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1. INTRODUCTION
Radiation can be defined as the energy emitted by a 

body in the form of rapidly spreading waves or particles as it 
moves from a higher energy level to a lower energy level. The 
most common use of the word ‘radiation’ refers to ionising 
radiation. The other class of radiation is the non-ionising 
type that which is relatively less energetic and does not cause 
removal of the atomic electrons. Sound waves, visible light, 
and microwaves are some of the common ionising radiations. 
A radioactive material is a material that emits ionising radiation 
of any of the three principal types i.e., alpha, beta and gamma 
radiation, which have enough energy to displace electrons 
and cause ionisation in matter. The penetrating power of the 
above particles governs the amount of damage the radiation 
can cause. Among different types of ionising radiations, 
gamma rays are most widely studied for their applications 
in the field of agriculture, medicine and industry1. Ionising 
radiation presents immense applications and can be potentially 
exploited to improve production and quality of agriculture 
produce. Ionising radiations such as high-speed electrons and 
gamma rays, produce highly reactive free radicals which can 
cause denaturation of DNA and RNA, the genetic materials, 
and thus, influence cell integrity and plant metabolism. 

 Ionising radiation that encompass high energy gamma 
ray, presents immense potential application in various fields of 
agriculture. These are helpful in sterilising and improving shelf 

life of agri-produce to benefit their export and import2. Among 
different forms of electromagnetic radiations, gamma rays are 
more penetrating and potentially the most energetic radiations 
(10 keV to several hundred kilo electron volt)3. Gamma rays 
alter the biological and physiological characteristics4, by 
producing ROS on interactions with the water or cellular 
molecules of the exposed material3. Gamma rays bring about 
ultrastructural and metabolic changes in the chloroplast 
and atioxidative defence activity to effect the carboxylation 
process and dynamics of the source-sink relationship3,5-7. 
High intensity gamma rays affect the carbon metabolism and 
pigment system efficiency in the chloroplast8 to elevate the 
photolytic damage and reduce the photosynthetic efficiency. 
Gamma rays can be exploited to generate favourable changes 
in plant’s morphology, anatomy, biochemistry and physiology 
to enable abiotic stress tolerance which however, will depend 
on the plants the dose of irradiation used9. 

1.1 Gamma Irradiation and Seed Yield and Quality 
Every invention have two sides one is positive and other 

is negative similarly gamma radiations at lower doses shows 
positive effect and higher doses shows negative effect on 
growth and development. Mokobia and Anomohanran10 found 
the positive effect of gamma irradiation at 0.15 kGy. Using 25 
krad dose of radiation Chauhan11, et al. identified high yielding 
barley mutants while at higher doses an inhibitory effect of 
gamma radiation on yield and yield attributes was recorded 
by Siddiqi12, et al. In another experiment with variable N 

Gamma Ray Irradiation for Crop Protection Against Salt Stress

Pankaj Kumar#, Vasundhara Sharma#,  Poonam Yadav!, and Bhupinder Singh!,*

#Division of Plant Physiology, Indian Agricultural Research Institute, Delhi - 110 012, India 
!Nuclear Research Laboratory, Indian Agricultural Research Institute, Delhi - 110 012, India 

*E-mail: bhupindersinghiari@yahoo.com

ABSTRACT

Legumes have tremendous dietary value for human nutrition. However, the productivity of food legumes is 
always compromised owing to their insufficient ability to tolerate abiotic stresses such as drought or water logging, 
marginal soil, low/high temperatures and salt stress. Stress induces changes at the morphological, physiological, 
biochemical and molecular level which are consequently manifested in terms of reduced seed yield and quality. Salt 
stress is one of the most important constraints to crop production particularly in the arid and semi-arid regions of the 
world. Low dose of ionising radiation like gamma ray is reported to induce growth and several other physiological 
attributes in non-legume and legume crops. Relationship between seed gamma irradiation and salinity stress response 
could be related to favourable maintenance of gas exchange attributes (Pn, gs and E), 14C partitioning, activity of 
antioxidative enzymes (SOD, CAT and POX), membrane stability index (MSI) K+ to Na+ ratio, proline and glycine 
betaine content.  One or more mechanisms may contribute simultaneously towards salt tolerance response of crop 
plants. The present review critically analyses the effect of gamma ray irradiation on growth and development of 
legumes under salt stress and evaluates the contribution of various physiological and biochemical mechanisms 
towards radiation mediated alleviation of salt stress response. 

