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1. INTRODUCTION
Humans are able to survive in almost all the environmental 

extremes of Earth due to their physiological adaptability and/
or by modification of environment itself. Some of the extreme 
environments are deserts, humid forests, hot humid coastal 
regions and high altitude (HA). High-altitude presents an 
extreme environment with hypoxia, cold, high solar radiation 
as physical stresses beside the psychological stress1. HA is 
defined to begin at 2,400 m above sea level. The air pressure 
decreases as the altitude increases which leads to hypoxia or 
oxygen deprivation (Fig. 1). 

The human body can adapt to high altitude through short-
term and long-term acclimatisation. Acute mountain sickness 
(AMS) occurs on short-term exposure to high-altitude due to 
low partial pressure. AMS can further lead to high altitude 
pulmonary edema (HAPE) and High altitude cerebral edema 
(HACE)2. Chronic mountain sickness (CMS) occurs after 
prolong stay at high altitude which leads to polycythemia3 
and hypoxemia4. Some of the common problem faced by 
people ascending high altitude are loss of appetite, fatigue, 
breathlessness, insomnia, abdominal pain, constipation, 
nausea, blisters in hands and feet5 as shown in Fig. 2. 

Hypoxia is a condition which occurs on oxygen depletion. 
Due to the lack of oxygen there is an increase in the breathing 
rate and sleep cycle is affected6. In addition, the heart rate 
increases and digestive efficiency of food is reduced, as the 

body suppresses the digestive system in favour of increasing 
its cardiopulmonary reserves; there is a decrease in the amount 
of blood flowing to digestive organs and increased blood to the 
brain, heart and lungs7.The glucose is metabolised by liver cells 
but is not able to utilise it. Associated with the depression of 
liver function will be a significant decrease in its ability to rid 
the body of metabolites or conjugate steroids. Very little work 
has been done on the effect of hypoxia on digestive system in 
a person ascending high altitude.

2. TYPES OF HYPOXIA
Hypoxia is a condition which arises by low oxygen tension 

(PO2) created either by environmental conditions like exposure 
to high altitude, or by pathological conditions such as chronic 
obstructive pulmonary disease (COPD), obstructive sleep apnea 
or severe anemia8. The traditional classification of hypoxia 
has only two subgroups based on empirical observations i.e., 
chronic and acute hypoxia (Fig. 3). Acute hypoxia response 
occurs within minutes of exposure to a hypoxic environment 
i.e., symptoms occur in first few hours–days. Some of the 
symptoms are hyperventilation, insomnia, fatigue, dizziness 
and gastrointestinal disturbances. In chronic hypoxia, the term 
‘chronic’ is used to indicate the time interval which ranges over 
weeks and months. However long term adaptation to hypoxia 
has been studied in human populations in Himalayas, Ethiopian 
and Andes over generation9. 

According to Best and Taylor10 hypoxia is classified 
into four main type’s i.e., Hypoxic hypoxia, anemic hypoxia, 
stagnant hypoxia and histotoxic hypoxia as shown in Fig. 4. 
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Hypoxic hypoxia is caused when there is low oxygen tension 
in the inhaled air as a result of which the haemoglobin present 
in the erythrocyte cannot saturate the fully saturate with oxygen 
leading to lack of oxygen in arterial blood. This is one of the 
most serious forms of hypoxia. Anemic hypoxia is a less serious 
condition than hypoxic hypoxia and it may be caused by an 
insufficient transport function of the haemoglobin. Stagnant/
Circulatory hypoxia arises when the amount of oxygen 
reaching the tissue is inadequate. This turn leads to reduced 
rate of blood circulation thereby allowing accumulation of 

carbon dioxide in the tissue. Histotoxic hypoxia is a condition 
where there is normal amount of oxygen in the blood and under 
normal tension but the cells are unable to accept oxygen from 
the capillaries. It may be produced by any agents that depress 
cellular respiration. 

3. HIGH ALTITUDE AND HYPOXIA
According to the observations made on humans a HA 

there is an initial weight loss and some of the factors that 
affects loss of weight are dysbarism, negative nitrogen balance, 
altered nutrient digestibility, increased water loss, increased 
energy expenditure, hypophagia, intestinal malabsorption11 
and change in hedonicity and taste perception12. There is an 
increase in metabolic rate at high altitude7. There are reports 
which confirmed by functional magnetic resonance imaging 
(fMRI) study that neural circuit for food craving on prolonged 
exposure to HA is reduced13.

