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1. INTRODUCTION
The ever-increasing reliance of society on robotic

applications has led to the need for highly reliable and safe
robotic applications. There are a number of areas where
these applications perform critical functions which include:
transport-related applications such as intralogistics, automated
parking garages, and autonomous vehicles; the mining-related
applications such as automated mine vehicles, and mine
sensing; the defence force-related applications such as
autonomous vehicles; the hospital-related applications such
as surgical procedures, etc. In these areas, failure of a robotic
application may result in more than just a mere inconvenience,
such as incorrect information by a robotic receptionist, loss
of time, or may even worse cause catastrophic loss of human
life in the case of mining automation, surgical procedures,
etc. It is clear that the development of these applications
requires a higher level of attention and it is also clear that
the need for these applications will continue to grow. In
all these areas, real-time motion planning is critical and the
development of real-time motion planning algorithms requires
a systematic approach, i.e., the use of accurate state estimators,
theory of computation tools and formal methods.

Unfortunately, the precise state of a mobile vehicle is
not always observable and to maintain an uncertain state
estimate over the states of the vehicle, state estimators are
used. State estimators refer to the techniques that are used
to determine the values of the unknown quantities from one
or more observations and these include: Kalman filter, extended
Kalman filter, etc. These unknown quantities are due to the
use of sensory data to obtain measurements of quantities
of interest. Theory of computation, on the other hand, refers
to the use of mathematical models to computationally deal
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with whether a problem is solvable, and if it is, how can
it be handled efficiently? Formal methods refer to the use
of mathematical techniques for the specification, development,
and verification of software and hardware systems. The
examples include: model checking and theorem proving.

Real-time motion planning of autonomous mobile vehicles
is a complex and challenging problem and this is mainly due
to inherently unreliable, continuous, and dynamic environments
in which they operate. The ability of a motion planner to
generate accurate and safe trajectories despite these conditions
is fundamental to autonomous mobile vehicles to perform
their tasks effectively and reliably. The promising approach
to generate accurate and safe trajectories (control strategies)
in motion planning involves the use of theory of computation
and formal methods techniques and tools1. This paper therefore
presents a review of motion planning papers that incorporate
theory of computation tools such as formal languages, automata
and formal methods techniques and tools such as model
checking, temporal logic, etc., to develop motion planning
frameworks and algorithms.

Belta1, et al. refer to the aforementioned approach as
symbolic motion planning. This is a top-down approach
that allows an automatic generation of trajectories (control
strategies) from high-level specifications expressed in regular
languages, automata or temporal logics.

2. MOTIVATION
An autonomous mobile vehicle refers to a vehicle (or

car) that drives entirely on its own without human driver
and remote control. Various sensors are used to provide
the vehicle with an internal world model, i.e., the representation
of surrounding environment and positioning system of the
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vehicle within the environment. The introduction of these
vehicles provides a number of benefits to society: the
reduction of car accidents, reduction (or eradication) of
traffic congestions, and also have a direct impact on the
areas such as mining, farming, health, constructions, etc.

The document prepared by Road Traffic Management
Corporation2 (RTMC) in South Africa reports the alarming
road accidents despite the steady month-on-month decrease
in the number of fatal crashes and fatalities since July
2006. From 1 April 2007 to March 2008, the total number
of vehicles involved in fatal crashes was 15, 172 and the
total cost of fatal crashes was approximately R 113.27 billion.
The introduction of autonomous mobile vehicle has a potential
to significantly reduce these road accidents and the
corresponding costs incurred. In addition to safety, autonomous
mobile vehicle can also bring a number of benefits to communities.
That is, they can drive home human drivers (or passengers)
who can�t drive themselves, this includes: grand parents,
school children, intoxicated drivers, etc.

Despite the fact that autonomous farming and construction
vehicles have  reached maturity, to some extend, autonomous
cars on public roads are far from being commercialised because
of the problems still facing this area. Public roads are inherently
dynamic and uncertain, and accounting for moving obstacles
where their intentions are not well-known in advance, is a
challenging problem. However, the need for autonomous
vehicle is considerable, especially in the mining industry
where there are hazardous places for human beings.

The main challenge of autonomous mobile vehicles is
to develop computationally efficient frameworks and algorithms
that allow the interaction of these vehicles with ordinary
people to accomplish their tasks. These tasks may be expressed
in a human-like languages such as temporal logics to allow
high-level specifications such as �start at stop A, go to stop
B and wait for 20 min, and then go to stop C, wait for 30
min before going to stop A again�. This approach will enable
mobile robots to solve a large number of practical problems.

3. PROBLEM  DEFINITION
In robotics, the current state of a robot includes both

its physical environment and configuration, which are referred
to as a state space. State space captures all possible situations
that could arise�the state could, for example, represent
the position and orientation of a robot, the locations of
an obstacle, etc. In real-time motion planning, the current
state is very important because it makes it possible to
generate plans at real-time, and thus makes the task of
designing, developing, and formally verifying the correctness
of motion planning algorithms possible. Unfortunately, it
is virtually impossible for a mobile robot to precisely know
its state3 and an appropriate approach�probably the only
one�is to estimate its state from information provided by
sensors, lasers, global positioning system (GPS), etc.

Information sourced from these devices poses a number
of challenges for designing and developing safe and reliable
real-time motion planning algorithms for autonomous robots.
These challenges include: uncertainty due to the failure

of a device, unreliability due to the noisy data, unsafe if
these robots operate in hazardous environments such as
mining industry, unavailability of data due to the loss of
connection to the GPS, and so on.

Motion planning architectures mostly consist of three
components: The world which represents robot�s physical
environment and configuration, the estimation techniques
to filter sensory data, and motion planning. Motion planning
is the focus of this paper and takes two inputs: the world
model and formal specification, and produces one output
(i.e., control strategies). The world model is the representation
of ever-changing environment while formal specification
refers to the formalised high-level specifications of static
environment and tasks to be undertaken by the robot.
Motion planning may consist of a number of levels (e.g.,
as presented by Belta1, et al., to eventually output control
strategies to the robot.

Papers reviewed in this study are only those which
solve some or all of the following problems:

� The motion planning problem is carried out in real-
time, in a dynamic, uncertain and ever-changing
environment.

� The accomplishments of high-level specification tasks,
which are more than just the traditional planning problem
(i.e., start at initial state A and go to the goal state
B), are considered.
The high-level specification tasks such as �start at

stop A, go to stop B and wait for 20 min, and then go to
stop C, wait for 30 min before going to stop A again� can
be naturally translated into temporal formulas such as linear
temporal logic (LTL), computational tree logic (CTL), or
timed computation tree logic (TCTL). Hence, in section V,
only motion planning techniques that include tools of theory
of computation and formal methods are considered.

4. TEMPORAL  LOGIC
The papers reviewed in Section V use temporal logics

for specifying and designing motion planning algorithms.
Therefore, an overview of temporal logics is presented.
These logics have been used to precisely describe the
properties of concurrent systems (such as safety and liveness
properties) and were first introduced by Pnueli around
1977 for the specification and verification of computer
systems. The mostly widely-used two types of temporal
logics are LTL and CTL. More information on these logics
is presented by Clarke4, and Seotsanyana5.

