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money supply appears transitory. Consumption is more sensitive to the economic variables in short and long run 

as compared with stock market windfalls.   
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1. Introduction 

Campbell and Shiller (1987, 1988a, 1988b) have considered how stock returns may form part of a 

system and interact with other economic variables, in their investigation they utilised the Vector-Autoregressive 

(VAR) model. More recent papers have revisited these issues, Campbell and Amar (1993) and Lund and Engsted 

(2002). Two key issues that arise when considering studies based on the VAR is the role and impact of volatility 

and the capacity to characterise extreme events like stock market crashes in this or any framework. Such analysis 

has often been restricted to a narrow set of variables that limit the interaction between the economy and the stock 

market to the behaviour of interest rates and inflation.
1
  

In this article, stock market behaviour is characterised by excess returns and excess returns are related to, 

inflation to capture nominal shocks, a money variable (M1) that captures liquidity, consumption growth to 

capture the underlying behaviour of the real economy and personal disposable income primarily viewed as a 

forcing variable for consumption and money.  

Initially, a five-variable VAR is estimated using monthly data for the period from January 1983 to 

December 2004 and this is then reduced to a parsimonious relation from which is extracted long-run behaviour. 

Excess skewness and kurtosis arise, because of extreme observations, these may be due to underlying volatility, 

underlying distributions that are non-normal and shocks. Here we cater for shocks using dummies for the 

extreme events: October 1987, Asian Crisis, 9/11 and its anniversary. Subsequently, we correct for the primary 

influence of volatility using univariate ARCH and GARCH models. It is suggested by Diebold (1986) that 

misspecification might arise when ARCH and GARCH models are estimated subject to shocks, here we correct 

the mean equations for their influence, but this type of correction might also be applied to the variance equations. 

This precludes finding near integrated ARCH and GARCH processes. As the same type of correction does not 

appear to work for the income equation we decide to estimate a SUR system conditioned on income. The models 

estimated all satisfy conventional specification tests and the models associated with the SUR system all have 

stable parameters as a result personal disposable income is seen as super exogenous for the system estimated.  

The article is organized as follows. Section 2 provides a brief literature review. Section 3 contains a 

discussion of data. Section 4 discusses the design of our methodology. Section 5 and Section 6 report results of 

all single equations and the SUR model, respectively. Section 7 summarizes the main findings. 

2. Models of Asset Prices with Macro Effects  

Conventionally in Finance, Capital Asset Pricing Models have been used to measures the risk of a 

security by the security’s covariance with the stock market return. However, the CAPM has been severely 

challenged since returns can be predicted from other financial factors,
2
 this has led to the development and 

testing of various alternative asset pricing specifications, such as the arbitrage pricing theory (APT)(Ross, 1976) 

                                                 
1 Bunn and Redwood (2003) suggest, should macro conditions alter banks tolerance to risk post Basle II, then firms in distress may find it 

more difficult to roll over debt. Hunter and Isachenkova (2006) find a role for Macroeconomic surprises as drivers of large corporate 

companies risk of failure.  
2  See Fama & French (1992,1993) for discussion. 
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that assumes returns are generated by a number of macroeconomic factors. While the Consumption or C-CAPM, 

measures the risk of a security by the covariance (consumption beta) of its return with per capita consumption. 

Unfortunately, studies undertaken to test the C-CAPM with data from both U.S. and other countries have been 

largely negative.
3
  The poor performance of the CAPM and the C-CAPM suggests expected returns are more 

likely to be driven by more complex stochastic behaviour.  

However, it is widely accepted that changes in macroeconomic variables contain important information 

for market participants, both in the short- and particularly the long horizons. It is hypothesized that investors 

incorporate such information into their estimates of the appropriate discount rate and the expected dividends 

flow that in turn affects stock returns
4
. Existing studies model the association between asset prices and other real 

economic indicators in terms of production rates, productivity, consumption, growth rate of money supply, 

unemployment, yield spread, and so on. Furthermore, in multivariate setting Vector-Autoregressive (VAR) 

models have become very popular in the asset pricing. Since When stock returns can be well approximated by 

log-linear relations then as suggested by Campbell and Shiller (1987,1988a, 1988b), then expected returns, 

especially in the long run, can be related to other key financial variables such as the dividend growth rate and the 

price-dividend ratio. Campbell (1991) expanded forward a log-linear present-value model of the stock price and 

using the VAR as a backward solution, decomposed the variance of stock returns into three variance 

components: cash flow news, expected return news and covariance of both news. Shiller and Beltratti (1992) and 

Campbell and Ammer (1993) used the same approach to account for the variance of returns, but here the 

decomposition was relative to the variance of and covariance with long-term bond returns. The former article 

cannot provide a theoretical reason for the empirical finding that both U.S. and U.K., stock and bond returns 

have been positively correlated. However, Campbell and Amar identify additional components such as interest 

rates and inflation whose absence might explain the U.S. results. They also finds that future excess stock returns 

can account for most of the variation in excess stock returns, while the variance of excess bond returns is mainly 

the result of news about future inflation.  

Another issue that arises in a univariate context when analysing nominal and sometimes real 

economic variables is volatility or the presence of ARCH/GARCH behaviour.5 The use of these models 

to analyse time-varying volatility as a risk factor in high frequency returns of financial data has become 

so widespread that such volatility is now regarded as a proxy for risk and a key parameter in classic 

derivative pricing models (e.g. Hull, 2002). The co-movement of financial volatilities suggests that it 

might be more appropriate to consider a multivariate framework.6 Here, this seems less pertinent as the 

                                                 
3 For example, see Campbell & Cochrane (2000), Kocherlakota (1996).  
4 For example, Chen (1991) tests for a group of macroeconomic variables: production growth rate, default premium, term premium, short-

term interest rates, market price-dividend ratio; Chen et al. (1986) tests for an indicator subset: industrial production, spread between long 

and short-term interest rates, spread between high- and low- grade bonds, aggregate consumption, market portfolios, oil price. Davidson 

and Froyen (1982) on money supply; Davidson (1982) on inflation and money supply.  
5 See Bollerslev et. al (1992) for a theoretical and empirical review of the ARCH modelling. 
6 For a recent survey of multivariate GARCH models, see Bauwens, Laurent and Rombouts (2003). 
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excess returns series used are not volatile and this is the focus of our analysis. Also with the 

combination of VAR and volatility models the curse of dimensionality leads us to concentrate on the 

mean equation for direct spillovers between the primary variables.7 The sample size may induce bias 

when a large number of parameters are estimated and that may lead to over-fitting, while insufficient 

lagged variables will cause inconsistency.  

