
Received 11 November 2011, revised 17 August 2012, online published 14 September 2012

Defence Science Journal, Vol. 62, No. 5, September 2012, pp. 324-330, DOI: 10.14429/dsj.62.1291
 2012, DESIDOC

1. INTRODUCTION
Web applications use common concepts: browsers as

client, HTTP as a communication protocol between client
and server, server-side and client-side runtime environments
for executing code and XML for data representation. For
maintaining quality assurance, the organizations use attack
surface metrics to foretell vulnerabilities in the application
prior to deployment1. The users have interest in considering the
security of an application when they have to choose between
the alternative applications. In this paper we address the work
done by us to reduce the attack surface of web application by
OWASP compliance2. We used ‘Heumann, Keller and Turpe’
approach for scoring the attack surface3.

The user interface (UI) for client which is through the web
browser is one reason that is responsible for a web application’s
attack surface4. But the same has to be retained to ensure
usability. Therefore, we considered all the UI components for
attack surface coverage. Thereafter, the attack surface results of
two in-house versions were calculated pre- and post-OWASP
compliance.

1.1 Literature Survey
The increasing use of software system has made it

important to analyze the system carefully for security
and robustness flaws5. The use of web applications by the
organizations to run their application is increasing day by day.
Due to this reason the attack on such systems have become
the main target of attackers and hence results as the largest
source of security vulnerabilities6. Identifying theft, phishing,

malware and other computer crimes are the factors which often
cost consumers and organisations and put a doubt in front of
people to trust online applications7. Even though the proposal
for large security metrics has come up but complete security of
the systems is not guaranteed8.

The attack surface for windows operating system
was introduced by Michael Howard which was liberal and
informal9. Howard, Pincus and Wing even measured the attack
surfaces of seven versions of windows10. The attack surface of
four versions of Linux was calculated by Manadhata11, et al.
The various applications which were smaller is size and some
large enterprise systems that were implemented and coded in
C and Java were measured and calculated by the attack surface
method introduced by Manadhata and Wing9. Ha Thanh Le and
Peter Kok Keong Loh suggested an application vulnerability
description language (AVDL) which is a theoretical approach
and is meant to realize and understand a unified data model. The
AVDL is mainly based on technology which is independent,
vulnerable and is used for analysis of web applications12. Static
analysis vulnerability indicator (SAVI) is a tool based on the
method given by James Walden and Maureen Doyle, which
links up several static-analysis metrics and is used in ranking
web applications vulnerability8.

 Various research analyses and methods had been proposed
theoretically as well as on the basis of tools for attack surface
calculation. Thomas Heumann, Jorg Keller and Sven Turpe
introduced the notion of ‘Quantifying the attack surface of a
web application’3. The method advised and proposed by them
in the paper consisted a multidimensional metric for the attack

Reducing Attack Surface of a Web Application by Open Web Application
Security Project Compliance

Sumit Goswami* #, Nabanita R Krishnan#, Mukesh#, Saurabh Swarnkar!, and Pallavi Mahajan$

#Directorate of Management Information System & Technologies, DRDO, New Delhi
!IAP Company Pvt Ltd, Gurgaon, India

$Beant College of Engineering and Technology, Punjab
*E-mail: sumit_13@yahoo.com

ABSTRACT

The attack surface of a system is the amount of application area that is exposed to the adversaries. The overall
vulnerability can be reduced by reducing the attack surface of a web application. In this paper, we have considered
the web components of two versions of an in-house developed project management web application and the attack
surface has been calculated prior and post open web application security project (OWASP) compliance based on
a security audit to determine and then compare the security of this Project Management Application. OWASP is
an open community to provide free tools and guidelines for application security. It was observed that the attack
surface of the software reduced by 45 per cent once it was made OWASP compliant. The vulnerable surface exposed
by the code even after OWASP compliance was due to the mandatory access points left in the software to ensure
accessibility over a network.