4.1 Linear Temporal Logic
The linear temporal logic (LTL) is a modal temporal

logic with modalities referring to time. In LTL, formulas are
encoded about the future of paths (or runs) such that a
condition will eventually be true, that a condition will be
true until another fact becomes true, etc.

4.1.1 Linear Temporal Logic Syntax
The syntax of  LTL is defined in terms of atomic propositions,
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logical connectives, and temporal operators. Atomic
propositions are the most simple statements that can be
made about the system in question and thus take the value
true or false. Examples of atomic propositions are-the door
is closed, x is less than 2, etc. Atomic propositions can
be represented by alphabetic symbols such as p and q.
The set of atomic propositions is referred to as AP. The
boolean operators that are used in the syntax of LTL are

ÞØÙÚ ,,, and Û ; in addition, there are several temporal
operators, with the following meanings:
� W  denotes �always�,
� à  denotes �eventually�,
� U denotes �strong until�, and
� X denotes �next�.

The structure of a formula of propositional LTL is
given by the following grammar expressed in Backus-Naur
form (BNF) notation:

p X U:: | | | |a a a b a a b= Ø Ú

The operators ,,, ÛÞÙ  true, false, à  and W  which are
not mentioned in this syntax, can be thought of merely
as abbreviations by using the following rules:

4.1.2 Linear Temporal Logic Semantics
The syntax defines how LTL formulas are constructed,

but does not provide an interpretation of the formulas or
operators. Formally, LTL formulas are interpreted in terms
of a model defined as a triple M=(S,R, Label),where
� S is a non-empty countable set of states,
� R:S®S, is a function which assigns to each sÎS a

unique successor R(s), and
� Label:S®2AP, is a function which assigns to each

state sÎS the atomic propositions Label(s) that are
valid in s.
The meaning of LTL formulas are defined in terms of

a satisfaction relation, denoted by |=, between a model M,
a states sÎS and the formulas a and b. Therefore M, s
|= a if only if a is valid in the state s  of the model M.
If it is understood from the context, M is dropped and the
satisfaction relation is mathematically defined as follows:

Here, Ri  is used to denote i applications of the function
R. For example, R3(S) is the same as R(R(R(s))) The formal
interpretation of the other connectives, true, false, ,,ÞÙ à
and W can be derived in a similar way from the definitions
above.

4.2 Computation Tree Logic
The computation tree logic (CTL) is based on the

concept that for each state there are many possible successors,
unlike in LTL which is based on a model where each state
s has only one successor s¢. Because of this branching
notion of time, CTL is classified as a branching temporal
logic. The interpretation of CTL is therefore based on a
tree rather than a sequence as in LTL.

4.2.1 Computation Tree Logic Syntax
The formulas of CTL consist of atomic propositions,

standard boolean connectives of propositional logic, and
temporal operators. Each temporal operator is composed
of two parts, a path quantifier (universal "  or existential
$) followed by a temporal modality ( à  and W  X, U). Note
that some authors use G and F for "  and $ , respectively.
The temporal modalities have the same meanings as in
Section 4.1. The syntax is given by the BNF:

][|][|||||:: babaababaaa UUXp "$$ÙÚØ=

4.2.2 Computation Tree Logic Semantics
CTL semantics slightly differs from that one of LTL,

i.e., the notion of a sequence is replaced by a notion of
a tree. The interpretation of CTL is defined by a satisfaction
relation |= between a model M, one of its states s and some
formula. Let AP={p,q,r} be a set of atomic propositions,
M=(S,R Label) be CTL-Model, ,Ss Î  a  and b  be CTL-
formulas. In order to define the satisfaction relation (|=),
the following definitions are first given:
� A path is an infinite sequence of states ,...,, 210 sss

such that Rss ii Î+ ),( 1

� Let wSÎr denotes a path. For ][,0 ii r³  denotes the
thi )1( +  element of ,r  i.e., if  ,...,, 210 sss=r  then

isi =][r
� }]0[|{)( sSsP w

M =Î= rr  is a set of paths starting
at s.
Just like in LTL if it is understood from the context,

M can be dropped in the satisfaction relation |= defined
as follows:
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4.3  Timed Computation Tree Logic
The temporal LTL and CTL, focus on the temporal

order of events and do not explicitly state the actual time
taken by these events. Time-critical robotic systems necessitate
the consideration of quantitative time between the occurrence
of events, i.e., the correctness of most robotic systems
do not only depend on the functional requirements, but
also on the time requirements. In this section, the syntax
and semantics of timed computation tree logic (TCTL) is
presented. But first, an overview of timed automata is
given.

4.3.1 Timed Automata Syntax
Finite-state real-time systems are modelled with timed

automata. A timed automaton is a standard finite-state
automaton extended with a set of non-negative real-valued
clock variables (or just clocks in short). Clocks are assumed
to proceed at the same rate to measure the time elapsed
since they were last reset. In order to formally define a
timed automaton, clocks and clock constraints are first
defined as follows:
� A clock is a variable ranging over ¡+ (where ¡+ represents

non-negative real numbers)
� For set C of clocks with ,,, Czyx Î a clock constraint

a  over C is defined by
),(|||:: aaaa ÙØ-= cyxcx pp where and

},{ £<Îp
� )(CY  is the set of all possible clock constraints.

Clocks are defined to range over the non-negative real
numbers, i.e., Îzyx ,,  ¡+. A state of a timed automaton
consists of a location and values of clocks. Clock constraints
are used to label the edges of a timed automaton and
represent guards that are used to either enable or block
transitions between locations. Clock constraints are also
used to label locations and such constraints are then �invariants�
that limit the amount of time to be spent in a location.
Formally, a timed automaton A over set of actions ,S  set
of atomic propositions AP and set of clocks C is defined
as a tuple (L,l

0
,l,Label) where:

� L  is a non-empty set of locations with the initial
location .0 Ll Î

� LCLE C ´´S´Y´Í 2)(  corresponds to a set of
edges. Elragl Î)',,,,(  represents an edge from
location l  to location 'l  with clock constraint g (also
known as enabling condition of the edge or guard)
action a to be performed and the set of clocks r  to
be reset.

� )(: CLI Y®  is a function which assigns a clock
constraint (i.e., an invariant) for each location.

� APLLabel 2: ®  is a function which assigns to each
locations Ll Î  set of atomic propositions that hold
in the location.