Keywords: Salt stress; Legumes; Gamma rays; Irradiation; Tolerance mechanisms

Defence Life Science Journal, Vol. 2, No. 3, July 2017, pp. 292-300, DOI : 10.14429/dlsj.2.11670 
 2017, DESIDOC

Received : 20 April 2017, Revised : 05 June 2017
Accepted : 10 June 2017, Online published : 02 August 2017

REVIEW PAPER

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Defence Life Science Journal

https://core.ac.uk/display/333718748?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


293

KUMAR, et al.: DEf. LIfE SCI. J., VOL. 2, NO. 3, JULY 2017, DOI : 10.14429/dlsj.2.11670

application Subhan13, et al. observed an increase in radiation 
effected grain yield in barley at 10 krad dose of gamma ray 
exposure. Positive effect of low dose radiation (10 krad or 
below) on plant growth and development have been evidenced 
by several workers14-16. Even seed quality is remarkably 
affected by gamma irradiation. Kattak and Klopfenstein17 
showed that a radiation exposure of 5-15 kR decreased plant 
height but increased yield and nutritional quality of cereal 
grains in terms of protein and contents of essential amino 
acids, which suggests that even such high dose of gamma ray 
seed irradiation can be used to develop mutants for growth 
related desirable traits18. These results find support from the 
work of Mahdi19, et al. who used gamma ray exposure of seeds 
to improve nutritional quality of broad bean. Singh and Datta20 
also showed an improvement in grain protein, total nucleic 
acid and total carotenoid content upon gamma ray treatment at 
low doses of seed irradiation. However, they reported a lower 
starch content in the irradiated grains than the unirradiated 
control, which they attributed to a possible poor sucrose to 
starch conversion. A similar increase in protein content was 
reported by Mashev21, et al. and Coksel22, et al. at radiation 
dose upto 0.15 kGy, while a decline in total nucleic acid level 
was reported by Maity23, et al. at higher doses of radiation 
exposure i.e., between 1 kGy to 20 kGy.

1.2 Radiation Effects are Dose Dependent
There are innumerable reports describing the physiological 

effect of gamma ray exposure across a variety of plant 
species3,5,24,25. These physiological changes can be measured in 
terms of an enhanced or an inhibited seed germination, seedling 
vigor and phenotypic changes24,25. While a low level of radiation 
exposure in dose range of 2.5 Gy - 5 Gy can improve cell growth 
and development, rate of seed germination rate, activity of rate 
limiting metabolic enzymes, abiotic and biotic stress tolerance 
and economic yield26, a higher gamma ray dose above 500 Gy 
can disrupt the synthesis of proteins and plant growth hormones 
and disturb the hormone balance, water relations and leaf gas 
exchange characteristics27. Gamma irradiation at higher dose 
can be successfully used to develop yield efficient wheat plant 
types rich in proteins and amino acids of consequence to human 
nutrition18. Din28, et al. determined inter-varietal variation in 
radiation response of wheat to gamma ray exposure and found 
its deleterious effects at dose 30 Krad.

