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Abstract: Human papillomaviruses (HPVs) are small, DNA viruses that cause around 5% of all
cancers in humans, including almost all cervical cancer cases and a significant proportion of anogenital
and oral cancers. The HPV oncoproteins E5, E6 and E7 manipulate cellular signalling pathways to
evade the immune response and promote virus persistence. The Janus Kinase/Signal Transducer
and Activator of Transcription (JAK/STAT) pathway has emerged as a key mediator in a wide
range of important biological signalling pathways, including cell proliferation, cell survival and
the immune response. While STAT1 and STAT2 primarily drive immune signalling initiated by
interferons, STAT3 and STAT5 have widely been linked to the survival and proliferative potential of a
number of cancers. As such, the inhibition of STAT3 and STAT5 may offer a therapeutic benefit in
HPV-associated cancers. In this review, we will discuss how HPV manipulates JAK/STAT signalling
to evade the immune system and promote cell proliferation, enabling viral persistence and driving
cancer development. We also discuss approaches to inhibit the JAK/STAT pathway and how these
could potentially be used in the treatment of HPV-associated disease.
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1. Introduction

Infection with high-risk human papillomaviruses (HR-HPVs) accounts for around 5% of
human cancer cases worldwide, causing the majority of cervical cancers (>99%) and around 70%
of oropharyngeal cancers [1]. Despite the availability of vaccines against human papillomavirus
[HPV] infection, these are preventative and current treatment options are limited to platinum-based
chemotherapeutics such as cisplatin, either alone or combined with radiotherapy [2]. Unfortunately,
many cancers develop resistance to these drugs [3,4]; in particular, the prognosis of patients with
advanced or recurrent cervical cancer is particularly poor, with a one-year survival rate of only
10–20% [5]. There are currently no specific therapeutics for HPV-associated cancers and as such,
there exists a need to identify novel targets for the treatment of HPV-associated cancers.

HPVs infect the squamous and cutaneous epithelia and the expression of early viral genes create
a cellular environment that promotes viral replication [6]. Additionally, HPVs have evolved efficient
mechanisms to evade the immune system in order to establish persistence [7,8]. Although persistent
HPV infection is a critical driver of cellular transformation, infection alone is not sufficient for
malignant progression and thus other mechanisms are required [9]. HPVs manipulate a wide range
of cellular processes to drive cell proliferation and viral replication, targeting the PI3K/AKT [10,11],
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epidermal growth factor receptor (EGFR) [12–14], Wnt [15] and Hippo pathways [16,17] amongst
others. The viral oncoproteins E5, E6 and E7 are key in the deregulation of these pathways, promoting
cell cycle progression and survival [9].

Signal Transducer and Activator of Transcription (STAT) proteins are activated by a plethora
of extracellular ligands, including cytokines and growth factors, via their respective receptors [18].
STAT activation requires phosphorylation-induced homo- or heterodimerisation with other STAT
proteins [19]. The tyrosine phosphorylation of STAT proteins is predominantly mediated by Janus
kinases (JAKs) and Src family non-receptor tyrosine kinases, although receptor tyrosine kinases
such as EGFR can also phosphorylate STATs under certain conditions [20]. STAT proteins then
dimerise, translocate to the nucleus and drive gene transcription. STAT signalling regulates many
diverse functions that are required for homeostasis and development in mammals [18]. Furthermore,
STAT proteins have critical roles in the innate immune response (STAT1 and STAT2) and in tumour
initiation and progression (STAT3 and STAT5) [20].

As a critical pathway involved in the response to pathogens, many viruses have evolved
mechanisms to manipulate JAK/STAT signalling in order to evade the immune response and promote
proliferation. This review will discuss how HPV modulates the JAK/STAT pathway, focusing on
how this enables viral genome replication and persistence, and hence ultimately contributes towards
cancer development. Additionally, we will summarise the current methods of inhibiting the JAK/STAT
pathway and how these could potentially be used to treat HPV infection or HPV-associated disease.

2. Human Papillomaviruses

2.1. HPV Life Cycle

HPVs are a large family of small, double-stranded DNA viruses. At present, over 220 HPV
genotypes have been identified, classified on the nucleotide sequence of the gene coding for the L1
capsid protein [21].

The HPV genome is comprised of the early genes E1, E2, E4, E5, E6 and E7; the late genes L1 and
L2; and the upstream regulatory region (URR) (Figure 1A). The URR contains the origin of replication
(ori) site, as well as transcription factor binding sites that regulate viral transcription [22]. The viral
genome also contains two promoter regions: p97 in HPV16 and 31 (p105 in HPV18) is located upstream
of the E6 open reading frame (ORF) in the URR and regulates early gene transcription [23], whilst p670
in HPV16 (p811 in HPV18 and p742 in HPV31) is a differentiation-dependent promoter located within
the E7 ORF and is active during productive viral replication [24].

HPVs infect the mucosal or cutaneous epithelia and viral replication is intrinsically linked to the
differentiation status of the host keratinocyte [24–26]. Initial infection is targeted to keratinocytes in the
basal epithelial layer; productive infection requires that cells remain mitotically active upon cellular
differentiation for competent virus replication [27,28]. HPV gains access to target cells via microlesions
generated in the skin or mucosa, and entry into the target cell requires a number of putative host receptor
molecules, including heparan sulphate proteoglycans (HSPG) and α-6 integrins [29–31]. Binding of
the major capsid protein L1 to cell receptors leads to exposure of the N-terminus of the minor capsid
protein L2, allowing furin-mediated cleavage of L2 [32–34]. Furthermore, matrix metalloproteases
(MMPs) and a disintegrin and metalloproteinase (ADAM) sheddases promote the release of HPV
bound to HPSGs [35,36].

Current understanding suggests that entry may be via a macro-pinocytosis-like route that is
clathrin-, caveolin-, cholesterol-, lipid raft- and dynamin-independent [37]. Viral entry also appears
to be dependent on highly regulated actin dynamics and the association with CD151-containing
tetraspanin-enriched microdomains [38]. Many complex alterations in the plasma membrane occur
to allow viral uptake; virus induced filopodia and actin reorganization occurs via virus induced
signalling pathways, such as α6β4 integrin-induced FAK and EGFR-induced PI3K/AKT/mTOR
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activation [35,37,39–42]. Recent data has also demonstrated an essential role for ADAM17 mediated
EGFR-ERK signalling in HPV infection [43].
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Figure 1. Human papillomavirus (HPV) 16 genome organisation and viral life cycle. (A) Organisation
of the HPV16 genome, showing the relative position of the early viral genes (E1, E2, E4, E5, E6, E7 and
E8ˆE2), the late viral genes (L1 and L2) and the upstream regulatory region (URR). The position of
the early and late promoter regions is shown. (B) Schematic of epithelial architecture and the stages
of the viral life cycle, highlighting viral genome expression profile. Details are explained in the text.
Red nuclei indicate mitotically active cells. The presence of episomal HPV genomes maintains cells
in a mitotically active state upon migration into the spinous layers of the epithelium, where viral
amplification and late gene expression occurs. HPV virions are then released in leaky squames that are
sloughed off the top layers of the epithelia. Figure created using BioRENDER.com.