4.3.2 Timed Automaton Semantics
The interpretation of a timed automaton is defined in

terms of an infinite transition system and to formally define
the semantics of the timed automaton, the �clock assignment�

function and state of a timed automaton are defined as
follows:
� A clock valuation (clock assignment) u for the set of

clocks C is a function  ®Cu :  ¡+ assigning each
clock Cx Î  its value ).(xu  Let the set of all clock
valuations over C be denoted by  V(C). The clock
evaluation has the following characteristics:
� For )(CVu Î and Îd  ¡+, clock valuation du +

over C means that all clocks are increased by d,
that is dxu +)( for all .Cx Î

� For ]0'[,' ®Í CuCC  means that all the clocks
in 'C  are assigned to zero, that is, all assigned
and zero clocks in 'C  are reset, so that

0)](0'[ =® xCu  for all 'Cx Î  and
)()](0'[ xuxCu =®  for all '.Cx Ï  If 'C  is the

singleton set }{z , just ]0[ ®zu  shall be written.
� For a given clock valuation )(CVu Î  and a clock

constraint ),(CYÎa )(ua  is a boolean value
stating whether or not a  is satisfied or not.

� A state is a pair ),( ul  where l  is a location of an
automaton A and u  is a clock valuation over C.
The operational semantics of a timed automaton

A=(L,E,I,Label) over the clock set C is therefore defined
by an infinite state transition system ),,,( 0 LabelsSM A ®=
where:
� S=L×V(C) is the set of states,
� 0s  is the initial state of A ),,( 00 ul
� ®  is the transition relation with its members defined

by the following two rules:
� action transition: )','(),( ulul a¾®¾  if there is

an edge )'( ,, ll rag ¾¾ ®¾ such that )(ug  holds and
],0[' ®= ruu and )'(uinv  holds for each

);'(lIinv Î
� delay transition: )',(),( ulul d¾®¾  if, for Îd

¡+, duu +=' and )'( duinv +  holds for all
dd £' and ).(lIinv Î

� APSLabel 2: ®  is atomic proposition function extended
from APLLabel 2: ®  simply by Label(l,u) = Label(l).

4.3.3 Timed Computation Tree Logic Syntax
The syntax of TCTL is based on the syntax of CTL,

extended with clock constraints. To clearly define the syntax,
the following definitions are given:
� A path is an infinite sequence K,, 1100 asas  states

alternated by transition labels such that 1+¾®¾ i
a

i ss i

for all ,0³i where ia  is either ),,( rag  or d.
� Let wSÎr denotes a path. For ][,0 ii r³  denotes the

thi )1( +  element of r  (Section 4.2.2).
�  }]0[|{)( sSsP w

M =Î= rr  is a set of paths starting
at s (Section 4.2.2).

� A position of a path is a pair (i, d) such that d equals
0 if ),,,( ragai =  and equal ia  otherwise.

� Let )(rPos be the set of positions in r . For convenience
the state (l

i
,v

i
 + d) can also be written as ).,( dir

� A total order of positions is defined by:
� )',(),( djdi <<  if and only if

).'()( ddjiji £Ù=Ú<
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� Path r  is called time-divergent if ,),(lim ¥=D¥® ii r

where ),( irD denote the time elapsed from 0s  to
,is i.e., 0)0,( =D r

 
î
í
ì

ÂÎ
=

+D=D
ii

i

aifa

ragaif
ii

),,(0
),(),( rr ,

� Let }]0[|{)( sSsP w
M =Î=¥ rr  denote the set of time-

divergent paths starting at s.
Let APp Î and D be a non-empty set of clocks that

is disjoint from the clocks of A (i.e., D is the set of clocks
of the TCTL-formulas and ),Æ=Ç DC  Dz Î  and

).( DC ÇYÎa  The TCTL-formulas are then defined by the
following BNF:

][|][|||||:: bbbbbbbbab UUinzp "$ÚØ=

A clock constraint a  is defined over formula clocks
and timed automaton clocks and thus allows comparison
of both formula and timed automaton clocks. Clock z is
known as a freeze identifier and bounds formula clocks
in b . For instance, ][ 4fb £" U can be defined as z
in ])4[( fb Uz £Ù" .

4.3.4 Timed Computation Tree Logic Semantics
For, ,APp Î )( DC ÇYÎa  is a clock constraint

over ,DC È model ),,( LSM ®=  is an infinite transition
system, ),(, DVwSs ÎÎ  and fy ,  are TCTL-formulas. The
satisfaction relation �  is defined as follows:

5. CRITICAL  REVIEW
The papers under review focus on the use of temporal

logics in robot motion planning. Table 1 outlines their
titles and corresponding acronyms, which are henceforth
used to refer to them. In each paper, the explanation of
the problem and the method used are presented. The
corresponding results and critical analysis are discussed
in Section 6.

5.1 Discrete Event Modal + Temporal Logic
Antoniothi and mishra6 develop a robust compiler

program�similar to silicon compilers�to synthesize controller
programs of different robotic applications and manufacturing
tasks, based on discrete event systems (DES) theory11,
Petri Nets12,13 and temporal logic14. The synthesiser (or
compiler) takes two inputs: (1) a model of a robotic problem
and (2) a set of high-level specifications expressed in temporal
logic and outputs a synthesised controller that produces
control commands.

The running example for testing and simulation of the
synthesiser is the walking machine problem with four legs.
The model of the machine is divided into two layers: discrete
and continuous. The discrete layer refers to the scheme
used to synchronise states of the legs and this is modelled
with a finite state machine (FSM) (Fig. 1(b)). The six states
shown in Fig. 1(b) correspond to different movements of
a leg. Each leg has three links, as shown in Fig. 1(a).

The continuous layer is represented by different kinematic
equations at each state of FSM. Each leg is represented
by a FSM and a synchronised product FSM of the four
leg FSMs has 1296 states and 5184 transitions. The transitions
between these states are governed by the sensory data
and only the position information is used for simulation
purposes. The position rp  represents the rear position
whereas fp  represents the front position of the legs. The
system may allow the steps that are longer than the leg
and this is restricted by a graph traversal which maintains
the minimum and maximum of .||)( rffeet ppp -=D  For example,
the equation =D ],)[( 21 DriverLoadp feet

stepDrivererp feet 2
1

21 ],cov)[Re( +D

assumes that the rear leg is moved a very small step and
the equation

=D ],)[( 21 DriverLoadp feet

              stepDrivererp feet 2],cov)[Re( 21 +D
assumes a full step distance. The desired constraint is that

)( feetpD < l where l is derived from the mechanics of the
Walking Machine.

Antoniothi and Mishra6 followed a number of steps
for the process of the controller synthesis: (a) The modification
of the standard DES and the use of temporal logic for
specification and verification properties; (b) A modified
model checker is used to mark undesired states of the

Table 1. Reviewed papers

Acronym Paper title 

DEMTL Discrete event models + temporal logic = 
Supervisory controller: automatic synthesis of 
locomotion controllers6 

MRPTA Multi-robot planning: A timed automata approach7 
SPCRM Symbolic planning and control of robot motion1 
TLMPR Temporal logic motion planning for mobile robot8 
STLMP Where�s waldo? sensor-based temporal logic motion 

planning9 
ASMMT Automatic synthesis of multi-agent motion tasks 

based on LTL specification10 
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machine. For example, the system should not be in a state
where both legs of a train are both recovering, driving,
or slipping (i.e., these states should be avoided). The CTL
formula used to mark these states is:

ÙØ ]),([( 21 DriverDriverstateAG

ÙØ ]),([ 21 DriverDriverstate

])),([ 21 SlippingSlippingstateØ ,

and (c) the modified model checker is also used to verify
the supervisory synthesiser to ensure that it maintains the
required behaviour of the machine and this is the original
intention of the authors, to verify the correctness of the
synthesiser itself. More properties are also verified and
the results are discussed in Section 6.