 
1.3 Salinity Stress

Soil salinity is a major agricultural challenge and more 
than twenty per cent of the cultivable soil and half of the 
irrigated soils globally are challenged by salinity29. In fact, it 
is a threat to irrigated agriculture in many arid and semiarid 
areas of the world. Build up of salt challenges production 
efficiency of a crop even when other conditions of growth 
are congenial. Plants respond to high salt availability in the 
soil by effecting changes at the molecular, biochemical and 
biochemical level30. Soil salinity has an antagonistic influence 
on the physiological and metabolic processes that consequently 
cause significant reduction in plant growth and yield31. The 
constituents of aggregate dissolvable salts in soils are normally 
sodium (Na+), calcium (Ca2+), and magnesium (Mg2+) and 

the anions are chloride (Cl-), sulfate (SO4
2-) and carbonate. 

However, Na+ overwhelms the alerts and along with Cl– and 
that NaCl constitutes 50–80 per cent of the aggregate solvent 
salts32. High salt causes water stress in plants by decreasing the 
osmotic potential of the soil, besides causing severe ion (Na+) 
toxicity. Most of the pulse crops such as pigeon pea, lentil, 
mung bean, black gram and chickpea are highly sensitive to 
salinity33. Salt stress may also effect the growth by altering the 
soil nutrient balance and nutrient availability for plant uptake. 
However, plants do exhibit inter and intra species variation in 
salt tolerance which might be related to their ability to prevent 
or alleviate the salt effected physiological and molecular 
damage34. Conventional plant breeding approaches have not 
been able to successfully transfer the salt tolerance traits into 
the target species.

1.4 General Response of Plants to Salinity
 Levitt35 classifies the adverse effects of salts on plants into 

three categories which included (a) osmotic stress, (b) specific 
ion effects, and (c) nutritional deficiency. If salt stress lowers 
the external water potential below that of the cell, it exposes 
the cell to a secondary water deficit stress. To distinguish this 
from salt stress, and because it leads to osmotic dehydration, it 
is called osmotic stress35. It has also been called ‘physiological 
drought’. Salinity related crop growth inhibition, in absence of 
ionic influence, is majorly related to the osmotic potential of the 
roots in the soil solution36. Decreasing osmotic potential in the 
root zone soil has the net effect of reducing the availability of 
water to plants. Therefore, plants growing on saline soils often 
appear to be suffering from drought. An excess of specific ions 
may be toxic to various plant physiological processes including 
nutritional disorders. Ions contributing appreciably to specific 
ion effects include Cl, S04, HC03, Na, Ca, Mg. In combination, 
these ions may contribute to osmotic effects. At equal osmotic 
concentrations to that of PEG, NaCl depresses the germination 
of legume seeds much more than does mannitol30. Specific ions 
may influence respiration as found in pea roots37. High sodium 
can cause calcium and magnesium nutritional deficiencies38. 
There have been many reports of salt induced decreases in 
several metabolic processes such as respiration, protein and 
nucleic acid synthesis30,39-41.

The changes in nitrogen metabolism are usually 
accompanied by the accumulation of ammonia, mines, diamines 
(putrepcene, cadavarine), amino acids (hydroxyproline, proline, 
leucine, isoleucine, alanine, phenylalinine and tyrosine) which 
can have an adverse effect on the physiological processes 
of the plant30. The actual toxic substances vary from species 
to species, depending on the metabolism of each species. 
Reports have shown that potassium deficiency also leads to an 
accumulation of putrescene42. However, the problem of soil 
salinity has been addressed superficially so far and most of the 
research results express it as a cause and effect relationship and 
do not decipher the underlying mechanisms that effect the salt 
related retardation of plant growth and development43.

