/A STUDY OF IMPLEMENTATION AND EVALUATION TECHNIQUES OF ADVANCED GUIDED VEHICLE SYSTEMS/
 by
 ANTHONY SHOEMAKER READ B.5., North Carolina State University, 1983

\qquad

A MASTER'S THESIS submitted in partial fulfillment of the
requirements for the degree

MASTERS OF SCIENCE

Department of Industrial Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1985

Major Frofessor
Figure Description Fage
1 Easic Guidepath for Case 18
2 Case 1: Systen Utiliaation per Shift. 20
3 Case 1: Average System Utilization per Car. 22
4 Case 1: System Efficiency per Shift. 25
Case 1: Average Systen Efficiency per Car. 26
5
Case 1: Jobs Completed per Shift 28
7 Case 1: Average Jobs Completed per Car. 29
Case 1: Block Utilization for Five Cars 31
Case 1: Block Utilization for Six Cars. 32
Case 1: Black Efficiency for Five Cars. 34
10
Case 1: Elack Efficiency for Six Cars. 55
12 Case 1: Black Jobs for Five Cars 36
13 Case 1: Elack Jobs for Six Cars. 37
14 Case 1: Black Waiting Tine for Five Cars 39
15 Case 1: Elock Waiting Time for Six Cars 40
1.6 Case 1: Utilization -vs- Waiting Time. 41
17
Five Vehicles
Case 1: Jobs -vs- Waiting Time- Five Vehicles.. 42
18 Basic Guidepath for Case 2 51
19 Proposed Cutoffs for Case 58
20 Identification of Congested Elocks for 1 st 60
Storage Run
21Identificat
Storage Fum
Efficiency Leveling for Case 2. 66Basic Guidepath Case70
24 Alternative 1 for Case 3 Loadfeet Directioning. 71
25 Alternative 2 for Case 3 Loadfeet Directioning. 72
26 Froposed Cutoffs for Case 3 77
27 Case 3: Utilization -vs- Vehicle \#. 80
28 Case उ: Efficiency -vs- Vehicle \#. 81
Case उ: Utilization -vs- Cut \# 83
2
Case उ: Efficiency -vs- Cut \# 84
LIST OF FIGURES.
LIST DF TABLES i i
ACKNOWLEDGEMENTS iii
INTRODUCTION. 1
BACKGROUND 1
objective 8
MODELING 9
CASE 1 14
CASE 2 44
CASE 3 67
CONCLUSION 82
FUTURE STUDY 85
BIELIOGRAPHY 89
APPENDIX A: GPSS-H Macros 90
APPENDIX E: Example Program for Case 1. 117
AFPENDIX C: Example Frogram for Case 2. 123
APPENDIX D: Example Program for Case 3. 137
Table Description Fage
1 Average Wait and Fark Time-seconds per shift... 24
2 Case 2 From-To Chart 523
Case 2 Loadfeet Directioning. 53
Case 2 Job Flow Matrix. 56
Case 3 From-To Matrix 68
Case 3 Loadfeet Directioning. 73-74
Case 3 Job Flow Matrix 75

ACKNOWLEDGEMENTS

I am indebted to Dr. L. E. Grosh whose guidance and advice were invaluable in the course of this study.

To Mrs. Fern Miller who was always there with a pat on the back when I needed it.

And finally to my mother, Virginia Cary Read, who al ways had faith in me even when I didn't have faith in myself.

INTRODUCT ION

Abstract

In the early $50^{\prime \prime}$ s Advanced Guided Vehicle Systems (AGVSs) were introduced in the United States. The early systems were used for automating warehouse transportation operation of materials by providina a link between the storage, receiving, and shipping departments.

The Europeans were the first to recognize the potential of AGVSs and created a demand for new vehicle types and new applications. Recently AGUSs have developed the ability to deliver parts and materials to the entry points of production and the transport of fixtured workpieces and tools to computer controlled machining centers in a flexible manufacturing process.

The United States has now become more involved in the use of AGVSs systems. This increased involvement is shown by the yearly industry growth of 5 to 6% from the 1950 s to the $1970^{\prime} \mathrm{s}$, to what is expected to be a yearly increase rate of 30% in the $1980^{\circ} \mathrm{s}$.

BACKGROUND

There are three basic situations in which today's AGVSs are applied. The first application is to interface work-inprocess automatic storage and retrieval systems and 1 ink them with manufacturing floor systems. This provides a link for the possible real-time material tracking throughout a facility.

The second application is in flexible manufacturing systems. The AGVSs are used to deliver material to computer
numerical control machines. In this case a central contral system links the vehicles with the computer numerical contral machine for material tracking.

The third application is for distribution environments. The vehicles are used to move large volumes of materials great distances. For example, the movement of materials from bulk storage to receiving and shipping docks and vice versa.

Within AGVSs there are basically five types of vehicles which are used: automated towing vehicles, pallet trucks, unit-load carriers, automated forklift vehicles and specialty trucks (sideloading trucks, for example).

The power sources for these vehicles are lead-acid batteries which have 24 to 48 volt and 80 to 500 amp-hour capacity. These batteries remain charged for approximately 8 to 16 hours.

The vehicles run on a guidepath which provides a twoway link from the vehicle to the operating device. The quidepath carries instructions from the computer to the vehicles and vehicle status information from the vehicle ta the operating device.

There are two types of vehicle quidance techniques: optical quidance and magnetic quidance.

In the optical quidance method the guidepath is marked by reflective tape or painted stripes on the floor. The vehicle emits a lightbeam which is focused on the quidepath, and tracks the path by measuring the amplitude of the
reflected light. Gther optical paths use ultraviolet light or invisible chemicals for quidance. Optical quidepaths are used mainly in office environments or temporary quidance systems. They are not recommended for extended use in industrial environments because they have a tendency to get covered over in a dirty work area.

The other guidance technique (and most commonly used) is magnetic quidance. In a magnetic system the quidepath is generated by the electromagnetic field created by a continuous wire conductor embedded in a small slot in the floor. Gne or more wires are placed in the slot (1/8 to $3 / 8$ inches wide and 1 to 1.5 inches deepl, which is filled with an epoxy material to make the floor smooth. The wires are energized with a low-current, low frequency AC siqnal that generates a magnetic field around the wire. A sensor coil, which is on board the battery-powered vehicle, detects the magnetic field created around the wire. Any deviation in the magnetic field causes the vehicle to deviate from its present activity (to turn, stop, etc.). Magnetic quidance requires more effort to install and is more difficult to change. But upon completion of installation of the required wire system it is virtually maintenance free.

Qnce an AGVS is installed there are two types of system control: traffic management and system management.

Traffic management is done by three possible methods. The first is called zone control or "blocking". The quidepath system is divided into zones or blocks with separate control exercised over each zone in the system.

This is done by either distributed zone control or central zone control.

In distributed zone control. the vehicle is not permitted to enter a zone until all previous traffic in that zone has moved on to another zone. When the zone is clear of all vehicle activity a hold beacon is de-energized and the vehicle is allowed to enter the zone and approach any stop station within that zone.

In centralized zone control, there is a central controller which monitors all zones at one time versus the distributed approach where there is a monitor at each zone. When a vehicle approaches a zone entrance the central controller receives status information and signals the communication point when the vehicle is okayed to move ahead.

The second method of traffic management was made possible because the developments in the last decade in microprocessor and minicomputer technology. This technology has provided the foundation for the development of intelligent or "smart" vehicles. The development of these "smart" vehicles has allowed for the elimination of zone control. In this type of system the vehicles are equipped with onboard microprocessors. This is, of course, a very expensive system. The main advantage of this type of traffic management is that if one vehicle fails the whole system does not go down.

The third method of traffic management is sensor
control. In this method, each vehicle is equipped with onboard sonic or optical sensors. These sensors emit signals and record the reflected response, When something is in the vehicle's proposed path, whether a foreign object or another vehicle, the vehicle will stop a specified distance from the obstruction and will not proceed until it is removed. Sensor control is most effective on a straight and unvarying guidepath.

The second type of system control is system management. There are three types of system manaqement: on board call, off board call, and central computer control.

On board call or dispatch is typified by a panel being on board the vehicle and the station operator using this panel to dispatch the vehicle to a desired destination. This method is the simplest and cheapest but is heavily dependent on the operator.

The second method of system management is off board call or remote dispatch system. In this system the operator interacts with a remote dispatch instead of directly with the vehicle and "calls" a vehicle to his station. This method increases efficiency by providing a buffer between the vehicles and the system's operators. However, this system provides no material tracking capabilities and is still dependent on the station operators.

The third method of system management is central computer control. In this approach the operator control on the system is eliminated. All vehicles in the system are monitored by a central controller and respond to hig
commands only. If the vehicle controller is interfaced with the user's host computer it is possible to have real-time tracking and inventory control. In most cases these systems are conmected with automatic load/umload devices which further reduce the operator involvement which in turn eliminates potential idle time of the vehicle. Central computer control is more complex and expensive \{as much as twice that of remote dispatch) but in proper circumstances can pay for itself in increased efficiency and system flexibility.

There are many possible benefits to the installation of a AGVS, some of which include:
(1) materials are more closely controlled as a result of more accurate inventory information,
(2) reduction of work-in process inventory,
(उ) a more efficient use of personnel, which produces significant labor savings,
(4) a more efficient work environment (workers don't have to keep up with a line),
(S) elimination of manual material handling between manufacturing sections,
(6) the flexibility afforded by guidepaths that can be readily changed,
(7) increase in production space because the guidepath requires minimal area,
(B) more efficient use of floor space since the quidepath provides no obstruction to material flow off the path,
(9) overall adaptability to automation and AGVSs' effectiveness in operating with other computer controlled systems.

As the benefits increase so does the price of AGVSs. Eut still it is a worthwhile investment for industry. In fact, four times as many AGVSs were sold in 1984 than in 19日3.

Eecause of the increasing cost, development of preinstallation simulation procedures are needed to be able to accurately predict system performance before installation of the actual phymical system.

The purpose of this thesis is to develop procedures that can be used during the design and evaluation of the proposed AGVS systems.

Because of the ever increasing demand for AGUSs, it has become necessary to make a thorough design and evaluation of facility plans before large capital investments can be made. This can be done by developing different designs and evaluating them by computer simulation. The evaluation of AGVSs can be done with simulation languages, in this case GFSS-H. The use of GPSS-H provides the opportunity, without having to use physical hardware, to emulate an actual system with the manipulation of mathematical equations. This can produce design criteria for the implementation of a AGVS.

This thesis will be concerned with the development of design and evaluation techniques for AGVSs. Macros, using GPSS-H, will be developed which emulate the unique sections which make up AGVSs. By piecing these "unique sections" together like building blocks the AGVS, whether real or proposed, can be simulated and hence evaluated.

Three AGV systems will be evaluated, one which is in existance and two that are being proposed by a local manufacturer.

The first system, which is already in use, will be simulated and then evaluated. The evaluation will consist of a study of the number of vehicles needed, vehicle utilization, vehicle efficiency, job completion, and block analysis.

The second and third systems, which are being proposed, will be first designed and then optimized, by development of material handling techniques. Simulation will then be used to evaluate the designs and give insights for possible design improvements.

MODELINE

The depiction of the AGUSs will be done using the General Purpose Simulation System computer language. The version used is GPSS/H.

Macros were developed to emulate the following unique parts of a AGVS: travel block, input block, output block, park block, refuel block, loop block, and the cross block. The program statements which are used to call these macros are individualized by a set of operands which are used in the called macro. The main program statements call the desired macro and place it in its place in the main program. The operands which are attached to the main program statement individualize each macro into separate pieces of track. These main program statements are pieced together to form a representation of the actual AGUS.

Incorporation into the program of logical code is needed to make decisions at path division points. When a vehicle reaches a decision point its destination is checked and the correct route is chosen.

To depict accurately any AGVS with simulation programming the following factors must be imitated.
(1) Blocking - Blocking is a signalling system which divides the work route into zones and allows only one vehicle into that zone at one time.
(2) Routing - Routing is chosing the route to the destination that has the shortest possible path.
(S) Dispatch and scheduling algorithms - D/S is a method of assigning empty vehicle destinations.
(4) Status - The status of the input stations, output stations, and vehicles must be kept for decision making procesmes through the system
(5) Farking stations - Emulation of these are necessary to have a place where the vehicle can go when there are no jobs to be performed; otherwise the vehicle will travel the circuit and obstruct vehicles doing work.

Elocking is accomplished by allowing only one vehicle into any macro at one time. If a vehicle attempts entry into a macro which is already in use it waits and the waiting time is recorded.

Routing is accomplished by providing the proper tests at path divisions. For example, if a vehicle must travel
 the vehicle on the appropriate path to its destination.

Five approaches were considered in constructing the dispatch and scheduling algorithm: set distribution, queue sizing, first-in-first-out, minimum distance locator, and combined queue sizing and minimum distance locator.

The set distribution algorithm can be used when destinations from points are surveyed over a period of time and then categorized into a distribution. This is a simple
algorithm which uses a random number generator to pick the next vehicle destination.

The queue sizing algorithm is merely the checking of all possible destinations and the picking of the one with the longest job queue.

The first-in-first-out algorithm ranks with queue sizing for complexity. The algorithm picks the destination which has the oldest job. This method is useful when time limits are set on job fulfillment.

These first three approaches can cause much last. time for a AGVS. All are common in the fact that they may require the $A V G$ to travel long distances to destinations when alternatives are shorter.

This leads into the fourth approach which is the minimum distance locator algorithm (MDLA). In the MDLA, all possible destinations are scanned and the destination which is the closest is chosen. Because a vehicle round trip consists of travelling empty to an input station and travelling loaded to an output station, the MDLA reduees empty vehicle travel time by directing the vehicles from the outputs to the clasest inputs that have jobs to be done. The problem with this algorithm is that job queues can baek up at input stations simply because of their great distance from destination assignment points.

The fifth, and most complex, algorithm is the queue sizing and MDLA combination. This algorithm first. checks all job queues for any which are above a "queue full"
status. If any are above that level the vehicle is dispatched to that destination. Note that there should be at most one job queue exceeding this level at a time. There is no logic in the algorithm to accommodate multiple job queue overloads, for in the properly running system there should not be more than one. In an inadequate system where two or more overloads may occur, one is chosen without regard to distance. If there is no overload of the job queues the vehicle is dispatched to the closest possible vehicle requesting destination. This alleviates queue buildup and at the same time reduces empty vehicle travel.

The dispatch and scheduling algorithm is contained within the output, input, park, and refuel macros, in which a vehicle has reached its destination and requires a new one.

The recommended algorithm to dispatch vehicles from the output stations, park area, and refuel area is the queue sizing and MDLA combination. Destinations consist of input stations, the park area and the refuel area cobviously you can not dispatch to your own location e.g. park-to-park). Because of this, before entering the D / S algorithm the fuel level must be checked and if below a prescribed level, the refuel area is assigned as destination. Similarly, after the D/S algorithm, if no destination has been chosen, the vehicle is dispatched to a park area.

The algorithm for dispatching vehicles from the input stations is the set distribution. Since the destination from an input station is always an output, distributions can
be developed which provide desired patterns.
The status of input and output stations are accounted for in the macro sequence as either in use or not in use. Since each is represented by a macro. when the station is in use no other venicle may enter.

Other status values which are associated with each input are a buffer value and an assigned job value. The buffer value is the number of jobs that are at the input station but have not been assigned to a certain vehicle for pickup. When a vehicle is assigned the destination of a particular input (see dispatch/scheduling), one job is subtracted from the buffer value and added to the assigned job value (which is decremented when the vehicle picks up the job).

Vehicle status is "carried" by the transaction, which represents the vehicle, as it travels around the AGVS. Each vehiele is identified with a number from 1 to X (where X is the number of vehicles in the system). Fuel levels and loaded or Linloaded status are also carried by each vehicle.

Farking stations are represented by macros and can be placed around the quidepath as needed. Farking stations can also have a capacity which is greater than one, i.e. more than one vehicle can be in a parking station at one time.

The following data are kept track of during the simulation process and output when prompted or at the completion of the simulation:
(1) The number of vehicle entries into each block of track, output station, input station, park
area, and refuel area and whether there are any vehicles presently in any of these.
(2) Average time (in seconds) that the vehicle remains in each block.
(3) Total number of vehicles blocked at a block of track for any time greater than zero, which is further broken down into the number of vehicles that were loaded and the number that were unloaded.
(4) For the number of blocked vehicles, the average waiting times for both the loaded and unloaded vehicles (in seconds).
(5) Status of the buffer and job waiting queues.
(6) Vehicle fuel levels.
(7) Status of each vehicle. either loaded or unloaded.
(8) Total vehicle travel time(in seconds) loaded and unloaded.

CASE 1
The first AGVS studied is one that is already in existance. The design was taken from the Newark. Delaware warehouse of Avon Froducts Inc. as presented in the June 1983 issue of Modern Materials Handling. The AGVS is linked to an automatic storage and retrieval system, delivering inventory to order filling lanes.

Eecause some of the information needed to model this system was not provided by the article some of the AGVS properties were approximated by the author. Given was the guidepath length of 2,200 feet. From this value distances between possible stop areas were determined. Also given was that BO loads were input into the system per hour. Since no

Abstract

distribution was indicated the loads were allocated to the four system inputs, i.e., 20 loads input at each input station per hour. Likewise, there was no distribution of job destinations qiven, so each job randomly selected an output station as its destination. Since there were 10 outputs each station had a $1 / 10$ probability of being chosen as the destination. The calculated vehicle speed, 2. 3 feet/second is slower than most vehicles travel but was a convenient magnitude for the simulation. In the magazine design no park or refuel areas are shown, so the author placed each in the system at his own discretion. The purpose of the Avon study is to see the effect that the number of venicles has on venicle utilization, vehicle efficiency, job completion, and job analysis.

Vehicle utilization, as described by Hitchens (4), is the percentage of time that each vehicle is transporting a load in the system. This leads to system utilization being defined as

system $\quad=$| sum of the loaded |
| :---: |
| vehicle travel time |
utilization
sum of the vehicle
travel time

This equation should be further refined to include vehicle load and unload time. Input and output stations are included in the system and thus must be represented in the utilization calculation. The new system utilization would be defined as

Hitchens (4) also describes vehicle efficiency as the percentage of time that a vehicle, with a job to do. is in motion. The system efficiency is defined as
sum of loaded sum of loaded
system vehicle travel time - vehicle waiting time
efficiency sum of loaded
vehicle travel time

Since efficiency is an indicator of system blockage, Hitchens approach must be further defined to include cars which are travelling empty to reach new loads. This would give a truer indication of system congestion. The new system efficiency equation would be defined as

Job completion, which is self explanatory, is the other factor studied in the Avon case. It must be studied, for if you are not processing the workload, utilization and efficiency calculations are useless.

Elocks, the signalling device used in the AGVS, can be varied and the effects on the system monitored. Blocks are
sections of track which allow only one car to enter at one time. Ey varying the block lengths, fluctuations should be seen in the utilization, efficiency, and possibly job completion rate.

It should be noted that the Avon system is but one type of AGVS configuration. All of the inputs are placed at one end of the system and the outputs at the other end. Because of this the dispatch and scheduling algorithm was not used except to check for refuelling or park assignments. The vehicles were assigned input stations and output station at random. Since no load or unload times were given 60 seconds was used for each.

The Avon system, see Figure 1, is linked with an automatic storage and retrieval system. This is why the inputs are centralized at one end of the AGVS and the outputs at the other end. The park and refuel areas where placed at the input end of the system. A distance matrix was not used in the Avon AGVS because of this opposite end destination setup. The refuel area placed in this model is optional since its system effects can be determined after the simulation.

There are four inputs, 10 outputs, one park area and one refuel area in the Avon AGVS. It takes bo seconds to load or unload a job from a vehicle. Each input is preloaded with four jobs as the modeling process begins and a new job is created at each input station every three
 hour). Destination of these jobs are randomly chosen from

the 10 outputs.
Vehicles take 10 seconds to refuel frepresents exchanging of battery) and each battery has a capacity of 5000 seconds travel time. When the battery level goes below 1000 seconds the next destination assignment is the refuel area. There is no limit on the park area capacity. Measurement of time spent in the park area is important for it represents possible work time that is lost because of no demand. The refuel area also has no capacity limit and as many vehicles needing refuelling are allowed in at one time. For study of system utilization, system efficiency, and job completion rate, the number of vehicles in the system was incremented from 3 to 11. With each specified number of vehicles the systen was run for five shifts of eight hours each. The shifts were run back to back with each vehicle starting a new shift at the location it was in at the end of the previous shift.

The measurements of system utilization can be seen in Figure 2. As the number of vehicles was decremented, system utilization increases by relatively equal steps between 11 vehicles and 6 vehicles. For 3,4 , and 5 vehicles system utilizations are, in essence, equal. The vehicles (at levels 3,4 and 5 vehicles) are in constant use and are being utilized to the maximum of their capabilities.

The leveling off observed in Figure 2 is due to the prem loading of the system. During shift one, not only did the vehicles have to complete the standard number of jobs input the system but also the 16 jobs that were queued up at the

CASE 1: SYSTEM UTILIZATION PER SHIFT

FIGURE 2.
input stations as the simulation began.
From Figure 3, system utilization is averaged over all five shifts for each level of vehicles. The difference between the averages can be explained by two factors. The first factor, which causes decreased utilization, is that if there are more vehicles in the system, jobs are handled more quickly with minimal job pickup waiting time. This provides the vehicles with "free time", which is spent in the park area. As stated before, time spent in the park area is not considered work and thus detracts from utilization. This factor is called the vehicle's "added reserve capacity" and describes that vehicles ability to handle more jobs per hour.

The second factor, which also detracts from system utilization, is increased waiting time caused by the addition of more vehicles to the system. By increasing the number of vehicles the AGV path becomes congested and blocking occurs. The waiting time is not considered work and thus not factored into system utilization. This factor is called "additional congestion".

Figure 3 , shows that once you get to five vehicles there is no difference in the average utilization as vehicles are removed from the system. This indicates that there is no added reserve capacity or additional congestion when the system is run with 3,4 , or 5 vehicles.

When the number of vehicles is increased from five, there is a decrease in utilization as each vehicle is added. As more vehicles are added not only is the reserve capacity

CASE 1: AVERAGE SYSTEM UTILIZATION PER CAR

FIGURE 3.
increased (more vehicles do more jobs) but so is additional congestion (more vehicles, more blocking) \{see Table 1 \}.

The measurements of system efficiency can be seen in Figure 4. As with system utilization, system efficiency increases as the number of vehicles decreases. The values plotted in Figure 4 are cummulative efficiency. For 8, 9, 10 , and 11 vehicles the system efficiency levels off at values that are banded within a range of 1.5%. This indicates that with eight or more vehicles the system runs at basically the same efficiency. All are putting the same number of vehicles into the system to process the input load rate. Whenever there is a call from an input to do a job, a vehicle is promptly dispatched with no job pickup waiting besides the travel time to the input. With this many vehicles there is always at least one in the parking area waiting for dispatch.

As the number of vehicles is decreased the efficiency increases. Because there are fewer vehicles in the system, waiting time is reduced. For 7 vehicles there is a jump of 2% from the group of $8,9,10$, and 11 vehicles. For 6 there is an increase of over 2% from 7 vehicles.

As can be seen from Figure 5, from 6 vehicles to 3 vehicles the slope of the efficiency increase is less than from 11 to G vehicles. This indicates that the waiting time is not dramatically reduced by removing a vehicle from the system at this point.

```
        # of
vehicles
3
4
5
6
7
8
9
10
1 1
average
wait time \(\quad\)\begin{tabular}{c} 
average \\
oark time
\end{tabular}
```

Table 1: Averaqe wait and park time - seconds per shift

CASE 1: SYSTEM EFFICIENCY PER SHIFT

FIGURE 4.

CASE 1: AVERAGE SYSTEM EFFICIENCY PER CAR

Figure 5.

For a system with 3,4 , or 5 vehicles, the vehicles are being lutilized to their maximum, hence waiting time is kept at a minimum. The system efficiency range at this level is less then 1% By increasing the number of vehicles to 6 the system efficiency is reduced just over 1%. Then larger dropoffs in efficiency occur until after 8 vehicles the efficiency levels off because the system will use only a certain number of vehicles at one time to process loads.

Jobs completed per shift is, of course, the ultimate goal of any system. A job completion rate must be met, in this case 80 jobs per hour. As would be expected, as the number of vehicles are increased the number of jobs completed increases. As Figure 6, shows 3 or 4 vehicles could not handle the load of 80 jobs per hour. Five vehicles are marginally enough, being able to complete 80 jobs in one of its shifts. For a system with 6, 7, 8, 9, 10, or 11 vehicles the job completion rate of 80 jobs per hour is easily met.

