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ABSTRACT

Failure of sensors used to provide a feedback signal in control system can cause serious deterioration
in performance of system, and even instability may be observed. Based on knowledge of aircraft engine
systems, the main cause of fault in such air-breathing combustion systems (ACS) with no rotating parts is
due to the pressure sensors. Fast online detection of faults before the error grows very large and accommodation
is critical to the success of the mission. However, at the same time, it is necessary to avoid false alarms. Hence,
early detection of small magnitude faults with acceptable reliability is very challenging, especially in the
presence of sensor noise, unknown engine-to-engine variation and deterioration and modeling uncertainty. This
paper discusses the novel fault detection and accommodation (FDA) algorithm based on analytical redundancy
based technique for ACS.

Keywords: Extended K alman filter, analytical redundancy, air-breathing combustion systems, ACS, fault detection
and accommodation, FDA

NOMENCLATURE

Ath Nozzle throat area

a Angle of attack

B Backpressure factor

R Universal gas constant

ijô Time constant between station i and j

fm& Fuel flow rate

P
1

Free stream pressure

P
4

Static pressure at station 4

P
4_margin

Backpressure margin

P
5

Static pressure at station 5

T
05

Total temperature at station 5

P
7

Static pressure at station 7

T
07

Total temperature at station 7

P
07

Total pressure at station 7

4m& Fuel flow rate at station 4

5m& Fuel flow rate at station 5

7m& Fuel flow rate at station 7

8m& Fuel flow rate at station 8
3

4
2

4
1

4 P,P,P ��� P
4
 measured by three pressure sensors

portP Pressure at FADS orifice port

Q
k
, 

k
Covariance matrices

FAR Fuel to air ratio

W
i

Weightage factor for ith   EKF channel

modeled8m& Modelled value of 8m&  (kg/s)

q Dynamic pressure

v
k

Unknown measurement noise

w
k

Unknown process noise

x
k

State at time k

ss
Steady state value of the variable

x� Estimated value of the variable x

1. INTRODUCTION
In recent work1, a controller for an air-breathing combustion

systems (ACS) has designed. The controller�s main objective
is to regulate the thrust so that the desired acceleration
is obtained at all flight conditions while maintaining supercritical
intake operation. The performance of the controller is tested
by simulating a nominal flight trajectory involving an accelerated
climb from 2.1 Mach at 1.4 km altitude to 3.0 Mach at 14.5
km altitude, followed by cruise at that condition. A unique
feature of this controller is that it only requires measurement
of a single variable, internal to the engine, i.e., the intake
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backpressure. Accurate, reliable and fail-safe measurement
of backpressure is a key to this controller design2. A fault
detection and accommodation (FDA) algorithm is required
for this purpose.

The FDA algorithm reported here employs an intelligent
analytical redundancy-based FDA algorithm working over
triplex redundant backpressure sensor hardware.

2. CONTROLLER DESIGN
2.1 Model and Controller Description

A schematic of the ACS with station numbers marked
is shown in Fig.1.

area, with P
4
 margin as the commanded variable, are designed

at several operating points on the acceleration and cruise
segments of the flight. A separate PID controller is designed
for the fuel supply system. Various components of the
controller are individually tested extensively. Finally, a
composite closed-loop simulation is successfully carried
out taking the system through the acceleration phase to
the desired cruise condition with a smooth switching
between the acceleration and cruise segments.

The next stage of the research consisted of
implementation of an appropriate FDA algorithm.

2.2 Analytical Redundancy: Survey
Numerous approaches to FDA in dynamical systems

have been reported in the literature. Generally, FDA techniques
are classified into three categories based on:
(i) hardware redundancy,
(ii) analytical redundancy, and
(iii) knowledge-based redundancy.

The present work, concentrates on analytical redundancy
management. However, analytical redundancy has not been
used as a substitute for hardware redundancy; instead, it
has been used to provide a measure of intelligence to an
FDA algorithm that uses triplex hardware redundancy for
the P

4
 sensors.

The field of model-based FDA5-11 for linear systems
is well-studied. Traditionally, analytical redundancy based
methods12 have been used to provide an indirect measurement
of the variable of interest. However, when variables measured
by different sensors are related by physical equations, the
principle of analytical redundancy can also be used as a
diagnostic tool to test whether the sensor outputs satisfy
these known relationships. A set of sensors is healthy if an

Figure 1. Schematic of air-breathing combustion system.

For simulation, the combustion system is modelled as
three sub-systems: Intake, combustor, and nozzle (a separate
fuel supply system is also modelled). These sub-systems
are linked to produce a global model that correctly represents
the physics of the combustion system. A detailed description
of the model development and implementation is provided
by O�Brian3, et al. and Gupta4, et al.