 
2. SALINITY TOLERANCE IN LEGUMES 

Plants ability to survive on highly alkaline/ saline soils is 
measured in terms of salt tolerance capacity. Salt tolerance of 
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crop plants is measured as decline in economic yield under salt 
stress relative to the economic yield under non saline control 
soil. A yield decrease of 50 per cent is usually considered 
as the cutoff point for evaluating the relative salt tolerance 
of crops (ECe 50 per cent)44. Pulse legumes are regarded as 
highly susceptible to soil salinity44-45. However, there exists a 
huge inter and intra species variability in salt stress tolerance 
which needs to be deciphered and exploited. Among cultivated 
legumes, Sesbania cannabina is most tolerant46 and can tolerate 
and grow at salinity levels of 13.2 dS/m (ECe SOX), while 
Cicer arietinum is the most sensitive among legumes with 
tolerance only up to 3.0 dS/m (ECe 50 per cent) salinity level. 
Crop sensitivity to salinity stress varies depending on the 
growth stage. In Alfa Alfa, salt tolerance was greater during 
germination than during subsequent growth47, whereas in P 
vulgaris it was found that germination was more sensitive 
compared to seedling growth stage9. Gamma ray mediated 
alleviation of salt stress has been reported in cowpea48 and 
mungbean, which appears to have been caused by the induction 
of novel proteins (de novo synthesis) and/or the disappearance 
of some other proteins and/or the over- expression of a 
existing proteins. Salinity may stimulate the growth in some 
species. In Lupinus luteus, there was 50 per cent fresh weight 
stimulation (over its control) at 50 mM NaCl (5 dS/m) salinity 
level49. for a few crops, variation to salinity tolerance within a 
variety has been reported. In Medicago sativa, large variation 
in salt tolerance within the variety CUf 101 was reported50. 
In Trifolium alexandrinum and T. pratense33 also a similar 
variation has been reported. The adverse effect of salinity was 
attributed to specific ion toxicity. In lentil51, germination and 
growth were severely inhibited by MgSO4, followed by MgCl2, 
while in chickpea was less affected by Na2SO4 salinity than 
NaCl salinity52. Climatic factors may significantly influence 
plant response to salinity, with temperature and atmospheric 
humidity being most important. A negative relationship 
between salt tolerance and growing temperature has been 
suggested53. Gamma irradiation improved the germination and 
plant vigor in mungbean under salt stress when compared with 
respective salt treatment controls.

2.1 Mechanisms of Salinity Tolerance 
Under salt stress condition, uptake of electrolytes such 

as Na and Cl can help in alleviating the negative effects of 
low external water potential. However, an excess uptake 
and intracellular concentration of Na and /or Cl, can inhibit 
plant growth. In this potentially disastrous situation, different 
species may develop diverse mechanisms of adaptation36,54. 
Halophytes like vacuolated salt water algae maintain cell 
turgor by maintaining a favourable Na/Cl ion balance55. These 
halophytes generate turgor by high internal sodium and chloride 
concentrations. These plants tolerate high Na/Cl concentrations 
by preferentially storing them in the cell vacuoles and thus 
maintain their low cytoplasm concentrations. On the other 
hand, neutral solutes like proline, glycine, betaine and sucrose 
contribute to the osmotic potential of cytoplasm56-58. Greenway 
and Munns54 suggested that salt susceptible plants exhibit 
water deficit and accumulate excess concentrations of Na/Cl. 
These reports give support to the hypothesis that salt sensitivity 

is essentially caused by ion excess in the tissues and by the 
plants inability to secure these excessive ions in a unreactive or 
inaccessible form. A higher accumulation of Na/Cl ions causes 
leaf chlorosis to consequently inhibit plant growth leading to 
its death59. Sensitivity towards high chloride and sodium in 
leaves is much greater for non-halophytes than for halophytes. 
Extremely salt tolerant halophyte ‘Suaeda maritime’ can 
survive on extremely high concentrations (600 mM - 650 mM) 
of NaCl and can withstand a Na/Cl concentration of about 
300 mM in the mesophyll cell. In non-halophytes, growth is 
severely reduced when ion concentrations in the leaves are 
as low as 100 mM chloride54. It is mooted that halophytes, 
maintain a lower concentrations of sodium and chloride in 
the cytoplasm compared to those in the vacuole, which could 
be responsible for the ability to tolerate 600 mM sodium and 
chloride concentrations internally without any disturbance in 
the metabolism30. In another study by Song60, et al. two salt-
tolerant rice mutants out of 1500 M6 mutants, induced by 
gamma-irradiation were selected for in vivo and vitro salinity 
screening for electrolyte leakage (EL), malondialdehyde 
(MDA), antioxidant, chlorophyll, total amino acid, and Na+/
K+ contents. It was found that the mutants were showing 
significant fold change of 2.7 over wild type for K+/ Na+ ratio 
compared to other traits.