By pre-loading the system with sixteen jobs, the capacities of systems with a different number of vehicles can be checked. As would be expected with 3 , 4, or 5 vehicles the system is running at maximum capacity and there is no drop in number of jobs done over the length of the simulation. Eut with six or more vehicles the capacity is much higher than 80 jobs per hour (from 92 jobs for six vehicles to at least 102 jobs for 11 vehicles).

Figure 7 shows the average number of jobs completed by each of the levels. It clearly shows the point at which

CASE 1: JOBS COMPLETED PER SHIFT

FIGURE 6.

CASE 1: AVERAGE JOBS COMPLETED PER CAR

there are enough vehicles to process the system load.
For the study of block sizing 5 and t vehicles were run in the simulation. Block sizing analysis consists of varying the maximum size of the travel blocks which only one vehicle can occupy at one time. There are three different block sizes used in this analysis. The first size was the maximum possible sized blocks for this system. The maximum block travel time in this case is 24 seconds and there were a total of 41 blocks. The second case set the maximum block size at 14 seconds travel time and there were a total of 50 blocks. The third case set the maximum block size at seven seconds and there were a total of 70 blocks. The basic concept is the greater the number of blocks the smaller the waiting time in the system. The simulation was run for 10 shifts and the effects of block sizing were monitored on system utilization, system efficiency, and job completion.

The effects of block sizing on system utilization can be seen infigure 8 for 5 vehicles and Figure 9 for 6 vehicles. For 5 vehicles the largest difference in block system utilization is 2.37% at any one shift and the different block sizes follow the same general pattern over the 10 shifts. For 6 vehicles the system utilization is effectively the same for all three block sizes. A possible explanation for the variability of block system utilization for 5 vehicles, as compared to 6 vehicles, is that there was no added reserve capacity. For 6 vehicles there was added reserve capacity which could be put into use when the number of blocks was decreased and waiting time increased.

CASE 1: BLOCK UTILIZATION FOR FIVE CARS

FIGURE 8.

CASE 1: BLOCK UTILIZATION FOR SIX CARS

FIGURE 9.

This is further substantiated by seeing the effect block sizing has on systemefficiency for 5 vehicles in Figure 10 and $5 i x$ vehicles in Figure 11 . For both 5 and 6 vehicles there is a small difference in efficiency between the 70 and 50 block runs (70 block having the higher efficiency in both cases). Eut when the block number was reduced to 41 the efficiency drop was dramatic in both cases. With longer blocks, there is more waiting time and since a 5 vehicle system has no reserve capacity to make up for lost waiting time the system utilization is not constant. Eut a 6 vehicle system has reserve capacity to make up for this lost waiting time and hence system utilization remains constant. The waiting time for a b vehicle system, in larger blocks, is the time spent in the area in smaller sized blocks.

This explanation is also appropriate for the block sizing effect on job completion seen in Figure 12 for 5 vehicles and Figure 13 for 6 vehicles. For 5 vehicles fluetuation in job completion is experienced for different block sizes, while for b vehicles the job completion rate remains relatively constant for different block sizes. The largest variation for a system run with 5 vehicles is five jobs between block size for any one shift and for a 6 vehicle system it is two jobs. Again the explanation is that if during a shift an excessive time is spent in waiting for blocks to become empty, a 5 vehicle system has no reserve capacity to make up the difference and hence fewer jobs are processed. Eut a b vehicle system has reserve

CASE 1: BLOCK EFFICIENCY FOR FIVE CARS

FIGURE 10.

CASE 1: BLOCK JOBS FOR FIVE CARS

FIGURE 12.

CASE 1: BLOCK JOBS FOR SIX CARS

FIGURE 13.
capacity and can make up for lost waiting time and thus process the required jobs.

To investigate the reserve capacity hypothesis, waiting times per shift were plotted for 5 (Figure 14) and b vehicles (Figure 15) at the different block sizes. The difference in the waiting time graphs are obvious. The 6 vehicle system waiting times are clearly defined and separated while in the 5 vehicle system the different block size waiting times are intertwined. This is because there is an extra vehicle in the b vehicle system and more blockage occurs as the number of blocks is decreased. On the other hand the 5 vehicle system has one less vehicle and thus is less affected by the decrease in the number of blocks.

In Figure 16, system utilization is plotted versus waiting time for the 5 vehicle system and regression lines fitted to the points for each block size. There is a definite linear relationship that shows that when waiting time is increased utilization decreases. This is explained by the lack of reserve capacity for 5 vehicles. The presence of reserve capacity for b vehicles allows the system utilization (Figure 9) to remain constant even though the waiting time varies from 160 seconds/shift for the 70 block system to 1360 seconds/shift for the 41 block system.

In Figure 17, completed jobs are plotted versus waiting time for the 5 vehicle system and a regression line fitted to the points for each block size. There is a linear relationship that showing that as waiting time is increased

CASE 1: BLOCK WAITING TIME FOR FIVE CARS

FIGURE 14.

CASE 1: BLOCK WAITING TIME FOR SIX CARS

FIGURE 15.

CASE 1: UTILIZATION -VS- WAITING TIME five vehicles

FIGURE 16.

CASE 1: JOBS -VS- WAITING TIME five vehicles

the number of jobs completed decreases. Again the explanation is the lack of reserve capacity to compensate for the lost time to waiting. Job completion (Figure 13) remains constant for 6 vehicles for all block sizes as its reserved capacity is able to make up for the lost time to waiting and complete the shift loads.

The overall conclusion is that the reserve capacity regulates the effect that blocking has on the total performance of a system. The lack of reserve capacity combined with a reduction in the number of blocks causes a decline in system efficiency plus a loss in system utilization and jobs completed. Likewise, the availability of reserve capacity permits the reduction of the number of blocks with no adverse effect, although a drop in efficiency is experienced, on system utilization or jobs completed.

The second AGVS studied is one that has yet to be installed by a local manufacturer. There was no guidepath although a blueprint of the manufacturing workplace was provided. This included the position of all inputs and outputs. Also provided was a "from-to" chart which tells the number of jobs going from any particular input to any particular output per shift. Vehicle speed, input time, and output time were also provided. No park area was designated so the author placed one at his own discretion. A refuel area was not included for its effects were not desired for this study. The purpose of Case 2 is the development of a procedure to create a workable AGVS. The concepts developed to do this are:
(1) loadfeet directioning
(2) vehicle estimating
(3) cutoff implementation
(4) block division.

Through these procedures reduction in the number of vehicles will be achieved along with increased utilization and efficiency.

Loadfeet directioning, which is a pre-simulation procedure, is the decision making process on which direction the traffic should flow on a AGV circuit. After a simple guidepath has been proposed \{usually by connecting all inputs and outputs with a straight line configuration), the first step is to cut up the guidepath into separate sections between decision points (input stations, output stations,
turnoffs, etc.). The flow of jobs is calculated across each section for all possible traffic patterns. The flow of jobs for each section is multiplied by its section length and summed over the whole system for each particular traffic pattern. The resulting value is in units of load-feet. The sums for each of the traffic pattern are compared and the one with the smallest value is adopted as the traffic pattern.

Vehicle estimation, also a pre-simulation procedure, is the prediction of the range of the number of vehieles needed to handle the AGUS load. A "from-to" chart for the AGUS is needed to complete this procedure. The number of loads per shift moved from each input to each output is multiplied by the distance between them and summed over the entire system. The resulting sum is in feet per shift anditis divided by the vehicle speed (in feet per second) to obtain the total vehicle travel seconds needed per shift.

Add this to the total number of jobs moved per shift multiplied by the load time plus the unload time and the result is the vehicle work seconds needed per shift.

Convert this into minutes and divide by 8 hours per shift to obtain the number of vehicle work minutes needed per
hour.

At this point kulweic (5) suggests dividing this value By 85 which he calls the "traffic congestion factor". The "traffic congestion factor" is merely a representation of system efficiency developed in Case 1. The writer believes this is a conservative estimate and would suggest using a system efficiency of 95 percent. The vehicle work minutes per hour should also be divided by 60 minutes per hour and the result is an estimate of the number of vehicles needed when waiting time is taken into account.
\# vehicles needed $\quad=\quad$ vehicle work minutes per hour
(wating time included) (effieiency factor $\times 60$ minutes $/ h r$)

Vehicle utilization must also be taken into account and kiulweic (5) suggests dividing this vehicle number by an "idle time factor" ranging from. 6 to .8. The reader recognizes this "idle time factor" as a substitute for system utilization developed in Case 1. From the evidence previously presented the author believes this to be too liberal a utilization range and suggests the use of a range between 50 and 80 percent. The resulting is a range in which the number of vehicles needed to handle the present AGVS work requirement is included.

```
    range of # of
    vehicles needed (waiting included)
    vehicles needed
        utilization range
```

Cutoff implementation is a process to determine where possible cutoffs or shortcuts are needed in the AGUS guidepaths to shorten travel distances between input stations and output stations. This is done by the analysis of area job movement. The "from-ta" chart is also needed for this procedure.

The "from-to" chart is used to develop an $I x$ u matrix where I represents the system input stations and J represents the system output stations. The number of jobs that are required to travel from a particular input (i) to a particular output (j) is placed in the matrix position represented by the values in (i,j).

The collapse of the matrix over inputs and outputs is then performed. This collapse is done by stations which are in the same general area. It is to up the user's discretion how far he or she wishes to collapse. If the matrix is not collapsed enough station job movement is represented instead of area job movement. If the matrix is collapsed too much, area job movement is eliminated by the collapsing over areas after collapsing over stations.

When the area job movement matrix is completed each value in the matris is evaluated. First, it mbst be determined at what job movement value the designer wishes to have travel distance reduced. If there are only a minimal number of jobs which travel a certain route, it may not be
feasible to create a cutoff to reduce travel distance. Secondly, it must be determined, if a matrix value exceeds the designer's minimal job movement value, if the distance travelled is excessive. For some movement of jobs there is no way to reduce the distance travelled. For example, if two areas are connected by a straight section of guidepath there is no cutoff that could reduce the travel distance. If the distance is deemed to be excessive and a cutoff is called for, possible solutions should be investigated to connect the two areas.

Block division is the process of determining where waiting time is occurring, and dividing these congested blocks into smaller, more efficient ones (i.e., more vehicles can ocelpy the same total length of the larger blocks). The macros, which were previously developed using GFSS-H, have the property of allowing only one vehicle to gain control at one time. If there is a vehicle inside a maero, other vehicles wishing entry must wait until the first vehicle departs the macro. This is representative of the blocks of track in a AGVS which allows only one vehicle to enter at one time.

In block division, the facilities, which represent these blocks of tracks within the macro, are converted to storages which have unlimited capacity. Facilities im GPSS-H have the property of allowing only one transaction (which represents a vehicle) to seize it at one time. Likewise, a storage in GPSS-H has the property of allowing
a specified number of vehicles to seize it at one time (in block division the storage capicity is infinite). The simulation yields the maximum number of vehicles requesting simultaneous occupancy of each block (storage) during the the run. This is representative of the number of vehicles which wanted to seize a block of track at one time. If this maximum is 2 or greater this indicates waiting time has been incurred. The object of the storage substitution is to take the blocks with the largest number of vehicles requesting entries and to divide them into smaller blocks.

This should be done in conjunction with the facility simulation to monitor increased efficiency. With this increased efficiency comes the beneficial increase in reserve capacity. The block division process can be repeated until the increase in efficiency is deemed not significant enough to warrent continuation. Another way is to set the maximum number of vehicles allowed in any one block and use block division until all blocks have values less than that level.

Case 2 has 18 imputs and 17 outputs. There is one park area which was positioned by the author. Vehicle travel time is 2.8 feet/second and job load and unload times are 50 seconds. Job inputs are predetermined and jobs arrive at a uniform rate.

The four guidepath concepts were applied to Case 2 and their effects measured. After each step a table is updated which shows the procedure used in Case 2. The first step was to lay down a basic quidepath. This was done as
simply as possible by connecting the inputs and outputs in a straight line configuration represented by Figure 18. Improvements on this by the removal of obstacles would have been possible but we were not at liberty to rearrange the work environment.

The guidepath was then separated into blocks between decision points. Using the "from-to" chart (see Table 2) job flow was measured across each section in both the clockwise and counterclockwise directions. These job flow totals were multiplied by the block lengths and the loadfeet totals were summed for each direction (see Table 3). For the clockwise direction the system load-feet was 359,149 compared to 389,004 load-feet for the counterclockwise direction. The clockwise direction was adopted because of its smaller load-feet total.

PROCEDURAL SUMMARY 1.

step	description	dir	eff	util	veh range	needed veh	cngstd blocks
1	loadfeet analysis	clock wise					

Vehicle estimation was then performed. The
calculations are as follows:

total vehicle	$=$vehicle travel seconds/shift		
seconds/shift		\quad	load \& unload
:---			
$=$			
$=$			

OUTPUT

ELOCK	DISTANCE (FEET)	CLCKWS LOADS	CNTFELLCKWS LDADS	CLCKWS L.OAD-FT	CNTFCLCKWS LOAD-FT
1	182	206.9	129.2	37674	2Ј478
2	104	10.8	10.8	1123	1123
3	140	9.6	9.6	$1 \geq 44$	$1 \leq 44$
4	172	10.8	10.8	1859	1858
5	192	45.8	45.8	8794	8794
6	52	229.9	187.0	11955	9724
7	60	175.0	240.1	10500	14406
8	164	171.2	245. 1	28077	39868
9	104	189.4	225.5	19698	23452
10	68	188.7	225.5	12832	1 ¢̧34
11	132	186.	228.9	24592	30215
12	36	196.8	230.3	7085	8291
13	188	195.8	218.6	36810	41097
14	80	209.4	205.0	16752	16400
15	32	206.0	216.	6602	6822
16	96	17.3	17.3	1661	1661
17	48	194.7	219.7	9346	10545
18	91	229.9	184.0	20921	16744
19	88	230.8	184.6	20310	16245
20	96	25.	32.0	2429	3072
21	100	20.1	25.5	2010	2530
22	40	204.5	165.9	9180	66.36
23	56	223.2	191.0	12499	10696
24	52	175.9	240.6	5629	7699
25	88	166.9	246.4	14687	21693
26	24	15き. 1	218.4	3722	5323
27	152	41.6	41.0	6232	6232
28	152	169.9	214.2	25825	56632

Table 3 : Case 2 Loadfeet directioning.

The range indicates that the simulation should be run with $8,9,10,11,12$ and 13 vehicles.

FROCEDURAL SUMMARY 2.

step	description	dir	eff	util	veh range	$\begin{aligned} & \text { needed } \\ & \text { veh } \end{aligned}$	engstd block=
1	loadfeet analysis	$\begin{gathered} \text { clock } \\ \text { wise } \end{gathered}$					
2	vehicle estimation				$8-13$		

Simulation of the system with this proposed range of vehicles using the GFSS-H macros was the next step. Eleven
vehicles was found to be the minimum number that could handle the load. The system efficiency was 91.18 indicating there were significant amounts of waiting time. The system utilization was 52.57 which $i s$ also relatively low and worth further investigation.

PROCEDURAL SUMMARY 3.

step	description	dir eff	util	$\begin{aligned} & \text { veh } \\ & \text { range } \end{aligned}$	needed veh	cngstd blacks
1	loadfeet analysis	clock wise				
2	Vehicle estimation			8-13		
3	simulation	91.18	52.57		11	

Cutoff analysis was then applied to the system. The inputs and outputs were grouped by their relative location around the guidepath. The inputs into 5 groups and the outputs into 4 groups as shown in Table 4 . A job flow matrix was developed for jobs going from a given group of inputs to a given group of outputs (see Table 4). Any matrix value with a job flow greater then 10 was considered to see if a cutoff could be made to reduce significantly the travel distance. The matrix vaiues for which the travel distance was deemed not significantly effected by a possible cutoff were $(4,1),(5,1),(3,4),(5,3)$ and $(2,2)$. The matrix values for which a possible cutoff was deemed a significant reduction in travel distance were $(1,1),(2,1),(4,2)$, $(5,2),(5,3),(2,4)$, and $(5,4)$. The cutoffs investigated

OUTFUT GF:OUF

INPUT GROUP	1	2	3	4	ROW TOTAL	
1	55.0	7.0	4.4	.8	67.2	
2	38.0	18.4	1.0	19.6	77.0	
3	7.4	6.8	2.1	22.3	38.6	
4	34.4	35.0	6.8	9.8	106.0	
5	187.2	113.9	35.8	78.4	415.3	
COLUMN						
TOTAL						

INPUT GROUPING:

```
Group 1- input stations 1. 2, 3, and 4.
Group 2- input stations 5, 6. 7, and 8.
Group 3- input stations }9\mathrm{ and 10.
Group 4- input stations 11, 12, 13, and 14.
Group 5- input stations 15: 16, 17, and 18.
```

OUTFUT GROLPING:
Group 1- output stations 19, 20, and 21.
Group 2- output stations 22, 23, and 24.
Group 3- output stations 25, 26, 27, and 28.
Group 4- output stations 29, 30, 31, 32, 33, and 34.

Table 4 : Case 2 Job Flow Matrix
were to alleviate the travel distance for $(1,1),(2,1)$, $(2,4)$, and $(5,4)$. The procedure to institute the cutoffs was to connect the groups of stations with straight lines but again with regard to immobile obstacles. The system with the proposed cutoffs is represented in Figure 19.

Vehicle estimation was then reperformed and the range computed was 6.30 to 10.15 vehicles. These results indieate that the simulation should be run with $6,7,8,9,10$, and 11 vehicles.

PROCEDURAL SUMMAFYY 4.

step	description	dir eff	util	veh range	needed veh	cngstd blocks
1	loadfeet analysis	clock wise				
2	vehicle estimation			8-13		
3	simulation	91.18	52.57		11	
4	cutoff analysis					
5	```vehicle estimation```			6-11		

From the resulting simulation of the modified system, 8 vehicles were found to be the minimum number that could handle the load. The effectiveness of the cutoffs is noticed immediately by the reduction of 3 vehicles needed to handle the load. System efficiency and system utilization are also increased to 92.07 and 55.45, respectively. This can be explained by the reduction of

vehicles which reduces waiting time and the implementation of the cutoffs which reduces unloaded vehicle travel time.

FROCEDURAL SUMMARY 5.

step	description	dir eff	util	$\begin{aligned} & \text { veh } \\ & \text { range } \end{aligned}$	needed veh	cngstd blocks
1	1oadfeet analysis	clock wise				
2	vehicle estimation			$8-13$		
5	simulation	91.18	52.57		11	
4	tutoff analysis					
5	vehicle estimation			6-11		
6	simulation	92.07	55.45		8	

The effect of block length was then investigated by using the bloct division technique. Ey running the simulation under the storage option one of the statisticm available is the maximum number of vehicles in any one blogk at any one time. The blocks with the highest maximum vehicle count are the blocks where most of the system waiting time will occur. By dividing congested blocks into smaller blocks more vehicles can travel the congested area and hence waiting time is reduced.

The storage simulation was run and 5 blocks were found to have a maximum of 4 vehicles in them at one time (see Figure 20). The traverse time of these blocks ranged from 25 to 56 seconds. These are comparatively long blocks but unfortunately block length is not the only eriterion for

Figure 20 : Identification of Congested Blocks for lst Storage Run.
waiting time. Load traffic is also an important factor. For this reason the division of blocks into an arbitrary uniform size is not recommended prior to an investigation of the waiting times. The 5 blocks, with a 4 vehicle maximum, were each cut in half forming 10 separate blocks. The facility simulation was run and the system efficiency and system utilization were increased to 97.03 and 55.70, respectively. This is an obvious increase in efficiency while the utilization remained relatively the same. This indicates that the waiting time in the system has been converted into reserve capacity. With added reserve capacity the system has the ability to accomodate an increase in loads moved and in some circumstances the reduction in the number of vehicles needed if reserve capacity is large enough.

step	description	FROCEDURAL dir eff	SUMMAR util	6. veh range	needed veh	cngstd blocks
1	loadfeet analysis	$\begin{gathered} \text { clock } \\ \text { wise } \end{gathered}$				
2	vehicle estimation			8-13		
S	simulation	91.18	52.57		11	
4	cutoff analysis					
5	Vehicle estimation			6-11		
6	simulation	92.07	55.45		8	
7	storage simulation					5
日	facility simulation	$9.3 .03$	55.61		8	

The storage simulation was run again and 6 blocks were found to have a maximum of 4 vehicles in them at one time (see Figure 21). All the blocks were either blocks previously mentioned or one of their divisions. The traverse time for these blocks ranged from 12 to 25 seconds. It is important to notice the reduction in traverse time because although there is probably waiting time at these blocks it is shorter in length than waiting time prior to division. The tradeoff is the point were the waiting times experienced are short enough that further block divisions have no effect on the system. The congested blocks were cut in half to form two separate blocks. The facility simulation was run and system efficiency and system utilization showed a slight drop to 96.76 and 55.61, respectively. In this case the waiting times were short enough prior to the block division so that the split of the blocks had no significant effect.

PROCEDURAL SUMMARY 7.

step	description	dir eff	util	veh range	needed veh	engstd blocks
1	loadfeet analysis	clock wise				
2	vehicle estimation			8-13		
3	simulation	91.18	52.57		11	
4	cutoff analysis					

Figure 21 : Identification of Congested Blocks for 2nd Storage Run

5	vehicle estimation			
6	simulation	92.07	55.45	θ
7	storage simulation			
9	facility simulation	97.03	55.70	8
9	storage simulation			
10	facility simulation	96.76	55.61	9

To prove further the point of levelling off of system indicators the storage simulation was run again and 5 blocks were found to have a maximum of 4 vehicles in them at one time. All the blocks were either previously mentioned or created by a block division. The blocks were split and the facility simulation was run. The resulting system efficiency and system utilization was 97.43 and 56.04, respectively. Again there was no significant change in the system indicators. Although there was waiting time at the blocks divided, it was short enough that it had no effect on the system.

PROCEDURAL SUMMARY B.

step	description	dir eff	util	veh range	needed veh	cngstd blacks
1	loadfeet analysis	clock wi se				
2	vehicle estimation			8-13		
3	simulation	91.18	52.57		11	
4	cutoff analysis					

EFFICIENCY LEVELING FOR CASE 2
 PROCESS INTERPRETATION
 $1=$ BASIC GUIDEPATH $2=$ CUTOFF IMPLEMENTATION 3=FIRST BLOCK REDUCTION $4=$ SECOND BLOCK REDUCTION S=THIRD BLOCK REDUCTION

FIGURE 22.

CASE 3
The third $A G V S$ studied is another that has yet to be installed by a local manufacturer. Again no guidepath was given but a blueprint of the manufacturing workplace (which included locations of inputs and outputs) and a 'from-to' chart was provided (see Table 5). Vehicle speed, load and unload times were the same as in Case 2 and again a park area was placed at the author's discretion.

The purpose of Case 3 is to use the concepts developed in Case 1 and the procedural techniques developed in Case 2 and apply them to a more comple\% manufacturing workplace in the hopes of ereating a workable AGVS.

The concepts developed in Case 1 on a simple circuit were:
(1) system utilization
(2) system efficiency
(3) GPSS-H simulation macros.

The procedural techniques developed in Case 2 on a simple circuit were:
(1) loadfeet directioning
(2) vehicle estimating
(3) cutoff implementation
(4) block division.

In the original layout that was provided there were 24 inputs and 26 outputs. Only one park area was placed in the system. Vehicle travel speed was 2.8 feet/second and job load and unload times were 50 seconds. Job inputs were predetermined and jobs arrived at a uniform rate.

The basic guidepath was laid with a straight line

Table 5 : Can 3 Froa-To chart.
configuration connecting the inputs and outputs (see Figure 23). This guidepath is more complex than the previous simple circuits studied but should follow the same principles developed earlier.

Two directional flow alternatives were considered using loadfeet directioning. Alternative 1 (see Figure 24) had a loadfeet total of $1,085,249$ winile Alternative 2 (see Figure 25) had a loadfeet total of 952,209 (see Table b for calculations). Needless to say Alternative 2 was the directional flow adopted.

PRDCEDURAL SUMMARY 1 .

step	description	dir	eff	util	r ange	needed veh	cngstd blocks
1	general 1 ayo			e Fig	e 23)		
2	1oadfeet analysis	Alt	2	e Fi	e 25)		

Cutoff analysis was then applied to the system and the inputs and outputs were grouped by their relative location around the guidepath, the inputs into of groups and the outputs into 7 groups (see Table 7 for groupings). It should be again noted that re-design of floor obstacles was not undertaken in this study so that in some instances cutoffs that would have been otherwise advisable were deemed impossible.

A job flow matrix was developed for jobs going from any one input group to any output group (see Table 7). All the matrix values were considered for possible reduction in load

Figure 23 : Basic Guidepath for Case 3.
$40 \triangle \mathrm{O}_{14}$
$\underset{\substack{\mathrm{O}_{\text {input }}}}{\text { output }}$

Figure 25 : Alternative. 2 for Case 3 Loadfeet Directioning.