Only intake backpressure, P
4
, is assumed to be measurable.

The controller design of the ACS is shown in Fig. 2.
Separate PID controllers for fuel flow rate and throat

Figure 2. Model-based FDA algorithm for P
4
 sensor.
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equation which relates them is verified, and at least one sensor
of the set has failed if the relationship is violated13-15.

Analytical redundancy is an attractive option for high-
performance aerospace vehicles that need to operate safely,
reliably and with a high-level of mission success, even
in the presence of faults. Weight and volume considerations
often make it difficult to justify redundant sensors and
actuators in aerospace applications. Analytical redundancy
management holds the promise of reduction in price,
weight and power consumption when implemented onboard.
For air-breathing engines, multiple redundancies are harder
to achieve due to lack of operating space, cost, engineering
complexity and added maintenance requirements. This
motivated to propose the use of an analytical redundancy
algorithm as a higher-level functionality, on top of the
hardware redundancy, to provide intelligence to the FDA
algorithm and also improve its reliability.

2.3 Overview of FDA for Backpressure Sensor
First step in development of an observer-based FDA

algorithm is a realistic representation of the physical
system, which includes system dynamics, faults and all
kinds of possible unknown inputs. Residual generation
using observer-based method is presented here.

Figure 2 (lower part) shows model-based (analytical-
redundancy-based) FDA for P

4
 sensors. Triplex redundant

static pressure sensor using Kulite pressure sensor (located
at axial stations between 4 and 5 in intake duct/combustor
entry, well before fuel injection station 5) can be seen.
Calibration is necessary as pressure falls in duct due to
boundary layer growth. Modelling of various possible
sensor faults and noise is included, and calibration for
the sensor location is done based on CFD data.

The intake backpressure, P
4
 value is measured by a

triplex system. These 3 estimates are termed as 3
4

2
4

1
4 P,P,P ��� .

These measured P
4
 values may not be accurate owing to

various sensor faults. In order to detect, isolate, and
accommodate the faults (if any), analytical redundancy-
based FDA algorithm is implemented. The P

4 
measurement

from each sensor is fed to separate Extended Kalman
Filter (EKF) (forming an EKF bank). The EKF removes
the disturbances from the measurements and output of
EKF consists of the clean P

4
 estimates along with P

5
,

T
05

, P
7
, T

07
, P

07
, 5m&  and 7m& . The EKF bank then generates

the residual vector which is used by the residual processor
for determination of accurate value of P

4
 to be fed back

to the system. Review of the EKF theory and design as
implemented for ACS is presented in Section 4. To
accommodate the faults, adaptive weightage-based fault
accommodation algorithm is developed. The underlining
assumption to this development is that no more than
one sensor fails at any given time.

3. DESIGN  AND  IMPLEMENTATION  OF
EXTENDED  KALMAN  FILTER
For estimating correct system states and filtering

the noise and disturbances present in the P
4
 measurements,

the EKF16 is applied. To estimate the states, EKF needs
two independent measurements. In this case, one measurement
is obtained by the actual P

4
 sensor and the second independent

measurement is obtained from the modeled T
07 

(discussed
in Section 4). These two measurements are fed to the
Kalman Filter (KF). Thus, there are three KFs in all, one
for each of the three backpressure sensors. The continuous
time version of KF is used. Since the system is nonlinear,
the  EKF, which uses the linearized Jacobian matrices at
specific operating conditions along the trajectory, is
implemented. The Jacobian matrices are obtained by the
small perturbation theory.

3.1 Discrete-time Kalman Filter
The KF model assumes the true state17 at time k is

evolved from the state at (k�1):

kkk1kkk wUBXFX ++= - (1)

where, F
k
 is the state transition model which is applied

to the previous state x
k-1

; B
k
 is the control-input model

which is applied to the control vector u
k
; w

k
 is the unknown

process noise which is assumed to be drawn from a zero
mean multivariate normal distribution with process noise
covariance Q

k
.

)
k

Q(0,N
k

w » (2)

wk acts as a disturbance to the plant. It represents
effects of unmodelled high-frequency plant dynamics that
is modelled as zero-mean, white Gaussian noise. At time
k, an observation (or measurement) z

k
 of the true state x

k
 is

made according to

kkkk VXHZ += (3)

where, H
k
 is the nonlinear observation model which maps

the true state space into the observed space and v
k
 is the

observation noise which is assumed to be zero-mean Gaussian
white noise with covariance R

k
.

