A STUDY OF IMPLEMENTATION AND EVALUATION TECHNIQUES OF ADVANCED GUIDED VEHICLE SYSTEMS/

bу

ANTHONY SHOEMAKER READ

B.S., North Carolina State University, 1983

A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTERS OF SCIENCE

Department of Industrial Engineering

KANSAS STATE UNIVERSITY Manhattan,Kansas

Approved Major Professor

LIST OF FIGURES

Figure	Description	Page
1	Basic Guidepath for Case 1	18
2	Case 1: System Utilization per Shift	
3	Case 1: Average System Utilization per Car	22
4	Case 1: System Efficiency per Shift	
5	Case 1: Average System Efficiency per Car	26
6	Case 1: Jobs Completed per Shift	
7	Case 1: Average Jobs Completed per Car	29
8	Case 1: Block Utilization for Five Cars	
9	Case 1: Block Utilization for Six Cars	32
10	Case 1: Block Efficiency for Five Cars	
11	Case 1: Block Efficiency for Six Cars	
12	Case 1: Block Jobs for Five Cars	36
13	Case 1: Block Jobs for Six Cars	37
14	Case 1: Block Waiting Time for Five Cars	
15	Case 1: Block Waiting Time for Six Cars	
16	Case 1: Utilization -vs- Waiting Time	41
	Five Vehicles	
17	Case 1: Jobs -vs- Waiting Time- Five Vehicles	
18	Basic Guidepath for Case 2	
19	Proposed Cutoffs for Case 2	
20	Identification of Congested Blocks for 1st	60
	Storage Run	
21	Identification of Congested Blocks for 2nd	63
	Storage Run	
22	Efficiency Leveling for Case 2	
23	Basic Guidepath Case 3	
24	Alternative 1 for Case 3 Loadfeet Directionin	
25	Alternative 2 for Case 3 Loadfeet Directionin	
26	Proposed Cutoffs for Case 3	
27	Case 3: Utilization -vs- Vehicle #	
28	Case 3: Efficiency -vs- Vehicle #	
29	Case 3: Utilization -vs- Cut #	
30	Case 3: Efficiency -vs- Cut #	84

LD 2668 174	TABLE OF COM	ITENTS	
1983 R42			PAGE
LIST OF FIGURES.		A11202 645687	i
LIST OF TABLES			ii
ACKNOWLEDGEMENTS			iii
INTRODUCTION			1
BACKGROUND			1
OBJECTIVE			
MODELING			9
CASE 1			14
CASE 2			
CASE 3	•••••		
CONCLUSION			
FUTURE STUDY			
BIBLIOGRAPHY			
APPENDIX A: GPSS-H Macro			
APPENDIX B: Example Prog	gram for Case	. 1	
APPENDIX C: Example Proc	gram for Case	2	123
APPENDIX D: Example Prog	gram for Case	3	

LIST OF TABLES

Table	Description	Page
1	Average Wait and Park Time-seconds per shif	t24
2	Case 2 From-To Chart	
3	Case 2 Loadfeet Directioning	53
4	Case 2 Job Flow Matrix	
5	Case 3 From-To Matrix	
6	Case 3 Loadfeet Directioning	.73-74
7	Case 3 Job Flow Matrix	

ACKNOWLEDGEMENTS

I am indebted to Dr. L. E. Grosh whose guidance and advice were invaluable in the course of this study.

To Mrs. Fern Miller who was always there with a pat on the back when I needed it.

And finally to my mother, Virginia Cary Read, who always had faith in me even when I didn't have faith in myself.

INTRODUCTION

In the early 50's Advanced Guided Vehicle Systems (AGVSs) were introduced in the United States. The early systems were used for automating warehouse transportation operation of materials by providing a link between the storage, receiving, and shipping departments.

The Europeans were the first to recognize the potential of AGVSs and created a demand for new vehicle types and new applications. Recently AGVSs have developed the ability to deliver parts and materials to the entry points of production and the transport of fixtured workpieces and tools to computer controlled machining centers in a flexible manufacturing process.

The United States has now become more involved in the use of AGVSs systems. This increased involvement is shown by the yearly industry growth of 5 to 6 % from the 1950's to the 1970's, to what is expected to be a yearly increase rate of 30 % in the 1980's.

BACKGROUND

There are three basic situations in which today's AGVSs are applied. The first application is to interface work-inprocess automatic storage and retrieval systems and link them with manufacturing floor systems. This provides a link for the possible real-time material tracking throughout a facility.

The second application is in flexible manufacturing systems. The AGVSs are used to deliver material to computer

numerical control machines. In this case a central control system links the vehicles with the computer numerical control machine for material tracking.

The third application is for distribution environments. The vehicles are used to move large volumes of materials great distances. For example, the movement of materials from bulk storage to receiving and shipping docks and vice versa.

Within AGVSs there are basically five types of vehicles which are used: automated towing vehicles, pallet trucks, unit-load carriers, automated forklift vehicles and specialty trucks (sideloading trucks, for example).

The power sources for these vehicles are lead-acid batteries which have 24 to 48 volt and 80 to 500 amp-hour capacity. These batteries remain charged for approximately 8 to 16 hours.

The vehicles run on a guidepath which provides a twoway link from the vehicle to the operating device. The guidepath carries instructions from the computer to the vehicles and vehicle status information from the vehicle to the operating device.

There are two types of vehicle guidance techniques: optical guidance and magnetic guidance.

In the optical guidance method the guidepath is marked by reflective tape or painted stripes on the floor. The vehicle emits a lightbeam which is focused on the guidepath, and tracks the path by measuring the amplitude of the

reflected light. Other optical paths use ultraviolet light or invisible chemicals for guidance. Optical guidepaths are used mainly in office environments or temporary guidance systems. They are not recommended for extended use in industrial environments because they have a tendency to get covered over in a dirty work area.

The other guidance technique (and most commonly used) is magnetic guidance. In a magnetic system the guidepath is generated by the electromagnetic field created by a continuous wire conductor embedded in a small slot in the floor. One or more wires are placed in the slot (1/8 to 3/8 inches wide and 1 to 1.5 inches deep). which is filled with an epoxy material to make the floor smooth. The wires are energized with a low-current, low frequency AC signal that generates a magnetic field around the wire. A sensor coil, which is on board the battery-powered vehicle, detects the magnetic field created around the wire. Any deviation in the macnetic field causes the vehicle to deviate from its present activity (to turn, stop, etc.). Magnetic guidance requires more effort to install and is more difficult to change. But upon completion of installation of the required wire system it is virtually maintenance free.

Once an AGVS is installed there are two types of system control: traffic management and system management.

Traffic management is done by three possible methods. The first is called zone control or "blocking". The quidepath system is divided into zones or blocks with separate control exercised over each zone in the system.

З

This is done by either distributed zone control or. central zone control.

In distributed zone control, the vehicle is not permitted to enter a zone until all previous traffic in that zone has moved on to another zone. When the zone is clear of all vehicle activity a hold beacon is de-energized and the vehicle is allowed to enter the zone and approach any stop station within that zone.

In centralized zone control, there is a central controller which monitors all zones at one time versus the distributed approach where there is a monitor at each zone. When a vehicle approaches a zone entrance the central controller receives status information and signals the communication point when the vehicle is okayed to move ahead.

The second method of traffic management was made possible because the developments in the last decade in microprocessor and minicomputer technology. This technology provided the foundation for the development has of. intelligent or "smart" vehicles. The development of these "smart" vehicles has allowed for the elimination of zone control. In this type of system the vehicles are equipped with onboard microprocessors. This is, of course, a very expensive system. The main advantage of this type of traffic management is that if one vehicle fails the whole system does not go down.

The third method of traffic management is sensor

control. In this method, each vehicle is equipped with onboard sonic or optical sensors. These sensors emit signals and record the reflected response. When something is in the vehicle's proposed path, whether a foreign object or another vehicle, the vehicle will stop a specified distance from the obstruction and will not proceed until it is removed. Sensor control is most effective on a straight and unvarying guidepath.

The second type of system control is system management. There are three types of system management: on board call, off board call, and central computer control.

On board call or dispatch is typified by a panel being on board the vehicle and the station operator using this panel to dispatch the vehicle to a desired destination. This method is the simplest and cheapest but is heavily dependent on the operator.

The second method of system management is off board call or remote dispatch system. In this system the operator interacts with a remote dispatch instead of directly with the vehicle and "calls" a vehicle to his station. This method increases efficiency by providing a buffer between the vehicles and the system's operators. However, this system provides no material tracking capabilities and is still dependent on the station operators.

The third method of system management is central computer control. In this approach the operator control on the system is eliminated. All vehicles in the system are monitored by a central controller and respond to his

commands only. If the vehicle controller is interfaced with the user's host computer it is possible to have real-time tracking and inventory control. In most cases these systems are connected with automatic load/unload devices which further reduce the operator involvement which in turn eliminates potential idle time of the vehicle. Central computer control is more complex and expensive (as much as twice that of remote dispatch) but in proper circumstances can pay for itself in increased efficiency and system flexibility.

There are many possible benefits to the installation of a AGVS, some of which include:

- materials are more closely controlled as a result of more accurate inventory information,
- (2) reduction of work-in process inventory,
- (3) a more efficient use of personnel, which produces significant labor savings,
- (4) a more efficient work environment (workers don't have to keep up with a line),
- (5) elimination of manual material handling between manufacturing sections,
- (6) the flexibility afforded by guidepaths that can be readily changed,

- (7) increase in production space because the guidepath requires minimal area,
- (B) more efficient use of floor space since the guidepath provides no obstruction to material flow off the path,
- (9) overall adaptability to automation and AGVSs' effectiveness in operating with other computer controlled systems.

As the benefits increase so does the price of AGVSs. But still it is a worthwhile investment for industry. In fact, four times as many AGVSs were sold in 1984 than in 1983.

Because of the increasing cost, development of preinstallation simulation procedures are needed to be able to accurately predict system performance before installation of the actual physical system.

The purpose of this thesis is to develop procedures that can be used during the design and evaluation of the proposed AGVS systems.

OBJECTIVE

Because of the ever increasing demand for AGVSs, it has become necessary to make a thorough design and evaluation of facility plans before large capital investments can be made. This can be done by developing different designs and evaluating them by computer simulation. The evaluation of AGVSs can be done with simulation languages, in this case GPSS-H. The use of GPSS-H provides the opportunity, without having to use physical hardware, to emulate an actual system with the manipulation of mathematical equations. This can produce design criteria for the implementation of a AGVS.

This thesis will be concerned with the development of ' design and evaluation techniques for AGVSs. Macros, using GPSS-H, will be developed which emulate the unique sections which make up AGVSs. By piecing these "unique sections" together like building blocks the AGVS, whether real or proposed, can be simulated and hence evaluated.

Three AGV systems will be evaluated, one which is in existance and two that are being proposed by a local manufacturer.

The first system, which is already in use, will be simulated and then evaluated. The evaluation will consist of a study of the number of vehicles needed, vehicle utilization, vehicle efficiency, job completion, and block analysis.

The second and third systems, which are being proposed, will be first designed and then optimized, by development of material handling techniques. Simulation will then be used to evaluate the designs and give insights for possible design improvements.

MODELING

The depiction of the AGVSs will be done using the General Purpose Simulation System computer language. The version used is GPSS/H.

Macros were developed to emulate the following unique parts of a AGVS: travel block, input block, output block, park block, refuel block, loop block, and the cross block. The program statements which are used to call these macros are individualized by a set of operands which are used in the called macro. The main program statements call the desired macro and place it in its place in the main program. The operands which are attached to the main program statement individualize each macro into separate pieces of track. These main program statements are pieced together to form a representation of the actual AGVS.

Incorporation into the program of logical code is needed to make decisions at path division points. When a vehicle reaches a decision point its destination is checked and the correct route is chosen.

To depict accurately any AGVS with simulation programming the following factors must be imitated.

- Blocking Blocking is a signalling system which divides the work route into zones and allows only one vehicle into that zone at one time.
- (2) Routing Routing is chosing the route to the destination that has the shortest possible path.
- (3) Dispatch and scheduling algorithms D/S is a method of assigning empty vehicle destinations.
- (4) Status The status of the input stations, output stations, and vehicles must be kept for decision making processes through the system
- (5) Parking stations Emulation of these are necessary to have a place where the vehicle can go when there are no jobs to be performed; otherwise the vehicle will travel the circuit and obstruct vehicles doing work.

Blocking is accomplished by allowing only one vehicle into any macro at one time. If a vehicle attempts entry into a macro which is already in use it waits and the waiting time is recorded.

Routing is accomplished by providing the proper tests at path divisions. For example, if a vehicle must travel from point A to B, the incorporated test logic will "steer" the vehicle on the appropriate path to its destination.

Five approaches were considered in constructing the dispatch and scheduling algorithm: set distribution, queue sizing, first-in-first-out, minimum distance locator, and combined queue sizing and minimum distance locator.

The set distribution algorithm can be used when destinations from points are surveyed over a period of time and then categorized into a distribution. This is a simple algorithm which uses a random number generator to pick the next vehicle destination.

The queue sizing algorithm is merely the checking of all possible destinations and the picking of the one with the longest job queue.

The first-in-first-out algorithm ranks with queue sizing for complexity. The algorithm picks the destination which has the oldest job. This method is useful when time limits are set on job fulfillment.

These first three approaches can cause much lost time for a AGVS. All are common in the fact that they may require the AVG to travel long distances to destinations when alternatives are shorter.

This leads into the fourth approach which is the minimum distance locator algorithm (MDLA). In the MDLA, all possible destinations are scanned and the destination which is the closest is chosen. Because a vehicle round trip consists of travelling empty to an input station and travelling loaded to an output station, the MDLA reduces empty vehicle travel time by directing the vehicles from the outputs to the closest inputs that have jobs to be done. The problem with this algorithm is that job queues can back up at input stations simply because of their great distance from destination assignment points.

The fifth, and most complex, algorithm is the queue sizing and MDLA combination. This algorithm first checks all job queues for any which are above a "queue full"

status. If any are above that level the vehicle is dispatched to that destination. Note that there should be at most one job queue exceeding this level at a time. There is no logic in the algorithm to accommodate multiple job queue overloads, for in the properly running system there should not be more than one. In an inadequate system where two or more overloads may occur, one is chosen without regard to distance. If there is no overload of the job queues the vehicle is dispatched to the closest possible vehicle requesting destination. This alleviates queue buildup and at the same time reduces empty vehicle travel.

The dispatch and scheduling algorithm is contained within the output, input, park, and refuel macros, in which a vehicle has reached its destination and requires a new one.

The recommended algorithm to dispatch vehicles from the output stations, park area, and refuel area is the queue sizing and MDLA combination. Destinations consist of input stations, the park area and the refuel area (obviously you can not dispatch to your own location e.g. park-to-park). Because of this, before entering the D/S algorithm the fuel level must be checked and if below a prescribed level, the refuel area is assigned as destination. Similarly, after the D/S algorithm, if no destination has been chosen, the vehicle is dispatched to a park area.

The algorithm for dispatching vehicles from the input stations is the set distribution. Since the destination from an input station is always an output, distributions can

be developed which provide desired patterns.

The status of input and output stations are accounted for in the macro sequence as either in use or not in use. Since each is represented by a macro, when the station is in use no other vehicle may enter.

Other status values which are associated with each input are a buffer value and an assigned job value. The buffer value is the number of jobs that are at the input station but have not been assigned to a certain vehicle for pickup. When a vehicle is assigned the destination of a particular input (see dispatch/scheduling), one job is subtracted from the buffer value and added to the assigned job value (which is decremented when the vehicle picks up the job).

Vehicle status is "carried" by the transaction, which represents the vehicle, as it travels around the AGVS. Each vehicle is identified with a number from 1 to X (where X is the number of vehicles in the system). Fuel levels and loaded or unloaded status are also carried by each vehicle.

Parking stations are represented by macros and can be placed around the guidepath as needed. Parking stations can also have a capacity which is greater than one, i.e., more than one vehicle can be in a parking station at one time.

The following data are kept track of during the simulation process and output when prompted or at the completion of the simulation:

 The number of vehicle entries into each block of track, output station, input station, park

area, and refuel area and whether there are any vehicles presently in any of these.

- (2) Average time (in seconds) that the vehicle remains in each block.
- (3) Total number of vehicles blocked at a block of track for any time greater than zero, which is further broken down into the number of vehicles that were loaded and the number that were unloaded.
- (4) For the number of blocked vehicles, the average waiting times for both the loaded and unloaded vehicles (in seconds).
- (5) Status of the buffer and job waiting queues.
- (6) Vehicle fuel levels.
- (7) Status of each vehicle, either loaded or unloaded.
- (8) Total vehicle travel time(in seconds) loaded and unloaded.

CASE 1

The first AGVS studied is one that is already in existance. The design was taken from the Newark. Delaware warehouse of Avon Products Inc. as presented in the June 1983 issue of Modern Materials Handling. The AGVS is linked to an automatic storage and retrieval system, delivering inventory to order filling lanes.

Because some of the information needed to model this system was not provided by the article some of the AGVS properties were approximated by the author. Given was the guidepath length of 2,200 feet. From this value distances between possible stop areas were determined. Also given was that 80 loads were input into the system per hour. Since no distribution was indicated the loads were allocated to the four system inputs, i.e., 20 loads input at each input station per hour. Likewise, there was no distribution of job destinations given, so each job randomly selected an output station as its destination. Since there were 10 outputs each station had a 1/10 probability of being chosen as the destination. The calculated vehicle speed, 2.3 feet/second is slower than most vehicles travel but was a convenient magnitude for the simulation. In the magazine design no park or refuel areas are shown, so the author placed each in the system at his own discretion. The purpose of the Avon study is to see the effect that the number of vehicles has on vehicle utilization, vehicle efficiency, job completion, and job analysis.

Vehicle utilization, as described by Hitchens (4), is the percentage of time that each vehicle is transporting a load in the system. This leads to system utilization being defined as

This equation should be further refined to include vehicle load and unload time. Input and output stations are included in the system and thus must be represented in the utilization calculation. The new system utilization would be defined as

Hitchens (4) also describes vehicle efficiency as the percentage of time that a vehicle, with a job to do, is in motion. The system efficiency is defined as

Since efficiency is an indicator of system blockage, Hitchens' approach must be further defined to include cars which are travelling empty to reach new loads. This would give a truer indication of system congestion. The new system efficiency equation would be defined as

system	sum of vehicle sum of vehicle travel time - waiting time	
efficiency	sum of vehicle travel time	

Job completion, which is self explanatory, is the other factor studied in the Avon case. It must be studied, for if you are not processing the workload, utilization and efficiency calculations are useless.

Blocks, the signalling device used in the AGVS, can be varied and the effects on the system monitored. Blocks are

sections of track which allow only one car to enter at one time. By varying the block lengths, fluctuations should be seen in the utilization, efficiency, and possibly job completion rate.

It should be noted that the Avon system is but one type of AGVS configuration. All of the inputs are placed at one end of the system and the outputs at the other end. Because of this the dispatch and scheduling algorithm was not used except to check for refuelling or park assignments. The vehicles were assigned input stations and output station at random. Since no load or unload times were given 60 seconds was used for each.

The Avon system, see Figure 1, is linked with an automatic storage and retrieval system. This is why the inputs are centralized at one end of the AGVS and the outputs at the other end. The park and refuel areas where placed at the input end of the system. A distance matrix was not used in the Avon AGVS because of this opposite end destination setup. The refuel area placed in this model is optional since its system effects can be determined after the simulation.

There are four inputs, 10 outputs, one park area and one refuel area in the Avon AGVS. It takes 60 seconds to load or unload a job from a vehicle. Each input is preloaded with four jobs as the modeling process begins and a new job is created at each input station every three minutes (calculates to 80 jobs input to the system per hour). Destination of these jobs are randomly chosen from

the 10 outputs.

Vehicles take 10 seconds to refuel (represents exchanging of battery) and each battery has a capacity of 5000 seconds travel time. When the battery level goes below 1000 seconds the next destination assignment is the refuel area. There is no limit on the park area capacity. Measurement of time spent in the park area is important for it represents possible work time that is lost because of no demand. The refuel area also has no capacity limit and as many vehicles needing refuelling are allowed in at one time.

For study of system utilization, system efficiency, and job completion rate, the number of vehicles in the system was incremented from 3 to 11. With each specified number of vehicles the system was run for five shifts of eight hours each. The shifts were run back to back with each vehicle starting a new shift at the location it was in at the end of the previous shift.

The measurements of system utilization can be seen in Figure 2. As the number of vehicles was decremented, system utilization increases by relatively equal steps between 11 vehicles and 6 vehicles. For 3, 4, and 5 vehicles system utilizations are, in essence, equal. The vehicles (at levels 3, 4 and 5 vehicles) are in constant use and are being utilized to the maximum of their capabilities.

The leveling off observed in Figure 2 is due to the preloading of the system. During shift one, not only did the vehicles have to complete the standard number of jobs input the system but also the 16 jobs that were queued up at the

CASE 1: SYSTEM UTILIZATION PER SHIFT

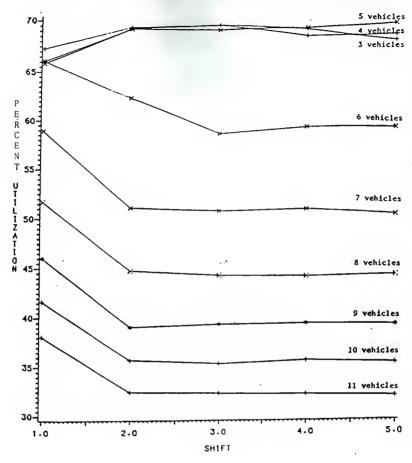


FIGURE 2.

input stations as the simulation began.

From Figure 3, system utilization is averaged over all five shifts for each level of vehicles. The difference between the averages can be explained by two factors. The first factor, which causes decreased utilization, is that if there are more vehicles in the system, jobs are handled more quickly with minimal job pickup waiting time. This provides the vehicles with "free time", which is spent in the park area. As stated before, time spent in the park area is not considered work and thus detracts from utilization. This factor is called the vehicle's "added reserve capacity" and describes that vehicles ability to handle more jobs per hour.

The second factor, which also detracts from system utilization, is increased waiting time caused by the addition of more vehicles to the system. By increasing the number of vehicles the AGV path becomes congested and blocking occurs. The waiting time is not considered work and thus not factored into system utilization. This factor is called "additional congestion".

Figure 3, shows that once you get to five vehicles there is no difference in the average utilization as vehicles are removed from the system. This indicates that there is no added reserve capacity or additional congestion when the system is run with 3, 4, or 5 vehicles.

When the number of vehicles is increased from five, there is a decrease in utilization as each vehicle is added. As more vehicles are added not only is the reserve capacity

CASE 1: AVERAGE SYSTEM UTILIZATION PER CAR

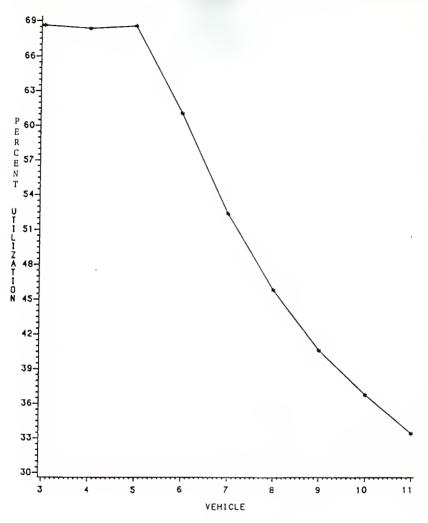


FIGURE 3.

increased (more vehicles do more jobs) but so is additional congestion (more vehicles, more blocking)(see Table 1).

The measurements of system efficiency can be seen in Figure 4. As with system utilization, system efficiency increases as the number of vehicles decreases. The values plotted in Figure 4 are cummulative efficiency. For 8, 9, 10, and 11 vehicles the system efficiency levels off at values that are banded within a range of 1.5%. This indicates that with eight or more vehicles the system runs at basically the same efficiency. All are putting the same number of vehicles into the system to process the input load rate. Whenever there is a call from an input to do a job. a vehicle is promotly dispatched with no job pickup waiting besides the travel time to the input. With this many vehicles there is always at least one in the parking area waiting for dispatch.

As the number of vehicles is decreased the efficiency increases. Because there are fewer vehicles in the system, waiting time is reduced. For 7 vehicles there is a jump of 2% from the group of 8, 9, 10, and 11 vehicles. For 6 there is an increase of over 2% from 7 vehicles.

As can be seen from Figure 5, from 6 vehicles to 3 vehicles the slope of the efficiency increase is less than from 11 to 6 vehicles. This indicates that the waiting time is not dramatically reduced by removing a vehicle from the system at this point.

# of	average	average
vehicles	wait time	park time
3	71.4	0
4	143.2	Ŭ
5	176.0	0
6	315.2	2137
7	543.8	5424
8	738.0	8751
9	825.0	12116
10	790.0	15763
11	880.2	19107

Table 1: Average wait and park time - seconds per shift

Sec. 4.

CASE 1: SYSTEM EFFICIENCY PER SHIFT

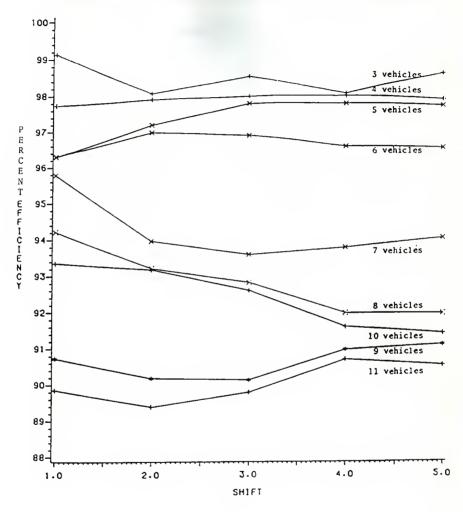


FIGURE 4.

CASE 1: AVERAGE SYSTEM EFFICIENCY PER CAR

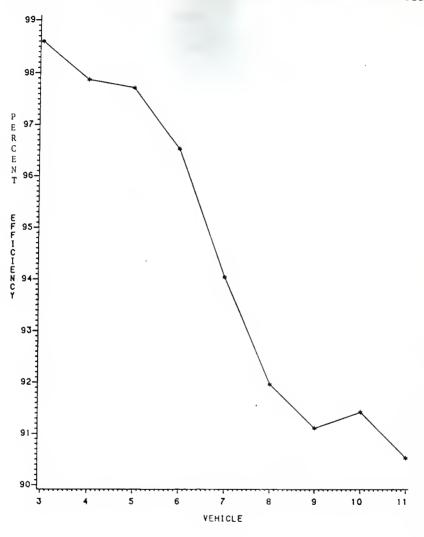


FIGURE 5.

For a system with 3, 4, or 5 vehicles, the vehicles are being utilized to their maximum, hence waiting time is kept at a minimum. The system efficiency range at this level is less then 1%. By increasing the number of vehicles to 6 the system efficiency is reduced just over 1%. Then larger dropoffs in efficiency occur until after 8 vehicles the efficiency levels off because the system will use only a certain number of vehicles at one time to process loads.

Jobs completed per shift is, of course, the ultimate goal of any system. A job completion rate must be met, in this case 80 jobs per hour. As would be expected, as the number of vehicles are increased the number of jobs completed increases. As Figure 6, shows 3 or 4 vehicles could not handle the load of 80 jobs per hour. Five vehicles are marginally enough, being able to complete 80 jobs in one of its shifts. For a system with 6, 7, 8, 9, 10, or 11 vehicles the job completion rate of 80 jobs per hour is easily met.

By pre-loading the system with sixteen jobs, the capacities of systems with a different number of vehicles can be checked. As would be expected with 3, 4, or 5 vehicles the system is running at maximum capacity and there is no drop in number of jobs done over the length of the simulation. But with six or more vehicles the capacity is much higher than 80 jobs per hour (from 92 jobs for six vehicles to at least 102 jobs for 11 vehicles).

Figure 7 shows the average number of jobs completed by each of the levels. It clearly shows the point at which

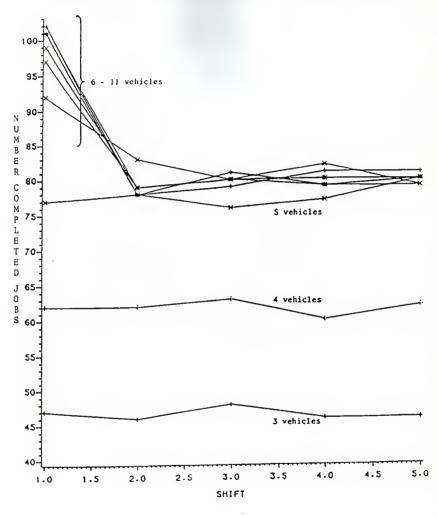
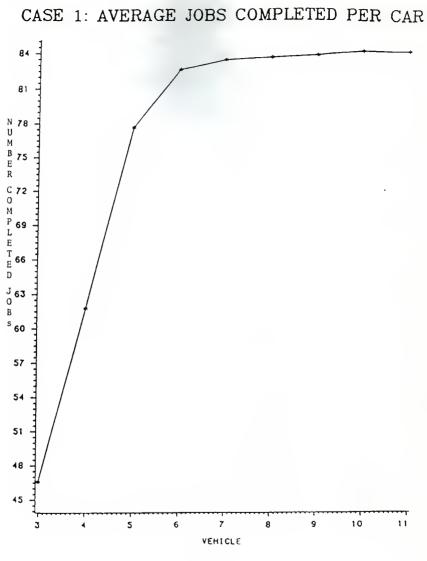
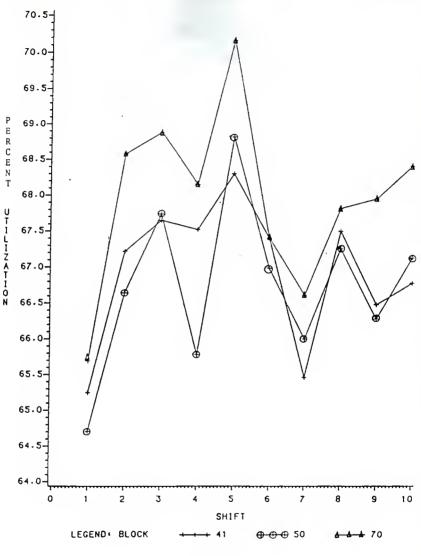


FIGURE 6.