Disassembly of the viral capsid is initiated by acidification of the endosomal lumen, following
which L1, L2 and the viral DNA traffic to the Golgi apparatus and then the endoplasmic reticulum, via
an interaction between L2 and the retromer complex [44,45]. Upon delivery of the viral genome to
the nucleus, it is thought to act as an autonomously-replicating episomal element and is amplified
to ≈20–100 copies per cell. After initial replication, some infected daughter cells remain in the
basal layer to serve as an episome reservoir (termed viral genome maintenance); here, viral gene
expression is low. Other infected cells migrate into the supra-basal layer of the epidermis [6]. Here,
there is a significant upregulation of viral gene expression, viral DNA replication and activation of the
differentiation-dependent HPV promoter [46–49]. In uninfected epithelia, cells in the supra-basal layer
exit the cell cycle to begin the terminal differentiation process; however, expression of the HPV-encoded
viral oncoproteins E5, E6 and E7 prevent this cell cycle exit [14,50–52]. This enables amplification of the
viral genome to many thousands of copies per cell [14,49,52]. As the infected cells move to the upper
layers of the epithelium, they complete differentiation, enabling transit to the late stage of infection,
where the late promoter is activated to drive expression of E4 and the capsid proteins L1 and L2 [53,54].
This is followed by viral capsid assembly and virion release.

2.2. HPV in Cancer Development

HR-HPVs have been extensively demonstrated to be oncogenic, leading to malignant
transformation; however, this only occurs in a small number of cases and may take more than
20 years to develop. Studies over the past 30 years have identified that the pathogenesis of HR-HPVs
is primarily driven by the activities of the virus encoded oncoproteins E5, E6 and E7. All three viral
proteins have been shown to play important roles during both the viral life cycle and in tumour
formation [9,55]. Much of our understanding of the functions of the oncoproteins has been derived
from over-expression studies. Whilst these undoubtedly provide insight into oncogene function,
it is necessary to complement them with whole virus or in vivo studies to fully appreciate their
physiological relevance.

The E5 protein is a small, poorly understood viral protein, yet several studies have demonstrated
that it plays a significant role during the viral life cycle. In both HPV16 and HPV31, E5 has no
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apparent role in viral genome maintenance or the proliferation of undifferentiated keratinocytes [56,57].
In contrast, E5 was demonstrated to play a clear role in the differentiation-dependent stages of the HPV
life cycle [55]. Our data demonstrated that in HPV18, E5 is required for unscheduled DNA synthesis
in supra-basal cells, but not for genome amplification or late protein expression [14], suggesting that
E5 proteins from different HPV types have distinct effects during the viral life cycle. E5 has also
been shown to modulate the immune response by interfering with the expression or trafficking of
several critical immune receptors, including Major Histocompatibility Complex I (MHC I), MHC II
and CD1d [58–60]. These functions contribute to the ability of HPV to avoid the innate and adaptive
immune response, promoting viral persistence.

In contrast to the E6 and E7 proteins, HPV E5 proteins are weakly oncogenic and not expressed in all
HPV-positive (HPV+) tumours, suggesting they may contribute to tumourigenesis in combination with
E6 and E7 [61]. HPV16 E5 has been demonstrated to induce anchorage-independent cell growth and to
induce mitogenic effects in several cell lines [62,63]. Furthermore, E5 was demonstrated to enhance the
oncogenic abilities of HPV E7 in primary baby rat kidney cells [64]. This was validated in transgenic
mouse models in which individual HPV oncoproteins, alone or in combinations, were expressed under
the control of the epithelial-specific keratin-14 (K14) promoter; tumour formation was greater in mice
expressing E5/E6 or E5/E7 when compared with E6 or E7 alone. Interestingly, tumour formation in
mice expressing E5 alone was only observed after treatment with oestrogen, suggesting that E5 may
promote, rather than initiate, tumour development [61]. This is likely to be due to several mechanisms.
E5 proteins have been shown to modulate growth factor signalling; in particular, E5 promotes signalling
through EGFR and this has been shown to be essential for E5-induced transformation [12,57,62,65,66].
In addition, we have demonstrated that HPV18 E5-induced EGFR signalling is essential to maintain an
active cell cycle during keratinocyte differentiation, suggesting that this function of E5 may contribute
to both the viral life cycle and E5-mediated tumourigenesis [14].

E6 and E7 are the primary oncogenes of HPV and have been shown to modulate a wide array of
cellular proteins in order to induce cellular proliferation, avoid immune surveillance and promote cell
survival [9]. Whilst most studies have looked at the effect of E6 and E7 on tumourigenesis, an essential
role for both proteins in the viral life cycle has been demonstrated. Both proteins are required for stable
episome maintenance, delayed keratinocyte differentiation and the hyperplasia induced upon HPV
infection [67–69].

Both E6 and E7 play important roles in the modulation of the immune response to HPV. High
risk E6 proteins, in combination with the ubiquitin ligase E6-associated protein (E6-AP), promotes the
proteasomal degradation of pro-IL-1β, resulting in reduced secretion of mature IL-1β, a potent anti-viral
inflammatory cytokine [70]. HPV E7 binds to Stimulator of Interferon Genes (STING), a critical DNA
sensor, in an LXCXE motif dependent manner, reducing type I IFN production in response to the
presence of foreign DNA [8]. E7 also binds to DNA methyltransferase 1 (DNMT1), promoting its
recruitment to the promoter of chemokine (C-X-C motif) ligand 14 (CXCL14) [71]; the loss of CXCL14
expression reduces the cell surface expression of MHC I and subsequent CD8+ T cell-mediated immune
responses [72].

Studies with transgenic mice show that both E6 and E7 can induce tumour formation [73–80].
Interestingly, however, E6 usually produces malignant tumours (18 out of 24), whereas E7 tends to
produce benign tumours (8 out of 9) [78]. Furthermore, E6 functions in the later stages of carcinogenesis,
whereas E7 is involved in tumour initiation by promoting hyperplasia. Although both proteins are
sufficient to induce tumours in transgenic mice, by performing distinct functions E6 and E7 cooperate
in tumour development [79].

HR-HPV E6 proteins drive many diverse processes that contribute to cancer development,
often through protein-protein interactions [81]. Through binding of E6-AP, HR-HPV E6 induces the
degradation of several host proteins including the tumour suppressor p53, allowing infected cells
to subvert cell cycle checkpoints and avoid apoptosis. Furthermore, E6 is required for viral genome
maintenance during the viral life cycle, and this is dependent on the loss of p53 expression [82].
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In addition, HR-HPV E6 proteins bind and degrade a select group of PSD95/DLG/ZO-1 (PDZ) domain
containing proteins via a conserved PDZ binding motif (PBM), and these functions are required for
genome maintenance and the proliferation of infected keratinocytes [83]. The PBM is also required
for the oncogenic properties of E6. In transgenic mice models, E6∆PBM mice produce smaller and
fewer tumours than mice expressing wild-type E6 [84]. The PBM is also required for the epithelial
hyperplasia induced by HR-HPV E6 [85].

HR-HPV E7 proteins promote S phase re-entry in the differentiated strata via an ability to bind and
inactivate the pocket family proteins pRb, p107 and p130 via the LXCXE motif [86]. These interactions
result in release of the transcription factor E2F, causing cell cycle progression in cells that would
normally be undergoing differentiation [87]. This mechanism of E7 is essential for its ability to
induce epidermal hyperplasia and tumours, and may also play a role in genome maintenance [67,88].
HR-HPV E7 is also essential to induce ATM/Chk2 dependent caspase activation, which is critical for
viral genome amplification upon keratinocyte differentiation [89].

3. Janus Kinase/Signal Transducer and Activator of Transcription (JAK/STAT)
Signalling Pathways

The JAK/STAT pathway plays diverse roles that are essential for cellular homeostasis and
development, relaying the signals from cytokines and growth factors to drive haematopoiesis,
immune regulation, inflammation, cell proliferation and apoptosis [18]. Therefore, defects in
JAK/STAT signalling can result in distinct phenotypes, as exemplified by knock out (KO) mouse
studies (Figures 2 and 3A).