The seemingly unrelated regression method estimates a set of linear or non-linear equations with a 

diagonally imposed covariance matrix of the disturbances across equations. These parameter estimates are used 

to form a consistent estimate of the covariance matrix of the disturbances, which is then used as a weighting 

matrix when the model is re-estimated to obtain new values of the parameters. Thus, SURE provides consistent 

and asymptotically normal estimates of our parameters that may well be asymptotically more efficient than the 

single equation estimates. 

Long horizon time series modelling is sensitive to the data used, so the econometric analysis of the 

variables are essential before a formal model is designed and this is the focus of the next section. 

3. The Data 

  For U.S. stock market returns, close-to-close monthly returns on Standard & Poor’s 500 

Composite Index (S&P 500) are selected. U.S. monthly data for four widely accepted economic 

determinants of returns are used: Narrow Money (M1), Personal Consumption Expenditure (PCE), 

Consumer Price Index (CPI) and Personal Dispensable Income (PDI). Due to data availability the PCE 

PDI data are seasonally adjusted,  while M1 and CPI are available without seasonal adjustment. In 

order to calculate the excess returns, we use 3-month U.S. Treasury Bill yields as the risk-free rate. All 

the data are collected from DATASTREAM, and converted into real growth rates (gi) by taking the 

first difference in their logarithm.
8
 Excess returns on the S&P500 are calculated as: 

tmtbillttt RPPR ,31 )/log( −= −  

where )/log( 1−= ttt CPICPIπ and Rt and Pt  are excess returns and the S&P500 price. While tmtbillR ,3  is 

monthly risk-free rate converted from 3-month U.S. Treasury Bill annual yields. 

Diebold (1986) has shown that breaks or shocks in the variance, which are not taken into account before 

modelling, will appear as ARCH effects when they are included in the sample. In this case, to model the 

conditional variance as an ARCH model will be incorrect. It is recommended to divide the sample and test for 

ARCH for the sub periods, or use dummies to eliminate those breaks. If no ARCH effects are found in the model 

with dummies for any of the sub periods, but are found for the whole sample, it is a clear indication of breaks in 

the unconditional variance and not of ARCH effects. To this purpose, we carefully select the data from 1982:01 

                                                 
7 See Campbell and Ammer (1993) for brief discussion.  
8 All the data are percentiles and are from visiual inspection clearly stationary (for more details see Gregoriou, Hunter and Wu (2006)). 
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to 2004:12 to avoid both market breaks and potential regime shifts in 1970s, i.e., the shift from fixed to floating 

exchange rates in 1971, the oil crisis in late 1973 and 1974, and the continuous, significant changes of Capital 

Gain Tax rates throughout 1970s. Moreover, to ensure comparability of results for different choices of lags, all 

estimations use the same sample period 1980:01–2004:12 with the first 24 observations reserved for the 

construction of lagged variables. We also include four shock dummies in the sample period: “Black Monday” in 

September of 1987, Asian Crisis that also affected the Eastern coast of the U.S. and worldwide markets during 

August of 1998, terrorist attack on “911” and its anniversary.  

As mentioned above, the monthly data have some seasonality or periodicity, and in order to decide the 

lags of autoregressive models for each series, we need to scrutinize their correlograms. For all series except 

excess returns, there are 12-month periodic cycles and statistically significant spikes at and around lag 

1,12,24,36 with ACF and PACF as well as significant Q-statistics, indicating strong autocorrelations and partial 

autocorrelations that should be modelled when estimating regressions with these four variables. For returns, 

there are no apparent periodic fluctuations up to 36 lags and both the ACF and PACF values decline quickly to 

suggest that there is no “long memory” periodicity. Secondly, Q-Statistics increases sharply around lag 4,15,27 

and 31, showing that some “short memory” correlation still plays an important role, but we still decide to include 

AR terms with the maximum lag of 12 and monthly seasonal dummies in both the return model and other four 

models, making it easier to see dynamic structures not caused by seasonal adjustments. In particular, due to high 

kurtosis there are some extreme observations in consumption and income series, and if necessary, we need to 

either consider the ARCH behaviour or to construct models with longer horizon, say 24 lags (2 years). When the 

series are stationary, then it should be possible, for any AR model of order p, to find an equivalent MA model 

with a large enough number, q, of disturbance terms, thus, only AR components are considered in next section. 

4 Empirical Design 

Specification of the single equation 

Let tY  be a vector containing Rt, tπ , real consumption growth (gct), real money growth (gmt) and real 

income growth (git), then the i
th
 equation with seasonal dummies and four shock dummies is: 
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where iµ  is the mean value of the corresponding variable; itD  are monthly seasonal dummy variables; Dsn four 

shock dummies representing “Black Monday”, “Asian Crisis”, “911” and anniversary of “911”. And imβ  and 

ijkϕ  are the m
th
 weights of the dummies and the k

th
 lag coefficient of yj in equation yi equation.
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9
 All the series in first difference form are stationary; details of the tests are available from the authors on request. 



 6 

is the equation for U.S. excess returns. While the U.S. real consumption growth model is: 

   .
12

1

3

12

1

,3,

5

3,1

4

1

11

1

33,3 ∑ ∑∑∑∑
= =

−−

≠===

+++++=
k

t

m

mtktjijk

jjn

snn

m

itmt yyDDy εϕγβµ   (3) 

The general modelling process adopted is to estimate overall equations for each variable separately by OLS and 

subject them to a range of misspecification tests. After dropping insignificant explanatory variables the equation 

was then subject to a series of misspecification tests, including tests for autocorrelation (an LM-test for up to 12 

order autocorrelation), ARCH effect and normality in the residuals, and Chow’s parameter stability test. All test 

results are used to try to improve the individual equations. For example, where the outcome of the ARCH test 

may suggest the need to consider ARCH behaviour in the equations, and if the residuals of ARCH model are still 

not normally distributed, then to improve specification we have augmented the model by 12 lagged regressors.  