   )
k

R(0,N
k

v »  (4)

The initial state, and the noise vectors at each step
{x

0
, w

1
, ..., w

k
, v

1
 ... v

k
} are all assumed to be mutually

independent.
In KF, only the estimated state from the previous

time-step and the current measurement are needed to
compute the estimate for the current state. No history
of observations and/or estimates is required. The state of
the filter is represented by the following two variables:

(i) kkX� , the estimate of the state at time k given

observations up to and including time k;

(ii) kkP , the error covariance matrix (a measure of the

estimated accuracy of the state estimate).
The discrete KF has two distinct phases: Predict and

Update. The predict phase uses the state estimate from
the previous time-step to produce an estimate of the
state at the current time-step. In the update phase, measurement
information at the current time-step is used to refine this
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prediction to arrive at a new, (hopefully) more accurate
state estimate, again for the current time-step.

3.2 State Estimation Equations for Discrete Kalman
Filter
Optimal state estimate x�  and the state covariance

matrix P are propagated from measurement time (k-1) to
measurement time (k), based on the previous value, the
system dynamics and the previous control input and error
of actual system. This is done by numerical integration
of the following equations:

Predicted state and estimate covariance:

1k1k1k1kk1kk uBXFX ----- += ��

1k
T

k1k1kk1kk QFPFP ----
+= (5)

where, F
k
 is the state transition model which is applied

to the previous state X
k-1

Update Step:
Innovation or measurement residual

)X(HZY 1kkkkk -
-= �~

Innovation (or residual) covariance

k
T
k1kkkk RHPHS +=

-

Optimal Kalman gain
1

k
T
k1kkk SHPK -

-
=

Updated state estimate

kk1kkkk
YKXX
~�� +=

-

Updated estimate covariance

1kkkkkk )PHK(IP
-

-= (6)

Values of F, H, Q and R matrices are application
dependent.

The Section 3.3 discusses the KF applied to the continuous
time systems. The equations are obtained from the original
KF equations for discrete KF.

3.3 Continuous Time Kalman Filter
The Kalman-Bucy filter18, 19 is a continuous time

version of the KF. It is based on the state space model:

v(t)H(t)x(t)Z(t)

w(t)F(t)x(t)x(t)
dt

d

+=

+=
(7)

where, the covariances of the noise terms w(t) and v(t)
are given by Q(t) and R(t), respectively. The filter consists
of two differential equations, one for the state estimate
and one for the covariance:

   (t)xH(t)(K(t)(z(t)(t)xF(t)(t)x
dt

d
��� -+=

   (t)K(t)R(t)KQ(t)(t)P(t)FF(t)P(t)P(t)
dt

d TT -++=       (8)

where, the Kalman gain is given by

(t)P(t)H(t)RK(t) 1-=              (9)

Note that in this expression for K(t), the covariance
of the observation noise R(t) represents at the same time
the covariance of the prediction error (or innovation)

(t)xH(t)(z(t)(t)y �~ -= ; these covariances are equal only in
the case of continuous time. The distinction between the
prediction and update steps of discrete-time Kalman filtering
does not exist in continuous time. The second differential
equation, for the covariance, is an example of a Riccati
equation.

3.4 Non-Linear System Problems: Extended
Kalman Filter
The basic KF is limited to a linear assumption. However,

most non-trivial systems are nonlinear. The nonlinearity can
be associated either with the process model or with the
observation model or with both. A KF that linearises about
the current mean and covariance is referred to as an EKF.
EKF linearises all nonlinear models so that the traditional
linear Kalman filter can be applied. An EKF design has to
be carried out to estimate states, while it should filter sensor
noise and modelled measurement parameters.

3.4.1 Extended Kalman Filter Formulation
In the extended KF, the state transition and observation

models need not be linear functions of the state but may
instead be (differentiable) functions.

For discrete systems:

     
kkk

kk1,kk

v)h(XZ

w)uf(XX

+=

+= -

                     (10)

For continuous systems:

       
v(t)h(x(t))z(t)

w(t)u(t))f(x(t),x(t)
dt

d

+=

+=
                      (11)

The function, f, can be used to compute the predicted
state from the previous estimate and similarly the function,
h, can be used to compute the predicted measurement
from the predicted state. However, f and h cannot be
applied to the covariance directly. Instead a matrix of
partial derivatives (the Jacobian) is computed. At each
time-step the Jacobian is evaluated with current predicted
states. These matrices can be used in the KF equations.
This process essentially linearises the nonlinear function
around the current estimate.