Keywords: Attack surface, DRDO Intranet, project management, open web application security project, security
audit, security compliance

324

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Defence Science Journal

https://core.ac.uk/display/333719953?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

GOSWAMI, et al.: REDUCING ATTACK SURFACE OF A WEB APPLICATION By OWASP COMPLIANCE

325

surface of web applications. They also discussed the rationale
and principle behind the attack surface of web application. A
scalar numeric indicator for easy comparison and a descriptive
and detailed vector representation for deeper analysis were
included in the paper3. Attack surface metric is the estimation
of the amount of functionality and code in a web application
exposed to outside attackers3.

In our paper we used the Thomas Heumann
multidimensional metric for evaluating the attack surface
calculation. The metric considered all the UI components
and calculated the attack surface vector. We need deeper
knowledge of an application13 for parameter consideration; so
we developed two versions of web application having same
functionality and considered their parameters for metrics
calculation and analyzed the results.

1.2 Project Management Application
Management of various projects in an organization is

done with the help of a project management application.
Data repository of projects (PDR) is an in-house developed
web application running on DRDO Intranet. It is having 25
online forms for keeping the details about the projects. User is
authenticated with LDAP running on the Mail Server.

Version 1 of PDR was developed using JSP and ORACLE
10g. It was running on Intranet using TOMCAT web server
4.1 on RedHat Linux 4.5. After deployment of application on
the intranet, third party security audit was done by authorized
Indian computer emergency response team (CERT-In)
security auditor. The summary of the audit report was that
the application was not safe for use due to the following
reasons:
• Inputs and outputs are not properly designed and lack of

good GUI.
• Data integrity does not exist and erroneous data is

allowed
• Common and dangerous web vulnerabilities such as cross

site scripting and SQL injection exist in the application.
• Pro-active, time bound controls using available best

practices should be implemented.
The same process of third party security audit was repeated

with version 2 of PDR. Version 2 was developed using JSP,
Servlet and Oracle 10g. It was also running on Intranet using
TOMCAT web server 7 on Red Hat Linux 4.5. The version
2 followed MVC architecture and was developed according
to the guideline of OWASP top 10 security principal 2007. In
version 2 we had rectified the vulnerabilities issue. Version 2
was audited and certified by the CERT-In security auditor.

2. ATTACK SURFACE AND SYSTEM
RESOURCES
The term attack surface refers to the amount of code,

functionality and interfaces of a system exposed to attackers.
Attack surface can be calculated in terms of system resources.
The system resources are generally the data items, channels
and operating environment5. The following is the usage of
attack surface metrics:
• The programmers use the attack surface metric to improve

the quality of code.

• Testers use this metric to estimate the extent to which
testing has to be done.

• Users use this metric to compare different applications
• Organizations use this metric to make proper investment

on the better application14.

2.1 Working Model of a Web Application
Web application is accessed on the internet or an intranet.

Web application development is the execution of software
on a platform independent browser15 and in developing a
web application certain risks are involved like security and
software bugs16. The main purpose of the attack surface metric
is to estimate the area of web application that is exposed to
the adversaries. Generally the users and attackers can access
the web application through the HTTP interface(s) of the web
server(s)17. The HTTP interface can be defined as one of the
attack surface of the web application. However, there are other
risks also, like cookies etc. but the symptom does not always
lead to the vulnerabilities in an application18.

PDR follows the model view controller (MVC)
architecture. The goal of this architecture is to separate the
application data and the business data from the presentation
data to the user. When web application runs on the browser
then http request is sent to the particular server where web
application is hosted. TCP/IP is responsible for locating and
connecting to the server where the application is hosted. The
accessibility model of the project management web application
is represented in Fig. 1. The web server software, which in
case of PDR application is Apache Tomcat 7.01 continuously,
runs on the server machine. A working MVC model of PDR
version 2 in the execution environment is shown in Fig. 2.

Figure 1. Accessibility model of the project management web
application.

DEF. SCI. J., VOL. 62, NO. 5, SEPTEMBER 2012

326

2.2 Securing Web Application
When an application is reviewed, analysed and audited,

a variety of problems can be unearthed that effect the
application. On arranging these problems in some order, it
will be easy to tackle them. This order of problems can be
reffered as vulnerability catagories13. Some of the vulnerability
catagories are session management, exception management,
input validation, confidentiality and integrity12.