2.2 Role of Cytoplasmic Organic Solutes in Salinity 
Tolerance
Role of organic solutes in maintaining, osmotic balance, 

cytoplasmic integrity and function under low electrolyte 
availability in the cytoplasm is suggested61. On the other hand, 
under high electrolyte availability condition, these organic 
solutes have a protective role on the enzyme proteins29. Organic 
solutes which increase at high salinity in many species include 
glycine betaine, proline62 and sucrose63. Many amino acids and 
carbohydrates, at 0.1 M to l M, mitigated or prevented the loss 
of activity of several enzymes64. Glycine betaine (500 mM) 
alleviated the inhibitory effects of 200 mM NaCl on malic 
enzyme isolated from barley62,65. Sairam and Tyagi29 illustrated 
osmotic potential of various organic solutes and evidenced 
that Plantago maritime, which does not accumulate proline 
or glycine betaine, showed a substantial increase in sorbitol 
concentration under increasing levels of salinity i.e., 0 mM to 
400 mM NaCl. Greenway and Munns54 showed that another 
organic solute proline has important role in salt tolerance rather 
than in maintenance of the plant growth. However, contrary to 
the above, in three halophytes, salt tolerant and sensitive species 
accumulated substantial quantities of proline (greater than 214 
mol/g fW) only when growth is severely reduced and thus, 
challenge the role of proline in imparting salt tolerance66.

2.3 Regulation of Na and C1 Concentrations in the 
Shoot
In halophytes, inorganic ions (Na, C1) are used for 

turgor maintenance through effective compartmentation 
into the vacuole30. The above mechanism is coupled with 
salt excreting mechanisms in the shoot system which could 
effectively excrete the excess sodium and chloride that could 
not be compartmentalised in the shoot tissues and would 
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effectively prevent ‘ion excess’. The key factor for the 
tolerance in the non-halophytes to salinity is a synchronisation 
of ion compartmentalisation with regulated ion transport to 
the shoot55. Most salt sensitive plants possess an inefficient 
compartmentalisation of Na/Cl ion and thus, end up with their 
high cytoplasmic concentrations in the leaves.

 
3. RESPONSES OF DIFFERENT GENOTYPES

Halophytes that can tolerate high salt stress exhibit a higher 
rate of electrolyte uptake by root, their translocation to the shoot 
and their accumulation in the photosynthetic organ i.e., leaf67. 
Comparisons between species with extreme differences in salt 
tolerance support the view that high electrolyte concentration 
in leaves is an adaptive trait. Soussi68-69, et al. reported negative 
effect of salt stress on growth and yield of Cicer arietinum. 
A high level of Na/K was measured in both salt sensitive 
pepper and salt tolerant sugarbeet at 0 mM as well as 100 mM 
NaCl in the external solution. Role of high cellular electrolyte 
concentration in imparting salt tolerance was also shown in 
closely related tomato species70. Asvathappa and Bachelard71 
showed that a relatively superior Cl tolerance of Casuarina 
equisetifolia (tolerant) than C. cunninghamiana (moderately 
tolerant) was caused by its low root uptake and translocation 
to the shoot and that the root of the tolerant Casurina did 
not accumulate high concentrations of chloride. Differences 
between salt resistant and salt sensitive species of Plantano 
were located in the ion secretory system which was involved in 
the ion translocation from the root to the shoot rather than in the 
primary uptake process through the plasmalemma of the cortical 
cells37. Relatively better salinity tolerance of the Triticeae 
species depended on the ability of the plant cell to exclude Na 
and Cl and maintain high K concentration in the cytoplasm72. 
The salinity tolerance in perennial Triticeae members such as 
Leymus sabulosus and Elytrigia, was associated with an ability 
to tightly control osmotic adjustment by strictly regulating the 
influx of sodium and chloride. A genetic basis was established 
for the large differences in chloride concentrations in leaves 
of chickpea73. The relationship between high leaf Na+, Cl-, 
Ca2+ and K+ concentrations and salt susceptibility cannot 
be generalised as evident from the work of Greenways and 
Munn54, who found no consistent relationship between salt 
tolerance and Na concentration in salt tolerant cultivors of rice 
(Oryza sativa). Varietal differences in salt tolerance, despite 
similar ion concentrations in the shoots, may be related to 
differences in : 
(a) Tolerance to low external water potential, 
(b) Differences in ion compartmentation in the leaves, 
(c) Ion compartmentation in roots, 
(d) Ion compartmentation between leaves of different ages54. 