The ACS system under consideration is a nonlinear
system, as can be seen from the dynamics equations presented
in the following section. Hence, the EKF is implemented
to estimate the states of the system.

3.4.2   Dynamics of the Air-breathing Combustion
Systems

The dynamics of the system is represented by the
relationships shown:
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where,
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+
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The above equations for the ACS dynamics are nonlinear;
hence the EKF is employed. The EKF design as applied
to ACS is discussed in details.

3.4.3 Extended Kalman Filter as Applied to Air-
Breathing Combustion Systems

The ACS system is modelled as a continuous time
system, and hence, the continuous version of KF (Kalman-
Bucy filter) discussed earlier is applied to the ACS model.
The corresponding Eqns (11) are used with the following:

X(t) = state vector = [P
4
 P

5
 T

05
 P

7
 P

07
 T

07
 5m&

7m& ]
U(t)  = control input = [ fm& , A

th
]

Z
 
(t) = measured output = [P

4
 ]

Modelled output = [P
07

, T
07

]
v

 
(t)  = observation noise

Similar to the KF theory explained earlier, signal w(t)
is an unknown process noise that acts as a disturbance to
the plant. It represents effects of unmodelled high-frequency
plant dynamics that is modelled as zero-mean, Gaussian
white noise. Process noise covariance matrix Q(t) (referred
to as Q) describing the random process is given as:

 Q)N(0,~w(t) (14)

v(t) is the observation noise which is assumed to be
zero mean Gaussian white noise with covariance R(t). v(t)
should be selected such that all failure modes are accounted
in it. Measurement noise covariance matrix R(t) (referred
to as R) is given by

R)N(0,~v(t) (15)

By applying the small disturbance theory, the dynamic
relationships for ACS in Eqn (12) can be linearised. Here
each variable is assumed to be composed of two parts:
a constant component associated with the linear part and
the perturbation associated with nonlinear model. The state
transition and observation matrices are defined to be the
following Jacobians:

x

u(t))f(x(t),

x

f
F

t1t1t u,X ¶

¶
=

¶

¶
=

--
�

1ttX
x

h
H

-
¶

¶
=

�
(16)

For simplicity in the notation the time-step subscript
with the Jacobians F, H are not used even though these
are in fact different in every cycle.

(t)X c  of ÄX(t)  can be linearised about the central

estimate as:

(t))x(x(t)
x

)u(x,f
(t))u(t),X(f1)X(t c

(t)xx

00
0c0

��
�

-
¶

¶
+@+

=

(17)

where X
c
(t) is central estimated value about which perturbation

ÄX(t)  is added. As in EKF, replacing and rewriting above
Eqn (17), one has

(t))x(t))(x(t)xF((t))u(t),X(f1)X(t cc0c0 ��� -+@+ (18)

3.4.4   Linearising Air-Breathing Combustion Systems
dynamics for Extended Kalman Filter
Implementation

The nonlinear plant dynamics is complex and it consumes
significant resources during simulations. Since, the FDA
algorithm is to be implemented in real-time, it should be
based on a simpler linear model that can be processed
much faster. Hence, a family of linearised model of the
nonlinear model at various operating conditions was developed,
which is suitably fast and provides close results to the
nonlinear plant when properly scheduled with a suitable
parameter (Mach number in climb, and angle of attack in
cruise). This linear model of the plant estimates the states
using the state space model as:

dx/dt = Ax + Bu
y = Cx + Du (19)
Since the first-order partial derivatives (Jacobians)

are used instead of the first-order differential equations,
the above model can be rewritten as

dx/dt = Amat * x(t) + Bmat * u(t) (20)
y = Cmat * x(t) + Dmat * u(t)

where, Amat, Bmat, Cmat, Dmat are the Jacobian matrices
corresponding to the given operating conditions.

The exact Jacobians at a number of specific operating
conditions were obtained and for intermediate operating
conditions the corresponding Jacobians by linear interpolation
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were obtained.  Let us assume that our process has a state
vector x = [P

4
, P

5
, T

05
, P

7
, P

07
, T

07, 5m& , 7m& ], but that the
process is governed by the nonlinear stochastic Eqn:

v(t)h(x(t))y(t)

w(t)u(t))f(x(t),x(t)
dt

d

+=

+=
(21)

where, the random variables w(t) and v(t) again represent
the process and measurement noise. Please note that w(t)
and v(t) are inherently present in the system. Using the
linear model of plant for state estimation, the above Eqns
can be modified as:

v(t)Dmat.u(t)Cmat.x(t)v(t)h(x(t))y(t)

w(t)]Bmat.u(t).x(t)[Amatw(t)u(t))f(x(t),x(t)
dt

d

++=+=

++=+=

  (22)

