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1. INTRODUCTION
The problem of robotic navigation can be approached

in two different ways: (i) motion planning�which includes
dynamical modelling, and (ii) path planning�which restricts
itself to spatial and geometrical modelling. In the former,
a feedback control law that deals with torques to manipulator
joints and drive wheels is generated, in order to track
a supplied reference trajectory. In the latter, a trajectory
or path is generated through the associated space of
possible configurations of the robot and the known
obstacles in the working area, considering their positions
and the desired final position of the robot. The motion
planning approach is used mainly in real-time guidance
applications. On the other hand, the path planning finds
applications mainly in high level off-line navigation tasks.

Path-planning for robotic systems has been extensively
studied. The main idea is to find a feasible path without
hitting known obstacles from a given starting point to
a specified destination. The path found should also be
optimal in some sense, i.e., either minimum distance or
time or fuel spent. These problems are normally posed
as numerical optimisation problems. Various numerical
methods have been utilized for this purpose. Genetic
algorithms1 are a powerful tool based on models of
natural selection and evolution and allow an exhaustive
search over large spaces. Castillo and Trujillo2 used
multiple-objective genetic algorithms (MOGA) for the
problem of offline point-to-point path-planning on a
flat 2-D terrain represented as a 2-D grid with static
obstacles and dangerous ground that the robot must
evade. The objectives minimised are the length of the
path and the degree of difficulty. The motor commands
are used as independent variables to formulate the path-
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planning problem for the �Khepera� robot and is solved
using GA�s as done by Thomaz3, et al. A monotonic
trajectory in 2-D domain is used to represent a path as
done by Shahidi4, et al.; however no backward movement
is allowed in sub-paths. All of the above works address
the case of static obstacles in the area of interest. However,
in many practical problems the obstacles could be moving
dynamically, e.g., in the case of multiple-robotic manipulators
on an assembly line, the other robots which act as
obstacles could be transient or dynamic. The presence
of a moving obstacle introduces the �time� dimension
into the path-planning problem which could otherwise
be solved for in the configuration space only.

Tychonievich5, et al. applied the maneuver-board
approach for path-planning in the presence of moving
circular obstacles. Fiorini and Shiller6 provide a brief
survey of the motion-planning in dynamic environment.
They have proposed the concept of velocity obstacle,
based on which local avoidance manoeuvres can be
computed. A sequence of such avoidance manoeuvres
computed at discrete time intervals defines the �trajectory�.
Vadakkepat7, et al. considered that the obstacles and
the goal could be moving and not necessarily stationary.
The independent variables are used to define the individual
potential fields for the obstacles and the goal and the
robot motion is assumed along the resultant potential
field. Katz and Delrieux8 use the Lee�s routing algorithm
for a real-time path-planning in the presence of moving
obstacles and target. The above referenced works deal
with the motion-planning. Most of the strategies above
are based on the �sense-and-avoid� principle. Hence
the paths generated by these are locally optimal and
need not be globally optimal. For an autonomous robot
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to navigate in an uncertain road traffic situation, such
an approach is obviously essential.

However this may not be always true in industrial
robotics, where there are specific entities performing their
designated tasks dynamically. In such cases the path tracked
by each entity is known a priori, albeit with some uncertainty
while they are being executed.  van den Berg and Overmars9

started with the assumption that the only information
about the obstacles is the maximum velocity (no direction
information), hence the obstacles are represented as disks
that grow in size over time. This, however, is quite a
pessimistic approach. Guibas10, et al. assumed polygonal
obstacles with uncertainty on the position of the vertices.
It employed a probabilistic approach to path-planning to
reduce the collision-risk probability while navigating to
the �target�.

This paper considers the robotic path-planning problem
in the presence of moving elliptical obstacles with a bounded
uncertainty in the position and orientation of the obstacles.
As in most of the above references, the robot is assumed
to be a �point�, since the dimensions of the robot can
always be incorporated as an appropriate increase in the
obstacle size. It is further assumed that the nominal movement
trajectory of the obstacles in time is known with some
bounded uncertainty. A new analytical result for computing
the axes aligned bounding box for the ellipses with bounded
uncertainty is presented. Genetic algorithms have been
employed to solve the path-planning problem.

2. PATH REPRESENTATION
The first step in solving the path-planning problem

is to have a parametric representation of a path from designated
�start� to �stop� positions within a specified domain. This
study restricts itself to motion in a 2-Dl plane but the
methods discussed here can be easily extended to higher
dimensions. The domain over which a robot can move is
typically restricted, and in this work it is restricted to [0,1]
× [0,1], without loss of generality. Further, the starting
point and destination represented as (x

0
, y

0
), and (x

d
, y

d
)

are assumed to be (0,0) and (1,1) respectively. There are
several ways of representing a path in a 2-D plane:
1. A vector of (Dx, Dy)

k
 increments can be used, Here

at the kth instance, the trajectory moves Dx
k
, Dy

k
 from

(x
k
, y

k
). Thus the trajectory is defined as x

k
 = x

0
 +

S
k
 (Dx

k
), and similarly for the y-axis. Some works (for

e.g. Castillo and Trujillo2) also employ a cell representation
of the domain, and operate over fixed grid points.

