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NOMENCLATURE

a, b Internal and external radii of disc

D a constant

R Radial distance

u,v,w Displacement components

x,y,z Cartesian coordinates

r ,q,z Cylindrical polar coordinates

e
ij 
,T

ij
Strain and stress tensor

e
ii

First strain invariant

b Function of r  only

Y Yield stress

P Function of bonly

C
ij

Material constants

l,m Lame’s constants

( / )R r b= 0 ( / )R a b=
2 2 2b YW = r w ,

( / )r rrT Ys = Radial stress component

( / )T Yq qqs = Circumferential stress component

( / )z zzT Ys = Axial stress component

1. INTRODUCTION
The constantly increasing demand for axisymmetrical

cylindrical and spherical components or elements of these
by the industry has drawn the attention of designers and
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ABSTRACT

Elastic-plastic stresses for a transversely isotropic thick-walled rotating cylinder under internal pressure
have been obtained by using Seth’s transition theory. It has been observed that a thick-walled circular cylinder
made of isotropic material yields at the internal surface at a high pressure as compared to cylinder made of
transversely isotropic material. With the increase in angular speed, much less pressure is required for initial
yielding at the internal surface for transversely isotropic material as compared to isotropic material. For fully-
plastic state, circumferential stress is maximum at the external surface. Thick-walled circular cylinder made
of transversely isotropic material requires high percentage increase in pressure to become fully plastic as
compared to isotropic cylinder. Therefore, circular cylinder made of transversely isotropic material is on the
safer side of the design as compared to cylinder made of isotropic material.

Keywords: Elastic-plastic transition, transversely isotropic cylinder, isotropic, rotating cylinder.

scientists on this particular area of activity. The progressive,
worldwide scarcity of materials, combined with their
consequently higher cost, makes it increasingly less attractive
to confine design to the customary elastic regime only.
Thick-walled cylinders of circular cross-section are commonly
used either as pressure vessels intended for storage of
industrial gases or as medium for transportation of high
pressurised fluids. A thick-walled cylinder is also widely
used as a structural component in oil refineries, power
industries, atomic power plants, etc. Problems of thick-
walled cylinder under internal pressure have been analysed1-4

for isotropic homogeneous elastic-plastic states. In their
treatment, the following assumptions were made:
(i) the incompressibility conditions,
(ii) the deformation is small enough to make infinitesimal

strain theory applicable,and
(iii) the yield criterion,

Incompressibility of the material in plasticity is one
of the most important assumption that simplifies the problem.
Infact, in most of the cases, it is not possible to find a
solution in closed form without this assumption. Transition
theory4 does not require any of the above assumptions,
and thus solves a more general problem. This theory utilizes
the concept of generalised strain measure, which not only
gives the well-known strain measures, but can also be
used to find the stresses in plasticity and creep problems
by determining the asymptotic solution at the transition
points of the governing differential equations.

In this paper, elastic-plastic stresses for a transversely
isotropic thick-walled rotating cylinder under internal pressure
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have been obtained using transition theory. Results obtained
have been discussed numerically and depicted graphically.

2. GOVERNING  EQUATIONS
Consider a thick-walled circular cylinder of internal

and external radii a and b, subjected to internal pressure
applied at the internal surface and rotating with an angular
velocity w.

The generalized principal components of strain4 is
defined as,

1
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1
[1 2 ] [1 (1 2 ) ], ( , 1, 2,3)
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where n  is the measure and Aije   is the principal Almansi
finite strain components4.

The displacement components in cylindrical polar co-
ordinates are given by,

(1 ), 0,= -b = =u r v w dz                            (2)

where b  is a function of  2 2= +r x y  only and  d is
a constant.

The finite components of strain4-8 are defined as,
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where  /¢b = bd dr
Substituting Eqn (3) in Eqn (1) one gets the generalised

components of strain as

1 1
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[1 (1 ) ], 0
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The stress-strain relations for transversely isotropic
material are

11 11 66 13( 2 ) qq= + - +rr rr zzT C e C C e C e

11 66 11 13( 2 )qq qq= - + +rr zzT C C e C e C e

13 13 33qq= + +zz rr zzT C e C e C e

0q q= = =zr z rT T T                                    (5)

where 'ijC s  are material constants.