To estimate the process with nonlinear difference and
measurement relationships, new governing equations that
linearize the estimate are written:

The state transition matrix F is given by

x

u(t))F(x(t),

x

F
f

t1t1t u,X ¶

¶
=

¶

¶
=

--
�

                         (23)

x
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x

u(t))F(x(t),

x
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=

¶

¶
=
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       (24)

The observation matrix H is given by:

H=
1ttXx

H
Hmat

-
¶

¶
=

�

= ú
û

ù
ê
ë

é

00100000

00000001
         (25)

The determination or selection of the Q and R matrices
is dependent on the application requirements, operating
conditions, and trustworthiness of measurements.

4. RESIDUAL  GENERATION  AND  FAULT

ACCOMMODATION

4.1 T
07

 Modelling

The T
07

 (total temperature at the end of combustor
exit) is used as a second independent measurement for
the EKF implementation. While P

4
 is obtained from actual

sensor measurement, T
07

 is read from a look-up table
using the fuel-to-air (FAR), ratio as a parameter for different
flight conditions.

The nonlinear model of ACS is simulated for different
flight conditions with varying FAR, and the T

07
 and FAR

values for each operating condition are tabulated. Figure 3
shows the 2-D table in graphical form.

Two different sets of T
07

 look-up tables were generated.
The first was looked up during the acceleration phase,
and makes use of the Mach number and FAR as the two
look-up parameters. During cruise phase the second set
of tables, which makes use of angle of attack and FAR as
the two lookup-parameters was used. During the switching

from acceleration to cruise, a switching function was used
which blends the acceleration and cruise values linearly.

4.2 Residual Processor

Using the estimated values of the modelled T
07 

obtained
from the FAR-to-T

07 
static map and P

07
 from each EKF,

along with the known bias setting of the nozzle throat
area, it is possible to get an estimate of the choking mass
flow rate at the nozzle throat. Thus, three estimated values
of nozzle mass flow rate are available from the bank of
three EKFs. It is also possible to independently estimate
the nozzle mass flow rate from measurements of the free
stream quantities, such as static pressure, total pressure,
and static temperature, by the air data system (ADS).
Finding the difference between each EKF-estimated nozzle
mass flow rate and the ADS-estimated mass flow rate
gives three values of error, also called residue or residual.
In the absence of fault in a sensor, the residue generated
by it is expected to be very small, ideally zero, whereas
in the presence of a fault, the residue is expected to deviate
significantly from zero. Thus, each residue will provide a

Figure 3. T
07

 plots for different M and fuel-to-air ratio

combinations.

 T07 ESTIMATION TABLE FOR DIFFERENT M AND FAR COMBINATIONS

Figure 4. Residual processor for ACS.
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The exponential weightage formula W(i) = 10-10(ratio_new(i))

is obtained by trial and error method by carrying out a
number of simulations.

These weights are then normalised to find the final

weights for each i
8m&  (corresponding to each EKF channel):

W
i _ norm

=W
i
/ W

i

i=1

3

å  (26)

This weighting reflects the faults in any sensor
measurement and also accommodates it. Once the weighting
factor is calculated, the P

4 
mean value is calculated as:

P4 = W
i _ norm P4

iå (27)

This P
4
 value is then fed back to the plant. The weightage

factor computation for 3 hypothetical cases is shown in
Table 1.

The W
i
 is the percentage of weightage of each

measurement towards the P
4
 value to be fed back. Above

three cases demonstrate that the conceptual development
for computation of W

i
 is suitable for range of 8m& values

and for extreme cases of deviations.
There was a need to develop the FDA in the case of

only one sensor failure, but it can be observed that the
designed FDA algorithm allows for failure and accommodation

good indication whether the sensor in that particular EKF
channel is faulty or not, thus providing fault detection
capability. Figure 4 shows the residual processor as part
of the FDA algorithm.

The present choice of residue is effective because
changes in backpressure (such as due to a fault) correlate
well with changes in total pressure at combustor exit, and
hence, with the estimated nozzle mass flow rate.

The inverse of the residue is also a measure of confidence
in that particular measurement; hence, can be used for
fault accommodation. The strategy explored here is to
use the inverse of each residual to compute a normalised
weighting factor that is dynamic, i.e., changes with time.
This can be thought of as an adaptive weighting algorithm.
The final P

4
 value is then computed by applying the weighting

factor to each of the three values, and is used as the
feedback signal to the plant.