In this review, we will discuss the roles of JAK/STAT signalling in the immune response and in
cancer development and highlight how these key cellular mediators are manipulated by HPV.

Viruses 2020, 12, x FOR PEER REVIEW 5 of 29 

 

containing proteins via a conserved PDZ binding motif (PBM), and these functions are required for 
genome maintenance and the proliferation of infected keratinocytes [83]. The PBM is also required 
for the oncogenic properties of E6. In transgenic mice models, E6ΔPBM mice produce smaller and 
fewer tumours than mice expressing wild-type E6 [84]. The PBM is also required for the epithelial 
hyperplasia induced by HR-HPV E6 [85]. 

HR-HPV E7 proteins promote S phase re-entry in the differentiated strata via an ability to bind 
and inactivate the pocket family proteins pRb, p107 and p130 via the LXCXE motif [86]. These 
interactions result in release of the transcription factor E2F, causing cell cycle progression in cells that 
would normally be undergoing differentiation [87]. This mechanism of E7 is essential for its ability 
to induce epidermal hyperplasia and tumours, and may also play a role in genome maintenance 
[67,88]. HR-HPV E7 is also essential to induce ATM/Chk2 dependent caspase activation, which is 
critical for viral genome amplification upon keratinocyte differentiation [89]. 

3. Janus Kinase/Signal Transducer and Activator of Transcription (JAK/STAT) Signalling 
Pathways 

The JAK/STAT pathway plays diverse roles that are essential for cellular homeostasis and 
development, relaying the signals from cytokines and growth factors to drive haematopoiesis, 
immune regulation, inflammation, cell proliferation and apoptosis [18]. Therefore, defects in 
JAK/STAT signalling can result in distinct phenotypes, as exemplified by knock out (KO) mouse 
studies (Figures 2 and 3A). 

In this review, we will discuss the roles of JAK/STAT signalling in the immune response and in 
cancer development and highlight how these key cellular mediators are manipulated by HPV. 

 
Figure 2. Schematic of Signal Transducer and Activator of Transcription (STAT) protein domain 
architecture and the biological defects and phenotypes observed in STAT family member knockout 
(KO) mice. IL, interleukin; IFN, interferon; EPO, erythropoietin; GM-CSF, granulocyte macrophage 
colony stimulating factor; N, N-terminal domain; CC, coiled coil domain; DBD, DNA-binding 
domain; LD, linker domain; SH2, Src Homology 2; TA, Transactivation domain. [90–97]. Figure 
created using BioRENDER.com. 

Figure 2. Schematic of Signal Transducer and Activator of Transcription (STAT) protein domain
architecture and the biological defects and phenotypes observed in STAT family member knockout
(KO) mice. IL, interleukin; IFN, interferon; EPO, erythropoietin; GM-CSF, granulocyte macrophage
colony stimulating factor; N, N-terminal domain; CC, coiled coil domain; DBD, DNA-binding domain;
LD, linker domain; SH2, Src Homology 2; TA, Transactivation domain [90–97]. Figure created using
BioRENDER.com.
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regulatory proteins. STAT proteins also contain a central DNA binding region, which recognises the 
consensus sequence TT(N4-6)AA, termed the gamma interferon activation site (GAS) [18]. In the case 
of type I IFN signalling, a STAT1/STAT2 heterodimer binds to the transcriptional regulator Interferon 
Regulatory Factor 9 (IRF9) to form the heteromeric Interferon Stimulated Gene Factor 3 (ISGF3) 
complex, which binds to interferon stimulated response elements (ISRE) in DNA. The Src-homology-
2 (SH2) domain binds to phosphorylated tyrosine residues on other STAT proteins, mediating dimer 
formation [18,104]. Finally, STAT proteins contain a carboxyl-terminal transactivation domain (TAD), 
necessary for their transcriptional activation. 
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Figure 3. Schematic of Janus kinase (JAK) protein domain architecture and the mechanism of JAK
activation. (A) JAK domain architecture and the biological defects and phenotypes observed in
JAK family member knockout (KO) mice. gp130, glycoprotein 130; IL-6, interleukin 6; IL-6R, IL-6
receptor; FERM, 4.1 protein, Ezrin, Radixin, Moesin; SH2, Src Homology 2; JH2, JAK homology
domain 2; JH1, JAK homology domain 1. (B) The mechanism of JAK activation. Details are discussed
in the text. IL, interleukin; IFN, interferon; EPO, erythropoietin; GM-CSF, granulocyte macrophage
colony stimulating factor; SCID, Severe Combined Immunodeficiency [98–101]. Figure created using
BioRENDER.com.

3.1. Signal Transducer and Activator of Transcription (STAT) Family

The STAT family of proteins were first identified as ligand-induced transcription factors in
interferon (IFN) treated cells [102]. Seven STAT proteins have been identified in humans (Figure 2);
STAT1 and 4 map to chromosome 2q12-33; STAT3, STAT5a and STAT5b map to chromosome 12q13-14
and STAT2 and 6 map to chromosome 17q11-22 [18].

STAT proteins range in size from 750 to 850 amino acids and all share a similar domain architecture
(Figure 2; [103]). The amino-terminal domain mediates STAT protein dimerisation. Adjacent to this
is a coiled coil domain, which can interact with other transcription factors and regulatory proteins.
STAT proteins also contain a central DNA binding region, which recognises the consensus sequence
TT(N4-6)AA, termed the gamma interferon activation site (GAS) [18]. In the case of type I IFN signalling,
a STAT1/STAT2 heterodimer binds to the transcriptional regulator Interferon Regulatory Factor 9
(IRF9) to form the heteromeric Interferon Stimulated Gene Factor 3 (ISGF3) complex, which binds to
interferon stimulated response elements (ISRE) in DNA. The Src-homology-2 (SH2) domain binds
to phosphorylated tyrosine residues on other STAT proteins, mediating dimer formation [18,104].
Finally, STAT proteins contain a carboxyl-terminal transactivation domain (TAD), necessary for their
transcriptional activation.

BioRENDER.com


Viruses 2020, 12, 977 7 of 30

3.2. Janus Kinases (JAKs)

The best studied kinases necessary for STAT activation are the Janus kinases (JAKs) [105].
Four mammalian JAK proteins have been identified; JAK1, JAK2, JAK3, and tyrosine kinase 2 (TYK2),
which all share considerable structural similarity (Figure 3A). JAK1, JAK2, and TYK2 are expressed
in most tissue types, while expression of JAK3 is largely restricted to haemato-poietic cells [105].
The C-terminal regions of JAKs contain a JAK homology (JH) domain (JH1), in which the tyrosine kinase
domain is located. The JH1 domain is preceded by a pseudo-kinase domain (JH2), which interacts
with the JH1 domain to restrain kinase activity (Figure 3; [106]). In addition, JAK family members
contain a four-point-one, ezrin, radixin, moesin (FERM) domain and an SH2 domain. These domains
are essential for the ability of JAK proteins to bind to cell receptors, such as gp130, and recent studies
have shown that the FERM domain in JAK2 can dimerise, and this is essential for JAK2 activation [107].