Table 6 ：Case 3 Loadfeet Directioning．

BLOCK	DISTANCE （FEET）	ALT 1 LOADS	ALT 2 LOADS	$\begin{gathered} A L T 1 \\ \text { LOAD-FT } \end{gathered}$	$\begin{gathered} \text { ALT } 2 \\ \text { LOAD-FT } \end{gathered}$
0	42	128.6	190.8		
X	18	778.2	1957． 7	14008	8014
5	62	1ふЗ． 1	556.3	14008 8252	15439
6	116	60.0	629.4	8252 6960	± 4491
7	56	18.8	179．3	6960	73010
日	18	18．8	191．3	1053	10041
9	50	12.0	172.5	358	$\bigcirc 443$
10	66	288.6	172.8	19048	8625
11	50	288.6	22.8	19048	1505
12	26	265.8	．	14430	1140
13	52	282.3	35． 3	6911	－
14	52	300.6	176．1	14680	18.6
15	102	308.8	203.5	15631	10197
16	10	304.0	198.7	31498 3040	20757
17	38	226.7	121．	3040	1987
18	10	109.6	398.6	8615	4607
19	10	128.1	428.4	1076	3786
20	12	107.4	414.4	1281	4284
21	58	49.5	549.8	12888	4973
22	16	78.8	423.7	2871	20288
23	50	115.3	387.2	1261	6779
24	52	396．2	378．3	5765	19360
25	54	395． 5	372.5	20602	19672
26	80	393．1	374.9	15447	12665
27	12	371.0	374.9	31448	29792
28	4	396.4	369.1	4692	4499
29	74	599.6	368．0	1586	1476
30	178	2.1	5．8	29570	2725
31	40	8.3	5.8	374 -770	1032
32	116	6.2	2.1	35	－
33	42	405.8	370．1	719 17044	244
34	32	440.3	335	17044	15544
35	16	603.2	184．1	14070 9651	10739
36	12	609.6	177.7	7651	2946
37	16	601.8	185.5	7315	2132
38	15	577.4	185.5	9627	2968
39	60	488． 5	274.4	8661 29510	2782
40	128	502.0	285.3	29310	16464
41	178	581．	206.0	104256	36518
42	18	662.6	132.7	10.3471	ミ6060
43	54	613.4	173．9	11927	2こ89
44	102	162.9	151.5	Sこ124	7391
45	10	144.8	133.4	16616	1545
46	46	166.0	154.6	1448 7636	13．34
47	58	15ふ． 7	142.3	$\begin{aligned} & 7636 \\ & 8915 \end{aligned}$	$\begin{aligned} & 7112 \\ & 8255 \end{aligned}$

（Table 6 continued on the nest page）

Table 0 : Case Ξ Loadfeet Directioning (cont.).

ELOCK	distance (FEET)	ALT 1 LOADS	ALT 2 LOADS	$\begin{gathered} \text { ALT } 1 \\ \text { LOAD-FT } \end{gathered}$	$\begin{gathered} A L T 2 \\ \angle O A D-F T \end{gathered}$
48	54	140.2	128.8	7571	
49	138	156.2	144.8	21556	6755
50	120	181.2	159.8	21744	19176
51	52	206.3	194.8	10722	10130
52	40	6.2	6.2	10728	1248
53	64	736.8	291.8	47155	18675
54 55	148 136	467.0	245.5	69116	36354
56	186 60	441.2 415.3	271.3 297.1	60003 24918	36897
57	200	171.8	135.1	24918 $\$ 4360$	17826 26620
58	136	150.7	158.9	20495	26620
59	112	129.6	$18 \pm .7$	14515	20574
60	120	246.7	164.9	29604	19680
61 62	26 204	285.4	131.9	7420	3429
6.3	204	174.0	231.9	35496	47308
64	236	147.9	254.6	34904	60086
04	196	122.1	328.6	23932	64406
				1085249	952209

INFUT GROUFING:

Group i- input stations 15, 16, and 17.
Group 2- input station 14.
Group 3- input stations 10,11 , and 12.
Group 4- input station 13.
Group 5- inout stations 7, B, and 9.
Group 6- input stations $1,2,3,4,5,6,18,19,20,21,22,23$, and 24.

OUTFUT GROUPING:

```
Group 1- output stations 40. 41, and 42.
Group 2- output station 43.
Group 3- output stations 36 and 37.
Group 4- output stations 38 and 39
Group 5- output stations 32, 33, 34, and 35.
Group 6- output stations 25, 26, 27, 28, and 29.
Group 7- output stations 30, 31, 44, 45, 46, 47, 48, 49, and 50
```

Table 7 : Case 3 Job Flow Matrax
travel distance with special attention given to the jobs going to output groupg 2 and 7 and jobs going from input group 6. Cutoffs were suggested and the result can be seen in Figure 26.

PROCEDURAL SUMMARY 2.

PROCEDURAL SUMMARY 3.

Figure 26 : Proposed Cutoffs for Case 3.

The system efficiency was 81.80 and the system utilization was 60.49. From previous indications the system efficiency is low and will increase with the use of block division.

PROCEDURAL SUMMARY 4.

step	description	dir	eff	util	range	$\begin{aligned} & \text { needed } \\ & \text { veh } \end{aligned}$	engstd blocks
1	general layout			Ssee Fig	e 23)		
2	loadfeet analysis	Alt.	21	(see Figu	e 25)		
3	cutoff analysis			(see Figu	e 26)		
4	Vehicle estimation				15-26		
5	simulation		81.80	8060.49		20	

Four successive block divisions were done and the final number of vehicles required was 17. The system efficiency was increased to 97.30 and the system utilization was increased to 70.96. The summary of these cuts is shown below.

PFROCEDURAL SUMMARY 5.
step description dir eff util range needed veh ingstd

The reduction in the rate of increase of system efficiency and system utilization was the reason the block division process was abandoned.

Figure 27 shows the appraach to steady state in system utilization after the second cut. The peak in the utilization curves indicates at what vehicle level within each cut that the system load can be handled. More vehicles than are needed produces an almost linear drop in system utilization due to overcrowding.

Figure 28 shows the attainment of steady state after a

CASE 3: UTILIZATION -VS- VEHICLE \#

FIGURE 27.

CASE 3: EFFICIENCY -VS- VEHICLE \#

FIGURE 28.
vehicle has reached the point where it can handle the system load. Note that 16 vehicles was never able to handle the load and its system utilization is lower than 17-19's. This is because there is job backup at the input stations and the vehicles do not follow a dispatch schedule that reduces distance travelled unloaded but rather a schedule which reduces the backup loads at a given input. Hence the vehicles travel longer distances and the system utilization is lower. Eut if the vehicle count can process the load (17-19) there is a stepped effect with the smallest vehicle number yielding the highest utilization.

In Fig gre 29 the reduction in the rate of increase in system efficiency can be seen as each progressive cut is performed. Note the general levelling effect of the system efficiency curves over the progression of the cuts. Each cut makes the system more efficient and hence the number of vehicles in the system has less effect on system efficiency. This can be seen by the difference of 7 percent system efficiency between 16 and 19 vehicles in the uncut system compared to virtually no difference in system efficiency between 16 and 19 vehicles in the system cut 4 times.

This is further demonstrated in Figure 30 where as the cuts progress the system efficiency for each vehicle conut converges.

CONCLUSION
In the course of this study the objectives stated at the beginning of this thesis were met.

CASE 3: UTILIZATION -VS- CUT \#

FIGURE 29

CASE 3: EFFICIENCY -VS- CUT \#

FIGURE 30.

The first section presented a viable method of emulating a AGVS. The overall simplicity of the macros was what was strived for.

In Case 1 the redefinition of system utilization and system efficiency brought added significance to their purpose. The further investigation with blocking introduced the concept of reserve capacity.

In Case 2 steps were developed for the implementation of a AGVS. The step-by-step procedure proved to produce a viable guidepath and vehicle count.

In Case 3 the previous evaluation and implementation techniques were applied and their viability further demonstrated.

FUTURE STUDY
The techniques developed in this thesis are, of course, only a simplistic approach to the problem of the implementation of AGV systems. There are many improvements that $c a n$ be made on the existing proposal and viable alternatives that can be investigated.

Improvements on the existing proposal include a more sophisticated approach to the dispatch and scheduling algorithm. In the D/S algorithm developed in this thesis, when there was an overload (i.e. any input station with 3 or more jobs in queue) in 2 or more input stations, the input chosen is the one with the lowest identification number. Because the input station chosen might be the furthest of any of the overloaded input stations; extra distance would
be incurred and efficiency lost. The obvious solution is to scan the overloaded stations and choose the closest one. Another possible D/S improvement would be if a destination were chosen and its distance exceeded a specified unloaded travel limit, the vehicle could wait a specified amount of time to see if another closer job would become available. If a closer job materialized the vehicle would switch the destination to the closer job. If not, the vehicle would proceed to the further destination. This would help eliminate needlessly long travelling periods when the vehicle was not loaded, which would cause an increase in efficiency and utilization.

A third improvement in the D / S algorithm would be, in essence, to create "smart" vehicles. This would entail vehicles making decisions while they were enroute to a predetermined destination. The advantage of this would be that if a job materialized along the route of a vemicle, a decision could be made whether or not to switch the destination. Also if a vehicle were going to the park area, it would not have to complete the trip to the park area but could divert and pick up a load. Travel distance of unloaded vehicles would be reduced and efficiency and utilization would be increased.

These former concepts could definitely be incorporated into the D/S algorithm, the overload destination and waiting principal very easily while the "smart" venicle concept would be more difficult.

Another area of improvement would be in the cutoff analysis technique. Presently, the cutoffs instituted are to eliminate excessive travel distances frominput stations to output stations. The other aspect of the problem is: What about the travel distances from output stations to input stations? Wholesale installation of cutoffs is, of course, a viable solution, but the cost of unneeded cutoffs would be incurred. Another solution would be to run a simulation that records all vehicle path movements. This would provide a "from-to" chart for output stations to input stations. Fossible cutoffs could then be considered for this traffic flow as well as the previously considered input-toーoutput traffic flow.

A viable alternative which became apparent in the course of this study, is to create an on-sereen orid that would represent the manufacturing workplace where the AGUS Was to be installed. Input and output stations are placed on the screen to represent their position on the workfloor. With the use of a "mouse" or a light pen, possible quidepaths could be drawn directly onto the sereen. With proper supporting software the attributes of any proposed quidepath could be evaluted. The simplest of these would be m Calculation of the load-feet used to handle the system 1oad. With more complicated software, simulations could be run of the suggested guidepaths and the number of vehicles, system efficiency, and system utilization could be calculated. From that point cutoffs could be "drawn" on the
screen and their effectiveness measured versus their proposed implementation costs.

An important consideration in the accuracy of the preinstallation evalution process is to qet the production planning department more involved. Presently, the svstem Ereated uses a random dispatch method of jobs from the inputs and a uniform rate of jobs materializing at the input stations. These methods do not take into consideration any trends or fluctuations that occur in the workplace. If a better picture can be presented of the work order schedule by production planning then more accurate information will be created by the pre-installation evalution.

In conclusion, it is imperative that any preinstallation system created must bekept as simple as possible. The increased application of AGVSs to solve today's material flow problems makes the need for such preinstallation systems crucial. Although the savings produced by a AGVS can be large, so are the installation costs. A simple system will allow for in-house evalution by a company's own engineers.

1 Adams, Walter F. Automated Guided Eehicle System Cageibilities and Design Considerations. USA: Aulerbach Publishers Inc., 1985.

2 Automated Guided Vehicle Systems. Frocegdings of $\underline{\underline{s} \text { st }}$ International Conference. Stratford-upon-Avon, United Kingdom, 1981.

3 Gartland, J.F. "Computer Simulati/n as a Tool in Making Design and Furclasing Decisions for an Automated Guided Vehicle System" Unpublished Master's Report, North Carolina State University, 1984.

4 Hitchens, Max W. "Simulation: The Key to Automation Without Fisk." CAD_CAM Iechnglgay, Fall, 1984, pp.1517.

5 Kulwiec, Ray "Trends in Automated Guided Vehicle Systems." Ellant Engineering, Dctober 11, 1984, pp. 66-73.

6 Muller, Thomas. Autgmated Guided Vehi드를. United Kingdom: IFS Fublications Limited, 1983.

7 Newton, Dave "Simulation Model Calculates How Many Automated Guided Vehicles Are Needed." Industrigal Engineering, February, 1985, pp. 68-78.

8 Nof, Shimon Y. "A Methodology for Computer-aided Facility Flanning." International Journal of Froduction EResearch, Vol. 18 No. 6 (1980), 699-722.

9 "'Our order-filling system handles any surge demands.'" Modern Materigl. Hindling, June 6, 1983, pp. 4851.

10 Quinn, Ed "Factors Influencing Simulation Accuracy of AGV Networks." $19 \underline{9} 94$ National Material Handling Forum (GGuided Vehicle Systems Sessign), (March 28, 1984).

11 Stauffer, Fobert N. "Graphic Simulation Answers Freproduction Questions." CAD/CAM Iechnology, Fall, 1984, p. 11-13.

APPENDIX A
GPSS-H Macros

```
    Used to travel a section of track. Will perform no
other functions. Will only allow one vehicle to travel a
particular section at ane time. Used in main program and
called from OUTPT, INPT, GAS. PLACE, and LOOP macros.
```

Inputs:
(1) vehicle number
(2) section travel time
(3) section to travel
(4) section leaving

Dutputs:
(1) completion of travel of section
(2) tabulation of time travelling with or without a load
(3) depletion of fuel
(4) waiting time for loaded and non-loaded vehicles for given section to become unoccupied
(5) entrance in queue for either loaded or non-loaded vehicle to mark time for waiting to enter neut section

Procedure:
(1) Vehicle attempts to seize section of track, if it is occupied the venicle will wait until it is free and then will take control of $j t$.
(2) Vehicle will leave queue and tabulate waiting time for section to become availible.
(3) Vehicle will release previous section so it can be used by ather vehicles.
(4) Tabulation of travel time in either loaded or nonloaded travel time.
(5) Vehicle travels section.
(6) Fuel level decremented.
(7) Enter queue which will mark the time at which waiting to enter the next section will begin
(8) Vehicle exits macro.

```
    TRVL MACRD
    OFERAND DESCRIPTIDNS
    #A - VEHICLE NUMBER STDRED IN PARAMETER I
    #B - TRAVEL TIME
    #C - SECTIDN ENTERING
    #D - SECTIDN LEAVING
    TFUL STARTMACRD #A,#B,#C,#D
*
* TAKE CDNTROL OF NEXT BLDCK DF TRACK AND RELEASE HAITING*
* QUEUE AND BLDCK PRESENTLY dCCUPIED
*
        SEIZE #C
        TEST E XF*(PF1+50),0,*+4
        DEFART (#D+1)
        DEPART 350
        TRANSFER **3
        DEPART #D
        DEPART 351
        RELEASE #D
*
* ASSIGN PARAMETER VEHICLE STATUS valUE
*
        ASSIGN 4,XF*(#A+50),PF
* add section lengTh travelled td ldaded or unloaded *
* savevalue
*
    SAVEVALUE (FN25) +,#B,XF
*
* INLREMENT VEHICLE [LDCK
*
        ADVANCE #B
*
* DPTIDNAL DECFEMENT DF VEHICLE'S FUEL LEVEL
*
    SAVEVALUE (#A+36)-,#B,XF
*
* ENTER LDAD dR unLdad dueue and wait td ENTER NEXt BLDCK *
*
    TEST E XF*(FF!+50),0,*+4
    DUEUE (#C+1)
    DUEUE 350
    TRANSFER ,*+3
    QUEUE #[
    QUEUE 351
    ENDMACRD
```

Used to load a vehicle. Will allow one vehicle in the input station at one time. Vehicle leaves track to perform loading procedure so that other vehicles can proceed unobstructed if not to be loaded. Called from the INPT macro.

Inputs:
(1) vehicle number
(2) load time
(3) loading area
(4) section leaving

Dutputs:
(1) completion of vehicle loading
(2) tabulation of loading time
(3) depletion of jobs fron loading area queue
(4) assignment of output station
(5) depletion of fuel
(b) waiting time for non-laaded vehicles for given section to become unoccupied
(7) entrance in queue for loaded vehicles to mark time for waiting to enter next section

Procedure:
(1) Vehicle attempts to seize loading area. lf it is occupied the vehicle will wait until it is free and then will take control of $i t$.
(2) Venicle will leave queue and tabulate waiting time for loading area to become free.
(3) Vehicle releases previous section so it can be used by other vehicles.
(4) Load vehicle and tabulate loading time.
(5) Subtract job from loading area queue.
(6) Check individual load destination distribution and assign output destination.
(7) Decrement fuel.
(8) Place flag on vehicle that it is carrying a load.
(9) Enter queue which will mark time at which waiting to enter the next section will begin.
(10) Vehicle exits macro.

INPUT MACRD

```
OPERAND OESCRIPTIONS
#A - YEHICLE NUMBER STOREG IN PARAMETER I
#B - LDAOINE TIME
#C - INPUT STATION ENTERING
#D - SECTION LEAVING
    INPUT STARTMACRO #A,#B,#C,#D
*
* takE control dF INPUT statIon ang release walting gueuE*
* ANO blOCK DF TRACK PRESENTLY OCCUFIEO
*
    SEIZE #C
    TEST E XF*(PFI+50),0,*+4
    DEPART (#D+1)
    DEPART 350
    TRANSFER ,*+3
    OEPART #D
    OEPART 351
    RELEASE #0
*
* INCREMENT vEHICLE CLOCK
    AQUANCE #B
*
* oEcREMENT job assigneg queue
*
    SavEvalue (PF2+24)-,1,XF
*
* ASSIGN OUTPUT STATION DESTINATION FROM FROM-TO *
* FUNCTIONS
*
    ASSIGN 2,FN*(PF2),PF
* OPTIONAL DECREMENT OF vEHICLE's FUEL LEVEL
*
    SAVEvALUE (#A+36)-,#B,XF
* asSigN vehicle status to load
*
    Savevalue (PF1+50),1,XF
*
* Entef load or unldad queue and walt to enter next block *
*
    TEST E XF*{PF1+50),0,*+4
    QUEUE (#C+1)
    QUEUE 350
    TRANSFER ,*+3
    QUEUE #C
    QUEUE 35!
    ENOMACRO
```

Used to unload a vehicle. Will allow one vehicle in the output station at one time. Vehicle leaves track to perform unloading procedure so other vehicles can proceed unobstrueted if not to be unloaded. Called from the DUTPT macro.

Inputs:
(1) vehicle number
(2) unload time
(3) unloading area
(4) section leaving

Dutputs:

(1) completion of vehicle unloading
(2) tabulation of unloading time
(3) depletion of fuel
(4) assignment of destination; input, fuel, park
(5) if destination input station depletion of input station buffer and addition to input station assigned job by one job
(6) entrance in queue for non-loaded vehicles to mark time for waiting to enter next section

Procedure:
(1) Vehicle attempts to seize unloading area. lf it is occupied the venicle will wait until it is free and then take control of it.
(2) Venicle will leave queue and tabulate time for unloading area to come free.
(3) Will release previous section so it can be used by other vehicles.
(4) Unload vehicle and tabulate time of unloading.
(5) Decrement of fuel.
(6) Checkif fuel is below refuel level. If so assign destination refuel area.
(7) Check if any input station has over a specified number of jobs to process. If so destination is as5igned to the overloaded station.
(8) lf job assigned destination of a input station subtract one job from the input buffer and add one job to input job assigned for that station.
(9) If no job has been assigned, destination is park area
(10) Place flag on vehicle that it is not carrving a load.
(11) Enter queue which will mark the time at which waiting to enter next section will begin.
(12) Vehicle exits macro.

```
    DUT MACRD
    OPERAND DESCRIPTIONS
    #A - VEHICLE NUMBER STOREO IN PARAIETER !
    #B - UNLOADING TIME
    #C - OUTPUT STATION ENTERING
    #0 - SECTIDN LEAVING
    OUT STARTMACRO #A,#B,#C,#D
*
* TAKE CONTROL OF INPUT STATION ANO RELEASE WAITING OUEUE*
* ANO BLDCK OF TRACK PRESENTLY OCCUFIEO
*
        SEIZE #C
        TEST E XF*(PFI+50),0,*+4
        DEFART (#0+1)
        OEPART 350
        TRRNSFER ,*+3
        DEPART #D
        DEPART 351
        RELEASE #0
* InCfement vehicle clock
*
    AOVANCE #E
* oftional oecrement of vehicle's fuEl level
*
        SAVEVALUE (#A+36)-,#B,XF
*
* ASSIGNMENT DF VEHICLE DESTINATION PARAMETERS
*
    AS5IGN 3,24,FF
    ASSIGN 5,25,PF
        ASSIGN 6,25,PF
* DPTIONAL CHECK. IF REFUEL NEEDED; IF SD DESTINATIDN *
* REFUEL AREA AND BYPASS OTHER OESTINATION OPERATIDNS
*
    TEST LE XF*(#A+36),1000,*+3
    ASSIGN b.35.PF
    TRANSFER **+16
*
* CHECK FOR DVERLOADEO JOE OUEUES; ASSIgN DESTINATION *
* TO INPUT STATIDN WITH DVERLOADEO jOE OUEUE aNO EYPASS
* OTHER oESTINATION OPERATIONS
\begin{tabular}{ll} 
TEST G & \(X F *(P F 3), 3, *+2\) \\
ASSIGN & G,PF3,PF \\
LODF & \(3 P F, *-2\) \\
TEST E & PFG, \(25, *+10\)
\end{tabular}
*
* CHECK IF ANY JOBS TD BE DONE; ASSIGN VEHICLE DESTINATIDN*
* TD CLOSEST INPUT STATION AND BYPASS OTHER OESTINATIDN *
* operations
```

```
*
    ASSIGN 3.24,FF
    TEST GE XF*(PFZ),1,*+4
    TEST L MX1(FF2,PF3),PF5,*+3
    ASSIGN S.MX1(FF2,PFJ),PF
    ASSIGN 6,PF3,PF
    LOOF 3PF,*-4
*
* IF THERE IS NO DESTINATION ASSIGNMENT; ASSIGN *
* oESTINATION TO THE PARK area
*
    TEST E PFG,25,*+3
    ASSIGN 2,51,FF
    TRANSFER ,*+4
*
* IF VEHICLE ASSIGNED OESTINATION OF AN INPUT STATION: *
* DECREMENT JOB QUEUE ANO INCREMENT JO& ASSIGNED QUEUE *
*
    SAVEVALUE (PFG)-, 1,XF
    SAVEVALUE (PF6+24)+,1,XF
*
* ATTACH OESTINATIQN TO VEHICLE
    ASSIGN 2,PF6,PF
* ASSIGN vEHICLE STATUS tQ uNLOAD
*
    SAVEVALUE (FF1+50),0,XF
*
* ENTER LOAD OR UNLOAD QUEUE AND WAIT TO ENTER NEXT BLOCK *
*
    TEST E XF*(PF1+50),0,*+4
    QUEUE (#C+1)
    QUEUE 350
    TRANSFER ,*+3
    QUEUE #C
    QUEUE 351
    ENOMACRO
```


FUEL MACRO

Used to refuel vehicle. Will allow multiple vehicles in refuel station at one time forespecified by user). Vehicle leaves track to perform refueling so that other vehicles can proceed if refueling is not necessary. Called from the GAS macro.

Inputs:
(1) vehicle number
(2) refueling time
(3) refueling area
(4) section leaving

Dutputs:
(d) completion of refueling
(2) tabulation of refueling time
(3) depletion of fuel
(4) waiting time for unloaded vehicle to enter refuel area
(5) entrance into queue for unloaded vehicle to mark time for waiting to enter neyt section

Procedure:
(1) Vehicle enters refueling area.
(2) Vehicle leaves queue and tabulates waiting time to enter refueling area $(=0)$.
(3) Releases previous section so it can be used by other vehicles.
(4) Vehicle $1 s$ refueled and refuel time tabulated.
(5) Fuel depletion.
(6) Enter queue which will mark time at which waiting to enter next section will begin.
(7) Vehicle exits macro.

```
    FUEL MACRD
    OPERAND DESCRIFTIONS
    #A - VEHICLE NUMBER STOREO IN PARAMETER I
    #B - REFUELLING TIME
    #C - REFUELLING STATION ENTERING
    #D - SECTION LEAVING
    FUEL STARTMACRD #A,#G,#C,#D
*
* ENTER FUEL AREA AND RELEASE WAITING QUEUE AND BLOCK of *
* Track presently occufieo
    ENTER #C
    TEST E XF*(PF!+50),0,*+4
    OEFART (#0+1)
    OEFART 350
    TRANSFER ,*+3
    OEPART #D
    OEFART 351
    RELEASE #0
JNCREMENT VEHICLE CLOCK
    ADVANCE ##
OFTJONAL REFUEL ANO OECREMENT OF FUEL LEVEL
    SAVEVALUE (#A+36),30000,XF
    SAVEVALUE (#A+3G)-,#B,XF
*
ENTER LOAD OR UNLOAO QUEUE ANO WAIT TO ENTER NEXT BLOCK *
    TEST E XF*(FFI+50),0,*+4
    QUEUE (#C+1)
    ZUEUE 350
    TRANSFER .*+3
    ZUEUE #C
    QUEUE 35!
    ENOMACFO
```

Used as an area to place vehicles when there are no jobs for that need to be done. Will allow multiple vehicles in park station at one time(prespecified by user). Vehicle leaves track so that other vehicle can proceed if undertaking transportation of a job. Called from the FLACE macro.