4.3 Fault Accommodation
Present FDA algorithm does not require the faulty

sensor to be identified. It also does not demand the faulty
sensor to be eliminated. The fault accommodation part
of the FDA employs an adaptive weightage assignment
algorithm without declaring and eliminating a faulty sensor,
in each time-step, an adaptive weightage is assigned to
each P

4
 sensor and the weighted output is obtained. An

important advantage of using this approach is that weighted
value of P

4
 (to be fed back), computed using the three

P
4 

sensors, is as accurate as possible for each iteration.
For any iteration, if the sensor has not entirely failed but
measures a wrong P

4
 value, the sensor is not discarded

forever; instead, the faulty measurement for that iteration
is suppressed by allocating less weightage to it. A variable
weighting factor is assigned to each measurement. In
case all the three sensors are healthy, the mean value of
the P

4
 measurements is fed back to the plant.

The weighting factor W
i
 is computed as follows:

(i) The deviation of each estimated 8m&  (from the EKF
channel) from the m&

8modelled is computed. for i = 1
to 3 (for 3 EKF channels):

im8&D  = abs ( m&
8modelled

 � im8
�&  )

(ii) The ratio of each im8&D  to the m&
8modelled

 is computed.
This ratio decides how far or close estimated 8m&
is from the m&

8modelled
.  for i = 1 to 3 (for 3 EKF

channels):
ratio (i) = im8&D / m&

8modelled

(iii) Minimum of the three ratios (ratio_min) is determined.
(iv) The minimum ratio value is then subtracted from the

individual ratio for each channel. For i = 1 to 3 (for
3 EKF channels): ratio_new(i) = ratio(i)-ratio_min;

(v) Weightage for each channel is computed as: For i =
1 to 3 (for 3 EKF channels): W(i) = 10-10(ratio_new(i))]

This makes sure that the channel with lowest ratio
(zero) is given the highest weightage (one), and the others
are assigned exponentially reducing weights based on their
ratios. The exponential curve demonstrating the above
relationship is shown in Fig. 5.

Figure 5. Exponential function for weightage assignment.

BELL CURVE FOR WEIGHTAGE FACTOR ASSIGNMENT

y=
10

(1
0*

x)

X

Table 1. Fault accommodation scheme demonstration

Mass flow 
rate at 

station 8 
(kg/s) 

Case
1 

W Case 
2 

W Case 
3 

W 

modeled8m&  16.5 - 10.15 - 10.15 - 

1
8m&  6.2 4.77e-6 16.8 2.087e-7 18.5 6.647e-9 

2
8m&  14.98 ~1 9.80 0.3361 5 9.449e-6 

3
8m&  7.2 1.927e-5 10.1 0.6639 10.1 ~1 

m&
8modelled
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of two sensors as shown in Table 1. If all three sensors
fail and measure incorrect value of P

4
, then the closest

(although wrong) measurement (and corresponding EKF
channel) will be assigned highest weightage and that will
contribute the highest to the feedback P

4
 value. But it is

important to note that this value will not be a required P
4

value and the system may not work satisfactorily.

5. RESULTS  AND  EVALUATION  OF  FDA
To evaluate and validate the FDA algorithm, a number

of simulations are carried out. This section presents the
results from the FDA algorithm in the presence of different
faults. It is observed that the system operates inefficiently
with fault. In fact, some faults may lead to complete failure
of the system. For testing and simulation purposes, the
fault is introduced once the system reaches steady state
(at around 0.1 s). The fault introduction details are as
explained below. Figures 6-9 present the results obtained
by running the closed-loop simulations in the presence
of various fault conditions.

(a) Fault-free Case

(a)

(b)

(c)

(d)

(e)

( f )

(g)



WALAMBE, et al. : NOVEL REDUNDANT SENSOR FAULT DETECTION AND ACCOMMODATION ALGORITHM

69Celebrating Sixty Years of Publication

(b) Ramp Bias:

In this simulation, the output is made to slowly deviate
from its nominal value. The simulation is fault-free for the
first 0.1 sec. At t=0.1 sec, bias value is added to the sensed
value of voltage by a ramp change. This erroneous sensed
value is fed back to the controller, which slowly decreases
fuel flow rate until the lower limit of P4margin is attained.

Figure 6. (a-j) Closed loop simulation for fast response mach
profile in the absence of fault. (All EKF have exactly
same P

4 
plots in no fault conditions)

(c) Pressure (P
4
) Stuck at a Non-zero Constant Value:

The simulation is fault-free for the first 0.1 s. At t=0.1s,
the sensed value at the sensor port is held constant at
1.5 bar by a step change. This erroneous sensed value is
fed back to the controller creating a P

4margin
 error. The

controller therefore injects less fuel in trying to raise P
4margin

to the commanded value but ends up raising the actual
P

4margin
 to a high value. But, since sensor output is stuck,

the P
4margin

 error continues to persist.