3.3. Activation of JAK/STAT Signalling

Although different STAT proteins have distinct biological functions, STAT activation occurs
via a common mechanism. Signalling via cell surface receptors induces STAT activation via the
phosphorylation of a conserved tyrosine in the carboxyl-terminus of each STAT protein [19]. In addition,
STAT1, STAT3, STAT4, STAT5a and STAT5b are also phosphorylated at a conserved carboxyl-terminally
located serine residue by a number of serine/threonine kinases [108]. STAT proteins are primarily
activated by cytokine or growth factor signalling; however, they can also be activated by other
mechanisms, such as G-protein coupled receptor (GPCR) signalling (Figure 4; [19]). Depending on the
ligand and receptor, different combinations of JAKs and STATs can be activated with a high degree
of specificity.

In unstimulated cells, JAK proteins are constitutively bound to cytokine receptors and in an
autoinhibitory state. This is formed by the binding of the JH2 pseudo-kinase domain to the JH1 kinase
domain (Figure 3B, [106]). Upon ligand binding, receptor dimerisation brings two JAKs into close
proximity, allowing tyrosine phosphorylation of the cytoplasmic domains of the receptor and auto-
and trans-phosphorylation of the JAKs themselves [109]. These phospho-tyrosine residues can then
serve as binding sites for the SH2 domains in STAT proteins; recruitment of STATs to the receptor/JAK
complex results in their phosphorylation by JAK proteins. This triggers the head-to-tail homo- or
hetero-dimerisation of STATs. These dimers can then enter the nucleus to drive gene transcription by
binding to specific DNA sequences (Figure 4).

As large protein complexes, STAT dimers require the nuclear pore complex (NPC) in order
to efficiently shuttle into the nucleus [110]. Interestingly, the regulation of STAT nuclear transport
differs between the different STAT family members. Upon tyrosine phosphorylation, a nuclear
localisation sequence (NLS) in STAT1 is recognised and bound by importin-α5; importantly, the NLS
can only associate with importin-α5 when STAT1 is part of an activated, phosphorylated dimer [111].
Furthermore, the affinity of STAT1 for DNA is higher than for importin-α5, allowing the release
of STAT1 to bind DNA once inside the nucleus. STAT2 nuclear localisation is primarily driven by
binding to IRF9; due to the constitutive NLS in IRF9, unphosphorylated STAT2-IRF9 heterodimers are
shuttled to the nucleus via importin-α3, -α4 and -α7 [112,113]. However, as STAT2 contains a dominant
nuclear export signal (NES), STAT2 is continuously shuttled between the cytoplasm and the nucleus.
Upon phosphorylation of STAT2, it heterodimerises with phosphorylated STAT1 and is imported to
the nucleus in the same manner as STAT1 [114]. Both unphosphorylated STAT3 and STAT5B, similar to
STAT2, continuously shuttle between the cytoplasm and nucleus due to constitutive nuclear localisation
sequences [115,116]. Furthermore, studies have demonstrated that unphosphorylated STAT3 may also
influence gene expression due to its nuclear localisation [117,118].

RNA-seq studies have demonstrated that epithelial tissues widely express STAT1, STAT2,
STAT3 and STAT5, as well as the kinases JAK1 and JAK2 [119]. Below, we discuss two critical
aspects of JAK/STAT signalling that play important roles in HPV infection and cancer development:
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the regulation of antiviral immunity induced by interferons, and the induction of a hyper-proliferative
environment that leads to hyperplasia.
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Figure 4. Overview of the JAK/STAT signalling pathway. Upon extracellular ligand binding to
their cognate receptors, auto- and/or trans-phosphorylation of JAKs and receptor tyrosine residues
occurs, acting as docking sites for STAT proteins. JAK activation leads to the phosphorylation,
dimerisation and activation of STAT proteins. Dimerised STATs then translocate into the nucleus and
regulate gene transcription by binding to ISRE or GAS elements. Detailed descriptions are outlined
in the text. IL, interleukin; IFN, interferon; IFNAR, IFN-α receptor; IFNGR, INF-γ receptor; IFNLR,
IFN-λ receptor; EGF, epidermal growth factor; EGFR, EGF receptor; GM-CSF, granulocyte macrophage
colony stimulating factor; S1P, sphingosine-1-phosphate; S1PR1, sphingosine-1-phosphate receptor 1;
SFKs, Src family kinases; IRF9, interferon regulatory factor 9; ISGF3, interferon stimulated gene factor 3;
ISRE, interferon stimulated response element; GAS, gamma interferon activation site. Figure created
using BioRENDER.com.

4. JAK/STAT Signalling in the Immune Response

A key component of the immune response to viral infection is the interferon signalling
pathway [120]. The JAK/STAT pathway, in particular STAT1 and STAT2, is a critical mediator
of interferon signalling. Type I IFNs (such as IFNα) signal through a heterodimeric receptor complex
that comprises IFNAR1 and IFNAR2; IFNγ, a type II interferon, signals through a heterodimeric
transmembrane receptor that consists of the subunits IFNGR1 and IFNGR2; and the type III IFNs (such as
IFNλ) signal through the receptor IFNLR1 and IL10Rβ (Figure 5; [120,121]). Interferon signalling
induces an anti-viral state in the host cell that efficiently blocks viral spread and further activates a
robust innate and adaptive immune response [122].
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persistence of HPV16 viral genomes also resulted in the suppression of ISGs, IFNs and STAT1 
[127,128]. 

HPV16 can target the ISGF3 complex through additional mechanisms, most notably by 
downregulating the mRNA expression of STAT2 and IRF9 in immortalised keratinocytes (N/Tert-1 
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Figure 5. Modulation of interferon induced STAT1/2 signalling by HPV. Diagram of interferon signalling
via STAT1/2; the interaction of the HPV proteins is highlighted. (a) HPV E6 interacts with TYK2,
inhibiting IFN signalling. (b) HPV E6 and E7 transcriptionally repress STAT1 expression. (c) HPV E7
bind to IRF9, blocking the formation of ISGF3. (d) HPV E5 and E6 transcriptionally repress IFNκ
expression, inhibiting downstream STAT1 signalling. The effect of viral infection and the HPV genome
is not included in the figure but is discussed in the text. IFN, interferon; IFNAR, IFN-α receptor; IFNGR,
INF-γ receptor; IFNLR, IFN-λ receptor; IRF9, interferon regulatory factor 9; ISGF3, interferon stimulated
gene factor 3; ISRE, interferon stimulated response element; GAS, gamma interferon activation site.
Figure created using BioRENDER.com.

Interaction of HPV with STAT1/2 Signalling

To establish a persistent infection, HPVs employ several mechanisms that disrupt STAT1/2
signalling and thereby inhibit the expression of interferon stimulated genes (ISGs) (Figure 5);
this allows maintenance of the viral genome and continued, low-level replication in the epithelium [123].
Early microarray gene expression studies showed that overexpression of HPV16 E6, E7 or E6/E7 in
immortalised keratinocytes caused a decrease in type I IFN signalling, STAT1 expression and ISG
induction [124]. HR-HPV E7 can bind directly to IRF9, inhibiting the nuclear translocation of the ISGF3
complex [125]. These studies were extended by Hong et al., who showed that HPV16 and HPV31
E6 and E7 synergistically reduce STAT1 mRNA and protein expression during the virus life cycle
and that this function is critical for viral genome amplification upon keratinocyte differentiation [126].
Importantly, they also showed that IFNβ treatment activated STAT1 in HPV-containing keratinocytes
and reduced genome amplification, suggesting that downregulation of STAT1 is an essential, conserved
function of HR-HPV E6 and E7 during the viral life cycle. Additionally, the persistence of HPV16 viral
genomes also resulted in the suppression of ISGs, IFNs and STAT1 [127,128].