2. Candido11 uses a vector of (R, q)
k
 values. Here at the

kth instance, the robot moves a distance R
k
 at an

angle q
k
 from (x

k
, y

k
).

3. Alternatively, the x and y trajectories could be modelled
using B-splines as done by Kostaras1, et al. and Walther12,
et al. Here the path is represented as a composition
of piece-wise continuous segments defined locally.
In the first two representations, it becomes difficult

to ensure that a path generated by the respective representation
will stay within the domain of interest and/or reach the

specified goal location. Hence, Castillo and Trujillo2 require
a �path-repair� mechanism to ensure that infeasible path
can be converted into a feasible one. The spline representation
can be easily bounded to ensure that trajectories stay
within the domain and also reach the target location. Hence,
the B-spline representation has been used in this work.
A path is represented as a linear combination of a set of
say N local basis functions defined over some experimental
time interval [0, t

expt
]. Since the control parameters have

a local effect on the curve, it is easy to enforce the �goal-
reaching� condition by an appropriate choice of the last
(Nth) control parameter, based on the previous [(N�1)th]
parameter. It should be noted that the curve will arrive
at the �goal� some time, say t

goal
 before t

expt
, depending

on this selection.   The requirement that the curve remain
within the domain of interest [0,1] × [0,1], can be easily
met by constraining the [(N�1)] free parameters to lie
within [0,1). Using the same set of basis functions for the
x and y trajectories over time ensures that both of them
reach at the goal (1,1) at the same time. Thus, the set
of possible trajectories is easily parameterised using
2*([(N�1)] free parameters constrained as above.

3. OBSTACLES
Various kinds of obstacles have been considered in

the literature. These include the polygonal (e.g. Guibas10,
et al.) and circular obstacles among others. Most of the
cited works use circular obstacles so that the rotation of
the obstacle becomes irrelevant. Further, a polygonal obstacle
may be equivalently represented as a collection of circular
obstacles6. In present work, the class of elliptical obstacles
is considered, since their rotation assumes significance.
An ellipse in a 2-D plane can be easily represented by
five parameters viz,
(a) Position of the centre, (x

C
,y

C
),

(b) Lengths of the semi-major and minor axis, (a,b)
respectively, and

(c) Rotation from a reference axis (q).
Unlike van den Berg and Overmars9, it is assumed

that a nominal time-trajectory (both translation and rotation
[x

N
(t), y

N
(t), q

N
(t)] ) of the obstacle is known. It is assumed

that the physical dimension of the obstacle specified by
(a,b) is known and does not vary over time. However, it
is not a restrictive assumption, and can be easily included
in analysis if so desired. Further, it is assumed that there
is a bounded uncertainty associated with: (1) the position
of the centre, and (2) the rotation. The uncertain terms
are indicated by the subscript �U�. In particular, the actual
trajectory of the obstacle would be modified by uncertain
terms as below:

x
aC

(t) = x
N
(t) ± x

U
(t)

y
aC

(t) = y
N
(t) ± y

U
(t)

q
aR

(t) = q
N
(t) ± q

U
(t)

where,

| x
U
(t) | £ h
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| y
U
(t) | £ k

| q
U
(t) | £ Q.

For bounded values of [h,k,Q]. The subscript a is
used to indicate the actual values including the perturbation
from the nominal.

3.1 Axis-aligned Bounding-box for Obstacles
With the time trajectory of obstacles as defined above,

it becomes essential to characterise a bounding-box for
the set of possible ellipses, defined by the nominal elliptical
obstacle and the permitted levels of uncertainty. Once
that is identified, it becomes easy to check if a point in
the path is likely to be in collision with an obstacle or
not. The axis-aligned rectangular bounding-boxes are computed
towards this end. The bounding rectangle is also parameterised
by the same set of five parameters. The centre and rotation
of the box is assumed to be the same as the nominal
trajectory, i.e., [x

N
(t), y

N
(t), q

N
(t)]. The major and minor

dimensions of the bounding rectangle (a
RB

,b
RB

) need to
be computed for the obstacle for each time instant. This
can be easily computed as follows:

It should be noted that the translation of the ellipse-
centre from the origin does not affect the dimension of
the bounding-box; hence the following developments assume
that the ellipse-centre is at the origin. At any time instant
t, an elliptic obstacle centred at (0,0) can be easily represented
in a parametric form as: (the time dependence has been
omitted in the following for brevity).

