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1. INTRODUCTION
A robot is autonomous when it is able to move purposefully

with no intervention from a human user in an un-engineered
real-world environment. The development of techniques for
autonomous navigation in a real-world environment constitutes
one of the major trends in the current research on robotics.
By incorporating multi-agent optimal path planning3,9,10 and
support vector machine (SVM) learning, special efficiency
for robotic navigation can be achieved. One of the important
aspects, that are still deemed important to consider in mobile
robots, is obstacle avoidance. A pertinent problem in autonomous
navigation is the need to cope with a large amount of uncertainty
that is inherent of natural environments, and to respond
reactively to unforeseen events as soon as these are perceived.
Fuzzy logic with support vector machine is an adequate
method to obtain certain and finite data in an optimal manner.
However, this approach proves that it is enough for areas
of highest danger coefficients to cause the robot to change
direction, which consequently reduces the number of fuzzy
rules that control the robot motion9,10.

An SVM learns the decision surface from two distinct
classes of the input points7,8. In many applications, each
input point may not be fully assigned to one of these two
classes. In this paper, a fuzzy membership has been applied
to each input point and reformulated the SVMs such that
different input points can make different contributions to
the learning of decision surface.

2. SYSTEM  STRUCTURE
Figure 1 shows the integration of a microcontroller

(89C52) with the features of the robot. This architecture
uses five sensors out of which the three proximity sensors
are used to detect the obstacles, one to detect the colour
and the last one to detect the pit in the navigation path2,6.
Two stepper motors were used to navigate the robot which
will be simulated by the stepper motor driver agent.

3. FUZZY  LOGIC  CONTROLLER
3.1 Decision-making System

For decision-making, they can use either type 1 fuzzy
or type 2 fuzzy as per the requirement4,5. The four principal
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Figure 1. Integration of a microcontroller.
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components of type 1 fuzzy decision-making systems are:
a) The fuzzification interface: This determines the input

and output variables and maps these into linguistic
variables that are to be displayed on a universe of
discourse.

b) The knowledge base: This is a part of expert systems
that contains the domain knowledge. Membership
functions and control rules are decided by the experts
at this point, based on their knowledge of the system.

c) The decision-making logic: This treats a fuzzy set as
a fuzzy proposition. One fuzzy proposition can imply
another, and two or more fuzzy propositions can be
associated by a Boolean connectivity relation to infer
a final fuzzy proposition.

d) The defuzzification interface converts the fuzzy output
into a crisp value.
 A type 1 fuzzy set has a grade of membership that

is crisp, whereas a type 2 fuzzy set has grade of membership
that are fuzzy, so it is called fuzzy-fuzzy set. As the type 1
gives only sub-optimal solution, type 2 fuzzy is good in
dealing with uncertainty.

4. SUPPORT VECTOR MACHINES
SVM is a machine learning technique developed on

statistical learning theory. For machine learning tasks involving
pattern classification, multi-sensors information fusion,
nonlinear system control, etc, SVMs have become an
increasingly popular tool. SVMs are a set of related supervised
learning methods used for classification and regression.
Viewing input data as two sets of vectors in an n-dimensional
space, an SVM will construct a separating hyperplane in
that space, which maximises the margin between the two
data sets. To calculate the margin, two parallel hyperplanes
are constructed, one on each side of the separating hyperplane,
which are pushed up against the two data sets. Intuitively,
a good separation is achieved by the hyperplane that has
the largest distance to the neighbouring data points of
both classes, since in general, the larger the margin, the
better the generalisation error of the classifier8,11.

4.1 Multi-class Support Vector Machine
For the conventional SVM, an n class problem is

converted into n two-class problem and for the i th two-
class problem, class i is separated from the remaining
class with decision function that classifies class i and
remaining classes be
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4.2 Fuzzy Support Vector Machine
An SVM learns the decision surface from two distinct

classes of the input points. In many applications, each
input point may not be fully assigned to one of these two
classes. In this paper, a fuzzy membership was applied to
each input point and reformulated the SVMs such that
different input points could make different contributions
to the learning of decision surface.

Class i is defined as a one-dimensional membership
functions m

ii
(x) on the direction orthogonal to the optimal

separating hyperplanes D
j
(x) = 0 as given below
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Thus, the maximum degree of membership is achieved
among  m

k
(x), k = i1,�il (Fig. 2)7,8.
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Figure 2. Contour lines of the class i membership function.

5. IMPLEMENTATION DETAILS
Architecture: The robotic system architecture used

in this paper consists of two layers. The hardware layer
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is a collection of modules communicating with the robot�s
hardware devices such as infrared sensors and motors.
One module can be shared by two or more agents, which
reduces redundancy in coding. The development tools
used is C language and Keil software, which is a part of
Microsoft turbo C and 89C52 IC.