HPV16 can target the ISGF3 complex through additional mechanisms, most notably by
downregulating the mRNA expression of STAT2 and IRF9 in immortalised keratinocytes (N/Tert-1
cells) [128]. This results in the decreased expression of ISGs, such as IFIT1, MX1 and OAS1. Furthermore,
the authors demonstrated that IFNβ treatment of HPV16 containing N/Tert1s restores expression of
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the ISGF3 complex, but not ISG expression, suggesting that HPV16 can also regulate ISG expression
independently of the ISGF3 complex [128]. In this study, the viral genes E2, E6 and E7 were responsible
for the downregulation of the ISGF3 complex and downstream ISG expression.

The type I IFN, IFNκ is selectively and constitutively expressed in keratinocytes and serves as
a major component of the epithelial antiviral response [129]. Despite its prominence in epithelial
immunity, several studies have shown that IFNκ expression is undetectable in cervical cancer cells or
patient biopsies [130,131]. This loss of IFNκ expression has been linked to both the E2 and E6 proteins
from HR-HPVs [132,133] and, in the case of E6, inhibition occurs in a methylation-dependent manner.
Importantly, restoration of IFNκ expression increases ISG expression and generates a potent antiviral
state in HPV-containing keratinocytes [134].

Recently, the HPV E5 oncoprotein has also been shown to contribute to the impairment of IFNκ

signalling. Using a HPV16 mutant which results in the loss of E5 expression, the downregulation
of STAT1 and downstream ISG expression in HPV-containing keratinocytes was shown to be
E5-dependent [135,136]. The authors demonstrated that this is dependent on E5-mediated methylation
of the IFNK promoter, which is driven by activation of EGFR signalling [136]. HPV also inhibits
STAT1/2 signalling via the non-receptor tyrosine kinase TYK2. Mechanistically, HPV18 E6 binds
directly to TYK2 and impairs its ability to bind to IFNAR1, preventing the activation of ISGF3 and
subsequent downstream ISG expression [137]. Interestingly, this function of E6 was only observed
in response to IFNα, but not IFNγ [137], demonstrating a predisposition to type I IFN signalling.
Finally, despite low-risk HPV11 E6 being able to bind to TYK2, it was not able to inhibit IFN signalling,
suggesting that this activity may be an exclusive function of oncogenic HR-HPV E6.

5. STAT3 and STAT5 are Critical Drivers of HPV-Induced Malignancy

The two STAT proteins most extensively associated with cancer development are STAT3 and
STAT5 [138]. Both proteins promote cancer progression by regulating the expression of cell cycle,
anti-apoptotic and pro-inflammatory genes. Beyond this, STAT3 plays an important role in keratinocyte
development and differentiation, suggesting it may be required during the HPV life cycle [139–141].

5.1. Interaction of HPV with STAT3 Signalling

STAT3 is the only family member whose genetic deletion results in embryonic lethality
(Figure 2; [90]). Furthermore, STAT3 is most strongly associated with the promotion of tumour
growth and immunosuppression and is a bona fide oncogene, inducing the transcription of a broad
panel of genes encoding regulators of cellular proliferation (such as cyclin D1 and c-Myc), survival (such
as Bcl-XL and survivin) and angiogenesis (such as vascular endothelial growth factor (VEGF)) [142].
Activation of STAT3 occurs through a number of mechanisms; most commonly, this is via the IL-6
family of cytokines, which function through receptor complexes containing the gp130 co-factor
(Figure 6; [109,143]). Other activators of STAT3 include type I cytokines such as IL-10 and IL-23,
growth factors such as EGF and platelet-derived growth factor (PDGF) and GPCR activators such as
sphingosine-1-phosphate (S1P) [144–148].

In keratinocytes, STAT3 has been demonstrated to have an important role in epithelial
differentiation, proliferation, cell migration and survival [139,149–151]. We recently identified a
critical role for STAT3 during the HPV18 life cycle [52]. We demonstrated that inhibition or depletion
of STAT3 significantly impaired genome maintenance in undifferentiated keratinocytes in addition to
differentiation-dependent viral genome amplification. We further showed that the E6 oncoprotein was
required to induce both tyrosine and serine phosphorylation of STAT3, and this dual phosphorylated
STAT3 was essential for productive replication [52].

Additional studies demonstrated a significant correlation between high levels of STAT3
phosphorylation and a high HPV16 viral load and integration of the viral genome, suggesting
that the induction of STAT3 phosphorylation by HPV during the viral life cycle may contribute to
genome integration and cancer development by an as yet unknown mechanism [152].
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Figure created using BioRENDER.com.

Several groups have reported elevated STAT3 activity in HPV-associated cancers [144,153–163].
In cervical cancer, STAT3 is constitutively activate and correlates with cervical disease progression [153,
161–163]. Additionally, STAT3 phosphorylation is higher in HPV+ cervical cancers when compared
with HPV-negative (HPV-) cervical cancers, suggesting that HPV actively increases STAT3 activity in
these cancers [162]. Conversely, STAT3 expression and nuclear localisation is higher in HPV- head and
neck squamous cell carcinoma (HNSCC), suggesting that HPV may have differential effects on STAT3
activity depending on the tissue type [164].

Our recent work, in line with other studies, clearly demonstrated a critical role for STAT3 in
driving the expression of critical genes required for the proliferation and survival of HPV+ cervical
cancer cells [162]. Furthermore, STAT3 has been shown to be a critical mediator of HPV E6-induced
tumour formation in vivo: STAT3 knockdown by shRNA resulted in reduced tumour growth in both
HPV+ cervical cancer mouse xenografts and E6-expressing HPV- cervical cancer cell xenografts [154],
demonstrating that STAT3 may be an attractive therapeutic target in cervical cancer.

The mechanism of STAT3 activation induced by HPV E6 may be multi-factorial. A number
of studies have shown that the microRNAs (miRNAs) miR-125a and Let-7a target STAT3
(Figure 6) [155,156,165,166]. Both miRNAs negatively correlate with STAT3 expression in cervical
cancer cells. As miR-125a expression is p53-dependent, depletion of HPV E6 may induce miR-125a by
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limiting the proteasomal degradation of p53 [148]. In contrast, our data demonstrated that E6-induced
STAT3 activation was independent of p53 degradation [52].

The EGFR is often over expressed in both HNSCC and cervical cancer and is an important
driver of malignant progression [167,168]. STAT3 is a key factor downstream of EGFR signalling,
and EGFR-mediated STAT3 activation is essential for skin carcinogenesis in mice [147]. However,
studies showed that STAT3 activation was EGFR-independent in HNSCC cells and is instead dependent
on IL-6 signalling [169]. The authors demonstrated that this is due to the fact that constitutive EGFR
signalling is not commonly observed in HNSCC cell lines. Whilst investigating how HPV E6 induces
STAT3 phosphorylation, we recently identified a signalling axis involving the small GTPase Rac1,
the protein kinase AKT and the transcription factor Nuclear Factor kappa-light-chain-enhancer of
activated B cells (NFκB) [162]. Mechanistically, Rac1, and to a lesser extent AKT, is required for the
E6-mediated activation of NFκB. Furthermore, E6 induces the expression of the pro-inflammatory
cytokine IL-6 in an NFκB-dependent manner and in turn, IL-6 induces the autocrine and paracrine
phosphorylation of STAT3. In a subsequent study, we demonstrated that the STAT activating kinase
JAK2 is essential for the activation of both STAT3 and STAT5 [163]. Other studies have demonstrated that
the oncostatin M receptor (OSMR) is frequently over expressed in cervical cancer and its pro-oncogenic
effects are mediated by STAT3 activation [157,159].