5.2 Multi-robot Planning: A Timed Automata
Approach
Quothrup,7 et al. discussed the use of theory of timed

automata to model a motion planning problem in a multi-
robot environment. Authors start by highlighting applications
of multi-robot systems and various methods used to model
communication among robots. These approaches include:

(a) threaded petri nets,
(b) use of a plan-merge paradigm,
(c) a distributed negotiation mechanism,
(d)  hybrid control to action coordination and collision

avoidance and
(e) formal hybrid to modelling and coordination.
The environment of a planar is assumed and robots

can only move either horizontally or vertically. Properties
of interest are expressed in CTL. The system is modelled
with a matrix and three-template automata: the matrix models
the workspace, an obstacle template models static obstacles
on the planar grid, a robot template models a robot and
a control template models concurrent communication between
robots. The following five properties are verified on the
system:

(1) collision avoidance,
(2) bounded movements,
(3) reachability
(4) reachability with time requirement, and
(5) reachability with step requirement.
To model multiple robots using timed automata, three

models are developed: environment (i.e., workspace with
obstacles), robots, and control.

Robots are restricted to operate in a planar environment

ÎX ¡² where position, ,Xxi Î in the planar is denoted by
].[ 21 iii xxx =  The X is divided into partitions of disjoint

cells with Îe  ¡+ (i.e., grid size) resolution. The following
defines the planar environment in relation to its partitions:

)( i
U

zCX e

U=

where, ],[ 21 iii zzz = Îiz ¢² and U is the number of cells that

cover the planar X. Then each cell in a partition is defined
as follows:

Î= ji xzC {)(e ¡²: 21
e-iz < Ù+£ 211

e
ij zx

            22
e-iz < }.222

e+£ ij zx

Then X is divided into U = (S+1) (T+1) number of
cells, where (S+1) is the number of columns and (T+1)is
the number of rows. Static obstacles maybe present on the
environment by occupying a cell on the grid. The workspace
(i.e., a free space where the robot moves) is:

)(\ i
M

zOXW U=

where M denotes the number of static obstacles and
O(Z

i
) is a location of an obstacle located at ¢². Therefore,

the workspace W is shared among robots moving on the
planar and with the proper size of e  the robots can be
synchronised to avoid collision with each other. In the
model checker Uppaal15, the environment is defined as a

GROUND

(a)

TIP

BASE

Figure 1. Leg assignment6: (a) three links of each leg and (b)
the six states correspond to different movement of a
leg).
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two dimensional array of integers: int[0,1] partX[hSize][vSize],
where hSize and vSize are horizontal and vertical sizes,
respectively. The occupied cells are assigned to zero
(partX[hSize][vSize] = 0), while the free cells are assigned
to one (partX[hSize][vSize]=1).
The robot is modelled by the following timed automaton
A

R
 = (L,l

init
,E,I,V) where:

�  L = {l
init

,l
stop

,l
mr

,l
ml

,l
mu

,l
md

}is the set control locations,
� Llinit Î is the initial location,
� LActCLE C ´´´B´Î 2)(  is the set of edges,

0e ),( initinit ll=

1e ),( stopinit ll=

2e )?,,( initstop lmoveRightl=

3e ),0,,( stopmr lccMaxccMinl =<<=
.etc

� )(: CLI B®  is the function that assigns invariant
condition to locations.
The control process is modelled by the following automaton

),( loopC lLA = . Where, L is the set of control locations, and
l

loop
  is the only control location for the process.

There are two scenarios presented in this paper, the
first one involves three robots that need to traverse through
the door while avoiding other robots and the obstacles
on the planar. The second situation involves two robots
that have to change positions in a maze. The following
properties are verified with Uppaal15:
a) Safety Properties:

� For all control trajectories the robots never collide,
after they start to move.

� For all control trajectories the robots never move
outside workspace.

b) Liveness properties:
� Does there exist any control trajectory where the

robots eventually reach their goal positions?
� Does there exist a control trajectory where the

robots eventually reach their goal positions?
� Does there exist a control trajectory where the

robots eventually reach their goal within 10 step
movements?

The results of these properties are discussed in Section 6.

5.3 Symbolic Planning and Control of Robot Motion
Belta1, et al. have stated the challenges of robot motion

planning are stated. These challenges involve the development
of computationally efficient algorithms which takes into
account: (i) the constraints of the robot, and (ii) the complexity
of environment while at the same time facilitating a detailed
high-level specification of tasks. A normal basic motion
planning problem is usually stated as a mobile robot moving
from one initial location to a goal location while at the same
time avoiding obstacles. The framework used to solve this
problem is usually divided into three levels: The first level
(called specification level) is about dividing the configuration
state space into cells and these are represented by a graph.
The second level (called execution level) finds the shortest
path that avoids obstacles from the initial state to the goal
state. And the third level (called implementation level)

generates a reference trajectory and controllers are developed
to follow the trajectory. In this paper, authors use theory
of computation and formal methods tools to represent
specification tasks, robot constraints and environment and
they also coined the term symbolic to refer to the use of
these tools. Symbolic motion planning can be easily
incorporated into the three aforementioned levels of the
framework. This paper outlines the challenges of incorporating
the tools of theory of computation and formal methods in
motion planning and Section 6 discusses the detailed analysis
of these challenges.

5.4  Temporal Logic and Motion Planning for Mobile
Robot
Fainkos,8 et al. presented a novel approach for linking

discrete AI planning with motion planning. The authors
state that formal formulation of specification such as sequencing,
etc., in motion planning provides new challenges such as
introducing computationally efficient methods that deal
with the complexity of these approaches. These properties
can be expressed in temporal logics such as LTL and CTL.
Authors differentiate their approach from previous related
approaches that used model checking to generate discrete
paths that satisfy temporal logic specifications. This previous
research has resulted in the tools like: MBP16, TLPLAN17,
and UMOP18. The aim of the paper is to generate continuous
trajectories which satisfy temporal logic formulas. This is
achieved through the following steps:

� the decomposition of workspace into cells19,20,

� the use model checking NuSMV21 to generate plans
for discrete motion planning that satisfy LTL properties,
and

� the generation of continuous trajectories that satisfy
the specified LTL properties.