FIGURE 7.

there are enough vehicles to process the system load.

For the study of block sizing 5 and 6 vehicles were run the simulation. Block sizing analysis consists of in varying the maximum size of the travel blocks which only one vehicle can occupy at one time. There are three different block sizes used in this analysis. The first size was the maximum possible sized blocks for this system. The maximum block travel time in this case is 24 seconds and there were a total of 41 blocks. The second case set the maximum block size at 14 seconds travel time and there were a total of 50 blocks. The third case set the maximum block size at seven seconds and there were a total of 70 blocks. The basic concept is the greater the number of blocks the smaller the waiting time in the system. The simulation was run for 10 shifts and the effects of block sizing were monitored on system utilization, system efficiency, and job completion.

The effects of block sizing on system utilization can seen in Figure 8 for 5 vehicles and Figure 9 for 6 be vehicles. For 5 vehicles the largest difference in block system utilization is 2.37% at any one shift and the different block sizes follow the same general pattern over the 10 shifts. For 6 vehicles the system utilization is effectively the same for all three block sizes. A possible explanation for the variability of block system utilization for 5 vehicles, as compared to 6 vehicles, is that there was no added reserve capacity. For 6 vehicles there was added reserve capacity which could be put into use when the number of blocks was decreased and waiting time increased.

CASE 1: BLOCK UTILIZATION FOR FIVE CARS

CASE 1: BLOCK UTILIZATION FOR SIX CARS

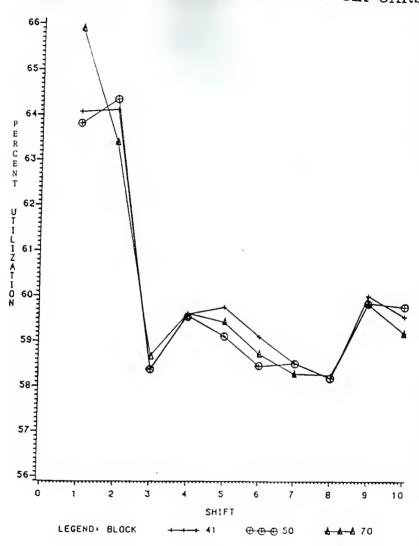


FIGURE 9.

This is further substantiated by seeing the effect block sizing has on system efficiency for 5 vehicles in Figure 10 and six vehicles in Figure 11. For both 5 and 6 vehicles there is a small difference in efficiency between the 70 and 50 block runs (70 block having the higher efficiency in both cases). But when the block number was reduced to 41 the efficiency drop was dramatic in both With longer blocks, there is more waiting time and cases. since a 5 vehicle system has no reserve capacity to make up for lost waiting time the system utilization is not But a 6 vehicle system has reserve capacity to constant. make up for this lost waiting time and hence system utilization remains constant. The waiting time for a 6 vehicle system, in larger blocks, is the time spent in the area in smaller sized blocks.

This explanation is also appropriate for the block sizing effect on job completion seen in Figure 12 for 5 vehicles and Figure 13 for 6 vehicles. For 5 vehicles fluctuation in job completion is experienced for different block sizes, while for 6 vehicles the job completion rate remains relatively constant for different block sizes. The largest variation for a system run with 5 vehicles is five jobs between block size for any one shift and for a 6 vehicle system it is two jobs. Again the explanation is that if during a shift an excessive time is spent in waiting for blocks to become empty, a 5 vehicle system has no reserve capacity to make up the difference and hence fewer jobs are processed. But a 6 vehicle system has reserve

CASE 1: BLOCK EFFICIENCY FOR FIVE CARS

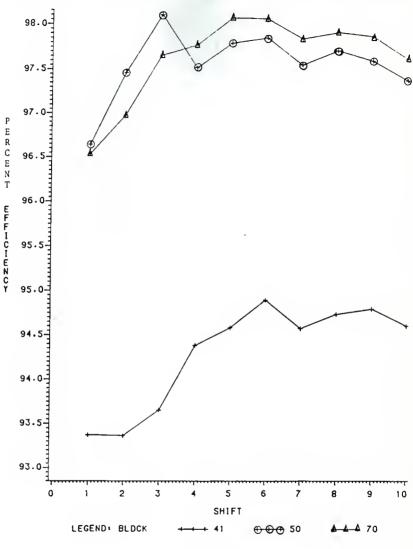
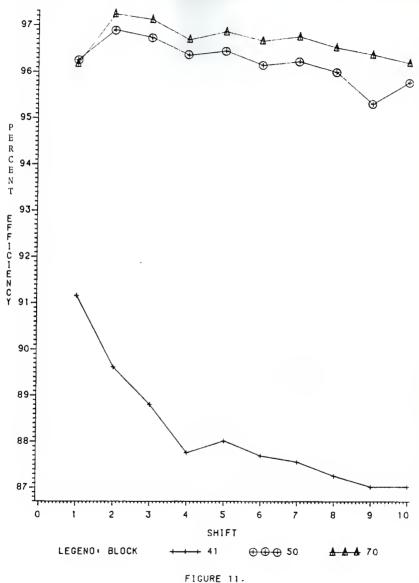



FIGURE 10.

CASE 1: BLOCK EFFICIENCY FOR SIX CARS

CASE 1: BLOCK JOBS FOR FIVE CARS

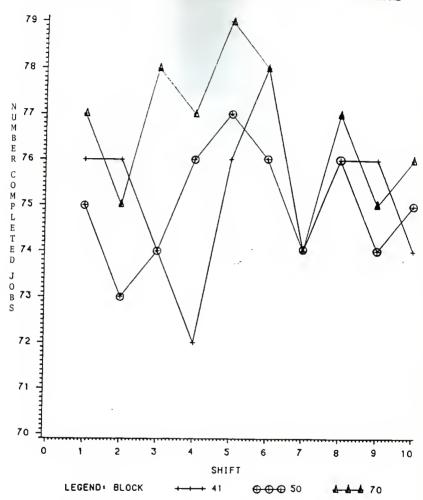


FIGURE 12. 36 CASE 1: BLOCK JOBS FOR SIX CARS

FIGURE 13.

capacity and can make up for lost waiting time and thus process the required jobs.

To investigate the reserve capacity hypothesis, waiting times per shift were plotted for 5 (Figure 14) and 6 vehicles (Figure 15) at the different block sizes. The difference in the waiting time graphs are obvious. The 6 vehicle system waiting times are clearly defined and separated while in the 5 vehicle system the different block size waiting times are intertwined. This is because there is an extra vehicle in the 6 vehicle system and more blockage occurs as the number of blocks is decreased. On the other hand the 5 vehicle system has one less vehicle and thus is less affected by the decrease in the number of blocks.

In Figure 16, system utilization is plotted versus waiting time for the 5 vehicle system and regression lines fitted to the points for each block size. There is a definite linear relationship that shows that when waiting time is increased utilization decreases. This is explained by the lack of reserve capacity for 5 vehicles. The presence of reserve capacity for 6 vehicles allows the system utilization (Figure 9) to remain constant even though the waiting time varies from 160 seconds/shift for the 70 block system to 1360 seconds/shift for the 41 block system.

In Figure 17, completed jobs are plotted versus waiting time for the 5 vehicle system and a regression line fitted to the points for each block size. There is a linear relationship that showing that as waiting time is increased

CASE 1: BLOCK WAITING TIME FOR FIVE CARS

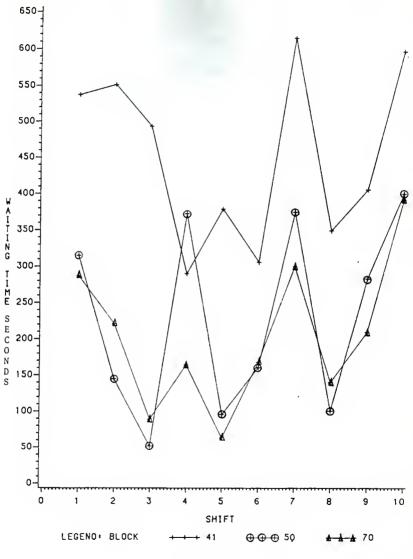


FIGURE 14.

CASE 1: BLOCK WAITING TIME FOR SIX CARS

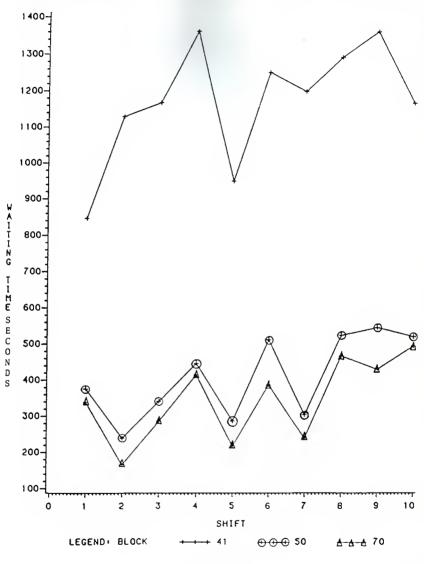
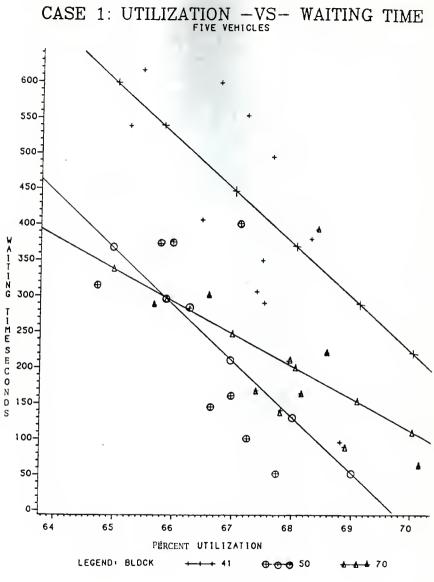



FIGURE 15.

CASE 1: JOBS - VS - WAITING TIME

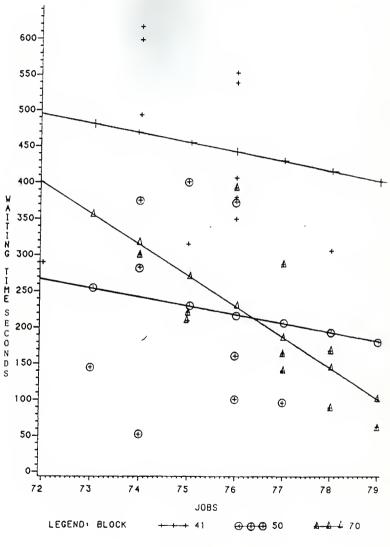


FIGURE 17.

the number of jobs completed decreases. Again the explanation is the lack of reserve capacity to compensate for the lost time to waiting. Job completion (Figure 13) remains constant for 6 vehicles for all block sizes as its reserved capacity is able to make up for the lost time to waiting and complete the shift loads.

The overall conclusion is that the reserve capacity regulates the effect that blocking has on the total performance of a system. The lack of reserve capacity combined with a reduction in the number of blocks causes a decline in system efficiency plus a loss in system utilization and jobs completed. Likewise, the availability of reserve capacity permits the reduction of the number of blocks with no adverse effect, although a drop in efficiency is experienced, on system utilization or jobs completed.

CASE 2

The second AGVS studied is one that has vet to he installed by a local manufacturer. There was no guidepath although a blueprint of the manufacturing workplace was provided. This included the position of all inputs and outputs. Also provided was a "from-to" chart which tells the number of jobs going from any particular input to anv particular output per shift. Vehicle speed, input time, and output time were also provided. No park area was designated so the author placed one at his own discretion. A refuel area was not included for its effects were not desired for this study. The purpose of Case 2 is the development of a procedure to create a workable AGVS. The concepts developed to do this are:

- (1) loadfeet directioning
- (2) vehicle estimating
- (3) cutoff implementation
- (4) block division.

Through these procedures reduction in the number of vehicles will be achieved along with increased utilization and efficiency.

Loadfeet directioning, which is a pre-simulation procedure, is the decision making process on which direction the traffic should flow on a AGV circuit. After a simple guidepath has been proposed (usually by connecting all inputs and outputs with a straight line configuration), the first step is to cut up the guidepath into separate sections between decision points (input stations, output stations,

turnoffs, etc.). The flow of jobs is calculated across each section for all possible traffic patterns. The flow of jobs for each section is multiplied by its section length and summed over the whole system for each particular traffic pattern. The resulting value is in units of load-feet. The sums for each of the traffic pattern are compared and the one with the smallest value is adopted as the traffic pattern.

Vehicle estimation, also a pre-simulation procedure, is the prediction of the range of the number of vehicles needed to handle the AGVS load. A "from-to" chart for the AGVS is needed to complete this procedure. The number of loads per shift moved from each input to each output is multiplied by the distance between them and summed over the entire system. The resulting sum is in feet per shift and it is divided by the vehicle speed (in feet per second) to obtain the total vehicle travel seconds needed per shift.

vehicle tra	vel sect	ion distance	Х	section	load
	=				
seconds per	shift	vehicle	sp	peed	

Add this to the total number of jobs moved per shift multiplied by the load time plus the unload time and the result is the vehicle work seconds needed per shift.

vehicle work vehicle travel + ! # jobs X load/unload! seconds per shift = seconds ! per shift seconds! Convert this into minutes and divide by 8 hours per shift to obtain the number of vehicle work minutes needed per

hour.

At this point Kulweic (5) suggests dividing this value by 85 which he calls the "traffic congestion factor". The "traffic congestion factor" is merely a representation of system efficiency developed in Case 1. The writer believes this is a conservative estimate and would suggest using a system efficiency of 95 percent. The vehicle work minutes per hour should also be divided by 60 minutes per hour and the result is an estimate of the number of vehicles needed when waiting time is taken into account.

Vehicle utilization must also be taken into account and Kulweic (5) suggests dividing this vehicle number by an "idle time factor" ranging from .6 to .8. The reader recognizes this "idle time factor" as a substitute for system utilization developed in Case 1. From the evidence previously presented the author believes this to be too liberal a utilization range and suggests the use of a range between 50 and 80 percent. The resulting is a range in which the number of vehicles needed to handle the present AGVS work requirement is included.

Cutoff implementation is a process to determine where possible cutoffs or shortcuts are needed in the AGVS guidepaths to shorten travel distances between input stations and output stations. This is done by the analysis of area job movement. The "from-to" chart is also needed for this procedure.

The "from-to" chart is used to develop an I x J matrix where I represents the system input stations and J represents the system output stations. The number of jobs that are required to travel from a particular input (i) to a particular output (j) is placed in the matrix position represented by the values in (i,j).

The collapse of the matrix over inputs and outputs is then performed. This collapse is done by stations which are in the same general area. It is to up the user's discretion how far he or she wishes to collapse. If the matrix is not collapsed enough station job movement is represented instead of area job movement. If the matrix is collapsed too much, area job movement is eliminated by the collapsing over areas after collapsing over stations.

When the area job movement matrix is completed each value in the matrix is evaluated. First, it must be determined at what job movement value the designer wishes to have travel distance reduced. If there are only a minimal number of jobs which travel a certain route, it may not be

feasible to create a cutoff to reduce travel distance. Secondly, it must be determined, if a matrix value exceeds the designer's minimal job movement value, if the distance travelled is excessive. For some movement of jobs there is no way to reduce the distance travelled. For example, if two areas are connected by a straight section of guidepath there is no cutoff that could reduce the travel distance. If the distance is deemed to be excessive and a cutoff is called for, possible solutions should be investigated to connect the two areas.

Block division is the process of determining where waiting time is occurring, and dividing these congested blocks into smaller, more efficient ones (i.e., more vehicles can occupy the same total length of the larger blocks). The macros, which were previously developed using GPSS-H, have the property of allowing only one vehicle to gain control at one time. If there is a vehicle inside a macro, other vehicles wishing entry must wait until the first vehicle departs the macro. This is representative of the blocks of track in a AGVS which allows only one vehicle to enter at one time.

In block division, the facilities, which represent these blocks of tracks within the macro, are converted to storages which have unlimited capacity. Facilities in GPSS-H have the property of allowing only one transaction (which represents a vehicle) to seize it at one time. Likewise, a storage in GPSS-H has the property of allowing

a specified number of vehicles to seize it at one time (in block division the storage capicity is infinite). The simulation yields the maximum number of vehicles requesting simultaneous occupancy of each block (storage) during the the run. This is representative of the number of vehicles which wanted to seize a block of track at one time. If this maximum is 2 or greater this indicates waiting time has been incurred. The object of the storage substitution is to take the blocks with the largest number of vehicles requesting entries and to divide them into smaller blocks.

This should be done in conjunction with the facility simulation to monitor increased efficiency. With this increased efficiency comes the beneficial increase in reserve capacity. The block division process can be repeated until the increase in efficiency is deemed not significant enough to warrent continuation. Another way is to set the maximum number of vehicles allowed in any one block and use block division until all blocks have values less than that level.

Case 2 has 18 inputs and 17 outputs. There is one park area which was positioned by the author. Vehicle travel time is 2.8 feet/second and job load and unload times are 50 seconds. Job inputs are predetermined and jobs arrive at a uniform rate.

The four guidepath concepts were applied to Case 2 and their effects measured. After each step a table is updated which shows the procedure used in Case 2. The first step was to lay down a basic guidepath. This was done as

simply as possible by connecting the inputs and outputs in a straight line configuration represented by Figure 18. Improvements on this by the removal of obstacles would have been possible but we were not at liberty to rearrange the work environment.

The guidepath was then separated into blocks between decision points. Using the "from-to" chart (see Table 2) job flow was measured across each section in both the clockwise and counterclockwise directions. These job flow totals were multiplied by the block lengths and the loadfeet totals were summed for each direction (see Table 3). For the clockwise direction the system load-feet was 359,149 compared to 388,004 load-feet for the counterclockwise direction. The clockwise direction was adopted because of its smaller load-feet total.

PROCEDURAL SUMMARY 1.

step	description	dir eff	util	veh range	needed veh	cngstd blocks
1	loadfeet analysis	clock wise				

Vehicle estimation was then performed. The calculations are as follows:

total vehicle seconds/shift	=	vehicle t seconds/		load & unload seconds/shift
=	-	135240	+ 41400	
-	=	176640	seconds/shif	Ł

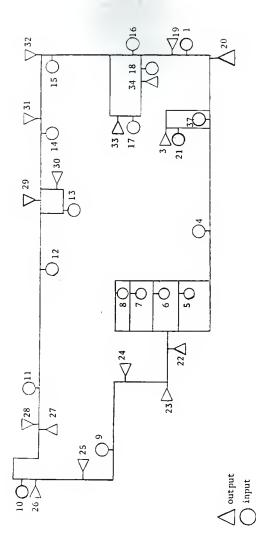


Figure 18 : Basic Guidepath for Case 2.

		3.0	10.2	20.0	34.0	10.8	9.6	10.8	45.8	27.6	11.0	21.7	13.6	13.9	56.8	2.8	105.0	17.7	1.0	415.3
	34									1.0	2						2			1.4
	R	•							1.4	11.1	4.8		5	9.			2.8			23.9
	32																2.9			2.9
	31								12.4	1.2		3.8	2.2	5			1.6	4		21.6
	30	-							9	4	-	-	2				1.8	-		4 ° M
	29	٢.				-:		-	5.01	2.8	٢.	1.2	1.3				1.0112.4	٠.	14	25.2
	28													3.3	4			3.9	2	8.8
OUTPUT	27	4		2													1.8			2.6
5	26	4		2.8					1.0	2.11			6.	1.2	2		3.5	2		14.4
	8	•		2										8			4	4.4	2	3.0 10.0 14.4
	24										2.4			. 2			4			0.5
	23	12	5.6						8.0	1.6		3.8	3.2	1.2	9.4		21.1			54.1
	52		1.0	2					4110.4	.	2.2	12.8	2.2	1.4	œ,		5.2116.4124.8121	4		22.0 56.8 54.1
	21	œ							1.4	2.0	2			4	8.		116.4			22.0
	5 5			4	2				4				9				5.2			6.8
	19		3.6	16.2	33.8	10.7	9.6	10.7	5.2	4.8	4.		2.8	4.6	45.21	2.8		7.8		158.4
	INPUT		N	м М	4	 در		~	 00	 0-	10	=	1	11 11	4	1 <u>1</u>	16		8	-

Table 2 : Case 2 From-To chart.

BLOCK	DISTANCE (FEET)	CLCKWS LOADS	CNTRCLCKWS LOADS	CLCKWS LOAD-FT	CNTRCLCKWS LOAD-FT
1	182	206.9	129.2	37674	23478
2	104	10.8	10.8	1123	
3	140	9.6	9.6	1344	1344
4	172	10.8	10.8	1858	1858
5	192	45.8	45.8	8794	8794
6	52	229.9	187.0	11955	9724
7	60	175.0	240.1	10500	
8	164	171.2	243.1	28077	39868
9	104	189.4	225.5	19698	23452
10	68	188.7	225.5	12832	
11	132	186.3	228.9	24592	30215
12	36	196.8	230.3	7085	8291
13	188	195.8	218.6	36810	41097
14	80	209.4	205.0	16752	16400
15	32	206.0	216.3	6602	6922
16	96	17.3	17.3	1661	1661
17	48		219.7	9346	10545
18	91	229.9	184.0	20921	16744
19	88	230.8	184.6	20310	16245
20	96	25.3	32.0	2429	3072
21	100	20.1	25.3	2010	2530
22	40	204.5	165.9	8180	6636
23	56	223.2	191.0	12499	10696
24	32	175.9	240.6	5629	7699
25	88			14687	21683
26	24	155.1	218.4	3722	5323
27	152	41.6	41.0	6232	6232
28	152	169.9	214.2	25825	36632
				359147	388004

Table	3:	Case	2	Loadfeet	dir	ectionina.
-------	----	------	---	----------	-----	------------

total vehicle total vehicle seconds per shift 60 seconds/minute X 8 hours/shift minutes/hour 176640 = _____ 60 X 8 368 minutes/hour vehicle minutes per hour vehicles needed # efficiency factor X 60 minutes/hour (with waiting) 368 ----= = 6.456 vehicles = .95 X 60 vehicle range vehicles needed (with waiting) = _____________ needed utilization factor 6.456 _____ = .5 and .8 = 8.07 to 12.91 vehicles

The range indicates that the simulation should be run with 8,9,10,11,12 and 13 vehicles.

PROCEDURAL SUMMARY 2.

step	description	dir eff 	util	veh range	needed veh	cngstd blocks
1	loadfeet analysis	clock wise				
2	vehicle estimation			8-13		

Simulation of the system with this proposed range of vehicles using the GPSS-H macros was the next step. Eleven

vehicles was found to be the minimum number that could handle the load. The system efficiency was 91.18 indicating there were significant amounts of waiting time. The system utilization was 52.57 which is also relatively low and worth further investigation.

PROCEDURAL SUMMARY 3.

step 1	description loadfeet analysis	dir eff clock wise	util 	veh range	needed veh	cngstd blocks
2	vehicle estimation			8-13		
3	simulation	91.18	52.57		11	

Cutoff analysis was then applied to the system. The inputs and outputs were grouped by their relative location around the guidepath. The inputs into 5 groups and the outputs into 4 groups as shown in Table 4. A job flow matrix was developed for jobs going from a given group of inputs to a given group of outputs (see Table 4). Any matrix value with a job flow greater then 10 was considered to see if a cutoff could be made to reduce significantly the travel distance. The matrix values for which the travel distance was deemed not significantly effected by a possible cutoff were (4,1),(5,1),(3,4),(5,3) and (2,2). The matrix values for which a possible cutoff was deemed a significant reduction in travel distance were (1,1), (2,1), (4,2),(5,2), (5,3), (2,4), and (5,4). The cutoffs investigated

OUTPUT	GROUP
--------	-------

INPUT GROUP	1	2	3	4	ROW TOTAL
1	55.0	7.0	4.4	.8	67.2
2	38.0	18.4	1.0	19.6	77.0
3	7.4	6.8	2.1	22.3	38.6
4	54.4	35.0	6.8	9.8	106.0
5	32.4	46.7	21.5	25.9	126.5
COLUMN TOTAL	187.2	113.9	35.8	78.4	415.3

INPUT GROUPING:

Group 1- input stations 1, 2, 3, and 4. Group 2- input stations 5, 6, 7, and 8. Group 3- input stations 9 and 10. Group 4- input stations 11, 12, 13, and 14. Group 5- input stations 15, 16, 17, and 18.

OUTPUT GROUPING:

Group 1- output stations 19, 20, and 21. Group 2- output stations 22, 23, and 24. Group 3- output stations 25, 26, 27, and 28. Group 4- output stations 29, 30, 31, 32, 33, and 34.

Table 4 : Case 2 Job Flow Matrix

were to alleviate the travel distance for (1,1), (2,1), (2,4), and (5,4). The procedure to institute the cutoffs was to connect the groups of stations with straight lines but again with regard to immobile obstacles. The system with the proposed cutoffs is represented in Figure 19.

Vehicle estimation was then reperformed and the range computed was 6.30 to 10.15 vehicles. These results indicate that the simulation should be run with 6,7,8,9, 10, and 11 vehicles.

PROCEDURAL SUMMARY 4.

step	description	dir eff 	util	veh range	needed veh	cngstd blocks
1	loadfeet analysis	clock wise				
2	vehicle estimation			8-13		
3	simulation	91.18	52.57		11	
4	cutoff analysis					
5	vehicle estimation			6-11		

From the resulting simulation of the modified system, 8 vehicles were found to be the minimum number that could handle the load. The effectiveness of the cutoffs is noticed immediately by the reduction of 3 vehicles needed to handle the load. System efficiency and system utilization are also increased to 92.07 and 55.45, respectively. This can be explained by the reduction of

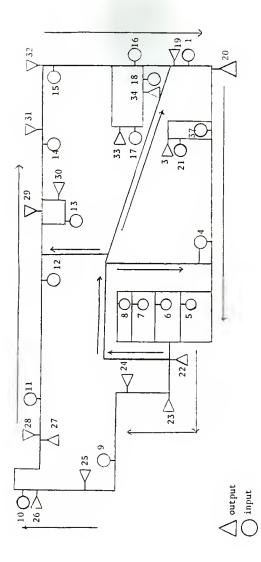


Figure 19 : Proposed Cutoffs for Case 2.

vehicles which reduces waiting time and the implementation of the cutoffs which reduces unloaded vehicle travel time.

PROCEDURAL SUMMARY 5.

step	description	dir eff	util	veh range	needed veh	cngstd blocks
1	loadfeet analysis	clock wise				
2	vehicle estimation			8-13		
3	simulation	91.18	52.57		11	
4	cutoff analysis					
5	vehicle estimation			6-11		
6	simulation	92.07	55.45		8	

The effect of block length was then investigated by using the block division technique. By running the simulation under the storage option one of the statistics available is the maximum number of vehicles in any one block at any one time. The blocks with the highest maximum vehicle count are the blocks where most of the system waiting time will occur. By dividing congested blocks into smaller blocks more vehicles can travel the congested area and hence waiting time is reduced.

The storage simulation was run and 5 blocks were found to have a maximum of 4 vehicles in them at one time (see Figure 20). The traverse time of these blocks ranged from 25 to 56 seconds. These are comparatively long blocks but unfortunately block length is not the only criterion for

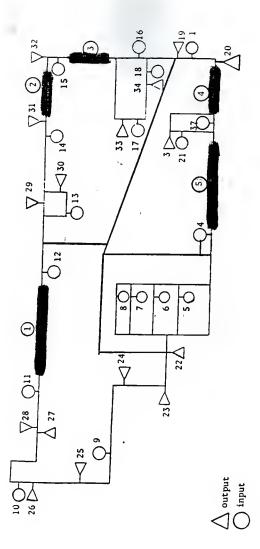
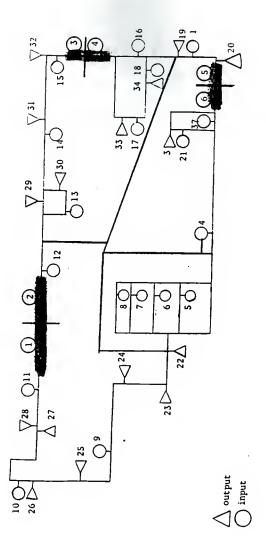


Figure 20 : Identification of Congested Blocks for 1st Storage Run.

waiting time. Load traffic is also an important factor. For this reason the division of blocks into an arbitrary uniform size is not recommended prior to an investigation of the waiting times. The 5 blocks, with a 4 vehicle maximum. were each cut in half forming 10 separate blocks. The facility simulation was run and the system efficiency and system utilization were increased to 97.03 and 55.70, respectively. This is an obvious increase in efficiency while the utilization remained relatively the same. This indicates that the waiting time in the system has been converted into reserve capacity. With added reserve capacity the system has the ability to accomodate an increase in loads moved and in some circumstances the reduction in the number of vehicles needed if reserve capacity is large enough.