Inputs:
(1) vehicle number
(2) parking area
(3) section leaving

Outputs:
(1) vehicle released; recieves new destination
(2) waiting time for unloaded vehicle to enter park ($=0$)
(3) entrance into queue for unloaded vehicles to mark time for waiting to enter neyt section
(4) tabulation of parking time

Procedure:
(1) Venicle enters parking area.
(2) Vehicle leaves queue and tabulates time waiting to enter parking area (=0).
(3) Release previous section so it can be used by other vehicles.
(4) Stop at qate until logic switch is in set position and then proceeds to receive new destination and exit.
(5) Reset logic switch 50 not to let all vehicles through at once.
(6) Stop until one of the buffers has a job for the vehicle to do, then proceed.
(7) Enter queue which will mark the time at which waiting to enter next section will begin.
(8) Vehicle exits macro.

```
PARK. MACRO
    OPERAND DESCRIPTIDNS
    #A ~ VEHICLE NUMEER STDPED IN PARAMETER 1
    #B - PARKING STATION ENTERING
    #C - SECTION LEAVING
    FARK STARTMACRO #A,#B,#C
* enter fark area and release walting gueue and block of *
* TRACK FRESENTLY DCCUPIED
*
    ENTER #B
    TEST E XF*(PF1+50),0,*+4
    DEPART (#C+1)
    DEPART 350
    TRANSFER **3
    OEPART #C
    DEPART 351
    RELEASE #C
*
* GATE THAT WILL ALLOW only one vehicle to leave for every*
* ONE JOB THAT NEEQS TO BE DONE
*
    GATE LS 2
    LOGICR 2
    TEST E BU22,1
* enter ldad or unldad queue ano wait to enter next block *
*
    TEST E XF*(F'F1+50),0,*+4
    OUEUE (#B+1)
    OUEUE 350
    TRANSFER ,*+3
    QUEUE #E
    QUEUE 35I
    ENDMACRO
```


ENTER MACRO

```
    Used to reenter track from either parking or refuel
area. Only one vehicle can enter at one time. Iravels
retreat section of park or refuel section with the TRAVEL
macro. Called from the GAS and PLACE macros.
```

Inputs:
(1) vehicle number
(2) section travel time
(3) section to enter
(4) section to leave
(5) logic switch number to allow only one vehicle out at a time

Dutputs:
(1) completion of travel of section
(2) tabulation of time spent travelling with or without load
(3) tabulation of time spent in park or refuel area
(4) assignment of destination; park, refuel, or input
(5) if destination input station, depletion of input station buffer and addition to input station loading area gueue
(6) logic switch placed on set position
(7) depletion of fuel
(8) waiting time for non-loaded vehicles for given section to become unoccupied
(9) entrance in queue for non-loaded vehicles to mark time for wajting to enter neat section

Procedure:
(1) Vehicle attempts to seize section of track. If it is occupied the vehicle will wait until it is free and then take control of it.
(2) Vehicle will leave gueue and tabulate waiting time for the section to come open.
(3) Vehicle will leave refuel or park area.
(4) Check if fuel is below refuel level. If so, assign destination refuel area.
(5) Check if any input station has over a specified number of jobs to process. If so destination is assigned to the overloaded station.
(6) Jf vehicle is assigned the destination of an input station, subtract one job from the input buffer and
one job to input job assigned for that input station.
(7) If no job has been assigned, destination is park area
(8) Set logic switch to set position.
(9) Travel section (see TRAVEL macro).
(10) Tabulation of travel time in non-loaded vehicle travel time.
(1!) Enter queue which will mark the time at which waiting to enter next section will begin.
(12) Vehicle exits macro.

```
OFERANO DESCRIPTIDNS
#A - VEHICLE NUMEER STORED IN PARAMETER 1
#B - TRAVEL TIME
#C - SECTIDN ENTERING
#0 - PARK OR REFUEL AREA VEHICLE IS LEAVING
#E - GATE NUMBER FOR PARK OR FUEL
ENTER STARTMACRO #A,#B,#C,#D,#E
*
* taKE contral dF reENTRANCE BLOCK AND RELEASE WAITING
* QUEUE ANO PARK OR REFUEL AREA PRESENTLY OCCUPIEO
*
    SEIZE #C
    TEST E XF*(PF1+50),0,*+4
    OEPART (#D+1)
    OEPART 350
            TRANSFER ,*+3
            DEPART #D
            OEPART 351
            LEAVE #0
* ASSIGNMENT OF VEHICLE DESTINATION PARAMETERS
\begin{tabular}{ll} 
ASSIGN & \(3,24, P F\) \\
ASSIGN & \(5,25, P F\) \\
ASSIGN & \(6,25, P F\)
\end{tabular}
* OFTIONAL CHECK IF REFUEL NEEDEO; IF SO DESTINATIDN *
* REFUEL AREA ANO BYPASS OTHER DESTINATION OPERATIONS *
*
    TEST LE XF*(#A+36),1000,*+3
    ASSIGN 6.35,PF
    TRANSFER ,*+16
*
* CHECK FOR OVERLOADED JOB QUEUES; ASSIGN DESTINATION
* TO INPUT STATIDN WITH OVERLOADED JOE QUEUE ANO EYPASS
* OTHER dESTINATION OPERATIONS
*
    TEST G XF*(PF3), 3,*+2
    ASSIGN G.PF3,PF
    LOOF 3PF,*-2
    TEST E PFG,25,*+10
*
* CHECK IF ANY JOBS TO BE OONE; ASSIGN VEHICLE DESTINATION*
* TO CLOSEST INPUT STATION ANO BYPASS OTHER DESTINATION *
* OPERATIONS
```

```
ASSIGN 3,24,PF
```

ASSIGN 3,24,PF
TEST GE XF*(FF3),1,**4
TEST GE XF*(FF3),1,**4
TEST L MX1(PF2,PF3),PF5,*+3
TEST L MX1(PF2,PF3),PF5,*+3
ASSIGN 5,MX1(FF2,PF3),PF
ASSIGN 5,MX1(FF2,PF3),PF
ASSIGN 6.PF3,PF
ASSIGN 6.PF3,PF
LOOP 3FF,*-4

```
LOOP 3FF,*-4
```

```
* IF THERE IS NO OESTINATION ASSIGNMENT: ASSIGN
* OESTINATION TO THE PARK AREA
*
    TEST E PF6,25,*+3
    ASSIGN 2,51,PF
    TRANSFER ,*+4
*
* IF VEHICLE ASSIGNEO OESTINATION OF AN INPUT STATION: *
* OECREMENT JOB OUEUE ANO INCREMENT JOS ASSIGNED QUEUE *
*
    SAVEVALUE (PFG)-,1,XF
    SAVEVALUE (PF6+24)+,1,XF
*
* attach oEstination to vehicle
    ASSIGN 2,PFG,PF
* ASSIGN VEHICLE STATUS TO UNLOAD
        SAVEVALUE (PFI+50),0,XF
* reget pafk gate to allowother vehicleg to fass
        LOGIC S #E
*
* OPTIONAL DECREMENT OF VEHICLE'g FUEL LEVEL
*
    SAVEVALUE (#A+36)-,#8,XF
*
* AOO SECTION LENGTH TrAVELLED TO LOAOEO DR UNLOADEO
* gavevalue
*
    SAVEVALUE (FN25)+,#8,XF
* INCREMENT VEHICLE CLOCK.
*
    AOVANCE #8
*
* ENTER lOAO OR UNLOAO OUEUE ANO WAIT TO ENTER NEXT BLOCK:*
*
    TEST E XF*(PFF1+50),0,*+4
    OUEUE (#C+1)
    QUEUE 350
    TRANSFER ,*+3
    OUEUE #C
    QUEUE 351
    ENDMACRO
```


OUTPT MACRO

Used to travel section which has an output station in its boundaries. Divided into three sections : (1) an approach section, (2) an output station, and (3) a retreat section. Only one vehicle can be in each of the parts at one time. The approach and retreat sections are traversed within the TRAVEL macro, the output station by the OUT macro. The car leaves the track to output job so if a vehicle does not need to unload it can proceed unobstructed.

Inputs:
(1) section leaving
(2) output station number
(3) approach section
(4) retreat section
(5) unloading area
(6) five transfer locations

Outputs:
(1) completion of approach section
(2) completion of retreat section
(3) if load to be dropped, completion of unloading

Procedure:
(1) Vehicle completes approach within travel block (see TRAVEL macrol.
(2) If unloading to be performed:
(a) vehicle completes unloading within output block (see OUT macro).
(b) vehicle completes retreat within travel black (see TRAVEL macra).
(c) vehicle exits macro.
(3) If unloading not to be performed:
(a) vehicle completes retreat within travel block (see TRAVEL macro).
(b) vehicle exite macro.

```
    OUTPT MACRO
    OPERAND DESCRIPTIONS
    #A - SECTION LEAVING
    #B - OUTFUT STATION ID NLMEER
    #C - APPROACH SECTION
    #D - RETREAT SECTION
    #E - output NamE
    #F - APPROACH SECTION TRAVEL TIME
    #G - RETREAT SECTION TRAVEL TIME
    #H - UNLDAD TIME
    #I - PROGRAM TRANSFER LOCATION
    #J - PROGRAM TRANSFER LOCATION
    OUTPT STARTMACRO #A,#B,#C,#D,#E,#F,#E,#H,#I,#J
*
* travEl oUTF|UT statION approach EldCk
*
    TRVL MACRO PF1,#F,#C,#A
*
* IF unLDADINE REQUIRED; UNLOAD AND TRAVEL OUTFUT RETREAT *
* BLOCK
*
    TEST E FF2,#B,#I
    OUT MACRD PFI,#H,#E,#C
    TRUL MACRD FFI,#G,#D,#E
        TRANSFER ,#J
*
* IF NQ IJNLOADING REQUIRED; TRAVEL OUTPUT RETREAT SECTION*
*
    #I ADVANCE O
    TRVL MACRO PFI,#G,#D,#C
    #J ADVANCE 0
        ENDMACRO
```

```
    Used to travel section which has an input station
within its boundaries. Divided into three sections : (1)
an approach section, (2) an output station, and (3) a
retreat section. Only one vehicle can be in each of these
sections at one time. The approach and retreat sections
are traversed by the TFAVEL macro, the input station by
the INFUT macro. The vehicle leaves the track to input a
job. If a vehicle does not need to load a job it can
proceed unobstructed.
```

Inputs:
(1) vehicle number
(2) section travel times (approach and retreat)
(3) section leaving
(4) input station number
(5) approach section
(b) retreat section
(7) input area
(8) two transfer locations

Outputs:
(1) completion of approach section
(2) completion of retreat section
(3) if load to be picked up, completion of loading

Frocedure:
(1) Vehicle completes approach within travel block(see TRAVEL macra).
(2) If loading to be performed:
(a) vehicle completes loading within input block(see INPUT macrol.
(b) vehicle completes retreat within travel block (see TRAVEL macro).
(c) vehicle exits macro.
(3) If loading not to be performed:
(a) vehicle completes retreat within travel block
(see TRAVEL macra).
(b) vehicle exits macro.

```
    INPT MACRD
    OFERAND DESCRIPTIONS
    #A - LOAD TIME
    #B - PRCGRAM TRANSFER LDCATION
    #C - SECTION LEAVING
    #D - INFUT STATION ID NUMBER
    #E - APPRDACH SECTION
    #F - RETREAT SECTION
    #G - INPUT NAME
    #H - APPROACH SECTION TRAVEL TIME
    #I - RETREAT SECTION TRAVEL TIME
    #J - PROGRAM TRANSFER LOCATION
    INPT STARTMACRD #A,#B,#C,#D,#E,#F,#E,#H,#J,#J
*
* TRAVEL INPUT STATION APPROACH BLOCK
*
    TRVL MACRO FFI,#H,#E,#C
*
* IF loading requIred; load and travel. input retreat *
* Block
*
    TEST E PF2,#D,#J
    INPUT MACRO PF1,#A,#G,#E
    TRUL MACRD PFI,#I,#F,#G
        TRANSFER ,#B
*
IF NO LOADING REQUIRED; TRAVEL INPUT RETREAT SECTION*
#J ADVANCE O
TRVL MACRD PFI,#I,#F,#E
#B ADVANCE O
    ENDMACRD
```

Used in travel section which has refueling station within its boundaries. Divided into three sections ; (l) an approach section, (2) a refuel station, and (3) a retreat section. Dnly one vehicle can be in the approach or retreat section at one time while the refuel section can hold a prespecified number of vehicles. The approach and retreat sections are traversed by the TRAVEL macro, and the refuel station by the FUEL $\operatorname{aacro.~The~vehicle~}$ leaves the track to refuel so that vehicles not needing to refuel can proceed unobstructed.
lnputs:
(1) section leaving
(2) refuel station number
(3) approach section
(4) retreat section
(5) refueling section
(6) travel time for the approach and retreat sections
(7) two transfer locations for the GAS macro
(8) refuel time

Dutputs:
(1) completion of approach section
(2) completion of retreat section
(3) if refueling takes place, completion of refueling
(4) if refueling takes place, completion of reentrance of the system

Procedure:
(1) Vehicle completes approach within travel block (see TRAVEL macro).
(2) If pefuel to be performed:
(a) vehicle completes refueling within fuel block (see FUEL macro).
(b) vehicle completes reentrance to the system and travels retreat within enter block (see ENTER macro),
(c) vehicle exits macro.
(3) If refuel not to be performed;
(a) vehicle completes retreat within travel block(see TRAVEL macro).
(b) vehicle exits macro.

```
GAS MACRD
OPERAND OESCRIFTIONS
*A - SECTIDN LEAVING
#B - REFUEL AREA IO NUMEER
#C - APPRDACH SECTION
#D - retreat sectidN For leaving gas macro
#E - APPROACH SECTION FOR ENTER MACRO
#F ~ APPROACH TRAVEL TIME
#G - RETREAT TRAVEL TIME
#H - FROGRAM TRANSFER LDCATIDN
#I - PROGRAM TRANSFER LOCATION
#J - REFUEL TIME
    GAS STARTMACRO #A,#B,#C,#口,#E,#F,#G,#H,#I,#J
*
* TRAVEL REFUEL STATION AFPROACH ELOCK
*
TRVL MACRO FFI,#F,#C,#A
*
* IF REFUEL REQUIREO; REFUEL ANO TRAVEL REFUEL fETREAT *
* BLOCK
*
    TEST E PF2,#B,#H
FUEL MACRO PFI,#J,#E,#C
ENTER MACRO PF1,#G,#O,#E,1
    TRANSFER ,#I .
*
* IF NO fEFUEL REOUIREO; TRAVEL REFUEL RETFEAT SECTIDN *
*
#H AOVANCE 0
TRVL MACRO PFI,#G,#O,#C
# AOVANCE 0
    ENDMACRO
```

Used to travel section which has a parking station within its boundaries. Divided into three sections: (1) an approach section, (2) a parking area, and (3) a retreat area. Only one vehicle can be in both the approach and retreat sections at one time while the park section can hold a prespecified number of vehicles. The approach and retreat sections are traversed by the TRAVEL macro and the parking section by the PARK macro. The vehicle leaves the track to park so that other vehicles which do not need to park can proceed unobstructed.

1nputs:
(1) section leaving
(2) parking station number
(3) approach section
(4) retreat section
(5) parking area
(b) two transfer locations for PLACE macro

Outputs:
(1) completion of approach section
(2) completion of retreat section
(3) if parking takes place, entrance and exit of parking area
(4) if parking takes place, completion of reentrance to the system

Procedure:
(1) Vehicle completes approach within travel block (see TRAVEL macro).
(2) If parking takes place:
(a) vehicle enters park until it is summonned to do a job within the park block (see FARK macrol.
(b) vehicle completes reentrance to the system and travels retreat section within the travel block (see TRAVEL macro).
(c) vehicle exits macro.
(3) If vehicle bypasses parking area:
(a) vehicle completes retreat section within the travel block (see TRAVEL macro).
(b) vehicle exits macro.

```
PLACE MACRO
QPERAND DESCRIPTIONS
#A - SECTION LEAVING
#B - FARK AREA ID NUMBER
#C - AFFRCACH SECTION
#D - RETREAT SECTION FOR LEAVING PLACE MACRO
#E - APPROACH SECTION FOR ENTER MACRO
#F - APPROACH TRAVEL TIME
#G - RETREAT TRAVEL TIME
#H - PROGRAM TRANSFER LOCATION
#I - PROGRAM TRANSFER LOCATION
PLACE STARTMACRO #A,#B,#C,#D,#E,#F,#G,#H,#I
*
* TRAVEL PARK STATION APPROACH BLOCK *
*
TRUL MACRO PF自,#F,#C,#A
*
* IF FARK REQUIRED; PARK AND WHEN SUMMONED REENTER THE *
* gUIDEPATH
*
    TEST E PF2,#B,#H
PARK MACRO PFI,#E,#C
ENTER MACRO PF1,#G,#D,#E,2
    TRANSFER ,#I
*
* IF NO FARK REQUIRED; TRAVEL PARK RETREAT SECTION *
*
#H ADVANCE 0
TRVL MACRO PF1,#G,#D,#C
# ADVANCE 0
    ENDMACRD
```

```
    Used to travel section which has more then one
route from point A to point B. If the beginning of the
main route is being used an alternative route will be
immediately attempted. If the first section of the alter-
nate route is also in use the vehicle will wait for the
first available path. Each route consists of two sections
which are each traversed by the TRAVEL macro. The succeed-
ing section is also contained in the LOOF macro and is
traversed normally in the TRAVEL macro. Vehicles will
always try the main route first. Purpose is to prevent
back up of vehicles if jam oscurs at one block.
```


!nputs:

(1) first half of loop to be traveled if main route taken
(2) second half of loop to be traveled if main route taken
(3) first half of loop to be traveled if alternate route taken
(4) second half of loop to be traveled if alternate route taken

Outputs:
(1) completion of loop by either main or alternate route
(2) completion of sucreeding section of track

Procedure:
(1) Vehicle attempts to enter main path portion of track. lf it is occupied will attempt to enter alternate path of track. If it is also occupied the vehicle will wajt until main or alternate becomes available and will then proseed.
(2) Vehicle completes travel of loop, by either main or alternate path (both are divided into two sections), within travel block (see TRAVEL macra).
(3) Vehicle exits macro.

```
    LOOP MACRO
    OPERAND DESCRIPTIDNS
    #A - MAIN PATH SECTION 1
    #B - MAIN PATH SECTIDN 2
    #C - ALTERNATIVE PATH SECTION I
    #D - ALTERNATIVE PATH SECTIDN 2
    #E - EXIT FROM EUIOEPATH TO LOOP SECTION
    #F - REENTRY ON GUIOEPATH SECTION
    #G - REENTRY ON EUIOEPATH IRAVEL TIME
    #H - PROGRAM TRANSFER LOCATION
    # - ProgRaM TRANSFER LOCATION
    #J - PROGRAM TRANSFER LDCATION
    LOOP STARTMACRO #A,#B,#C,#口,#E,#F,#G,#H,#I,#J
        TRANGFER
        ,*+2
    RET AOVANCE !
*
* CHECK IF MAIN PATH OCCUFIEO
*
            GATE NU #A,#H
*
* IF MAIN PATH UNDCCUPIED; IRAVEL ITS LENGTH
*
    TRVL MACRO PF1,4,#A,#E
    IRVL MACRO PF1,3,#B,#A
        TRANSFER #I
*
* CHECK IF ALTERNATIVE PATH OCCUPIEO
*
    #H GATE NU #C,RET
*
* IF ALTERNATIVE PATH UNDCCUPIED; TRAVEL ITS LENGTH *
* aNO REENTER MAIN gUIDEPATH
*
    TRVL MACRO PFI,5,#C,#E
    TRVL MACRO PF1,4,#D, #C
    TRVL MACRO PFI,#G,#F,#D
        TRANSFER ##J
*
* rETURN to regular guIdEPath from maIN roUtE
*
#I ADVANCE O
TRVL MACRO PFI,#G,#F,#B
#J ADVANCE O
        ENOMACRO
```

APFENDIX B
Example Program for Case 1

```
* THIS EXAMPLE IS OF CASE 1. NOTE THAT IT WAS RUN WITHOUT
* A DISTANCE MATRIX bECAUSE A FROM-TD CHART OF THIS SYSTEM
* WAS uNAVAILABLE.
*
*
SIMULATE
*
*
* GIVES EACH ELDCK OF TRACK,INFUT STATION, AND DUTPUT STATION
* AN EQUIVALENT NUMERICAL VALUE. IN THIS WAY THE VEHICLE'S
* WAITING TIME CAN BE MEASURED WHEN TRAVELLING LDADED (X)
* or travelling unloaded ( }X+1)\mathrm{ .
*
SEC46 SYN 1
AP! SYN 3
UNLDZ SYN 5
RP1 SYN 7
SEC2 SYN 9
APS SYN 11
UNLDA SYN 13
RPJ SYN 15
SEC4 SYN 17
APS SYN 19
UNLDE SYN 21
PFS SYN 23
SEC6 SYN 25
AP7 SYN 27
UNLD6 SYN 29
RP7 SYN 31
SEC8 SYN 33
AP9 SYN 35
UNLD7 SYN 37
RPQ SYN 39
SEC10 SYN 41
APII SYN 43
UNLD8 SYN 45
RPII SYN 47
SEC12 SYN 49
API3 SYN 51
UNLD9 SYN 53
RPIJ SYN 55
SEC14 SYN 57
SEC15 SYN 59
SEC16 SYN 61
SEC17 SYN bJ
CROSS SYN 65
SEC19 SYN 67
SEC20 SYN 69
SEC21 SYN 71
AP22 SYN 73
UND10 SYN 75
RP22 SYN 77
SEC23 SYN 79
SEC24 SYN 81
SEC25 SYN 83
```

```
    SEC26 SYN 85
    SEC27 SYN 87
    SEC2B SYN 89
    SEC29 SYN 91
    APJO SYN 93
    REFIL SYN 95
    RPJO SYN 97
    AF31 SYN 99
    PARK SYN 101
    RP31 SYN 103
    SEC32 SYN 105
    APJ3 SYN 107
    INFT3 SYN 109
    RP33 SYN 111
    SEC34 SYN 113
    AFO5 5YN 115
    INPT4 SYN 117
    RPJ5 SYN 119
    SEC36 SYN 121
    SEC37 SYN 123
SEC38 SYN 125
SEC39 SYN 127
SEC40 SYN 129
CLDG1 SYN 131
CLOG2 SYN 133
INPT1 SYN 135
CLDG3 SYN 137
CLOG4 SYN 139
INPT2 SYN 141
CLDG5 SYN 143
CLDGS SYN 145
CLOG7 SYN 147
CLDG8 SYN 149
UNLDI SYN 151
CLOG9 5YN 153
CLGIO SYN 155
UNLD2 SYN 157
CLGII SYN 159
CLG12 SYN 161
CLG13 SYN 163
SEC41 SYN 165
SEC42 SYN 167
LDPIA SYN 169
LDP1E SYN 171
LDP2A SYN 173
LOP2B SYN 175
SEC43 SYN 177
SEC44 SYN 179
*
*
* rEALLDCATION DF COMPUTER SPACE NEEDED TO PERFORM RUN.
*
*
    REALLOCATE COM,50000
*
```

* DISPATCH OF VEHICLES FROM INPUT STATIDNS TO THE QUTPUT
* STATIONS. SINCE NO FREVIOUS INFORMATION OF OISTRIBUTION
* DF THE DELIVERY OF JOBS, EACH DUTPUT STATION HAD AN EQUAL
* PROBAEILITY.
*

1 FUNCTIDN RN1,010
$.1,1 / .2,2 / .3,3 / .4 .4 / .5,5 / .6,6 / .7,7 / . B, B / .9,9 / 1.0 .10$
*

* CONVERSION OF THE VALUES STDREO IN FARAMETER 3 TO THE
* VEHICLE OESTINATION.
*

2 FUNCTION FFZ,050
$1,16 / 2,14 / 3,13 / 4,12 / 5,11$
*

* GROUPING OF OESTINATIONS INTO DNE LOCALE REPRESENTITIVE
* EROUP

3 FUNCTION PF2,L16
$1,3 / 2,3 / 4,4 / 5,4 / 6,4 / 7,4 / B, 4 / 9,4 / 10,4 / 11,1 / 12,1 / 13,2 / 14,2 / 15,5$
16,6
*

* CONVERSION OF VEHICLE STATUS (EITHER LOADED=1 OR UNLOAOEO=0)
* TO A SAVEVALUE WHICH StORES TDTAL TRAVELLINE FOR BOTH

4 FUNCTION PF4,02
0,37/1,38
*
*
*
*

* BOOLEAN VARIABLES WHICH ARE USEO WHEN DECISIONS ARE MAOE
* DN THE VEHICLES OESTINATION.