Apart from these vulnerabilty catagories, there are
authentication, authorisation, etc. The security is maintained in
the web based application by taking into account the following
techniques:
• Reduce the attack surface of the application or remove the

unused protocols, functionalities, etc.
• Use least privilege: The security of a system can be

increased by running processes having least privileges or
access right and hence the capability of the attacker to
attack the application can be reduced.

• The developer should not trust the input of the user as the
user is considered primary weapon of the attack.13

• The applications follow MVC model and other like
frameworks which abstract the idea of ‘pages’ on the
server, in the controller, from what is physically presented
to the end-user’s browser in the ‘view’4. So Framework is
preferable appraoch to develop a web application.

• Various researchers proposed frameworks to avoid
vulnerabilities. Teng Lvl and Ping yan’ proposed a
framework based on Access Control Policy Description
Language and Security Policy Description Language to
provide web security19. The XML based solution is also
one approach to provide security.

2.3 Attack Surface Metric
Attack surface is measured in terms of the resources of

an application that are exposed to the adversaries. More the
resources are exposed to the user or attacker, more will be the
attack surface of an application and hence more will be the
insecurity. All the resources are not considered to have equal
effect on the security of an application. The entry points and
exit points of an application are also considered to be the part

of attack surface. The entry point is the point through which
data can be entered in the system and the exit point is the point
through which data can be retrieved from the application20.
The application’s channels are also considered the basis for
the attacks since the attacker can connect to the application
through application’s channels. There are also another basis
for attacks on an application i.e. the attackers can use the
persistent data for attack an application. This persistent data
can be referred as untrusted data items21. The attack surface
of the application can be reduced by reducing the amount of
running code, reducing application access by users/attackers
at entry points, and privilege to limit damage potential22.

3. HANDLINg OF VULNERABILITY AS PER
OWASP 2007 gUIDELINES
Open web application security project (OWASP)2 is to

help developers, designers and organizations get an insight
to most common web application security vulnerabilities. To
improve the software based on the audit report, the entire web
application for PDR was redesigned as per OWASP-2007
guidelines2. The solution implemented by us to prevent these
vulnerabilities is as mentioned:
(a) Cross Site Scripting: We had implemented a code for

prevention of XSS vulnerability23 and functions in
java script to sanitize the unwanted input and output to
execute. Standard input validation mechanism has been
used to validate all input data for length, type, syntax by
designing functions at common JavaScript file with regular
expression. Invalid input like external script, blacklisted
keywords etc. are rejected by using tag lib directors (TLD).
One of the ways to prevent XSS is disabling Javascript
but this approach is not recommended.

(b) SQL Injection Flaws: Connection and query execution has
been established using class. So direct reference to execute
database query on server has been disabled. User supplied
field is strongly-typed or checked for type constraints and
also user input is filtered for escape characters. Query will
be executed on the basis of credential assigned to user
after input validation.

(c) Insecure Direct Object Reference: The application
has been developed using object oriented MVC model
approach with Tag Lib Directors (TLD) or frameworks,
so it eliminates Insecure Direct Object References. No
webpage can be accessed directly from the browser and it
checks for session validation.

(d) Cross Site Request Forgery: One of the popular defense
against CSRF attacks is the use of a secret token with each
request2, 24, 25. In version 2 of PDR we had implemented a
secret token or random unique key, which is generated
with each request. Another way to prevent CSRF is the
use of CSRF Guard25.

(e) Information Leakage and Improper Error Handling: Prop-
er error/exceptions handling has been implemented. Error
messages are customized so that error should not display
content of server or web application.

(f) Broken Authentication and Session Management: We had
implemented a secure mechanism for session management
and avoiding cookies. Session expires after idle time of 30

Figure 2. Working model of web application.

GOSWAMI, et al.: REDUCING ATTACK SURFACE OF A WEB APPLICATION By OWASP COMPLIANCE

327

minutes or once the logout option is clicked in the appli-
cation26.

(g) Failure to Restrict URL Access: No webpage can be
accessed directly from the browser as it checks for session
integrity and user credential before showing the web
contents.

4. QUANTIFICATION OF THE ATTACK
SURFACE
Attack surface vector AS represents the attack surface.

According to the Eucledian norm, the attack surface indicator
ASI is given by ASI = |AS|. Boolean values are the raw
measurements that show the presence or absence of a feature
given by value 1 or 0, enumerations show multiple-choice
measurements, or non-negative integer values as the result of
counting.