Although our studies and those of several other groups have demonstrated the requirement for
HPV E6 in inducing STAT3 phosphorylation and activity, the other HPV oncoproteins may play minor
roles. Our data demonstrated that although E6 is primarily responsible for STAT3 phosphorylation
in HPV-containing keratinocytes, all three oncoproteins (E5, E6 and E7) can induce STAT3 tyrosine
phosphorylation in HPV- cervical cancer cells [52]. Whilst we demonstrated that E6-mediated STAT3
phosphorylation required IL-6 autocrine/paracrine signalling, we do not know how E5 and E7 induce
STAT3 phosphorylation, and whether or not this contributes to cancer development. As it has been
shown that all three viral oncoproteins induce EGFR activation, it is plausible that E5 and E7 may induce
STAT3 phosphorylation via the EGFR (Figure 6; [13,14,170]). Additionally, how HPV E6 activates
STAT3 during an infection is not clear. Interestingly, EGFR is activated upon viral entry, suggesting that
viral entry could induce EGFR-mediated STAT3 activation [42]; however, further studies are required
to investigate this.

5.2. Interaction of HPV with STAT5 Signalling

Aberrant STAT5 activity is most commonly associated with haematological malignancies [171].
STAT5 can be activated by members of the IL-3 cytokine family, as well as other cytokines such as
erythropoietin (EPO) and IL-2 family members [172]. However, in many cancers, including HNSCC,
growth factors such as EGF are the primary drivers of STAT5 phosphorylation [173,174].

The role of STAT5 in keratinocyte biology is poorly understood; however, it may play a role in
epithelial differentiation [175]. In HR-HPV infected keratinocytes, E7 expression increases STAT5
tyrosine phosphorylation; active STAT5 plays a critical role in the amplification of the viral genome
during the productive stage of the virus life cycle [176] (Figure 7). Interestingly, STAT5 is required
for activation of the Ataxia-telangiectasia mutated (ATM) pathway in HPV-containing keratinocytes,
and this is essential for viral genome amplification. Further work demonstrated that HPV-activated
STAT5 could also stimulate the ataxia-telangiectasia and Rad3-related (ATR) pathway by promoting
Topoisomerase IIb-binding protein 1 (TopBP1) transcription [177]. More recently, the transcription
factor Krϋppel-like factor 13 (KLF13) was shown to be essential for STAT5 phosphorylation and
downstream ATM activity [178]. However, how STAT5 is activated in HPV-containing keratinocytes is
unclear. As for STAT3, it is plausible that EGFR activation upon viral entry may play a role in STAT5
activation during the virus lifecycle [42].



Viruses 2020, 12, 977 13 of 30

Viruses 2020, 12, x FOR PEER REVIEW 13 of 29 

 

downstream ATM activity [178]. However, how STAT5 is activated in HPV-containing keratinocytes 
is unclear. As for STAT3, it is plausible that EGFR activation upon viral entry may play a role in 
STAT5 activation during the virus lifecycle [42]. 

 
Figure 7. HPV modulation of the STAT5 signalling pathway. Diagram of STAT5 signalling. The 
interaction of the HPV proteins is highlighted. (a) HPV E7 activates STAT5 via the inhibition of 
FBWX7-induced KLF13 degradation. (b) HPV E6 induces STAT5 activation via the E6-AP mediated 
degradation of PDZRN3. (c) HPV E5, E6 and E7 can all induce EGFR signalling, which leads to 
downstream STAT5 activation. The effect of viral infection and the HPV genome is not included in 
the figure but is discussed in the text. IL, interleukin; EGF, epidermal growth factor; EGFR, EGF 
receptor; EPO, erythropoietin; SFKs, Src family kinases; KLF13, Krϋppel-like factor 13; FBXW7, F-
box/WD repeat-containing protein 7; E6-AP, E6-associated protein; GAS, gamma interferon activation 
site. Figure created using BioRENDER.com. 

These studies demonstrate an essential role for STAT5 in driving viral replication during the 
HPV viral life cycle. However, whether or not it is required for the pathology of HPV-associated 
cancers is less clear. In head and neck cancer, STAT5b, but not STAT5a, was shown to be essential for 
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played a role in the induction of STAT5 activity in cancer cells. Our recent study demonstrated that 
STAT5 phosphorylation is increased in HPV+ cervical cancer cells, indicating that STAT5 activity 
plays an important role in cervical cancer pathogenesis and that this is likely driven by HPV [163]. 
We also showed that inhibition or depletion of JAK2 decreases the phosphorylation of STAT5 in 
addition to STAT3, and that this inhibited the growth of HPV+ cervical cancer cells, similar to the 
direct inhibition of STAT5. Furthermore, we confirmed that, similar to HNSCC, this was primarily 
mediated by the STAT5b isoform [163].  

Although HPV E7 was demonstrated to induce STAT5 phosphorylation in keratinocytes, both 
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The interaction of the HPV proteins is highlighted. (a) HPV E7 activates STAT5 via the inhibition of
FBWX7-induced KLF13 degradation. (b) HPV E6 induces STAT5 activation via the E6-AP mediated
degradation of PDZRN3. (c) HPV E5, E6 and E7 can all induce EGFR signalling, which leads to
downstream STAT5 activation. The effect of viral infection and the HPV genome is not included in the
figure but is discussed in the text. IL, interleukin; EGF, epidermal growth factor; EGFR, EGF receptor;
EPO, erythropoietin; SFKs, Src family kinases; KLF13, KrÜppel-like factor 13; FBXW7, F-box/WD
repeat-containing protein 7; E6-AP, E6-associated protein; GAS, gamma interferon activation site.
Figure created using BioRENDER.com.

These studies demonstrate an essential role for STAT5 in driving viral replication during the
HPV viral life cycle. However, whether or not it is required for the pathology of HPV-associated
cancers is less clear. In head and neck cancer, STAT5b, but not STAT5a, was shown to be essential for
tumour growth [173,174,179]. Importantly, this was dependent on EGFR signalling. The chemokines
CCL17 and IL-2 have both been shown to induce STAT5 phosphorylation in cervical cancer cells,
contributing to proliferation [180,181]. However, none of these studies demonstrated whether HPV
played a role in the induction of STAT5 activity in cancer cells. Our recent study demonstrated that
STAT5 phosphorylation is increased in HPV+ cervical cancer cells, indicating that STAT5 activity plays
an important role in cervical cancer pathogenesis and that this is likely driven by HPV [163]. We also
showed that inhibition or depletion of JAK2 decreases the phosphorylation of STAT5 in addition to
STAT3, and that this inhibited the growth of HPV+ cervical cancer cells, similar to the direct inhibition
of STAT5. Furthermore, we confirmed that, similar to HNSCC, this was primarily mediated by the
STAT5b isoform [163].

Although HPV E7 was demonstrated to induce STAT5 phosphorylation in keratinocytes, both
HPV E5 and E6 may also contribute. As with STAT3, activation of EGFR signalling may induce STAT5
phosphorylation in HPV-associated cancers. In line with this, we demonstrated that HR-HPV E6 induces
JAK2 phosphorylation, suggesting it may also stimulate downstream STAT5 phosphorylation [52].
Furthermore, HR-HPV E6 has also be shown to be required for STAT5 phosphorylation in a PBM- and
E6-AP-dependent manner by promoting the proteasomal degradation of PDZRN3 (Figure 7; [182]).
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6. Targeting the JAK/STAT Pathway in HPV-Associated Cancers

Currently, there are no virus-specific treatments for HPV infection or HPV-associated cancers.
Thus, new treatment strategies are required, and the JAK/STAT pathway offers a potential novel
therapeutic avenue. As both STAT3 and STAT5 are implicated in HPV infection and HPV-associated
cancers, the inhibition of these pathways may inhibit viral replication and be beneficial in the prevention
or treatment of these cancers. Below, we discuss the current strategies targeting the STAT3/STAT5
signalling pathways, either directly or indirectly via inhibiting key pathways involved in their activation
(Table 1).