(d) Mis-alignment:
Due to misalignment of P

4
 sensor, static pressure measured

by pressure sensor will be larger and hence during simulation
at time = 0.1 s, the sensed value at the sensor port is
deliberately increased by 5 per cent higher than the true
pressure value by impulse change. This erroneous higher
pressure is further fed back into the controller. The controller
tries to maintain that erroneous P

4
 value as its commanded

value by decreasing fuel flow rate, and this in turn lowers
the thrust and Mach number.

Fault 1: Misalignment Fault

(h)

( i )

( j )

(a)

(b)
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Figure 7. (a-g) Closed-loop simulation for fast response mach
profile in the presence of misalignment fault.

(e) Temperature Compensating System Failure:

In this fault, response to the error introduced due to
temperature bias shift and temperature sensitivity shift in
case of failing of the temperature compensating system
is considered. Error of about twice/thrice the magnitude
of a function of T

4
 is introduced in P

4 
measurement. Fault

is introduced at 0.1s. As T
4
 temperature is higher than the

temperature at which sensors are calibrated, output voltage

is sensed at a higher value than the true value. This implies
that the pressure is also sensed to be of a higher value.
This erroneous higher pressure is further fed back into the
controller. The controller tries to maintain that erroneous
P

4
 value as its commanded value by decreasing fuel flow

rate, and this in turn lowers the thrust and Mach number.
Because of the decrease in Thrust, P

4margin
 command gets

decreased up to its lowest limit, and commanded thrust
goes on increasing.

Fault 2: Temperature Compensating System Failure

TIME (s)

(c )

(d)

(e)

( f )

(g)

(a)
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Figure 8. (a-g) Closed-loop simulation for fast response Mach
profile in the presence of temperature compensating
system failure.

(f) Noise:

The simulation is fault-free for the first 0.1 sec. At
t=0.1 s, white noise of power spectral density (PSD) 1×10-6

value is added in output voltage and the latter is seen to
fluctuate about its true value. It is observed that sometimes
P

4margin
 hits its lower limit.

(g)

(b)

(c)

(d)

(e)

( f )
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Fault 3: Pressure sensor stuck at a constant value

( f )

(a)

(b)

(c)

(d)

(e)
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Figure 9. (a-g) Closed-loop simulation for fast response mach
profile in the presence of pressure sensor stuck at
a constant value.

5.1 Evaluation of FDA Algorithm from Results
A novel concept of using the mass flow rate at station

8 has been developed, as two independent estimates of
a variable are not directly available for use in analytical
redundancy-based FDA algorithm. Use of 8m&  proves to
be a promising approach as shown in the closed-loop
response plots for different conditions (Figs 6-9). Following
conclusions can be drawn from the plots for different
operating conditions:
1 . Bank of EKF is implemented as part of FDA scheme.

EKF design for all operating conditions works well.
It facilitates the separation of disturbances and also
generates the estimated state vector. Capability of
EKF to estimate the faulty values is observed through
number of simulations for known sensor faults. Results
show that the estimation of states by EKF represents
the faults faithfully. From plots for state parameters
P

4
, P

07
, T

05
, T

07
 and 8m&  it can be seen that the estimated

parameters from EKF deviate from the actual values
after introduction of fault.

2 . In the plots for P
4, 

it can be seen that for fault-free
condition, all three P

4
 values are the same and these

are also very close to the actual P
4
 value as well as

the P
4
 value fed back to the controller after the

application of FDA.
3. From plots for 8m&  at all operating conditions, it can

be seen that the estimated 8m&  responds well to the
fault. Thus, a clear signature of the fault can be
noted for each fault type and operating condition.

The m&
8modelled

 ( 4m& + fm& ) follows the
actual8m& . After

the fault is introduced at 0.1s, the estimated 8m&
(

8m�& ) slowly starts deviating from the m&
8modelled 

/
actual8m& .

Hence choice of 8m&  as a key parameter for fault
detection proves to be a promising concept.

4. In plots for T
07, 

three values of T
07

 viz., actual T
07

, T
07

fed to EKF (modelled T
07 

value), T
07

 estimated are plotted.
As can be seen the modelled T

07
 is very close to the

actual T
07

 value. Thus the method used for determining
T

07
 (Section 4.1) is fairly accurate and acceptable.