The infinite count is mapped to the finite range value 0:10.
The raw value 0 is mapped with 0, raw value 1-2 is mapped
with 1, 3-5 is mapped with 2, 6-9 mapped with 3, 10-14
mapped with 4, 15-20 mapped with 5, 21-27 mapped with 6,
28-35 mapped with 7, 36-44 mapped with 8, 45-54 is mapped
with 9, 55-∞ is mapped with 10. The attack surface AS of a web
application is defined as

AS=ddist;dyn;(security);(input);(active);cookie;role;rights
i.e. the components of attack surface vector are: degree

of distribution ddist, page creation method dyn, security
mechanisms (security), input vectors (input), active content
(active), cookies cookie, user roles and access rights. Round
brackets indicate groups of components.

Maximum value of attack surface vector is given by:
ASmax=34;1;(1;10;10;10;10;10;10;10);(1;1;1;4;1;8);(5;

7;8;6;10);40;10;10
The various components of the attack surface metric have

been shown as parameter family in Table 1. These are the
components that affect the security of a web application and
hence are used to calculate the attack surface metric of the web
application. These components have been taken from OWASP.
The range of these components has been defined in the Table 1.
The various components are described as:

Degree of distribution (ddist) determines the spanning of
the application over multiple domains. More the value of ddist,
more are the chances of attacks.

 Sub domains (sdomwa), domains (domwa) and foreign
domains (domext) are required to calculate the value of
ddist, which is given by: ddist = 1/2.sdom + dom +
2.domext-1.

 For max value we consider sdom = 10 (we consider
raw value 55-∞ for sdom is 10)

Page creation method (• dyn) distinguishes whether the
pages are dynamically created on server side or not.
The value of dyn is 1 if it uses server-side technologies,
otherwise 0.
Security mechanism (security), if present reduces the •
value of attack surface. Transport layer security and input
validation are considered here. Security mechanism com-
prises:
 crypt ∈ {0,1} which shows the presence of TLS;
 cryptomix ∈ {0,10} which shows the mixing of the

contents accessed over the TLS with the contents
accessed over HTTP;

 validate ∈ {0,10}, the value 10 indicates that input
validation is not present or has been broken2;

 buffer errors ∈ {0,10}, the value is 10, if the developer
wants to put the data in the buffer above its threshold
amount, otherwise 0;

 cross-site request forgery (CSRF) ∈ {0,10}, the value
is 10 if there is a CSS attack, otherwise 0;

 cross-site scripting (XSS) ∈ {0,10}, the value is 10
when XSS is present, otherwise 0;

 sql injection ∈ {0,10},the value is 10, when a secu-
rity vulnerability is exploit in database layer of an
application;

 direct object reference ∈ {0,10},the value is 10 if the
internal implementation object is exposed to the user,
otherwise 0.8

Input vectors (input) increase the complexity of an •
application.
 The presence of URL parameters (urlparam), HTML

forms (forms), hidden form fields (hidden) and HTTP
authentication mechanisms auth is indicated by 1.

 File uploads is indicated by files ∈ {0,8} and search
∈ {0,2,4} indicates the presence of search function. If
no site search is present then the value is 0, if locally
implemented mechanism is present then the value is 2
and if internet search engine is used then the value is 8.

Active content (active) has the following set: •
js - ∈ {0,5} for JavaScript,
js- ext ∈ {0,7} if javascript is loaded from a different
site,
sss - ∈ {0,8} if server-side scripting is used,
Ajax - ∈ {0,6} if AJAX is used,
java - ∈ {0,8} if java applets are used,
RIA own - ∈ {0,10} if flash is used.

Cookies (cookie) are a compound parameter. These •
include:
 c ∈ {0,10} represents presence of cookies and
 cext ∈ {0,10} represents the number of foreign cookies.

From these we can calculate the value of cookie which
is given by: cookie= c+3.cext.

Access control is also a compound parameter: Role and •
rights.
 Role ∈ {0,5,10} and represents the user status:

unauthenticated (0), authenticated (5) or root (10);
 Right ∈ {0,5,10}: none (0), limited (5) or root (10)3.