In particular, it is necessary to carry out Chow stability tests for super exogeneity as we wish to consider 

the extent to which behaviour in the long run can be conditioned.
10

 Normally the five variables are seen as 

endogenous, but if one of them is super exogenous for the parameters of interest,
 11

 then the parameters of the 

model conditioned on the exogenous variable are invariant to the parameters of the equation associated with the 

super exogenous variable. As weak exogeneity is a special case of super exogeneity, then inference based on a 

super exogenous variable is fully efficient.
12

 Weak exogeneity is not readily tested in the short-run, but finding a 

sub-set of equations in a system that are stable and whose parameters do not vary with the exclusion of variable 

from the model, would suggest that the model is invariant to the behaviour of that variable. We use recursive 

coefficients and 1-step Chow tests of parameter stability as tests for super exogeneity.
 13

 

Correction for volatility 

Using the primary OLS assumptions to estimate the equations separately makes it possible to provide 

relatively robust corrections for ARCH effects. For one parsimonious single equation, if the residuals are not 

normally distributed, the specification tests are invalid and when there is correlation in the squared residuals 

ARCH may be better to model the dynamic properties of the equation variances.  

GARCH (1,1) is used here, as it has been shown by numerous studies that it has a superior fit to high 

order ARCH models and provides a parsimonious representation of observed volatility. The application of 

GARCH models to stock market data at the monthly frequency can be found in several studies, for example, in 

the US case see Akgiray (1989) and for UK, Poon and Taylor (1992). Using (1), for i
th
 variable the variance 

equation with a GARCH(1,1) specification of the variance is:  

.222

,, itijtiit yyy −−
++= αεβσωσ      (4) 

For the higher order moments to exist we require the following conditions to be satisfied by the coefficients:  

111 <+ βα  and  .0,0,0 11 ≥≥> βαω   

                                                 
10 See the discussion of long-run super exogeneity in the introduction to Ericsson and Irons (1994). 
11 For further information on exogeneity, see Engle Hendry and Richard (1983), and Engle and Hendry (1993). 
12 See the discussion of weak and super exogeneity in Engle Hendry and Richard (1983), and Ericsson and Irons (1994). 
13 For further information on testing super exogeneity see Engle and Hendry (1993). 
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The estimated conditional variances 
2ˆ

tyσ from (4) are used to transform the dependent variable and all the 

corresponding regressors in the mean equation. Therefore:  
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It follows that 
iyitit σεµ ˆ=  is homoscedastic, non-autocorrelated and normally distributed. 

SUR analysis 

Having obtained a satisfactory set of individual OLS equations subject to volatility adjustment, then we 

control for contemporaneous correlation amongst the equation residuals by estimation via a systems approach. 

However, the equations may be seemingly unrelated, when iε  is the i
th
 equation error and Iεε ijjiE σ=),( '

 for 

all t, s, and i≠j. This implies that there are non-zero correlations between contemporaneous disturbances, but zero 

correlations across all lagged disturbances, while the residuals in any single equation are homoscedastic and non-

autocorrelated. This leads us to the SURE.  

Although the data are all I(0), we conduct a long run analysis to extract the long-run inter-relationship 

between variables in the system and this reveals responses that may be easier to correspond with the theory. The 

other merit of long-run equations derived from the restricted models that are conditioned on a super exogenous 

variable is that they ought to be robust to regime shifts associated with the super exogenous variable and 

invariant to the inclusion of unremarkable variables.  

A common approach to testing long-run relationships is through cointegration that can be used to extract 

long-run behaviour and provide long-run inference (Johansen (1995)). However, the usual approaches to 

cointegration are optimal when the series are all I(1)
 14

 (Engle-Granger (1987)), while in this article the primary 

relationships due to Finance Theory link returns to consumption growth and inflation, and all variables are 

generally accepted as being I(0). Further MacKinnon et al. (1999), suggest the critical values of the Johansen test 

statistic may not be accurate when the cointegration rank is small relative to the dimension of the VAR.  

A typical short-run equation for a SUR system in its Polynomial Distributed Lag (PDL) form is given as: 
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L is the lag operator and (5) in PDL form (Burke and Hunter (2005), Chapter 3) is: 
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The long run growth relationship associated with the reduced form (5) is derived by setting L=1, removing all 

remaining dummies and dividing through the resultant equations by α(1). Therefore,  

                                                 
14 Although the Johansen ML approach can also be used with a mixture of I(0) and I(1) variables, a VECM including I(0) series can 

produce nuisance parameters in the asymptotic distribution of the trace for the cointegration rank, see Wickens (1996) for further 

discussion on the Johansen ML procedure. 
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Equation (6) relates long-run growth of iy  to long-run growth rates and long-run returns of other variables.
15

 

When all the variables are stationary: 

   .0)1(),1( ≠iji βα      (7) 

However, the long run is ill-defined when )1(α and )1(jβ are not significantly different from 0. A 

straightforward way to test this is to employ a Wald/F test for the joint hypothesis 0)1( =iα  and 

0)1( =ijβ for all j. Equivalently, the sum of coefficients on the lags equals 1 and 0, respectively.  

5 Parsimonious forms of Single equations corrected for volatility 

On the basis of the p-values for the F-test of joint significance in each equation, the relationships are 

jointly significant at the 5% level. However, given the sample size, the models can be improved by removing 

highly insignificant lagged variables from each equation. Here we use the redundant variables test and its joint F-

statistics/Log likelihood ratio, which allow us to test for the statistical significance of a subset of the included 

variables. More formally, the test is for whether subsets of variables in an equation all have zero coefficients and 

might thus be deleted. We also employ Akaike and Schwarz-Bayesian Information Criteria with tests of 

specification to distinguish between models.  