PROCEDURAL SUMMARY 6.

step	description	dir	eff	util	veh range	needed veh	cngstd blocks
1	loadfeet analysis	clock wise					
2	vehicle estimation				8-13		
3	simulation		71.18	52.57		11	
4	cutoff analysis						
5	vehicle estimation				6-11		
6	simulation	q	72.07	55.45		8	
7	storage simulation						5
8	facility simulation	5	3.03	55.61		8	

The storage simulation was run again and 6 blocks were found to have a maximum of 4 vehicles in them at one time (see Figure 21). All the blocks were either blocks previously mentioned or one of their divisions. The traverse time for these blocks ranged from 12 to 25 seconds. It is important to notice the reduction in traverse time because although there is probably waiting time at these blocks it is shorter in length than waiting time prior to division. The tradeoff is the point were the waiting times experienced are short enough that further block divisions have no effect on the system. The congested blocks were cut in half to form two separate blocks. The facility simulation was run and system efficiency and system utilization showed a slight drop to 96.76 and 55.61, respectively. In this case the waiting times were short enough prior to the block division so that the split of the blocks had no significant effect.

PROCEDURAL SUMMARY 7.

step	description	dir eff	util	veh range	needed veh	cngstd blocks
1	loadfeet analysis	clock wise				
2	vehicle estimation			8-13		
3	simulation	91.18	52.57		11	
4	cutoff analysis					

i,

. 63

5	vehicle estimation			6-11		
6	simulation	92.07	55.45		8	
7	storage simulation					5
8	facility simulation	97.03	55.70		8	
9	storage simulation					6
10	facility simulation	96.76	55.61		8	

To prove further the point of levelling off of system indicators the storage simulation was run again and 5 blocks were found to have a maximum of 4 vehicles in them at one time. All the blocks were either previously mentioned or created by a block division. The blocks were split and the facility simulation was run. The resulting system efficiency and system utilization was 97.43 and 56.04, respectively. Again there was no significant change in the system indicators. Although there was waiting time at the blocks divided, it was short enough that it had no effect on the system.

PROCEDURAL SUMMARY 8.

step	description	dir e	f f	util	veh range	needed veh	cngstd blocks
1	loadfeet analysis	clock wise					
2	vehicle estimation				8-13		
3	simulation	91.	.18	52.57		11	
4	cutoff analysis						

5	vehicle estimation			6-11		
6	simulation	92.07	55.45		8	
7	storage simulation					5
8	facility simulation	97.03	55.70		8	
9	storage simulation					6
10	facility simulation	96.76	55.61		8	
11	storage simulation					5
12	facility simulation	97.43	56.04		8	

From the block division process it can be seen that the only cut which had a significant effect on the system was the first. After that the blocks were short enough that additional divisions had no effect on the system. The general levelling off effect (see Figure 22) is a definite argument against arbitrary cutting up of large blocks into uniform small ones.

EFFICIENCY LEVELING FOR CASE 2

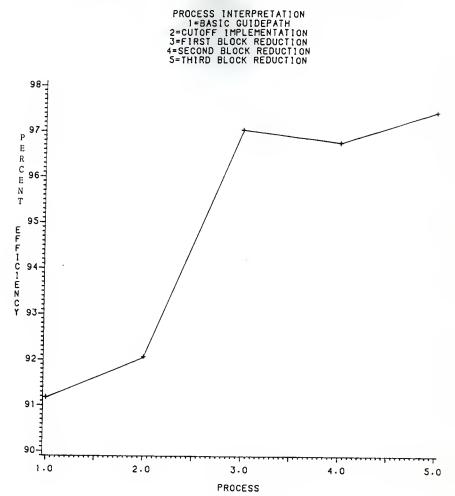


FIGURE 22. 66 CASE 3

The third AGVS studied is another that has yet to be installed by a local manufacturer. Again no guidepath was given but a blueprint of the manufacturing workplace (which included locations of inputs and outputs) and a 'from-to' chart was provided (see Table 5). Vehicle speed, load and unload times were the same as in Case 2 and again a park area was placed at the author's discretion.

The purpose of Case 3 is to use the concepts developed in Case 1 and the procedural techniques developed in Case 2 and apply them to a more complex manufacturing workplace in the hopes of creating a workable AGVS.

The concepts developed in Case 1 on a simple circuit were:

(1) system utilization
 (2) system efficiency
 (3) GPSS-H simulation macros.

The procedural techniques developed in Case 2 on a simple circuit were:

- (1) loadfeet directioning(2) vehicle estimating
- (3) cutoff implementation
- (4) block division.

In the original layout that was provided there were 24 inputs and 26 outputs. Only one park area was placed in the system. Vehicle travel speed was 2.8 feet/second and job load and unload times were 50 seconds. Job inputs were predetermined and jobs arrived at a uniform rate.

The basic guidepath was laid with a straight line

														OL	TPUT											
	25										35		37		39	40			43				47		49	
		1			8161.0		i 	i 	i -!	i - 1	i	i	į	i -!		i 1	1	1	1	1 9.5	1 9.5	: 7.8	1 9.5	il 9.3	il 9.5	51 9.5
			115.8			i		i	i 	i	i	i	i	i	i.	i	i		t –	1 9.1	1 9.1	1 2.7	9.	1 9.1	1 9.1	9.1
			 	! !							1	I	1	1	i	1	1	1	•	1 1.2	11.2	1 1.2	1 1.2	1 1.2		1.2
		i 	<u></u>				 	 !	 		; -		<u>.</u>	(a) 	01 6.0	l 1	i			i –	1	i i		Í.		i –
		i]				.6		i	i	i	1		i 	1	1	l 	i	2	i	1.1	1.1	1.0	1.1	1 1.1	1.1	11.1
		i 	i		113.7	1 	i			i 	i				1		1		1.2	1 2.3	2.3	2.1	2.3	1 2.3	2.3	i 2.3
		 	 		1	1	1	1	1	1	1	:	1	1	1		i			.2	.2	.2	.2	1.2		1.2
		I I	 			 	1	1	1	1	1	 		1	1			1		1.3	.3	.3	.3	1.3	i.3	1.3
	 	 	t		1		1		1	1	1	1		1	.			•	i –	 .3	.3	.3	.3	1.3	1.3	1.3
		5.0			1	 		1	1	1	1		1		1		 	•	1	 .4	.4.1	.41	.4	1.4	1.4	1.4
					I I		,	1	1		1	 					 	1	20.0	 .6	.6 1	.8	-6	.6		1.6
									1			1		1	1				73.0	2.3	2.31	2.11	2.3	2.3	2.3	2.3
	1		3.01				39.4	[¦	1					1 1		.8 1	1	.0	.8	.8	
	i									1	 			1					15.0	 .9	.9 1	.8 (.9	.9
									 	1				1	1 1			•	16.01		1	I				
	 		1						 					 /					25.0	1	1	1				
	i i		1											 				•	25.01						1	
	5.81	4.7		.0	.3 1										111.00							3.1	1			
;	5.8t	4.71	i.			1.91	8.6	.9	. 9 1	.5	5.2	1.01	2.1	111.0	 11.8	2.8	1.91	2.11	- 1	i i		3.11		1		
1	.71	2.11	1	1	-11	2.01	13.01	.4	.4 1	.2	2.31	.4.1	۰,	1 2.5	2.5	1.31	.91	1	1	11.41	•		11.4	11.4	11.4i	
;	5.81	4.71	i.	.8 (.3 (1.91	8.61	.9 1	.9 1	.5	5.21	1.01	2.1	111 . 8	11.8	2.8	1.91	2.11	1		1	3.1	 			
	5.81	4.71	1	.8 :	.3 1	1.91	8.61	.9 1	.9 1	.5	5.21	1.01	2.1	111.8	11.8	2.01	1.9	2.11	i	-	، ا	3.11		ا ا		
	i.81	4.71	1	.8 (.3 1	1.91	8.61	.9 1	.9 1	.5	5.21	1.01	2.1	11.8	11.8	2.81	1.91	2.11	i	· 		3.11	 	 		
		4.71													11.8				1	·-	l· 	3.11	 	ا ا	: ا	

Table 5 : Case 3 From-To chart.

configuration connecting the inputs and outputs (see Figure 23). This guidepath is more complex than the previous simple circuits studied but should follow the same principles developed earlier.

Two directional flow alternatives were considered using loadfeet directioning. Alternative 1 (see Figure 24) had a loadfeet total of 1,085,249 while Alternative 2 (see Figure 25) had a loadfeet total of 952,209 (see Table 6 for calculations). Needless to say Alternative 2 was the directional flow adopted.

PROCEDURAL SUMMARY 1.

step	description	dir 	eff	util	range	needed veh	cngstd blocks
1	general layo	ut		(see Figu	ure 23)		
2	loadfeet analysis	Alt.	2	(see Figu	ıre 25)		

Cutoff analysis was then applied to the system and the inputs and outputs were grouped by their relative location around the guidepath, the inputs into 6 groups and the outputs into 7 groups (see Table 7 for groupings). It should be again noted that re-design of floor obstacles was not undertaken in this study so that in some instances cutoffs that would have been otherwise advisable were deemed impossible.

A job flow matrix was developed for jobs going from any one input group to any output group (see Table 7). All the matrix values were considered for possible reduction in load

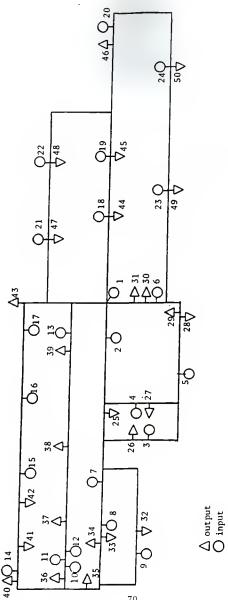


Figure 23 : Basic Guidepath for Case 3.

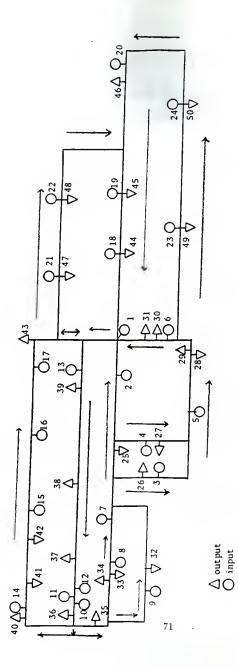


Figure 24 : Alternative 1 for Case 3 Loadfeet Directioning.

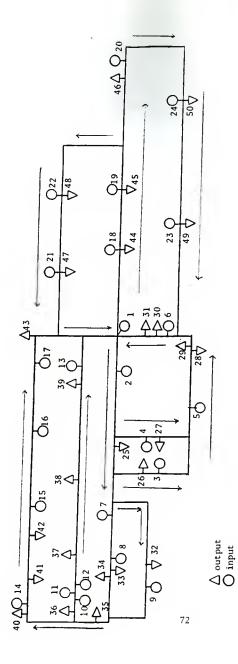


Figure 25 : Alternative-2 for Case 3 Loadfeet Directioning.

Table 6 : Case 3 Loadfeet Directioning.

BLOCK	DISTANCE (FEET)	ALT 1 LOADS	ALT 2 LOADS	ALT 1 Load-Ft	ALT 2 LOAD-FT
0	42	128.6	190.8	5401	8014
х	18	778.2	857.7	14008	15439
5	62	133.1	556.3	8252	34491
6	116	60.0	629.4	6960	73010
7	56	18.8	179.3	1053	10041
8	18	18.8	191.3	338	3443
9	50	12.0	172.5	600	8625
10	66	288.6	22.8	19048	1505
11	50	288.6	22.8	14430	1140
12 13	26	265.8	-	6711	-
13	52	282.3	35.3	14680	1836
14	52	300.6	196.1	15631	10197
16	102	308.8	203.5	31498	20757
17	10	304.0	198.7	3040	1987
18	38 10	226.7	121.3	8615	4607
19	10	109.6	398.6	1096	3986
20	12	128.1	428.4	1281	4284
21	58	107.4	414.4	12888	4973
22	16	49.5	349.8	2871	20288
23	50	78.8 115.3	423.7	1261	6779
24	52	396.2	387.2	5765	19360
25	34	395.5	378.3	20602	19672
26	80	393.1	372.5 374.9	13447	12665
27	12	391.0	374.9	31448	29992
28	4	376.4	369.1	4692	4499
29	74	399.6	368.0	1586	1476
30	178	2.1	5.8	29570 374	27232
31	40	8.3	-	374	1032
32	116	6.2	2.1	719	-
33	42	405.8	370.1	17044	244 15544
34	32	440.3	335.6	14090	10739
35	16	603.2	184.1	9651	2946
36	12	609.6	177.7	7315	2132
37	16	601.8	185.5	9629	2968
38	15	577.4	185.5	8661	2782
39 40	60	488.5	274.4	29310	16464
	128	502.0	285.3	64256	36518
41 42	178	581.3	206.0	103471	36668
42 43	18	662.6	132.7	11927	2389
43	54	613.4	173.9	33124	9391
45	102 10	162.9	151.5	16616	15453
46	46	144.8	133.4	1448	1334
47	70 58	166.0	154.6	7636	7112
	20	153.7	142.3	8915	8253

(Table 6 continued on the next page)

Table 6 : Case 3 Loadfeet Directioning (cont.).

BLOCK	DISTANCE (FEET)	ALT 1 LOADS	ALT 2 LOADS	ALT 1 LOAD-FT	ALT 2 LOAD-FT
48 49 50 51 52 53 54 55 57 58 57 58 59 61 62 61 62 64	54 138 120 52 40 64 148 136 60 200 136 112 120 26 204 236 196	$\begin{array}{c} 140.2\\ 156.2\\ 181.2\\ 206.3\\ 6.2\\ 736.8\\ 467.0\\ 441.2\\ 415.3\\ 171.8\\ 150.7\\ 129.6\\ 246.7\\ 285.4\\ 174.0\\ 147.9\\ 122.1 \end{array}$	128.8 144.8 159.8 194.8 6.2 291.8 245.5 271.3 297.1 133.1 158.9 183.7 164.0 131.9 231.9 254.6 328.6	$\begin{array}{c} 7571\\ 21556\\ 21744\\ 10722\\ 248\\ 47155\\ 69116\\ 60003\\ 24918\\ 34360\\ 20495\\ 14515\\ 29604\\ 7420\\ 35496\\ 34904\\ 23932 \end{array}$	6955 19982 19176 10130 248 18675 36334 36897 17826 26620 21610 20574 19680 3429 47308 60086 64406
				1085249	952209

OUTPUT GROUP

INPUT GROUP	1	2	3	4	5	6	7	ROW TOTAL
1 .	-	66.0	-	-	-	-	-	66.0
2	-	15.0	-	-	-	-	6.2	21.2
3	-	93.0	-	-	-	5.0	23.1	121.1
4	-	-	-	-	-	3.0	44.2	47.2
5	-	-	-	-	1.0	-	5.6	6.6
6	43.9	14.6	19.9	158.6	48.8	166.6	318.1	770.0
COLUMN TOTAL	43.9	188.6	19.9	158.6	49.8	174.6	397.2	1032.6

INPUT GROUPING: _____

				15, 16, and 17.
			station	
Group	3-	input	stations	10, 11, and 12.
Group	4-	input	station	13.
Group	5-	input	stations	7, 8, and 9.
				1,2,3,4,5,6,18,19,20,21,22,23, and 24.

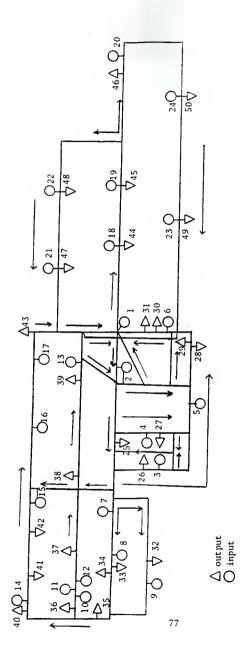
OUTPUT GROUPING:

Group 1- output stations 40, 41, and 42. Group 2- output station 43. Group 3- output stations 36 and 37. Group 4- output stations 38 and 39. Group 5- output stations 32, 33, 34, and 35. Group 5- output stations 25, 26, 27, 28, and 29. Group 7- output stations 30, 31, 44, 45, 46, 47, 48, 49, and 50

Table 7 : Case 3 Job Flow Matrix

travel distance with special attention given to the jobs going to output groups 2 and 7 and jobs going from input group 6. Cutoffs were suggested and the result can be seen in Figure 26.

PROCEDURAL SUMMARY 2.


step	description	dir 	eff		range	needed veh	cngstd blocks
1	general layo	ut		(see Figu	(re 23)		
2	loadfeet analysis	Alt.	2	(see Figu	ıre 25)		
3	cutoff analysis			(see Figu	ire 26)		

Vehicle estimation was then performed and the range computed was 15.91 to 25.46 vehicles. This indicates that the simualtion should be run with between 15 and 26 vehicles.

PROCEDURAL SUMMARY 3.

step	description	dir e	eff ut	til r	ange 	veh	cngstd blocks
1	general layo	ut	(see	Figure	23)		
2	loadfeet analysis	Alt. 2	2 (see	Figure	25)		
3	cutoff analysis		(see	Figure	26)		
4	vehicle estimation			15	5-26		

A simulation was then run with the result that 20 vehicles was found to be able to handle the system load.

The system efficiency was 81.80 and the system utilization was 60.49. From previous indications the system efficiency is low and will increase with the use of block division.

PROCEDURAL SUMMARY 4.

step	description	dir	eff	: u	til	range	needed veh	cngstd blocks
1	general layo	ut		(see	Figur	re 23)	-	
2	loadfeet analysis	Alt.	2	(see	Figur	e 25)		
3	cutoff analysis			(see	Figur	e 26)		
4	vehicle estimation					15-26		
5	simulation		81.	80 60	0.49		20	

Four successive block divisions were done and the final number of vehicles required was 17. The system efficiency was increased to 97.30 and the system utilization was increased to 70.96. The summary of these cuts is shown below.

PROCEDURAL SUMMARY 5.

step	description	dir	ef f	util	range	needed veh	cngstd blocks
1	general layo	ut		(see Figu	re 23)		
2	loadfeet analysis	Alt.	2	(see Figu	re 25)		
3	cutoff analysis			(see Figu	re 26)		

PROCEDURAL SUMMARY 5 (cont.).

step	description	dir	eff	util	range	needed veh	cngstd blocks
4	vehicle estimation				15-26		
5	simulation		81.80	60.49		20	
6	storage simulation						16
7	facility simulation		91.00	66.80		18	
8	storage simulation						17
9	facility simulation		94.99	70.34		17	
10	storage simulation						13
11	facility simulation		96.99	71.41		i7	
12	storage simulation						9
13	facility simulation		97.37	70.96		17	

The reduction in the rate of increase of system efficiency and system utilization was the reason the block division process was abandoned.

Figure 27 shows the approach to steady state in system utilization after the second cut. The peak in the utilization curves indicates at what vehicle level within each cut that the system load can be handled. More vehicles than are needed produces an almost linear drop in system utilization due to overcrowding.

Figure 28 shows the attainment of steady state after a

CASE 3: UTILIZATION -VS- VEHICLE #

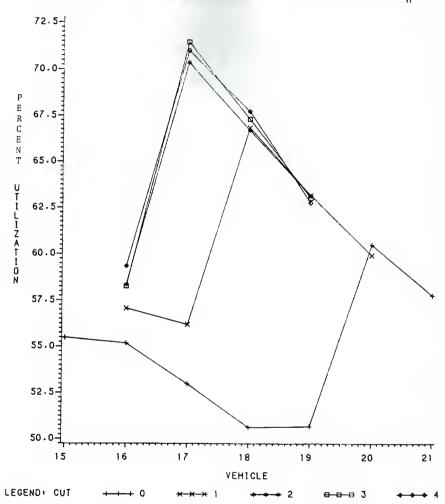
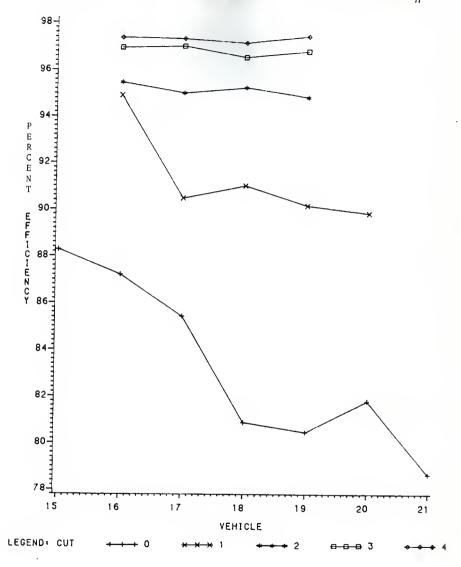



FIGURE 27. 80 CASE 3: EFFICIENCY -VS- VEHICLE #

vehicle has reached the point where it can handle the system load. Note that 16 vehicles was never able to handle the load and its system utilization is lower than 17-19's. This is because there is job backup at the input stations and the vehicles do not follow a dispatch schedule that reduces distance travelled unloaded but rather a schedule which reduces the backup loads at a given input. Hence the vehicles travel longer distances and the system utilization is lower. But if the vehicle count can process the load (17-19) there is a stepped effect with the smallest vehicle number yielding the highest utilization.

In Figure 29 the reduction in the rate of increase in system efficiency can be seen as each progressive cut is performed. Note the general levelling effect of the system efficiency curves over the progression of the cuts. Each cut makes the system more efficient and hence the number of vehicles in the system has less effect on system efficiency. This can be seen by the difference of 7 percent system efficiency between 16 and 19 vehicles in the uncut system compared to virtually no difference in system efficiency between 16 and 19 vehicles in the system cut 4 times.

This is further demonstrated in Figure 30 where as the cuts progress the system efficiency for each vehicle conut converges.

CONCLUSION

In the course of this study the objectives stated at the beginning of this thesis were met.

CASE 3: UTILIZATION -VS- CUT #

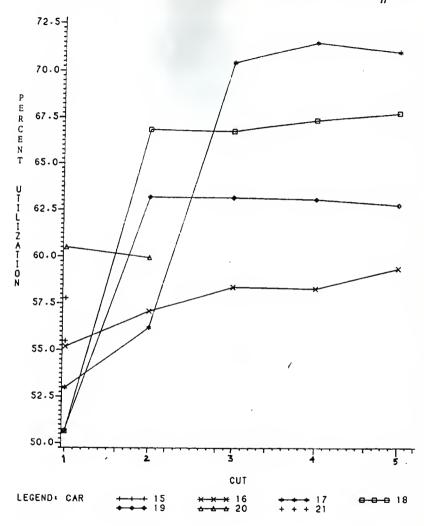


FIGURE 29

CASE 3: EFFICIENCY -VS- CUT #

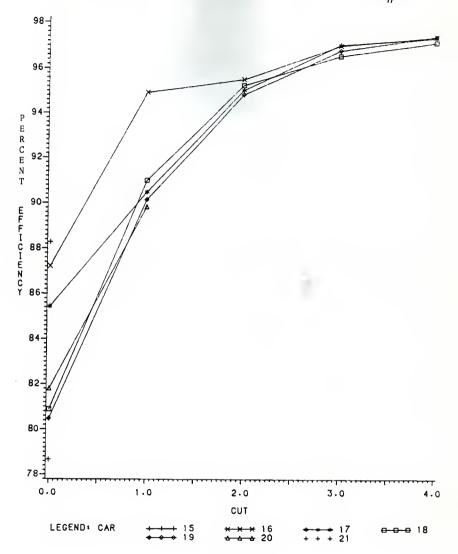


FIGURE 30.

The first section presented a viable method of emulating a AGVS. The overall simplicity of the macros was what was strived for.

In Case 1 the redefinition of system utilization and system efficiency brought added significance to their purpose. The further investigation with blocking introduced the concept of reserve capacity.

In Case 2 steps were developed for the implementation of a AGVS. The step-by-step procedure proved to produce a viable guidepath and vehicle count.

In Case 3 the previous evaluation and implementation techniques were applied and their viability further demonstrated.

FUTURE STUDY

The techniques developed in this thesis are, of course, only a simplistic approach to the problem of the implementation of AGV systems. There are many improvements that can be made on the existing proposal and viable alternatives that can be investigated.

Improvements on the existing proposal include a more sophisticated approach to the dispatch and scheduling algorithm. In the D/S algorithm developed in this thesis, when there was an overload (i.e. any input station with 3 or more jobs in queue) in 2 or more input stations, the input chosen is the one with the lowest identification number. Because the input station chosen might be the furthest of any of the overloaded input stations, extra distance would

be incurred and efficiency lost. The obvious solution is to scan the overloaded stations and choose the closest one.

Another possible D/S improvement would be if a destination were chosen and its distance exceeded a specified unloaded travel limit, the vehicle could wait a specified amount of time to see if another closer job would become available. If a closer job materialized the vehicle would switch the destination to the closer job. If not, the vehicle would proceed to the further destination. This would help eliminate needlessly long travelling periods when the vehicle was not loaded, which would cause an increase in efficiency and utilization.

A third improvement in the D/S algorithm would be, in essence, to create "smart" vehicles. This would entail vehicles making decisions while they were enroute to a predetermined destination. The advantage of this would be that if a job materialized along the route of a vehicle, a decision could be made whether or not to switch the destination. Also if a vehicle were going to the park area, it would not have to complete the trip to the park area but could divert and pick up a load. Travel distance of unloaded vehicles would be reduced and efficiency and utilization would be increased.

These former concepts could definitely be incorporated into the D/S algorithm, the overload destination and waiting principal very easily while the "smart" vehicle concept would be more difficult.

Another area of improvement would be in the cutoff analysis technique. Presently, the cutoffs instituted are to eliminate excessive travel distances from input stations to output stations. The other aspect of the problem is: What about the travel distances from output stations to input stations? Wholesale installation of cutoffs is, of course, a viable solution, but the cost of unneeded cutoffs would be incurred. Another solution would be to run a simulation that records all vehicle path movements. This would provide a "from-to" chart for output stations to input stations. Possible cutoffs could then be considered for this traffic flow as well as the previously considered input-to-output traffic flow.

A viable alternative which became apparent in the course of this study, is to create an on-screen grid that would represent the manufacturing workplace where the AGVS was to be installed. Input and output stations are placed on the screen to represent their position on the workfloor. With the use of a "mouse" or a light pen, possible quidepaths could be drawn directly onto the screen. With proper supporting software the attributes of any proposed quidepath could be evaluted. The simplest of these would be a calculation of the load-feet used to handle the system load. With more complicated software, simulations could be run of the suggested guidepaths and the number of vehicles. system efficiency. and system utilization could be calculated. From that point cutoffs could be "drawn" on the

screen and their effectiveness measured versus their proposed implementation costs.

An important consideration in the accuracy of the preinstallation evalution process is to get the production planning department more involved. Presently, the system created uses a random dispatch method of jobs from the inputs and a uniform rate of jobs materializing at the input stations. These methods do not take into consideration any trends or fluctuations that occur in the workplace. If a better picture can be presented of the work order schedule by production planning then more accurate information will be created by the pre-installation evalution.

In conclusion, it is imperative that any preinstallation system created must be kept as simple as possible. The increased application of AGVSs to solve today's material flow problems makes the need for such preinstallation systems crucial. Although the savings produced by a AGVS can be large, so are the installation costs. A simple system will allow for in-house evalution by a company's own engineers.

- Adams, Walter P. <u>Automated Guided Rehicle System</u> <u>Capibilities and Design Considerations.</u> USA: Auerbach Publishers Inc., 1985.
- 2 Automated Guided Vehicle Systems. <u>Proceedings of 1st</u> <u>International Conference</u>. Stratford-upon-Avon, United Kingdom, 1981.
- 3 Gartland, J.P. "Computer Simulati/n as a Tool in Making Design and Purc(asing Decisions for an Automated Guided Vehicle System" Unpublished Master's Report, North Carolina State University, 1984.
- 4 Hitchens, Max W. "Simulation: The Key to Automation Without Risk." <u>CAD/CAM Technology</u>, Fall, 1984, pp.15-17.
- 5 Kulwiec, Ray "Trends in Automated Guided Vehicle Systems." <u>Plant Engineering</u>, October 11, 1984, pp. 66-73.
- 6 Muller, Thomas. <u>Automated Guided Vehicles</u>. United Kingdom: IFS Publications Limited, 1983.
- 7 Newton, Dave "Simulation Model Calculates How Many Automated Guided Vehicles Are Needed." <u>Industrial</u> <u>Engineering</u>, February, 1985, pp. 68-78.
- 8 Nof, Shimon Y. "A Methodology for Computer-aided Facility Planning." <u>International Journal of Production</u> <u>Research</u>, Vol. 18 No. 6 (1980), 699-722.
- 9 "'Our order-filling system handles any surge demands.'" <u>Modern Materials Handling</u>, June 6, 1983, pp. 48-51.
- 10 Quinn,Ed "Factors Influencing Simulation Accuracy of AGV Networks." <u>1984 National Material Handling Forum</u> (Guided Vehicle Systems Session), (March 28, 1984).
- 11 Stauffer, Robert N. "Graphic Simulation Answers Preproduction Questions." <u>CAD/CAM Technology</u>, Fall, 1984, pp. 11-13.

APPENDIX A

GPSS-H Macros

TRVL MACRO

Used to travel a section of track. Will perform no other functions. Will only allow one vehicle to travel a particular section at one time. Used in main program and called from DUTPT, INPT, GAS, PLACE, and LODP macros.