Using Eqs (4) in Eqn (5), one gets

( ) ( ) ( )11 11 66 13/ 1 2 / 1é ù é ù¢ é ù= - b + b + - - b +ë û ë ûë û
n n

rr zzT C n r C C n C e

( ) ( ) ( )11 66 11 132 / 1 / 1qq
é ù é ù¢é ù= - - b + b + -b +ë û ë ûë û

n n
zzT C C n r C n C e

( ) ( ) ( )13 13 33/ 1 / 1é ù é ù¢= - b + b + -b +ë ûë û
n n

zz zzT C n r C n C e

0q q= = =r z rzT T T                                                   (6)

Equations of equilibrium are all satisfied except,

2( ) 0qq-æ ö+ + r w =ç ÷
è ø

rr
rr

T Td
T r

dr r                     (7)

where r is the density of the material.
Substituting Eqn (6) in Eqn (7), one gets a nonlinear

differential equation in b as
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11

11 11 66

2 2
66 66

(1 )

(1 ) ( 2 )

2 1 (1 ) 2 (1 )

+ -b +
b

= - b + - - b

é ù+ - b + - - b + r wë û

n n

n n n

n n n
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where ¢b = br P

The transitional points of P in equation (8) are 1® -P

and P ® ±¥

The boundary conditions are

= -rrT p at r  = a                             (9)

0=rrT      at r = b
The resultant force normally applied to the ends of

cylinder is

22p =pò
b

zz

a

rT dr a p                                   (10)

3. SOLUTION  THROUGH  THE  PRINCIPAL
STRESSES
It has been shown4-8 that the asymptotic solution

through the principal stress leads from elastic-to-plastic
state at the transition point P ® ± ¥ . For finding the
plastic stress at the transition point P ® ± ¥ , the transition
function R is defined as

( )11 66 132= - + -zz rrR C C nC e nT

11 66 112 (1 )é ù= b - + +ë û
n nC C C P                   (11)

Taking the logarithmic differentiation of Eqn (11) with
respect to r, and taking the asymptotic value as P ® ± ¥ ,
and integrating, we get

1
1

-= CR A r                                            (12)

where A
1
  is a constant of integration and1 66 112 /=C C C .

Using Eqn (12) in Eqn (11), we get

( ) 1
3 1 / -= - C

rrT C A n r                                   (13)

where [ ]3 11 66 132( ) /= - + zzC C C nC e n

Using boundary condition of Eqn (9) in Eqn (13), one
gets
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Substituting the value of  A
1
 and  C

3  
in Eqn (13), one

gets
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1

1
1

( / ) 1

é ùé ù æ ö= -ê úê ú ç ÷- è øê úë û ë û

C

rr C

p b
T

rb a                        (15)

Using Eqn (15) in Eqn (7), one gets

1

1

2 2
11 (1 )

( / ) 1qq

é ùé ù æ ö= - - + r wê úê ú ç ÷- è øê úë û ë û

C

C

p b
T C r

rb a       (16)

The axial stress is obtained from Eqn (5) as

( )
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33 11 66 1313
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é ù- -
= + + ê ú

- -ê úë û
zz rr zz
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T T T e

C C C C   (17)

Applying the end condition (10) in Eqn (17), the axial
strain is given by
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Substituting Eqn (18) in Eqn (17), one gets
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From Eqns (15) and (16), one gets
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It is found that the value of - rrT Tqq   is maximum

at r = a, which means yielding of the cylinder will take
place at the internal surface. Therefore, one has

1

1

2 2
1 ( )

( / ) 1
qq =

é ù æ ö- = + r w ºê ú ç ÷- è øë û

C

rr Cr a

p b
T T C a Y say

ab a    (21)

The pressure required for initial yielding is given by,
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Using Eqn (22) in Eqns (15), (16) and (19), one gets
transitional stresses as
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Eqn (23) give elastic-plastic transitional stresses in
thick-walled rotating cylinder under internal pressure.