1 BVARIABLE XF1'E'0+XF2'E'O+XF3'G'O+XF4'E' 0
2 BVARIABLE XF4'GE'XF1*XF4'GE'XF2*XF4'GE'XF3
3 BVARIABLE XFJ'GE'XF1*XFJ'GE'XF2*XF 3 'GE'XF4
4 BVARIABLE XF2'GE'XF1*XF2'GE'XF $3 * X F 2$ ' $G E$ ' $X F 4$
5 BVARIABLE XF1.GE'XF2*XF1'GE'XFS*XF1'GE'XF4
6 BVARIABLE XF1'G' $0+X F 2^{\prime} G^{\prime}+X F J^{\prime} G^{\prime} 0+X F 4^{\prime} G^{\prime} 0$

* MACROS SHOULD BE INSERTEO HERE
* GENERATOR OF THE VEHICLES

GENERATE	$20,5,, 6,4 \mathrm{PF}$
SAVEVALUE	$25+, 1, X F$
ASSIGN	$1, X F 25, P F$
ASSIGN	$2, F N 1, P F$
SEIZE	SEC46
QUEUE	201
QUEUE	$(S E C 46+1)$

```
* MAIN PROGRAM REPRESENTING THE GUIDEPATH THE VEHICLES WILL
```

* FOLLOW.
*

STRT	AOVANCE	0
OUTPT	MACRO	SEC46, $3, A P 1, R P 1$, UNL $03,1,1,60,03 \mathrm{~A}, 03 \mathrm{~B}$
TRVL	MACRO	FF1, 1, SEC2,RP1
OUTPT	MACRO	SEC2, 4, AP 3, RP3, UNLD 4, 1, 1, 60, 04A, 04B
TRVL	MACRO	PF1, 1, SEC4,RP3
OUTPT	MACRO	SEC4, 5, AP5, RP5, UNL 05, 1, 1,60,05A, 05B
TRVL	MACRO	PF1, 1, SEC6,RP5
OUTPT	MACRO	SEC6, 6, AP 7, RP7, UNL06, 1, 1,60,06A, 06B
TRVL	MACRO	PF $1,1, S E C B, R P 7$
OUTPT	MACRO	SECB, 7, AP9, RP9, UNLD7, 1, 1,60,07A, 07B
TRVL	MACRO	PF1, 1, SECIO,RP9
OUTP'	MACRO	SEC10, $\mathrm{B}, \mathrm{AP} 11, \mathrm{RP} 11, \mathrm{UNLOB}, 1,1,60,08 \mathrm{~A}, 0 \mathrm{BB}$
TRVL	MACRO	PF1, 1, SEC12,RP11
OUTPT	MACRO	SEC12,9,AP13,RP13, UNL $09,1,1,60,09 \mathrm{~A}, 09 \mathrm{~B}$
TRVL	MACRO	PF1, 4, SEC14, RP13
TRVL	MACRO	PF1,4, SEC15, SEC14
TRVL	MACRO	PF1, 4, SEC16, SECI5
TRVL	MACRD	PF1,1, SEC17,SEC16
TRVL	MACRD	PF1,1,CROSS, SECI 7
TRVL	MACRD	PF1,4, SEC19,CROSS
TRVL	MACRO	PF1,4,SEC20,SEC19
TRVL	MACRO	PF1,5, SEC21, SEC20
OUTPT	MACRO	SEC21, 10, AP22, RP22, UNO10, 1, 1, 60, 010 A,010B
TRVL	MACRD	PF1,4,SEC23,RP22
TRVL	MACRO	PF1,2,SEC24, SEC23
TRVL	MACRO	PF1,4,SEC25, SEC24
CLOG	AOVANCE	0
TRVL	MACRO	PF1, 4, SEC26, SEC25
TRVL	MACRO	PF1,4,SEC27, SEC26
TRVL	MACRO	PF1, 4, SEC2B, SEC27
TRVL	MACRO	PF1,4,SEC29, SEC2B
GAS	MACRO	SEC29, 15,AP30,RP30, REFIL, 1, 1, GAS 1, GAS2
PLACE	MACRO	RP30, 16, AP 31, RP31, PARK, 1.1, PLC1, PLC2
TRVL	MACRO	PF1,1,SEC32,RP31
INPT	MACRO	$50,1 N 3 B, S E C 32,13, A P 33, R P 33,1 N P T 3,1,1,1 N 3 A$
IRVL	MACRO	PF1,1,SEC34,RP33
INPT	MACRO	50, IN4B, SEC34, 14, AP35, RP 35, INP $4,1,1$, IN 4 A
TRVL	MACRO	PF1,1,SEC36,RP35
TRVL	MACRO	PF1,4, SEC37,SEC36
TRVL	MACRO	PF1, 4, SEC3B, SEC3 7
TRVL	MACRO	PF1, 4, SEC39, SEC3B
TRVL	MACRO	PF1,3, SEC40, SEC39
	TEST E	FN3, 1, AAA
TRVL	MACRO	PF1, 1, CLOG1, SEC40
INPT	MACRO	50, IN1B, CLOE1, 11, CLOE2, CLOE3, INPT1, 1, 1, IN1A
INPT	MACRO	$50, \mathrm{IN} 2 \mathrm{~B}, \mathrm{CLOG3}, 12, \mathrm{CLOG4}, \mathrm{CLOG5}, \mathrm{INP} 212,1,1, \mathrm{IN} 2 \mathrm{~A}$
TRVL	MACRO	PF1,1,CLOG6, CLOG5
	TEST E	FN3, $3, \mathrm{BBB}$
CCC	AOVANCE	0
OUTPT	MACRO	CLOG7,1, CLOGB, CLOG9, UNLD $1,1,1,60,01 \mathrm{~A}, 018$
OUTPT	MACRO	CLOG9,2, CLE10, CLG11, UNL $02,1,1,60,02 \mathrm{~A}, 028$
TRVL	MACRO	PF1, $3, C L G 12, C L G 11$

```
TRVL MACRD PF1,4,SEC25,CLG12
            TRANSFER ,CLDG
    ARA ADVANCE 0
    TRVL MACRD PF!,6,CLG13,SEC40
TRVL MACRD PF1,1,CLDG6,CLG13
            TEST E 8V7,4,CCC
    TRVL MACRD PF1,1,SEC41,CLDG6
TRVL MACRD PF1,1,SEC42,SEC41
LDDP MACRD LDP1A,LDP1B,LDP2A,LDP2B,SEC42,SEC43,1,LDP1,LDF2,LDP3
TRVL MACRD PF1,1,SEC44,SEC43
TRVL MACRD PF1,1,CROSS,SEC44
TRVL MACRD PF1,1,SEC46,CRDSSI
        TRANSFER ,STRT
*
* GENERATIDN DF JDBS FDR ERCH INPUT. GENERATED AT A UNIFDRM
* RATE 8ECAUSE ND DISTRIBUTIDN KNDWN. DNE JD8 CREATED AT EACH
* INPUT EVERY }180\mathrm{ SECDNDS.
TDP GENERATE ,,,1
TDP ADVANCE 180
        SAVEVALUE 1+,1,XF
        SRVEVALUE 2+,1,XF
        SavEVALUE 3+,1,XF
        SavEvaluE 4+,1,XF
        TRANSFER ,TDP
* CLDCK TD REGULATE DNE SHIFT DR 28800 SECDNDS DF SIMULATIDN
* TIME.
GENERATE ,,,1
ADVANCE 28800
TERMINATE 1
START 1
END
```

APPENDIX C

Example Progran for Case 2

```
* THIS EXAMPLE IS AFTER THE CUTOFFS HAD bEEN PUT IN.
* ELOCK CUTTING HAD NOT YET BEEN fERFORMED.
*
*
*
    SIMULATE
*
*
* GIVES EACH BLOCK OF TRACK,INFUT STATION, AND OUTPUT STATION
* AN EOUIVALENT NUMERICAL VALUE. IN THIS WAY THE VEHICLE'S
* WAITING tIME CAN bE mEASURED WHEN TRAVELLING LOADED (X)
* or travelLINg unloaded (x+1).
AP1 SYN I
INPI SYN 3
RP1 SYN 5
SEC16 SYN }
AP20 SYN 9
UNL20 SYN 11
RP20 SYN $3
SEC17 SYN 15
APS SYN 17
INP3 SYN 19
RP3 SYN 21
AP21 SYN 23
UNL2I SYN 25
RF21 SYN 27
AP2 SYN 29
INP2 5YN 31
RP2 SYN 33
SEC20 SYN 35
AP4 SYN 37
INP4 SYN 39
RP4 SYN 41
AP5 SYN 43
INPS SYN 45
RPS SYN 47
APG SYN 49
INPG SYN 51
RPG SYN 53
AP7 SYN 55
INP7 SYN 57
RP7 SYN 59
APG SYN b1
INPB SYN 63
RPG SYN 65
SEC21 SYN 67
AP22 SYN 69
UNL22 5YN 71
RP22 5YN 73
SEC26 5YN 75
AP23 SYN 77
UNL23 5YN 79
FP23 5YN 81
SEC27 SYN 83
```

AP24	SYN	85
UNL 24	SYN	87
RP24	SYN	89
SEC28	SYN	91
AP9	SYN	93
INP9	SYN	95
RP9	SYN	97
SECI	SYN	79
AP 25	SYN	101
UNL25	SYN	103
RP25	SYN	105
SEC2	SYN	107
AP26	SYN	109
UNL26	SYN	111
RP26	SYN	113
AP10	SYN	115
INP10	SYN	117
RP10	SYN	119
SEC3	SYN	121
AF27	SYN	123
UNL27	SYN	125
RP27	SYN	127
AP28	SYN	129
UNL28	SYN	131
RP2日	SYN	133
SEC4	SYN	135
AP11	SYN	137
INP11	SYN	139
RP11	SYN	141
SEC5	SYN	143
AP: 2	SYN	145
INP12	SYN	147
RP12	SYN	149
SEC 6	SYN	151
AP13	SYN	153
INP13	SYN	155
RP13	SYN	157
AP30	SYN	159
UNL 30	SYN	161
RP30	SYN	163
AP29	SYN	165
UNL29	SYN	167
RP29	SYN	169
SEC9	SYN	171
AP14	SYN	173
INP14	SYN	175
RP14	SYN	177
AP3!	SYN	179
UNL31	SYN	181
RP31	SYN	183
SEC10	SYN	185
AP32	SYN	187
UNL32	SYN	189
RP32	SYN	171
AP 15	SYN	193

```
    INP15 SYN 195
    RP15 SYN 197
    SEC11 SYN 199
    SEC13 SYN 201
    APJJ SYN 203
    UNL33 SYN 205
    RP33 SYN 207
    AP17 SYN 209
    INP!7 SYN 211
RP17 SYN 213
SEC14 SYN 215
AP34 SYN 217
UNL34 SYN 219
RP34 SYN 221
AP!日 SYN 223
INP18 SYN 225
RP1日 SYN 227
AP16 SYN 229
INPI6 SYN 231
RP16 SYN 233
SEC15 SYN 235
AP!9 SYN 237
UNL19 SYN 239
RP19 5YN 241
APG SYN 243
RPG SYN 245
APP SYN 247
RPP SYN 249
TSQU1 SYN 253
TSQUH SYN 255
TSQUV SYN 257
LINK SYN 259
TSQU2 SYN 261
TSQUS SYN 263
TSQU4 SYN 265
TSOH1 SYN 267
TSQH2 SYN 269
TSQV2 SYN 271
TSQUS SYN 273
TSQV4 SYN 275
UPI SYN 277
UP2 SYN 279
*
* reallocation of computer space needeo to perform run.
*
*
            REALLOCATE COM,50000
*
* DECLARATION OF MATRIX TO CONTAIN QUTFUT-TO-INPUT OISTANCES,
*
*
M MATRIX MX,36,18
```

* INITIALIZATION OF OUTPUT-TO-INPUT DISTANCE MATRIX. THE ROW
* value indicates the dutput station and the column value the
* INPUT Station. the value in that matrix position is the rank.
* OF DISTANCES FROM THAT PARTICULAR OUTPUT (I=CLDSEST
* 1B=FURTHEST). THE ROW VALUE 36 REPRESENTS THE DISTANCE FROM
* the park afea.

INITIAL INITIAL INITIAL INITIAL INITIAL INITIAL

INITIAL INITIAL INITIAL INITIAL INITIAL INITIAL

INITIAL INITIAL INITIAL INITIAL INITIAL INITIAL

INITIAL
INITIAL INITIAL INITIAL INITIAL INITIAL

INITIAL INITIAL INITIAL INITIAL INITIAL INITIAL

INITIAL
INITIAL INITIAL
INITIAL INITIAL INITIAL

INITIAL INITIAL INITIAL INITIAL INITIAL INITIAL
$M \times 1(19,1), 1 / M \times 1(19,2), 2 / M \times 1(19,3), 3 / M \times 1(19,4), 4$ $M \times 1(19,5), 5 / M \times 1(19,6), 6 / M \times 1(19,7), 7 / M \times 1(19,8), 8$ MX1 (19,9),9/MX1(19,10), 12/MX1(19,11), 15 $M \times 1(19,12), 10 / M \times 1(19,13), 11 / M \times 1(19,14), 13$ $M \times 1(19,15), 14 / M \times 1(19,16), 16 / M \times 1(19,17), 17$ MX1(19,18),18
$M \times 1(20,1), 13 / M \times 1(20,2), 1 / M \times 1(20,3), 2 / M \times 1(20,4), 3$ $M X 1(20,5), 4 / M X 1(20,6), 5 / M X I(20,7), 6 / M X 1(20,8), 7$ $M \times 1(20,9), 8 / M \times 1(20,10), 10 / M \times 1(20,11), 15$ $\operatorname{MX1}(20,12), 9 / M \times 1(20,13), 11 / M X 1(20,14), 12$ $M X 1(20,15), 14 / M X 1(20,16), 16 / M \times 1(20,17), 17$ MX1 $(20,18), 18$
$M X 1(21,1), 11 / M X 1(21,2), 13 / M \times 1(21,3), 20 / M \times 1(21,4), 1$ $M X 1(21,5), 2 / M X 1(21,6), 3 / M X 1(21,7), 4 / M X 1(21,8), 5$ $M \times 1(21,9), 6 / M X 1(21,10), 9 / M \times 1(21,11), 14$ $M \times 1(21,12), 7 / M X 1(21,13), 8 / M \times 1(21,14), 10$ $M \times 1(21,15), 12 / M \times 1(21,16), 15 / M \times 1(21,17), 16$ MXI $(21,18), 17$
$M \times 1(22,1), 10 / M \times 1(22,2), 12 / M \times 1(22,3), 13 / M \times 1(22,4), 14$ $M \times 1(22,5), 15 / M \times 1(22,6), 16 / M \times 1(22,7), 17 / M \times 1(22,8), 18$ $M \times 1(22,9), 1 / M \times 1(22,10), 2 / M \times 1(22,11), 3$ $M \times 1(22,12), 4 / M \times 1(22,13), 5 / M \times 1(22,14), 6$ $M X 1(22,15), 7 / M X 1(22,16), 8 / M X 1(22,17), 9$ $M \times 1(22,18), 11$
$M \times 1(23,1), 10 / M \times 1(23,2), 12 / M \times 1(23,3), 13 / M \times 1(23,4), 14$ $M X 1(23,5), 15 / M X 1(23,6), 16 / M X 1(23,7), 17 / M X 1(23,8), 18$ $M \times 1(23,9), 1 / M X 1(23,10), 2 / M X 1(23,11), 3$ $M X 1(23,12), 4 / M \times 1(23,13), 5 / M \times 1(23,14), 6$ $M X 1(23,15), 7 / M X 1(23,16), 8 / M \times 1(23,17), 9$ $M X 1(23,18), 11$
$M \times 1(24,1), 10 / M \times 1(24,2), 12 / M \times 1(24,3), 13 / M \times 1(24,4), 14$ MX1 $(24,5), 15 / M \times I(24,6), 16 / M X 1(24,7), 17 / M \times 1(24,8), 18$ MX1 $(24,9), 1 / M \times 1(24,10), 2 / M \times 1(24,11), 3$ $M X 1(24,12), 4 / M \times 1(24,13), 5 / M X 1(24,14), 6$ $M X 1(24,15), 7 / M \times 1(24,16), 8 / M \times 1(24,17), 9$ MX1(24, 18),11
$M \times 1(25,1), 9 / M X 1(25,2), 11 / M \times 1(25,3), 12 / M \times 1(25,4), 13$ $M X 1(25,5), 14 / M X 1(25,6), 15 / M X 1(25,7), 16 / M X 1(25,8), 17$ $M X 1(25,9), 18 / M X 1(25,10), 1 / M \times 1(25,11), 2$ $M \times 1(25,12), 3 / M \times 1(25,13), 4 / M \times 1(25,14), 5$ $M X 1(25,15), 6 / M \times 1(25,16), 7 / M X 1(25,17), 8$ MX1(25,18),10

INITIAL INITIAL INITIAL INITIAL INITIAL INITIAL

INITIAL INITIAL INITIAL INITIAL INITIAL INITIAL

INITIAL INITIAL INITIAL INITIAL INITIAL INITIAL

INIT1AL INITIAL INITIAL INITIAL 1NITIAL 1NITIAL

INITIAL INITIAL INITIAL INITIAL INITIAL INITIAL

INITIAL INITIAL INITIAL INITIAL INITIAL INITIAL

INITIAL INITIAL INITIAL INITIAL INITIAL INITIAL

INITIAL INITIAL INITIAL INITIAL INITIAL
$M \times 1(26,1), B / M \times 1(26,2), 10 / M \times 1(26,3), 11 / M \times 1(26,4), 12$
$M \times 1(26,5), 13 / M \times 1(26,6), 14 / M \times 1(26,7), 15 / M \times 1(26,8), 16$ MX1 $(26,9), 17 / M \times 1(26,10), 20 / M \times 1(26,11), 1$ $M \times 1(26,12), 2 / M \times 1(26,13), 3 / M \times 1(26,14), 4$ $M \times 1(26,15), 5 / M X 1(26,16), 6 / M \times 1(26,17), 7$ $M X 1(26,18)$, 9
$M \times 1(27,1), 8 / M \times 1(27,2), 10 / M \times 1(27,3), 11 / M \times 1(27,4), 12$ $M X 1(27,5), 13 / M X 1(27,6), 14 / M \times 1(27,7), 15 / M \times 1(27,8), 16$ $M \times 1(27,9), 17 / M X 1(27,10), 18 / M \times 1(27,11), 1$ MX1(27,12), 2/MX1(27,13),3/MX1(27,14), 4 $M X 1(27,15), 5 / M X 1(27,16), 6 / M X 1(27,17), 7$ MX1 $(27,18), 9$
$M \times 1(28,1), 8 / M X 1(28,2), 10 / M X 1(28,3), 11 / M X 1(28,4), 12$ $M X 1(28,5), 13 / M K 1(28,6), 14 / M X 1(28,7), 15 / M X 1(28,8), 16$ $M X 1(28,9), 17 / M X 1(28,10), 18 / M \times 1(28,11), 1$ $M X 1(2 B, 12), 2 / M \times 1(2 B, 13), 3 / M \times 1(28,14), 4$ $M \times 1(28,15), 5 / M X 1(28,16), 6 / M X 1(2 B, 17), 7$ MX1(28,18),9
$\operatorname{MX1}(29,1), 5 / M X 1(29,2), 7 / M X 1(29,3), B / M X 1(29,4), 9$ $M X 1(29,5), 16 / M X 1(29,6), 11 / M X 1(29,7), 12 / M \times 1(29,8), 13$ MX1 $(29,9), 14 / M \times 1(29,10), 17 / M \times 1(29,11), 18$ MXI $(29,12), 15 / M \times 1(29,13), 16 / M \times 1(29,14)$, I $\operatorname{MX1}(29,15), 2 / M X 1(29,16), 3 / M X 1(29,17), 4$ MXI $(29,18), 6$
$M X 1(30,1), 5 / M X 1(30,2), 7 / M X 1(30,3), 8 / M X 1(30,4), 9$ $M X 1(30,5), 10 / M X 1(30,6), 11 / M X 1(30,7), 12 / M X 1(30,8), 13$ $\operatorname{MX1}(30,9), 14 / M X 1(30,10), 17 / M \times 1(30,11), 18$ $M X 1(30, I 2), 15 / M \times 1(30,13), 16 / M \times 1(30,14), 1$ $M \times 1(30,15), 2 / M \times 1(30,16), 3 / M \times 1(30,17), 4$ MX1(30,18), 6
$\operatorname{MX1}(31,1), 4 / M \times 1(31,2), 6 / M \times 1(31,3), 7 / M \times 1(31,4), 8$ $\operatorname{MX1}(31,5), 9 / M X 1(31,6), 10 / M X 1(31,7), 11 / M \times 1(31, B), 12$ MX1 $(31,9), 13 / M \times 1(31,10), 16 / M \times 1(31,11), 18$ MX1(31,12), 14/MX1(31,13),15/MX1(31,14),17 $\operatorname{MX1}(31,15), 1 / M \times 1(31,16), 2 / M \times 1(31,17), 3$ MX1(31,18),5
$M \times 1(32,1), 3 / M \times 1(32,2), 5 / M \times 1(32,3), 6 / M \times 1(32,4), 7$ $M \times 1(32,5), B / M \times 1(32,6), 9 / M \times 1(32,7), 10 / M \times 1(32, B), 11$ $M \times 1(32,9), 12 / M X 1(32,10), 15 / M \times 1(32,11), 17$ $M \times 1(32,12), 13 / M \times 1(32,13), 14 / M \times 1(32,14), 1 B$ $M \times 1(32,15), 1 B / M \times 1(32,16), 1 / M \times 1(32,17), 2$ MX1 $(32,18), 4$
$\operatorname{MX1}(33,1), 2 / M X 1(33,2), 3 / M X 1(33,3), 4 / M \times 1(33,4), 5$ $M \times 1(33,5), 6 / M X 1(33,6), 7 / M \times 1(33,7), 8 / M X 1(33,8), 9$ MX1 $(33,9), 10 / M X 1(33,10), 13 / M \times 1(33,11), 15$ $\operatorname{MX1}(33,12), 11 / M X 1(33,13), 12 / M \times 1(33,14), 14$ $M \times 1(33,15), 16 / M \times 1(33,16), 17 / M \times 1(33,17), 20$

```
        INITIAL MX1(33,18),1
            INITIAL MXI(34,1),2/MX1(34,2),3/MX1(34,3),4/MX1(34,4),5
            INITIAL
            INITIAL
            INITIAL
            INITIAL
            INITIAL
                        MX1(34,5),6/MX1(34,6),7/MX1(34,7),8/MX1(34,8),9
                                MX1(34,9),10/MX1(34,10),13/MX1(34,11),15
                                MX1(34,12),11/MX1(34,13),12/MX1(34,14),14
                                MX1(34,15),16/MX1(34,16),17/MX1(34,17),18
                        MX1(34,18),1
            INITIAL MXI(35,1),13/MX1(35,2),1/MX1(35,3),2/MX1(35,4),3
                INITIA
                INITIAL
                INITIAL
                INITIAL
                INITIAL
                        MX1(35,5), 4/MX1(35,6),5/MX1(35,7),6/MX1(35,8),7
                        MX1(35,9),8/MX1(35,10),10/MX1(35,11),15
                        MX1(35,12),9/MX1(35,13),11/MX1(35,14),12
                                MX1(35,15),14/MX1(35,16),16/MX1(35,17),17
                            MX1(35,18),18
                INITIAL MXI(36,1),13/MXI(36,2),1/MX1(36,3),2/MX1(36,4), 3
                INITIAL MX1(36,5),4/MX1(36,6),5/MX1(36,7),6/MX1(36,8),7
                INITIAL MXI(36,9),8/MXI(36,10),10/MXI(36,11),15
                INITIAL MX1(36,12),9/MX1(36,13),11/MX1{36,14),12
                INITIAL MXI(36,15),14/MX1(36,16),16/MX1(36,17),17
                INITIAL MXI(36,18),18
*
* OPTIDNAL INITIALIZATIDN OF FUEL LEVEL.
*
    INITIAL XFS7-XF47,30000
```

```
* ()
```