Inputs:

(1)	vehicle	number
(2)	section	travel time
(3)	section	to travel
(4)	section	leaving

Outputs:

- (1) completion of travel of section
- (2) tabulation of time travelling with or without a load
- (3) depletion of fuel
- (4) waiting time for loaded and non-loaded vehicles for given section to become unoccupied
- (5) entrance in queue for either loaded or non-loaded vehicle to mark time for waiting to enter next section

- (1) Vehicle attempts to seize section of track, if it is occupied the vehicle will wait until it is free and then will take control of it.
- (2) Vehicle will leave queue and tabulate waiting time for section to become available.
- (3) Vehicle will release previous section so it can be used by other vehicles.
- (4) Tabulation of travel time in either loaded or nonloaded travel time.
- (5) Vehicle travels section.
- (6) Fuel level decremented.
- (7) Enter queue which will mark the time at which waiting to enter the next section will begin
- (8) Vehicle exits macro.

```
TRVL MACRD
 OPERAND DESCRIPTIONS
 #A ~ VEHICLE NUMBER STDRED IN PARAMETER 1
 #B - TRAVEL TIME
 #C - SECTION ENTERING
 #D - SECTION LEAVING
TRVL STARTMACRD #A, #B, #C, #D
×
* TAKE CONTROL OF NEXT BLOCK DF TRACK AND RELEASE WAITING*
* QUEUE AND BLOCK PRESENTLY DCCUPIED
¥
       SEIZE
                #C
       TEST E
                 XF*(PF1+50).0.*+4
       DEPART
                  (#D+1)
       DEPART
                 350
      TRANSFER ,*+3
       DEPART
                  ₩Đ
       DEPART
                  351
       RELEASE
                 #D
¥
* ASSIGN PARAMETER VEHICLE STATUS VALUE
                                                           ¥
¥
      ASSIGN 4, XF*(#A+50).PF
¥
* ADD SECTION LENGTH TRAVELLED TO LDADED OR UNLDADED
                                                           ¥
* SAVEVALUE
¥
       SAVEVALUE (FN25)+,#B,XF
¥
* INCREMENT VEHICLE CLDCK
                                                           ¥
¥
      ADVANCE
                #B
* DPTIDNAL DECREMENT DF VEHICLE'S FUEL LEVEL
                                                           ¥
×
      SAVEVALUE (#A+36)-.#B.XF
¥
* ENTER LDAD DR UNLDAD DUEUE AND WAIT TO ENTER NEXT BLOCK *
¥
      TEST E
                 XF*(PF1+50),0,*+4
      DUEUE
                 (#C+1)
      DUEUE
                  350
      TRANSFER
                 .*+3
      QUEUE
                  #C
      QUEUE
                 351
      ENDMACRD
```

INPUT MACRD

Used to load a vehicle. Will allow one vehicle in the input station at one time. Vehicle leaves track to perform loading procedure so that other vehicles can proceed unobstructed if not to be loaded. Called from the INPT macro.

Inputs:

vehicle number
 load time
 loading area
 section leaving

Outputs:

- (1) completion of vehicle loading
- (2) tabulation of loading time
- (3) depletion of jobs from loading area queue
- (4) assignment of output station
- (5) depletion of fuel
- (6) waiting time for non-loaded vehicles for given section to become unoccupied
- (7) entrance in queue for loaded vehicles to mark time for waiting to enter next section

- (1) Vehicle attempts to seize loading area. If it is occupied the vehicle will wait until it is free and then will take control of it.
- (2) Vehicle will leave queue and tabulate waiting time for loading area to become free.
- (3) Vehicle releases previous section so it can be used by other vehicles.
- (4) Load vehicle and tabulate loading time.
- (5) Subtract job from loading area queue.
- (6) Check individual load destination distribution and assign output destination.
- (7) Decrement fuel.
- (8) Place flag on vehicle that it is carrying a load.
- (9) Enter queue which will mark time at which waiting to enter the next section will begin.
- (10) Vehicle exits macro.

```
INPUT MACRO
```

```
OPERAND DESCRIPTIONS
 #A - VEHICLE NUMBER STORED IN PARAMETER 1
 #B - LOADING TIME
 #C - INPUT STATION ENTERING
 #0 - SECTION LEAVING
INPUT STARTMACRO #A, #B, #C, #D
×
  TAKE CONTROL OF INPUT STATION AND RELEASE WAITING OUEUE*
×
* AND BLOCK OF TRACK PRESENTLY OCCUPIED
       SEIZE
               #C
       TEST E
                XF*(PF1+50).0.*+4
       DEPART
                 (#D+1)
       DEPART
                350
      TRANSFER ,*+3
       DEPART
                #D
       DEPART
                 351
       RELEASE #0
4
* INCREMENT VEHICLE CLOCK
                                                          ¥
¥
      ADVANCE #B
¥
* DECREMENT JOB ASSIGNED DUEUE
                                                          #
¥
       SAVEVALUE (PF2+24)-,1,XF
¥
* ASSIGN DUTPUT STATION DESTINATION FROM FROM-TO
                                                          ×
* FUNCTIONS
×
      ASSIGN 2,FN*(PF2),PF
*
* OPTIONAL DECREMENT OF VEHICLE'S FUEL LEVEL
                                                          ¥
¥
      SAVEVALUE (#A+36)-.#B.XF
¥
* ASSIGN VEHICLE STATUS TO LOAD
                                                          ¥
¥
      SAVEVALUE (PF1+50),1,XF
* ENTER LOAD OR UNLOAD QUEUE AND WAIT TO ENTER NEXT BLOCK *
×
      TEST E
                XF*(PF1+50).0.*+4
      QUEUE
                 (#C+1)
                 350
      QUEUE
      TRANSFER
                 ,*+3
      QUEUE
                 #C
      QUEUE
                 351
      ENDMACRO
```

OUT MACRO

Used to unload a vehicle. Will allow one vehicle in the output station at one time. Vehicle leaves track to perform unloading procedure so other vehicles can proceed unobstructed if not to be unloaded. Called from the OUTPT macro.

Inputs:

- vehicle number
 unload time
 unloading area
- (4) section leaving

Outputs:

- (1) completion of vehicle unloading
- (2) tabulation of unloading time
- (3) depletion of fuel
- (4) assignment of destination; input, fuel, park
- (5) if destination input station depletion of input station buffer and addition to input station assigned job by one job
- (6) entrance in queue for non-loaded vehicles to mark time for waiting to enter next section

- (1) Vehicle attempts to seize unloading area. If it is occupied the vehicle will wait until it is free and then take control of it.
- (2) Vehicle will leave queue and tabulate time for unloading area to come free.
- (3) Will release previous section so it can be used by other vehicles.
- (4) Unload vehicle and tabulate time of unloading.
- (5) Decrement of fuel.
- (6) Check if fuel is below refuel level. If so assign destination refuel area.
- (7) Check if any input station has over a specified number of jobs to process. If so destination is assigned to the overloaded station.
- (8) If job assigned destination of a input station subtract one job from the input buffer and add one job to input job assigned for that station.
- (9) If no job has been assigned, destination is park area
- (10) Place flag on vehicle that it is not carrying a load.

- (11) Enter queue which will mark the time at which waiting to enter next section will begin.
- (12) Vehicle exits macro.

OUT MACRO

```
OPERAND DESCRIPTIONS
 #A - VEHICLE NUMBER STORED IN PARAMETER 1
 #B - UNLOADING TIME
 #C - OUTPUT STATION ENTERING
 #0 - SECTION LEAVING
 онт
       STARTMACRO #A, #B, #C, #D
×
  TAKE CONTROL OF INPUT STATION AND RELEASE WAITING OUEUE*
×
 AND BLOCK OF TRACK PRESENTLY OCCUPIED
÷
       SEIZE
                  #C
                XF*(PF1+50),0,*+4
       TEST E
       DEPART
                 (#0+1)
       DEPART
                 350
       TRANSFER ,*+3
       DEPART
                #0
       DEPART
                351
       RELEASE
                 #0
* INCREMENT VEHICLE CLOCK
                                                          ¥
       ADVANCE
                #B
×
* OPTIONAL DECREMENT OF VEHICLE'S FUEL LEVEL
                                                          ×
       SAVEVALUE (#A+36)-,#B,XF
* ASSIGNMENT OF VEHICLE DESTINATION PARAMETERS
                                                          ¥
                3.24.PF
       ASSIGN
       ASSIGN
                5,25,PF
       ASSIGN
                6,25,PF
* OPTIONAL CHECK IF REFUEL NEEDED; IF SO DESTINATION
* REFUEL AREA AND BYPASS OTHER DESTINATION OPERATIONS
¥
       TEST LE XF*(#A+36),1000,*+3
       ASSIGN
                6.35.PF
       TRANSFER , *+16
* CHECK FOR OVERLOADED JOB QUEUES; ASSIGN DESTINATION
                                                         ×
* TO INPUT STATION WITH OVERLOADED JOB QUEUE AND BYPASS
                                                         ¥
* OTHER DESTINATION OPERATIONS
×
       TEST G
                XF*(PF3),3,*+2
       ASSIGN
                6.PF3.PF
      LOOP
                 3PF.*-2
      TEST E
                PF6,25,*+10
* CHECK IF ANY JOBS TO BE DONE; ASSIGN VEHICLE DESTINATION*
* TO CLOSEST INPUT STATION AND BYPASS OTHER DESTINATION *
* OPERATIONS
                                                         ×
```

```
97
```

```
ASSIGN
                 3,24,PF
       TEST GE
                 XF*(PF3).1.*+4
       TEST L
                MX1(PF2.PF3).PF5.*+3
       ASSIGN
                5,MX1(PF2,PF3),PF
       ASSIGN
                 6.PF3.PF
       LOOP
                  3PF.*-4
¥
* IF THERE IS NO DESTINATION ASSIGNMENT: ASSIGN
                                                           ¥
* DESTINATION TO THE PARK AREA
¥
       TEST E
                PE6.25.*+3
       ASSIGN
                 2,51,PF
       TRANSFER
                 , *+4
¥
* IF VEHICLE ASSIGNED DESTINATION OF AN INPUT STATION;
                                                          ¥
* DECREMENT JOB QUEUE AND INCREMENT JOB ASSIGNED QUEUE
                                                           ¥
¥
       SAVEVALUE (PF6)-,1,XF
       SAVEVALUE (PF6+24)+,1,XF
¥
×
 ATTACH DESTINATION TO VEHICLE
                                                           ¥
4
      ASSIGN
                2.PF6.PF
¥
¥
 ASSIGN VEHICLE STATUS TO UNLOAD
                                                          ¥
¥
      SAVEVALUE (PF1+50),0,XF
* ENTER LOAD OR UNLOAD QUEUE AND WAIT TO ENTER NEXT BLOCK *
×
      TEST E
                 XF*(PF1+50).0.*+4
      OUEUE
                 (#C+1)
      AUFUE
                 350
                 , *+3
      TRANSFER
                  #C
      ONERE
      OUEUE
                 351
      ENOMACRO
```

×

FUEL MACRO

Used to refuel vehicle. Will allow multiple vehicles in refuel station at one time (prespecified by user). Vehicle leaves track to perform refueling so that other vehicles can proceed if refueling is not necessary. Called from the GAS macro.

Inputs:

vehicle number
 refueling time
 refueling area
 section leaving

Outputs:

- completion of refueling
- (2) tabulation of refueling time
- (3) depletion of fuel
- (4) waiting time for unloaded vehicle to enter refuel area
 (5) entrance into queue for unloaded vehicle to mark time for waiting to enter next section

- (1) Vehicle enters refueling area.
- (2) Vehicle leaves queue and tabulates waiting time to enter refueling area (=0).
- (3) Releases previous section so it can be used by other vehicles.
- (4) Vehicle is refueled and refuel time tabulated.
- (5) Fuel depletion.
- (6) Enter queue which will mark time at which waiting to enter next section will begin.
- (7) Vehicle exits macro.

```
FUEL MACRO
```

```
OPERAND DESCRIPTIONS
 #A - VEHICLE NUMBER STORED IN PARAMETER 1
 #B - REFUELLING TIME
 #C - REFUELLING STATION ENTERING
 #D - SECTION LEAVING
FUEL STARTMACRO #A, #B, #C, #D
¥
¥
 ENTER FUEL AREA AND RELEASE WAITING OUEUE AND BLOCK OF *
  TRACK PRESENTLY OCCUPIED
¥
¥
       ENTER
                  #C
       TEST E
                XF*(PF1+50),0,*+4
       DEPART
                 (#0+1)
       DEPART
                 350
                  ,*+3
       TRANSFER
       DEPART
                #D
       DEPART
                351
       RELEASE
                #0
* INCREMENT VEHICLE CLOCK
                                                          ¥
¥
      ADVANCE #B
¥
* OPTIONAL REFUEL AND DECREMENT OF FUEL LEVEL
                                                          ¥
¥
       SAVEVALUE (#A+36),30000,XF
      SAVEVALUE (#A+36)-,#B,XF
4
* ENTER LOAD OR UNLOAD DUEUE AND WAIT TO ENTER NEXT BLOCK *
¥
      TEST E
                XF*(PF1+50).0.*+4
      QUEUE
                 (#C+1)
      OUEUE
                 350
                 ,*+3
      TRANSFER
      OUEUE
                 # C
      QUEUE
                 351
      ENOMACRO
```

PARK MACRO

Used as an area to place vehicles when there are no jobs for that need to be done. Will allow multiple vehicles in park station at one time(prespecified by user). Vehicle leaves track so that other vehicle can proceed if undertaking transportation of a job. Called from the PLACE macro.

Inputs:

vehicle number
 parking area
 section leaving

•

Outputs:

- (1) vehicle released; recieves new destination
- (2) waiting time for unloaded vehicle to enter park (=0)
- (3) entrance into queue for unloaded vehicles to mark-time for waiting to enter next section
- (4) tabulation of parking time

- (1) Vehicle enters parking area.
- (2) 'Vehicle leaves queue and tabulates time waiting to enter parking area (=0).
- (3) Release previous section so it can be used by other vehicles.
- (4) Stop at gate until logic switch is in set position and then proceeds to receive new destination and exit.
- (5) Reset logic switch so not to let all vehicles through at once.
- (6) Stop until one of the buffers has a job for the vehicle to do, then proceed.
- (7) Enter queue which will mark the time at which waiting to enter next section will begin.
- (8) Vehicle exits macro.

```
PARK MACRO
 OPERAND DESCRIPTIONS
 #A ~ VEHICLE NUMBER STORED IN PARAMETER 1
 #B - PARKING STATION ENTERING
 #C - SECTION LEAVING
PARK STARTMACRD #A, #B, #C
¥.
* ENTER PARK AREA AND RELEASE WAITING DUEUE AND BLOCK OF *
* TRACK PRESENTLY DCCUPIED
×
      ENTER
                 #B
      TEST E
                XF*(PF1+50),0,*+4
      DEPART
                (#C+1)
      DEPART
                350
      TRANSFER .*+3
      DEPART
               #C
      DEPART
                351
                                        .
      RELEASE
                #C
¥
¥
  GATE THAT WILL ALLOW DNLY DNE VEHICLE TO LEAVE FOR EVERY*
* ONE JOB THAT NEEDS TO BE DONE
                                                        ¥
      GATE LS
                 2
      LOGIC R
                2
      TEST E BV22.1
¥
* ENTER LOAD OR UNLOAD QUEUE AND WAIT TO ENTER NEXT BLOCK *
¥
      TEST E
                XF*(FF1+50),0,*+4
      OUEUE
                 (#B+1)
      OUEUE
                350
      TRANSFER
                 , * + 3
      OUFUE
                 ₿B
      QUEUE
                35 I
      ENDMACRO
```

```
102
```

ENTER MACRO

Used to reenter track from either parking or refuel area. Only one vehicle can enter at one time. Travels retreat section of park or refuel section with the TRAVEL macro. Called from the GAS and PLACE macros.

Inputs:

- (1) vehicle number
- (2) section travel time
- (3) section to enter
- (4) section to leave
- (5) logic switch number to allow only one vehicle out at a time

Outputs:

- (1) completion of travel of section
- (2) tabulation of time spent travelling with or without load
- (3) tabulation of time spent in park or refuel area
- (4) assignment of destination; park, refuel, or input
- (5) if destination input station, depletion of input station buffer and addition to input station loading area gueue
- (6) logic switch placed on set position
- (7) depletion of fuel
- (B) waiting time for non-loaded vehicles for given section to become unoccupied
- (9) entrance in queue for non-loaded vehicles to mark time for waiting to enter next section

- (1) Vehicle attempts to seize section of track. If it is occupied the vehicle will wait until it is free and then take control of it.
- (2) Vehicle will leave gueue and tabulate waiting time for the section to come open.
- (3) Vehicle will leave refuel or park area.
- (4) Check if fuel is below refuel level. If so, assign destination refuel area.
- (5) Check if any input station has over a specified number of jobs to process. If so destination is assigned to the overloaded station.
- (6) If vehicle is assigned the destination of an input station, subtract one job from the input buffer and

- one job to input job assigned for that input station.
- (7) If no job has been assigned, destination is park area
- (8) Set logic switch to set position.
- (9) Travel section (see TRAVEL macro).
- (10) Tabulation of travel time in non-loaded vehicle travel time.
- (11) Enter queue which will mark the time at which waiting to enter next section will begin.
- (12) Vehicle exits macro.

ENTER MACRO

```
OPERAND DESCRIPTIONS
 #A - VEHICLE NUMBER STORED IN PARAMETER 1
 #B - TRAVEL TIME
 #C - SECTION ENTERING
 #D - PARK OR REFUEL AREA VEHICLE IS LEAVING
 #E - GATE NUMBER FOR PARK OR FUEL
ENTER STARTMACRD #A, #B, #C, #D, #E
¥
  TAKE CONTROL OF REENTRANCE BLOCK AND RELEASE WAITING
×
                                                          ×
¥
   QUEUE AND PARK OR REFUEL AREA PRESENTLY OCCUPIED
×
       SEIZE
                40
       TEST E
                XF*(PF1+50).0.*+4
       DEPART
                 (#0+1)
       DEPART
                 350
       TRANSFER ,*+3
       DEPART
                 #D
       DEPART
                 351
       LEAVE
                #D
* ASSIGNMENT OF VEHICLE DESTINATION PARAMETERS
                                                          *
×
                3,24,PF
       ASSIGN
                5,25,PF
       ASSIGN
       ASSIGN
                6.25.PF
* OFTIONAL CHECK IF REFUEL NEEDED; IF SO DESTINATION
* REFUEL AREA AND BYPASS OTHER DESTINATION OPERATIONS
¥
       TEST LE XF*(#A+36),1000,*+3
                6,35,PF
       ASSIGN
       TRANSFER
                 ,*+16
¥
* CHECK FOR OVERLOADED JOB QUEUES; ASSIGN DESTINATION
* TO INPUT STATION WITH OVERLOADED JOB QUEUE AND BYPASS
                                                          ¥
* OTHER DESTINATION OPERATIONS
¥
      TEST G
                XF*(PF3),3.*+2
       ASSIGN
                6.PF3.PF
      LOOP
                 3PF.*-2
      TEST E
                 PF6.25.*+10
×
* CHECK IF ANY JOBS TO BE DONE; ASSIGN VEHICLE DESTINATION*
* TO CLOSEST INPUT STATION AND BYPASS OTHER DESTINATION *
* OPERATIONS
                                                          ¥
¥
                3,24,PF
      ASSIGN
      TEST GE XF*(PF3),1,*+4
      TEST L
                MX1(PF2.PF3).PF5.*+3
      ASSIGN
                5,MX1(PF2,PF3),PF
      ASSIGN
                 6.PF3.PF
      L 00P
                 3PF.*-4
```

```
¥
* IF THERE IS NO DESTINATION ASSIGNMENT; ASSIGN
                                                            ¥
* DESTINATION TO THE PARK AREA
¥
       TEST E
                 PF6.25.*+3
       ASSIGN
                  2.51.PF
                 *+4
       TRANSFER
¥
* IF VEHICLE ASSIGNED DESTINATION OF AN INPUT STATION;
                                                            ¥
* DECREMENT JOB QUEUE AND INCREMENT JOB ASSIGNED QUEUE
                                                            ×
¥
       SAVEVALUE (PF6)-,1,XF
       SAVEVALUE (PF6+24)+,1,XF
* ATTACH DESTINATION TO VEHICLE
                                                           ¥
       ASSIGN
                2.PF6.PF
¥
* ASSIGN VEHICLE STATUS TO UNLOAD
                                                           ¥
       SAVEVALUE (PF1+50).0.XF
¥
* RESET PARK GATE TO ALLOWOTHER VEHICLES TO PASS
                                                           ×
×
       LOGIC S #E
¥
 OPTIONAL DECREMENT OF VEHICLE'S FUEL LEVEL
¥
                                                           ¥
       SAVEVALUE (#A+36)-.#B.XF
* ADD SECTION LENGTH TRAVELLED TO LOADED OR UNLOADED
                                                           ×
* SAVEVALUE
                                                           ×
¥
       SAVEVALUE (FN25)+,#8,XF
* INCREMENT VEHICLE CLOCK
                                                           ×
¥
      ADVANCE
                 #8
* ENTER LOAD OR UNLOAD DUEUE AND WAIT TO ENTER NEXT BLOCK *
                 XF*(PF1+50),0,*+4
       TEST E
       QUEUE
                 (#C+1)
       QUEUE
                  350
      TRANSFER
                 , * + 3
      OUEUF
                  # C
      OUEUE
                  351
      ENDMACRO
```

OUTPT MACRO

Used to travel section which has an output station in its boundaries. Divided into three sections: (1) an approach section, (2) an output station, and (3) a retreat section. Only one vehicle can be in each of the parts at one time. The approach and retreat sections are traversed within the TRAVEL macro, the output station by the OUT macro. The car leaves the track to output job so if a vehicle does not need to unload it can proceed unobstructed.

Inputs:

section leaving
 output station number
 approach section
 retreat section
 unloading area
 five transfer locations

Outputs:

(1) completion of approach section

- (2) completion of retreat section
- (3) if load to be dropped, completion of unloading

- Vehicle completes approach within travel block (see TRAVEL macro).
- (2) If unloading to be performed:
 - (a) vehicle completes unloading within output block (see OUT macro).
 - (b) vehicle completes retreat within travel block (see TRAVEL macro).
 - (c) vehicle exits macro.
- (3) If unloading not to be performed:
 - (a) vehicle completes retreat within travel block (see TRAVEL macro).
 - (b) vehicle exits macro.

OUTPT MACRO

```
OPERAND DESCRIPTIONS
 #A - SECTION LEAVING
 #B - OUTPUT STATION ID NUMBER
 #C - APPROACH SECTION
 #D - RETREAT SECTION
 #E - OUTPUT NAME
 #F - APPROACH SECTION TRAVEL TIME
 #G - RETREAT SECTION TRAVEL TIME
 #H ~ UNLOAD TIME
 #I - PROGRAM TRANSFER LOCATION
 #J ~ PROGRAM TRANSFER LOCATION
 OUTPT STARTMACRO #A, #B, #C, #D, #E, #F, #G, #H, #I, #J
¥
* TRAVEL OUTPUT STATION APPROACH BLOCK
                                                           ŧ
¥
TRVL MACRO PF1,#F,#C,#A
¥
* IF UNLOADING REQUIRED; UNLOAD AND TRAVEL OUTPUT RETREAT *
* BLOCK
¥
      TEST E
                 PF2,#B,#I
OHT
      MACRO
                 PF1,#H,#E,#C
TRVL MACRO
                 PF1,#6,#D,#E
                 ,#J
      TRANSFER
¥
* IF NO UNLOADING REQUIRED; TRAVEL OUTPUT RETREAT SECTION *
# I
      ADVANCE
                 0
TRVL MACRO
                 PF1,#G,#D,#C
#J
      ADVANCE
                 0
      ENDMACRO
```

INPT MACRO

Used to travel section which has an input station within its boundaries. Divided into three sections: (1) an approach section, (2) an output station, and (3) a retreat section. Only one vehicle can be in each of these sections at one time. The approach and retreat sections are traversed by the TRAVEL macro, the input station by the INPUT macro. The vehicle leaves the track to input a job. If a vehicle does not need to load a job it can proceed unobstructed.

Inputs:

(1)	vehicle number	
(2)	section travel times (approach and retreat)	
(3)	section leaving	
(4)	input station number	
(5)	approach section	
(6)	retreat section	
(7)	input area	
(8)	two transfer locations	

Outputs:

completion of approach section
 completion of retreat section
 if load to be picked up, completion of loading

- Vehicle completes approach within travel block(see TRAVEL macro).
- (2) If loading to be performed:
 - (a) vehicle completes loading within input block(see INPUT macro).
 - (b) vehicle completes retreat within travel block (see TRAVEL macro).
 - (c) vehicle exits macro.
- (3) If loading not to be performed:
 - (a) vehicle completes retreat within travel block (see TRAVEL macro).
 - (b) vehicle exits macro.

```
INPT MACRO
 OPERAND DESCRIPTIONS
 #A - LOAD TIME
 #B - PROGRAM TRANSFER LOCATION
 #C - SECTION LEAVING
 #D - INPUT STATION ID NUMBER
 #E - APPROACH SECTION
#F - RETREAT SECTION
 #6 - INPUT NAME
 #H - APPROACH SECTION TRAVEL TIME
 #I - RETREAT SECTION TRAVEL TIME
 #J - PROGRAM TRANSFER LOCATION
 INPT STARTMACRO #A,#B,#C,#D,#E,#F,#G,#H,#I,#J
×
* TRAVEL INPUT STATION APPROACH BLOCK
                                                          ×
×
TRVL MACRO
                PF1.#H.#E.#C
¥
* IF LOADING REQUIRED; LOAD AND TRAVEL INPUT RETREAT
                                                          ¥
* BLOCK
¥
      TEST E
                 PF2,#D,#J
INPUT MACRO
                 PF1,#A,#G,#E
TRVL MACRO
                 PF1,#I,#F,#G
                 ,#B
      TRANSFER
¥
* IF NO LOADING REQUIRED; TRAVEL INPUT RETREAT SECTION *
¥
#J
      ADVANCE
                 0
TRVL MACRO
                 PF1,#I,#F,#E
#B
      ADVANCE
                 0
      ENDMACRO
```

GAS MACRO

Used in travel section which has refueling station within its boundaries. Divided into three sections: (1) an approach section, (2) a refuel station, and (3) a retreat section. Only one vehicle can be in the approach or retreat section at one time while the refuel section can hold a prespecified number of vehicles. The approach and retreat sections are traversed by the TRAVEL macro, and the refuel station by the FUEL macro. The vehicle leaves the track to refuel so that vehicles not needing to refuel can proceed unobstructed.

Inputs:

(1)	section leaving
(2)	refuel station number
(3)	approach section
(4)	retreat section
(5)	refueling section
(6)	travel time for the approach and retreat sections
(7)	two transfer locations for the GAS macro
(8)	refuel time

Outputs:

- (1) completion of approach section
- (2) completion of retreat section
- (3) if refueling takes place, completion of refueling
- (4) if refueling takes place, completion of reentrance of the system

- Vehicle completes approach within travel block (see TRAVEL macro).
- (2) If refuel to be performed:
 - (a) vehicle completes refueling within fuel block
 (see FUEL macro).
 - (b) vehicle completes reentrance to the system and travels retreat within enter block (see ENTER macro).
 - (c) vehicle exits macro.
- (3) If refuel not to be performed;
 - (a) vehicle completes retreat within travel block(see TRAVEL macro).
 - (b) vehicle exits macro.

GAS MACRO .

```
OPERAND DESCRIPTIONS
 #A - SECTION LEAVING
 #B - REFUEL AREA IO NUMBER
 #C - APPROACH SECTION
#D - RETREAT SECTION FOR LEAVING GAS MACRO
#E - APPROACH SECTION FOR ENTER MACRO
#F ~ APPROACH TRAVEL TIME
#G - RETREAT TRAVEL TIME
#H - PROGRAM TRANSFER LOCATION
#I - PROGRAM TRANSFER LOCATION
#J - REFUEL TIME
GAS STARTMACRO #A, #B, #C, #D, #E, #F, #G, #H, #I, #J
¥
* TRAVEL REFUEL STATION APPROACH BLOCK
                                                           ¥
¥
TRVL MACRO PF1.#F.#C.#A
×
* IF REFUEL REQUIRED; REFUEL AND TRAVEL REFUEL RETREAT
                                                         ×
* BLOCK
¥
      TEST E
                 PF2,#8,#H
FUEL MACRO
                 PF1,#J,#E,#C
ENTER MACRO
                 PF1.#G.#D.#E.1
                 ,#I .
      TRANSFER
¥
* IF NO REFUEL REDUIRED; TRAVEL REFUEL RETREAT SECTION
                                                          ×
¥
#H
      ADVANCE
                 Ð
TRVL MACRO
                 PF1,#G,#0,#C
# I
      ADVANCE
                 Ô
       ENOMACRO
```

PLACE MACRO

Used to travel section which has a parking station within its boundaries. Divided into three sections: (1) an approach section, (2) a parking area, and (3) a retreat area. Only one vehicle can be in both the approach and retreat sections at one time while the park section can hold a prespecified number of vehicles. The approach and retreat sections are traversed by the TRAVEL macro and the parking section by the PARK macro. The vehicle leaves the track to park so that other vehicles which do not need to park can proceed unobstructed.