x
e
(p; [x

U
,y

U
,q

U
]) = x

U
 + a*cos(p)*cos(phi) �

b*sin(p)*sin(phi)

y
e
(p; [x

U
,y

U
,q

U
]) = y

U
 + b*sin(p)*cos(phi) +

a*cos(p)*sin(phi)

where, p is a running variable from [-p to +p], and
phi is the angle q

aR
 = q

N
 + q

U
.  The bounding box is axis

aligned, i.e. its centre and rotation is specified as [0,0,
q

N
]. The distance from any point of the ellipse (defined

above) to the rotated axes (x
eR

, y
eR

) can be shown to be:

xeR(p;[xU,yU,qU]) = xe(p;[xU,yU,qU]) * cos(qN) +
ye(p;[xU,yU,qU]) * sin(qN)

y
eR

(p;[x
U
,y

U
,q

U
]) = �x

e
(p;[x

U
,y

U
,q

U
]) * sin(q

N
) +

y
e
(p;[x

U
,y

U
,q

U
]) * cos(q

N
)

The dimensions of the bounding box can be computed
as follows:

a
RB

 = max {x
eR

(p; [ x
U
, y

U
, q

U
])}

over {[-p to +p]; [h, k, Q]};
b

RB
 = max {y

eR
(p; [ x

U
, y

U
, q

U
])}

over {[-p to +p]; [h, k, Q]};
The x

eR
(.) and y

eR
(.) in the earlier equation can be

simplified to get:
x

eR
(p;[x

U
,y

U
,q

U
]) = x

U
*cos(q

N
) + y

U
*sin(q

N
) +

a*cos(p)*cos(q
U
) +

b*sin(p)*sin(q
U
)

y
eR

(p;[x
U
,y

U
,q

U
]) = -x

U
*sin(q

N
) + y

U
*cos(q

N
) +

a*cos(p)*sin(q
U
) +

b*sin(p)*cos(q
U
)

It is well known that for two functions f
1
 and f

2
,

max(f
1
+f

2
) £ max(f

1
) + max(f

2
)

Thus the maximum values of x
eR

(.) and y
eR

(.) can be
computed using the maximum values of their component
functions. The computations for max{x

eR
(.)} proceed as

shown below. In this case the component functions are
taken as f

X1
 = x

U
*cos(q

N
) + y

U
*sin(q

N
), and  f

X2
 = a*cos(p)*cos(q

U
)

+ b*sin(p)*sin(q
U
). It is easy to show that

max(f
X1

) = d
hk

*max(|cos(G� q
N
)|)

where,

d
hk

 = (h2 + k2)1/2, and

G = [tan-1(k/h), tan-1(�k/h)]

For a specified value of q
U
, the max(f

X2
) will occur at

p
XCrit

 = tan-1(b*tan(q
U
)/a)

Substituting p = p
XCrit

, f
X2

 can be simplified to obtain,

f
X2

 = sqrt[a2*cos2(q
U
) + b2 * sin2(q

U
)]

The critical points for this function are at qU= [0, ±kp/
2]. If the maximum rotational uncertainty Q < p/2, then

max{f
X2

} = max{a, sqrt[a2*cos2(Q) + b2*sin2(Q)}

The computations for max{y
eE

(.)} proceed along similar
lines and is briefly sketched below. The component functions
are taken as f

Y1
 = �x

U
*sin(q

N
) + y

U
*cos(q

N
), and  f

Y2
 =

a*cos(p)*sin(q
U
) + b*sin(p)*cos(q

U
). It is easy to show that

max(f
Y1

) = d
hk

* max(|sin(G � q
UN

)|)

For a specified value of q
U
, the max(f

Y2
) will occur at

P
YCrit

 = tan-1(b/a/tan(q
U
)).

Substituting p = p
YCrit

, f
Y2

 can be simplified to obtain,

f
Y2

 = sqrt[a2*sin2(q
U
) + b2*cos2(q

U
)]

As earlier, it can be shown that

max{f
Y2

} = max{b,sqrt [a2*sin2(Q) + b2*cos2(Q) }.

Thus the dimensions of the bounding box can be
easily obtained as

a
RB

 = d
hk

*max(|cos(G�q
N
)|) +

max{a,sqrt [a2*cos2(Q) + b2*sin2(Q)}

b
RB

 = d
hk

*max(|sin(G� q
N
)|) +

max{b, sqrt [a2*sin2(Q) + b2*cos2(Q)}

An example for the bounding box computation is shown
in Figure 1. The nominal ellipse is centred at (0,0) with
(a,b) = (5,2) and rotated counter-clockwise by 135°. The
uncertainty levels [h, k, Q] are taken as [0.5, 1. 5, 20]
respectively. The figure shows the nominal ellipse and a
set of perturbed ellipses. For these values, the [a

RB ,
 b

RB
]

can be computed to be [6.4142, 3.9552]. The bounding
rectangle is also shown in Fig. 1. The bounding rectangles



DEF SCI J, VOL. 60, NO. 1, JANUARY 2010

58 Celebrating Sixty Years of Publication

over time for each obstacle can be similarly computed.
The path planning problem then can be solved treating
these bounding boxes as the obstacles, instead of the
elliptic obstacles.

