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1. INTRODUCTION
The advanced encryption standard (AES)* developed by 

Joan Daemen and Vincent Rijmen, Rijndael1,2 was selected by 
National Institute of Standards and Technology (NIST) as  in 
2001. It is a symmetric block cipher-based on the Shannon 
substitution-permutation network. AES has long been an area 
of interest for the researchers due to its:

Well proven security:  A a 5-year evaluation procedure by • 
NIST and it is designed to be resistant to linear, differential 
and mount attacks.
Efficiency: The speed of encryption and decryption of • 
AES is the fastest compared to any other cipher of similar 
strength.
Design simplicity: The cipher has a simple and elegant • 
structure that can easily be split into its components. 

Most of the earlier works relating to AES are linked to its 
performance evaluation and straight forward implementation3-7 

including the various pipelined architecture. Some 
simplification8,9 in the AES algorithm had been attempted. 
However, this simplifications lead to vulnerabilities10 in the 
algorithm. A great amount of work has also been done in fast 
pipelined implementation11-15 of the algorithm. Rijmen proposal 
of AES S-box implementation based on the composite fields16 
was a significant step to compact AES. Some work in optimum 
construction17 of these composite fields has been done. Some 
study on the replacement18 of the design parameters of the 
Rijndael algorithm has been done. It was suggested that this 
leads to creation of new ciphers equivalent in strength to the 
original. However, certain properties19 of substitution box 
(S-box) has been identified, which are profoundly affected by 
the changes in design components. Recent works relating to 
AES S-box include the optimised implementation of the S-box 
using residues of prime numbers20, a lightweight mix columns 

implementation for AES21 and a proposal of a new algorithm to 
construct secure keys for AES22 is published.

This paper focuses on the study of the algebraic 
construction of the S-box of the AES algorithm, which is the 
main strength of the cipher. The effect of the change in the 
design components of the S-box on its cryptographic properties 
has been analysed. It provides an insight to the AES S-box 
construction to generate a conceptual framework for all future 
customization of the algorithm targeted at the S-box design 
level.

 
2. BASIC STRUCTURE OF ADVANCED 

ENCRYPTION STANDARD
Full description of the AES algorithm can be obtained 

in FIPS2 197. The input and the output for AES are each bit 
sequences containing 128-bits. However, AES allows cipher 
keys of all 128-bits, 192-bits, or 256-bits lengths. The input 
128 bits are arranged in a 4×4 matrix, termed the ‘state’ and all 
byte operations are performed in the Galois field GF(28). The 
cipher is specified in terms of repetitions of processing steps 
that are applied to make up rounds of keyed transformations 
between the input plain-text and the final output cipher-text. A 
set of reverse rounds are applied to transform cipher-text back 
into the original plain-text using the same encryption key. The 
encryption of data is done in number of rounds:

Initial round: AddRoundKey a. 
Rounds: SubBytes, ShiftRows, MixColumns, and b. 
AddRoundKey 
Final round: SubBytes, ShiftRows, and AddRoundKey.c. 

Addroundkey : Addroundkey is a XOR of the key with 
the array.

ShiftRows : ShiftRows cyclicly shifts the elements of the 
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ith row of the state Ci elements to the right, where, 
Ci are fixed constants Ci = 0, 1, 2 and 3.

MixColumns : The columns of the state are considered as 
polynomials over gF(28) and multiplied modulo x4+1 
by 03.x3+x2+02 to give a new column array.

SubBytes : SubBytes is a nonlinear byte substitution, operating 
on each of the state bytes independently.

In all these operations, the SubBytes deserve a special 
mention as this step involves the S-box. The S-box is the 
back bone of the cipher; it provides nonlinearity in the 
encryption process and plays an important role in key 
scheduling. 

3. ALGEBRAIC PRELIMINARIES AND S-BOX 
CONSTRUCTION
For the study of algebraic construction of the S-box a 

theorem is stated here without proof.

Theorem 1
let p be a non-zero element of a principle ideal domain R 

then, R/(p) will be a field if and only if, p is irreducible23. 
According to this theorem, for a prime p Galios field

( )nGF p is constructed by using a generating polynomial m(x) 
of degree n taking

( [ ]
(

)
)

( )n GF p x
m x

GF p =

In the AES algorithm, the irreducible polynomial 
8 4 3 1x x x x+ + + +  is used to generate the underlying 

field 8(2 )GF . All bytes b in Rijndael are interpreted 
as elements of this field represented by a polynomial 

2 3 4 5 6 7
1 2 3 4 5 6 7 8a a x a x a x a x a x a x a x+ + + + + + +  where, each 

bit (2)ia GF∈ and 8(2 )b GF∈ . In this field, addition ⊕  
and multiplication are defined by the XOR operation and 
polynomial multiplication modulo the generating polynomial 
respectively.