* ()
* DISPATCH FUNCTIONS FOR THE INPUTS. FUNCTIDN NUMBER REPRESENTS
* INPUT STATIDNS AND THE FUNCTIDN CUMMULATIVE PRD\&ABILITY
* CDRRESPDNDS TD THE DUTPUT STATIDN. A RANDDM NUMBER GENERATDR
PRDDUCES VALUE TD 8E USED IN THE FUNCTIDN.
9 FUNCTIDN RNI,D10
.1015,29/.1160,30/.5182,33/.5617,31/.6342,21/.6922,23/.7139,22/.7401,34
.9140,19/1.0,26
13 FUNCTIDN RN1,D10
.0575,25/.2949,28/.3092,24/.3524,33/.3667,31/.3955,21/.4818,23/.5825,22
.9496,19/1.0,26
12 FUNCTION RN1,D9
.0956,29/.1103,30/.1250,33/.2868,31/.5221,23/.6838,22/.7279,20/.9338,19
1.0,26

```
```

 11 FUNCTIDN RN1,D5
    ```
    11 FUNCTIDN RN1,D5
.0553.29/.0599,30/.2350,31/.4101,23/1.0,22
```

.0553.29/.0599,30/.2350,31/.4101,23/1.0,22

```
```

 8 FUNCTIDN RN1,D10
    ```
    8 FUNCTIDN RN1,D10
.1092,29/.1223,30/.1529,33/.4236,31/.4542,21/.6289,23/.8560,22/.8647,20
.1092,29/.1223,30/.1529,33/.4236,31/.4542,21/.6289,23/.8560,22/.8647,20
.9782,19/1.0,26
.9782,19/1.0,26
    17 FUNCTIDN RN1,D8
.2486,25/.2881,29/.2947,30/.5150,28/.5263,31/.5489,22/.9898,19/1.0,26
```

```
    14 FUNCTIDN RN1,D6
.0070,2B/.0211,21/.1B66,23/.2007,22/.9964,19/1.0,26
    3 FUNCTIDN RN1,D6
    .0100,25/.0200,22/.0400,20/.B500,19/.9900,26/1.0,27
    4 FUNCTIDN RN1,D2
.0059,20/1.0,19
    5 FUNCTIDN RN1,D2
.0093,29/1.0,19
    6 FUNCTIDN RN1,D1
1.0,19
    7 FUNCTION RN1,D2
.0093,29/1.0,19
    2 FUNCTIDN RN1,D3
.5490,23/.6470,22/1.0,19
    1B FUNCTIDN RN1,D5
.2000,25/.4000,29/.6000,2B/.B000,19/1.0,27
    15 FUNCTIDN RN1,DI
1.0,19
    16 FUNCTIDN RN1,D15
.03B2,25/.1567,29/.1739,30/.1835,28/.1873,24/.2427,33/.25B0,31/.414B,21
.6165,23/. B531,22/.902B,20/.9047,34/.9324,32/.9B59,26/1.0,27
    10 FUNCTIDN RN1,DB
.0636,29/.0727,30/.2909,24/.7273,33/.7455,21/.9455,22/.9637,34/1.0,19
    1 FUNCTIDN RN1,D7
.1333,25/.3666,29/.3999,30/.6666,21/.7333,23/.8666,26/1.0,27
* CDNVERSIDN DF VEHICLE STATUS (EITHER LDADED=1 DR UNLOADED=0)
* TD A SAVEVALUE WH1CH STDRES TDTAL TRAVELLING TIME FDR BDTH.
    19 FUNCTIDN FF4,D2
0,58/1,60
*
* BDDLEAN VARIABLES WHICH ARE USED AT DECISIDN PDINTS TD
* DETERMINE A VEHICLES RDUTE.
*
1 BVARIABLE PF2'E'3+PF2'E'21
2 BVARIABLE PF2'E'5+PF2'E'6+PF2'E'7+PF2'E'B
3 BVARIABLE PF2'E'5
4 EVARIABLE PF2'E'6
5 BVARIABLE PF2'E'7
b BVARIAELE PF2'E'B
7 BVAR1AELE PF2'E'13+PF2'E'30
B BVARIABLE PF2'E'33+FF2'E'17+PF2'E'34+PF2'E'1B
```

```
9 BVARIABLE BV10'E'1+BV11'E'1+BV12'E'1+EV13'E'1
10 EVARIABLE XF7'G'O+XFB'G'O+XFG'G'O+XF10'G'O+XF11'G'O+XF12'G'O
11 EVARIABLE XF13'G'0+XF14'G'0+XF15'G'0+XF16'G'0+XF17'G'0
12 BVARIABLE
13 BVARIABLE
14 BVARIABLE
15 BVARIABLE
16 BUARIABLE
17 BVARIABLE
```



```
1B BUARIABLE PF2'E'21+PF2'E'4+FF2'E'5+PF2'E'6+FF2'E'7+FF2'E'B
BVARIABLE BV17'E'1+BV1B'E'1+BV20'E'1
20 BVARIABLE PF2'E'35+FF2'E'36
21 BVARIABLE PF2'E'5+PF2'0'6+FF2'E'7+FF2'E'B
22 BVARIABLE BV21'E'1+BV16'E'I
MACROS SHOULD BE INSERTED HERE
GENERATOR DF THE VEHICLES
GENERATE 20,5,,B,,6PF
SAVEVALUE 61+,1,XF
ASSIGN 1,XF61,PF
ASSIGN 2,36,PF
SEIZE RPI
QUEUE 250
QUEUE (RF1+1)
SAVEVALUE (PF1+47),0,XF
* MAIN fROGRAM REPRESENTING THE GUIDEPATH THE vEhICLES WILL
* FOLLDW
*
TOP ADVANCE 0
TRUL MACRD PF1,6,SEC16,RFI
DUTFT MACRD SEC16,20,AP20,RP20,UNL20,3,3,50,D20A,020B
GAS MACRD RF20,35,AFG,FFG,REFILL,1,1,GAS1,GAS2,600
PLACE MACRD RPG,36,APP,RPF,PARK,1,1,PLC1,PLC2
TRVL MACRO PF1,2B,SEC17,RFF
    TEST E BVL,1,J1
INFT MACRD 50,IN3B,SEC17,3,AF3,RF3,1NP3,31,2,IN3A
DUTPT MACRD RF3,21,AP21,RP21,UNL21,2,1B,50,D21A,D21B
TRVL MACFO PF1,49,SEC20,RF21
INPT MACRO 50,IN4D,SEC20,4,AP4,RP4,INP4,4,24,IN4C
    TRANSFER ,L2
J ADVANCE 0
```

INPT	MACRO	50, IN 2B, 5 EC $17,2, A P 2, R P 2, I N P 2,4,4, I N 2 A$
IRYL	MACRO	FF1,49, SEC20,RP2
INPT	MACRO	50, IN4E, SEC20,4, AF 4, RP 4, INP 4, 4, 24 , IN 4 A
L2	TEST E	BV22,0, 32
IRVL	MACRO	PF1, 23, UP 1, RP 4
TRVL	MACRO	PF1, 23, UP2, UP 1
TRUL	MACRO	PF 1, 14, TSQU4, UP2
	TRANSFER	, L3
J2	TEST E	BV2, 1, 33
	TEST E	BY3, 1, 34
INPT	MACRO	50, IN5B,RP4, 5, AP 5,RP5, INP5,1B,16,1N5A
TRUL	MACRO	PF1,2,LINK,RP5
	TEST E	BV16, 1, TSQU
OUTPT	MACRO TRANSFER	LINK, 22, AP22,RP22, UNL22,7,2,50,022A,022B , J5
14	TEST E	BV4,1, 66
INPT	MACRO	50, INGB, RP 4, 6, AP 6, RP 6, INP6, 31, 16, INGA
IRUL	MACRO	PF1,2,LINK,RP6
	TEST E	BV16,1,TSOU
OUTPT	MACRO IRANSFER	LINK,22,AP22,RP22,UNL22,7,2,50,022C,022D ,, 5
J6	TEST E	805,1,37
INPT	MACRO	50, IN7E, RF 4, 7, AP 7, RP7, INP7, 42, 16, IN7A
TRVL	MACRO	PF1,2,LINK,RP7
	TEST E	BV16,1,TSQU
OUTPT	MACRO TRANSFER	LINK, 22, AP $22, R P 22$, UNL $22,7,2,50,022 E, 022 F$. 35
J7	ADVANCE	0
INFT	MACRO	50, INBB, RP4, B, APB, RPB, INPB, $49,16, I N B A$
TRVL	MACRO	PF1,2,LINK,RFB
	TEST E	BV16,1,T50U
OUTPT	MACRD	LINK, 22, AP 22,RP22, UNL 22, 7, 2, 50,022G, 022H
	TRANSFER	, J5
33	ADVANCE	0
TFVL	MACRO	PF1,3B, SEC21,RP4
TRVL	MACRO	PF1,2,LINK,5EC21
	TEST E	BV16,1,TSOU
OUTPT	MACRO	LINK, 22, AP 22, RP 22, UNL $22,7,2,50,022 \mathrm{I}, 022 \mathrm{~J}$
35	ADVANCE	0
TRUL	MACRO	PF1, 14, SEC26, RP22
OUTPT	MACRO	SEC26, 23, AP $23, \mathrm{RP} 23, \mathrm{UNL} 23,2,4,50,023 \mathrm{~A}, 023 \mathrm{~B}$
TRVL	MACRO	PF1,14,5EC27,RP23
OUTPT	MACRO	SEC27, 24, AP24,RP24, UNL $24,4,4,50,024 \mathrm{~A}, 024 \mathrm{~B}$

TRVL	MACRO	PF1, 2B, SEC2B,RP24
INPT	MACRO	50, INPB, SEC2B, 9, AP9, RP9, INP9, 4, 4, INYA
PLACE	MACRO	RP9,36, APP2,RPP2, PARK, 1,1,PLC3, PLC4
TRVL	MACRO	PF1,29, SEC1,RPP2
OUTFT	MACRO	SEC1, 25, AP 25, RP 25, UNL 25, 3, 3, 50,025A, 025B
TRVL	MACRO	PF1,12,SEC2,RP25
OUTPT	MACRO	SEC2, 26, AP 26, RP26, UNL 26, 3, 4, 50,026A, 026B
INPT	MACRO	50, IN10B, RP26, 10, AP10, RP10, INP $10,4,6$, IN10A
TRUL	MACRO	PF1,35,SEC3,RP10
OUTPT	MACRO	SEC3,27, AP 27, RP27, UNL27,6,1,50, 027A, 027B
OUTPT	MACRO	RP27,2B, AP 2B, RP2B, UNL 2B, $1,3,50,02 \mathrm{BA}, 02 \mathrm{BB}$
TRVL	MACRO	PF 1,7, SEC4, RP2B
INPT	MACRO	50, IN11B, SEC4, 11, AP11,RP11,INP11,3,5,IN11A
TRUL	MACRO	PF1,56,5EC5,RP11
INPT	MACRO	50, IN12B, SEC5, 12, AP12,RP12, INP12,5,7,IN12A
RET2	AOVANCE	0
TRVL	MACRO	PF 1,21, SEC6,RP12
	TEST E	BV7, 1, JB
INPT	MACRO	50, IN13B, SEC6, 13, AP $13, \mathrm{RP} 13, \mathrm{INP} 13,11,7, \mathrm{IN} 13 \mathrm{~A}$
OUTPT	MACRO	RP13,30, AP $30, \mathrm{RP} 30, \mathrm{UNL} 30,7,8,50,030 \mathrm{~A}, 030 \mathrm{C}$
TRVL	MACRO	PF1,14,SEC9,RP30
	TRANSFER	, J9
JB	aovance	0
OUTPT	MACRO	SEC6, 29, AP29,RP29, UNL $29, \mathrm{~B}, 3,50,029 \mathrm{~A}, 0295$
TRVL	MACRD	PF1,14,SEC9,RP29
J9	AOVANCE	0
INPT	MACRO	50, IN14B, 5EC9, 14, AP14,RP14, INP14,3,7,IN14A
OUTPT	MACRO	RP14,31, AP31,RP31, UNL31, 7, 3, 50, 031A,031B
IRVL	MACRO	PF1, 2B, 5EC10,RP31
OUTPT	MACRO	SEC10S32,AP32,RP32, UNL 32,3,2,50,032A,032B
INPT	MACRO	50, IS 15E,RP32, 15, AP15, RP15, INP15,2,6, IN15A
TRVL	MACRO	PF1,25, SEC11,RP15
	TEST E	BVB, 1, J10
TRUL	MACRO	PF1,2B, SEC13, SEC11
OUTPT	MACRO	SEC13, 3 , AP33, RP33, UNL $33,6,4,50,033 \mathrm{~A}, 033 \mathrm{~B}$
I NPT	MACPO	50, IN17B,RP33,17,AP17,RP17,INP17,4,2,IN17A
TRVL	MACRO	PF1,14,SEC14,RP17
OUTPT	MACRO	SEC $14,34, A P 34, R P 34$, UNL $34,2,6,50,034 \mathrm{~A}, 034 \mathrm{~B}$
INPT	MACRO	50, IN1BE,RP34,1B, AP 1B,RP1B,INP1B, 6,4 , IN1BA
TRVL	MACRO TRANSFER	$\begin{aligned} & \text { PF1, } 1 B, \operatorname{SEC} 15, \operatorname{RP} 1 B \\ & , J 11 \end{aligned}$
J10	ADVANCE	0
INPT	MACRO	50, IN16B, SEC11, 16, AP 16, RP 16, INP16, 10,4, IN16A
TRUL	MACRO	PF1,1B, SEC 15,RP16
J11	alvance	0
OUTPT	MACRO	SEC15,19,AP19,RP19, UNL19,2,1,50,019A, 019B
RETI	ADVANCE	0 ,

```
INPT MACRO 50,IN18,RP17,1,AP1,RP1,INP1,1,3,IN1A
    TRANSFER ,TQP
TSOU AQVANCE O
TRVL MACRO PF1,14,TSOU1,LINK
TRVL MACRO PF1,14,TSOU2,TSQU1
TRVL MACRQ PF1,14,TSQU3,TSQU2
TRVL MACRQ PF1,14,TSQU4,TSQUS
L3 TEST E BV19,0,HOR
TRVL MACRQ PF1,12,TSOUH,TSQU4
TRVL MACRO PF1,13,TSQH1,TSQUH
TRVL MACRO PF1,S3,TSOH2,TSOH1
INPT MACRO 50,IN120,TSQH2,12,AP12,RP12,INP12,5,6,IN12C
    TRANSFER ,RET2
HQR AQVANCE 0
TFVL MACRO PF1,25,TSOUV,TSOU4
TRVL MACRO PF1,25,TSOV2,TSOUV
TRVL MACRO PFI,25,TSOV3,TSQV2
TRVL MACRQ PF!,29,TSOV4,T5OVS
TRVL MACRO PF1,25,TSOV5,TSOV4
QUTPT MACRO TSQVS,17,AP17,RP19,UNL19,2,1,50,019C,0190
    TRANSFER ,RET2
* GENERATION QF jQBS FQR EaCh input. from given qata the
* NUMBER OF JOBS INPUTTEO AT EACH INPUT STATION WAS KNOWN
* ANO THE GENERATE BLOCKS BELOW CREATEQ JOBS aT A UNIFQRM
* rate to simulate a shift's worth.
    GENERATE 9600,960
    SAVEVALUE 1+,1,XF
    TERMINATE
    GENERATE 2B24,282
    SAVEVALUE 2+,1,XF
    TERMINATE
    GENERATE 1440,144
    SAVEVALUE 3+,1,XF
    TERMINATE
    GENERATE 847,85
    SAVEVALUE 4+,1,XF
    TERMINATE
GENERATE 2667,267
SAVEVALUE 5+,1,XF
TERMINATE
GENERATE 3000.300
SAVEVALUE 6+,1,XF
TERMINATE
GENERATE 2667,267
```

SAVEVALUE $7+, 1, X F$ TERMINATE

GENERATE 629,63
SAVEVALUE $8+, 1, X F$
TERMINATE

GENERATE 1043,104
SAVEVALUE $9+, 1, X F$
TERMINATE
GENERATE 2618,262
SAVEVALUE $10+, 1, X F$.
TERMINATE
GENERRTE 1327,133
SAVEVALUE $11+, 1, X F$ TERMINATE

GENERATE 2118,212 SAVEVALUE $12+, 1, \mathrm{XF}$ TERMINATE

GENERATE 2072,207
SAVEVALUE $13+, 1, X F$
TERMINATE

GENERATE 507,51
SAVEVALUE $14+, 1, \mathrm{XF}$
TERMINATE

GENERATE 10286,1029
SAVEVALUE 15+,1,XF
TERMINATE
GENERATE 275,2日
SAVEVALUE $16+, 1, \mathrm{XF}$
TERMINATE
GENERATE 1627,163
SAVEVALUE $17+1, \mathrm{XF}$
TERMINATE
GENERATE 28800,2880
SAVEVALUE $18+, 1, X F$
TERMINATE
*

* CLOCK TO REGULATE ONE SHIFT DR 28800 SECONDS OF SIMULATION * TIME.
generate
, , , 1
LOGIC S
2
SEIZE CLCK
ADVANCE 28800
RELEASE CLCK

APPENDIX D
Example Progran for Case 3

```
*
* THIS EXAMPLE IS AFTER THE CUTOFFS HAD BEEN FUT IN
* BLDCK DIVISION HAD NOT YET BEEN fERFORMED.
*
    SIMULATE
*
* GIVES EACH BLOCK OF TRACK, INPUT STATIDN, AND OUTFUT STATIDN
* aN EQUIVALENT NUMERICAL VALUE. IN THIS WAY THE VEHICLE'S
* WAITING TIME CAN 8E MEASURED WHEN TRAVELLING LOADED (X)
* OR TRAVELLING UNLOADED (X+1)
*
224A 5YN 1
2248 SYN 3
AP7 SYN 5
INP7 SYN 7
RP7 SYN 9
APB SYN 11
INP8 SYN 13
RPG SYN 15
AP33 SYN 17
UNLS3 SYN 19
RP33 SYN 21
AP34 SYN 23
UNL34 SYN 25
RP34 SYN 27
AP35 SYN 29
UNL35 5YN 31
RP35 5YN 33
AP32 SYN 35
UNL32 5YN 37
RP32 SYN 39
AF9 SYN 41
INPQ SYN 43
RP9 SYN 45
AP40 SYN 53
UNL4O SYN 55
RP40 SYN 57
AP14 SYN 59
INPI4 SYN 6!
RP14 SYN 63
AP4I SYN 65
UNL41 SYN 67
RP41 SYN 69
AP42 SYN 71
UNL42 SYN 73
RP42 SYN 75
AP15 SYN 77
AP15A 5YN 79
INP15 SYN B1
RP15 5YN 83
AP16 SYN 85
INF16 SYN 87
RP16 SYN 89
AP17 SYN 91
```

INP 17	SYN	93
RP17	SYN	95
AP43	SYN	97
UNL43	SYN	99
RP43	SYN	101
OT	SYN	103
211	SYN	105
SEC53	SYN	107
AP36	SYN	109
UNL36	SYN	111
RF36	SYN	113
AP10	SYN	115
INP10	SYN	117
RP 10	SYN	119
AP11	SYN	121
1NP11	SYN	123
RP11	SYN	125
AP 12	SYN	127
[NP12	SYN	129
RF12	SYN	131
AP37	SYN	133
UNL37	SYN	135
RP37	SYN	137
AP3E	SYN	139
UNL3日	SYN	141
RF38	SYN	143
AP39	SYN	145
UNL39	SYN	147
RF39	SYN	149
AP 13	SYN	151
INP13	SYN	153
RP13	SYN	15.5
SEL43	SYN	157
$A P 1$	SYN	159
AP1A	SYN	161
INP 1	SYN	163
RP!	SYN	165
T0	SYN	167
AP44	SYN	169
UNL44	SYN	171
RP44	SYN	173
AP18	SYN	175
INF18	SYN	177
PP18	SYN	179
AP45	SYN	181
UNL 45	SYN	183
RF45	SYN	185
AP19	SYN	187
INP19	SYN	189
RP19	SYN	191
AP46	SYN	193
UNL46	SYN	195
RP46	SYN	197
AP20	SYN	199
INP20	SYN	201

RF20	SYN	203
AP50	SYN	205
UNL 50	SYN	207
RP50	SYN	209
AP24	SYN	211
INF24	SYN	213
RF24	SYN	215
AP49	SYN	217
UNL 49	SYN	221
RP49	SYN	223
AP23	SYN	227
INP23	SYN	229
RP23	SYN	235
219 B	SYN	237
AF'2	SYN	239
$A F^{2} 2 A$	SYN	241
INP2	SYN	243
RP'2	SYN	245
RF2A	SYN	247
28	SYN	249
210	SYN	251
AP28	SYN	253
UNL 28	SYN	255
RP28	SYN	257
AF29	SYN	259
UNL29	SYN	261
RP29	SYN	263
AP6	SYN	265
INP'	SYN	267
RF'6	SYN	269
AP30	SYN	271
UNL30	SYN	273
RP30	SYN	275
AF31	SYN	277
UNL31	SYN	279
RP31	SYN	281
AP 48	SYN	283
UNL48	SYN	285
RF48	SYN	287
AP22	SYN	299
INF22	SYN	291
RF22	SYN	293
AP47	SYN	295
UNL 47	SYN	297
RF47	SYN	299
AF21	SYN	301
INF21	SYN	309
RF21	SYN	311
$26 A$	SYN	313
AF' 4	SYN	315
INF4	SYN	317
RF4	SYN	319
AF'27	SYN	321
UNL27	SYN	323
RF27	SYN	325

1NITIAL IN1TIAL INITIAL INITIAL

INITIAL INITIAL INITIAL IN1TIAL INITIAL INITIAL INITIAL IN1TIAL

1NITIAL INITIAL INITIAL 1NITIAL INITIAL INITIAL INITIAL INIT1AL

INITIAL IN1TIAL IN1T1AL INITIAL INITIAL IN1TIAL IN1TIAL INITIAL

INITIAL INITIAL INITIAL INIT1AL INITIAL INITIAL INITIAL INITIAL
$M \times 1(26,15), 6 / M \times 1(26,16), 9 / M \times 1(26,17), 15$ $M \times 1(26,18), 14 / M \times 1(26,19), 18 / M \times 1(26,20), 19$ $M \times 1(26,21), 21 / M \times 1(26,22), 20 / M \times 1(26,23), 23$ MX1(26,24), 22
$M X 1(27,1), 4 / M \times 1(27,2), 8 / M \times 1(27,3), 19 / M \times 1(27,4), 15$
$M X 1(27,5), 1 / M X 1(27,6), 3 / M X 1(27,7), 2 / M \times 1(27,8), 5$ $M \times 1(27,9), 7 / M X 1(27,10), 12 / M \times 1(27,11), 13$ $M \times 1(27,12), 14 / M \times 1(27,13), 11 / M \times 1(27,14), 17$ $M \times 1(27,15), 6 / M \times 1(27,16), 9 / M \times 1(27,17), 16$ $M \times 1(27,18), 10 / M \times 1(27,19), 18 / M X 1(27,20), 20$ $M \times 1(27,21), 22 / M X 1(27,22), 21 / M X 1(27,23), 24$ $M \times 1(27,24), 23$
$M \times 1(28,1), 1 / M \times 1(2 \theta, 2), 2 / M \times 1(28,3), 6 / M \times 1(28,4), 4$ $M \times 1(28,5), 8 / M \times 1(28,6), 10 / M X 1(28,7), 7 / M X 1(28,8), 9$ $M \times 1(28,9), 12 / M \times 1(2 \theta, 10), 17 / M \times 1(28,11), 18$ $M \times 1(28,12), 19 / M X 1(28,13), 16 / M \times 1(28,14), 22$ $M \times 1(28,15), 11 / M \times 1(28,16), 15 / M \times 1(28,17), 21$ $M \times 1(28,18), 3 / M \times 1(2 \theta, 19), 5 / M \times 1(28,20), 13$ $M \times 1(28,21), 20 / M \times 1(28,22), 14 / M \times 1(28,23), 23$ $M \times 1(28,24), 24$
$M \times 1(29,1), 1 / M \times 1(29,2), 2 / M \times 1(29,3), 6 / M \times 1(29,4), 4$
$M \times 1(29,5), 8 / M \times 1(29,6), 10 / M \times 1(29,7), 7 / M \times 1(29,8), 9$
$M \times 1(29,9), 12 / M \times 1(29,10), 17 / M \times 1(29,11), 18$
$M \times 1(29,12), 19 / M \times 1(29,13), 16 / M \times 1(29,14), 22$
$M \times 1(29,15), 11 / M \times 1(29,16), 15 / M \times 1(29,17), 21$
$M \times 1(29,18), 3 / M \times 1(29,19), 5 / M \times 1(29,20), 13$
MX1 $(29,21), 20 / M \times 1(29,22), 14 / \mathrm{MXI}(29,23), 23$
$M \times 1(29,24), 24$
$M \times 1(30,1), 1 / M \times 1(30,2), 2 / M \times 1(30,3), 7 / M \times 1(30,4), 9$ $M \times 1(30,5), 5 / M \times 1(30,6), 4 / M \times 1(30,7), 8 / M X 1(30,8), 10$ $M \times 1(30,9), 12 / M \times 1(30,10), 17 / M \times 1(30,11), 18$ $M \times 1(30,12), 19 / M \times 1(30,13), 16 / M \times 1(30,14), 22$ HX1(30,15),11/MX1(30,16),15/MX1(30,17),21 $M X 1(30,18), 3 / M X 1(30,19), 6 / M X 1(30,20), 13$ $M \times 1(30,21), 20 / M X 1(30,22), 14 / M \times 1(30,23), 23$ $\mathrm{MX1}(30,24), 24$

