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Review Article

Small molecule ERK5 kinase inhibitors

paradoxically activate ERK5 signalling: be careful

what you wish for…
Simon J. Cook1, Julie A. Tucker2 and Pamela A. Lochhead1*
1Signalling Laboratory, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, U.K.; 2York Biomedical Research Institute and Department of Biology, University

of York, York YO10 5DD, U.K.

Correspondence: Simon Cook (simon.cook@babraham.ac.uk), Julie Tucker ( julie.tucker@york.ac.uk) or Pamela Lochhead (pamela.lochhead@astrazeneca.com)

ERK5 is a protein kinase that also contains a nuclear localisation signal and a transcrip-

tional transactivation domain. Inhibition of ERK5 has therapeutic potential in cancer and

inflammation and this has prompted the development of ERK5 kinase inhibitors (ERK5i).

However, few ERK5i programmes have taken account of the ERK5 transactivation

domain. We have recently shown that the binding of small molecule ERK5i to the ERK5

kinase domain stimulates nuclear localisation and paradoxical activation of its transacti-

vation domain. Other kinase inhibitors paradoxically activate their intended kinase target,

in some cases leading to severe physiological consequences highlighting the importance

of mitigating these effects. Here, we review the assays used to monitor ERK5 activities

(kinase and transcriptional) in cells, the challenges faced in development of small mol-

ecule inhibitors to the ERK5 pathway, and classify the molecular mechanisms of paradox-

ical activation of protein kinases by kinase inhibitors.

Introduction
Protein kinases play key roles in a variety of diseases including cancer and inflammation and have
emerged as ‘druggable’ enzymes [1]. By 2019 some 48 small molecule protein kinase inhibitors had
received USA FDA approval [2] with ∼175 more in clinical trials [3]. The principle of targeting
protein kinases with small molecules is straightforward; block the active site so that it cannot bind
ATP, prevent substrate binding, prevent binding of an up-stream activator or disrupt critical conform-
ational changes. However, intensive research and clinical experience have identified two important
limitations to the efficacy of kinase inhibitors. These are, innate or acquired resistance to the kinase
inhibitor [4], and unintended activation of the target pathway, either by inhibition of negative feed-
back pathways [5] or through inhibitor binding to the kinase resulting in its paradoxical activation
[6].

The ERK5 signalling pathway in health and disease
The mitogen-activated protein kinase (MAPK) family member, extracellular signal regulated kinase 5
(ERK5, also known as Big MAP Kinase 1 or BMK1) is encoded by the MAPK7 gene [7,8]. It is the
effector kinase of a three-tiered MAPK pathway, comprising MEKK2 and MEKK3 (the MKKKs),
MEK5 (MKK) and finally ERK5 (MAPK) (Figure 1). ERK5 contains an N-terminal kinase domain
that shares 50% identity with ERK2 [7,8] and a large, unique C-terminal extension that includes a
nuclear localisation signal (NLS) and a transcriptional activation domain (TAD) [9] (Figure 2). Upon
cellular stimulation (by mitogens [10], Toll-like receptor ligands [11] or cellular stresses [12]) activated
MEK5 phosphorylates the TEY motif in the ERK5 activation loop leading to activation of its kinase
domain [13], much like activation of ERK1/2 by MEK1/2. ERK5 then auto-phosphorylates its
C-terminus which promotes ERK5 translocation from the cytosol to the nucleus [14,15] where ERK5
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binds, phosphorylates and activates MEF2 transcription factors such as MEF2D [10,16,17] (Figures 1 and 2).
The ERK5 C-terminus is also phosphorylated by other protein kinases including ERK1/2 [18], CDK1 [19,20]
and CDK5 [21]. Thus, the C-terminus both mediates a subset of the effects of the ERK5 kinase domain and
integrates signals from other pathways. ERK5 nuclear translocation and transcriptional activity is also regulated
by CDC37-induced dissociation of Hsp90 [22], and SUMOylation [23]. For an excellent review on the mechan-
isms that regulate ERK5 nuclear localisation see Tubita et al. [24].
Components of the ERK5 pathway are ubiquitously expressed in adult tissues [7,8,14]. In development,