We need to recognise that the unconditional error distribution of consumption and income growth is 

apparently non-normal with very high values for kurtosis, and these sharp peaks in residuals cannot be removed 

even when the volatility is removed from the residual variance by application of the ARCH estimator. In 

response to this we re-specify these models to include in the mean equation another 12 lagged variables, this 

removes the non-normality from the consumption equation, but it still remains in income equation. Further 

investigation reveals that leptokurtosis in the income growth equation is caused by spikes in the series that occur 

from time to time in December and January. This might be linked to shocks to personal income caused large 

corporate dividend payments. As a result, these extreme observations lead us to carry out the Chow stability tests 

to determine how sensitive the system is to the behaviour in the income equation, the invariance of the other 

equations in the model to the structural instability in the income equation suggests that income growth for the 

parameters of the system presented here can be viewed as being super exogenous. The results in Appendix 4 

suggest that the income equation is not stable over the sample period since the recursive residuals lie outside the 

two standard error band.
16

 Given the parametric limits associated with the data, it would seem difficult to extend 

the model of real income growth further. So, in the light of the stability tests reported here and to insure that our 

SUR estimates are robust we condition our system on income growth as a super exogenous variable.  

                                                 
15 See Hendry and Mizon (1978), Hendry (1995) for further discussion. 
16 The recursive Chow tests for the other equations do not reveal instability so they are not reported here, but can be provided on request.    
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In Table 1 in Appendix 1, we present a summary of OLS estimates for the parsimonious equations 

modelled without consideration of the conditional variance.
17

 If we look at the results for the return equation in 

Appendix 2, it is not surprising that changes of income do not have any influence on stock market, since it is 

widely accepted that people do not primarily invest directly from income, because of the high risk, they prefer to 

buy real estate or obtain the risk free rate from what is left out of income after consumption. Inflation has direct 

impact on the stock market since only the 1-period lag is significant. This is consistent with the more casual 

evidence that stock prices have been impacted on by inflation announcements. This is very appropriate as the 

U.S. Federal Reserve Bank (the Fed) moved to target inflation in the 1980s.  

It is also of interest to investigate the impact, of what are primarily shocks to the stock market, on all 

four equations.  As can be observed from the results in Appendix 2, all four shocks have negative effects on the 

stock market, but have had no effect on inflation, so we might conclude that stock market shocks will only affect 

the economy in short term, because they did not influence personal spending. More interestingly, we can see 

from Appendix 3, that real money supply positively responded to stock disaster and “911”, suggesting U.S. 

monetary policymakers took efforts to increase liquidity in response to these sudden shocks to sterilize their 

impact on liquidity and the rest of the economy. As “911” was a terrorist attack that had a real impact on US 

economic life and trade, this shock and its aftermath, contaminated the whole economy. And, as a result, there 

seems to have been some slight but significant increase in inflation and a decline in growth.  

If we now consider model specification, Lagrange multiplier (LM) tests
18

 for up to twelve order ARCH 

behaviour in the residuals reveals that there are significant ARCH effects in the equations for inflation and real 

consumption growth. For excess returns, we cannot find any conditional heteroscedasticity even at 10% level of 

significance, so we can assert that there is no apparent ARCH behaviour after removing the large shocks and end 

of year effects via the seasonal dummies. Table 2 shows the final model specification for the inflation and 

consumption growth equations controlling for ARCH effects
19

. Specifically, GARCH(1,1) seems to best 

approximate the volatility in both models even though a further 12 lags are added to the consumption and the 

income equations to handle the non-normality.
20

 The estimates of parameters for the GARCH model of the 

inflation rate equation are presented in Appendix 5, the coefficients on the AR and MA components respectively 

of .345 and .626. This implies quite persistent volatility, which may be indicative of un-modelled shocks induced 

by U.S. government fiscal and Fed monetary policies. However, their sum is still some way from unity.  

In order to include allow an ARCH correction to the models in SUR system, we re-estimate the 

parsimonious OLS equations for inflation and consumption, but with the variables corrected for conditional 

variance of corresponding GARCH models suggested by (1’). Compared with the results in Table 1, the 

specifications for the models of inflation and consumption in Table 2 and Table 3 are plausibly similar, the 

                                                 
17 See Appendix 2 and 3 for full OLS estimation results. 
18 Ignoring ARCH effects may result in a loss of efficiency in estimation, for further details, see Engle (1982), Hendry (1995). 
19 See Appendix 5 for full estimation results corrected for volatility.  
20  Given the time-series properties of quarterly and annual consumption and income data, it is not surprising that monthly time series 

have dynamic effects that go beyond a year (Davidson et al (1978), Muellbauer (1983) and Hendry (1995)).  
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corresponding mean equations are almost the same, with only some minor changes in the significance levels of 

coefficients and the higher order lagged terms. That is, those regressors removed or not significant at the 5% 

level can be compensated for by the volatility correction or on the basis of the revised inference, regarded as 

nuisance parameters and discarded. Even so, the dynamic tests in the models that control for ARCH behaviour 

are preferred to the OLS ones.  

Based on the observation of the size of cross product terms in the variance-covariance matrix of 

residuals, it has been postulated that it is more important to correct for any potential misspecification caused by 

simultaneity than to correct for autoregressive behaviour of variance of specific equations, and this assumption is 

tested by SUR estimation in next section. 

6 SUR estimation results  

We now construct a SUR system by adding two parsimonious OLS equations for excess returns and 

money supply-M1 growth, and two compact OLS estimations adjusted by GARCH variances correction of 

inflation and consumption growth. The SUR estimation results are reported in Appendix 6. We find that the 

coefficients are roughly the same as those associated with the single equation estimates by OLS and the 

goodness of fit statistics are no worse. An advantage of the SUR estimation is that the significance level of the 

parameters is much better than that of separate equations and these would be considered as more efficient 

estimates. The finding that the corrections for ARCH and simultaneity do not affect the estimates would suggest 

that the estimates are consistent.  

The short run behaviour of excess returns is affected by the rest of the economy directly via income 

growth and to a lesser extent by its own past, as the fifth lag is significant at the 5% level. Davidson and Froyen 

(1982) assert that the estimates of the relationship between returns and money growth rates, using monthly data, 

support the notion that financial markets are efficient, since leverage and credit of capital increase “virtual 

money”. We find support for this proposition in the short run, but this effect decays away. While, consumption 

growth is impacted on by all macroeconomic variables except income growth that has an indirect influence. 

Inflation and money growth are affected immediately by the economic activities of the previous month. As may 

be expected, excess returns are closer to a random walk than the other series.  