INITIAL INITIAL IN1TIAL 1NITIAL INITIAL INITIAL INITIAL IN1T1AL
$M \times 1(31,1), 1 / M \times 1(31,2), 2 / M \times 1(31,3), 7 / M \times 1(31,4), 9$ $M \times 1(31,5), 5 / M \times 1(31,6), 4 / M \times 1(31,7), 8 / M \times 1(31,8), 10$
$M \times 1(31,9), 12 / M \times 1(31,10), 17 / M \times 1(31,11), 18$
$M \times 1(31,12), 19 / \mathrm{MXI}(31,13), 16 / \mathrm{MXI}(31,14), 22$
$M \times 1(31,15), 11 / M \times 1(31,16), 15 / M \times 1(31,17), 21$
$M \times 1(31,18), 3 / M \times 1(31,19), 6 / M \times 1(31,20), 13$
$M \times 1(31,21), 20 / M \times 1(31,22), 14 / M \times 1(31,23), 23$ $\operatorname{MX1}(31,24), 24$

INITIAL INITIAL INITIAL INITIAL INITIAL INITIAL INITIAL initial

MX1 $(32,1), 11 / M \times 1(32,2), 9 / M \times 1(32,3), 16 / M \times 1(32,4), 12$ MX1 $(32,5), 17 / M \times 1(32,6), 13 / M \times 1(32,7), 15 / M \times 1(32,8), 18$ MXI $(32,9), 1 / M \times 1(32,10), 2 / M \times 1(32,11), 3$ MXI $(32,12), 4 / M \times 1(32,13), 8 / M \times 1(32,14), 5$ MXI $(32,15), 6 / M \times 1(32,16), 7 / M \times I(32,17), 10$ MX1 $(32,18), 14 / M \times 1(32,19), 19 / M \times 1(32,20), 20$ MX1 $(32,21), 22 / M \times 1(32,22), 21 / M X 1(32,23), 24$ MX1 $(32,24), 23$

INITIAL INITIAL INITIAL INITIAL INITIAL INITIAL INITIAL INITIAL

INITIAL INITIAL INITIAL INITIAL INITIAL INITIAL INITIAL INITIAL

INITIAL INITIAL INITIAL INITIAL INITIAL INITIAL INITIAL INITIAL

INITIAL INITIAL INITIAL INITIAL INITIAL INITIAL INITIAL INITIAL
$M \times 1(33,1), 10 / M \times 1(33,2), 8 / M \times 1(33,3), 15 / M \times 1(33,4), 11$ $M \times 1(33,5), 16 / M X 1(33,6), I 2 / M \times 1(33,7), 14 / M X 1(33,8), 17$ MX1 $(33,9), 18 / M \times 1(33,10), 1 / M \times 1(33,11), 2$ $M \times 1(33,12), 3 / M \times 1(33,13), 7 / M \times 1(33,14), 4$ $M \times 1(33,15), 5 / M \times 1(33,16), 6 / M \times 1(33,17), 9$ MX1 $(33,18), 13 / M \times 1(33,19), 19 / M X 1(33,20), 20$ $M \times 1(33,21), 22 / M \times 1(33,22), 21 / M \times 1(33,23), 24$ MX1 $(33,24), 23$
$M \times 1(34,1), 10 / M X 1(34,2), 8 / M \times 1(34,3), 15 / M X 1(34,4), 11$
MX1(34,5), 16/MXI $(34,6), 12 / M X 1(34,7), 14 / M \times 1(34,8), 17$
MXI $(34,9), 18 / M X 1(34,10), 1 / M X I(34,11), 2$ MX1 $(34,12), 3 / M X 1(34,13), 7 / M X 1(34,14), 4$ $M \times 1(34,15), 5 / M \times 1(34,16), 6 / M \times 1(34,17), 9$ MXI $(34,18), I 3 / M X 1(34,19), 19 / M X I(34,20), 20$ $M X 1(34,21), 22 / M X 1(34,22), 21 / M X 1(34,23), 24$ MX1(34,24),23

MX1 $(35,1), 10 / M \times 1(35,2), 8 / M \times 1(35,3), 15 / M \times 1(35,4), 11$
$M X 1(35,5), 16 / M X I(35,6), 12 / M X 1(35,7), 14 / M X I(35,8), 17$
MX1 $(35,9), 18 / M \times 1(35,10), 1 / M \times 1(35,11), 2$
MX1(35, 12), $3 / M \times 1(35,13), 7 / M \times 1(35,14), 4$
MX1 $(35,15), 5 / M \times 1(35,16), 6 / M \times 1(35,17), 9$
MX1 (35,18),13/MX1(35,19),19/MX1(35,20), 20
MX1(35,21),22/MX1(35,22),21/MX1(35,23),24
MX1 $(35,24), 23$
$\operatorname{MX1}(36,1), 9 / M \times 1(36,2), 7 / M \times 1(36,3), 12 / M \times I(36,4), 10$
$M X 1(36,5), 15 / M X I(36,6), 11 / M X 1(36,7), 14 / M X 1(36,8), 16$
$M \times 1(36,9), I 7 / M X 1(36,10), 1 / M X 1(36,11), 2$
$M \times 1(36,12), 3 / M \times 1(36,13), 6 / M X I(36,14), 20$
$M \times 1(36,15), 4 / M \times 1(36,16), 5 / M \times 1(36,17), 8$
$M \times 1(36,18), 13 / M X 1(36,19), 18 / M \times 1(36,20), 19$
$M \times 1(36,21), 22 / M X 1(36,22), 21 / M X 1(36,23), 24$
MX1 $(36,24), 23$

INITIAL
INITIAL
INITIAL
INITIAL
INITIAL
INITIAL
$M X 1(37,1), 6 / M X 1(37,2), 4 / M X 1(37,3), 9 / M X 1(37,4), 7$
$\operatorname{MXI}(37,5), 12 / M X I(37,6), 8 / M X 1(37,7), I I / M X I(37,8), 13$
MXI $(37,9), 14 / M X 1(37,10), 16 / M X 1(37,11), 17$
MX1 $(37,12), I 8 / M \times 1(37,13), 3 / M \times 1(37,14), 20$
$M \times 1(37,15), 1 / M \times 1(37,16), 2 / M \times 1(37,17), 5$
MXI $(37,18), 10 / M \times 1(37,19), 15 / M \times 1(37,20), 19$

INITIAL INITIAL

INITIAL INITIAL 1NITIAL INITIAL INITIAL INITIAL INITIAL INITIAL

INITIAL INITIAL INITIAL INITIAL INITIAL INITIAL INITIAL INITIAL
$M \times 1(37,21), 22 / M \times 1(37,22), 21 / M X 1(37,23), 24$
$\mathrm{MXI}(37,24), 23$
$M \times 1(38,1), 3 / M \times 1(38,2), 2 / M \times 1(38,3), 6 / M \times 1(38,4), 4$ $M \times 1(38,5), 9 / M \times 1(38,6), 5 / M \times 1(38,7), 8 / M \times 1(38,8), 10$ $M \times 1(38,9), 12 / M \times 1(38,10), 15 / M \times 1(38,11), 16$ MX1(38,12),17/MX1(38,13),1/MX1(38,14), 20 MX1(38,15),11/MXI(38,16),14/MX1(38,17),19 $M \times 1(38,18), 7 / M X 1(38,19), 13 / M \times 1(38,20), 18$ MXI(38,21), 22/MX1(38,22),21/MX1(38,23),24 MXI $(38,24), 23$
$M \times 1(39,1), 3 / M X 1(39,2), 2 / M X 1(39,3), 6 / M X 1(39,4), 4$ $M X 1(39,5), 9 / M X 1(39,6), 5 / M X 1(39,7), 8 / M X 1(39,8), 10$ MX1 $(39,9), 12 / M \times 1(39,10), 15 / M \times 1(39,11), 16$ $M \times 1(39,12), 17 / M \times 1(39,13), 1 / M \times 1(39,14), 20$ MXI $(39,15), 11 / M \times 1(39,16), 14 / M X 1(39,17), 19$ MX1 $(39,18), 7 / M \times 1(39,19), 13 / M \times 1(39,20), 18$ MX1 (39,21), 22/MX: $(39,22), 21 / M X 1(39,23), 24$ MXI $(39,24), 23$

INITIAL
INITIAL INITIAL INITIAL INITIAL INITIAL INITIAL INITIAL
$M \times 1(40,1), 5 / M \times 1(40,2), 6 / M \times 1(40,3), 11 / M \times 1(40,4), 8$
$\operatorname{MX1}(40,5), 13 / M X 1(40,6), 9 / M X 1(40,7), 12 / M X 1(40,8), 14$
MXI $(40,9), 15 / M \times 1(40,10), 18 / M \times 1(40,11), 19$
$\operatorname{MXI}(40,12), 20 / M X 1(40,13), 24 / M X!(40,14), 1$
$M X 1(40,15), 2 / M X 1(40,16), 3 / M \times 1(40,17), 4$
$M X 1(40,18), 7 / M X 1(40,19), 10 / M X 1(40,20), 17$
$M X 1(40,21), 21 / M X!(40,22), 16 / M X 1(40,23), 23$
MX1 $(40,24), 22$

INITIAL INITIAL IN1TIAL INITIAL INITIAL INITIAL INITIAL INITIAL
$M X 1(4!, 1), 4 / M X 1(4!, 2), 5 / M X 1(41,3), 10 / M X 1(41,4), 7$ $M X 1(41,5), 12 / M X 1(41,6), 8 / M X 1(41,7), 11 / M X I(41,8), 13$ MX1 $(41,9), 14 / M X 1(41,10), 17 / M \times 1(41,11), 18$ $\operatorname{MX1}(41,12), 19 / \mathrm{MXI}(41,13), 24 / \mathrm{MXI}(41,14), 21$ MX1(41, 15), $1 / M X 1(41,16), 2 / M X!(41,17), 3$ $\operatorname{MX1}(41,18), 6 / M X 1(41,19), 9 / M \times 1(41,20), 16$ MX1 $(41,21), 20 / M X 1(41,22), 15 / M X 1(41,23), 23$ MX1(41,24),22

INITIAL INITIAL INITIAL INITIAL INITIAL INITIAL INITIAL INITIAL
$M X 1(42,1), 4 / M X 1(42,2), 5 / M X 1(42,3), 10 / M X 1(42,4), 7$ $M \times 1(42,5), 12 / M \times 1(42,6), 8 / M \times 1(42,7), 11 / M \times 1(42,8), 13$ MXI $(42,9), 14 / M \times 1(42,10), 17 / M X 1(42,11), 18$ MX1(42,12), 19/MX1(42,13),24/MX1(42,14),21 MXI $(42,15), 1 / M \times 1(42,16), 2 / M \times 1(42,17), 3$ MX1 $(42,18), b / M \times 1(42,19), 9 / M X 1(42,20), 16$ MXI $(42,21), 20 / M X 1(42,22), 15 / M X 1(42,23), 23$ MX1 $(42,24), 22$

INITIAL INITIAL
$\operatorname{MXI}(43,1), 1 / M \times 1(43,2), 2 / M X 1(43,3), 7 / M \times 1(43,4), 4$ $M \times 1(43,5), 9 / M X 1(43,6), 5 / M X 1(43,7), 8 / M X 1(43,8), 10$

INITIAL INITIAL INITIAL INITIAL INITIAL INITIAL
$M \times 1(43,9), 11 / M \times 1(43,10), 14 / M \times 1(43,11), 15$ M×1 $(43,12), 16 / M \times 1(43,13), 23 / M \times 1(4\}, 14), 18$ MX1 $(43,15), 20 / M \times 1(43,16), 22 / M \times 1(43,17), 24$ $M \times 1(43,18), 3 / M \times 1(43,19), 6 / M \times 1(43,20), 12$ $M \times 1(43,21), 17 / M X 1(43,22), 13 / M \times 1(43,23), 21$ MX1(43,24),19

INITIAL INITIAL INITIAL INITIAL INITIAL INITIAL INITIAL INITIAL

INITIAL INITIAL INITIAL INITIAL INITIAL INITIAL INITIAL INITIAL

INITIAL INITIAL INITIAL INITIAL INITIAL INITIAL INITIAL INITIAL
$M \times 1(44,1), 7 / M X 1(44,2), 9 / M \times 1(44,3), 13 / M \times 1(44,4), 10$
$M \times 1(44,5), 14 / M \times 1(44,6), 11 / M \times 1(44,7), 12 / M \times 1(44,8), 15$ $\operatorname{MX1}(44,9), 17 / M \times 1(44,10), 20 / M \times 1(44,11), 21$ $M \times 1(44,12), 22 / M \times 1(44,13), 18 / M \times 1(44,14), 24$ $M \times 1(44,15), 16 / M \times 1(44,16), 18 / M \times 1(44,17), 23$ $M \times 1(44,18), 1 / M \times 1(44,19), 2 / M \times 1(44,20), 3$ $M \times 1(44,21), 5 / M \times 1(44,22), 4 / M \times 1(44,23), 8$ $M \times 1(44,24), 6$
$M \times 1(45,1), 6 / M \times 1(45,2), 8 / M \times 1(45,3), 13 / M \times 1(45,4), 10$
$M \times 1(45,5), 14 / M \times 1(45,6), 11 / M \times 1(45,7), 12 / M \times 1(45,8), 15$
$M \times 1(45,9), 17 / M \times 1(45,10), 20 / M \times 1(45,11), 21$
$\operatorname{Mx1}(45,12), 22 / M \times 1(45,13), 18 / M \times 1(45,14), 24$
$M \times 1(45,15), 16 / M X 1(45,16), 18 / M \times 1(45,17), 23$
$M \times 1(45,18), 9 / M \times 1(45,19), 1 / M \times 1(45,20), 2$
$M \times 1(45,21), 4 / M \times 1(45,22), 3 / M \times 1(45,23), 7$
$M \times 1(45,24), 5$
$M \times 1(46,1), 5 / M \times 1(46,2), 6 / M X 1(46,3), 10 / M \times 1(46,4), B$
$M \times 1(46,5), 12 / M \times 1(46,6), 4 / M \times 1(46,7), 11 / M \times 1(46,8), 13$
$M \times 1(46,9), 15 / M \times 1(46,10), 19 / M \times 1(46,11), 20$
$M \times 1(46,12), 21 / M \times 1(46,13), 18 / M \times 1(46,14), 24$
$M X 1(46,15), 14 / M \times 1(46,16), 17 / M \times 1(46,17), 23$
MX1 $(46,18), 7 / M \times 1(46,19), 9 / M \times 1(46,20), 1$
$M \times 1(46,21), 22 / M \times 1(46,22), 16 / M \times 1(46,23), 3$
MX1(46,24),2

INITIAL INITIAL INITIAL INITIAL INITIAL INITIAL INITIAL INITIAL

INITIAL INITIAL INITIAL INITIAL INITIAL INITIAL INITIAL INITIAL
$M \times 1(4 B, 1), 3 / M X 1(48,2), 4 / M \times 1(48,3), 9 / M \times 1(48,4), 6$ $M \times 1(48,5), 11 / M \times 1(48,6), 7 / M \times 1(48,7), 10 / M \times 1(48,8), 12$ MX1(4B,9), $14 / \mathrm{MXI}(48,10), 19 / \mathrm{MX} 1(48,11), 19$ $M \times 1(48,12), 20 / M \times 1(48,13), 17 / M \times 1(48,14), 23$ $M \times 1(48,15), 13 / M \times 1(48,16), 16 / M \times 1(48,17), 22$
$M \times 1(48,18), 5 / M X 1(48,19), 8 / M X 1(48,20), 15$ $M \times 1(48,21), 2 / M \times 1(48,22), 1 / M \times 1(48,23), 24$ MX1(48,24),21

```
INITIAL MXI(49,1),3/MXI(49,2),4/MXI(49,3),8/MXI(49,4),6
INITIAL MXI(49,5),10/MXI(49,6),2/MX1(49,7),9/MX1(49,8),11
INITIAL
INITIAL
INITIAL
INITIAL
INITIAL
INITIAL
    MX1(49,9),13/MX1(49,10),18/MX1(49,I1),19
    MX1(49,12),20/MX1(49,13),17/MX1(49,14),23
    MXI(49,15),12/MX1(49,16),I6/MX1(49,17),22
    MX1(49,18),5/MX1(49,19),7/MX1(49,20),14
    MX1(49,21),21/MX1(49,22),15/MX1(49,23),I
    MX1(49,24),24
    INITIAL MX1(50,1),4/MX1(50,2),5/MX1(50,3),9/MX1(50,4),7
    INITIAL MXI(50,5),II/MXI(50,6),3/MXI(50,7),10/MXI(50,8),12
    INITIAL MXI(50,9),14/MXI(50,10),19/MX1(50,11),20
    INITIAL MXI(50,I2),21/MXI(50,I3),18/MX1(50,14),24
    INITIAL
    INITIAL
    INITIAL
    INITIAL
        INITIAL
        INITIAL
        INITIAL
        INITIAL
        INITIAL
        INITIAL
        INITIAL
        INITIAL
        MX1(5I,1),14/MX1(51,2),15/MX1(51,3),1/MXI(51, 4),17
        MX1(5!,5),b/MXI(5I,6),1I/MXI(51,7),2/MXI(51, 8),4
        MX1(51,9),3/MX1(51,10),8/MX1(51,11),9
        MX1(51,12),10/MX1(51,13),19/MXI (51,14),12
        MX1(51,15),5/MX1(51,16),7/MX1 (51,17),13
        MX1(51,18),16/MX1(5I,19),18/MX1(51,20),20
        MX1(51,21),22/MX1(51,22),21/MX1(51,23),24
        MXI(51,24),23
*
* OISPATCH FUNCTIONS FOR THE INPUTS. FUNCTION NUM&ER REPRESENIS
* INPUT STATIONS ANO THE FUNCTION CUMMULATIVE PRO8ABILITY
* CORRESPOINOS TO THE OUTPUT STATION. A RANOOM NUMEER GENERATOR
* ProOUCES vALUE TO 8E USEO IN THE FUNCTION.
*
*
    1 FUNCTION RN1,D9
.014,28/.495,29/.569,47/.643,48/.717,44/.791,45/.865,49/.939,50/1.0,46
    2 FUNCTION RN1,08
.216,27/.340,47/.464,48/.588,44/.712,45/.836,49/.960,50/1.0,46
    3 FUNCTIDN RN1,D8
.632,43/.685,47/.738,48/.791,44/.844,45/.897,49/.949,50/1.0,46
    4 FUNCTION RN1,02
.500,38/1.0,39
    5 FUNCTION RN1,08
.073,30/.207,47/.341,48/.475,44/.609,45/.743,49/.878,50/I.0,46
    6 FUNCTION RN1,D9
.007,43/.467,29/.537,47/.614,48/.691,44/.768,45/.845,49/.922,50/1.0,46
```

```
    7 FUNCTION RNI,DE
    .417,35/.500,47/.583,48/.666,44/.749,45/.832,49/.915,50/1.0,46
    8 FUNCTION RN1,D7
    .143,47/.286,48/.429,44/.572,45/.715,49/.858,50/1.0,46
    9 FUNCTION RN1,D7
.143,47/.286,48/.429,44/.572,45/.715,49/.858,50/1.0,46
    10 FUNCTION RN1,DB
.641,26/.692,47/.743,48/.794,44/.845,45/.896,49/.947,50/1.0,46
    11 FUNCTION RNI,D8
.820,43/.845,47/.869,48/.893,44/.917,45/.941,49/.965,50/1.0,46
    12 FUNCTION RNI,D8
.821,43/.847,47/.873,48/.899,44/.925,45/.951,49/.977,50/11.0,46
    13 FUNCTION RNI,DE
.064,27/.899,31/.916,47/.933,48/.950,44/.967,45/.984,49/1.0,50
    14 FUNCTIDN RN1,D8
.708,43/.750,47/.792,48/.834,44/.876,45/.918,49/.960,50/1.0,46
    15 FUNCTION RN1,DI
1.0,43
    16 FUNCTION RN1,DI
1.0,43
    17 FUNCTION RNI,DI
1.0,43
    18 FUNCTION RNI,DIB
.029,41/.072,40/.104,42/.119,36/.141,37/.319,38/.497,39/.575,35
.582,34/.596,33/.610,34/.698,25/.769,26/.781,28/.785,29/.915,31
.944,30/1.0,46
    19 FUNCTION RN1,DIB
.029,41/.072,40/.104,42/.119,36/.141,37/.319,38/.497,39/.575,35
.582,34/.596,33/.610,34/.698,25/.769,26/.781,28/.785,29/.915,31
.944,30/1.0,46
    20 FUNCTIDN RN1,D22
.009,41/.022,40/.031,42/.035,36/.044,37/.069,38/.094,39/.117,35
. 119,34/.123,33/.127,34/.144,25/.165,26/.166,29/.296,31/.316,30
.430,47/.544,48/.678,44/.772,45/.886,49/1.0,50
    21 FUNCTION RNI,DIE
.029, 41/.072,40/.104,42/.119,36/.141,37/.319,38/.497,39/.575,35
.582,34/.596,33/.610,34/.698,25/.769,26/.781,28/.785,29/.915,31
.944,30/1.0,46
```

```
    22 FUNCT!ON RN1,018
.029,41/.072,40/.104,42/.119,36/.141,37/.319,38/.497,39/.575,35
. 582,34/.596,33/.610,34/.698,25/.769,26/.781,28/.785,29/.915,31
.944,30/1.0,46
    23 FUNCTION RN1,018
.029,41/.072,40/.104,42/.119,36/.141,37/.319,38/.497,39/.575,35
. 582,34/.596,33/.610,34/.698,25/.769,26/.781,28/.785,29/.915,31
.944,30/1.0,46
```

```
    24 FUNCTION RNI,DI8
```

 24 FUNCTION RNI,DI8
 .029,41/.072,401.104,42/.119,36/.141,37/.319,38/.497,39/.575,35
.029,41/.072,401.104,42/.119,36/.141,37/.319,38/.497,39/.575,35
.582,34/.596,33/.610,34/.698,25/.769,26/.781,28/.785,29/.715,31
.582,34/.596,33/.610,34/.698,25/.769,26/.781,28/.785,29/.715,31
.944,30/1.0,46
.944,30/1.0,46
*
*