ERK5 regulates pluripotency in mouse embryonic stem cells [25], and MEK5 and ERK5 are required for
blood vessel and cardiac development [26,27]. There is therapeutic potential in targeting the MEK5–ERK5
pathway in disease, especially cancer and inflammation. In this section, we have only considered data from
knockdown and knockout experiments when assigning the therapeutic potential of inhibition of the ERK5
pathway. This is due to the pitfalls uncovered when generating ERK5i as therapeutics or tool compounds: off-
target effects on kinases and bromo-domain containing proteins, and paradoxical activation (Table 1). We
discuss these pitfalls in more detail later in the review. Knockdown of ERK5 or MEK5 by siRNA has shown
anti-inflammatory effects in endothelial cells and monocytes [11,28]. Knockout of ERK5 in tumour-associated
macrophages impedes the growth of melanoma and lung carcinoma in mouse models [29]. Furthermore,
knockout of ERK5 in keratinocytes prevents inflammation-driven tumorigenesis [30]. Knockdown of ERK5
(or MEK5) by siRNA has also shown the therapeutic potential of the ERK5 pathway in mutant BRAF-driven
melanoma [31,32,33], mutant KRAS-driven pancreatic ductal adenocarcinoma (PDAC) [34], as well as pros-
tate [35], breast [36] and bladder cancers [37]. There are conflicting results obtained with ERK5 siRNA in
hepatocellular carcinoma (HCC) [38,39]. In colorectal cancer, siRNA to ERK5 shows that ERK5 is required

Figure 1. EGFR activation of the MEK5–ERK5 signalling pathway and the cell-based assays used to measure activation and inhibition by MEK5i

and ERK5i (A) ERK5 autophosphorylation assay, (B) ERK5-driven MEF2 and AP-1 reporter assays, (C) ERK5-driven MEF2:GAL4 reporter assay.

Figure created using bioRENDER.com.
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for the regulation of cancer stem-like cell properties and tumour-sphere growth [40], but not for inhibition
of tumour cell proliferation [38].

The challenge of monitoring ERK5 inhibition in cells
The use of protein kinase inhibitors in biological systems requires clear and specific biomarkers that confirm
target inhibition and allow interpretation of the experiment. For example, inhibition of the RAS–RAF–MEK1/
2–ERK1/2 pathway with a MEK1/2 or ERK1/2 inhibitor causes loss of phosphorylated ERK1/2 and/or RSK
(direct substrates of MEK1/2 and ERK1/2, respectively). Monitoring the ERK1/2 pathway is made easier by the
existence of more than 200 ERK1/2 substrates and interacting proteins [41].
Whilst inhibition of MEK5 is relatively easily assessed in cells by loss of ERK5 activation-loop TEY phos-

phorylation, the paucity of well-validated ERK5 substrates allowing reliable monitoring of ERK5 activity or
inhibition has held back our understanding of ERK5 biology, and ERK5i development and disease positioning.
Techniques that have been used to monitor ERK5i-dependent inhibition of ERK5 in cells include:
1. KiNativ™. This technique measures binding of small molecules to the kinase active site. It uses biotin-

tagged acyl-phosphates of ATP and ADP as probes, which acylate the conserved active site lysines in protein
kinases (and other ATP-dependent enzymes). Mass spectrometry is then used to identify streptavidin captured
peptides following tryptic digestion. Pre-treatment of cells with and without inhibitors, followed by cell lysis
and capture of non-inhibitor-bound ERK5 via the ATP-site probe allows the quantification of target engage-
ment [42,43]. This technique does not measure kinase or transcriptional activity.
2. ERK5 autophosphorylation assay. MEK5-catalysed phosphorylation of the activation-loop TEY motif

activates the ERK5 kinase domain, which subsequently drives autophosphorylation at multiple sites within the

Figure 2. Canonical Activation of ERK5 and Paradoxical Activation of ERK5, PKB and RAF by kinase inhibitors.