Inputs:

section leaving
 parking station number
 approach section
 retreat section
 parking area
 two transfer locations for PLACE macro

Outputs:

- (1) completion of approach section
- (2) completion of retreat section
- (3) if parking takes place, entrance and exit of parking area
- (4) if parking takes place, completion of reentrance to the system

- Vehicle completes approach within travel block (see TRAVEL macro).
- (2) If parking takes place:
 - (a) vehicle enters park until it is summonned to do a job within the park block (see PARK macro).
 - (b) vehicle completes reentrance to the system and travels retreat section within the travel block (see TRAVEL macro).
 - (c) vehicle exits macro.
- (3) If vehicle bypasses parking area:
 - (a) vehicle completes retreat section within the travel block (see TRAVEL macro).
 - (b) vehicle exits macro.

PLACE MACRO

OPERAND DESCRIPTIONS #A - SECTION LEAVING #B - PARK AREA ID NUMBER #C - APPROACH SECTION #D - RETREAT SECTION FOR LEAVING PLACE MACRO #E - APPROACH SECTION FOR ENTER MACRO #F - APPROACH TRAVEL TIME #G - RETREAT TRAVEL TIME #H - PROGRAM TRANSFER LOCATION

#I - PROGRAM TRANSFER LOCATION

```
PLACE STARTMACRO #A, #B, #C, #D, #E, #F, #G, #H, #I
×
* TRAVEL PARK STATION APPROACH BLOCK
¥
TRVL MACRO
                PF1,#F,#C,#A
×
* IF PARK REQUIRED; PARK AND WHEN SUMMONED REENTER THE
                                                           ¥
* GUIDEPATH
¥
      TEST E
                  PF2,#B,#H
PARK MACRO
                  PF1,#E,#C
ENTER MACRO
                  PF1,#G,#D,#E,2
       TRANSFER
                  ,#I
¥
* IF NO PARK REQUIRED; TRAVEL PARK RETREAT SECTION
¥
#H
      ADVANCE
                  0
TRVL MACRO
                 PF1,#G,#D,#C
ŧΙ
      ADVANCE
                  0
      ENDMACRD
```

¥

LOOP MACRO

Used to travel section which has more then one route from point A to point B. If the beginning of the main route is being used an alternative route will be immediately attempted. If the first section of the alternate route is also in use the vehicle will wait for the first available path. Each route consists of two sections which are each traversed by the TRAVEL macro. The succeeding section is also contained in the LOOP macro and is traversed normally in the TRAVEL macro. Vehicles will always try the main route first. Purpose is to prevent back up of vehicles if jam occurs at one block.

Inputs:

- (i) first half of loop to be traveled if main route taken
- (2) second half of loop to be traveled if main route taken
- (3) first half of loop to be traveled if alternate route taken
- (4) second half of loop to be traveled if alternate route taken

Outputs:

- (1) completion of loop by either main or alternate route
- (2) completion of succeeding section of track

- (1) Vehicle attempts to enter main path portion of track. If it is occupied will attempt to enter alternate path of track. If it is also occupied the vehicle will wait until main or alternate becomes available and will then proceed.
- (2) Vehicle completes travel of loop, by either main or alternate path (both are divided into two sections), within travel block (see TRAVEL macro).
- (3) Vehicle exits macro.

LOOP MACRO

```
OPERAND DESCRIPTIONS
 #A - MAIN PATH SECTION 1
 #B - MAIN PATH SECTION 2
 #C - ALTERNATIVE PATH SECTION 1
 #D - ALTERNATIVE PATH SECTION 2
 #E - EXIT FROM GUIDEPATH TO LOOP SECTION
 #F - REENTRY ON GUIDEPATH SECTION
 #G - REENTRY ON GUIDEPATH TRAVEL TIME
 #H - PROGRAM TRANSFER LOCATION
 #I - PROGRAM TRANSFER LOCATION
 #J - PROGRAM TRANSFER LOCATION
 LOOP STARTMACRO #A, #B, #C, #O, #E, #F, #G, #H, #I, #J
      TRANSFER ,*+2
RET ADVANCE
                  1
¥
* CHECK IF MAIN PATH OCCUPIED
                                                         ¥
¥
      GATE NU #A, #H
¥
* IF MAIN PATH UNDCCUPIED; TRAVEL ITS LENGTH
                                                         ÷
÷
TRVL MACRO
                PF1,4,#A,#E
TRVL MACRO
                PF1,3,#B,#A
      TRANSFER
               ,#I
¥
* CHECK IF ALTERNATIVE PATH OCCUPIED
                                                         ×
×
     GATE NU #C,RET
#H
÷.
* IF ALTERNATIVE PATH UNDCCUPIED; TRAVEL ITS LENGTH
                                                         ¥
* AND REENTER MAIN GUIDEPATH
TRVL MACRO
                PF1.5.#C.#E
TRVL MACRO
                PF1.4.#D.#C
      MACRO
TRVL
                PF1,#6,#F,#D
      TRANSFER ,#J
* RETURN TO REGULAR GUIDEPATH FROM MAIN ROUTE
                                                         ×
÷
#I
      ADVANCE
                 0
TRVL MACRO
               PF1,#G,#F.#B
              0
#J
      ADVANCE
      ENOMACRO
```

APPENDIX B

Example Program for Case 1

ø

```
* THIS EXAMPLE IS OF CASE 1. NOTE THAT IT WAS RUN WITHOUT
* A DISTANCE MATRIX BECAUSE A FROM-TO CHART OF THIS SYSTEM
* WAS UNAVAILABLE.
¥
÷
    SIMULATE
×
¥
* GIVES EACH BLOCK OF TRACK, INPUT STATION, AND DUTPUT STATION
* AN EDUIVALENT NUMERICAL VALUE. IN THIS WAY THE VEHICLE'S
* WAITING TIME CAN BE MEASURED WHEN TRAVELLING LOADED (X)
* OR TRAVELLING UNLOADED (X+1).
×
SEC46 SYN
              1
AP1 SYN
              3
UNLD3 SYN
              5
RP1 SYN
            7
SEC2 SYN
             9
AP3 SYN
             11
UNLD4 SYN
             13
RP3 SYN
             15
SEC4 SYN
             17
AP5 SYN
              19
UNLD5 SYN
             21
RP5 SYN
             23
SEC6 SYN
              25
AP7 SYN
              27
UNLD6 SYN
              29
RP7 SYN
             31
SEC8 SYN
             33
AP9 SYN
             35
UNLD7 SYN
             37
RP9 SYN
             39
SEC10 SYN
             41
AP11 SYN
             43
UNLD8 SYN
             45
             47
RP11 SYN
SEC12 SYN
              49
AP13 SYN
              51
UNLD9 SYN
              53
RP13 SYN
              55
SEC14 SYN
             57
SEC15 SYN
              59
SEC16 SYN
             61
SEC17 SYN
              63
CROSS SYN
             65
SEC19 SYN
             67
SEC20 SYN
             69
SEC21 SYN
              71
AP22 SYN
             73
UND10 SYN
             75
RP22 SYN
             77
              79
SEC23 SYN
SEC24 SYN
             81
SEC25 SYN
             83
```

SEC26	SYN	85					
SEC27	SYN	87					
SEC28	SYN	89					
SEC29	SYN	71					
AP30	SYN	93					
REFIL	SYN	95					
RP30	SYN	97					
AP31	SYN	99					
PARK	SYN	101					
RP31	SYN	103					
SEC32		105					
AP33	SYN	107					
INPT3	SYN	107					
RP33	SYN	111					
SEC34		113					
AP35	SYN	115					
INPT4		117					
RP35	SYN	119					
SEC36		121					
SEC37		123					
SEC38		125					
SEC39		127					
SEC40		129					
CLOGI		131					
CLOG2		133					
INPTI		135					
CL063		135					
CLOG4		137					
INPT2		141					
CLOGS		143					
CLOG6		145					
CLOG7		143					
CLOG8		147					
UNLDI		151					
CLDG9		153					
CLG10		155					
UNL D2		157					
CLG11		159					
CLG12		161					
CLG13		163					
SEC41		165					
SEC42		167					
LOPIA		167					
LOPIB		171					
LOPZA		171					
LOP28		175					
SEC43		175					
SEC44		177					
36644 *	ain	1/7					
* *							
	LOCATION		00405	NEEDED			
- ACHL	COUNTION	OF COMPUTER	SPACE	NEEDED	10	PERFORM	ł
*							
*	REALLOCAT	E CDM,50000					

```
* DISPATCH OF VEHICLES FROM INPUT STATIONS TO THE DUTPUT
* STATIONS. SINCE NO PREVIOUS INFORMATION OF DISTRIBUTION
 * OF THE DELIVERY OF JOBS, EACH DUTPUT STATION HAD AN EQUAL
* PROBABILITY.
       FUNCTION RN1.010
 1
.1,1/.2,2/.3,3/.4,4/.5,5/.6,6/.7,7/.B,B/.9,9/1.0,10
÷
* CONVERSION OF THE VALUES STORED IN PARAMETER 3 TO THE

    VEHICLE DESTINATION.

 2
      FUNCTION PF3,050
1,16/2,14/3,13/4,12/5,11
* GROUPING OF DESTINATIONS INTO ONE LOCALE REPRESENTITIVE
* GROUP
*
 3
      FUNCTION PF2,L16
1,3/2,3/4,4/5,4/6,4/7,4/8,4/9,4/10,4/11,1/12,1/13,2/14,2/15,5
16.6
÷
★ CONVERSION OF VEHICLE STATUS (EITHER LOADED=1 OR UNLOADED=0)
* TO A SAVEVALUE WHICH STORES TOTAL TRAVELLING FOR BOTH
¥
 4
      FUNCTION PF4.02
0.37/1.38
¥
÷
¥
¥
* BOOLEAN VARIABLES WHICH ARE USED WHEN DECISIONS ARE MADE
×
  ON THE VEHICLES DESTINATION.
¥
1
      BVARIABLE XF1'G'0+XF2'G'0+XF3'G'0+XF4'G'0
 2
      BVARIABLE XF4'GE'XF1*XF4'GE'XF2*XF4'GE'XF3
 3
     BVARIABLE XF3'GE'XF1*XF3'GE'XF2*XF3'GE'XF4
 4
     BVARIABLE XF2'GE'XF1*XF2'GE'XF3*XF2'GE'XF4
5
     BVARIABLE XF1'GE'XF2*XF1'GE'XF3*XF1'GE'XF4
 6
      BVARIABLE XF1'G'0+XF2'G'+XF3'G'0+XF4'G'0
¥
* MACROS SHOULO BE INSERTED HERE
÷
  GENERATOR OF THE VEHICLES
×
÷
×
       GENERATE 20,5,,6,,4PF
       SAVEVALUE 25+,1,XF
       ASSIGN 1,XF25,PF
       ASSIGN 2, FN1, PF
       SEIZE
               SEC46
       QUEUE
                201
                (SEC46+1)
       QUEUE
```

÷

* *	MAIN Foll	I PROGRAM .OW.	REPRESENTING THE GUIDEPATH THE VEHICLES WILL
	TRT	AOVANCE	0
	JTPT	MACRO	
	RVL	MACRO	SEC46,3,AP1,RP1,UNL03,1,1,60,03A,03B PF1,1,SEC2,RP1
	JTPT	MACRO	SEC2, 4, AP3, RP3, UNLD4, 1, 1, 60, 04A, 04B
	RVL	MACRO	PF1,1,SEC4,RP3
οι	JTPT	MACRO	SEC4,5,AP5,RP5,UNL05,1,1,60,05A,05B
TF	RVL .	MACRO	PF1,1,SEC6,RP5
OL	TPT	MACRO	SEC6,6,AP7,RP7,UNL06,1,1,60,06A,06B
	RVL	MACRO	PF1,1,SECB,RP7
	TPT	MACRO	SEC8,7,AP9,RP9,UNLD7,1,1,60,07A,07B
	8VL	MACRO	PF1,1,SEC10,RP9
	TPT	MACRO	SEC10,8,AP11,RP11,UNLOB,1,1,40,OBA,OBB
	RVL	MACRO	PF1,1,SEC12,RP11
	ITPT IVL	MACRO	SEC12,9, AP13, RP13, UNL 09, 1, 1, 60, 09A, 09B
	IVL	MACRO MACRO	PF1,4,SEC14,RP13
	IVL	MACRO	PF1,4,SEC15,SEC14 PF1,4,SEC16,SEC15
	IVL	MACRO	PF1,1,SEC17,SEC16
	VL	MACRO	PF1,1,CROSS,SEC17
	VL	MACRO	PF1,4,SEC19,CROSS
TR	VL .	MACRO	PF1,4,SEC20,SEC19
TR	٧L	MACRO	PF1,5,SEC21,SEC20
00	TPT	MACRO	SEC21,10,AP22,RP22,UN010,1,1,60,D10A,D10B
TR		MACRO	PF1,4,SEC23,RP22
	VL	MACRO	PF1,2,SEC24,SEC23
TR		MACRO	PF1,4,SEC25,SEC24
	06	ADVANCE	0
TR		MACRO	PF1,4,SEC26,SEC25
ĨR TR		MACRO	PF1,4,SEC27,SEC26
TR		MACRO MACRO	PF1,4,SEC2B,SEC27
GA		MACRO	PF1,4,SEC29,SEC2B SEC29,15,AP30,RP30,REFIL,1,1,GAS1,GAS2
	ACE	MACRO	RP30,16,AP31,RP31,PARK,1,1,PLC1,PLC2
TR		MACRO	PF1,1,SEC32,RP31
ΙN	PT	MACRO	50, IN3B, SEC32, 13, AP33, RP33, INPT3, 1, 1, IN3A
TR	٧L	MACRO	PF1,1,SEC34,RP33
IN	PT	MACRO	50, IN4B, SEC34, 14, AP35, RP35, INPT4, 1, 1, IN4A
ĨR		MACRO	PF1,1,SEC36,RP35
ŤR		MACRO	PF1,4,SEC37,SEC36
TR		MACRO	PF1,4,SEC3B,SEC37
TR		MACRO	PF1,4,SEC39,SEC3B
ĨR	۷L	MACRO	PF1,3,SEC40,SEC39
TR	υī	TEST E MACRO	FN3,1,AAA
IN		MACRO	PF1,1,CLOG1,SEC40
IN		MACRO	50, IN1B, CLOG1, 11, CLOG2, CLOG3, INPT1, 1, 1, IN1A 50, IN2B, CLOG3, 12, CLOG4, CLOG5, INPT2, 1, 1, IN2A
TR		MACRO	PF1,1,CL066,CL065
		TEST E	FN3,3,888
CC	C	AOVANCE	0
	TPT	MACRO	CLOG7,1,CLOGB,CLOG9,UNLD1,1,1,60,01A,01B
	TPT	MACRO	CLOG9,2,CLG10,CLG11,UNLO2,1,1,60,O2A,O2B
ŤR	۷L	MACRO	PF1,3,CLG12,CLG11

```
TRVL
        MACRD
                PF1,4,SEC25,CL612
        TRANSFER ,CLDG
 AAA
        ADVANCE 0
 TRVL
      MACRD
                  PF1,6,CLG13,SEC40
 TRVL MACRD
                  PF1,1,CLDG6,CLG13
       TEST E
                  8V7.4.CCC
 TRVL MACRD
                  PF1,1,SEC41,CLDG6
 TRVL MACRD
LODP MACRD
TRVL MACRD
                  PF1,1,SEC42,SEC41
                  LDP1A, LDP1B, LDP2A, LDP2B, SEC42, SEC43, 1, LDP1, LOP2, LOP3
                  PF1,1,SEC44,SEC43
 TRVL MACRD
                  PF1,1,CROSS,SEC44
 TRVL MACRD
                  PF1,1,SEC46,CRDSS1
        TRANSFER ,STRT
¥
¥
  GENERATION DF JOBS FOR EACH INPUT. GENERATED AT A UNIFORM
* RATE BECAUSE ND DISTRIBUTION KNOWN. DNE JDB CREATED AT EACH
  INPUT EVERY 180 SECONDS.
÷
       GENERATE
                  ,,,1
TDP
       ADVANCE
                  180
       SAVEVALUE 1+,1,XF
       SAVEVALUE 2+,1,XF
       SAVEVALUE 3+,1,XF
       SAVEVALUE 4+,1,XF
       TRANSFER
                  , TDP
×
  CLDCK TD REGULATE DNE SHIFT DR 28800 SECDNDS DF SIMULATION
×
×
  TIME.
¥
      GENERATE
                  ,,,1
      ADVANCE
                 28800
      TERMINATE 1
      START
                1
      END
```


APPENDIX C

Example Program for Case 2

```
THIS EXAMPLE IS AFTER THE CUTOFFS HAD BEEN PUT IN.
×
¥
  BLOCK CUTTING HAD NOT YET BEEN PERFORMED.
¥
×
¥
      SIMULATE
×
¥
 GIVES EACH BLOCK OF TRACK, INPUT STATION, AND OUTPUT STATION
×
 AN EQUIVALENT NUMERICAL VALUE. IN THIS WAY THE VEHICLE'S
×
  WAITING TIME CAN BE MEASURED WHEN TRAVELLING LOADED (X)
¥

    OR TRAVELLING UNLOADED (X+1).

AP1
      SYN
           1
INP1 SYN
                3
RP1
      SYN
                5
SEC16 SYN
               7
AP20 SYN
                9
UNL20 SYN
               11
RP20 SYN
               13
SEC17 SYN
                15
AP3 SYN
               17
INP3 SYN
               19
RP3
      SYN
               21
AP21 SYN
               23
UNL21 SYN
               25
RP21 SYN
               27
AP2
     SYN
               29
INP2 SYN
                31
RP2
      SYN
               33
SEC20 SYN
               35
AP4
      SYN
               37
INP4 SYN
               39
RP4
     SYN
               41
AP5
      SYN
               43
INP5 SYN
               45
RP5
     SYN
               47
AP6
     SYN
               49
INP6 SYN
               51
RP6
     SYN
               53
AP7
     SYN
               55
INP7 SYN
               57
RP7
     SYN
               59
AP8
     SYN
               61
INPB SYN
               63
RPB
    SYN
               65
SEC21 SYN
               67
AP22 SYN
               69
UNL22 SYN
                71
RP22 SYN
               73
SEC26 SYN
               75
AP23 SYN
                77
UNL23 SYN
                79
RP23 SYN
                81
SEC27 SYN
                83
```

AP24 UNL24 RP24	SYN	85 87 89
SEC28 AP9	SYN Syn	91 93
INP9	SYN	73 95
RP9	SYN	97
SEC1	SYN	99
AP25 UNL25	SYN Syn	101 103
RP25	SYN	105
SEC 2	SYN	107
AP26	SYN	109
UNL26 RP26	SYN Syn	111 113
AP10	SYN	115
INP10	SYN	117
RP10 SEC3	SYN Syn	119
AP27	SYN	121 123
UNL27	SYN	125
RP27	SYN	127
AP28 UNL28	SYN Syn	129 131
RP28	SYN	131
SEC4	SYN	135
AP11	SYN	137
INP11 RP11	SYN Syn	139 141
SECS	SYN	143
AP12	SYN	145
INP12	SYN	147
RP12 SEC6	SYN Syn	149 151
AP13	SYN	153
INP13	SYN	155
RP13 AP30	SYN	157
UNL30	SYN Syn	159 161
RP30	SYN	163
AP29	SYN	165
UNL29 RP29	SYN Syn	167 169
SEC9	SYN	171
AP14	SYN	173
INP14	SYN	175
RP14 AP31	SYN Syn	177 179
UNL31	SYN	181
RP31	SYN	183
SEC10 AP32	SYN Syn	185 187
UNL32	SYN	187
RP32	SYN	191
AP15	SYN	193

INP15	5 SYN	195		
	SYN	197		
SEC11		199		
SEC13				
		201		
AP33	SYN	203		
UNL33		205		
RP33	SYN	207		
AP17	SYN	209		
INP17	SYN	211		
RP17	SYN	213		
SEC14	SYN	215		
	SYN	217		
UNL34		219		
RP34	SYN	221		
AP18		223		
INP18				
RP18		225		
	SYN	227		
AP16		229		
INP16		231		
	SYN	233		
SEC15		235		
AP19		237		
UNL 19		239		
RP19	SYN	241		
APG	SYN	243		
RPG	SYN	245		
APP	SYN	247		
RPP	SYN	249		
TSQU1	SYN	253		
TSQUH	SYN	255		
TSQUV	SYN	257		
LINK	SYN	259		
TSQU2	SYN	261		
TSQU3		263		
TSQU4		265		
TSQH1		267		
TSQH2		269		
TSQV2		271		
TSQV3		273		
TSQV4		275		
UP1	SYN	277		
UP2	SYN	279		
*	3114	2/7		
*				
	LOCATION O		SPACE NEEDED TO PERI	CODM DUN
* 1.671		. Gom DIER	WINCE NEEDED TO PERI	UNA RUN.
*				
	REALLOCATE	COM. 50000		
*				
*				
	ARATION OF		CONTAIN OUTPUT-TO-IN	
* 0000	- ANALION OF	UNINIA IU	COMPANY CONCUTAINTY	WFUT UISTANCES,
*				
1	MATRIX	MY 34 10		
*	001010	MX,36,18		

INITIALIZATION OF OUTPUT-TO-INPUT DISTANCE MATRIX. THE ROW
 VALUE INDICATES THE OUTPUT STATION AND THE COLUMN VALUE THE
 INPUT STATION. THE VALUE IN THAT MATRIX POSITION IS THE RANK
 OF DISTANCES FROM THAT PARTICULAR OUTPUT (1=CLOSEST
 18=FURTHEST). THE ROW VALUE 36 REPRESENTS THE DISTANCE FROM
 THE PARK AREA.

×

INITIAL MX1(19,1),1/MX1(19,2),2/MX1(19,3),3/MX1(19,4),4 INITIAL MX1(19.5).5/MX1(19.6).6/MX1(19.7).7/MX1(19.8).8 INITIAL MX1(19,9),9/MX1(19,10),12/MX1(19,11),15 INITIAL MX1(19,12),10/MX1(19,13),11/MX1(19,14),13 INITIAL MX1(19,15).14/MX1(19,16).16/MX1(19,17),17 INITIAL MX1(19,18),18 INITIAL MX1(20,1),13/MX1(20,2),1/MX1(20,3),2/MX1(20,4),3 INITIAL MX1(20,5),4/MX1(20,6),5/MX1(20,7),6/MX1(20,8),7 INITIAL MX1(20,9), B/MX1(20,10), 10/MX1(20,11), 15 INITIAL MX1(20,12),9/MX1(20,13),11/MX1(20,14),12 MX1(20,15),14/MX1(20,16),16/MX1(20,17),17 INITIAL INITIAL MX1(20,18),18 INITIAL MX1(21,1),11/MX1(21,2),13/MX1(21,3),20/MX1(21,4),1 MX1(21,5),2/MX1(21,6),3/MX1(21,7),4/MX1(21,8),5 INITIAL INITIAL MX1(21,9),6/MX1(21,10),9/MX1(21,11),14 INITIAL MX1(21,12),7/MX1(21,13),8/MX1(21,14),10 INITIAL MX1(21,15),12/MX1(21,16),15/MX1(21,17),16 INITIAL MX1(21,18),17 INITIAL MX1(22,1),10/MX1(22,2),12/MX1(22,3),13/MX1(22,4),14 INITIAL MX1(22,5),15/MX1(22,6),16/MX1(22,7),17/MX1(22,8),18 INITIAL MX1(22,9),1/MX1(22,10),2/MX1(22,11),3 INITIAL MX1(22,12),4/MX1(22,13),5/MX1(22,14),6 INITIAL MX1(22.15),7/MX1(22.16),8/MX1(22.17),9 INITIAL MX1(22,18).11 INITIAL MX1(23,1),10/MX1(23,2),12/MX1(23,3),13/MX1(23,4),14 INITIAL MX1(23,5),15/MX1(23,6),16/MX1(23,7),17/MX1(23,8),18 INITIAL MX1(23,9),1/MX1(23,10),2/MX1(23,11),3 INITIAL MX1(23,12),4/MX1(23,13),5/MX1(23,14),6 INITIAL MX1(23,15),7/MX1(23,16),8/MX1(23,17),9 INITIAL MX1(23.18).11 INITIAL MX1(24,1),10/MX1(24,2),12/MX1(24,3),13/MX1(24,4),14 MX1(24,5),15/MX1(24,6),16/MX1(24,7),17/MX1(24,8),18 INITIAL INITIAL MX1(24,9),1/MX1(24,10),2/MX1(24,11),3 INITIAL MX1(24,12),4/MX1(24,13),5/MX1(24,14),6 INITIAL MX1(24,15),7/MX1(24,16),8/MX1(24,17),9 INITIAL MX1(24,18),11 INITIAL MX1(25,1),9/MX1(25,2),11/MX1(25,3),12/MX1(25,4),13 INITIAL MX1(25,5),14/MX1(25,6),15/MX1(25,7),16/MX1(25,8),17 INITIAL MX1(25,9),18/MX1(25,10),1/MX1(25,11),2 INITIAL MX1(25,12),3/MX1(25,13),4/MX1(25,14),5 INITIAL MX1(25,15).6/MX1(25,16).7/MX1(25,17).8 INITIAL MX1(25,18),10

IN1TIAL INITIAL INITIAL INITIAL INITIAL INITIAL INITIAL	MX1 (26,1), B/MX1 (26,2), 10/MX1 (26,3), 11/MX1 (26,4), 12 MX1 (26,5), 13/MX1 (26,6), 14/MX1 (26,7), 15/MX1 (26,B), 16 MX1 (26,9), 17/MX1 (26,10), 20/MX1 (26,11), 1 MX1 (26,12), 2/MX1 (26,13), 3/MX1 (26,14), 4 MX1 (26,15), 5/MX1 (26,16), 6/MX1 (26,17), 7 MX1 (26,18), 9
INITIAL	MX1(27,1),B/MX1(27,2),10/MX1(27,3),11/MX1(27,4),12
INITIAL	MX1(27,5),13/MX1(27,6),14/MX1(27,7),15/MX1(27,B),16
INITIAL	MX1(27,9),17/MX1(27,10),18/MX1(27,11),1
INITIAL	MX1(27,12),2/MX1(27,13),3/MX1(27,14),4
INITIAL	MX1(27,15),5/MX1(27,16),6/MX1(27,17),7
INITIAL	MX1(27,1B),9
INITIAL	MX1(28,1),B/MX1(28,2),10/MX1(28,3),11/MX1(28,4),12
INITIAL	MX1(28,5),13/MX1(28,6),14/MX1(28,7),15/MX1(28,8),16
INITIAL	MX1(28,9),17/MX1(28,10),18/MX1(28,11),1
INITIAL	MX1(28,12),2/MX1(28,13),3/MX1(28,14),4
INITIAL	MX1(28,15),5/MX1(28,16),6/MX1(28,17),7
INITIAL	MX1(28,18),9
INITIAL	MX1(29,1),5/MX1(29,2),7/MX1(29,3),B/MX1(29,4),9
INITIAL	MX1(29,5),16/MX1(29,6),11/MX1(29,7),12/MX1(29,B),13
INITIAL	MX1(29,9),14/MX1(29,10),17/MX1(29,11),18
INITIAL	MX1(29,12),15/MX1(29,13),16/MX1(29,14),1
INITIAL	MX1(29,15),2/MX1(29,16),3/MX1(29,17),4
INITIAL	MX1(29,1B),6
INITIAL	MX1(30,1),5/MX1(30,2),7/MX1(30,3),B/MX1(30,4),9
INITIAL	MX1(30,5),10/MX1(30,6),11/MX1(30,7),12/MX1(30,8),13
INITIAL	MX1(30,9),14/MX1(30,10),17/MX1(30,11),18
INITIAL	MX1(30,12),15/MX1(30,13),16/MX1(30,14),1
INITIAL	MX1(30,15),2/MX1(30,16),3/MX1(30,17),4
INITIAL	MX1(30,18),6
INITIAL	MX1(31,1),4/MX1(31,2),6/MX1(31,3),7/MX1(31,4),8
INITIAL	MX1(31,5),9/MX1(31,6),10/MX1(31,7),11/MX1(31,8),12
INITIAL	MX1(31,9),13/MX1(31,10),16/MX1(31,11),18
INITIAL	MX1(31,12),14/MX1(31,13),15/MX1(31,14),17
INITIAL	MX1(31,15),1/MX1(31,16),2/MX1(31,17),3
INITIAL	MX1(31,18),5
INITIAL	MX1(32,1),3/MX1(32,2),5/MX1(32,3),6/MX1(32,4),7
INITIAL	MX1(32,5),8/MX1(32,6),9/MX1(32,7),10/MX1(32,8),11
INITIAL	MX1(32,7),12/MX1(32,10),15/MX1(32,11),17
INITIAL	MX1(32,12),13/MX1(32,13),14/MX1(32,14),18
INITIAL	MX1(32,15),18/MX1(32,16),1/MX1(32,17),2
INITIAL	MX1(32,18),4
1NITIAL	MX1(33,1),2/MX1(33,2),3/MX1(33,3),4/MX1(33,4),5
1NITIAL	MX1(33,5),6/MX1(33,6),7/MX1(33,7),B/MX1(33,8),9
INITIAL	MX1(33,7),10/MX1(33,10),13/MX1(33,11),15
INITIAL	MX1(33,12),11/MX1(33,13),12/MX1(33,14),14
INITIAL	MX1(33,15),16/MX1(33,16),17/MX1(33,17),20