5.1 Multi-agent System
Figure 3 depicts the simplified diagram representing

the multi-agent system using a interface agent. The agent
basically interacts with the other components of the system
by manipulating information on the interface agent. The
information on the interface agent may represent facts,
assumptions, and deductions made by the system during
the course of solving the problem. An agent is a partial
problem solver which may employ a different problem-

the turn-angle fuzzy set has been uniquely defined. The
angle lies between �30°and 30° which acts as a default.
The total angle of 60° is divided into six amplitudes represented
by six member functions, and each of which is associated
with the following linguistic terms: positive-left (PL), negative-
left (NL), positive-centre (PC), negative-centre (NC), positive-
right (PR), and negative-right (NR), as shown in Fig. 4.

solving strategy and contribute to the solution by viewing
the information on the interface agent. The system has
four independent agents: fuzzy collision detector, pit detection
agent, colour sensor, and drive controller. Arrows in Fig.
3 represent the flow of information. The diagram shows
that all four agents are allowed to read/ write information
on the interface agent. Each of the four agents basically
executes their tasks independently using the information
on the interface agent and posts any result back to the
interface agent4.

5.2 Intelligent Agents
5.2.1 Fuzzy SVM-based Collision Avoidance

The agent called the fuzzy collision detector1,3  is a
fuzzy SVM-based collision avoidance controller. The fuzzy
logic controller has one input fuzzy set for the sensor
value and three output fuzzy sets for linear distance, velocity,
and turn-angle. Each set is defined by one or more membership
functions that map numeric values onto linguistic terms;
each input point may not be fully assigned to one of these
two classes. In this paper, the authors have applied a
fuzzy membership to each input point and reformulated
the SVMs such that different input points can make different
contributions to the learning of decision surface.

The fuzzy-based agent was fed with sensor values
as an input, acquired from a set of infrared proximity detectors.
The values were fuzzified with designated linguistic terms
(near, medium, and far). Among three output fuzzy sets,

5.2.2  Pit Detection Sensor
An apparatus and method for uniquely detecting pits

on a smooth surface by irradiating an area of the surface;
separately sensing radiation scattered from the surface in
the near-specular region indicative of a pit and in the far-
specular region indicative of a flaw and producing signals
representative thereof normalising the near-specular signal
with respect to the far-specular signal to indicate a pit5.

5.2.3 Colour Sensor
Colour detection: Identifying the presence or absence

of a specific color;
Colour measurement: Identifying a colour based on

its red, green, and blue components;
Colour control: Using the colour sensor as part of

a closed-loop feedback system to produce and maintain
a required colour.

5.2.4 Drive Controller Agent
The agent primarily holds responsibility for the robot�s

actuator via the device driver that controls motors through
the stepper control module. The agent is made of modules
responsible for the motor initialisation and termination,
the communication between layers, and the manoeuvring
of the robot5.

5.2.5 Interface Agent
The interface agent operates as a central repository

for all shared information and a communication medium
for all the agents.

5.3 Multi-agent Optimal Path Planning
Problems of multi-agent robot systems control have

got significance4. Each multi-agent robot system has some
transport subsystem, which consists of several mobile
robots. The authors have developed a method based on
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Figure 4. Turn angle fuzzy set.
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graph optimisation algorithms to control such mobile robot
group. Novelty of the developed multi-agent path planning
algorithm6,2 is as follows:
� Mobile robots are considered as dynamic obstacles.
� Graph representation of common environment mode

is used for path planning.
� Each edge of the graph has two weights, distance and

motion time (speed).
� Weights of edges can be modified during path planning.
� The quickest path is planned (time optimisation).
� Expert rules for speed and path correction are synthesised

to provide collision avoidance.
These algorithms provide global optimality. Multi-

agent path planning algorithm also provides robots collision
avoidance. As the authors have two weights for graph
such as distance and time required to travel, they can use
AO* algorithm to find shortest path9,10. They need to update
the weight of graph during particular interval. Ant colony
optimisation also can be used to control a group of robots.

6. EXPERIMENTATION AND RESULTS
The navigation technique described was implemented

in C and interfaced with the microcontroller using Keil.
For the test, the start point, the target point and velocity
of the point robot were specified. It was repeated for
different navigation tests in real time. Figure 5 shows an
example of robot navigation in cluttered environments.
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7. CONCLUSIONS
The multi-agent optimal path planning approach provides

an extra level intelligence. System can be enhanced with
incremental FSVM11 with Kernel will give better  result
in group robots. This paper deals with the real-time navigation
of a mobile robot in a totally unknown environment. Fuzzy
SVM  is the best tool to incorporate human procedural
knowledge into a robot. Type 2 fuzzy gives a better approach
to solve uncertainty. Based on fuzzy logic and support
vector machine, a collision-free technique has been proposed
that partitions a robot space into eighteen zones of danger,
where just four of them trigger the fuzzy rules. This proposal
has been validated in different unknown environments
cluttered with static and dynamic obstacles and has proven
to give the robot, a means of safely reaching the target.
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