Tabosa74 used a very high range of soil electrical 
conductivity between 14 dS m-1 to 26 dS m-1 to identify salt 
tolerant sorghum line, where phenotyping based on physiological 
characters further helped in classifying the sorghum genotypes 
into salinity tolerant and susceptible groups.

 
4. INTERACTIVE EFFECT OF GAMMA 

RADIATION UNDER SALT STRESS 
Gamma irradiation at low dose is reported to induce 

growth and vigour, while salt stress on the other hand causes 
a reduction in growth and vigour. Role of gamma irradiation 
to negate the negative effect of salt stress on plant even if it is 
partial, has assumed significance75. Gamma radiation dose of 
450 Gy promotes genetic change in plants of sorghum varieties 
V1 (467-4-2), V2 (02-03-01) and V3 (Sudan4202), which were 
assessed using SSR markers while a dose of 50 gray was shown 
to improve germination index and root length of Arabidopsis 
under salt stress75. The interaction between gamma radiation 
induced salt tolerance response of crop plants may operate at 
various level through the involvement of multiple attributes29.

4.1 Gamma Radiation and Mineral Nutrient 
Uptake 
Among the essential mineral nutrients, potassium (K) is 

known to play an important role in maintaining efficient water 
relations, carbon metabolism and activity of key enzymes 
regulating several biological pathways and is also regarded as 
a major production constraint76. A significant increase in the 
concentration of fe, Mn, Zn, and Cu was measured in wheat 
upon gamma irradiation treatment when compared to non-
irradiated control77. Gamma treated plants showed significant 
increase in potassium, phosphorus, cellulose and total 
nitrogen18. further, a change in rooting characteristics upon 
gamma ray exposure impacted the total uptake of different 
macro and micro mineral nutrients.

 
4.2 Gamma Irradiation and Oxidative Damage 

Plants perceive radiation exposure as any other type of 
abiotic stress and respond by inducing the oxidative stress signal 
which enhances the production of reactive oxygen species 
(ROS) which are deleterious and can react with structural and 
functional organic molecules such as carbohydrates, proteins, 
fats, nucleic acids to cause cellular disturbance7,78-79. However, 
plants can quench these damaging ROS by adaptive induction 
of antioxidative defence system, which removes these free 
radicals and contains cellular damage. In addition, a large 
number of defence related genes are triggered to modulate the 
metabolic pathways favourably.

 
4.3 Gamma Irradiation and Activity of Functional 

Enzymes 
Gamma radiation affects the activities of various enzymes 

involved in various metabolic pathways. An increased radio 
sensitivity of starch to amylase80 could cause a decline in starch 
concentration of irradiated to non-irradiated grains. In wheat, 
amylolytic degradation of starch increased with an increase 
in the dose of gamma irradiation, however, the activities of 
α and β-amylases did not change significantly81-82. Rribulose-
1,5-bisphosphate carboxylase (RUBISCO) which accounts for 
more than thirty percent of the total leaf nitrogen83 and catalyses 
the production of two molecules of 3-phosphoglyceric acid 
(PGA) by a reaction between carbon dioxide and RUBP84, is a 
sensitive enzyme and declines both in terms of Rubisco proein 
and Rubisco activity under stressful condition of growth85-

86. However, Rubisco activity did not decline in response to 
gamma irradiation treatment in wheat and that an increase in 
total carboxylation efficiency was measured in comparison to 
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the unirradiated control at low doses. Nitrate reductase activity, 
on the other hand, declined even at low doses87.