INITIAL MX1(33.18).1 INITIAL MX1(34,1),2/MX1(34,2),3/MX1(34,3),4/MX1(34,4),5 INITIAL MX1(34,5),6/MX1(34,6),7/MX1(34,7),8/MX1(34,8),9 INITIAL MX1(34,9),10/MX1(34,10),13/MX1(34,11),15 MX1(34.12),11/MX1(34,13),12/MX1(34,14),14 INITIAL INITIAL MX1(34,15),16/MX1(34,16),17/MX1(34,17).18 INITIAL MX1(34,18),1 INITIAL MX1(35,1),13/MX1(35,2),1/MX1(35,3),2/MX1(35,4),3 INITIAL MX1(35,5),4/MX1(35,6),5/MX1(35,7),6/MX1(35,8),7 INITIAL MX1(35,9),8/MX1(35,10),10/MX1(35,11),15 INITIAL MX1(35,12),9/MX1(35,13),11/MX1(35,14),12 INITIAL MX1(35,15),14/MX1(35,16),16/MX1(35,17),17 INITIAL MX1(35.18).18 MX1(36,1),13/MX1(36,2),1/MX1(36,3),2/MX1(36,4),3 INITIAL INITIAL MX1(36,5),4/MX1(36,6),5/MX1(36,7),6/MX1(36,8),7 INITIAL MX1(36,9),8/MX1(36,10),10/MX1(36,11),15 MX1(36,12),9/MX1(36,13),11/MX1(36,14),12 INITIAL INITIAL MX1(36,15),14/MX1(36,16),16/MX1(36,17),17 INITIAL MX1(36,18),18 ¥ ¥ OPTIDNAL INITIALIZATION OF FUEL LEVEL. INITIAL XF37-XF47.30000 ¥ DISPATCH FUNCTIONS FOR THE INPUTS. FUNCTION NUMBER REPRESENTS ¥ INPUT STATIONS AND THE FUNCTION CUMMULATIVE PROBABILITY ¥ * CDRRESPONDS TO THE DUTPUT STATION. A RANDOM NUMBER GENERATOR * PRDDUCES VALUE TD BE USED IN THE FUNCTION. 9 FUNCTION RN1.D10 .1015,29/.1160,30/.5182,33/.5617,31/.6342,21/.6922,23/.7139,22/.7401,34 ,9140,19/1.0.26 FUNCTION RN1,D10 13 .0575.25/.2949.28/.3092.24/.3524.33/.3667.31/.3955.21/.4818.23/.5825.22 .9496.19/1.0.26 12 FUNCTION RN1.D9 .0956.29/.1103.30/.1250.33/.2868.31/.5221.23/.6838.22/.7279.20/.9338.19 1.0,26 11 FUNCTION RN1.D5 .0553.29/.0599.30/.2350.31/.4101.23/1.0.22 8 FUNCTION RN1.D10 .1092,29/.1223,30/.1529,33/.4236,31/.4542,21/.6289,23/.8560,22/.8647,20 ,9782,19/1.0,26 17 FUNCTION RN1.D8

.2486,25/.2881,29/.2947,30/.5150,28/.5263,31/.5489,22/.9898,19/1.0,26

14 FUNCTION RN1.D6 .0070,28/.0211,21/.1866,23/.2007,22/.9964,19/1.0,26 3 FUNCTION RN1.D6 .0100,25/.0200,22/.0400,20/.B500,19/.9900,26/1.0.27 FUNCTION 4 RN1.D2 .0059,20/1.0,19 5 FUNCTION RN1.D2 .0093,29/1.0,19 FUNCTION RN1,D1 6 1.0.19 RN1,D2 7 FUNCTION .0093,29/1.0,19 2 FUNCTION RN1,D3 .5490,23/.6470,22/1.0,19 1 B FUNCTION RN1.D5 .2000,25/.4000,29/.6000,2B/.B000,19/1.0,27 15 FUNCTION RN1.D1 1.0,19 16 FUNCTION RN1.D15 .03B2,25/.1567,29/.1739,30/.1B35,28/.1B73,24/.2427,33/.25B0,31/.414B,21 .6165,23/.B531,22/.902B,20/.9047,34/.9324,32/.9B59,26/1.0,27 10 FUNCTION RN1,DB .0636.29/.0727.30/.2909.24/.7273.33/.7455.21/.9455.22/.9637.34/1.0.19 FUNCTION RN1.D7 1 .1333,25/.3666,29/.3999,30/.6666,21/.7333,23/.B666,26/1.0,27 * CDNVERSIDN DF VEHICLE STATUS (EITHER LDADED=1 DR UNLOADED=0) * TD A SAVEVALUE WHICH STDRES TDTAL TRAVELLING TIME FDR BDTH. 19 FUNCTION PF4.D2 0.59/1.60 * BDDLEAN VARIABLES WHICH ARE USED AT DECISION PDINTS TD DETERMINE A VEHICLES RDUTE. ¥ ¥ 1 BVARIABLE PF2'E'3+PF2'E'21 2 BVARIABLE PF2'E'5+PF2'E'6+PF2'E'7+PF2'E'B 3 BVARIABLE PF2'E'5 4 BVARIABLE PF2'E'6 5 BVARIABLE PF2'E'7 6 BVAR1ABLE PF2'E'B 7 BVAR1ABLE PF2'E'13+PF2'E'30 BVARIABLE PF2'E'33+PF2'E'17+PF2'E'34+PF2'E'1B B

```
9
       BVARIABLE BV10'E'1+BV11'E'1+BV12'E'1+BV13'E'1
 10
       BVARIABLE XF7'6'0+XFB'6'0+XF9'6'0+XF10'6'0+XF11'6'0+XF12'6'0
       BVARIABLE XF13'G'0+XF14'G'0+XF15'G'0+XF16'G'0+XF17'G'0
 11
 12
       BVARIABLE XF1B'G'O
 13
       BVARIABLE XF1'G'0+XF2'G'0+XF3'G'0+XF4'G'0+XF5'G'0+XF6'G'0
 14
       BVARIABLE PF2'E'22+PF2'E'23+PF2'E'24+PF2'E'9+PF2'E'25
       BVARIABLE PF2'E'26+PF2'E'10+PF2'E'27+PF2'E'28+PF2'E'11
 15
 16
       BVARIABLE BV14'E'1+BV15'E'1
 17
       BVARIABLE PF2'E'19+PF2'E'1+PF2'E'20+PF2'E'2+PF2'E'3
       BVARIABLE PF2'E'21+PF2'E'4+PF2'E'5+PF2'E'6+PF2'E'7+PF2'E'B
 18
 19
       BVARIABLE BV17'E'1+BV1B'E'1+BV20'E'1
 20
       BVARIABLE PF2'E'35+PF2'E'36
 21
       BVARIABLE PF2'E'5+PF2'0'6+PF2'E'7+PF2'E'B
       BVARIABLE BV21'E'1+BV16'E'1
 22
¥
¥
¥
¥
   MACROS SHOULD BE INSERTED HERE
×
×
¥
¥
¥
¥
  GENERATOR OF THE VEHICLES
¥
        GENERATE 20,5,,B,,6PF
        SAVEVALUE 61+,1,XF
        ASSIGN
                  1.XF61.PF
        ASSIGN
                  2.36.PF
        SEIZE
                  RP1
        QUEUE
                 250
        QUEUE
                 (RP1+1)
        SAVEVALUE (PF1+47),0,XF
¥
 MAIN PROGRAM REPRESENTING THE GUIDEPATH THE VEHICLES WILL
×
* FOLLOW
¥
TOP
        ADVANCE 0
TRVL
       MACRO
                 PF1.6.SEC16.RP1
DUTPT MACRO
                  SEC16,20, AP20, RP20, UNL20, 3, 3, 50, 020A, 020B
GAS
       MACRO
                 RP20,35,AP6,RP6,REFILL,1,1,6AS1,6AS2,600
PLACE MACRO
                RPG, 36, APP, RPP, PARK, 1, 1, PLC1, PLC2
TRVL
       MACRO
                 PF1,2B,SEC17,RPP
       TEST E
                  BV1.1.J1
INPT
       MACRO
                  50, IN3B, SEC17, 3, AP3, RP3, INP3, 31, 2, IN3A
DUTPT MACRO
                  RP3,21,AP21,RP21,UNL21,2,18,50,021A,021B
TRVL
       MACRO
                  PF1,49,SEC20,RP21
INPT
       MACRO
                  50, IN4D, SEC20, 4, AP4, RP4, INP4, 4, 24, IN4C
       TRANSFER ,L2
J1
       ADVANCE
```

```
131
```

Ó.

INPT TRVL INPT	MACRO Macro Macro	50, IN2B, SEC17, 2, AP2, RP2, INP2, 4, 4, IN2A PF1, 49, SEC20, RP2 50, IN4B, SEC20, 4, AP4, RP4, INP4, 4, 24, IN4A
L2 TRVL TRVL TRVL TRVL	TEST E Macro Macro Macro Transfer	BV22,0,J2 PF1,23,UP1,RP4 PF1,23,UP2,UP1 PF1,14,TSQU4,UP2 ,L3
J 2	TEST E	BV2,1,J3
	TEST E	BV3,1,J4
INPT TRVL OUTPT	MACRO MACRO TEST É MACRO TRANSFER	50, IN5B,RP4,5,AP5,RP5,INP5,1B,16,IN5A PF1,2,LINK,RP5 BV16,1,T5QU LINK,22,AP22,RP22,UNL22,7,2,50,022A,022B ,J5
J 4	TEST E	BV4,1,J6
INPT TRVL OUTPT	MACRO Macro Test e Macro	50,IN6B,RP4,6,AP6,RP6,INP6,31,16,IN6A PF1,2,LINK,RP6 BV16,1,T50U LINK,22,AP22,RP22,UNL22,7,2,50,022C,022D
	TRANSFER	, J5
J6	TEST E	BV5,1,J7
INPT TRVL OUTPT	MACRO MACRO T E ST E MACRO TRANSFER	50, IN7B, RP4, 7, AP7, RP7, INP7, 42, 16, IN7A PF1, 2, LINK, RP7 BV16, 1, TSQU LINK, 22, AP22, RP22, UNL22, 7, 2, 50, 022E, 022F , J5
J7	ADVANCE	0
INFT TRVL		
OUTPT	MACRO MACRO TEST E MACRO TRANSFER	50, INBB,RP4, B, APB, RPB, INPB, 49, 16, INBA PF1,2, LINK, RPB BV16, 1, TSOU LINK, 22, AP22, RP22, UNL22, 7, 2, 50, 0226, 022H , J5
	MACRO TEST E MACRO	PF1,2,LINK,RPB BV16,1,TSOU LINK,22,AP22,RP22,UNL22,7,2,50,0226,022H

TRVL INPT PLACE TRVL OUTPT TRVL INPT TRVL INPT TRVL INPT TRVL INPT RET2 TRVL	MACRO MACRO MACRO MACRO MACRO MACRO MACRO MACRO MACRO MACRO MACRO MACRO ACRO ACRO ADVANCE MACRO	PF1,2B,SEC2B,RP24 50,IN9B,SEC2B,9,AP9,RP9,INP9,4,4,IN9A RP9,36,APP2,RPP2,PARK,1,1,PLC3,PLC4 PF1,29,SEC1,RP22 SEC1,25,AP25,RP25,UNL25,3,3,50,025A,025B PF1,12,SEC2,RP25 SEC2,26,AP26,RP26,UNL26,3,4,50,026A,026B 50,IN10B,RP26,10,AP10,RP10,INP10,4,6,IN10A PF1,35,SEC3,RP10 SEC3,27,AP27,RP27,UNL27,6,1,50,027A,027B RP27,2B,AP2B,RP2B,UNL2B,1,3,50,02BA,02BB PF1,7,SEC4,RP2B 50,IN11B,SEC4,11,AP11,RP11,INP11,3,5,IN11A PF1,56,SEC5,RP11 50,IN12B,SEC5,12,AP12,RP12,INP12,5,7,IN12A 0 PF1,21,SEC6,RP12
	TEST E	BV7,1,JB
INPT OUTPT TRVL	MACRO Macro Macro Transfer	50, IN13B, SEC6, 13, AP13, RP13, INP13, 11, 7, IN13A RP13, 30, AP30, RP30, UNL30, 7, 8, 50, 030A, 030B PF1, 14, SEC9, RP30 , J9
JB OUTPT TRVL	AOVANCE Macro Macro	0 SEC6,29,AP29,RP29,UNL29,B,3,50,029A,029B PF1,14,SEC9,RP29
J9 INPT OUTPT TRVL OUTPT INPT TRVL	AOVANCE Macro Macro Macro Macro Macro Macro Macro	0 50, IN14B, SEC9, 14, AP14, RP14, INP14, 3, 7, IN14A RP14, 31, AP31, RP31, UNL31, 7, 3, 50, 031A, 031B PF1, 2B, SEC10, RP31 SEC10S32, AP32, RP32, UNL32, 3, 2, 50, 032A, 032B 50, IS15B, RP32, 15, AP15, RP15, INP15, 2, 6, IN15A PF1, 25, SEC11, RP15
	TEST E	BVB,1,J10
TRVL OUTPT INPT TRVL OUTPT INPT TRVL	MACRO MACRO MACRO MACRO MACRO MACRO TRANSFER	PF1,2B,SEC13,SEC11 SEC13,33,AP33,RP33,UNL33,6,4,50,D33A,D33B 50,IN17B,RP33,17,AP17,RP17,INP17,4,2,IN17A PF1,14,SEC14,RP17 SEC14,34,AP34,RP34,UNL34,2,6,50,D34A,O34B 50,IN18B,RP34,1B,AP1B,RP1B,INP1B,6,4,IN1BA PF1,1B,SEC15,RP1B ,J11
J10 INPT TRVL	ADVANCE Macro Macro	0 50,IN16B,SEC11,16,AP16,RP16,INP16,10,4,IN16A PF1,1B,SEC15,RP16
J11 OUTPT RET1	AOVANCE Macro Aovance	0 SEC15,19,AP19,RP19,UNL19,2,1,50,019A,D19B 0

INPT MACRO 50, IN1B, RP19, 1, AP1, RP1, INP1, 1, 3, IN1A TRANSFER , TOP TSQU AQVANCE 0 TRVL MACRO PF1.14.TSQU1.LINK TRVL MACRO PF1,14,TS0U2,TS0U1 TRVL MACRO PF1,14, TSQU3, TSQU2 TRVL MACRO PF1,14,TSQU4,TSQU3 L3 TEST E BV19.0.HQR TRVL MACRO PF1,12,TSQUH,TSQU4 TRVL MACRQ PF1,13,TSQH1,TSQUH TRVL MACRO PF1.S3.TS0H2.TS0H1 INPT 50, IN120, TSQH2, 12, AP12, RP12, INP12, 5, 6, IN12C MACRQ TRANSFER ,RET2 HOR AQVANCE n TRVL MACRO PF1,25,TSOUV,TSOU4 TRVI MACRO PF1,25,TS0V2,TS0UV TRVL MACRO PF1,25,TSQV3,TSQV2 TRVL MACRQ PF1,29,TS0V4,TS0V3 TRVL MACRQ PF1,25,TSOV5,TSOV4 QUTPT MACRO TSQV5, 19, AP19, RP19, UNL 19, 2, 1, 50, 019C, 0190 TRANSFER ,RET2 × * GENERATION OF JOBS FOR EACH INPUT. FROM GIVEN DATA THE × NUMBER OF JOBS INPUTTED AT EACH INPUT STATION WAS KNOWN * AND THE GENERATE BLOCKS BELOW CREATED JOBS AT A UNIFORM RATE TO SIMULATE A SHIFT'S WORTH. ¥ ¥ GENERATE 9600.960 SAVEVALUE 1+.1.XF TERMINATE GENERATE 2824,282 SAVEVALUE 2+.1.XF TERMINATE GENERATE 1440,144 SAVEVALUE 3+,1,XF TERMINATE GENERATE 847.85 SAVEVALUE 4+,1,XF TERMINATE GENERATE 2667,267 SAVEVALUE 5+,1,XF TERMINATE GENERATE 3000.300 SAVEVALUE 6+,1,XF TERMINATE GENERATE 2667,267

```
SAVEVALUE 7+,1,XF
       TERMINATE
       GENERATE
                629,63
       SAVEVALUE 8+,1,XF
       TERMINATE
       GENERATE 1043,104
       SAVEVALUE 9+,1,XF
       TERMINATE
       GENERATE
                 2618,262
       SAVEVALUE 10+,1,XF
       TERMINATE
       GENERATE
                 1327,133
       SAVEVALUE 11+,1,XF
       TERMINATE
       GENERATE
                 2118,212
       SAVEVALUE 12+,1,XF
       TERMINATE
       GENERATE 2072,207
       SAVEVALUE 13+,1,XF
       TERMINATE
       GENERATE 507,51
       SAVEVALUE 14+,1,XF
       TERMINATE
      GENERATE 10286,1029
      SAVEVALUE 15+,1,XF
      TERMINATE
      GENERATE
                 275,28
      SAVEVALUE 16+,1,XF
      TERMINATE
      GENERATE 1627,163
      SAVEVALUE 17+,1,XF
      TERMINATE
      GENERATE
                 28800,2880
      SAVEVALUE 18+,1,XF
      TERMINATE
* CLOCK TO REGULATE ONE SHIFT OR 28800 SECONDS OF SIMULATION
 TIME.
      GENERATE
                 , , , 1
      LOGIC S
                 2
      SEIZE
                 CLCK
      ADVANCE
                28800
      RELEASE
                CLCK
```

÷

×

¥

TERMINATE 1 START 1 END

APPENDIX D

Example Program for Case 3

```
×
×
  THIS EXAMPLE IS AFTER THE CUTOFFS HAD BEEN PUT IN.
×
  BLOCK DIVISION HAD NOT YET BEEN PERFORMED.
¥
     SIMULATE
¥
¥
* GIVES EACH BLOCK OF TRACK, INPUT STATION, AND OUTPUT STATION
* AN EQUIVALENT NUMERICAL VALUE. IN THIS WAY THE VEHICLE'S
* WAITING TIME CAN BE MEASURED WHEN TRAVELLING LOADED (X)
* OR TRAVELLING UNLOADED (X+1)
Z24A SYN
                1
Z248 SYN
                 3
AP7
      SYN
                 5
INP7 SYN
                7
RP7
    SYN
                9
AP8
      SYN
                11
INP8 SYN
                13
RP8 SYN
                15
AP33 SYN
                17
UNL33 SYN
                19
RP33 SYN
                21
AP34 SYN
                23
UNL34 SYN
                25
RP34 SYN
                27
AP35 SYN
                29
UNL35 SYN
                31
RP35 SYN
                33
AP32 SYN
                35
UNL32 SYN
                37
RP32 SYN
                39
AP9
      SYN
                41
INP9 SYN
                43
RP9
      SYN
               45
AP40 SYN
                53
UNL40 SYN
                55
RP40 SYN
                57
AP14 SYN
               59
INP14 SYN
               61
RP14 SYN
                63
AP41 SYN
               65
UNL41 SYN
               67
RP41 SYN
               69
AP42 SYN
                71
UNL42 SYN
               73
RP42 SYN
               75
AP15 SYN
               77
AP15A SYN
               79
INP15 SYN
               81
RP15 SYN
               83
AP16 SYN
               85
INP16 SYN
               87
RP16 SYN
               89
AP17 SYN
               91
```