5. It can be seen that the P
07

 follows the P
4
 closely.

6. Result of the adaptive weightage assignment scheme
is also shown. The plots demonstrate that the scheme
works well. Very small weightage is assigned to thefaulty
P

4
 value and hence the P

4
 fed back is very close to

the actual P
4
 value.

It is important to note that the present algorithm
does not require the type of fault to be detected to
accommodate it. It is also not necessary to set threshold
and declare a sensor faulty. These are significant advantages
over previous purely hardware-redundant FDA algorithms.

The simulations show that the FDA algorithm is able
to successfully provide a good value of backpressure to
the controller under a variety of fault cases in the sensors.
The complete closed-loop simulation, with the air-breathing
combustion system and the controller, using the backpressure
from this FDA algorithm has demonstrated good results
for both fault-free and different fault cases (Figs 6-9).

5.2 Real-time Implementation of FDA
The FDA algorithm developed as part of this is required

to run in real-time once it is deployed on the actual
system, i.e., it should complete the calculations for a
time-step in time smaller than that time-step, and wait
for the inputs (sensor data) to be made available to begin
processing for the next time-step. It needs to be demonstrated
that the algorithm is sufficiently simple and low in complexity
so that it can be processed in real-time on processors
available today.

To maintain numerical stability, the time-step should
be smaller than the time constant used to model the
system. From combustor look-up tables, it is found that
the lowest time constant used is around 0.002 s, putting
a lower limit on the update frequency at 500 Hz. For
real-time execution at 500 Hz, the processor is required
to complete one time-step of the entire FDA algorithm
within 0.002 s.

To test real-time performance, a Simulink model
with a linear plant, EKF bank and fault detection/
accommodation block is prepared, as shown in Fig. 10.

One needs to check the real-time performance of the
FDA algorithm and the calibration block. So the linearised
plant model is used to provide the P

4
 input to the FDA.

The Simulink is configured to run using fixed time-stepping
of 0.002 s and ODE1 (first-order Euler method) solver, on
a computer with 1.7 GHz processor, 512 MB RAM, Windows
XP, Simulink version 6.4. It was observed that the simulation
of 20 s of flight takes around 1-2 s. This clearly indicates
that the processor power available on this system is adequate
to execute this algorithm in real-time. To further demonstrate
this, the real-time blockset20 was used to slow down the
simulation to real-time and to evaluate the amount of time
CPU waited before it could begin the next time-step. It is
observed that the processing for each time-step was completed
on an average well within 2 µs  and the CPU has to wait

(g)
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for significant time before it could start processing for the
next time-step.

The key step in this process has been the use of a
linear plant in place of the nonlinear plant for the EKF
which significantly reduced the computation complexity.
The system used for this demonstration uses a non-real-
time operating system (Windows) and has several tasks
running in parallel with the simulation. The performance
of the system would significantly improve when a real-
time operating system is deployed and the processor is
used for execution of the FDA algorithm alone. Since the
model could run in real-time on a non-optimised system,
this is adequate to prove that the code is easily implementable
in real-time on an optimised system.

6.   CONCLUSIONS
This work has focused on the development and testing

of a novel FDA algorithm for an air-breathing combustion
system which uses an innovative analytical redundancy-
based algorithm to provide intelligence to a triplex redundant
P

4
 sensor measurement hardware. In the study the following

issues were addressed, and were successfully resolved
and evaluated:
1. EKF bank was designed for state estimation and disturbance

removal from the P
4
 sensor measurement. The EKF

bank also generated the residual vector, which is fed
to the residual processor for fault detection and
accommodation.

2 . The residual processing algorithm consisting of the
following has been thoroughly tested:

� T
07

 computation from the known parameters using
a look-up table

� P
07

 estimation from the measured P
4

� Estimation of i
8m& from three 07P� and T

07
 values

Comparison of 8
im& with 8

im&
modeled

for detection of
fault

� Weightage factor calculation for individual 8
im& value

based on the deviations from the 8
im&
modeled

.
� Demonstration of error plots for fault detection and

sensor removal
Main contribution of this work is the use of analytical

Figure 10. Simulink model used for evaluating real-time performance of FDA.
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redundancy based FDA algorithm for P
4
 sensor. A novel concept

of using the mass flow rate at station 8 is developed, as two
independent estimates of a variable are not directly available
for use in analytical redundancy based FDA algorithm. Use of

8m&  proves to be a promising approach as shown in the closed-
loop response plots for different conditions in Figs. 6-9. The
real-time implementation results show that the present design
of the FDA algorithm is suitable to run on an embedded hardware.
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