TAD, transactivation domain; NLS, nuclear localisation signal; PH, pleckstrin homology domain; RBD, RAS binding domain. Figure created using

bioRENDER.com.
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Table 1. ERK5 inhibitors Part 1 of 4

Inhibitor

/PubChem

CID

Class of

ERK5

inhibitor IC50: assay

Other targets

IC50: assay

Mechanism

of action

Kinase

inhibitor

type [67]

Paradoxical

activator (%

of MEK5D

effect)

Activity

in

tumour

model

(s)

Phase of

development References

BIX02188

/135398492

MEK5 4.3 nM: in vitro

kinase assay

0.82–1.15 mM:

in cell ERK5:

MEF2C

In vitro kinase

assays for:

ERK5: 810 nM

CSF1R:280 nM

LCK: 390 nM

KIT: 550 nM

Kinases with

>70% inhibition

at 3 mM:

Src

Kinases with

>70% inhibition

at 10 mM:

ABL

CSF1R(FMS)

KIT

LCK

using the

University of

Dundee and

Invitrogen kinase

selectivity testing

ATP

competitive

Type I‡ NR NT Preclinical [58]

BIX02189/

135659062

MEK5 1.5 nM: in vitro

kinase assay

0.26–0.53 mM:

in cell ERK5:

MEF2C

49.5 nM: in cell

ERK5:MEF2D

In vitro kinase

assays for:

ERK5: 810 nM

CSF1R:28 0nM

LCK: 390 nM

KIT: 550 nM

Kinases with

>70% inhibition

at 3 mM:

Src

Kinases with

>70% inhibition

at 10 mM:

ABL

CSF1R(FMS)

FGFR1

LCK

RSK2 + 4

using the

University of

Dundee and

Invitrogen kinase

selectivity testing

In cells:

TGFβ-type 1R:

5 mM using a

SMAD reporter

ATP

competitive

Type I‡ NR Yes Preclinical [55,58,85]

SC-1-181 MEK5 10 mM

decreases

phospho-ERK5

by 59%

10 mM had no

effect on

phospho-ERK1/

2

No other data

available

Not ATP

competitive

Type III† NR NT Preclinical [61,62]

Continued
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Table 1. ERK5 inhibitors Part 2 of 4

Inhibitor

/PubChem

CID

Class of

ERK5

inhibitor IC50: assay

Other targets

IC50: assay

Mechanism

of action

Kinase

inhibitor

type [67]

Paradoxical

activator (%

of MEK5D

effect)

Activity

in

tumour

model

(s)

Phase of

development References

XMD8-92/

46843772

Dual ERK5/

BRD4

190 nM: in cell

lysate KiNativ

130 nM: in live

cells KiNativ

364 nM: in vitro

kinase assay

240 nM: In cell

ERK5 band-shift

LRRK2 (in vitro

kinase assay):

59 nM

BRD4

(BROMOscan

assay): 170 nM

Kinases with

>90%

displacement

(KiNativ):

DCAMKL1,

TNK4 and PLK4

ATP

competitive

Type I 24% at 1mM Yes Preclinical [63,64,83,86–

89]

AX15836/

122705989

ERK5 8 nM: in cell

lysate KiNativ

9 nM: in live

cells KiNativ

31 nM: in cell

ΔTAD-ERK5:

MEF2D

BRD4

BROMOscan

assay: 3.6 mM

No other kinases

inhibited >70%

at 1 mM by

KiNativ

ATP

competitive

Type I* 200% at

3 mM

NT Preclinical [55,64]

XMD17-109

(Cmpd26,

ERK5-IN-1)/

71604307

Dual ERK5/

BRD4

162 nM: in vitro

kinase assay

90 nM: in cell

EGF band-shift

4.2 mM: in cell

AP-1 reporter

163 nM: in cell

FL-ERK5:

MEF2D

90 nM: in cell

ΔTAD-ERK5:

MEF2D

In vitro LRRK2:

339 nM

BRD4-1 Binding

assay: 217 nM

No other

selectivity data

published

ATP

competitive

Type I* 40% at 1 mM NT Preclinical [45,63]

[55]

XMD17-26

(Cmpd 25)

Dual ERK5/

BRD4*

80 nM:in cell

EGF band-shift

82 nM: in vitro

kinase assay

152 nM: in cell

FL-ERK5:

MEF2D

28 nM: in cell

ΔTAD-ERK5:

MEF2D

No selectivity

data published

ATP

competitive

Type I 50% at 1 mM NT Preclinical [44,55]

JWG-045

(XMD10-78)

ERK5/

LRRK2

98 nM: in vitro

kinase assay

BRD4

AlphaScreen™:

11 mM

LRRK2 in vitro

kinase assay:

289 nM

No other

selectivity data

published

ATP

competitive

Type I* NT NT Preclinical [25,32,45]

Continued

© 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY). 5

Biochemical Society Transactions (2020)

https://doi.org/10.1042/BST20190338

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://p

o
rtla

n
d
p
re

s
s
.c

o
m

/b
io

c
h
e
m

s
o
c
tra

n
s
/a

rtic
le

-p
d
f/d

o
i/1

0
.1

0
4
2
/B

S
T

2
0
1
9
0
3
3
8
/8

9
3
0
2
2
/b

s
t-2

0
1
9
-0

3
3
8
c
.p

d
f b

y
 U

K
 u

s
e

r o
n
 1

7
 S

e
p

te
m

b
e
r 2

0
2
0



Table 1. ERK5 inhibitors Part 3 of 4

Inhibitor

/PubChem

CID

Class of

ERK5

inhibitor IC50: assay

Other targets

IC50: assay

Mechanism

of action

Kinase

inhibitor

type [67]

Paradoxical

activator (%

of MEK5D

effect)

Activity

in

tumour

model

(s)

Phase of

development References

JWG-071/

131842089

ERK5/

LRRK2

88 nM: in vitro

kinase assay

BRD4

AlphaScreen™:

5.42 mM

LRRK2 in vitro

kinase assay:

109 nM

Kinases with

>70% inhibition

at 1 mM by

KINOMEscan™

DCAMKL1/2

LRRK2

LRRK2

(G2019S)

PLK4

ATP

competitive

Type I* NT NT Preclinical [45]

Compound

46

ERK5 820 nM: in vitro

3 mM: in cell

FL-ERK5:

MEF2D

1 mM: in cell

ΔTAD-ERK5:

MEF2D

No binding to

BRD4 at 20 mM.

Kinases with ≥

90% inhibition at

10 mM :

DCAMKL3

JAK1

SLK

MAP3K15

TYK2

JAK2

MST2

DCAMKL1 by

KINOMEscan™

ATP

competitive

Type I 5% at 10 mM Yes Preclinical [56]

BAY-885/

134128280

ERK5 35 nM: in vitro

kinase assay

120 nM: in cell

MEF2 reporter

assay

No other kinase

inh >70% at

1 mM by Eurofins

kinase panel

No binding to

BRD4 at

>20 mM

ATP

competitive

Type I* 20% at 1 mM NT Preclinical [57]

ADTL-EI1712 Dual ERK1/

2

ERK5

1 mM

KINOMEscan %

inhibition

ERK1 94%

ERK2

91%

ERK5 87%

Kinases with

>71% inhibition

at 1 mM:

KIT

AXL

KINOMEscan by

Eurofins

ATP

competitive¶
Type I¶ NT Yes Preclinical [66]

Compound 3 ERK5 42 nM: in vitro >20 other

kinases inhibited

at 10 mM using

the

ThermoFisher

standard kinase

panel

Not tested

against BRD4.

ATP

competitive

Type I NT NT Preclinical [68]

Continued
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C-terminus (Figures 1 and 2). This multi-site phosphorylation causes a pronounced reduction in mobility of
ERK5 on SDS–PAGE gels [44,45]. Since this ERK5 ‘band shift’ reflects kinase domain-catalysed autophosphor-
ylation, its loss in cells treated with an ERK5i reports inhibition of ERK5 (Figure 1A). This assay is straightfor-
ward as it simply requires a reliable ERK5 antibody. However, at least some phosphorylation sites in the
C-terminus are targeted in trans by other protein kinases. Furthermore, this assay does not take into account
the function of the C-terminus and does not measure the activity of the ERK5 TAD.
3. ERK5-driven AP-1 reporter assay. The AP-1 transcription factor consists of homo- and heterodimers of

the bZIP transcription factors JUN ( JUN, JUNB and JUND) and FOS (FOS, FOSB, FRA1 and FRA2) which
bind to the core DNA sequence 50-TGAG/CTCA-30. A multimerised AP-1:Luc reporter can be stimulated by
ERK5 when it is activated by co-transfected MEK5D (a constitutively active MEK5 mutant). This has been
used to assess ERK5 activation and inhibition by ERK5i in cells [44]. However, the sheer complexity of AP-1
means it is very difficult to understand and interpret what is being measured in an ERK5-driven AP-1:Luc
reporter assay. AP-1 activity is determined by dimer composition, the abundance of dimer partners (a function