Table 1. Current therapeutic strategies to inhibit the JAK/STAT pathway. Details are discussed in the
text. PROTAC, proteolysis targeting chimera; HNSCC, head and neck squamous cell carcinoma; mAb,
monoclonal antibody; RA, rheumatoid arthritis, FDA, Food and Drug Administration; IBD, irritable
bowel disease.

Therapeutic Target/Mechanism Indication Regulatory Status References

OPB-31121
STAT3 dimerisation inhibitor e.g., Advanced solid

tumours
Phase I [183]

OPB-111077 [184,185]

IST5-002 STAT5 dimerisation inhibitor e.g., pancreatic cancer Pre-clinical [186]

SD-36 STAT3 [PROTAC] e.g., leukaemias and
lymphomas Pre-clinical [187]

STAT3 decoy STAT3 response element from
FOS gene HNSCC Pre-clinical [188]

STAT5 decoy STAT5 decoy oligonucleotide e.g., leukaemias Pre-clinical [189]

AZD9150 STAT3 antisense oligonucleotide e.g., solid tumours,
metastatic HNSCC Phase I/II [188,190]

T40214
G-quartet oligodeoxynucleotides

e.g., HNSCC, liver cancer Pre-clinical [191]

T40231 e.g., HNSCC, prostate cancer Pre-clinical [192]

Siltuximab
Anti-IL-6 mAb

e.g., multiple myeloma,
solid tumours Phase I/II [193–195]

Olokizumab e.g., RA Phase II [196]

Tocilizumab
Anti-IL-6R mAb e.g., RA FDA approved

[197,198]

Sarilumab [199]

Olamkicept Soluble gp130-Fc fusion protein e.g., RA, IBD Phase I/II [200]

Tofacitinib

JAK inhibitor
e.g., RA, psoriasis,

myelofibrosis

FDA approved [201]

Ruxolitinib FDA approved [202,203]

Pacritinib Phase II [204]

6.1. Direct Targeting

6.1.1. Small Molecule Inhibitors

Several STAT3 inhibitors are now entering clinical trials or pre-clinical development. Regrettably,
the high toxicity of STAT3 inhibitors remains a significant challenge and thus progress has been
slow [205]. Early work focused on several natural products that were identified to inhibit STAT3,
such as curcumin and niclosamide [161,206]. However, these compounds have numerous off-target
effects and their mechanism of action is unclear, meaning that their use in patients is unlikely.

Building on this early work, several groups identified more specific STAT3 inhibitors by screening
compound libraries, either experimentally or computationally. This led to the identification of the
natural product cryptotanshinone, which selectively inhibits STAT3 by directly binding to its SH2
domain, hence preventing STAT3 dimerisation [207]. Additionally, the compound S3I-201 was also
identified as a potent STAT3 inhibitor, and computational modelling suggested that this compound
also directly bound to the SH2 domain to preclude dimer formation [208]. We demonstrated that both
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cryptotanshinone and S3I-201 potently inhibited HPV gene expression and genome amplification in
keratinocytes, suggesting that abrogation of STAT3 activity can inhibit viral infection [52]. We further
demonstrated that these inhibitors significantly impair the proliferation, and induce apoptosis, of HPV+

cervical cancer cells [162]. Together, these studies show that inhibition of STAT3 may be a potential
therapeutic strategy in both HPV infection and HPV+ cancers.

Unfortunately, however, the relatively modest efficacy of cryptotanshinone and S3I-201 in vitro
has prevented their progression into the clinic. Thus, newer STAT3 inhibitors have been developed.
OPB-31121 prevents STAT3 dimerisation by binding with high affinity to the SH2 domain of STAT3 [209].
OPB-31121 has demonstrated good anti-tumour activity in leukaemia and gastric cancer cells, especially
when combined with cisplatin [183,210]. However, the compound failed to produce any clinical
responses in a phase I trial in advanced tumours and has been discontinued. To improve the activity of
OPB-31121, OPB-111077 was developed, which is the primary metabolite of OPB-31121. This compound
achieved better tissue retention and inhibited the growth of various cancers and has currently completed
several phase I clinical trials in advanced cancers [184,185]. A particularly encouraging response was
observed in one of the trials involving a subset of lymphomas (diffuse large B-cell lymphoma, DLBCL)
and thus OPB-111077 is being assessed in further trials for clinical efficacy [184].

When compared to STAT3, much less progress has been made on the development of STAT5
inhibitors. Early studies demonstrated that the anti-psychotic drug pimozide, which is FDA approved
for the treatment of several psychoses, acting by antagonising several dopamine receptors, can inhibit
STAT5 activity [211]. Pimozide has shown efficacy in many types of cancer in vitro [212]; thus far,
however, no clinical trials have evaluated its effect in patients. Recently, IST5-002 was identified as an
inhibitor that binds to the SH2 domain of STAT5b [186]. IST5-002 inhibited STAT5 phosphorylation and
reduced the growth and viability of several chronic myeloid leukaemia (CML) cell lines, including those
resistant to current therapies. This compound also showed efficacy in patient-derived xenografts (PDX),
demonstrating that further studies are necessary to fully appraise its potential clinical benefit [186].

An emerging class of potential cancer therapeutics are proteolysis targeting chimeras (PROTACs)
that induce targeted protein degradation [213]. Recently, SD-36 was developed as a STAT3-specific
PROTAC that caused STAT3 degradation by binding to the SH2 domain [187]. In this elegant study,
SD-36 demonstrated excellent specificity and potency in leukaemia and lymphoma cells and induced
long-lasting tumour regression in a mouse model. Furthermore, SD-36 was well tolerated in mice
and showed low toxicity, suggesting that the clinical development of SD-36 and other STAT3-specific
PROTACs warrants further investigation [187].

6.1.2. Nucleotide Therapeutics Targeting STAT3/STAT5

Given that no small molecule inhibitors targeting STAT proteins have to date been approved for
clinical use, novel methods of targeting these proteins are being investigated. Several of these methods
are nucleic acid based and function by directly targeting the STAT3 mRNA, acting as a DNA-binding
decoy or destabilising STAT dimers [214].

As activated STAT proteins bind to specific DNA sequences, the utilisation of so-called decoy
oligonucleotides allows the ‘sponging’ of activated STAT3, inhibiting its activity [215]. To exploit this,
a short, double-stranded oligonucleotide was designed based on the STAT3-binding site in the FOS
gene [216]. The authors showed that this decoy potently inhibited STAT3 activity and proliferation in
HNSCC cells [216]. Additional studies demonstrated the efficacy of this STAT3 decoy oligonucleotide
in several cancer types, and also illustrated a benefit in overcoming EGFR inhibitor resistance [217,218].
One issue with these decoy oligonucleotides is difficulty in systemic administration; to overcome
this, the authors linked the oligonucleotide strands using hexa-ethylene-glycol spacers to allow for
intravenous injection. Importantly, the decoy oligonucleotide retained its potent effects on STAT3
activity and could inhibit tumour growth of HNSCC in vivo [216]. Decoy oligonucleotides have also
been identified for STAT5, inhibiting the growth of CML cell lines [189]; however, in vivo studies are
yet to be performed.
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Another method of repressing STAT3 signalling involves the direct inhibition of STAT3 expression
using antisense oligonucleotides, resulting in the degradation of STAT3 mRNA [219]. Early versions
were modified with 2′-O-methyl or 2′-O-methoxyethyl moieties to enhance stability. Treatment with
antisense oligonucleotides resulted in decreased STAT3-dependent gene expression is several cancer
cell lines [220]; furthermore, inhibition of tumour growth was observed in mouse xenografts of
prostate [221].

