = a and T
rr 

= 0 at r = b               (10)

3 . SOLUTION THROUGH PRINCIPAL
STRESS DIFFERENCE

For finding the creep stresses, the transition
function through  principal stress difference10-19 at
the transition point P –1 leads to the creep
state. The transition function R is defined as

n
n

rr P
n

TTR 11
2

                      (11)

Taking the logarithmic differentiating of Eqn (11)
wrt r, one gets
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Substituting the value of d

dP 
from Eqn (9) in

Eqn (12) and taking asymptotic value P –1, one
gets
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Asymptotic value of 

 

as P –1 is D/r; D
being a constant.
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Integrating Eqn (13) wrt r, one gets

2exp nk
rr FrArTTR                           (14)

where A is a constant of integration,
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From Eqns (11) and (14), one gets

2exp nk
rr FrArTT                                 (15)

Substituting Eqn (15) in Eqn (8), one gets

B
r

drFrrAT nk
rr 2

exp
22

21
     (16)

where B is a constant of integration.

Using boundary condition Eqn (10) in equation
Eqn (16), one gets

2
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Substituting the value of B in Eqn (16), one gets
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From Eqns (15) and (17), one gets
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From Eqns (11) and (15), taking asymptotic
value P –1, one gets
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Substituting  Eqn (19) in Eqn (2), one gets
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Using boundary condition [Eqn (10)] in Eqn (20),
one gets

2exp23

2
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A

Substituting the value of A in Eqns (17), (18)
and (20), one gets
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The following nondimensional components are
introduced as
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and .
b

u
u

Equations (21) to (23) in nondimensional form
become:
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where 
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For a disc made of incompressible material
(C 0), Eqns (24) to (26) become
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where 

 
and 

4 . STRAIN RATES

When creep sets in, the strains should be replaced
by strain rate. The stress-strain relations [Eqn (5)]
become

ijijij E
T

E
e
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(30)

where ije is the strain rate tensor wrt  flow parameter

t and 332211 TTT .

Differentiating Eqn (4) wrt t, one gets

1ne                                                  (31)

For SWAINGER measure (n = 1), one has
from Eqn (4.2)
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The transition value of Eqn (12) at 1P ,
gives
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Using Eqns (31), (32) and (33) in Eqn (30),
one gets

r

n
r

rr C

Cn
1

1

2

23
,

r

n
r

C

Cn
1

1

2

23
,



190

DEF SCI J, VOL. 57, NO. 2, MARCH 2007

    r

n
r

zz C

Cn
1

1

2

23
(34)

For incompressible material (C 0), Eqn (34)
becomes

2

2

2

3
1

1

r
n

r
rr

n

2

2

2

3
1

1

r
n

rn

r

n
r

zz

n

2

1

2

3
1

1

     

(35)

These constitutive equations are the same as
obtained by Odquist6 provided one takes n = 1/N.

5 . DISCUSSION

For calculating stresses, strain rates and
displacement based on the above analysis, the following
values have been taken

75,50
22

2

E

b
;

C = 0.00, 0.25, 0.5;

n = 1/3, 1/5, 1/7 ( i.e. N = 3, 5, 7 ) and D = 1.

In classical theory, measure N is equal to 1/n.
Definite integrals in the Eqns (24) to (25) have
been solved using Simpson's rule.

Curves have been drawn in Figs 2(a) to Fig 2(c)
between stresses and radii ratio R = r/b for a
rotating disc made of compressible/ incompressible
material at different angular speeds. It is seen
from Figs 2(a) to Fig 2(c) that the radial stress has
maximum value at the internal surface of disc as
compare to circumferential stress. It is also observed
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Figure 2(a). Creep stresses in a thin rotating disc with inclusion for incompressible material at different angular speeds along
the radius (R = r/b).
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Figure 2(b). Creep stresses in a thin rotating disc with inclusion for compressible material  at  different  angular speeds along
the radius (R = r/b).
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Figure 2(c). Creep stresses in a thin rotating disc with inclusion for compressible material at different angular speeds along
the radius (R = r/b).
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Figure 3(a). Strain rates distribution in a thin rotating disc with inclusion for measure n = 1/7 at different angular
speeds =  50, 75 along the radius (R = r/b).
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Figure 3(b). Strain rate distribution in a thin rotating disc with inclusion for measure n = 1/3 at different angular
speeds = 50, 75 along the radius (R = r/b ).
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that the radial stress has maximum value at the
internal surface of the rotating disc with inclusion
made of incompressible material as compare to
compressible material for measure n = 1/7 or
(N = 7) at angular speed = 50, whereas circumferential
stress is maximum at the internal surface for measure
n = 1/3 or (N = 3) at this angular speed. The values
of radial/circumferential stress further increases
at the internal surface with the increase in angular
speed (

 

= 75) for measure n = 1/7 or (N = 7)
and n = 1/3 or (N = 3), respectively.

Curves have been drawn in Figs 3(a) and 3(b)
between strain rates and radius R = r/b at angular
speed  = 50, 75 and measures n = 1/7, 1/3 or
(N =7, 3). It has been seen from Figs 3(a) and 3(b)
that rotating disc made of compressible material
has maximum value at the internal surface as compared
to incompressible material for measure n = 1/7 or
(N = 7) and n =1/3 or (N = 3) at angular speed

= 50. The values of strain rates further increases
at the internal surface with the increase in angular
speed  = 75 for measure n = 1/7 or (N = 7) and
1/3 or (N = 3), respectively.
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