A robot was modelled that was operated in a polygonal
environment P and the motion of the robot has been expressed
as

)()( tutx =&    ÍÎ Ptx )( ¡²    ÍÎUtu )( ¡²     (1)
where x(t) is the position of the robot at time t and u(t)
is the control input. The objects of interest such as rooms,
corridors, etc., are atomic propositions represented by a
set },,,{ 21 nppp K=P  and the observation map, which is
associated with Eqn. (1), is defined as

P®PhC :  (2)

and this is an observation map that takes continuous states
of the robot and maps it to the set of propositions. The
proposition is a convex set of the form:

Î= xPi { ¡²| Ù
££ mk1

Î£+ kk
T
k abxa ,0 ¡², Îkb ¡}

The relationship between the observation map  and
the set of atomic propositions (objects of interests)  is
defined as follows:  if and only if x belongs to some related
set

Given robot model (1), observation map (2), initial
state ,)0( Px Î  and LTL formulaj , the problem was to
construct control input )(tu  such that the resulting robot



DEF SCI J, VOL. 60, NO. 1, JANUARY 2010

30 Celebrating Sixty Years of Publication

trajectories satisfy the state )(tx . To solve this problem,
let ][tx  defines the robot trajectories starting at state

)(tx . The meaning of LTL-formula j  is defined in terms
of a satisfaction relation, denoted by |=C

, over continuous
robot trajectories ][tx . Then ][tx  |=C j  states that the trajectory

][tx  starting at )(tx  satisfies the formulaj . Other LTL
formulas can be constructed recursively.

The process of generating continuous robot trajectories
that satisfy LTL formulas involves three steps:

� Discrete abstraction of robot motion,
� Temporal logic planning using model checking,

and
� Continuous Implementation of discrete plan.

Step 1
The first step is to partition the workspace P into

triangles and two reasons were related for their choice of
the partitioning algorithm: First, there exist many efficient
triangulation algorithms22 and Second, the controller used
in this paper is proved to be efficiently computable on
triangles20.  Therefore, the map QPT ®:  sends states

Px Î  to the finite set of triangles },,{ 1 nqqQ K= . Given
a partitioned workspace of P, the robot motions are defined
by the following transition system

),,,( 0 DD hqQD ®=  (3)

where, Q  is a set states, Qq Î0  is a cell containing the
initial state ,)0( Px Î QQD ´Î® is a transition relation, defined
as jDi qq ®  if and only if the triangles iq and jq are
topologically adjacent to each other, and P®QhD :  is an
observation map, where p=)(qhD

 if there is a state )(1 qTx -Î
such that .)( p=xhC  And )(1 qT - contains all the states

Px Î labelled by .q  The trajectory p  of D is defined as
a sequence ,][ 21 K++ ®®= iDiDi pppip where .)( Qippi Î=

Step 2
In step 2, the model checkers NuSMV21 and SPIN23

were used to generate trajectories ][ip  of the system  D
explained in the first step. However, model checking tools
are not meant to generate trajectories (i.e., witnesses), but
to verify the system and output yes if the property is
satisfied or a counterexample if it is not satisfied. To generate
trajectories that satisfy the formulaj , authors use
counterexample algorithms in these tools. Since these
counterexample algorithms produce a computation ][ip
that satisfies jØ  (i.e., ][ip |= jØ ), so the original formula
is negated and verified with one of the model checkers
and the counterexample for ][ip |= )( jØØ  is generated. This
trajectory satisfies )( jj ØØ=  and is used in the next step
to guide the generation of a continuous trajectory.

Step 3
In the third step, to generate continuous trajectories

that satisfy the formulaj , the following continuous transition
system is defined

),),0(,( CC hxPC ®=  (4)
where, P is a set of polygonals, ))(()0( 1 xTTx -Î  is the

initial state, PPC ´Ì®  is a transition relation, defined as
'xx C®  between states in P, if and only if x and 'x  belong

to adjacent triangles. P®PhC :  is an observation map,
where p=)(xhC  maps continuous state to areas of interest
(i.e., the set P .)

For the system C to implement trajectories that are
generated by any of the model checkers, the triangulation
of P must satisfy bisimulation property24. That is, QPT ®:
is called bisimulation if the following conditions hold for

Pyx Î" ,
� If )()( yTxT =  then )()( yhxh CC =  (i.e., observation

preserving)
� If )()( yTxT =  then if 'xx C®  then 'yy C®  with

)'()'( yTxT =  (i.e., reachability preserving)
If bisimulation property is satisfied by the triangulation

of the environment, the controllers can be designed that
satisfy this property. There are a number of frameworks
that can be used, including20,25. But the authors used the
framework20 and the reason for their choice is due to its
computational properties in triangulated environments.

5.5  Sensor-based Temporal Logic Motion Planning
Kress-Gazit,9 et al. have drawn a distinction between

two approaches to motion planning: (a) bottom-up and (b)
top-down. In bottom-up approach, the emphasis is put on
generating control inputs to robot models that take a robot
from one configuration space to another, while on the
other hand top-down approach focus on finding discrete
robot actions to achieve high-level complex tasks� including
the interaction of robots in a multi-robot environment,
sequencing of temporal actions, etc. High-level task planning
and low-level motion planning were not possible until the
advent of hybrid systems. Hybrid systems integrate discrete
and continuous systems and this has made it possible to
integrate high-level task planning and low-level robot motion
planning. This new paradigm of hybrid systems has made
it possible to have new approaches in robot motion, such
as introduced by Fainkos8,28, et al.,  and Kloetzer and Belt26

This paper build on their previous work8,27, and in this
paper their approach introduces two novelties in motion
planning. First, the temporal logic used addresses sensor
inputs directly and second, the use of fragment temporal
logic called general reactivity (GR)28, that is computationally
polynomial. Its cheap complexity does not affect its
expressiveness even though there are properties that cannot
be addressed in this logic.The goal of this paper is to
develop a framework that automatically and verifiably generate
controllers that satisfy high-level specification tasks expressed
in temporal logic and to achieve this, the following should
be defined: the model of the robot, admissible environments,
and the desired system specification.
� Robot model: Authors assume a robot is operating in

a polygonal workspace P and the motion of the robot
is expressed as

   )()( tutp =&  ÍÎ Ptp )( ¡²   ÍÎUtu )( ¡²  (5)
where, )(tp  is the position of the robot at time t  and

)(tu  is the control input. It blossomed that P  is partitioned
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into a number of cells nPPP ,,, 21 K  where i
n
i PP 1== U

and =ji PP I Ø if .ji ¹  It is also assumed that the
creates a set of propositions }.,,,{ 21 nrrr K=g  Therefore
the proposition 1r  is true if and only if ,1Pp Î  while
other propositions are false.

� Admissible environments: A robot interacts with its
environment through sensors.  It is assumed that sensors
are binary and m sensor variables },,,{ 21 mxxx K=c

are not modelled explicitly, instead high-level assumptions
are made so that variables can model admissible
environments. These admissible environments are modeled
in LTL formulas of the form ej .

� System specification: The desired behaviour of the
robot is expressed in LTL formula sj  and the specifications
which can be expressed in LTL include: coverage,
sequencing, and avoidance properties.
Given robot model (5), initial state Pt Î)0( , and some

LTL formulae j , the problem was to construct a control
input )(tu  such that the resulting robot trajectories satisfy
the state )(tp . To solve this problem, let ][tx  defines the
robot trajectories starting at state )(tx . The meaning of
LTL formula j  is defined in terms of a satisfaction relation,
denoted by |=C

, over continuous robot trajectories ][tx .
Then ][tx  |=C j  states that the trajectory ][tx  starting at

)(tx  satisfies the formulaj . Other LTL formulas can be
constructed recursively.