RP17 SYN 95 AP43 SYN 97 UNL43 SYN 97 UNL43 SYN 97 UNL43 SYN 103 Z11 SYN 103 Z11 SYN 105 SEC53 SYN 107 AP36 SYN 107 AP36 SYN 107 AP36 SYN 111 RP36 SYN 113 AP10 SYN 117 RP10 SYN 121 INP11 SYN 123 RP11 SYN 125 AP12 SYN 127 INP12 SYN 127 RP12 SYN 127 RP12 SYN 127 RP12 SYN 133 UNL37 SYN 137 AP38 SYN 141 RP37 SYN 145 UNL38 SYN <th>INP17 SYN</th> <th>93</th>	INP17 SYN	93
UNL43 SYN 97 RP43 SYN 101 DT SYN 103 Z11 SYN 105 SEC53 SYN 107 AP34 SYN 107 AP34 SYN 107 AP34 SYN 107 UUL36 SYN 111 RP34 SYN 117 RP10 SYN 117 RP10 SYN 117 AP10 SYN 123 RP11 SYN 123 RP11 SYN 125 AP12 SYN 127 INP12 SYN 127 RP12 SYN 133 UNL37 SYN 135 RP38 SYN 141 RP38 SYN 143 AP39 SYN 145 UNL38 SYN 151 INP13 SYN 155 SEC43 SYN </td <td></td> <td></td>		
RP43 SYN 101 DT SYN 103 Z11 SYN 103 Z11 SYN 105 SEC53 SYN 107 AP36 SYN 107 AP36 SYN 107 AP36 SYN 111 RP36 SYN 113 AP10 SYN 117 RP10 SYN 117 AP10 SYN 123 RP11 SYN 123 RP11 SYN 127 AP12 SYN 127 RP12 SYN 127 RP12 SYN 127 RP12 SYN 133 UNL37 SYN 137 AP38 SYN 143 AP37 SYN 147 RP37 SYN 147 RP37 SYN 145 UNL38 SYN 147 RP37 SYN		
OT SYN 103 Z11 SYN 105 SEC53 SYN 107 AP34 SYN 107 AP34 SYN 107 AP34 SYN 107 AP34 SYN 111 RP36 SYN 113 AP10 SYN 115 INP10 SYN 117 RP10 SYN 123 RP11 SYN 123 RP11 SYN 127 INP12 SYN 127 RP12 SYN 127 RP12 SYN 127 RP12 SYN 127 RP12 SYN 133 UNL37 SYN 137 AP38 SYN 143 AP37 SYN 1447 RP37 SYN 145 UNL38 SYN 147 RP39 SYN 147 RP37 SYN 14		
Z11 SYN 105 SEC53 SYN 107 AP36 SYN 111 RP36 SYN 111 AP10 SYN 115 INP10 SYN 117 RP10 SYN 123 AP11 SYN 123 RP11 SYN 123 RP11 SYN 125 AP12 SYN 127 INP12 SYN 127 INP12 SYN 133 UNL37 SYN 135 RP37 SYN 137 AP38 SYN 143 AP39 SYN 144 RP37 SYN 145 UNL38 SYN 145 UNL37 SYN 145 UNL38 SYN 155 SEC43 SYN 157 AP1 </td <td></td> <td></td>		
SEC53 SYN 107 AP34 SYN 109 UNL36 SYN 111 RP34 SYN 111 RP34 SYN 111 RP35 SYN 115 INP10 SYN 115 INP10 SYN 117 RP10 SYN 117 AP11 SYN 123 RP11 SYN 125 AP11 SYN 125 AP11 SYN 125 AP11 SYN 125 AP12 SYN 127 INP12 SYN 127 INP12 SYN 133 UNL37 SYN 135 RP38 SYN 141 RP38 SYN 143 AP39 SYN 145 UNL38 SYN 155 RP39 SYN 155 RP13 SYN 155 AP14 S		
AP34 SYN 109 UUL36 SYN 111 RP34 SYN 113 AP10 SYN 115 INP10 SYN 117 RP10 SYN 117 RP11 SYN 121 INP11 SYN 1225 AP12 SYN 127 INP112 SYN 127 RP12 SYN 127 AP12 SYN 127 AP12 SYN 127 AP12 SYN 127 RP12 SYN 127 AP37 SYN 133 UNL37 SYN 135 RP38 SYN 141 RP38 SYN 147 RP39 SYN 147 RP39 SYN 145 UNL37 SYN 153 RP13 SYN 155 SEC43 SYN 157 AP1 S		
UNL36 SYN 111 RP36 SYN 113 AP10 SYN 115 INP10 SYN 117 RP10 SYN 121 INP11 SYN 122 INP11 SYN 123 RP11 SYN 123 RP12 SYN 127 INP12 SYN 127 INP12 SYN 127 INP12 SYN 127 RP12 SYN 127 INP12 SYN 127 RP12 SYN 133 UNL37 SYN 135 RP37 SYN 143 AP38 SYN 144 RP37 SYN 145 UNL38 SYN 147 RP37 SYN 145 UNL39 SYN 145 UNL39 SYN 155 SEC43 SYN 157 AP10		
RP36 SYN 113 AP10 SYN 115 INP10 SYN 117 RP10 SYN 117 RP10 SYN 117 RP10 SYN 117 RP10 SYN 123 AP11 SYN 123 RP11 SYN 125 AP12 SYN 127 INP12 SYN 127 INP12 SYN 131 AP37 SYN 135 RP37 SYN 137 AP38 SYN 143 AP39 SYN 144 RP37 SYN 145 UNL38 SYN 145 UNL39 SYN 147 RP39 SYN 147 RP39 SYN 147 RP39 SYN 145 UNL38 SYN 155 SEC43 SYN 155 SEC43 S		
AP10 SYN 115 INP10 SYN 117 RP10 SYN 117 RP10 SYN 121 INP11 SYN 123 RP11 SYN 125 AP12 SYN 127 INP12 SYN 127 INP12 SYN 133 UNL37 SYN 133 UNL37 SYN 137 AP38 SYN 143 AP39 SYN 144 RP38 SYN 145 UNL38 SYN 145 UNL39 SYN 145 RP13 SYN 155 SEC43 SYN 155 SEC43 SYN 157 AP1 SYN 163 RP1 SYN 165 TO SYN 167 AP14 SYN 167 AP14 SYN 167 AP14 SYN		
INP10 SYN 117 RP10 SYN 119 AP11 SYN 121 INP11 SYN 122 AP11 SYN 125 AP12 SYN 127 INP112 SYN 127 AP12 SYN 127 AP12 SYN 127 AP12 SYN 127 RP12 SYN 127 AP37 SYN 133 UNL37 SYN 135 RP37 SYN 137 AP38 SYN 141 RP38 SYN 144 RP39 SYN 145 UNL37 SYN 153 RP13 SYN 155 SEC43 SYN 157 AP11 SYN 163 RP1 SYN 164 INP1 SYN 165 SUN 167 AP44 SYN 167<		
RP10 SYN 119 AP11 SYN 121 INP11 SYN 123 RP11 SYN 123 RP11 SYN 127 INP12 SYN 127 RP12 SYN 127 INP12 SYN 127 RP37 SYN 133 UNL37 SYN 137 AP38 SYN 141 FP38 SYN 1445 UNL37 SYN 145 UNL37 SYN 145 UNL37 SYN 153 RP13 SYN 155 SEC43 SYN 155 SEC43 SYN 165 TO SYN 165 TO SYN 165 TO S		
INP11 SYN 123 RP11 SYN 125 AP12 SYN 127 INP12 SYN 127 INP12 SYN 131 AP37 SYN 133 UNL37 SYN 135 RP37 SYN 137 AP38 SYN 141 RP38 SYN 143 AP39 SYN 144 RP39 SYN 145 UNL38 SYN 145 UNL37 SYN 155 SYN 145 UNL37 SYN 155 SYN 145 UNL37 SYN 155 SYN 157 AP13 SYN 155 SEC43 SYN 157 AP1 SYN 163 TO SYN 1647 NP1 SYN 1657 D SYN 167 AP44	RP10 SYN	
RP11 SYN 125 AP12 SYN 127 INP12 SYN 127 INP12 SYN 127 AP37 SYN 133 UNL37 SYN 135 AP37 SYN 137 AP38 SYN 141 RP38 SYN 1441 RP38 SYN 1445 UNL39 SYN 1447 RP37 SYN 145 UNL37 SYN 145 UNL37 SYN 145 UNL37 SYN 153 RP13 SYN 155 SEC43 SYN 157 AP1 SYN 165 TO SYN 1641 INP1 SYN 165 TO SYN 1647 AP44 SYN 167 AP44 SYN 167 AP44 SYN 173 UNL44	AP11 SYN	121
AP12 SYN 127 INP12 SYN 129 INP12 SYN 131 AP37 SYN 133 UNL37 SYN 137 AP37 SYN 137 AP38 SYN 141 FP38 SYN 1445 UNL37 SYN 145 UNL37 SYN 145 UNL37 SYN 145 INP13 SYN 153 RP13 SYN 155 SEC43 SYN 157 AP13 SYN 155 SEC43 SYN 157 AP14 SYN 163 RP1 SYN 164 INP1 SYN 167 AP44		123
INP12 SYN 129 RP12 SYN 131 AP37 SYN 133 UNL37 SYN 137 AP38 SYN 137 AP38 SYN 137 AP38 SYN 141 RP37 SYN 143 AP37 SYN 1447 RP38 SYN 1445 UNL37 SYN 145 UNL37 SYN 145 UNL37 SYN 151 INP13 SYN 155 SEC43 SYN 157 AP14 SYN 155 SEC43 SYN 163 INP1 SYN 165 TO SYN 164 INP1 SYN 165 TO SYN 167 AP44 SYN 171 RP44 SYN 171 RP44 SYN 177 RP18 SYN		
RP12 SYN 131 AP37 SYN 133 UNL37 SYN 135 RP37 SYN 137 AP38 SYN 137 UNL37 SYN 137 AP38 SYN 141 RP37 SYN 143 AP39 SYN 1447 AP37 SYN 147 AP13 SYN 155 SEC43 SYN 157 AP1A SYN 157 AP1A SYN 163 RP1 SYN 165 TO SYN 165 TO SYN 167 AP44 SYN 173 AP18 SYN 177 RP44 SYN		
AP37 SYN 133 UNL37 SYN 135 RP37 SYN 137 AP38 SYN 137 AP38 SYN 141 RP38 SYN 143 AP38 SYN 144 RP37 SYN 145 UNL38 SYN 145 UNL37 SYN 147 AP38 SYN 145 UNL37 SYN 147 AP13 SYN 151 INP13 SYN 155 SEC43 SYN 157 AP1 SYN 157 AP1 SYN 163 RP1 SYN 165 TO SYN 167 AP44 SYN 167 AP44 SYN 173 AP18 SYN 177 RP44 SYN 173 AP18 SYN 177 AP45 SYN		
UNL37 SYN 135 RP37 SYN 137 AP38 SYN 137 AP38 SYN 141 RP38 SYN 1445 UNL38 SYN 1445 UNL37 SYN 1447 AP39 SYN 1447 AP37 SYN 145 UNL37 SYN 145 UNL37 SYN 147 RP38 SYN 145 UNL37 SYN 145 SYN 147 RP38 AP13 SYN 153 RP13 SYN 155 SEC43 SYN 157 AP1A SYN 163 RP1 SYN 1643 RP1 SYN 1643 RP1 SYN 1647 AP44 SYN 167 UNL44 SYN 171 RP44 SYN 177 RP18 <		
RP37 SYN 137 AP38 SYN 139 UNL38 SYN 141 RP38 SYN 143 AP37 SYN 1447 RP38 SYN 1447 AP37 SYN 1447 AP37 SYN 1447 AP37 SYN 1447 AP37 SYN 1453 UNL37 SYN 153 SEC43 SYN 155 SEC43 SYN 157 AP14 SYN 153 RP13 SYN 163 RP1 SYN 165 TO SYN 164 RP1 SYN 165 TO SYN 164 RP1 SYN 164 NN1 SYN 167 AP44 SYN 171 RP44 SYN 177 RP18 SYN 177 RP45 SYN <td></td> <td></td>		
AP3B SYN 139 UNL3B SYN 141 RP3B SYN 143 AP39 SYN 1443 AP39 SYN 1447 RP39 SYN 1447 RP39 SYN 1447 RP39 SYN 1447 AP13 SYN 151 INP13 SYN 155 SEC43 SYN 1557 AP1 SYN 165 TO SYN 165 TO SYN 165 TO SYN 1657 AP44 SYN 1657 PUNL44 SYN 167 AP44 SYN 167 AP44 SYN 173 AP18 SYN 177 AP18 SYN 177 AP18 SYN 183 RP45 SYN 181 UNL45 SYN 187 UNL45 S		
UNL38 SYN 141 RP38 SYN 143 AP39 SYN 145 UNL37 SYN 147 RP39 SYN 147 RP37 SYN 147 RP37 SYN 151 INP13 SYN 155 SEC43 SYN 157 AP1 SYN 157 AP1 SYN 157 AP1 SYN 157 AP1 SYN 161 INP1 SYN 165 TO SYN 167 AP44 SYN 167 AP44 SYN 173 AP18 SYN 175 INP18 SYN 177 RP44 SYN 173 RP45 SYN 181 UNL45 SYN 182 UNL45 SYN 197 AP45 SYN 197 AP19 SYN		
RP38 SYN 143 AP39 SYN 1445 UNL37 SYN 147 RP39 SYN 147 RP37 SYN 153 RP13 SYN 155 SEC43 SYN 155 SEC43 SYN 157 AP1 SYN 163 RP1 SYN 1643 RP1 SYN 165 TO SYN 165 TO SYN 165 TO SYN 167 AP44 SYN 171 RP44 SYN 171 RP44 SYN 177 RP18 SYN 177 RP45 SYN 183 RP45 SYN 185 AP19 SYN		
AP39 SYN 145 UNL39 SYN 147 RP39 SYN 151 INP13 SYN 153 AP13 SYN 153 RP13 SYN 155 SEC43 SYN 157 AP1 SYN 161 INP1 SYN 163 RP1 SYN 163 RP1 SYN 165 TO SYN 167 AP44 SYN 171 RP44 SYN 173 AP18 SYN 177 RP18 SYN 181 UNL45 SYN 187 INP17 SYN 187 AP18 SYN 187 INP17 SYN <		
UNL 39 SYN 147 RP 39 SYN 149 AP 13 SYN 151 INP 13 SYN 155 SEC 43 SYN 155 SEC 43 SYN 157 AP 1 SYN 157 AP 1 SYN 157 AP 1 SYN 163 TO SYN 163 TD SYN 165 TO SYN 165 TO SYN 167 AP 44 SYN 167 AP 44 SYN 171 RP 44 SYN 173 AP 18 SYN 175 INP18 SYN 177 RP 18 SYN 181 UNL 45 SYN 183 RP 45 SYN 187 UNL 45 SYN 187 UNL 45 SYN 197 AP 46 SYN 193 UNL 46		
AP13 SYN 151 INP13 SYN 153 RP13 SYN 155 SEC43 SYN 157 AP1 SYN 157 AP1A SYN 161 INP1 SYN 163 RF1 SYN 165 TO SYN 1667 AP44 SYN 167 AP44 SYN 167 AP44 SYN 171 RP44 SYN 173 AP18 SYN 177 RP45 SYN 177 P18 SYN 177 P18 SYN 177 P18 SYN 183 RP45 SYN 183 RP45 SYN 187 INP19 SYN 187 INP19 SYN 187 INP19 SYN 197 AP19 SYN 193 UNL46 SYN		
INP13 SYN 153 RP13 SYN 155 SEC43 SYN 157 AP1 SYN 157 AP1 SYN 157 AP13 SYN 161 INP1 SYN 163 RP1 SYN 163 RP1 SYN 165 TO SYN 165 TO SYN 165 TO SYN 167 AP44 SYN 171 RP44 SYN 173 AP18 SYN 175 INP18 SYN 177 RP45 SYN 181 UNL45 SYN 183 RP45 SYN 187 INP19 SYN 187 INP19 SYN 197 P19 SYN 197 AP146 SYN 193 UNL45 SYN 197 AP46 SYN	RP39 SYN	149
RP13 SYN 155 SEC43 SYN 157 AP1 SYN 157 AP1A SYN 157 AP1A SYN 161 INP1 SYN 163 TD SYN 165 TD SYN 164 INP1 SYN 165 TD SYN 167 AP44 SYN 167 AP44 SYN 171 RP44 SYN 173 AP18 SYN 175 INP18 SYN 177 RP18 SYN 177 P18 SYN 177 AP45 SYN 183 RP45 SYN 187 UNL45 SYN 187 INP19 SYN 187 AP45 SYN 197 AP46 SYN 197 AP46 SYN 197 AP46 SYN		151
SEC43 SYN 157 AP1 SYN 159 AP1A SYN 161 INP1 SYN 165 TO SYN 165 TO SYN 165 TO SYN 165 TO SYN 165 UNL44 SYN 167 AP44 SYN 173 AP18 SYN 173 AP18 SYN 175 INP18 SYN 177 RP18 SYN 177 AP45 SYN 183 RP45 SYN 183 RP45 SYN 187 UNL45 SYN 187 INP19 SYN 187 UNL45 SYN 197 AP45 SYN 193 UNL46 SYN 197 AP20 SYN 197		153
AP1 SYN 159 AP1A SYN 161 INP1 SYN 163 RP1 SYN 165 TO SYN 165 TO SYN 165 UNL44 SYN 171 RP44 SYN 173 AP18 SYN 177 RP18 SYN 177 AP18 SYN 177 AP45 SYN 181 UNL45 SYN 183 RP45 SYN 187 INP19 SYN 187 INP19 SYN 187 UNL45 SYN 187 RP19 SYN 197 AP19 SYN 193 UNL46 SYN 195 RP420 SYN 197		
AP1A SYN 161 INP1 SYN 163 RP1 SYN 165 TO SYN 1667 AP44 SYN 167 AP44 SYN 171 RP44 SYN 173 AP1B SYN 175 INP18 SYN 177 RP15 SYN 181 UNL45 SYN 183 RP45 SYN 185 AP19 SYN 187 INP19 SYN 187 RP19 SYN 197 RP19 SYN 197 AP146 SYN 195 RP450 SYN 197		
INP1 SYN 163 RP1 SYN 165 TD SYN 167 AP44 SYN 167 AP44 SYN 167 AP44 SYN 171 RP44 SYN 173 AP18 SYN 175 INP18 SYN 177 RP45 SYN 181 UNL45 SYN 183 RP45 SYN 185 AP19 SYN 187 INP19 SYN 187 INP19 SYN 197 AP46 SYN 193 UNL46 SYN 197 AP46 SYN 197		
RP1 SYN 165 TD SYN 167 AP44 SYN 167 UNL44 SYN 171 RP44 SYN 173 AP18 SYN 175 INP18 SYN 177 RP18 SYN 177 AP18 SYN 177 AP18 SYN 177 AP45 SYN 181 UNL45 SYN 183 RP45 SYN 187 INP19 SYN 187 INP19 SYN 187 UNL45 SYN 187 UNL45 SYN 197 AP45 SYN 193 UNL46 SYN 195 RP46 SYN 197 AP20 SYN 197		
TO SYN 167 AP44 SYN 169 UNL44 SYN 171 RP44 SYN 173 AP18 SYN 175 INP18 SYN 177 RP18 SYN 177 AP15 SYN 173 UNL45 SYN 181 UNL45 SYN 183 RP45 SYN 185 AP19 SYN 187 INP19 SYN 187 JNP19 SYN 187 JNP19 SYN 197 AP45 SYN 193 UNL46 SYN 195 RP46 SYN 197 AP20 SYN 197		
AP44 SYN 169 UNL44 SYN 171 RP44 SYN 173 AP18 SYN 175 INP18 SYN 177 AP18 SYN 177 AP45 SYN 181 UNL45 SYN 183 RP45 SYN 187 AP19 SYN 187 RP19 SYN 187 RP19 SYN 197 AP46 SYN 193 UNL46 SYN 195 RP420 SYN 197		
UNL 44 SYN 171 RP 44 SYN 173 AP18 SYN 175 INP18 SYN 177 RP 45 SYN 181 UNL 45 SYN 183 RP 45 SYN 183 RP 45 SYN 185 AP19 SYN 187 INP19 SYN 187 RP 19 SYN 191 AP46 SYN 193 UNL 46 SYN 197 AP20 SYN 199		
AP18 SYN 175 INP18 SYN 177 RP18 SYN 177 AP45 SYN 181 UNL45 SYN 183 RP45 SYN 185 AP19 SYN 187 INP19 SYN 187 INP19 SYN 191 AP46 SYN 193 UNL46 SYN 195 RP420 SYN 197		
INP18 SYN 177 RP18 SYN 179 AP45 SYN 181 UNL45 SYN 183 RP45 SYN 185 AP19 SYN 187 RP19 SYN 187 RP19 SYN 191 AP46 SYN 193 UNL46 SYN 197 AP20 SYN 197	RP44 SYN	173
RP1B SYN 177 AP45 SYN 181 UNL45 SYN 183 RP45 SYN 185 AP19 SYN 187 INP19 SYN 187 RP19 SYN 197 AP46 SYN 193 UNL46 SYN 197 AP20 SYN 197		175
AP45 SYN 181 UNL45 SYN 183 RP45 SYN 185 AP19 SYN 187 INP19 SYN 187 AP44 SYN 191 AP45 SYN 191 AP46 SYN 193 UNL46 SYN 195 RP420 SYN 197		
UNL 45 SYN 183 RP45 SYN 185 AP19 SYN 187 INP19 SYN 187 RP19 SYN 191 AP46 SYN 193 UNL 46 SYN 195 RP46 SYN 197 AP20 SYN 197		
RP45 SYN 185 AP19 SYN 187 INP19 SYN 187 AP46 SYN 191 AP46 SYN 193 UNL46 SYN 195 RP420 SYN 197		
AP19 SYN 187 INP19 SYN 189 RP19 SYN 191 AP46 SYN 193 UNL46 SYN 195 RP40 SYN 197 AP20 SYN 197		
INP19 SYN 189 RP19 SYN 191 AP46 SYN 193 UNL46 SYN 195 RP46 SYN 197 AP20 SYN 197		
RP19 SYN 191 AP46 SYN 193 UNL46 SYN 195 RP46 SYN 197 AP20 SYN 199		
AP46 SYN 193 UNL46 SYN 195 RP46 SYN 197 AP20 SYN 199		
UNL46 SYN 195 RP46 SYN 197 AP20 SYN 199		
AP20 SYN 199		
		197
INP20 SYN 201		
	INP20 SYN	201

RP20 SYN	203
AP50 SYN	205
UNL50 SYN	207
RP50 SYN	209
AP24 SYN	211
INP24 SYN	213
RP24 SYN	215
AP49 SYN	217
UNL49 SYN	221
RP49 SYN	223
AP23 SYN	227
INP23 SYN	229
RP23 SYN	235
Z18B SYN	237
AP2 SYN	239
AP2A SYN	241
INP2 SYN	243
RP2 SYN	245
RP2A SYN	247
ZB SYN	249
Z10 SYN AP28 SYN	251
UNL28 SYN	253 255
RP28 SYN	257
AP29 SYN	259
UNL29 SYN	261
RP29 SYN	263
AP6 SYN	265
INP6 SYN	267
RP6 SYN	269
AP30 SYN	271
UNL30 SYN	273
RP30 SYN	275
AP31 SYN	277
UNL31 SYN	279
RP31 SYN	281
AP48 SYN	283
UNL48 SYN	285
RP48 SYN	287
AP22 SYN	289
INP22 SYN RP22 SYN	291
AP47 SYN	293 295
UNL47 SYN	293
RP47 SYN	299
AP21 SYN	301
INP21 SYN	309
RP21 SYN	311
Z6A SYN	313
AP4 SYN	315
INP4 SYN	317
RP4 SYN	319
AP27 SYN	321
UNL27 SYN	323
RP27 SYN	325

Z 9 8	SYN	327	
AP5	SYN	329	
INP5	SYN	331	
RP5	SYN	333	
AP25	SYN	335	
UNL25		333	
RP25	SYN	337	
Z23A	SYN		
AP26		341	
	SYN	343	
UNL26		345	
RP26	SYN	347	
AP3	SYN	349	
INP3	SYN	353	
RP 3	SYN	355	
Z11B	SYN	357	
Z 4	SYN	359	
Z 5	SYN	361	
Z 1	SYN	363	
Z 3	SYN	365	
SEC58	SYN	367	
Z 1 3	SYN	369	
Z12	SYN	371	
Z 9	SYN	373	
PARK	SYN	381	
APP	SYN	383	
RPP	SYN	385	
¥			
* REAL	LOCATION	OF COMPUTER SPACE NEEDED TO PERFORM RUN	
*		OF BOM BYER BUNCE REEDED TO TERIORIT RON	
	REALLOCAT	E CDM,50000	
×			
		F MATRIX TO CONTAIN OUTPUT-TO-INPUT DISTANCES	
*		, HAIRIX TO CONTAIN ODIFUI-TO-INPUT DISTANCES	
1	MATRIX	MY 51 04	
*	MHIKIX	MX,51,24	
* VALL	INDICAT	N OF OUTPUT-TO-INPUT DISTANCE MATRIX. THE ROW	
* VALL	JE INDICAT	ES THE OUTPUT STATION AND THE COLUMN VALUE THE	
* INPL	JI STATION	. THE VALUE IN THAT MATRIX POSITION IS THE RANK	
* OF (JISTANCES	FROM THAT PARTICULAR OUTPUT (1=CLOSEST	
* 24=F	URIHESI).	THE ROW VALUE 51 REPRESENTS THE DISTANCE FROM	
	PARK AREA	•	
*			
	INITIAL	MX1(25,1),14/MX1(25,2),15/MX1(25,3),1/MX1(25,4),1	7
	INITIAL	MX1(25,5),6/MX1(25,6),11/MX1(25,7),2/MX1(25,8),4	
	INITIAL	MX1(25,9),3/MX1(25,10),8/MX1(25,11),9	
	INITIAL	MX1(25,12),10/MX1(25,13),19/MX1(25,14),12	
	INITIAL	MX1(25,15),5/MX1(25,16),7/MX1(25,17),13	
	INITIAL	MX1(25,18),16/MX1(25,19),18/MX1(25,20),20	
	INITIAL	MX1(25,21),22/MX1(25,22),21/MX1(25,23),24	
	INITIAL	MX1(25,24),23	
	INITIAL	MX1(26,1),B/MX1(26,2),9/MX1(26,3),1/MX1(26,4),17	
	INITIAL	MX1(26,5),2/MX1(26,6),4/MX1(26,7),3/MX1(26,8),5	
	INITIAL	MX1(26,9),7/MX1(26,10),11/MX1(26,11),12	
	INITIAL	MX1(26,12),13/MX1(26,13),10/MX1(26,14),16	

INITIAL INITIAL INITIAL INITIAL INITIAL	MX1(26,15),6/MX1(26,16),9/MX1(26,17),15 MX1(26,18),14/MX1(26,19),18/MX1(26,20),19 MX1(26,21),21/MX1(26,22),20/MX1(26,23),23 MX1(26,24),22
INITIAL	MX1(27,1),4/MX1(27,2),B/MX1(27,3),19/MX1(27,4),15
INITIAL	MX1(27,5),1/MX1(27,6),3/MX1(27,7),2/MX1(27,8),5
INITIAL	MX1(27,9),7/MX1(27,10),12/MX1(27,11),13
INITIAL	MX1(27,12),14/MX1(27,13),11/MX1(27,14),17
INITIAL	MX1(27,15),6/MX1(27,16),9/MX1(27,17),16
INITIAL	MX1(27,18),10/MX1(27,19),18/MX1(27,20),20
INITIAL	MX1(27,21),22/MX1(27,22),21/MX1(27,23),24
INITIAL	MX1(27,24),23
INITIAL	MX1(28,1),1/MX1(28,2),2/MX1(28,3),6/MX1(28,4),4
INITIAL	MX1(28,5),8/MX1(28,6),10/MX1(28,7),7/MX1(28,8),9
INITIAL	MX1(28,9),12/MX1(28,10),17/MX1(28,11),18
INITIAL	MX1(28,12),19/MX1(28,13),16/MX1(28,14),22
INITIAL	MX1(28,15),11/MX1(28,16),15/MX1(28,17),21
INITIAL	MX1(28,18),3/MX1(28,19),5/MX1(28,20),13
INITIAL	MX1(28,21),20/MX1(28,22),14/MX1(28,23),23
INITIAL	MX1(28,24),24
1NITIAL	MX1(29,1),1/MX1(29,2),2/MX1(29,3),6/MX1(29,4),4
IN1TIAL	MX1(29,5),8/MX1(29,6),10/MX1(29,7),7/MX1(29,8),9
IN1TIAL	MX1(29,9),12/MX1(29,10),17/MX1(29,11),18
INITIAL	MX1(29,12),19/MX1(29,13),16/MX1(29,14),22
1NITIAL	MX1(29,15),11/MX1(29,16),15/MX1(29,17),21
INITIAL	MX1(29,18),3/MX1(29,19),5/MX1(29,20),13
IN1TIAL	MX1(29,21),20/MX1(29,22),14/MX1(29,23),23
INITIAL	MX1(29,24),24
INITIAL	MX1(30,1),1/MX1(30,2),2/MX1(30,3),7/MX1(30,4),9
INITIAL	MX1(30,5),5/MX1(30,6),4/MX1(30,7),B/MX1(30,8),10
INITIAL	MX1(30,9),12/MX1(30,10),17/MX1(30,11),18
INITIAL	MX1(30,12),19/MX1(30,13),16/MX1(30,14),22
INITIAL	MX1(30,15),11/MX1(30,16),15/MX1(30,17),21
INITIAL	MX1(30,18),3/MX1(30,19),6/MX1(30,20),13
INITIAL	MX1(30,21),20/MX1(30,22),14/MX1(30,23),23
INITIAL	MX1(30,24),24
INITIAL	MX1(31,1),1/MX1(31,2),2/MX1(31,3),7/MX1(31,4),9
INITIAL	MX1(31,5),5/MX1(31,6),4/MX1(31,7),8/MX1(31,8),10
INITIAL	MX1(31,7),12/MX1(31,10),17/MX1(31,11),18
INITIAL	MX1(31,12),19/MX1(31,13),16/MX1(31,14),22
INITIAL	MX1(31,15),11/MX1(31,16),15/MX1(31,17),21
INITIAL	MX1(31,18),3/MX1(31,19),6/MX1(31,20),13
INITIAL	MX1(31,21),20/MX1(31,22),14/MX1(31,23),23
INITIAL	MX1(31,24),24

INITIAL	MX1 (32,1),11/MX1 (32,2),9/MX1 (32,3),16/MX1 (32,4),12
INITIAL	MX1 (32,5),17/MX1 (32,6),13/MX1 (32,7),15/MX1 (32,8),18
INITIAL	MX1 (32,9),1/MX1 (32,10),2/MX1 (32,11),3
INITIAL	MX1 (32,12),4/MX1 (32,13),8/MX1 (32,14),5
INITIAL	MXI (32,15),6/MX1 (32,16),7/MX1 (32,17),10
INITIAL	MX1 (32,18),14/MX1 (32,19),19/MX1 (32,20),20
INITIAL	MX1 (32,21),22/MX1 (32,22),21/MX1 (32,23),24
INITIAL	MX1 (32,24),23
INITIAL	MX1(33,1),10/MX1(33,2),8/MX1(33,3),15/MX1(33,4),11
INITIAL	MX1(33,5),16/MX1(33,6),12/MX1(33,7),14/MX1(33,8),17
INITIAL	MX1(33,9),18/MX1(33,10),1/MX1(33,11),2
INITIAL	MX1(33,12),3/MX1(33,13),7/MX1(33,14),4
INITIAL	MX1(33,15),5/MX1(33,16),6/MX1(33,17),9
INITIAL	MX1(33,18),13/MX1(33,17),19/MX1(33,20),20
INITIAL	MX1(33,21),22/MX1(33,22),21/MX1(33,23),24
INITIAL	MX1(33,24),23
INITIAL	MX1 (34,1),10/MX1 (34,2),8/MX1 (34,3),15/MX1 (34,4),11
INITIAL	MX1 (34,5),16/MXI (34,6),12/MX1 (34,7),14/MX1 (34,8),17
INITIAL	MX1 (34,9),18/MX1 (34,10),1/MXI (34,11),2
INITIAL	MX1 (34,12),3/MX1 (34,13),7/MX1 (34,14),4
INITIAL	MX1 (34,15),5/MX1 (34,16),6/MX1 (34,17),9
INITIAL	MX1 (34,18),13/MX1 (34,19),19/MXI (34,20),20
INITIAL	MX1 (34,21),22/MX1 (34,22),21/MX1 (34,23),24
INITIAL	MX1 (34,24),23
INITIAL	MX1 (35,1),10/MX1 (35,2),8/MX1 (35,3),15/MX1 (35,4),11
INITIAL	MX1 (35,5),16/MXI (35,6),12/MX1 (35,7),14/MXI (35,8),17
INITIAL	MX1 (35,9),18/MX1 (35,10),1/MX1 (35,11),2
INITIAL	MX1 (35,12),3/MX1 (35,13),7/MX1 (35,14),4
INITIAL	MX1 (35,15),5/MX1 (35,16),6/MX1 (35,17),9
INITIAL	MX1 (35,18),13/MX1 (35,17),19/MX1 (35,20),20
INITIAL	MX1 (35,21),22/MX1 (35,22),21/MX1 (35,23),24
INITIAL	MX1 (35,24),23
INITIAL	MX1 (36,1),9/MX1 (36,2),7/MX1 (36,3),12/MX1 (36,4),10
INITIAL	MX1 (36,5),15/MX1 (36,6),11/MX1 (36,7),14/MX1 (36,8),16
INITIAL	MX1 (36,9),17/MX1 (36,10),1/MX1 (36,11),2
INITIAL	MX1 (36,12),3/MX1 (36,13),6/MXI (36,14),20
INITIAL	MX1 (36,12),3/MX1 (36,16),5/MXI (36,17),8
INITIAL	MX1 (36,18),13/MX1 (36,19),18/MX1 (36,20),19
INITIAL	MX1 (36,21),22/MX1 (36,22),21/MX1 (36,23),24
INITIAL	MX1 (36,24),23
INITIAL INITIAL INITIAL INITIAL INITIAL INITIAL INITIAL	MX1(37,1),6/MX1(37,2),4/MX1(37,3),9/MX1(37,4),7 MX1(37,5),12/MX1(37,6),8/MX1(37,7),11/MX1(37,8),13 MX1(37,9),14/MX1(37,10),16/MX1(37,11),17 MX1(37,12),18/MX1(37,13),3/MX1(37,14),20 MX1(37,15),1/MX1(37,16),2/MX1(37,17),5 MX1(37,18),10/MX1(37,19),15/MX1(37,20),19

INITIAL	MX1(37,21),22/MX1(37,22),21/MX1(37,23),24
INITIAL	MX1(37,24),23
INITIAL	MX1(3B,1),3/MX1(3B,2),2/MX1(3B,3),6/MX1(3B,4),4
INITIAL	MX1(3B,5),9/MX1(3B,6),5/MX1(3B,7),B/MX1(3B,8),10
INITIAL	MX1(3B,9),12/MX1(3B,10),15/MX1(3B,11),16
INITIAL	MX1(3B,12),17/MX1(3B,13),1/MX1(3B,14),20
INITIAL	MX1(3B,15),11/MX1(3B,16),14/MX1(3B,17),19
INITIAL	MX1(3B,1B),7/MX1(3B,19),13/MX1(3B,20),18
INITIAL	MX1(3B,21),22/MX1(3B,22),21/MX1(3B,23),24
INITIAL	MX1(3B,24),23
1NITIAL	MX1(39,1),3/MX1(39,2),2/MX1(39,3),6/MX1(39,4),4
INITIAL	MX1(39,5),9/MX1(39,6),5/MX1(39,7),B/MX1(39,8),10
INITIAL	MX1(39,9),12/MX1(39,10),15/MX1(39,11),16
INITIAL	MX1(39,12),17/MX1(39,13),1/MX1(39,14),20
INITIAL	MX1(39,15),11/MX1(39,16),14/MX1(39,17),19
INITIAL	MX1(39,1B),7/MX1(39,19),13/MX1(39,20),18
INITIAL	MX1(39,21),22/MX1(39,22),21/MX1(39,23),24
INITIAL	MX1(39,24),23
INITIAL	MX1(40,1),5/MX1(40,2),6/MX1(40,3),11/MX1(40,4),B
INITIAL	MX1(40,5),13/MX1(40,6),9/MX1(40,7),12/MX1(40,B),14
INITIAL	MX1(40,7),15/MX1(40,10),1B/MX1(40,11),19
INITIAL	MX1(40,12),20/MX1(40,13),24/MX1(40,14),1
INITIAL	MX1(40,15),2/MX1(40,16),3/MX1(40,17),4
INITIAL	MX1(40,1B),7/MX1(40,17),10/MX1(40,20),17
INITIAL	MX1(40,21),21/MX1(40,22),16/MX1(40,23),23
INITIAL	MX1(40,24),22
INITIAL	MX1(41,1),4/MX1(41,2),5/MX1(41,3),10/MX1(41,4),7
INITIAL	MX1(41,5),12/MX1(41,2),5/MX1(41,7),11/MX1(41,8),13
INITIAL	MX1(41,9),14/MX1(41,10),17/MX1(41,11),18
INITIAL	MX1(41,12),19/MX1(41,13),24/MX1(41,14),21
INITIAL	MX1(41,15),1/MX1(41,16),2/MX1(41,17),3
INITIAL	MX1(41,18),6/MX1(41,19),9/MX1(41,20),16
INITIAL	MX1(41,21),20/MX1(41,22),15/MX1(41,23),23
INITIAL	MX1(41,24),22
INITIAL	MX1(42,1),4/MX1(42,2),5/MX1(42,3),10/MX1(42,4),7
INITIAL	MX1(42,5),12/MX1(42,6),8/MX1(42,7),11/MX1(42,8),13
INITIAL	MX1(42,9),14/MX1(42,10),17/MX1(42,11),18
INITIAL	MX1(42,12),19/MX1(42,13),24/MX1(42,14),21
INITIAL	MX1(42,15),1/MX1(42,16),2/MX1(42,17),3
INITIAL	MX1(42,18),6/MX1(42,19),9/MX1(42,20),16
INITIAL	MX1(42,21),20/MX1(42,22),15/MX1(42,23),23
INITIAL	MX1(42,24),22
INITIAL	MX1(43,1),1/MX1(43,2),2/MX1(43,3),7/MX1(43,4),4
Initial	MX1(43,5),9/MX1(43,6),5/MX1(43,7),8/MX1(43,8),10