For fully plastic state ( )1 0®C , Eqn (21) becomes
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From Eqn (24), one has
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From Eqn (23), one gets fully plastic stresses as
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4. ISOTROPIC CASE
For an isotropic material
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( ) 2 2

1
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where ( )2 2= m l + mc
It is found that the value of qq - rrT T is maximum at

r = a, which means that yielding of the cylinder will take
place at the internal surface.
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The pressure required for initial yielding is given by
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The pressure required for fully plastic state is given
as,

( ) ( )2 2 *1 log= -r wfP b Y b a

The stresses required for fully plastic state ( )0®c
is given as,

( )* 2 2 *1 log /é ùs = - r wë ûr b Y r b
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These equations are the same as obtained by Gupta5.

5. NUMERICAL ILLUSTRATION AND
DISCUSSIONS
As a numerical illustration, elastic constants C

ij
  are

given in Table 1. for transversely isotropic material (Mg)
and isotropic material (Brass). The pressure required for
initial yielding (P

i 
) and for fully plastic state (P

f 
)   at

different angular speeds has is in Table 2.

It has been observed from Fig. 1 that a thick-walled
circular cylinder made of isotropic material having (a/b=0.2)
yields at high pressure as compared to cylinder made of
transversely isotropic material whereas for a thick-walled
cylinder having (a/b=0.5), yields at low pressure. With the
increase in angular speed, it has been observed that much
less pressure is required for initial yielding at (a/b=0.2)   for

Table 2. The pressure required for initial yielding and Fully-plastic state at different angular speeds.

Transversely isotropic material (magnesium) Isotropic material (brass) 

 
 
 
is the percentage increase in 
pressure required from initial 
yielding to fully-plastic state  

 
 
 
is the percentage increase 
in pressure required from 
initial yielding to fully-
plastic state 

W
2 P 

a/b=  
0.2 

a/b=  
0.3 

a/b=  
0.4 

a/b=  
0.5 

a/b=  
0.2 

a/b=  
0.3 

a/b=  
0.4 

a/b=  
0.5 

a/b=  
0.2 

a/b=  
0.3 

a/b=  
0.4 

a/b=  
0.5 

a/b=  
0.2 

a/b=  
0.3 

a/b=  
0.4 

a/b= 
0.5 

0 Pi 1.06 0.88 0.72 0.57 1.11 0.9 0.74 0.59 

 Pf 1.61 1.2 0.92 0.69 
52 38 27.9 20.7 

1.61 1.2 0.92 0.69 
45.6 33.1 24.6 18.3 

2 Pi 0.98 0.72 0.49 0.29 1.02 0.74 0.5 0.29 

 Pf -1.6 -1.2 -0.9 -0.7 
265 268 288 341 

-1.61 -1.2 -0.9 -0.7 
258 262 283 337 

3 Pi 0.93 0.64 0.37 0.14 0.97 0.66 0.38 0.15 

 Pf -3.2 -2.4 -1.8 -1.4 
445 477 592 1065 

-3.22 -2.4 -1.8 -1.4 
431 465 579 1047 

 

100
-

= ´f i

i

P P
P

P
100

-
= ´f i

i

P P
P

P

Table 1. Elastic constants C
ij
 used (in units of 1010 N/m2)

Materials 44C  11C  12C  13C  33C  

Brass (Isotropic Material) 0.9999 3.0 1.0 1.0 3.0 

Magnesium (Transversely Isotropic 
Material) 1.64 5.97 2.62 2.17 6.17 

 

Figure 1. Pressure required for initial yielding at the internal
surface of the cylinder at different angular speeds.

––– TRANSVERSELY
ISOTROPIC MATERIAL

------ ISOTROPIC MATERIAL
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Figure 2. Fully-plastic stresses for a thick-walled cylinder under internal pressure at different angular speeds.

transversely isotropic material as compared to isotropic
material. From Table 2, it has been observed that a thick-
walled circular cylinder made of transversely isotropic material
requires high percentage increase in pressure to become
fully plastic as compared to isotropic material from its
initial yielding and this percentage goes on increasing
with the increase in angular speed.

In Fig. 2, curves have been drawn between stresses
and radii ratio (R=r /b) for a fully plastic state. It has been
observed that for fully plastic state, circumferential stress
is maximum at external surface.

6. CONCLUSION
It can be concluded that circular cylinder under internal

pressure made of transversely isotropic material is on the
safer side of the design as compared to the circular cylinder
under internal pressure made of an isotropic material.
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