Keeping in view these parameters, all the values of our
web applications i.e. PDR version 1 and version 2 has been
quantified which has been shown into Table 1.

The values assigned in Table 1 shows the maximum risk
that can occur in the two project management applications. Here
the maximum possibility of risk or insecurity has been taken
that can occur in the web applications without considering the
precautions or safety measures taken in the web application.

The minimum and maximum attack surface vector are
given by :

Attack surface vector ASI
Min 0;0;(0;0;0);(0;0;0;0;0;0;0);(0;0;0;0;0;0);0;0;0 0

DEF. SCI. J., VOL. 62, NO. 5, SEPTEMBER 2012

328

Max 34;1;(1;10;10;10;10;10;10;10);(1;1;1;4;1;8);(5;7;8;
6;10);40;10;10 63.37

The parameters of the web application Project Management
Application Version 1 is:

0;1;(1;1;1;10;10;10;10;10;10);(1;1;1;1;0;8);(5;0;8;0;0;0)
;0;5;5

And its ASI (attack surface indicator) is given by:
√12+02+12+102+102+102+102+102)+(12+12+12+12+02+82)

+(52+02+82+02+02+02)+02+52+52

= 26.192
So the insecurity in the web application is 41.33 per cent.
The parameters of the web application Project Management

Application Version 2 is:
0;1;(0;0;0;0;0;0;0;0;0;0;0);(1;1;1;1;0;8);(5;0;8;0;0;0);0;5;5
And its ASI (attack surface indicator) is given by:
√02+12+(02+02+02+02+02+02+02+02)+(12+12+12+12+02+82

)+(52+02+82+02+02+02)+02+52+52

= 14.42
So the insecurity in the web application is 22.76 per cent.

5. RESULTS AND ANALYSIS
From the attack surface metric calculated in this paper, the

security of different web applications, whether built on same
technology or different technology can be compared. The value
of the attack surface metric of project management application
has reduced down from 41.33 per cent calculated for version 1

to a value of 22.76 per cent in version 2 due to incorporation of
the security features in version 2.

It can be observed that the value of attack surface metric
of a web application can be reduced but cannot become 0 per
cent. As a web based application cannot run in isolation without
inputs and outputs from or to users, agents and other applications or
network connectivity, it is prone to attacks through these
exposed surfaces. An application generally has some degree of
cohesion and coupling exposing the gaps. Beside, ease of use
calls for reduction in security and enhanced security reduces
the ease of use. As the application has to be finally used by
a person or a software, accessibilty has to be provided to the
application, leading to an optimisation between accesibility and
security. Even a ‘black body’ application is exposed to attacks
from the data that it receives.

6. CONCLUSIONS
In this paper authors analysed the attack surface metrics

and importance of OWASP compliance in web application
by developing two web applications of similar funtionality,
one followed the OWASP compliance while the other did not.
More the attack surface of the application, more is the effort
the tester has to put on testing and if the attack surface of
the application is less, then the tester has to put less effort
on testing. Similarly, the developer has to improve its quality
of code, if the attack surface of the application is more. In

Parameter family Short Name Parameters Range Version 1
value

Version 2
Value

Degree of
distribution

Ddist Subdomains (sdomwa)
Domains (domwa)
Foreign domains (domext)

0,10
0,10
0,10

0
1
0

0
1
0

Dynamic creation Dyn Dynamic creation {0,1} 1 1
Security features Security TLS (crypt)

Partial TLS (crypto-mix)
Validate (validate)
Buffer Error
Cross site request forgery (CSRF)
Cross site scripting
SQL injection
Direct object reference

{0,1}
{0,10}
{0,10}
{0,10}
{0,10}
{0,10}
{0,10}
{0,10}

1
1
1
10
10
10
10
10

0
0
0
0
0
0
0
0

Input vectors Input URL parameters (urlparam)
Forms (forms)
Hidden fields (hidden)
Authentication methods (auth)
Search ((search)
File upload (files)