Exposing the lowlanders to HA is a useful model in getting 
insight into physiological responses in humans to hypoxia. In 
normoxic condition, the heart produces an abundant supply of 
ATp for fat oxidation. While in hypoxic condition, there is a 
decreased proportion of energy reliance on fat oxidation and 
the use of carbohydrate increases as the energy metabolism 
turns anaerobic14. Hypoxia under severe condition has shown 
to stimulate glucose transport across plasma membrane15. 
There are studies which report that high carbohydrate diets 
are beneficial at high altitude due to its high respiratory 
coefficient (RQ) compared to protein and fat. Diets high in 
carbohydrates have shown to enhance glucose metabolism16. 
Fat malabsorption17 is significant only at altitudes below 5000 
m. 

 At HA there is increased formation of reactive oxygen 
and nitrogen species (RONS) due to decrease in pressure 
which leads to increased oxidative damage to macromolecules. 
The oxidative stress can further be enhanced through physical 
exercise at high altitude for which supplementation of antioxidant 
seems to prevent or decrease high altitude associated oxidative 
stress18. On the contrary, there are studies which suggest that 
supplementation of antioxidant supplementation does not 
attenuate HA related oxidative stress19-20. The human body on 
ascent to HA oxygen consumption increases to generate energy 
to meet body requirements. Due to low oxygen availability, 
reactive oxygen species (ROS) accumulates in mitochondrion 
as oxygen available is less to be reduced to water. ROS together 
with nitric oxide (NO) in vasculature combine to form reactive 
oxygen and nitrogen species (RONS). Exposure to high-altitude 
also leads to imbalance in the levels of vasoactive modulators 
which leads to generation of more ROS/RONS. This in turn 
leads to vascular dysfunction i.e. narrowing of lumen, smooth 
muscle proliferation and vasoconstriction exaggeration, which 
aggravates imbalance in vasoactive modulators and ROS/
RONS. Thus, this vicious cycle of oxidative stress goes on 
until the subject receives medical help (Fig. 5).

4. HYPOXIA PATHWAY
When the level of oxygen in the air is low, the wall of 

Aorta (carry oxygenated blood) has chemoreceptor which 
detects oxygen level in the blood. There are sensory nerves 

Figure 1. Classification of high altitude and percentage of       
oxygen available.

Figure 2. Symptoms experienced at high altitude.

Figure 3.  Types of hypoxia.

Figure 4. Classification of hypoxia based on exposure. 

Note: Symptoms experienced at HA can be classified into two types, i.e. primary 
symptoms or acute mountain sickness (AMS) such as headache, difficulty in 
breathing, fatigue, sleeplessness, peripheral edema i.e. swelling of hands, feet 
and face, rapid pulse rate and decreased food intake. The secondary symptoms 
are life threatening. High altitude pulmonary edema (HApE) is accumulation 
of fluid in the lungs and high altitude cerebral edema (HACE) is swelling of 
the brain which if not treated leads to coma or death.
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domains N-ODDD and C-ODDD. 
They have two proline residues 
i.e. pro 402 and pro 564 which 
are hydroxylated in normoxia. At 
the C-terminal it has two terminal- 
transactivation domains (TAD) 
i.e. N-TAD and C-TAD which are 
involved in transcriptional activation 
during hypoxic condition (Fig. 
6(b)). The hydroxylation of proline 
is catalysed by Prolyl hydroxylase 
domain (PHD) or hypoxia inducible 
factor –prolyl hydroxylase (HpH). 
To the hydroxylated proline residue 
von Hippel-Lindau (pVHL or VHL) 
tumor suppressor protein binds. VHL 
protein comprises of E3 ubiquitin 
ligase, which targets protein for 
proteosome degradation23. 

under hypoxic condition, the 
HIF-1α is not degraded. HIF-1α 
translocate to the nucleus to form a 
dimer with HIF-1β. In association 
with p300/ CBp (cAMp –response 
element- binding protein), it binds to 

hypoxia response elements (HREs) in their upstream regulator 
region up regulating the expression of HIF-target genes such 
as vascular endothelial growth factor (VEGF), erythropoietin 
(EpO), and glucose transporters (GLuT) and key glycolytic 
enzymes, including hexokinase24 as shown in Fig. 6(c).

The other pathway that affects the HIF-1 transcriptional 
activity is through the phosphatidylinositol 3-kinase/AKT 
pathway which influences HIF-1α levels through transcriptional 
regulation (in contrast to the proteasome degradation pathway) 
via the downstream effector mammalian target of rapamycin 
which inhibits FKBp12 rapamycin associated protein (FRAp)25. 
Genes that are up-regulates the increase of HIF-1α production 
and/or stability are cobalt chloride (CoCl2), Human epidermal 
growth factor receptor 2 (HRE2), Insulin like growth factor 
(IGFR), Epidermal growth factor receptor (EGFR) and proto-
oncogene tyrosine-protein kinase (SRC). Genes that down-
regulate factors HIF-1α production and/or stability include 
phosphatase and tensin homolog (pTEN) which inhibits Atk 
(protein kinase B ) , Factor inhibiting HIF-1 (FIH-1) which 
inhibits HIF-1 transcription factor and specific drugs such as 
LY294002 which inhibits pI3K26 as shown in Fig. 7. 