In order to get long-run equations for U.S. excess returns and the other four macroeconomic variables, 

we employ (6) and test (7) in a SUR system. After standardisation of the coefficient of the dependent variable in 

each equation we obtain the following significant long-run equilibrium growth and return equations:
21

 

4321 325.321.1451.2 yyyy −+−=  

           (.009)     (.004)     (.192)
**

  

312 429.019.0016. yyy +−−=  

          (.095)
**

   (.005)   (.001) 

                                                 
21 P-values of the Wald test are given in parentheses. 
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54213 079.124.639.046.006. yyyyy ++−+=  

        (.000)(.000)     (.000) (.012)   (.046)  

53214 048.2241.3195.5068.130. yyyyy −+−−=  

                    (.014)   (.361)
**

  (.046)   (.026)       (.042)  

where 
iy  denote the steady-state value of the corresponding variable. The key determinants of long-run excess 

returns are inflation and consumption growth, money growth is not significant in the long run even at the 10% 

level. The positive effect of consumption growth is quite consistent with the literature on C-CAPM and as this is 

a significant long-run feature is consistent with returns being driven by stock market fundamentals. Excess 

returns react negatively to inflation, which is consistent with the observation, that over a significant part of the 

observed period, the stock market has responded negatively to inflation announcements. This negative relation is 

also consistent with the conclusions of previous empirical research, i.e. Fama and Schwert (1977), who reject the 

Fisher’s hypothesis that asset returns can be a perfect hedge against inflation. Otherwise, bouts of inflation 

reduce stock market confidence and nominal returns even adjusted by a risk free rate.  

Inflation in the long run, according to our study, is mainly affected by high levels of growth in 

consumption, suggesting that in the 80s and 90s inflation has been driven by demand in the economy. 

Interestingly, there is a symmetric response between inflation and excess returns with high returns being 

associated with a slow down in the rate of inflation in the long run. This also implies a negative relation between 

the interest and inflation via excess returns.  

Thirdly, real consumption growth is the only variable in our models that is significantly affected by all 

other four variables in both the short run and the long run. As Kocherlakota (1996) asserts, Consumption-based 

CAPM should be more important than the standard CAPM as far as the integral role of consumption expenditure 

in whole economy is concerned. However, the importance of every economic indicator is not the same. The 

smallest coefficient (0.046) of returns in consumption equation suggests that stock market windfalls have the 

smallest impact on personal spending. It is also indicative of a teasing negative link between interest rates and 

consumption growth via excess returns. Economists have long theorised that holding gains are even more 

transitory than windfall income because holding gains may not only fail to recur, but also may be reversed by 

holding losses. However, even though this wealth effect is small it is highly significant, even in the long run. The 

largest coefficient (-0.639) is on inflation and as suggested by Deaton (1974), agents may reduce consumption as 

they confuse relative and absolute price movements. Otherwise, high rates of inflation impair consumers’ 

propensity to spend as they become more frugal. Growth in real money balances, yield a classical response 

causing consumption to increase. However, from the observed data we do not know whether these responses are 

symmetric. Hence, the consumer might well react differently when prices fall. It is of interest to note that the 

coefficient on income growth is small is just significant at 5%, though this is a measure of personal disposable 

income and not income from the economy as a whole. 
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Money growth is affected negatively by excess returns, suggesting that liquidity is drawn out of the real 

economy when the stock market increases, while that response of the money equation to shocks, suggest that the 

monetary authorities respond positively to such shocks, to stem the impact of large capital losses. Long-run 

inflation leads the monetary authorities to reduce the quantity of money in the system. Income growth reduces 

money, while consumption growth leads to more money. In steady state growth rates are equalized, which leads 

to an over-all positive impact for growth on money.  

We conclude that the real economy as embodied in consumption is complex and this may not be treated 

well in a single linear or non-linear factor model, such as the C-CAPM. It would also appear that the financial 

market affects the real economy, but the reverse relationship is less clear.  

7 Conclusions 

The literature on asset-pricing models for CAPM/C-CAPM, VAR and GARCH models that examine the 

real economy is vast, but due to the complexity of all the different types of effects they have not been analysed 

conjointly. In this article, using a SUR model, we use a subset of key monthly macroeconomic variables, 

together with consumption and excess returns in the US, to estimate a group of reduced form equations corrected 

for the primary impact of the conditional variance. After removing the effects of seasonality and four major 

shocks associated with Black Monday, Asian Crisis, “9·11” and its anniversary, the parsimonious dynamic 

models for excess returns and money growth have no ARCH effects. However, the inflation and consumption 

equations are volatile. This is consistent with the ARCH model of US inflation analysed by Bollerslev (1986) 

and the observation that consumption growth is volatile relative to income.  

The findings in the long run are consistent with the previous work concerning the interaction of 

macroeconomic variables and excess returns. Essentially, inflation is the biggest component and core indicator 

of all other variables; nevertheless, it is neglected by standard CAPM. As far as consumption is concerned, the 

mutual functions of it and other variables are quite complicated, which may be a reason for the poor performance 

of C-CAPM and the basis of the equity premium puzzle by Mehra and Prescott (1985). Furthermore, the integral 

role of consumption may encompass other factors that may not be necessary for standard C-CAPM. Recently, 

some enhanced theories (i.e. limited market participation) and the revised versions of standard C-CAPM 

framework have been applied and received some support
22

. 

In brief, it is felt necessary to have a better understanding of the effect of macroeconomic fundamentals 

on returns before more complicated forms of asset pricing models ought to be considered. However, from the 

results presented in this article we find a primary role for consumption in the explanation of excess returns, 

subject to a role for nominal price shocks when nominal assets do not provide an appropriate hedge. Hence, 

control of inflation seems to be one key component in stable asset development and consumers making real 

returns in the long run. Similarly, consumption is responsive to large shocks to stock prices and in a similar 

manner to inflation. Based on a stable monetary policy framework that is responsive to inflation in the long run 

                                                 
22 See for example, Campbell and Cochrane (1999), Lettau and Ludvigson (2001). 
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policy can be made conditional on the behaviour of personal income. However, money is still sensitive to the 

level of demand in the economy as measured by consumption growth. 
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Appendix 1 

Table 1: Summary of the parsimonious lags in OLS Estimation and diagnostic tests 

Additional dummy variables Residual tests 
Dependent 

Variable 
Seasonality 

Excess 

returns 
Inflation 

Consumption 

growth 

M1 

growth 

Income 

growth 
Black 

Monday

Asian 

crisis 

“911” 