{0,1}
{0,1}
{0,1}
{0,1}

{0,2,4}
{0,8}

1
1
1
1
0
8

1
1
1
1
0
8

Active content Active Client-side scripting own (js)
Client-side scripting foreign (jsext)
Server side scripting (sss)
Ajax (ajax)
Java (java)
RIA own (flash)

{0,5}
{0,7}
{0,8}
{0,6}
{0,8}
{0,10}

5
0
8
0
0
0

5
0
8
0
0
0

Cookies Cookies Own cookies (cwa)
Foreign cookies (cext)

0,10
0,10

0
0

0
0

Access control Role rights Role
Privileges

{0,5,10}
{0,5,10}

5
0

5
5

Table 1. Attack Surface parameters of project management application

GOSWAMI, et al.: REDUCING ATTACK SURFACE OF A WEB APPLICATION By OWASP COMPLIANCE

329

continuation of this research, the following is being attempted
for future:

Comparison between different web applications and 	
examining their results.
Calculation and analysis of attack surface using various 	
proposed metrics.
Finding an easier way for evaluating attack surface of any 	
web application without having deeper web application
development knowledge.

REFERENCES
1. Fenton, Norman E. & Neil, Martin. A critique of

software defect prediction models. IEEE Trans.
Softw. Eng. 1999, 25(5), 675-89.

2. OWASP 2007, The ten most critical web application
security vulnerabilities 2007 update, https://www.
owasp.org/images/e/e8/OWASP_Top_10_2007.pdf
(accessed on 16 August 2012)

3. Heumann, Thomas; Türpe, Sven & Keller, Jörg.
Quantifying the attack surface of a web application.
In Proceedings of Sicherheit’2010, July 2011, LNI,
170, pp.305-316,

4. Measuring web application security coverage. http://
fanaticmedia.com/infosecurity/archive/April 11/Measuring
WebAppSec Coverage final.htm (Accessed on April
2011)

5. scitz, Justin & Niem, Joey. Analyzing attack surface
code coverage. 2007, SANS Institute , http://www.sans.
org/reading_room/whitepapers/application/analyzing-
attack-surface-code-coverage_1996, (Accessed on 16
August 2012)

6. yonghee, Shin; Andrew, Meneely; Laurie ,Williams
and Jason, A. Osborne. 2011. Evaluating Complexity,
Code Churn, and Developer Activity Metrics as
Indicators of Software Vulnerabilities. IEEE Trans.
Softw. Eng. 2011, 37(6), 772-87.

7. Walden, J. & Doyle, M. SAVI: Static-analysis
vulnerability indicator. IEEE Security Privacy, 2012,
10(3), 32-39.

8. Manadhata, P.K. & Wing, J.M. An Attack Surface
Metric. IEEE Trans. Software Eng., 2011, 37(3),
371-86.

9. Howard, M. Fending off future attacks by reducing
attack surface. http://msdn.microsoft.com/library/default.
asp? url=/library/en-us/dncode/html/secure02132003.
asp, 2003. (Accessed on 16 August 2012)

10. Howard, M.; Pincus, J. & Wing, J. Measuring relative
attack surfaces. In Proceedings of Workshop on
Advanced Developments in Software and Systems
Security, 2003

11. Manadhata, Pratyusa K., Tan Kymie M.C., Maxion, Roy
A. & Wing Jeannette M. An approach to measuring
a system’s attack surface. Aug-2007, http://reports-
archive.adm.cs.cmu.edu/anon/2007/CMU-CS-07-146.
pdf (Accessed on August 2012)

12. Ha Thanh, Le & Loh, P.K.K. Evaluating AVDL
descriptions for web application vulnerability analysis.

In IEEE International Conference on Intelligence and
Security Informatics, ISI 2008. 17-20 June 2008.
pp.279-281.

13. Web application security fundamentals. http://msdn.
microsoft.com/en-us/library/ff648636.aspx (Accessed
on September 2011).

14. Lee, Vincent C.S. & Shao, Linyi. Estimating potential
IT security losses: An alternative quantitative approach.
IEEE Security Privacy, 2011, 4(6), 44-52.

15. Web application development, www.icreonglobal.
com/web-application-development.html, (Accessed
on July 2011).

16. Manadhata, P. & Wing, J. An attack surface metric,
in First Workshop on Security Metrics, Vancouver,
BC, August 2011.