5.   NUTRITION AT HIGH ALTITUDE
The human habitation goes up to an altitude of 4300 m and 

the Indian soldiers are deployed to an altitude of 5800 m for 
fixed tenure. High altitude presents physical and psychological 
stress. The availability of drinking water is scarce and at the 
high altitude the vegetation is sparse. The boiling point of 
water is decreased due to reduced barometric pressure there by 
making preparation of food difficult. Studies have reported that 
there is reduction in meal size with increase in meal frequency 
and rapid satiety27. The diet rich carbohydrate are found to be 
beneficial at high altitude as they have a respiratory co-efficient 

Figure 5. Oxidative stress at high-altitude. 

which connect the aorta to the brain stem in medulla oblongata 
and carry information about the arterial blood. The carotid 
artery branches into internal and external carotid artery. The 
internal carotid artery carries blood to the brain while external 
carotid artery supplies blood to the neck and face. The carotid 
body receives blood from external carotid artery and detects 
the oxygen level. Internal carotid artery has chemoreceptors 
in carotid sinus which is more sensitive than aorta. The carotid 
sinus and the carotid body together sense the amount of 
oxygen and send the signal to medulla oblongata. The medulla 
oblongata contain sensors i.e., cardiac sensors, respiratory 
sensors and pulmonary vasculature which in increases the 
sympathetic outflow leading to increased heart rate, increased 
cardiac output and increased breath rate and constriction of 
peripheral vessels21. 

The critical mediators of adaptive responses to hypoxia 
have been identified as the hypoxia-inducible factors (HIFs), 
which regulates the expression of genes responsible for 
growth, vascular development and metabolism. HIF-1 belongs 
to family of oxygen-sensitive transcription factors22. HIF-1 is 
found in all nucleated cells which are highly conserved and it 
is regulated by the oxygen available. HIF-1 is a heterodimer, 
composed of HIF-1α and HIF-1β (Fig. 6(a)). It belongs to the 
pER-ARNT-SIM (pAS) subfamily of the basic helix-loop-
helix (bHLH) family of transcription factor. under normoxic/
normal condition, HIF-1 dimer does not exist as the HIF-1α 
produced has a half life of less than 5 min. The HIF-1β is 
constitutively present and HIF-1α level is very low. HIF-1α is 
degraded by proteosome system only in the presence of oxygen. 
In the absence of oxygen it cannot be degraded. HIF-1α (826 
amino acids) at the N-terminal consists of bHLH and pAS 
for heterodimerisation and DNA binding. It also has oxygen 
dependent degradation domain (ODDD) which contains two sub 
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Figure 6. (a) Hypoxia inducible factor 1 (HIF-1) (b) Structure of HIF-1α (c) Effect of 
hypoxia.

may decrease due to anorexia but 
it does not affect absorption28. The 
diet rich in fat have been observed 
to increase cold endurance and 
tolerance in experimental animals29. 
At the initial stages of acclimatisation 
there is weight loss i.e. loss of body 
water due to decrease in food intake 
which causes a drastic reduction in 
lean body mass30-32 and reduction of 
body fat due to the mobilisation of 
fatty acids from triglycerides pool of 
adipose tissue and it is measured by 
reduction in skin fold thickness33.

Exposure to altitude causes 
hypohydration, caused by increased 
diuresis and decreased water intake. 
Negative nitrogen balance have been 
reported at high altitude but this report 
is not reliable as the calorie intake was 
less34. To achieve a positive nitrogen 
balance the minimum intake of protein 
should be 0.96 g/kg for exercising 
men but there is increased excretion 
of protein and nitrogen at high altitude 
hypoxia35. During prolonged stay at an 
altitude of 3500 m - 4000 m, positive 
nitrogen balance was maintained 
with decreased amino acid excretion. 
The entry of amino acids into neural 
tissues and brain is modulated by the 
relative concentration of specific 
amino acids in the blood. So it would 
be ideal to design food with high 
tryptophan food to alleviate sleep 
disturbance, higher glutamic acid 
food for deterioration in cognitive 
function and higher phenylalanine/
tyrosine for hindering mood 
depression for high performance at 
high altitude36. Supplementation of 
branched chain amino acids such as 
leucine, isoleucine and valine have 
been reported to prevent muscle loss 
during trekking at high altitude37. In 
order to reduce lipid peroxidation 
caused by oxidative stress the 
supply of nutrients such as vitamin 
A, vitamin E and vitamin C as well 
as micronutrients such as zinc, iron, 
selenium, copper and manganese 
may be required in a greater amount 
at HA1. 