Given an LTL formula, an automaton that generates
an acceptable behaviour by the LTL formula was synthesised.
Pneuli and Rosner29 proved that the synthesis process is
doubly exponential. However, the algorithm used in this
paper is polynomial )( 3nO  time where n is the number of
valuations for sensor and state variables28. The synthesis
process is compared with a game played between the robot
and the environment. First, the environment makes a transition
according to its transition relation and then the robot does
the same. If the robot can satisfy the LTL formula j , no
matter what the environment does, the robot is winning,
otherwise the environment is winning and the desired behaviour
cannot be achieved. Given the following winning condition
(i.e., GR(1)) s

g
e
g jjf ®= , the robot is winning if s

gj  is true
or e

gj  is false. If the robot is winning an automaton that
represents desired behaviour is synthesized and it is formally
defined as tuple ),,,,,( 0 gdc qQYA =
where,
� c  is a set of input environment propositions,
� Y is a set of output system propositions,

� ÌQ ¥  is a set of states,

� Qq Î0  is the initial state,

� QQ 22: ®´ cd  is a transition relation, that is,

QQXq Ì= '),(d  where Qq Î  is a state and cÍX  is
the subset of sensor propositions that are true, and

� YQ 2: ®g is the set of state propositions that are true

in state q.
The importance of this automaton is to generate a

path that a robot can follow under admissible inputs. Given

admissible input sequence ,2,,,, 321
cÎjXXXX K  the

automaton generates a run K,, 10 qq=s . This run s  is
interpreted as sequence K,10 yy  where ii yq =)(g  is the
label of the ith state. The last step is to use the run s
to influence the continuous behaviour of the robot. There
are a number of hybrid controllers presented by connel19,
et al.,and Belta Habelts20  that can drive robots from region
to region. In this paper, a controller that satisfies the so-
called bisimulation property24  was chosen and this controller
is presented by Corner19, et al.

5.6 Automatic Synthesis of Multi-agent Motion Tasks
Based on LTL Specification
Loizou and kyriakopoulus10 state that there is an increasing

interest in the control theory to develop automated controllers
that satisfy complex desired requirements. The key issue
in this direction is the use of formal specification. Local
controllers were synthesised based on specification represented
in the form of graphs30, while using LTL specifications31.
Some studies use several motion description languages32.
In this paper, LTL specification is used due to its capability
to express properties quantitatively and its similarity to
natural languages.

The following situation is assumed to test the methodology
(1) there are m robots moving in the workspace 2RW Ì ,
(2) each robot mi K1= occupies a disk in the workspace

}||:||{ 2
iii rxqRqR £-Î= , where 2Rxi Î  is the centre of

the disk and ir  is the radius. The configuration of each
robot is presented by ix  and the configuration space by
C. The kinematic model is

ux =& (6)

and let ),,( 0 fxxxf  be a multi-robot navigation function,

where robots do not overlap. Then the control law is

-Ñ=u  (7)

where, oKo ],,,[
21 nxxx ¶

¶
¶
¶

¶
¶

=Ñ  and f  is a multi-robot

navigation function that drives all robots from the feasible
initial configuration x

0
 to any feasible final state x

f
.

Two levels of motion controllers are defined. The global
convergent controller manages the primary motion task
and set of other controllers that lie within its range of
convergence. The focus is to synthesis Büchi automaton
that realizes the behaviour of the requirements of a robotic
system. The steps for achieving this objective are outlined
as follows:
Step 1: Given an LTL formulaf , a Büchi automaton is

constructed and accepts words that satisfy f . After
the construction, the largest non-blocking sub-automaton

NBA
f  is constructed from fA . If NBA

f  is empty then, the
LTL formula f  should be rewritten. The LTL formulas
that are used to synthesis controllers are of the form
W ,fÙG  where W G  refers to the global controller
which must always be active.

Step 2: Using NBA
f  as a model, a function ||}1,0{: COS ®´D

is created to generate observation and controller predicates.
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Step 3: The last step is to define controllers that conforms
to the following control law: .*

21 uku ×+Ñ-= bf   The
details of how to derive this equation is given Loizou
and kyriakopoulus10.

6.  ANALYSIS
Antoniotti and Mishra6 introduced some interesting

research directions in motion planning. However, there are
some research questions that are not yet answered and
some issues that are not clearly explained. Some of these
questions include:

� the failure to achieve the goal of the paper, that is,
to develop a compiler similar to silicon compilers,

� the ambiguity of some of the CTL formulas. That is,
there are some of the CTL specifications in which
supervisor synthesis could fail, for example

))(())(( 21 pAGAXpAGAX Ú , where the labels A(s
2
) =

p
1
 and 24 )( psA = , and the state s

2
  and s

4
 do not have

out-going edges, but self-looping. The failure could
be due to the maximal ambiguous controllable sub-
language, and

� another open problem is to investigate the use of
restricted CTL33.

� In addition, there are no any real-time issues and obstacle
avoidance algorithms of motion planning for the walking
machine that are discussed.
Apart from unanswered research questions, there are

some important issues that need some detailed explanation.
This includes, the modified model checker and the input
specification language for the model checker. The detailed
discussion of the modified model checker is important as
this might affect the complexity of model checking algorithms.
Other problems are the description of the specification
language for the state machines, and the interpretation of
the results. These are not clearly explained in detail.

Antoniotti and Mishra6 tested the usage of the system
with a train of two legs: the rear and front legs. The state
machine which represents the behaviour of a leg was outlined
and unregulated verification of the property similar to the
one explained in Section 5 (i.e., states which should be
avoided) gives NIL result, which states that the property
is not satisfied. In the case that there are some states that
are undesirable, the model checker outputs those states
which are removed from the desired behaviour. The following
shows an example of the results:

   CMUCL 7> (omega-op K legs uncontrollable-events)
   ;;Debugging deleted...
   >>OMEGA(0): removable states = ((D1 SL2) (SL1

D2))
   �������
   ;;Debugging deleted...
   >>OMEGA(1): removable states = NIL
   #<Representation for the approximation to K>
   CMUCL 8>
Belta1, et al. provide incomplete answers and also

highlight problems and challenges to answer the following

question: �can a computational framework allowing for
specifying such a task in a high-level, human-like language,
with automatic generation of provably correct robot control
laws be developed?� These problems and challenges are
centered around the concept of discretisation which can
either be environment-driven or control-driven. In the latter,
an environment is represented by linear temporal logic at
implementation level. This representation poses a number
open questions. It is not clear as to which is the best
specification language to use, that is, whether to use LTL
or CTL? This is a problem since there are high-level specification
tasks which cannot be expressed in LTL or vice versa CTL.
In addition, a too expressive temporal logic might affect
the performance of the analysis. For dynamic mobile robots,
it might not be possible to execute strings over partitioned
regions as in environment-driven discretisation. The best
approach is to do the discretisation at a controller level.
The idea behind control-driven discretisation is to divide
the system into subtasks e.g., sensing modality and the
behaviour of each subtask make up words in motion description
languages (MDLs)34. The approaches in control-driven
discretisation include: control quanta, motion primitives
and feedback encoding. Other low-complexity methods use
experimental data to mimic, for example, the behaviour of
a human operator. In multi-robot systems, the control strategies
could be influenced by studying the behaviour of flocks
of birds or school of fish which can lead to some predictable
behaviour. Alternatively such communications or control
strategies can be achieved through the use of embedded
graph grammars35.