17. About internet application and web application server,
http://livedocs.adobe.com/ coldfusion8/htmldocs/help.
html?content=introducing-cf-2.html. (Accessed in
September 2011).

18. Attacking web applications at the source. http://
networksecurity.org.ua/0596007949/networkst-chp-
6-sect-1.html. (Accessed on July 2011).

19. Lv, Teng & yan, Ping. A web security solution based
on XML technology. In International Conference on
Communication Technology, 2006. ICCT ‘06, 27-30
Nov. 2006, pp.1-4.

20. Manadhata, P.K.; Karabulut, y. & Wing, J.M. Report:
Measuring the attack surfaces of enterprise software.
In ESSoS 09: Proceedings of the 1st International
Symposium on Engineering Secure Software and
Systems (Berlin, Heidelberg, 2009), Springer-Verlag,
pp. 91–100, September 2011.

21. Manadhata , Pratyusa; Wing , Jeannette; Flynn, Mark
& McQueen, Miles. Measuring the attack surfaces of
two FTP daemons. In Proceedings of the 2nd ACM
workshop on Quality of protection, 2006, Virginia,
USA, October 2011.

22. Mitigate Security risks by minimizing the code you
expose to untrusted users. msdn.microsoft.com/en-us/
magazine/cc163882.aspx, August 2011.

23. Shar, Lwin Khin & Tan, Hee Beng Kuan. Defending
against cross-site scripting attacks. Computer, 2012,
45(3), 55-62.

24. Siddiqui, M.S. & Verma, D. Cross site request
forgery: A common web application weakness. In
IEEE 3rd International Conference on Communication
Software and Networks (ICCSN), 2011 May 2011,
pp. 538-43.

25. Boyan, Chen; Zavarsky, P.; Ruhl, R. & Lindskog,
D. A study of the effectiveness of CSRF guard. In
IEEE 3rd international conference on social computing
(socialcom), 9-11 Oct. 2011. pp.1269-272.

26. Munakata, S. & Hiji, M. A session management
method to improve web applications usability on
mobile network. In IEEE Region 10 Conference,
TENCON 2006. 14-17 Nov. 2006. pp.1-4.

DEF. SCI. J., VOL. 62, NO. 5, SEPTEMBER 2012

330

Contributors

Mr Sumit goswami obtained his MTech
(Comp. Sci. & Engg.) from IIT Kharagpur.
Presently working as Scientist ‘E’ at DRDO,
New Delhi. His areas of interest include
network centric operations, mobile ad hoc
and sensor networks, web-hosting security,
text mining and machine learning. He has
published 53 papers/chapters in various
journals, books, data competitions and

conferences.

Ms Nabanita Radhakrishnan obtained
her BTech (Elect. & Comm. Engg.) from
Guindy Engineering College, Chennai and
M Tech (Electrical Engg.) from IIT Madras.
Presently working as Director, Management
Information System and Technologies
(MIST) at DRDO Hqrs, New Delhi. In
this capacity she has conceptualized and
commissioned an upgraded DRDO Intranet

with a multi-tier security infrastructure and a number of software
applications. She is a Member of Aeronautical Society of India
and Instrument Society of India.

Mr Mukesh obtained his MCA from
IGNOU, Delhi and MSc (Computer Science)
from MDU Rohtak. Presently working
as Senior Technical Assistant at DRDO
HQr. His research area include: Software
development, website designing and hosting,
Linux, Windows, MySQL, JAVA, JSP,
ORACLE, Crystal Report, Visual Basic,
and PHP.

Mr Saurabh Swarnkar obtained his BE
(Comp.Sci. & Engg.) from Institute of
Information Technology and Management,
Gwalior, and PGDAC from CDAC- Advance
Computing Training School, Bengaluru.
Presently working as a Programmer in
IAP Company Ltd, Gurgaon. His research
area include: Developing web application,
web designing and hosting.

Ms Pallavi Mahajan is pursuing BTech
(Computer Science and Engineering)
from Beant College of Engineering and
Technology, Gurdaspur, Punjab. She is
presently doing 6 months internship from
DRDO, New Delhi.