* CONVERSION OF VEHICLE STATUS (EITHER LOAOEO=1 OR UNLOADEO=0)
* CONVERSION OF VEHICLE STATUS (EITHER LOAOEO=1 OR UNLOADEO=0)
* TO A SavEvaluE WHICH STORES TOTAL TRAVELLING IIME FOR 80TH.
* TO A SavEvaluE WHICH STORES TOTAL TRAVELLING IIME FOR 80TH.
*
* 25 FUNCTION PF4,D2
25 FUNCTION PF4,D2
0,76/1,77
0,76/1,77
*
*
* 80DLEAN VARIA8LES WHICH ARE USEO AT DECISION FOINTS TD
* 80DLEAN VARIA8LES WHICH ARE USEO AT DECISION FOINTS TD
* oETERMINE A VEHICLE' ROUTE.
* oETERMINE A VEHICLE' ROUTE.
*
* 8 BVARIA8LE PF2'E'9+PF2'E'32
8 BVARIA8LE PF2'E'9+PF2'E'32
2 8VARIABLE PF2'E'40+PF2'E'14+PF2'E'41+PF2'E'42+PF2'E'15+PF2'E'16_
2 8VARIABLE PF2'E'40+PF2'E'14+PF2'E'41+PF2'E'42+PF2'E'15+PF2'E'16_
+PF2'E'17+PF2'E'43
+PF2'E'17+PF2'E'43
3 BVARIABLE PF2'E'15+PF2'E'16+PF2'E'17+PF2'E'43
3 BVARIABLE PF2'E'15+PF2'E'16+PF2'E'17+PF2'E'43
4 BVARIA8LE PF2'E'18+PF2'E'19+PF2'E'20+PF2'E'21+PF2'E'22+PF2'E'23_
4 BVARIA8LE PF2'E'18+PF2'E'19+PF2'E'20+PF2'E'21+PF2'E'22+PF2'E'23_
+PF2'E'24+PF2'E'44+PF2'E'45+PF2'E'46+PF2'E'47+PF2'E'48_
+PF2'E'24+PF2'E'44+PF2'E'45+PF2'E'46+PF2'E'47+PF2'E'48_
+PF2'E'49+PF2'E'50+PF2'E'1
+PF2'E'49+PF2'E'50+PF2'E'1
5 8VARIABLE PF2'E'2+PF2'E'28+PF2'E'29+PF2'E'6+PF2'E'30+PF2'E'31
5 8VARIABLE PF2'E'2+PF2'E'28+PF2'E'29+PF2'E'6+PF2'E'30+PF2'E'31
6 BVARIABLE PF2'E'18+PF2'E'19+PF2'E'20+PF2'E'21+PF2'E'22+PF2'E'23_
6 BVARIABLE PF2'E'18+PF2'E'19+PF2'E'20+PF2'E'21+PF2'E'22+PF2'E'23_
+PF2'E'24+PF2'E'44+PF2'E'45+PF2'E'46+PF2'E'47+PF2'E'48_
+PF2'E'24+PF2'E'44+PF2'E'45+PF2'E'46+PF2'E'47+PF2'E'48_
+PF2'E'49+PF2'E'50+PF2'E'1
+PF2'E'49+PF2'E'50+PF2'E'1
8VARIAgLE PF2'E'1
8VARIAgLE PF2'E'1
8 8VARIABLE PF2'E'18+PF2'E'19+PF2'E'20+PF2'E'21+PF2'E'22+PF2'E'23_
8 8VARIABLE PF2'E'18+PF2'E'19+PF2'E'20+PF2'E'21+PF2'E'22+PF2'E'23_
+PF2'E'24+PF2'E'44+PF2'E'45+FF2'E'46+PF2'E'47+PF2'E'48_
+PF2'E'24+PF2'E'44+PF2'E'45+FF2'E'46+PF2'E'47+PF2'E'48_
+PF2'E'49+PF2'E'50
+PF2'E'49+PF2'E'50
9 BVARIABLE PF2'E'2+PF2'E'28+PF2'E'29+PF2'E'6+PF2'E'30+PF2'E'31_
9 BVARIABLE PF2'E'2+PF2'E'28+PF2'E'29+PF2'E'6+PF2'E'30+PF2'E'31_
+PF2'E'18+PF2'E'19+PF2'E'20+PF2'E'21+PF2'E'22+F'F2'E'23_
+PF2'E'18+PF2'E'19+PF2'E'20+PF2'E'21+PF2'E'22+F'F2'E'23_
+PF2'E'24+FF2'E'44+PF2'E'45+PF2'E'46+PF2'E'47+PF2'E'48_
+PF2'E'24+FF2'E'44+PF2'E'45+PF2'E'46+PF2'E'47+PF2'E'48_
+PF2'E'49+PF2'E'50+FF2'E'1
+PF2'E'49+PF2'E'50+FF2'E'1
EVARIA8LE PF2'E'28+PF2'E'29+PF2'E'30+PF2'E'6+PF2'E'31
EVARIA8LE PF2'E'28+PF2'E'29+PF2'E'30+PF2'E'6+PF2'E'31
11 BVARIABLE PF2'E'28+PF2'E'29
11 BVARIABLE PF2'E'28+PF2'E'29
12 BVARIABLE PF2'E'6+PF2'E'30+PF2'E'31+PF2'E'1
12 BVARIABLE PF2'E'6+PF2'E'30+PF2'E'31+PF2'E'1
+PF2'E'18+PF2'E'19+PF2'E'20+FF2'E'21+PF2'E'22+PF2'E'`23_ +PF2'E'18+PF2'E'19+PF2'E'20+FF2'E'21+PF2'E'22+PF2'E'`23_
+PF2'E'24+PF2'E'44+PF2'E'45+PF2'E'46+PF2'E'47+PF2'E'48_
+PF2'E'24+PF2'E'44+PF2'E'45+PF2'E'46+PF2'E'47+PF2'E'48_
+PF2'E'49+PF2'E'50
+PF2'E'49+PF2'E'50
13 8VARIAELE PF2'E'46+PF2'E'20+PF2'E'23+PF2'E'49+PF2'E'24+PF2'E'50_
13 8VARIAELE PF2'E'46+PF2'E'20+PF2'E'23+PF2'E'49+PF2'E'24+PF2'E'50_
+FF2'E'6+PF2'E'30+PF2'E'31
+FF2'E'6+PF2'E'30+PF2'E'31
14 BVARIABLE PF2'E'6+PF2'E'30+PF2'E'31+PF2'E'1_
14 BVARIABLE PF2'E'6+PF2'E'30+PF2'E'31+PF2'E'1_
+PF2'E'18+PF2'E'19+PF2'E'20+PF2'E'21+PF2'E'22+PF2'E'23
+PF2'E'18+PF2'E'19+PF2'E'20+PF2'E'21+PF2'E'22+PF2'E'23
+PF2'E'24+PF2'E'44+PF2'E'45+PF2'E'46+PF2'E'47+PF2'E'48_

```
+PF2'E'24+PF2'E'44+PF2'E'45+PF2'E'46+PF2'E'47+PF2'E'48_
```

```
+PF2'E'49+PF2'E'50
    15 8VARIA8LE PF2'E'21+PF2'E'22+PF2'E'47+FF2'E'4B
    16 8VARIA8LE PF2'E'4+PF2'E'27+PF2'E'5
    17 BVARIABLE PF2'E'5+PF2'E'28+PF2'E'29+PF2'E'6+PF2'E'30+PF2'E'31.
+PF2'E'18+PF2'E'19+PF2'E'20+PF2'E'21+PF2'E'22+PF2'E'23
+PF2'E'24+PF2'E'44+PF2'E'45+PF2'E'46+FF2'E'47+PF2'E'4B_
+PF2'E'49+F'F2'E'50+PF2'E'1+PF2'E'2
    18 BVARIA8LE PF2'E'3+PF2'E'26+PF2'E'5
    19 BVARIABLE PF2'E'5+PF2'E'28+PF2'E'29+PF2'E'6+PF2'E'30+PF2'E'31_
+PF2'E'18+PF2'E'19+PF2'E'20+PF2'E'21+PF2'E'22+PF2'E'23
+PF2'E'24+PF2'E'44+FF2'E'45+PF2'E'46+PF2'E'47+PF2'E'4B_
+PF2'E'49+FF2'E'50+PF2'E'1+PF2'E'2
    20 BVARIA8LE PF2'E'7+PF2'E'8+PF2'E'9+PF2'E'32+PF2'E'33+FF2'E'34_
+PF2'E'35+PF2'E'36+PF2'E'10+PF2'E'11+PF2'E'12+PF2'E'37_
+PF2'E'40+PF2'E'14+PF2'E'41+PF2'E'42
    21 BUARIABLE PF2'E'15+PF2'E'16+PF2'E'17+PF2'E'43
    22 8VARIABLE XF1'G'0+XF2'G'0+XF3'G'0+XF4'G'0+XF5'G'0+XFG'G'0_
+XF7'G'0+XF8'G'0+XFG'G'0+XF10'G'0+XF11'G'0+XF12'G'0
+XF13'G'0+XF14'G'0+XF15'G'0+XF16'G'0+XF17'G'0
+XF18'G'0+XF1\mp@subsup{7}{}{\prime}G'0+XF20'G'0+XF21'G'0+XF22'G'0_
+XF23'G'0+XF24'G'0
*
*
* MACROS SHOULD 8E INSERTED HERE
*
*
* GENERATOR OF THE vEHICLES.
*
*
    GENERATE 100,5,,22,,6PF
    SAVEVALUE 91+,1,XF
ASSIGN 1,XFQ1,PF
ASSIGN 2,51,PF
SEIZE 2248
QUEUE (2248+1)
OUEUE 350
SAVEVALUE (PF1+50),0,XF
*
* MAIN PROGRAM REPRESENTING THE GUIDEFATH THE vEHICLES WILL
* FOLLOW
*
J37 ADVANCE O
TRVL MACRO PFI,3,224A,2248
TEST E BV1,0,,11
INPT MACRO 50,IN78,I24A,7,AP7,RP7,INP7,12,14,IN7A
INPT MACRD 50,INBB,RP7,B,APB,RP8,INPB,15,2,IN8A
DUTPT MACRO RPB,33,AP33,RP33,UNL33,2,1,50,033A,0338
OUTPT MACRO RP33,34,AP34,RP34,UNL34,1,27,50,034A,0348
OUTPT MACRD RP34,35,AP35,RP35,UNL35,15,11,50,035A,0358
    TRANSFER , J2
J1 ADVANCE 0
OUTPT MACRO 224A,32,AP32,RP32,UNL32,41,7,50,032A,0328
```

INPT	MACRO	50, IN9B, RP32, ${ }^{\text {, }}$, AP9, RP9, INP9, 7,41, IN9A
OUTPT	MACRD	RP9, 35, AP35, RP 35, UNL 35, 15, 11, 50, 035C,0350
12	IEST E	8V2,1,d3
DUTPT	MACRO	RP35,40, AP $40, \mathrm{RP} 40$, UNL $40,36,2,50,040 \mathrm{~A}, \mathrm{D} 40 \mathrm{~B}$
INPT	MACRD	$50, I N 148, R P 40,14, A P 14, R P 14, I N P 14,2,8, I N 14 A$
DUTPT	MACRD	RP14, 41, AP41, RP41, UNL 41, B, 10, 50, 041A, D41B
OUTPT	MACRD	RP41, 42, AP 42, RP42, UNL 42, 10, $9,50,042 \mathrm{~A}, 042 \mathrm{~B}$
INPT	MACRD	50, IN158, RF42, 15, AP 15, RP 15, INP 15, 10, 4, IN15A
INPT	MACRD TRANSFER	50, IN168, RP15,16,AP16,RP16, INP16,44,21,IN16A , 35
34	ADVANCE	0
1 NPT	MACRO	50, IN150,RP37,15, AP 15A,RP15, INP15, 29,4, IN15C
339	ADVANCE	0 ,
INPT	MACRD	50,1N160,RP15,16,AP16, RP 16, INP 16,44,21, IN16C
d 5	AdVance	0 ,
INPT	MACRD	
OUTPT	MACRD	RP17,43, AP 43, RP43, UNL $43,9,14,50,043 \mathrm{~A}, 0438$
TRVL	MACRO	PF:,15,0T,RP43
d29	TEST E	8V4,0,36
TRVL	MACRD TRANSFER	$\begin{aligned} & \text { PF } 1,22,211,0 T \\ & , N 10 \end{aligned}$
36	ADVANCE	0
TRVL	MACRD	PF1,22,SEC53, ${ }^{\text {d }}$
	TRANSFER	, 111
33	ADVANCE	0
OUTPT	MACRD	RP35, 36, AP36, RP36, UNL $36,6,2,50,036 \mathrm{~A}, 0368$
INPT	MACRO	50, IN108, RP36, 10, AP $10, R P 10$, INP $10,2,3$, IN1 0A
INPT	MACRO	50, IN118,RP10,11,AP11,RP11, INP11,3,2,IN11A
INPT	MACRO	50, IN128,RP11,12, AP $12, \mathrm{RP} 12, \mathrm{INP} 12,3,10, \mathrm{IN} 12 \mathrm{~A}$
OUTPT	MACRD	RP 12,37, AP $37, \mathrm{RP} 37$, UNL $37,11,34,50,037 \mathrm{~A}, 0378$
	TEST E	EVJ,0,J4
OUTPTJ40	MACRD	RP37,38,AP38,RP38,UNL38,6,31,50,038A,0388 0
	ADVANCE	
OUTPT	MACRD	RP38, 39, AP37, RP39, UNL $37,31,3,50,039 \mathrm{~A}, 0398$
INPT	MACRD	$50,1 N 138, R P 39,13, A P 13, R P 13, I N P 13,2,1, I N 13 A$
	TEST E	8V5,0,37
TRVL	MACRD	PF1, 24, SEC $43, R P 13$
	TEST E	8V6,1, 88
$\begin{aligned} & \text { IRVL } \\ & 311 \end{aligned}$	MACRD	PF1,22, SEC53, SEC 43
	IEST E	$8 \vee 7,1, j 12$
$\begin{aligned} & \text { INFI } \\ & \mathrm{J} 19 \end{aligned}$	TEST E	50, IN18, SEC53,1, AP $1, R P 1, I N P 1,6,1, I N 1 A$
		BV8,1,J13
TRVL	MACRD	PF $1,6, T \mathrm{C}, \mathrm{RP} 1$
OUTPT	MACRD	TD,44,AP44,RP44, UNL44,52,1,50,044A,0448 ,J14
	TRANSFER	

J 12	ADVANCE	0
TRUL	MACRO	PF1，6，SEC3，SEC53
OUTPT	MACRD	SEC3，44，AP 44，RP44，UNL 44，52，1，50，044C， 0440
314	ADVANCE	0
INPT	MACRD	50，IN1日8，RF44，18，AP18，RF 18，INF18，6，24，IN18A
OUTPT	MACRD	RP1日，45，AP 45，RP45，UNL 45，24，1，50，D45A， 045 E
INFT	MACRD TEST E	50，IN198，RF 45,19, AP19，RF19，INP19，1，21，1N19A 8V13，1，ง23
J 28	ALUANCE	0
DUTPT	MACRD	RP19，46，AP 46，RP 46，UNL 46，42，5，50， 446 A， 0468
INPT	MACRD	50，1N208，RP 46，20，AP 20，RP 20，INP20，4，36，IN20A
DUTPT	MACRD	RF20，50，AP 50，RP50，UNL 50，35，1，50，050 A， 550 B
1 NPT	MACRD	$50,1 \mathrm{~N} 24 \mathrm{~B}, \mathrm{RP} 50,24, A P 24, \mathrm{RP} 24,1 \mathrm{NP} 24,1,42$ ，IN24A
OUTPT	MACRO	RP24，49，AF 49，RP 49，UNL 49，41，1，50，049A， 4 498
INPT	MACRD	50，IN23E，RP49，23，AP 23，RP23，1NP $23,1,69$, IN23A
	TEST E	QV14，1，J24
TRUL	MACRD	PF1，2，2188，RP23
	TRANSFER	，J25
38	advance	0
TRUL	MACRD	PF1，22，711，5EC43
J 10	ALVANCE	0
INPT	MACRD	$50,1 \mathrm{~N} 2 \mathrm{~B}, 211,2, A P 2, R P 2,1 \mathrm{NP} 2,15,3,1 \mathrm{~N} 2 \mathrm{~A}$
J15	TEST E	8V9，1，J16
INPT	MACRD	50，IN2F，RP2， $2, A P^{2} 2 \mathrm{~A}, \mathrm{RP} 2 \mathrm{~A}, \mathrm{INP2}, 4,4, \mathrm{IN} 2 \mathrm{E}$
J17	TEST E	8V10，1， 118
TRVL	MACRO	PF1，28，28，RP2A
	TEST E	8V11，1，320
TRVL	MACRD	PF1，9，210，28
OUTPT	MACRD	210，2日，AP 28，RP28，UNL 28，15，2，50，028A，D28B
J32	ALVANCE	0
DUTPT	MACRD	RP28，29，AP 29，RP29，UNL 29，2，13，50，029A， 0298
	TEST E	$8 \vee 12,1,321$
TRVL	MACRD	PF1，2，2189，RP29
J25	AIVANCE	0
INPT	MACRD	50，IN60， $2188,6, A P 6, R P 6$, INP6，2，2，IN6C
J22	ADVANCE	0 ，
OUTPT	MACRO	$\mathrm{RP6}, 30, \mathrm{AP} 30, \mathrm{RP} 30, \mathrm{UNL} 30,2,2,50,030 \mathrm{~A}, 030 \mathrm{~B}$
DUTPT	MACRD	RP30，31，AP31，RP31，UNL 31，2，10，50．031A，0318
1NPT	MACKO	$50, I N 1 F, R P 31,1, A P 1, R P 1,1 N P 1,10,1,1 N 1 E$
	TRANSFER	，J19
J23	TEST E	8V15，1，J26
J27	ADVANCE	0
OUTPT	MACRO	RP19，48，AP48，RP 48，UNL 48，37，1，50，048A， 0488
INPT	MACRD	$50,1 \mathrm{~N} 228, \mathrm{RP} 48,22, \mathrm{AP} 22, \mathrm{RF} 22,1 \mathrm{NP} 22,1,24,1 \mathrm{~N} 22 \mathrm{~A}$
DUTPT	MACRD	RP22，47，AP47，RP47，UNL 47，24，1，50，147A， 0478

INPT	MACRO	50, IN218,RP47,21,AP21,RP21,INP21,1,39,IN21A
TRVL	MACRO	PF!,15,0T,RP21
	TRANSFER	, 129
J16	AOVANCE	0
PLACE	MACRO	RP2, 51, APP, RPP, FARK, 1, 1, PLCi, PLC2
TRVL	MACRO	PF1,36,26A,RPP
	TEST E	8V16,1,330
INPT	MACRO	50, IN 48, 26A , 4, AP4, RP 4, INP 4, 20,4, IN 4 A
OUTPT	MACRO TEST E	RP4,27, AP 27, RP27, UNL27,3,4,50,027A,027B
TRVL	MACRO	PF1,14, 298,RP27
INPT	MACRO	50, IN58, 298, 5, AP5, RP5, 1NP5, 18, 4, IN5 A
J35	AOVANCE	0 ,
OUTFT	MACRD	RF5,28, AP $28, \mathrm{RF} 28, \operatorname{lNL} 28,15,2,50,028 \mathrm{C}, \mathrm{O} 280$
	TRANSFER	, J32
J30	ADVANCE	0
OUTPT	MACRO	Z6A, 25, AP $25, \mathrm{RP} 25$, UNL $25,6,6,50,025 \mathrm{~A}, 025 \mathrm{~B}$
TRUL	MACRO	PF $1,11,223$ A, RP 25
336	TEST E	BV18,1,333
OUTPT	MACRO	Z23A, 26, AP 26, RP 26, UNL 26, 18,5,50, 026A, 0268
INFT	MACRO	50, IN3, RP 26, $3, A P 3, R P 3, I N P 3,4,4, I N 3 A$
	TEST E	8V19,1,J34
TRUL	MACRO	PF1,36,2118,RP3
INPT	MACRO	50, IN50, 2118,5, AP5, RP5, INP5,18, 4, IN5
	TRANSFER	,335
J31	ADVANCE	0
TRVL	MACRO	PF1,11,24, RF 27
TRVL	MACRO	PF1,30,25,24
J 41	AOVANCE	0
TRUL	MACRO	PF1,11,223A, 25
	TRANSFER	, ,336
333	ADVANCE	0
TRVL	MACRO	PF1,15,2248,223A
	TEST E	8V20,0,337
IRVL	MACRO	PF1,22,21,224B
	TEST E	8V21, 1, J38
INPT	MACRO	50, IN 15F, 21,15, AP15,RP15, INP15,29,4, IN15E
	TRANSFER	.J39
J38	ADVANCE	0
OUTPT	MACRO	21,38, AP38, RP 38, UNL 38, 6, 31, 50,038C, 0380
	TRANSFER	,J40
334	AOVANCE	0
TRVL	MACRO	PF1,11,23,RPJ

```
TRVL MACRO PF1,30,25,23
    TRANSFER ,J41
JIJ ADVANCE O
TRVL MACRO PFI,6,SEC5B,RPI
INPT MACRO 50,IN2D,SEC5B,2,AP2,RF2,INF2,15,3,IN2C
    TRANSFER ,J15
J7 ADVANCE 0
TRVL MACRO PF1,22,213,RF13
INPT MACRO 50,IN2H,213,2,AP2A,RP2A,INP2,4,4,IN2G
    TRANSFER ,J17
JIB ADVANCE O
INPT MACRO 50,IN1D,RP2A,1,AF\A,RP1,INP1,25,1,IN1C
    TRANSFER ,J19
J21 ADVANCE O
TRVL MACRO PF1,22,212,RP29
INPT MACRO 50,IN2J,Z12,2,AF2,RP2,INP2,15,3,IN2I
    TRANSFER ,J15
J20 ADVANCE 0
TRUL MACRO PF1,25,29,2B
INFT MACRO 50,INGB,29,6,AP6,RPG,INP6,2,2,INGA
        TRANSFER ,J22
J24 ADVANCE 0
TRVL MACRD PF1,22,212,RP23
INPT MACRO 50,IN2L,Z12,2,AP2,RP2,INP 2,15,3,IN2K
        TRANSFER ,J15
J26 ADVANCE 0
        TRANSFER .5,,J27
        TRANSFER ,J2B
* GENERATION DF JOBS FOR EACH INPUT. FROM GIVEN DATA THE
* NuMBER OF jobs InPUTTED at EACH INFUT STATION WAS kNOWN
* AND THE GENERATE BLDCKS BELON CREATED JOBS AT A UNIFORM
* RATE TO SIMULATE A SHIFT'g mORTH.
*
GENERATE 224,22
SAVEVALUE 1+,1,XF
TERMINATE
GENERATE 394,39
SAVEVALUE 2+,1,XF
TERMINATE
GENERATE 1263,126
SAVEVALUE 3+,1,XF
TERMINATE
```

generate	2400,240
SAVEVALUE	4+, 1, X.F
TERMINATE	
generate	3512,351
SAVEVALUE	$5+, 1, X F$
TERMINATE	
GENERATE	966,97
SAVEVALUE	$6+, 1, X F$
TERMINATE	
GENERATE	12000,1200
SAVEVALUE	7+, 1, XF
TERMINATE	
GENERATE	13714,1371
SAVEVALUE	日 $+1,1, \times$ F
TERMINATE	
generate	13714,1371
SAVEVALUE	9+, 1, XF
TERMINATE	
generate	3692,369
SAVEVALUE	10+, 1, XF
TERMINATE	
GENERATE	1180,118
SAVEVALUE	11+,1, XF
TERMINATE	
EENERATE	324,32
Savevalue	$12+1, X F$
TERMINATE	
GENERATE	610,61
SAVEVALUE	$13+1, \mathrm{PF}$
TERMINATE	
generate	135日, 136
Savevalue	14+,1, XF
TERMINATE	
GENERATE	1800,180
SAVEVALUE	15+,1, XF
TERMINATE	
generate	1152,115
SAVEVALUE	$16+, 1, X F$
TERMINATE	

```
GENERATE 1152,士!5
SAVEVALUE 17+,1,XF
TERMINATE
GENERATE 435,44
SAVEVALUE 18+,!,XF
TERMINATE
GENERATE 435,44
SAVEVALUE 19+,1,XF
TERMINATE
GENERATE 288,29
SAVEVALUE 20+,!,XF
TERMINATE
GENERATE 435,44
SAVEVALUE 21+,1,XF
TERMINATE
GENERATE 435,44
SAVEVALUE 22+,1,XF
TERMINATE
GENERATE 435,44
SAVEVALUE 23+,1,XF
TERMINATE
GENERATE 435,44
SAVEVALUE 24+,1,XF
TERMINATE
```

* Clock to regulate one shift or 28800 seconds of time.
* GENERATE ,,,2
LOGIC 52
SEIZE CLCK
ADVANCE 28800
RELEASE CLCK
TERMINATE
START 1
RESET
START 1
END

```
A STUDY OF IMF゙LEMENTATION AND EVALUATION TECHNIQUES
                        OF ADVANCED GUIDED VEHICLE SYSTEMS
                        by
                    ANTHONY SHOEMAKEF READ
                        B.S., North Carolina State University, 198:
                        AN ABSTRACT OF A MASTER'S THESIS
                submitted in partial fulfillment of the
            requirements for the degree
                    MASTERS OF SCIENCE
                            Department of Industrial Engineering
                            KANSAS STATE UNIVEFSITTY
            Manhattan,Kansas

\section*{AESTRACT}

This thesis proposes a standardized approach for the pre-installation design and evaluation of Advanced Guided Vehicle Systems (AGUS).

The first step was to develop an evaluation tool. Using GFSS-H, a transaction based simulation language, unique macros were developed that emmulated certain features of a AGVS. The macros pieced together like building blocks provided a facsimile of an actual system.

A simple system was evaluated by using the statistics gathered by the GFSS-H package. From these statistics the concepts of system utilization; system efficiency, and reserve capacity were developed.

Frocedural steps were developed to be able to ereate a workable AGUS. A real-1ife situation was used and the techniques developed were loadfeet directioning, vehicle estimating, cutoff implementation, and block division. From the development of these techniques a proposal for a guidepath layout and the number of vehicles required was obtained.

The implementation of both the procedural steps and the evaluation techniques were applied to a more complicated system. Again the problem was a real-life situation. The procedural steps were applied and a workable AGVS was developed. Each step was evaluated using the GFSS-H macros and its effect monitored through the number of vehicles needed, system utilization, and system efficiency.```