INITIAL INITIAL INITIAL INITIAL INITIAL INITIAL INITIAL	MX1(43,7),11/MX1(43,10),14/MX1(43,11),15 MX1(43,12),16/MX1(43,13),23/MX1(43,14),18 MX1(43,15),20/MX1(43,16),22/MX1(43,17),24 MX1(43,18),3/MX1(43,19),6/MX1(43,20),12 MX1(43,21),17/MX1(43,22),13/MX1(43,23),21 MX1(43,24),19
INITIAL	Mx1(44,1),7/MX1(44,2),9/MX1(44,3),13/MX1(44,4),10
INITIAL	MX1(44,5),14/MX1(44,6),11/MX1(44,7),12/MX1(44,8),15
INITIAL	MX1(44,9),17/MX1(44,10),20/MX1(44,11),21
INITIAL	MX1(44,12),22/MX1(44,13),18/MX1(44,14),24
INITIAL	MX1(44,15),16/MX1(44,16),18/MX1(44,17),23
INITIAL	MX1(44,18),1/MX1(44,16),2/MX1(44,20),3
INITIAL	MX1(44,21),5/MX1(44,22),4/MX1(44,23),8
INITIAL	MX1(44,24),6
INITIAL	MX1(45,1),6/MX1(45,2),8/MX1(45,3),13/MX1(45,4),10
INITIAL	MX1(45,5),14/MX1(45,6),11/MX1(45,7),12/MX1(45,8),15
INITIAL	MX1(45,9),17/MX1(45,10),20/MX1(45,11),21
INITIAL	MX1(45,12),22/MX1(45,13),18/MX1(45,14),24
INITIAL	MX1(45,15),16/MX1(45,16),18/MX1(45,17),23
INITIAL	MX1(45,18),9/MX1(45,19),1/MX1(45,20),2
INITIAL	MX1(45,21),4/MX1(45,22),3/MX1(45,23),7
INITIAL	MX1(45,24),5
INITIAL	MX1(46,1),5/MX1(46,2),6/MX1(46,3),10/MX1(46,4),8
INITIAL	MX1(46,5),12/MX1(46,6),4/MX1(46,7),11/MX1(46,8),13
INITIAL	MX1(46,9),15/MX1(46,10),19/MX1(46,11),20
INITIAL	MX1(46,12),21/MX1(46,13),18/MX1(46,14),24
INITIAL	MX1(46,15),14/MX1(46,16),17/MX1(46,17),23
INITIAL	MX1(46,18),7/MX1(46,19),9/MX1(46,20),1
INITIAL	MX1(46,21),22/MX1(46,22),16/MX1(46,23),3
INITIAL	MX1(46,24),2
INITIAL	MX1(47,1),2/MX1(47,2),3/MX1(47,3),8/MX1(47,4),5
INITIAL	MX1(47,5),10/MX1(47,6),6/MX1(47,7),9/MX1(47,8),11
INITIAL	MX1(47,9),13/MX1(47,10),18/MX1(47,11),19
INITIAL	MX1(47,12),20/MX1(47,13),17/MX1(47,14),23
INITIAL	MX1(47,15),12/MX1(47,16),16/MX1(47,17),22
INITIAL	MX1(47,18),4/MX1(47,19),7/MX1(47,20),14
INITIAL	MX1(47,21),1/MX1(47,22),15/MX1(47,23),24
INITIAL	MX1(47,24),21
INITIAL	MX1(48,1),3/MX1(48,2),4/MX1(48,3),9/MX1(48,4),6
INITIAL	MX1(48,5),11/MX1(48,6),7/MX1(48,7),10/MX1(48,8),12
INITIAL	MX1(48,9),14/MX1(48,10),18/MX1(48,11),19
INITIAL	MX1(48,12),20/MX1(48,13),17/MX1(48,14),23
INITIAL	MX1(48,15),13/MX1(48,16),16/MX1(48,17),22
INITIAL	MX1(48,18),5/MX1(48,19),8/MX1(48,20),15
INITIAL	MX1(48,21),2/MX1(48,22),1/MX1(48,23),24
INITIAL	MX1(48,24),21

INITIAL MX1(49,5),10/ INITIAL MX1(49,9),13/ INITIAL MX1(49,12),2(INITIAL MX1(49,12),12/ INITIAL MX1(49,15),12/ INITIAL MX1(49,18),5/	MX1 (49,2),4/MX1 (49,3),8/MXI (49,4),6 (MX1 (49,6),2/MX1 (49,7),9/MX1 (49,8),11 (MX1 (49,10),18/MX1 (49,11),19 D/MX1 (49,13),17/MX1 (49,14),23 2/MX1 (49,16),16/MX1 (49,17),22 (MX1 (49,19),7/MX1 (49,20),14 1/MX1 (49,22),15/MX1 (49,23),I 4
INITIAL MX1 (50,5),11/ INITIAL MX1 (50,9),14/ INITIAL MX1 (50,12),21 INITIAL MX1 (50,15),13 INITIAL MX1 (50,18),6/	4X1 (50,2),5/MX1 (50,3),9/MX1 (50,4),7 (MXI (50,6),3/MX1 (50,7),10/MX1 (50,8),12 (MXI (50,10),19/MX1 (50,11),20 1/MX1 (50,13),18/MX1 (50,14),24 5/MX1 (50,16),17/MX1 (50,17),23 (MX1 (50,19),8/MX1 (50,20),15 2/MX1 (50,22),16/MX1 (50,23),2
INITIAL MX1(51,5),6/M INITIAL MX1(51,9),3/M INITIAL MX1(51,12),10 INITIAL MX1(51,15),5/ INITIAL MX1(51,18),16	MX1(51,2),15/MX1(51,3),1/MXI(51,4),17 (X1(51,6),11/MX1(51,7),2/MXI(51,8),4 (X1(51,10),8/MX1(51,11),9 //MX1(51,13),19/MX1(51,14),12 MX1(51,16),7/MX1(51,17),13 //MX1(51,19),18/MX1(51,20),20 //MX1(51,22),21/MX1(51,23),24
* DISPATCH FUNCTIONS FOR THE I * INPUT STATIONS AND THE FUNCT	TATION. A RANDOM NUMBER GENERATOR
.014,28/.495,29/.569,47/.643,48 2 FUNCTION RN1,08	/.717,44/.791,45/.865,49/.939,50/1.0,46 /.712,45/.836,49/.960,50/1.0,46
.632,43/.685,47/.738,48/.791,44 4 FUNCTION RN1,02 .500,38/1.0,39	/.844,45/.897,49/.949,50/1.0,46
5 FUNCTION RN1,08 .073,30/.207,47/.341,48/.475,44. 6 FUNCTION RN1,09 .007,43/.467,29/.537,47/.614,48.	/.609,45/.743,49/.878,50/I.0,46 /.691,44/.768,45/.845,49/.922,50/1.0,46

7 FUNCTION RN1,D8 .417,35/.500,47/.583,48/.666,44/.749,45/.832,49/.915,50/1.0,46 8 FUNCTION RN1.D7 ,143,47/.286,48/.429,44/.572,45/.715,49/.858,50/1.0,46 9 FUNCTION RN1.D7 .143,47/.286,48/.429,44/.572,45/.715,49/.858,50/1.0,46 10 FUNCTION RN1.DB .641,26/.692,47/.743,48/.794,44/.845,45/.896,49/.947,50/1.0,46 11 FUNCTION RN1.DB .820,43/.845,47/.869,48/.893,44/.917,45/.941,49/.965,50/1.0,46 12 FUNCTION RN1.D8 .821,43/.847,47/.873,48/.899,44/.925,45/.951,49/.977,50/1.0,46 13 FUNCTION RN1.D8 .064,27/.899,31/.916,47/.933,48/.950,44/.967,45/.984,49/1.0,50 14 FUNCTION RN1,D8 .708,43/.750,47/.792,48/.834,44/.876,45/.918,49/.960,50/1.0,46 15 FUNCTION RN1,D1 1.0,43 16 FUNCTION RN1.D1 1.0,43 17 FUNCTION RN1.D1 1.0.43 18 FUNCTION RN1,D18 .029,41/.072,40/.104,42/.119,36/.141,37/.319,38/.497,39/.575,35 .582,34/.596,33/.610,34/.698,25/.769,26/.781,28/.785,29/.915,31 .944,30/1.0,46 19 FUNCTION RN1.D18 .029,41/.072,40/.104,42/.119,36/.141,37/.319,38/.497,39/.575,35 . 582,34/.596,33/.610,34/.698,25/.769,26/.781,28/.785,29/.915,31 ,944,30/1.0,46 20 FUNCTION RN1.D22 .009,41/.022,40/.031,42/.035,36/.044,37/.069,38/.094,39/.117,35 . 119,34/.123,33/.127,34/.144,25/.165,26/.166,29/.296,31/.316,30 .430,47/.544,48/.678,44/.772,45/.886,49/1.0,50 21 FUNCTION RN1,D18 .029,41/.072,40/.104,42/.119,36/.141,37/.319,38/.497,39/.575,35 .582,34/.596,33/.610,34/.698,25/.769,26/.781,28/.785,29/.915,31 , 944, 30/1.0,46

```
22
        FUNCTION
                   RN1_018
. 029,41/.072,40/.104,42/.119,36/.141,37/.319,38/.497,39/.575,35
. 582,34/.596,33/.610,34/.698,25/.769,26/.781,28/.785,29/.915,31
.944.30/1.0.46
 23
       FUNCTION
                  RN1.018
. 029,41/.072,40/.104,42/.119,36/.141,37/.319,38/.497,39/.575,35
. 582,34/.596,33/.610,34/.698,25/.769,26/.781,28/.785,29/.915,31
. 944.30/1.0.46
 24
       FUNCTION
                  RN1.D18
. 029,41/.072,40/.104,42/.119,36/.141,37/.319,38/.497,39/.575,35
. 582,34/.596,33/.610,34/.698,25/.769,26/.781,28/.785,29/.915,31
.944.30/1.0.46
* CONVERSION OF VEHICLE STATUS (EITHER LOADED=1 OR UNLOADED=0)
×
   TO A SAVEVALUE WHICH STORES TOTAL TRAVELLING TIME FOR BOTH.
÷
 25
       FUNCTION PF4.D2
0,76/1,77
×
   SODLEAN VARIABLES WHICH ARE USED AT DECISION POINTS TO
* OETERMINE A VEHICLE' ROUTE.
¥
 1
       8VARIA8LE PF2'E'9+PF2'F'32
       8VARIA8LE PF2'E'40+PF2'E'14+PF2'E'41+PF2'E'42+PF2'E'15+PF2'E'16
 2
+PF2'E'17+PF2'E'43
       8VARIABLE PF2'E'15+PF2'E'16+PF2'E'17+PF2'F'43
 3
       8VARIA8LE PF2'E'18+PF2'E'19+PF2'E'20+PF2'E'21+PF2'E'22+PF2'E'23
 Δ
+PF2'E'24+PF2'E'44+PF2'E'45+PF2'E'46+PF2'E'47+PF2'E'48
+PF2'E'49+PF2'E'50+PF2'E'1
       8VARIA8LE PF2'E'2+PF2'E'28+PF2'E'29+PF2'E'6+PF2'E'30+PF2'E'31
 5
       8VARIABLE PF2'E'18+PF2'E'19+PF2'E'20+PF2'E'21+PF2'E'22+PF2'E'23
 6
+PF2'E'24+PF2'E'44+PF2'E'45+PF2'E'46+PF2'E'47+PF2'E'48
+PF2'E'49+PF2'E'50+PF2'E'1
 7
       8VARIABLE PF2'E'1
       8VARIABLE PF2'E'18+PF2'E'19+PF2'E'20+PF2'E'21+PF2'E'22+PF2'E'23_
 8
+PF2'E'24+PF2'E'44+PF2'E'45+PF2'E'46+PF2'E'47+PF2'E'48
+PF2'E'49+PF2'E'50
       8VARIABLE PF2'E'2+PF2'E'28+PF2'E'29+PF2'E'6+PF2'E'30+PF2'E'31
 9
+PF2'E'18+PF2'E'19+PF2'E'20+PF2'E'21+PF2'E'22+PF2'E'23
+PF2'E'24+PF2'E'44+PF2'E'45+PF2'E'46+PF2'E'47+PF2'E'48
+PF2'E'49+PF2'E'50+PF2'E'1
 10
       BVARIABLE PF2'E'28+PF2'E'29+PF2'E'30+PF2'E'6+PF2'E'31
       BVARIABLE PF2'E'28+PF2'E'29
 11
12
      8VARIABLE PF2'E'6+PF2'E'30+PF2'E'31+PF2'E'1
+PF2'E'18+PF2'E'19+PF2'E'20+PF2'E'21+PF2'E'22+PF2'E'23
+PF2'E'24+PF2'E'44+PF2'E'45+PF2'E'46+PF2'E'47+PF2'E'48
+PF2'E'49+PF2'E'50
       8VARIABLE PF2'E'46+PF2'E'20+PF2'E'23+PF2'E'49+PF2'E'24+PF2'E'50
13
+PF2'E'6+PF2'E'30+PF2'E'31
14
       8VARIABLE PF2'E'6+PF2'E'30+PF2'E'31+PF2'E'1
+PF2'E'18+PF2'E'19+PF2'E'20+PF2'E'21+PF2'E'22+PF2'E'23
+PF2'E'24+PF2'E'44+PF2'E'45+PF2'E'46+PF2'E'47+PF2'E'48
```

```
+PF2'E'49+PF2'F'50
 15
       8VARIABLE PF2'E'21+PF2'E'22+PF2'E'47+PF2'E'4B
 16
       SVARIABLE PF2'E'4+PF2'E'27+PF2'F'5
 17
       8VARIABLE PF2'E'5+PF2'E'28+PF2'E'29+PF2'E'6+PF2'E'30+PF2'F'31
+PF2'E'18+PF2'E'19+PF2'E'20+PF2'E'21+PF2'E'22+PF2'E'23
+PF2'E'24+PF2'E'44+PF2'E'45+PF2'E'46+PF2'E'47+PF2'E'48
+PF2'E'49+PF2'E'50+PF2'E'1+PF2'E'2
 18
       SVARIABLE PF2'E'3+PF2'E'26+PF2'E'5
 19
       BVARIABLE PF2'E'5+PF2'E'28+PF2'E'29+PF2'E'6+PF2'E'30+PF2'E'31
+PF2'E'18+PF2'E'19+PF2'E'20+PF2'E'21+PF2'E'22+PF2'E'23
+PF2'E'24+PF2'E'44+PF2'E'45+PF2'E'46+PF2'E'47+PF2'E'48
+PF2'E'49+PF2'E'50+PF2'E'1+PF2'E'2
       BVARIABLE PF2'E'7+PF2'E'8+PF2'E'9+PF2'E'32+PF2'E'33+PF2'E'34
 20
+PF2'E'35+PF2'E'36+PF2'E'10+PF2'E'11+PF2'E'12+PF2'E'37
+PF2'E'40+PF2'E'14+PF2'E'41+PF2'E'42
21
       BVARIABLE PF2'E'15+PF2'E'16+PF2'E'17+PF2'E'43
       8VARIABLE XF1'G'0+XF2'G'0+XF3'G'0+XF4'G'0+XF5'G'0+XF6'G'0
22
+XF7'G'0+XF8'G'0+XF9'G'0+XF10'G'0+XF11'G'0+XF12'G'0
+XF13'G'0+XF14'G'0+XF15'G'0+XF16'G'0+XF17'G'0
+XF18'G'0+XF19'G'0+XF20'G'0+XF21'G'0+XF22'G'0
+XF23'6'0+XF24'6'0
  MACROS SHOULD BE INSERTED HERE
¥
  GENERATOR OF THE VEHICLES.
¥
        GENERATE 100,5,,22,,6PF
        SAVEVALUE 91+,1,XF
        ASSIGN
                  1.XF91.PF
                  2.51,PF
        ASSIGN
        SEIZE
                  Z248
        QUEUE
                  (7248+1)
        QUENE
                  350
        SAVEVALUE (PF1+50),0,XF
¥
  MAIN PROGRAM REPRESENTING THE GUIDEPATH THE VEHICLES WILL
×
  FOLLOW
J37
       ADVANCE
                  Û
TRVL
       MACRO
                  PF1.3.Z24A.Z248
       TEST E
                  BV1.0.J1
INPT
       MACRO
                  50, IN78, Z24A, 7, AP7, RP7, INP7, 12, 14, IN7A
INPT
       MACRO
                  50, INBB, RP7, B, APB, RP8, INPB, 15, 2, INBA
OUTPT MACRO
                  RPB, 33, AP33, RP33, UNL33, 2, 1, 50, 033A, 0338
OUTPT MACRO
                  RP33,34,AP34,RP34,UNL34,1,27,50,034A,0348
OUTPT MACRO
                  RP34,35,AP35,RP35,UNL35,15,11,50,035A,0358
       TRANSFER
                 . J2
J1
       ADVANCE
                  0
OUTPT MACRO
                  Z24A, 32, AP32, RP32, UNL32, 41, 7, 50, 032A, 0328
```

```
149
```

INPT Dutpt J2	MACRO Macro Test e	50,IN9B,RP32,9,AP9,RP9,INP9,7,41,IN9A RP9,35,AP35,RP35,UNL35,15,11,50,035C,035D BV2,1,J3
DUTPT INPI DUTPT DUTPT INPT INPT	MACRO MACRO MACRO MACRO MACRO MACRO TRANSFER	RP35,40,AP40,RP40,UNL40,36,2,50,D40A,D40B 50,IN14B,RP40,14,AP14,RP14,INP14,2,B,IN14A RP14,41,AP41,RP41,UNL41,B,10,50,D41A,D41B RP41,42,AP42,RP42,UNL42,10,7,50,D42A,D42B 50,IN15B,RP42,15,AP15,RP15,INP15,10,4,IN15A 50,IN16B,RP15,16,AP16,RP16,INP16,44,21,IN16A ,J5
J4 INPT J39 INPT J5 INPT DUTPT TRVL J29	ADVANCE MACRO ADVANCE MACRO ADVANCE MACRO MACRO MACRO TEST E	0 50, IN150, RP37, 15, AP15A, RP15, INP15, 29, 4, IN15C 0 50, IN160, RP15, 16, AP16, RP16, INP16, 44, 21, IN16C 0 50, IN178, RP16, 17, AP17, RP17, INP17, 21, 9, IN17A RP17, 43, AP43, RP43, UNL 43, 9, 14, 50, D43A, D438 PF1, 15, DT, RP43 BV4, 0, J6
TRVL	MACRD TRANSFER	PF1,22,Z11,DT ,J10
J6 TRVL	ADVANCE Macro Transfer	0 PF1,22,SEC53,DT ,J11
J3 DUTPT INPT INPT INPT DUTPT	ADVANCE Macro Macro Macro Macro Macro Test e	0 RP35,36,AP36,RP36,UNL36,6,2,50,D36A,D36B 50,IN108,RP36,10,AP10,RP10,INP10,2,3,IN10A 50,IN118,RP10,11,AP11,RP11,INP11,3,2,IN11A 50,IN128,RP11,12,AP12,RP12,INP12,3,10,IN12A RP12,37,AP37,RP37,UNL37,11,34,50,D37A,D37B BV3,0,J4
OUTPT J40 DUTPT INPT	MACRD ADVANCE MACRD MACRD TEST E	RP37,38,AP38,RP38,UNL38,6,31,50,D38A,D38B 0 RP38,39,AP39,RP39,UNL39,31,3,50,D39A,D39B 50,IN138,RP39,13,AP13,RP13,INP13,2,1,IN13A 8V5,0,J7
TRVL	MACRD TEST E	PF1,24,SEC43,RP13 8V6,1,JB
TRVL J11	MACRO Test e	PF1,22,SEC53,SEC43 8V7,1,J12
INPT J19	MACRO Test e	50, IN18, SEC53, 1, AP1, RP1, INP1, 6, 1, IN1A 8V8, 1, J13
TRVL DUTPT	MACRO Macro Transfer	PF1,6,T0,RP1 T0,44,AP44,RP44,UNL44,52,1,50,D44A,D448 ,J14

J12 TRVL DUTPT	ADVANCE Macro Macro	0 PF1,6,SEC3,SEC53 SEC3,44,AP44,RP44,UNL44,52,1,50,D44C,D44D
J14 INPT OUTPT INPT	ADVANCE Macro Macro Macro Test e	0 50, IN188, RF44, 18, AP18, RF18, INF18, 6, 24, IN18A RF18, 45, AP45, RF45, UNL 45, 24, 1, 50, D45A, D45B 50, IN198, RF45, 19, AF19, RF19, INF19, 1, 21, 1N19A 8V13, 1, J23
J28 DUTPT INPT DUTPT INPT DUTPT INPT TRVL	ADVANCE MACRO MACRO MACRO MACRO MACRO TEST E MACRO TRANSFER	0 RP19,46,AP46,RP46,UNL46,42,5,50,D46A,D46B 50,IN208,RP46,20,AP20,RP20,INP20,4,36,IN20A RP20,50,AP50,RP50,UNL50,35,1,50,D50A,D50B 50,IN248,RP50,24,AP24,RP24,1NP24,1,42,IN24A RP24,49,AP49,RP49,UNL49,41,1,50,D49A,D49B 50,IN23B,RP49,23,AP23,RP23,1NP23,1,69,IN23A 8V14,1,J24 PF1,2,Z188,RP23 ,J25
J8 TRVL J10 INPT J15	ADVANCE Macro Advance Macro Test e	0 PF1,22,Z11,SEC43 0 50,IN28,Z11,2,AP2,RP2,INP2,15,3,IN2A 8V9,1,J16
INPT J17	MACRO TEST E	50, IN2F, RP2, 2, AP2A, RP2A, INP2, 4, 4, IN2E 8V10, 1, J18
TRVL	MACRO Test e	PF1,28,78,RP2A 8V11,1,J20
TRVL DUTPT J32 DUTPT	MACRD MACRD Advance Macrd Test e	PF1,9,210,28 210,28,AP28,RP28,UNL28,15,2,50,D28A,D28B 0 RP28,29,AP29,RP29,UNL29,2,13,50,D29A,D298 8V12,1,J21
TRVL J25 INPT J22 OUTPT OUTPT 1NPT	MACRO ADVANCE MACRO ADVANCE MACRO MACRO TRANSFER	PF1,2,2188,RP29 0 50,IN60,Z188,6,AP6,RP6,INP6,2,2,IN6C 0 RP6,30,AP30,RF30,UNL30,2,2,50,030A,030B RP30,31,AP31,RP31,UNL31,2,10,50,031A,0318 50,IN1F,RP31,1,AP1,RP1,INP1,10,1,IN1E ,J19
J23	TEST E	8V15,1,J26
J27 DUTPT INPT DUTPT	ADVANCE Macro Macro Macro	0 RP19,48,AP48,RP48,UNL48,37,1,50,D48A,D488 50,1N228,RP48,22,AP22,RP22,1NP22,1,24,IN22A RP22,47,AP47,RP47,UNL47,24,1,50,D47A,D478

INPT TRVL	MACRO MACRO Transfer	50, IN218, RP47, 21, AP21, RP21, INP21, 1, 39, IN21A PF1, 15, DT, RP21 , J29
J16 Place Trvl	AOVANCE Macro Macro Test e	0 RP2,51,APP,RPP,PARK,1,1,PLCÍ,PLC2 PF1,36,Z6A,RPP BV16,1,J30
INPT Outpt	MACRO Macro Test e	50, IN48, Z6A, 4, AP4, RP4, INP4, 20, 4, IN4A RP4, 27, AP27, RP27, UNL27, 3, 4, 50, O27A, O27B 8V17, 1, J31
TRVL INPT J35	MACRO Macro Advance	PF1,14,298,RP27 50,1N58,298,5,AP5,RP5,INP5,18,4,IN5A 0
OUTPT	MACRD Transfer	RP5,28,AP28,RP28,UNL28,15,2,50,028C,0280 ,J32
J30 DUTPT TRVL J36	ADVANCE Macro Macro Test e	0 Z6A,25,AP25,RP25,UNL25,6,6,50,025A,025B PF1,11,Z23A,RP25 BV18,1,J33
OUTPT Inpt	MACRO MACRO TEST E	Z23A,26,AP26,RP26,UNL26,18,5,50,026A,0268 50,IN3B,RP26,3,AP3,RP3,INP3,4,4,IN3A 8V19,1,J34
TRVL Inpt	MACRO MACRO TRANSFER	PF1,36,Z118,RP3 50,IN50,Z118,5,AP5,RP5,INP5,18,4,IN5C ,J35
J31 TRVL TRVL J41 TRVL	ADVANCE MACRO MACRO AOVANCE MACRO TRANSFER	0 PF1,11,Z4,RP27 PF1,30,Z5,Z4 0 PF1,11,Z23A,Z5 ,J36
J 33 TRVL	ADVANCE Macro Test e	0 PF1,15,2248,223A 8V20,0,J37
TRVL	MACRO TEST E	PF1,22,Z1,Z24B 8V21,1,J38
INPT	MACRO Transfer	50, IN15F, Z1, 15, AP15, RP15, INP15, 29, 4, IN15E , J39
J38 Outpt	ADVANCE Macro Transfer	0 21,38,AP38,RP38,UNL38,6,31,50,D38C,D38D ,J40
J34 Trvl	ADVANCE Macro	0 PF1,11,Z3,RP3

TRVL	MACRÓ TRANSFER	PF1,30,Z5,Z3 ,J41
J13 TRVL INPT	ADVANCE Macro Macro Transfer	0 PF1,6,SEC5B,RP1 50,IN2D,SEC5B,2,AP2,RP2,INP2,15,3,IN2C ,J15
J7 TRVL INPT	ADVANCE Macro Macro Transfer	0 PF1,22,Z13,RP13 50,IN2H,Z13,2,AP2A,RP2A,INP2,4,4,IN2G ,J17
J1B INPT	ADVANCE Macro Transfer	0 50,1N1D,RP2A,1,AP1A,RP1,INP1,25,1,IN1C ,J19
J21 TRVL INPT	ADVANCE Macro Macro Transfer	0 PF1,22,712,RP29 50,IN2J,712,2,AP2,RP2,INP2,15,3,IN2I ,J15
J20 TRVL INPT	ADVANCE Macro Macro Transfer	0 PF1,25,29,28 50,IN6B,29,6,AP6,RP6,INP6,2,2,IN6A ,J22
J24 TRVL INPT	ADVANCE Macro Macro Transfer	0 PF1,22,212,RP23 50,IN2L,Z12,2,AP2,RP2,INP2,15,3,IN2K ,J15
J26	ADVANCE TRANSFER TRANSFER	0 .5,,J27 ,J2B
* NUMB * AND	ER OF JOBS The generat	OBS FOR EACH INPUT. FROM GIVEN DATA THE INPUTTED AT EACH INPUT STATION WAS KNOWN E BLOCKS BELOW CREATED JOBS AT A UNIFORM E A SHIFT'S WORTH.
l	GENERATE Gavevalue Ferminate	224,22 1+,1,XF
:	SENERATE Savevalue Ferminate	394,39 2+,1,XF
9	SENERATE Savevalue Ferminate	1263,126 3+,1,XF

GENERATE 2400.240 SAVEVALUE 4+,1,XF TERMINATE **SENERATE** 3512,351 SAVEVALUE 5+.1.XF TERMINATE GENERATE 966.97 SAVEVALUE 6+,1,XF TERMINATE GENERATE 12000,1200 SAVEVALUE 7+.1.XF TERMINATE GENERATE 13714.1371 SAVEVALUE 8+,1,XF TERMINATE GENERATE 13714.1371 SAVEVALUE 9+,1,XF TERMINATE GENERATE 3692,369 SAVEVALUE 10+,1,XF TERMINATE GENERATE 1180.118 SAVEVALUE 11+.1.XF TERMINATE GENERATE 324,32 SAVEVALUE 12+,1,XF TERMINATE GENERATE 610.61 SAVEVALUE 13+,1,XF TERMINATE GENERATE 1358.136 SAVEVALUE 14+,1,XF TERMINATE GENERATE 1800.180 SAVEVALUE 15+,1,XF TERMINATE GENERATE 1152,115 SAVEVALUE 16+,1,XF TERMINATE

```
GENERATE 1152,115
    SAVEVALUE 17+,1,XF
    TERMINATE
    GENERATE 435,44
    SAVEVALUE 18+,1,XF
    TERMINATE
    GENERATE 435,44
    SAVEVALUE 19+,1,XF
    TERMINATE
    GENERATE 288,29
    SAVEVALUE 20+,1,XF
    TERMINATE
    GENERATE 435.44
    SAVEVALUE 21+,1,XF
    TERMINATE
    GENERATE 435,44
    SAVEVALUE 22+,1,XF
    TERMINATE
    GENERATE 435,44
    SAVEVALUE 23+,1,XF
    TERMINATE
    GENERATE 435,44
    SAVEVALUE 24+,1,XF
    TERMINATE
CLOCK TO REGULATE ONE SHIFT OR 28800 SECONDS OF TIME.
    GENERATE ,,,2
    LOGIC S
              2
    SEIZE
             CLCK
    ADVANCE
             28800
    RELEASE CLCK
    TERMINATE 1
    START
             1
    RESET
    START
             1
    END
```

×

×

155

A STUDY OF IMPLEMENTATION AND EVALUATION TECHNIQUES OF ADVANCED GUIDED VEHICLE SYSTEMS

Ъу

ANTHONY SHOEMAKER READ

B.S., North Carolina State University, 1983

AN ABSTRACT OF A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTERS OF SCIENCE

Department of Industrial Engineering

KANSAS STATE UNIVERSITY Manhattan,Kansas

1985

ABSTRACT

This thesis proposes a standardized approach for the pre-installation design and evaluation of Advanced Guided Vehicle Systems (AGVS).

The first step was to develop an evaluation tool. Using GPSS-H, a transaction based simulation language, unique macros were developed that emmulated certain features of a AGVS. The macros pieced together like building blocks provided a facsimile of an actual system.

A simple system was evaluated by using the statistics gathered by the GPSS-H package. From these statistics the concepts of system utilization, system efficiency, and reserve capacity were developed.

Procedural steps were developed to be able to create a workable AGVS. A real-life situation was used and the techniques developed were loadfeet directioning, vehicle estimating, cutoff implementation, and block division. From the development of these techniques a proposal for a guidepath layout and the number of vehicles required was obtained.

The implementation of both the procedural steps and the evaluation techniques were applied to a more complicated system. Again the problem was a real-life situation. The procedural steps were applied and a workable AGVS was developed. Each step was evaluated using the GPSS-H macros and its effect monitored through the number of vehicles needed, system utilization, and system efficiency.