6. GASTROINTESTINAL TRACT AT HIGH 
ALTITUDE
The primary functions of the gastrointestinal tract are 

Figure 7. Regulation of HIF-1α.

around 1 compared to fat (0.7) and protein (0.8-0.9).The diet 
rich in carbohydrate are found to enhance glucose metabolism 
and it serves as fuel for thermogenesis. The intake of food 
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the absorption of ingested nutrients, removal of waste, fluid 
homeostasis and protection from pathogens38. The barrier 
function and the absorptive function of the epithelium 
of intestine is regulated based on oxygen availability as 
regulators of hypoxia i.e pHD and factor inhibiting HIF1 
(FIH1) are expressed in the intestinal mucosal tissue39. At 
high altitude, as the core body temperature decreases the 
gastrointestinal smooth muscle motility decreases which 
further leads to distension of colon, reduced gastrointestinal 
secretion and free acid production. Hypothermic condition 
leads to decreased splanchnic blood flow and causes a 
catecholamine-induced vasoconstriction of blood vessels. As 
the catecholamine secretion decreases leading to vasodialation 
it results in reperfusion and extravasation of blood. The 
reperfusion and associated changes alter the gastric mucosa’s 
protective mechanism, resulting in cellular damage induced 
by hydrochloric acid. The liver cells cannot utilise glucose 
but they continue to metabolise them. The depression of liver 
function leads to decrease in its ability to rid the body of 
metabolites, drugs, or conjugate steroids40. 

There are reports which suggest that hypoxia effect on the 
intestine which leads to malabsorption41 and there is no change 
in fat utilisation42 up to an altitude of 4700 m. up to an altitude 
of 3500 m the concentration of gastric acid, and total acid 
output, is reduced significantly in basal conditions. However; 
there is no change in maximal levels, using pentagastrin 
stimulation. The gastrointestinal function is not altered in terms 
of digestion and absorption of food components43. Reports on 
the gastrointestinal function on an altitude above 5000 m are 
sparse. 

7. HORMONAL LEVEL AT HIGH ALTITUDE
The hypoxic effect at cellular level are thought to be 

mediated by the hypoxia inducible factor-1 (HIF-1) pathway44, 
and hypoxia-response elements (HRE) have been identified 
for erythropoietin (EPO), vascular endothelial growth 
factor-A (VEGF) and leptin45. Hypoxia-inducible factor is 
regulated through oxygen-dependent proteasomal degradation 
and it responds to variations in oxygen availability. VEGF 
expression in skeletal muscle increases after exercise and it 
is a potent stimulus for angiogenesis. Its expression at HA is 
crucial to promote muscle capillarity during training46. Leptin 
is produced by adipose tissue and is a major regulator of satiety 
and food intake47-48. Studies in humans at HA or mice exposed 
to hypobaric hypoxia have reported increased, unchanged or 
decreased leptin levels49. Little is known about changes in 
leptin after acute exercise at HA45. Literature on ghrelin in 
high altitude is sparse and inconsistent, with reports of both 
decreased ghrelin levels and no change in ghrelin at high 
altitude50. Studies report increased level of cholecystokinin 
(CCK) at high altitude51.

In most studies there have been increased level of thyroid 
hormones at high altitude, although report suggest that TSH 
secretion is not modified but the mechanisms involved in this 
process are still unclear52. The insulin level is increased during 
elevated glucose circulation and it functions to suppress the 
hepatic glucose output. The insulin level was found to be 
elevated in hypoxic condition53. Glucagon levels have been 
reported to be unaltered at HA54. Corticosteroids, have a well 
documented immunosuppressive effect which are released 
during cold stress, hypothermia, or both55.

Figure 8.  Enzymes at hypoxic condition.
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8. ENZYMES AT HIGH-ALTITUDE
Hypoxia, in general results in an increased level of blood 

haemoglobin and increased hematocrit values leading to 
increased oxygen capacity. As oxidative pathways are limited 
at altitude, there is a shift toward anaerobic energy sources. At 
any given work level, lactic acid production is higher than at 
sea level. The HIF-1 have been proved to (a) induce a variety of 
glycolytic enzymes and glucose transporters such as aldolase A 
and pyruvate kinase M, which help produce energy in hypoxic 
condition56-58 (b) reduce mitochondrial oxygen consumption 
by activating pyruvate dehydrogenase kinase I(pDK1) and 
halts citric acid cycle59 as shown in Fig. 8. HIF 1α encodes 
PDK1 which suppress oxygen consumption60. I Disaccharidase 
activity (lactase, at least) is HIF-responsive, which may protect 
carbohydrate absorption at moderate altitudes. In hypoxic 
condition the level of 2, 3-bisphosphoglycerate is found to be 
increased due to anaerobic glycolysis. At hypoxic condition 
the lipid storage is stimulated and lipid catabolism is inhibited 
through β-oxidation61.
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