However, some of the problems outlined in Section
3 are not addressed Belta1, et al. Instead they provide more
questions than answers! In the case of environment-driven
discretisation, when methods such as model checking analysis
and choice of specification languages are applied to a real-
world problem, the following three questions need to be
answered:

� Controllers guaranteeing robot transition from one
region to another or making a region an invariant for a
robot have not yet developed for robots with nonholonomic
constraints,

� This approach should take into account constraints
induced by digital controllers and sensors such as finite
input and output spaces, and

� Given a team of locally interacting robots, and a high
level specification over some environment, how can provably
correct (local) control strategies be generated? What global
(expressive) specifications can be efficiently distributed?
How should local interactions (e.g., message passing versus
synchronisation on common events) be modelled? In the
case of control-driven discretisation, the following questions
need to be answered:

(a) What is the best choice of motion primitives for
achieving a given class of tasks?,

(b) Given an alphabet of motion primitives, what is
the penalty associated with restricting the robots
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trajectories to those obtained through combination
of those primitives with respect to a larger set of
primitives?, and

(c) Can this symbolic approach to motion planning
be extended to multi-robot environment?

 However, some of these questions could be answered
through the proposed method presented in Section 7. The
safety and liveness properties outlined in Section 5.2 are
verified with Uppaal and all the properties are satisfied.
The detailed results are depicted by Figures in Quottrup7,
et al. and these are not shown in this paper due to limited
space. The same thing applies to work by Lozou and
kyriakopoulos10, that is, the synthesis is successfully done
and the results are presented in the form of figures.

Quottrup7, et al. use theory of timed automata to model
a motion planning problem in a multi-robot environment.
Despite the fact that the use of timed automata to model
and coordinate communication in a multi-robot environment
is a good idea, the authors of this paper ignored a number
of real issues that need to be addressed in motion planning.
These issues include: (a) the robot dynamics, and (b) the
ever-changing environment. The use of a planar grid with
static obstacles cannot be applicable to a real-world problem.
The approach to motion planning in this paper is more
about verification than motion planning issues such as
motion algorithms, task planning, complexity and completeness,
computational geometry, etc. The method proposed in Section
7 also uses theory of timed automata, but the dynamics
of robots communicating in real-time and operating in an
ever-changing environment are taken into account.

Fainekos8, et al. generated continuous trajectories
which satisfy temporal logic formulas. This is achieved
through three steps:

� the decomposition of workspace into cells19,20

� the use model checking NuSMV21 to generate plans
for discrete motion planning that satisfy LTL properties,
and

� the generation of continuous trajectories that satisfy
the specified LTL properties.
This is a good approach that gives some hope that

one day people will be able to interact with mobile robots
safely. However, there are some concerns that need to be
addressed to achieve this goal and this includes the use
of model checking algorithms without any modification.
This is because when model checking tools such as SPIN
are used, these are likely to generate unnecessarily long
paths (trajectories). For example, let�s say Fig. 2 depicts
an instance of a state space (of the environment) that is
used to generate a path that satisfies some LTL propertyj ,
(i.e., ][ip  |= )( jØØ  as in Section 5). If model checkers, that
employ a nested depth first search algorithm are used to
compute strongly connected components (SCC) with an
accepting cycle23 (as shown in Fig. 2), the trajectory might
be: EDCBA ®®®® , where B represents some million
of states from the initial state A. But, the shortest trajectory
is: EDCA ®®® , from the initial state A. It is clear that

the use of model checking algorithms without any modification
might affect the performance of the synthesis process.

The problem formulation and method summarised in
Section 5 facilitate the synthesis of the following properties8:

� The requirement is to visit rooms in no particular order,
and it is formally defined as (àr

1
Ùàr

2
Ùàr

3
Ùàr

4
Ùàr

5
Ùàr

6
).

The generation of a trajectory by NuSMV is fast and
the synthesis with MATLAB takes not more than 15s.

� The requirement is to visit room r
2
 then room r

1
 and

then cover rooms r
3
, r

4
, r

5
 while avoiding obstacles

o
1
, o

2
 and o

3
. The path is generated with SPIN. It is

not mentioned how long each process takes, but the
figure showing the environment and the path is shown.

� The requirement is to start in a white room and go
to both black rooms. The environment for this requirement
consists of 1156 rooms and its discrete abstraction
consists of 9250 triangles. The path generation takes
about 55s with NuSMV and the controller synthesis
with MATLAB lasts for about 90s.
Kress-Gazit9, et al. presented some promising results

in using temporal logic in motion planning. Robots use
sensors to gather information about their surroundings
and GR(1) formulas are appropriate in representing this
interaction. Since GR(1) is a class of LTL, if the same type
of logic can be derived out CTL* a more robust and expressive
logic can be found to synthesise many requirements in
robot motion planning.

The method presented by Kress-Gazit9, et al. is tested
with two examples: (i) single robot-nursery scenario and
(ii) multi robot�search and Rescue which are outlined as
follows:

� The first example states that; �starting in region 1,
keep checking whether a baby is crying in region 2
or 4. If you find a crying baby, go look for an adult
in regions 6, 7 and 8. Keep looking until you find him.
After finding the adult, go back to monitor the babies
and so on..� It takes 2 seconds to synthesis an automaton
that realizes the requirement and the automaton has
41 states.

� The second example states that; �In this search and
rescue scenario, we employ two UAV�s that continuously
search regions 1, 2, 3, 7 and 8 for injured people. Once
an injured person is found, a ground vehicle (ambulance)

 
A 

C 

E D    B 

Figure 2. A graph representing a state space.
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goes to the person�s location and helps, the ground
vehicle does not move. . .� In this case, it takes about
60 s to synthesis an automaton which consists of 282
states.
Loizou and Kyriakopoulos10, also presented a good

methodology in using temporal logic to synthesis motion
planning controllers. The main concern was the refinement
of the LTL formula if the largest non-blocking sub-automaton
is empty. This concern is the same as the one that is highlighted
by Fainekos8, et al., where model checking algorithms are
used without modification to fit the problem at hand (i.e.,
temporal motion planning). The refinement of the LTL formula
might increase the number of states for the automaton and
thus affect the performance of the synthesis.