(2001) 

911 

(2002) 

Corre-

logram 

ARCH          

LM 
Kurtosis Jarque-Bera 

Excess 

returns 
3 5 10 11 5 1 10 8 11 - -0.265 -0.189 -0.087 -0.108 No - 3.00 0.042(0.98) 

Inflation 1-10 11* 2 5 1 2 10 1 3-6 2 5* - - 0.0048 - No 1-5 3.83 9.15(0.01) 

Consumption 

growth 
1 5 6 9* 10* 1 6 8 9 1 8 9 10 

1-4 6-12 14 

20 
1 4 

1 4 16 

24 
- - - - No 1-12 5.56 76.23(0) 

M1 growth 
1-11 1 5 9 1 4 9 12 1 7 8 

2 3 5 9 

11 12 

2* 3 4 

9* 
0.0127 - 0.0427 - No - 2.85 0.72(0.70) 

Income 

growth  
1 3 5 6 9 10 2* 6* 9 

1 2 10 

12* 

1-4 5* 9* 11 

12 17* 20 23 4 6 
1 2 9-11 

13-18 
- - -0.0121 - No 1-12 8.52 353(0) 

Note: 1)
*
: Insignificance level at 5%. 

         2) A maximum of 24 lags of consumption and income growth have been applied for modelling consumption and income growth. 

Table 2: Parsimonious GARCH equations correcting for the volatility   

Additional dummy variables Residual tests 
ARCH 

coefficients Dependent 

Variable 

Seasona-

lity 

Excess 

Returns 
Inflation 

Consumption 

growth 

M1 

growth 

Income 

growth 
Black 

Monday 

  Asian 

  Crisis 

911 

(2001) 

911 

(2002) 

Corre-

logram 

ARCH          

LM 
Kurtosis 

Jarque-

Bera 
ARCH GARCH 

Inflation 1-11 2 5 1 10 1 4-5 6 - -  - - 0.0054 - No none 3.35 1.70 

(0.43) 

0.345 

 

0.626 

Consumption 

growth 

1 5 9 1 6 8 9 1* 9* 1 8 9 10 20 1 4 24 - - - - No none 3.50 2.87 

(0.24) 

0.531 0.368 

Note: See the note in Table 1. 

Table 3 Parsimonious OLS equations correcting for the volatility of the residuals   

Additional dummy variables Residual tests 
Dependent 

Variable* Seasonality 
Excess 

Returns 
Inflation 

Consumption 

growth 

M1 

growth 

Income 

growth 
Black 

Monday 

Asian 

Crisis 

911 

(2001) 

911 

(2002) 
Correlogram 

ARCH          

LM 
Kurtosis Jarque-Bera 

Inflation 1-11 2 5 1 10 1 4-5 6 - - - - 0.004 - No none 3.33 1.67 (0.43) 

Consumption 

growth 
1 5 9 1 6 9* 1 1 8 9 10** 1 4 24 - - -0.015 - No none 3.28 4.37 (0.11) 

Note: For the purpose of ARCH correction, all the variables in these equations are all divided by conditional standard deviations. 
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Appendix 2: OLS estimation on excess returns, inflation and consumption 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note:  

1) P-values are given in parenthesis 

2) SEAS() is series of monthly seasonal dummy variables 

3) *: insignificant level at 5%. 

Excess Returns Inflation Consumption 

Dependent variables Coefficient Dependent 

variables 

Coefficient. Dependent variables Coefficient 

Black Monday -.2649(0)  C -.0013(.014) C .0053(0) 

Asian crisis -.1894(0)  D091101       .0048(.003) SEAS(1) -.0078(0) 

D091101        -.0865(.024)  SEAS(1)       .0046(0) SEAS(5) -.0041(.006) 

D091102        -

.1083(0.005) 

SEAS(2)       .0047(0) SEAS(6) -.0026(.049) 

SEAS(3)       .0224(.016) SEAS(3)       .0036(0) SEAS(9) -.0029(.058)* 

SEAS(5)       .0190(.030) SEAS(4)       .0028(0) SEAS(10) -.0024(.079)* 

SEAS(10)       .0364(0) SEAS(5)       .0033(0) Excess returns  

SEAS(11)       .0299(.002) SEAS(6)       .0040(0) Lag 1 .0201(0) 

Inflation  SEAS(7)       .0022(.002) Lag 6 .0122(.020) 

Lag 1 -

2.0773(.013) 

SEAS(8)       .0036(0) Lag 8 -.0173(.006) 

Consumption growth   SEAS(9)       .0041(0) Lag 9  .0192(.002) 

Lag 10 1.1430(.005) SEAS(10)       .0030(0) Inflation  

M1 growth  SEAS(11)       .0008(.071)* Lag 1 -.5507(0) 

Lag 8 .4853(.004) Excess return  Lag 8 -.3476(.015) 

Lag 11 -.7734(0) Lag 2 -.0083(0) Lag 9 .5304(.007) 

Excess returns 

 

  Lag 5 -.0062(.007) Lag 10 -.4431(.002) 

Lag 5 .1228(.047)  Consumption growth   M1 growth  

  Lag 1 .0388(.016) Lag 1 .0941(0) 
  Lag 3 .0453(.037) Lag 4 -.0683(.004) 

  Lag 4 .0920(.001) Income Growth  

  Lag 5 .0782(.004) Lag 1 .0910(.021) 

  Lag 6 .0565(.006) Lag 4 .0915(.012) 

  M1 growth  Lag 16 .1002(.007) 

  Lag 2 -.0256(.041) .Lag 24 .1100(.002) 

  Income Growth  Consumption Growth  

  Lag 5 -.0209(.080)* Lag 1 -.5832(0) 

  Inflation  Lag 2 -.3291(0) 

  Lag 1 .5496(0) Lag 3 -.1932(.009) 

  Lag 2 -.2031(.001) Lag 4 -.1259(.044) 

  Lag10 .1919(0) Lag 6 .1572(.008) 

    Lag 7 .2046(.002) 

    Lag 8 .3232(0) 

    Lag 9 .4006(0) 

    Lag 10 .2265(.002) 

    Lag 11 .1686(.018) 

    Lag 12 .1085(.074)* 

    Lag 14 -.1110(.034) 

    Lag 20 .1752(.001) 

R2 .303 R2 .521 R2 .456 
2R  .272 2R  .475 2R  .385 

D-W: 2.14 D-W: 1.96 D-W: 1.98 
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Appendix 3: OLS estimation on real growth rates of M1 and income   
Real M1 Growth Real Income Growth 

Dependent variables Coefficient. Dependent variables Coefficient. 