An S-box is a transformation (: )nGF ps →  ( ),nGF p  
In AES the S-box s 8(2: )GF →s 8(2 )GF  is constructed 
by substituting each element with its inverse and applying 
a suitable affine transformation s -1: X AX b→ +s  where, 

( )8 2 ,A GL∈ the general linear group of degree 8 over GF(2) 
and 8(2 )b GF∈ . Both of these A and b are fixed in AES:

1 0 0 0 1 1 1 1 1
1 1 0 0 0 1 1 1 1
1 1 1 0 0 0 1 1 0
1 1 1 1 0 0 0 1 0

 and 
1 1 1 1 1 0 0 0 0
0 1 1 1 1 1 0 0 1
0 0 1 1 1 1 1 0 1
0 0 0 1 1 1 1 1 0

A b

   
   
   
   
   
   = =   
   
   
   
   
      

The motivation for this S-box design is to be resistant 
to differential, linear cryptanalysis and interpolation attacks. 
The core design is a simple transformation 1x x−→  in GF(28), 

this mapping has a simple algebraic expression. However, 
the simplicity itself makes it vulnerable to attacks like the 
interpolation attack. Therefore, it is combined with a suitable 
affine transformation: 1 .x Ax b−→ +  The affine mapping is so 
chosen that, it has a very simple description, but a complicated 
algebraic expression. If combined with the ‘inverse’ 
mapping, it can be seen as modular polynomial multiplication 

followed by addition1 ( ) ( ) ( )7 6 2b x x x x x a x= + + + +

( )7 6 5 4 81 mod ( 1).x x x x x+ + + + +  The purpose of the 
constant translation vector b is to ensure that ∃  no fixed and 
conjugate fixed points (i.e. ∃ no 8(2 )x GF∈ such that σ(x) = x 
or ( )x xs = ) in the S-box.

4. CHARACTERISTICS OF A GOOD S-BOX 
AND BIAS PARAMETERS 
To study the characteristics of a good S-box
( ) ( ): n nGF p GF ps → , it is realised as vectorial Boolean 

function 1 2( ) ( ( ), ( ),..., ( ))nx x x xs = s s s where, each is  is a 
Boolean function of the Boolean variables 1 2, ....., nx x x . 

Characteristics of the good S-box are, it has to: 
be balanced•	
satisfy propagation criterion •	
satisfy correlation immunity criterion•	
have input/output bit-to-bit entropy (•	 H) = 1.
its nonlinearity (•	 N) has to be = 120.

•	
Each of these criteria’s are explained in the following 

subsection. However, most of these are satisfied only for an 
ideal case and not in practical level. So, biases from each of 
these criterions are derived.

4.1 Balancedness Property
This property states that each of the Boolean functions 

of the S-box should be balanced, i.e., the number of ones and 
zeros in the truth table of the Boolean function must be equal.

4.2 Propagation Criterion
A Boolean function is said to satisfy propagation criterion 

of degree k and order m, if any function obtained by keeping m 
input bits fixed f(x) changes with probability half, whenever i 
(1≤ i≤ k) bits of x are complemented.

Mathematically, by fixing m number of bits 2n m
mC  

set of functions g are obtained from f, let it be denoted by 
F. let (2 ) : ( ) [1, ]nGF W kα ∈ α ∈  then a function is said to 
satisfy the propagation criterion of degree k and order m, 
if for each ,  ( ) ( ) g F g x g x∈ ⊕ ⊕ α is balanced.

The propagation criterion is the measure of randomness 
of the differences in output pairs to the input pairs. This is a 
very important criterion as the bias of the distribution of the 
differences of the output pairs and the input pairs is utilised in 
the differential cryptanalysis of the conventional ciphers.

Definition
Propagation criterion bias of a Boolean function of degree 

k and order m is defined by19: 
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( , ) max | ( ( ) ( )) 2 |
i

n

n m k

A g F
x F

PCB k m g x g x − −
s

α∈ ∈
∈

= ⊕ ⊕ α −∑

where where, { (2 ) : ( ) [1, ]}.nA GF w k= α ∈ α ∈

For the S-box: ( , ) max ( , )
i

i
PCB k m PCB k ms s

s
=  

The propagation criterion of degree one and order zero 
is very well known criterion, termed as the strict avalanche 
criterion (SAC). The criterion is satisfied, if whenever a single 
input bit is complemented, each of the output bits changes with 
a probability 1

2 .