4. IMPLEMENTATION OF THE GENETIC
ALGORITHM-BASED PATH PLANNING
As discussed earlier, the B-splines have been used

for parametric path-representation. The knot locations are
selected at time instants [0, 2, 4, � 10]. This fixes the time-
horizon for the problem and has a bearing on the time
taken to reach the goal.  This should in principle be selected
based on the velocity constraints on the robot. The spline
basis functions are selected to be of polynomial order 2,
i.e., linear. This guarantees C° continuous trajectories.
One can select a higher polynomial order to get smoother
trajectories. Thus, there are N = 4 basis spline functions
and require the unknown vector to be of size 4. As disussed
earlier, the N th parameter is fixed to enforce the �goal-
reaching� condition based on the (N�1)th parameter as

x
N
 = 2 � x

N-1

It can be shown that with the above selection, the
trajectory will reach the goal �1� at 7 s. Thus for the problem
we are left with (N�1) = 3 independent parameters, which
should be constrained to lie in [0,1). The same spline
configuration is used for both the x and y trajectories with
independent parameters {X, YÎ R3}, and hence the path-
planning problem requires a search over a 6 dimensional
space. A possible x-y path is thus represented as P(X,Y).

A set of obstacles is assumed given for the problem.
The �obstacle avoidance� is checked for each (x,y) point
of the trajectory. If a particular point lies within any of
the bounding rectangles, it implies an intersection with
the obstacle. An obstacle function has been defined which

gives a positive real number in case of a collision, and
negative otherwise. The collision function (CF) is defined
as the number of times the obstacle function is �positive�
along a path. It is also desired to have a minimum path
length (PL). Additionally a minimum norm |[X,Y]| solution
is being searched for. Thus the minimisation problem can
be stated as below:

Find ([X,Y]) that minimises

PL(P(X,Y)) + CF(P(X,Y)) + |[X,Y]|

Subject to

X,Y Î [0,1)

The GAs  offer an effective and powerful method of
solving such optimization problems over large search spaces.
It employs a population-based search method, and hence
has a good chance of overcoming the local minima problem
faced in conventional gradient-based search techniques.
Each individual in a population is represented by a chromosome
of independent variables. The search is implemented using
genetic operators like cross-over, selection, and mutation.
The current work uses the �Genetic Algorithm and Direct
Search Toolbox� available with MATLAB.

4.1 Example
As discussed earlier, an elliptic obstacle (E) can be

described by the set of five parameters: position of the
centre, the semi major and minor axes, and the rotation
from a reference axis as E:= {x

C
, y

C
, a, b, q}.

The nominal parameters for five elliptic obstacles are
defined as:
E1:{0.55+sin(t)/20, 0.45+sin(t)/20, 0.12,0.06, 1.5sin(1.5 t)}
E2:{0.20+sin(2t)/20, 0.15+sin(t)/20, 0.04,0.12, 1.5sin(2t)}
E3:{0.80+sin(t)/20, 0.80+sin(t)/20, 0.04,0.12, p/4+1.5sin(2.5t)}
E4:{0.20+sin(2t)/20, 0.80+sin(t)/20, 0.12,0.04, p/2+1.5sin(1.25t)}

E5:{0.80+sin(2t)/20, 0.20+sin(t)/20, 0.12,0.04, p/3+sin(3t)}

Figure 1. Axis-alilgned bounding box calculation.
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A GA optimisation call with 40 as the population size
is used to obtain an optimal path. The fact that the trajectory
avoids all the obstacles is established by evaluating the
obstacle-function over time and is shown in Fig. 2. It is
seen that the maximum of the obstacle function is �0.01
at t = 2.95 s. The fact that the trajectory indeed avoids
the obstacles with uncertainty in the position and orientation,
over and above the nominal dynamics, is assured by the
non-positive values of the obstacle function as can be
seen in Figure 3 over 500 simulation runs.

5. CONCLUSION
A novel analytical result for computing the axes-aligned

bounding-box for the ellipses with uncertainty is presented.
This has been applied to robotic path-planning problem in
the presence of dynamically moving elliptic obstacles. The

GA is used to obtain the shortest path from the initial to
goal position avoiding the moving obstacles. The validity
of the proposed method is illustrated with a simulation result.
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