C .0258(0) C .0052(0) 

Black Monday .0127(.036) D091101       -.0121(.058)* 

D091101 .0427(0) SEAS(1) -.0010(0) 

SEAS(1)       -.0439(0) SEAS(3)       -.0063(.004) 

SEAS(2)       -.0425(0) SEAS(5)       -.0063(.007) 

SEAS(3)       -.0155(0) SEAS(6)       -.0111(0) 

SEAS(4)       -.0080(.029) SEAS(9)       -.0105(0) 

SEAS(5)       -.0390(0) SEAS(10)       -.0064(.005) 

SEAS(6)       -.0157(0) Excess returns  

SEAS(7)       -.0215(0) Lag 2  -.0150(.084) 

SEAS(8)       -.0290(0) Lag 6 -.0160(.064)* 

SEAS(9)       -.0260(0) Lag 9 .0167(0.048) 

SEAS(10)       -.0212(0) Inflation  

SEAS(11)       -.0113(0) Lag 1 -.6735(.001) 

Excess returns  Lag 2 .7139(.001) 

Lag 1 .0214(.008) Lag 10 -.4343(.005) 

Lag 5 -.0161(.046) Lag 12 .3313(.052)* 

Lag 9 -.0181(.030) Consumption Growth  

Inflation   Lag 1 .1387(.083)* 

Lag 1 -.6460(.001) Lag 2 .1557(.047) 

Lag 4 -.4029(.026) Lag 3 .3145(0) 

Lag 9 -.3840(.030) Lag 4 -.1749(.016) 

Lag 12 .5416(.002) Lag 5 .1161(.126)** 

Consumption growth  Lag 9 -.1383(.064)* 

Lag 1 .2018(.003) Lag 11 .2054(.008) 

Lag 7 .1629(.021) Lag 12 .1866(.024) 

Lag 8 .1806(.011) Lag 17 .1329(.058)* 

Income growth   Lag 20 -.1455(.036) 

Lag 2 -.0918(.077) Lag 23 -.1591(.015) 

Lag 3 -.1186(.025) M1 Growth  

Lag 4 -.1137(.040) Lag 4 -.1555(0) 

Lag 9 -.0871(.097) Lag 6 .0946(.012) 

M1 growth  Income Growth  

Lag 2 .1294(.032) Lag 1 -.3030(0) 

Lag 3 .2018(.001) Lag 2 -.1485(.030) 

Lag 5 .1632(.006) Lag 9 -.1458(.021) 

Lag 9 .1613(.006) Lag 10 -.1450(.028) 

Lag 11 -.1602(.005) Lag 11 -.2376(0) 

Lag 12 .2960(0) Lag 13 -.2168(.001) 

  Lag 14 -.1475(.027) 

  Lag 15 -.1165(.082)* 

  Lag 16 -.1202(.066)* 

  Lag 17 .1192(.070)* 

  Lag 18 .1735(.006) 

R2 .863 R2 .440 
2R  .844 2R  .350 

D-W: 1.78 D-W: 1.91 

Note:  

1) See the note in Appendix 2. 

2)A maximum of 24 lags of consumption and income growth have been applied for modelling consumption and 

income growth. 
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Appendix 4: Stability test for income growth equation 
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Appendix 5:ARCH correction for residuals of inflation and consumption equations 
Inflation Consumption 

Dependent

variables 

Coefficient. Dependent 

variables 

Coefficient Dependent 

variables 

Coefficient Dependent 

variables 

Coefficient 

C -.0012(.001) 
1

ˆ1/σ  -.0007(.071) 

* 

C .0034(0) 
2

ˆ1/σ  .0046(0) 

91101 .0054(.019)  

1
ˆ

91101

σ

  .0043(0.068)
* 

SEAS(1) -.0063(0) 

2
ˆ

91101

σ

 -.0149(0) 

SEAS(1)       .0043(0) SEAS(1)*  -.0041(0) SEAS(5) -.0041(0) SEAS(1)+  -.0067(0) 

SEAS(2)       .0044(0) SEAS(2)*      -.0042(0) SEAS(9) -.0028(.002) SEAS(5)+  -.0034(.002) 

SEAS(3)       .0042(0) SEAS(3)*       -.0043(0) Excess 

returns 

 SEAS(9)+  -.0030(.001) 

SEAS(4)      .0038(0) SEAS(4)*    -.0036(0) Lag 1 .0277(0) 

2
ˆ

return Excess

σ

 

SEAS(5)       .0027(0) SEAS(5)*       -.0026(0) Lag 6 .0169(.002) Lag 1 .0200(0) 

SEAS(6)       .0032(0) SEAS(6)*      .0026(0) Lag 8 -.0116(.004) Lag 6 .0104(.043) 

SEAS(7)      .0026(0) SEAS(7)*     .0022(0) Lag 9  .0195(.001) Lag 9  .0079(.100) 

SEAS(8)      .0035(0) SEAS(8)*      -.0032(0) Inflation  

2
ˆ

Inflation

σ
  

SEAS(9)      .0041(0) SEAS(9)*    .0036(0) Lag 1 -.2217(.100) * Lag 1 -.5026(0) 

SEAS(10)      .0032(0) SEAS(10)*       .0030(0) Lag 9 .1846(.097) * 

2
ˆ

)1log(

σ

M∆   

SEAS(11)      .0013(0) SEAS(11)*       .0011(.004) ∆log(M1)  Lag 1 .1064(0) 

Excess 

return 

 

1
ˆ

return Excess

σ

 

 Lag 1 .0987(0) Lag 4 -.0419(.027) 

Lag 2 -

.00413(.016) 

Lag 2 -.0052(.010)* Lag 4 -.0496(.004) 

2
ˆ

log(I)