7. SUGGESTED APPROACH
In order for people to live and interact with robots,

the goal is to make them able to perform complex tasks
effectively and safely. This section presents a methodological
approach that addresses most of the problems discussed
in Section 6. Solutions to these problems are likely to bring
the goal close to reality. A layered top-down framework
is proposed and it consists of three main layers: (i) the
formal specification layer, (ii) synchronisation layer, and
(iii) planning and control layer. Figure 3 depicts an overview
of the framework.

7.1 The Three Layers
� First Layer: The formal specification layer enables

human beings to interact with a mobile robot using
the human-like specification languages, referred to as
formal specification languages. These specification
languages are expressed in modal logics such as LTL
23, CTL4, and TCTL5,36. One of the problems that need
an attention at this layer is the expressiveness of a
formal specification language. All the aforementioned
temporal logics express different user requirements,
i.e., there are requirements that are expressed in LTL,
but cannot be expressed in CTL and vice versa. This
is one of the problems mentioned by Belta1, et al. The
proposed approach, at this layer, is to study common
user requirements for interacting with mobile vehicles
and select a subset of temporal logic formulas from
each temporal logic that addresses the requirements.
This approach is likely to cover most, if not all, of
the user needs to facilitate an effective and safe interaction
of humans and mobile vehicles.

� Second Layer: The synchronisation of different temporal
logic formulas into a synchronised product automaton.
This automaton represents the discrete desired behaviour
of the mobile robot due to its surroundings. The
synchronizer outputs propositions of the current behaviour
of the robot, the examples include: �obstacle = 20 (i.e.,
the vehicle is 20 m from an obstacle)�, �TJunction=true,
(i.e., the robot is at a T-junction)�, �Stop A_time=15,
(i.e., the robot stays at Stop A for 15 min)�, etc. The
true values of these propositions are synthesised from

sensory data. This approach of outputting propositions
instead of automaton given by is likely to improve the
performance of a motion planner. The motion planner
only processes a few propositions instead of the entire
synthesised automaton. The problem of multi-robot
communication, which is also mentioned by Belta1, et
al. can also be addressed at this layer, that is, the
synchronizer can keep a synchronised behaviour of
multiple mobile vehicles and outputs the desired
propositions to different motion planners for each
vehicle.

� Third Layer: Planning and control of a mobile vehicle.
The layer involves two types of planning: the global
path planning and local motion planning. In the latter,
the well known algorithms such as A* can be used,
while in the former some modified existing techniques
such as rapidly-exploring random trees (RRT)38 can be
used to compute trajectories at real-time between path
coordinates provided by global path planning. The
modified algorithm will take as an input atomic propositions
from the above layer (the synchroniser) and outputs
trajectories (velocities, directions) based on the true
values of the propositions. The control part of the
layer can also use the well studied control techniques
such as feedback controller policy39.

7.2 Synthesis
One of the goals of the proposed approach in temporal

motion planning in this paper is to make the synthesiser
as expressive as possible. The development of a distributed
synthesiser for the temporal logics LTL, CTL, CTL* and
TCTL is likely to achieve this goal. The temporal logics
LTL and CTL presented in Sections 4 are contained in the
CTL* temporal logic36. Therefore, the syntax and semantics
of the CTL* are assumed to be intuitively clear from that
of the CTL as these are both interpreted on branching
models. The following examples show some of properties
which can be expressed in one temporal logic, but not the
other:

a) :][ qFpGFA Þ  This is an LTL formula for which an
equivalent formulation of CTL does not exist. The
formula states that if p holds infinitely often then q
will eventually hold. This property is very important
in a multi-robot environment, especially where robotic
agents communicate over the network. That is, if one
agent is infinitely often sending a message to another
agent, the recipient agent will eventually receive it.

b) :pEFAG  This is a CTL formula for which an equivalent
formulation of LTL does not exist. This formula states
that there is a path (trajectory) for which p holds
irrespective of the current state. This is also an important
property in robotics, where for instance, a robotic
system can recover from an error state.

c) :5 qAFpEG <Þ  This is a TCTL formula for which

an equivalent formulation of both CTL and LTL does
not exist. Both CTL and LTL deal with qualitative
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temporal properties and cannot express quantitative
timing constraints. This is a punctuality requirement.
For example, this may state that if a robotic agent has
sent a message, it receives a reply within five units
of time.
These are some of the properties to be synthesised

from our proposed framework. However,  Bair and Katoen36,
stated that the model checking of CTL* is hard. Model
checking is an automatic verification technique for finite
state concurrent systems and our approach is similar to
developing model checking algorithms, though the output
is not the same as in model checking. On the other hand,
Fainekos40, stated that the complexity of model checking
CTL* is the same as model checking the LTL, the difference
is that CTL* model checking requires some additional
bookkeeping as it combines both CTL and LTL.

To synthesise an automaton A that satisfies a certain
requirementj during motion planning, the states of the
automaton are computed on the fly due to the changing
environment (i.e., the workspace). The set of these states

is formally defined as [ ][ ] ),(|{ sASsA Î=j ^%
s

}j

Where, ),,,,( 0 LabelAPRSSA =  is a Kripke structure. The
computation of [ ][ ]Aj  has its roots in a fixed point theory36

and the following rules are applied to determine these
states. Let j  and y  be CTL* (or TCTL) formulas and p

be atomic proposition (i.e, APp Î ), then:

Where, )(sR  is the successor state of Ss Î  and Z is the
powerset of  S (i.e., 2S) and F(Z) is a recursive function
that terminates when either a greatest fix-point or a least
fix-point is reached. The computation of these sets of
states requires a lot of computation and an intelligent
autonomous system is proposed.

7.3 Intelligent Mobile Platform
Centralised systems have disadvantages that make

these unsuitable for large-scale integration, including high
reliance on centralised communication, high complexity,
lack of scalability, and high cost of integration. The use
of distributed intelligence system technologies avoids these
weaknesses. Distributed intelligence systems are based
on the use of cooperative agents, organised in software
components that independently handle specialised tasks
and cooperate to achieve system-level goals and achieve
a high degree of flexibility. By distributing the temporal
motion planning algorithms, it is possible to achieve greatly
improved robustness, reliability, scalability, security, and
safety in mobile robots. Key to achieving these benefits
is the use of mobile agent system technologies that establish
a peer-to-peer environment to enable coordination, collaboration,
and cooperation within the network. The proposed framework
shown in Fig. 3 is implemented on top of the mobile intelligent
platform.

Figure 3. A proposed framework of a symbolic motion planning.
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logics to synthesise automata that realise some complex
requirements in robot motion planning. The procedure is
similar to that one of the fourth paper with some differences
in the methodology and the temporal logic used. Some of
the problems discussed in Section 5 are addressed by a
proposed framework briefly presented in Section 7. The
framework follows a top-down layered approach and consists
of three layers: (i) the formal specification layer, (ii) the
synchronisation layer, and (iii) the planning and control
layer. The framework is also proposed to be implemented
on top of an intelligent mobile platform. The reason for
this choice is due to the advantages provided by distributed
architectures such as robustness, reliability, scalability,
security, and safety.
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