4.3 Correlation Immunity Criterion
A Boolean function is to satisfy a correlation immune of 

order m, if it is statistically independent of combination of any 
m input bits. Mathematically, if m input bits are fixed then the 
functions g obtained from Boolean function f must satisfy: 

( ) ( )
2m

W f
W g =

 
where W(f) denotes the Hamming weight of a Boolean function 
given by the number of x for which the function attains a non-
zero value.

Definition : The correlation immunity bias of order m 
for a Boolean function is defined by19:

( ) max  2 ( ) - ( )m
f f A

CIB m W g W f
∈

= ×
 

The correlation immunity bias of S-box is given by

[1, ]
( ) max  ( )

ii s
CIB m CIB ms s

∈
=

4.4 Input/output Bit-to-Bit Entropy
This parameter represents the amount of information 

about the value of input bit, if the value of the output bit is 
known. The entropy of a single output function is given by24:

2 2
1( ) log ( ) (1 - ) log (1- )i i i i

i
H P P P P

P
= +

where Pi, is the fraction of 1’s in the output column of the truth 
table.

Definition : The ( ), thi j Input/output bit-to-bit entropy 
( / ( ))i iH x xs is computed and the parameter is 

defined19 by , [1, ]
min ( / ( ))i ji j n

H H x x
∈

= s .

4.5 Nonlinearity
An affine Boolean function does not provide an effective 

confusion. To overcome this, functions which are as far 
as possible from being an affine function are needed. The 
effectiveness of these functions is measured by a parameter 
called nonlinearity.

Definition : Nonlinearity of a Boolean function is measured 
by the Hamming distance to the set of affine 
functions25 

1

2

1( ) 2 max ( )
2

n
nw F

N f F w−

∈
= − ×

where F is the Walsh transformation of f,

[1, ]
For  S-box min ( ( ))

i n
N N fi∈

=

For good cryptographic properties of the S-box, these 
parameters should have the values19: H = 1, PCB(1,0) = 0, 
PCB(1,1) = 0, CIB(1) = 0 and nonlinearity, N = 120. However, 
values of these parameters for the AES S-box are: H = 0.9887, 
PCB(1,0) = 16, PCB(1,1) = 20, CIB(1) = 16 and nonlinearity 
N = 112. The values of these bias parameters are used to 
analyze the effect of changes in the design components of the 
AES S-box on its cryptographic properties. Different possible 
variations on the S-box components and their affects have been 
discussed in the next section.

5. ANALYSIS AND RESULTS
The S-box is constructed by the transformation:

1 8

8
8

,  where,  (2 ),  

 gl (2) and  (2 ).

x Ax b x GF

A b GF

−= + ∈

∈ ∈
 

All the variations in its construction without altering the 
simple algebraic expression are looked into and their effects 
in the bias parameter values are analysed. One of the major 
changes that can be brought about without altering the algebraic 
expression is by changing the underlying field to isomorphic 
fields. Another option is to change the affine matrix A and third 
is changing the vector b. 

5.1 Change in the Underlying Field to Isomorphic 
Fields
Isomorphic fields to the underlying field can be generated 

by using different irreducible polynomials of the same degree. 
Number of irreducible polynomials of degree n over gF(p) is 
given by:

/

/

1 ( ) ,  where   the Mobius function.n d

d n
d p is

n
µ µ∑

0 if  has 1 or more repeated prime factors
( ) 1 if =1

( 1) if  is a product of  distinct primesk

n
n n

n k




µ ≡ 
 −

Thus, ∃  a total of 30 irreducible polynomials of degree 8 
over gF(2) including the one originally used. The irreducible 
polynomials are constructed by generating the polynomials 
and testing their irreducibility using the following theorem:

Theorem 2: Rabin’s Test for irreducibility26

A polynomial ( )[ ]C GF p x∈  of degree d is irreducible if 
and only if mod

dpX x C=  

The irreducible polynomials and the values of the bias 
parameters of the respective S-boxes constructed on isomorphic 
field generated by them are shown in Table 1.