4.4 Radiation Protection Strategies Under Salt 
Stress
Proline synthesis, implicated in salt tolerance mechanism 

across crops88 was reported to be higher in the irradiated plants 
than the unirradiated ones78. Accumulation of proline, an 
osmolyte, is regarded as a protective mechanism against salinity 
stress, wherein it protects the enzymes against degradation 
and preserves their structural and functional activity. In vitro 
experiments have confirmed the involvement of proline in 
providing radiation protection as well as protection against 
several other abiotic stresses such as high and low temperature, 
salinity, alkalinity, etc89. A radiation dose dependant increase 
in tissue proline level has been reported90. In another study 
with chickpea, gamma irradiated plants showed significantly 
lower Na levels even at highest of NaCl stress (fig. 1). A 
lower Na/K ratio under gamma irradiated treatments suggests 
a lower uptake and root-shoot translocation of Na which can 
be exploited to impart/ improve salt tolerance capacity of crop 
plants. 

Figure 1. Na and K concentration in stem sap of chickpea 
exposed to gamma irradiation and salt stress.

4.5 Dissecting the Radiation –Plant Relationship at 
Molecular Level
Gamma rays have immense application in agriculture 

from post harvest preservation to development of desirable trait 
specific promising mutants. However, these applications are 
dose dependant and it is important to determine LD50 values. 

Gamma irradiation can be used to create genetic variability 
among the segregating population to identify trait positive 
mutants. Lukanda91 expanded the genetic base of groundnut 
using 100 Gy gamma irradiation and then used ISSR markers 
to differentiate the developed groundnut populations. It would 
be interesting to record, if the above SSR marker can be used 
to deduce genetic pathway of leaf size and leaf area increase 
as observed in irradiated wheat plants in some earlier studies20. 
Seed gamma irradiation in a dose range of 10 Krad to 35 Krad 
in wheat, yielded mutants possessing tillers with two ears28. 
These kind of mutations, observed at 30 Krad - 35 Krad may 
appear as abnormalities at this moment but can open a new 
vistas in plant type development to propel the second green 
revolution. Qi75, et al. reported an increase in the transcriptional 
expression of genes regulating the activity of antioxidant 
enzymes and osmolyte concentrations and components of 
salt stress signalling pathway were stimulated by low dose of 
gamma in Arabidopsis grown under salt stress. 

5. CONCLUSIONS
A flowchart depicting different physiological and 

biochemical attributes that are affected upon gamma irradiation 
treatment at the tissue/cell level to consequently effect salt 
tolerance at the whole plant level are summarised in fig 2. 

Gamma radiation can complement the conventional plant 
breeding by increasing the variability base and could confer 
specific trait improvement without significantly altering crop 
phenotype. Successful utilisation of gamma rays to generate 
genetic variability in plant breeding has been reported in 
different crops. We hypothesise that pre-exposure of the 
seeds to the gamma radiation could help improve salt stress 
tolerance of crops. It is, thus, important understand the 
underlying mechanism determining plant response to gamma 

Figure 2. Schematic summary of physiological basis of salt 
stress tolerance in plants. Gamma ray induced salt 
stress tolerance operates at the three levels i.e., at 
the ionic, the antioxidative, and the osmotic level.
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radiation. Analysis also reveals that radiations have immense 
applications, however, several of its potential applications in 
agriculture in general and stress tolerance in particular are just 
waiting to be explored and exploited.
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