σ

∆   

Lag 5 -.0055(.003) Lag 5 -.0039(.048) log(I)∆   Lag 24 .0693(.043) 

log(C)∆   

1
ˆ

log(C)

σ

∆   Lag 24 .0967(0) 

2
ˆ

log(C)

σ

∆   

Lag 1 .0475(0) Lag 1 .0377(.018) log(C)∆   Lag 1 -.2968(0) 

Lag 4 .0549(.001) Lag 4 .0422(.032) Lag 1 -.4431(0) Lag 8 .1369(.031) 

Lag 5 .0635(.002) Lag 5 .0450(.047) Lag 8 .1478(.001) Lag 9 .1871(.004) 

Lag 6 .0566(0) Lag 6 .0490(.008) Lag 9 .2659(0) Lag 10 .1007(.118)** 

Inflation  

1
ˆ

Inflation

σ
  Lag 10 .1274(.015)   

Lag 1 .4444(0) Lag 1 .3768(0) Lag 20 .0846(.013)   

Lag 10 .1121(.014) Lag 10 

 

.1858(.002)     

Variance 

Equation 

   Variance 

Equation 

   

C 2.22e-7(0)   C 3.79e-6(0)   

ARCH(1) .3449(0)   ARCH(1) .5308(0)   

GARCH(1) .6259(0)   GARCH(1) .3676(0)   

R2 .466 R2 .582 R2 .320 R2 .420 
2R  .412 2R  .548 2R  .267 2R  .385 

D-W: 1.78 D-W: 1.98 D-W: 2.00 D-W: 2.02 

Note:(1) See the note in Appendix 2, (2) SEAS(i)*= SEAS(i)/ 1σ̂  and SEAS(i)+= SEAS(i)/ 2σ̂ , and  (3) ∆log(.) is growth in 

C=consumption, I=income and M1  
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Appendix 6 SURE 

Note:(1) See the note in Appendix 2, (2) SEAS(i)*= SEAS(i)/ 1σ̂  and SEAS(i)+= SEAS(i)/ 2σ̂ , and (3) ∆log(.) is growth in 

C=consumption, I=income and M1   

Excess Return Inflation Consumption Growth M1 Growth 

Dependent 

variables 

Coefficient Dependent 

variables 

Coefficient Dependent 

variables 

Coefficient Dependent 

variables 

Coefficient 

Black 

Monday 

-.2682(0)  
1

ˆ1/σ  -.0007(.087)* 
2

ˆ1/σ  .0046(0) C .0254(0) 

Asian crisis -.1925(0)  

1̂

D091101

σ
 .0040(0.073)* 

2
ˆ

D091101

σ
 -.0158(0) Black Monday .0139(.011) 

D091101        -.0900(.015)  SEAS(1)*       -.0041(0) SEAS(1)+  -.0068(0) D091101 .0427(0) 

D091102        -.1153(0.002) SEAS(2)*       -.0042(0) SEAS(5)+ -.0034(.001) SEAS(1)       -.0434(0) 

SEAS(3)       .0227(.011) SEAS(3)*       -.0042(0) SEAS(9)+ -.0029(0) SEAS(2)       -.0421(0) 

SEAS(5)       .0192(.024) SEAS(4)*      -.0035(0) 

2
ˆ

return Excess

σ
  SEAS(3)       -.0152(0) 

SEAS(10)       .0367(0) SEAS(5)*       -.0025(0) Lag 1 .0204(0) SEAS(4)       -.0075(.030) 

SEAS(11)       .0295(.001) SEAS(6)*       .0026(0) Lag 6 .0084(.078)* SEAS(5)       -.0385(0) 

Inflation  SEAS(7)*      .0020(0) Lag 9  .0092(.038) SEAS(6)       -.0150(0) 

Lag 1 -2.1481(.008) SEAS(8)*      -.0029(0)   SEAS(7)       -.0208(0) 

log(C)∆   SEAS(9)*      .0035(0) Lag 1 -.5035(0) SEAS(8)       -.0284(0) 

Lag 10 1.1580(.003) SEAS(10)*      .0028(0) 

2
ˆ

log(M1)

σ

∆   SEAS(9)       -.0258(0) 

∆log(M1)  SEAS(11)*      .0009(.007) Lag 1 .1057(0) SEAS(10)       -.0203(0) 

Lag 8 .4838(.003) 

1
ˆ

return Excess

σ

  Lag 4 -.04444(.013) SEAS(11)       -.0106(.003) 

Lag 11 -.7684(0) Lag 2 -.0051(.005) 

2
ˆ

log(I)

σ

∆   Excess 

returns 

 

Excess 

returns 

  Lag 5 -.0031(.081) Lag 24 .0647(.040) Lag 1 .0213(.003) 

Lag 5 .1234(.040)  

1
ˆ

log(C)

σ

∆   

2
ˆ

log(C)

σ

∆   Lag 5 -.0176(.017) 

  Lag 1 .0336(.023) Lag 1 -.2920(0) Lag 9 -.0170(.025) 
  Lag 4 .0463(.009) Lag 8 .1435(.015) Inflation   

  Lag 5 .0495(.016) Lag 9 .2144(.001) Lag 1 -.6677(0) 

  Lag 6 .0518(.002) Lag 10 .1153(.055)* Lag 4 -.4089(.013) 

  Inflation    Lag 9 -.4656(.004) 

  Lag 1 .3863(0)   Lag 12 .5241(.001) 

  Lag 10 .1909(0)   log(C)∆   

      Lag 1 .2131(.001) 

      Lag 7 .1499(.019) 

      Lag 8 .1731(.007) 

      log(I)∆   

      Lag 2 -.0789(.095) 

      Lag 3 -.1160(.017) 

      Lag 4 -.1172(.020) 

      Lag 9 -.0892(.062) 

      ∆log(M1)  

      Lag 2 .1113(.041) 
      Lag 3 .2111(0) 

      Lag 5 .1650(.002) 

      Lag 9 .1503(.005) 

      Lag 11 -.1519(.003) 

      Lag 12 .3167(0) 

R2 .303 R2 .580 R2 .419 R2 .862 
2R  .271 2R  .546 2R  .384 2R  .843 

( )22χ  .045(.98) ( )22χ  1.61(.45) ( )22χ  4.47(.11) ( )22χ  .56(.76) 