It can be observed from Table 1 that values of the bias 
parameters can be enhanced on changing to isomorphic fields as 
in the case of the irreducible polynomial 8 6 5 1.x x x x+ + + +  
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Generating Polynomials H PCB
(1,0)

PCB
(1,1) CIB(1)

8 4 3 1 (AES)x x x x+ + + +

8 7 5 4 1x x x x+ + + +

8 6 5 4 1x x x x+ + + +

8 4 3 2 1x x x x+ + + +

8 7 6 4 3 2 1x x x x x x+ + + + + +

8 6 5 4 2 1x x x x x x+ + + + + +

8 5 3 1x x x x+ + + +

8 7 5 3 1x x x x+ + + +

8 7 6 5 4 3 1x x x x x x+ + + + + +

8 5 4 3 2 1x x x x x x+ + + + + +
8 7 6 4 2 1x x x x x x+ + + + + +
8 5 3 2 1x x x x+ + + +
8 6 5 3 1x x x x+ + + +
8 7 4 3 2 1x x x x x x+ + + + + +
8 7 6 5 4 1x x x x x x+ + + + + +
8 5 4 3 1x x x x+ + + +
8 7 5 1x x x x+ + + +
8 7 3 1x x x x+ + + +
8 6 5 2 1x x x x+ + + +
8 6 3 2 1x x x x+ + + +
8 7 5 4 3 2 1x x x x x x+ + + + + +
8 6 5 4 3 1x x x x x x+ + + + + +
8 6 4 3 2 1x x x x x x+ + + + + +
8 7 6 5 4 2 1x x x x x x+ + + + + +
8 7 3 2 1x x x x+ + + +
8 6 5 1x x x x+ + + +
8 7 26 5 1x x x x x x+ + + + + +
8 7 6 3 2 1x x x x x x+ + + + + +

8 7 2 1x x x x+ + + +
8 7 6 1x x x x+ + + +

0.9887

0.9914

0.9914

0.9914

0.9887

0.9914

0.9914

0.9914

0.9887

0.9914

0.9914

0.9937

0.9914

0.9914

0.9887

0.9937

0.9914

0.9887

0.9937

0.9887

0.9887

0.9887

0.9914

0.9937

0.9914

0.9914

0.9887

0.9914

0.9887

0.9914

16

16

16

16

16

16

16

16

16

16

16

16

16

12

16

12

16

16

16

16

16

12

16

16

16

12

16

16

12

16

20

20

20

20

20

18

20

20

20

20

20

20

20

20

20

18

18

20

20

20

20

20

20

20

24

18

20

20

20

20

16

14

16

16

16

14

16

14

16

14

16

16

16

16

14

16

14

16

12

16

16

16

16

14

14

14

16

16

16

14

Table 1. Generating polynomials and the corresponding parameter values of the 
S-boxes

5.2 Change in the Affine Matrix
Another variation in the S-box design component can 

be brought about by changing the affine matrix A. The affine 
matrix 8 (2)A GL∈ , the general linear group of degree 8 over 
gF(2) and the order of this group is:

7 8 18
0
(2 2 ) 5.3481  10 .k

k =
− ×∏ ∼

Hence, the number of matrix A available to be used for 
varying the S-box is numerous. So, to analyse the effect of such 

change on the bias parameter values instead of performing an 
exhaustive search over this group, a random search has been 
done. For this, a square binary matrix of size 8 is randomly 
generated. The matrix is discarded, if found to be singular and 
another matrix is generated again. This non-singular randomly 
generated matrix is used in the construction of S-box and the 
bias parameters are computed. This process is implemented in 
Matlab and is repeated 500 times. Few randomly generated 
affine matrices obtained on 500 such random searches are:
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0    0   1     0   1    1     0   1 
1    0    0    0   1    1    1    1 
1   1     0   1    1     0    0    0
0    0    0    0    0   1     0   1 
1    0   1     0   1    1     0    0
0   1    1     0    

 1    1    1     0    0    0    0    0
 0    0    0    0    0   1     0   1 
0   1    

,  

1    0    0    0
1   1    1    1    1     0   1     0
1    0    0   1    1    1    1     0

 
 
 
 
 
 
 
 
 
 
 
  

1     0    0   1     0   1 
1    0   1    1     0    0   1     0
1    0   1    1    1    1     0    0
1   1    1    1    1    1    1    1 

1   1     0   1     0    0   1     0
1    0    0   1    1     0    0   1 

1    0   1     0   1     0   1    1 
1    0   1     0    0   1    1    1 
1   1     0    0   1     0   1    1 
1    0   1    1    1     0   1    1 

 and 
0    0    0   1   

 
 
 
 
 
 
 
 
 
 
 
  

.
  0   1    1     0

0   1    1    1     0    0   1    1 
0    0   1     0   1     0    0   1 
1   1    1     0    0    0   1    1 

 
 
 
 
 
 
 
 
 
 
 
  

 
Some of the observed bias parameter values obtained due 

to the change in the affine matrix in the random search are 
shown in Table 2.
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