The second generation STAT3 antisense oligonucleotide AZD9150 has recently entered clinical
trials [190]. In pre-clinical studies in lung and lymphoma cancer cells, AZD9150, which is more stable
than previous iterations due to a different scaffold, decreased STAT3 expression and demonstrated
significant anti-tumour activity. In a recent phase I study in DLBCL patients, AZD9150 was well
tolerated and demonstrated some efficacy in a subset of heavily pre-treated patients [188]. This antisense
oligonucleotide is currently being investigated in combination with checkpoint immunotherapies in
DLBCL and advanced solid tumour. Recently, AZD9150, in combination with the anti-PD-1 inhibitor
Durvalumab, showed promising results in a phase II trial in recurrent/metastatic (R/M) HNSCC,
suggesting this may be a promising therapeutic strategy in these cancers [211].

A newer nucleotide-based therapy are the G-quartet oligodeoxynucleotides [GQ-ODNs].
GQ-ODNs are macrocycles composed of four guanosine bases that, upon hydrogen-bonding, form a
poly-guanylate, tetrad-helical structure in the presence of monovalent cations such as potassium [214].
GQ-ODNs can directly destabilise STAT3 dimers by binding to the SH2 domain, inhibiting STAT3
DNA binding [191]. Xenograft studies have shown that the GQ-ODNs T40214 and T40231 significantly
reduce tumour growth in prostate, breast and HNSCC models [192,222].

Together, these studies suggest that the direct targeting of STAT3 using nucleotide-based therapies
can inhibit the DNA-binding ability of STAT3 and have shown promising in vivo results beyond
proof-of-principle studies. However, optimisation of the potency, stability, and delivery of these
nucleotide therapies is essential for enhancing their therapeutic benefits in the clinic.

6.2. Indirect Targeting

Due to the poor efficacy and high toxicity of STAT inhibitors in early pre-clinical trials, much
research has focused on targeting upstream pathways to reduce phosphorylation and/or activation of
STAT3 in tumour cells.

6.2.1. Targeting IL-6 Signalling

The most prevalent mechanism of STAT3 activation in cancer is via the pro-inflammatory cytokine
IL-6 [109]. Therefore, targeting of IL-6 signalling may be of therapeutic benefit in several cancers.
There have been three main clinical approaches to inhibit IL-6 signalling at the ligand/receptor level:
directly targeting IL-6, directly targeting the IL-6R, and targeting the IL-6/soluble IL-6R complex [109].

Several anti-IL-6 monoclonal antibodies are currently in pre-clinical development or clinical trials,
the most advanced being Siltuximab, which is currently FDA approved for multicentric Castleman
disease [109]. Siltuximab is currently in phase I/II trials for a number of solid tumours, including renal
cell carcinoma, where it has been shown to decrease phosphorylated STAT3 levels and stabilise the
disease in >50% of patients [193]. However, no clinical benefit was observed for a number of advanced
tumours, including HNSCC [194]. Additional anti-IL-6 antibodies, including Olokizumab, are also in
early phase clinical trials for several solid tumours, with varying efficacies [109].

Tocilizumab is an anti-IL-6R monoclonal antibody that is FDA approved for the treatment of
rheumatoid arthritis (RA) [197]. Furthermore, pre-clinical studies have demonstrated efficacy in ovarian
and pancreatic cancer. [198,223]. Another monoclonal antibody that targets the IL-6R, Sarilumab,
is also FDA approved for RA [199].

Both of the above inhibitor classes target the classic IL-6 pathway, in which IL-6 binds to its
membrane-bound receptor IL-6R. However, another form of IL-6 signalling exists, known as trans-IL-6
signalling [224]. Here, IL-6 binds to soluble IL-6R, which is produced via alternative splicing of IL6R
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mRNA or cleavage of membrane-bound IL-6R by disintegrin and metalloproteinase domain-containing
protein 10 (ADAM10) or ADAM17. This complex can then bind to membrane-bound gp130 and activate
downstream STAT3 signalling [225]. Selective inhibition of trans-signalling might be of particular
value in patients whose tumours display low or no IL-6R expression; this can be achieved through the
use of soluble gp130 fusion proteins. One current version, Olamkicept, is currently in phase I trials for
RA and phase II trials for irritable bowel disease (IBD) [200,226].

IL-6 signalling has been demonstrated to be upregulated and associated with the activation of
STAT3 in both HNSCC and cervical cancer [154,162,169,227,228]. Furthermore, we demonstrated that
the HPV E6 oncoprotein upregulates IL-6 expression, resulting in the autocrine/paracrine activation of
STAT3 [162]. Therefore, it is plausible that targeting the IL-6 signalling pathway may be of therapeutic
benefit in HPV+ cancers.

6.2.2. Targeting Janus Kinases

The key activators of STAT3 and STAT5 downstream of membrane receptors are the Janus kinases
(Figures 6 and 7). Many JAK inhibitors have been developed, with a heavy focus on their potential use in
the treatment of chronic inflammatory and myeloproliferative disorders [229,230]. Tofacitinib primarily
inhibits JAK1 and JAK3 and is an FDA-approved treatment for RA, with clinical trials ongoing
for IBD [201]; ruxolitinib is selective for JAK1 and JAK2, and is approved for myelofibrosis and
polycythaemia vera [202]; and parcritinib is a JAK2 inhibitor which is currently in phase II trials for
myelofibrosis [204].

Furthermore, a number of clinically approved inhibitors have also been assessed for use in the
treatment of solid tumours, although clinical data on the use of these inhibitors is currently limited.
Early pre-clinical studies utilised AZD1480, a JAK1/2 inhibitor, and demonstrated STAT3 inhibition
and anti-tumour activity in HPV- HNSCC PDX models [231]. More recent phase I studies have shown
that ruxolitinib is well tolerated in solid tumours and phase II studies indicated that it may improve
survival in metastatic pancreatic cancers [203]. Promising results for HPV+ cancers have also been
obtained: we recently demonstrated that two JAK inhibitors, ruxolitinib and fedratinib, reduced STAT3
and STAT5 phosphorylation, decreased proliferation and induced apoptosis in HPV+ cervical cancer
cells [163].

These studies suggest that the targeting of JAKs may have clinical benefit in many solid tumours,
including HPV+ cancers. JAK inhibition has the added benefit of potentially targeting other signalling
pathways, such as ERK signalling, which is also highly active in many HPV+ cancers [232]. Furthermore,
in contrast to targeting the IL-6 signalling pathway, targeting JAKs may also inhibit STAT signalling
downstream of other receptors.

7. Conclusions

A growing body of literature highlights the essential role for JAK-STAT signalling in both the
productive HPV life cycle and in HPV-associated cancers. These receptor mediated signalling cascades
are manipulated by the HPV oncoproteins to re-wire host cell signal transduction. The dependence on
these pathways by HPV for replication and cancer cell proliferation and survival offers an opportunity
for therapeutic intervention. A number of strategies are currently being employed to develop effective
JAK-STAT inhibitors. As clinical trials progress we will determine whether targeting of these crucial
pathways offers a clinical opportunity to treat HPV-associated diseases.
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