Table 1. ERK5 inhibitors Part 4 of 4

Inhibitor

/PubChem

CID

Class of

ERK5

inhibitor IC50: assay

Other targets

IC50: assay

Mechanism

of action

Kinase

inhibitor

type [67]

Paradoxical

activator (%

of MEK5D

effect)

Activity

in

tumour

model

(s)

Phase of

development References

Compound 5 ERK5 2.3 mM: in vitro Kinases with

>80% inh at

10 mM:

CSF1R

FLT4

GSK3α

SYK

TYK2

using the

ThermoFisher

standard kinase

panel.

Not tested

against BRD4.

Allosteric

and ATP

competitive

Type IV NT NT Preclinical [68]

TG-02

(SB1317,

Zotiraciclib)/

16739650

Multi-kinase

inhibitor

including

ERK5

43 nM: in vitro In vitro kinase

assays for:

CDK9: 3 nM

CDK5: 4 nM

CDK2: 5 nM

CDK3: 8 nM

CDK1: 9 nM

Lck: 11 nM

TYK2: 14 nM

Fyn: 15 nM

JAK2: 19 nM

FLT3: 19 nM

FLT3 D835Y: 21

Fms: 27 nM

TYRO3: 36 nM

CDK7: 37 nM

ERK5: 43 nM

P38δ: 56 nM

JAK1: 59 nM

ATP

competitive§
Type I§ NT Yes I/II [90–92]

NT, not tested; NR, not relevant; NP, not published.*No structural data available, based on binding mode of a close analogue;
§No structural data available, based on binding mode derived from computational docking into AuroraA kinase [93];
¶No structural data available, based on binding mode derived from computational docking into ERK5 kinase domain [66];

†No structural data available, based on binding mode derived from computational docking into a MEK5 homology model [61];

‡No structural data available, based on binding modes of close analogues to other kinases.

© 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY). 7
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of de novo expression and proteasomal degradation) and their activity (controlled through phosphorylation,
acetylation and protein:protein interactions). In terms of dimer composition, some FOS or JUN proteins can
also heterodimerise with the ATF transcription factors (ATF2, ATF3 and B-ATF), MAFs (MAFB, MAFF,
MAFG and MAFK) and the cAMP response element-binding proteins (CREBs). In terms of abundance and
activity, the ERK1/2 [46,47,48] and JNK [49] pathways drive the expression and phosphorylation of multiple
AP-1 proteins, increasing their abundance and activity. ERK1/2 signalling is a positive regulator of the FOS
proteins, and ERK1/2 also phosphorylates JUNB and JUND; JNK phosphorylates and activates JUN and ATF2
[46,49].
The most likely mechanism by which ERK5 might regulate AP-1 is by promoting JUN expression. JUN

expression is decreased in ERK5−/− MEFs and this is rescued by re-expression of ERK5 [50]. The JUN pro-
moter is regulated by MEF2C, the best characterised substrate of ERK5; ERK5 phosphorylation of MEF2C
enhances its transcriptional activity and promotes JUN expression [17,51]. ERK5 can also stimulate the phos-
phorylation and activation of CREB [52] and can phosphorylate ATF2 in vitro [20], however, ERK5 does not
phosphorylate the Maf family member, MafA [53]. Taking these studies into account, ERK5-dependent regula-
tion of AP-1:Luc is indirect, complex and mostly likely through an ERK5→MEF2C→ JUN pathway
(Figure 1B), which is further complicated by other pathway inputs.
4. MEF2-dependent reporter assays. The best validated ERK5 interacting proteins and substrates are the

MEF2A, C and D transcription factors [10,17,54]. Thus, the MEF2 proteins remain the most appropriate direct

Part 1 of 2

Figure 3. ERK5 inhibitors.
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reporters of ERK5 activity and have been used in cellular reporter systems for monitoring MEK5 and/or ERK5
inhibition [55–57,58]. The simplest version consists of multimerised MEF2 binding sites and basic promoter
elements to drive the expression of a reporter (typically firefly luciferase) in response to EGF (Figure 1B top)
[57], making it a significant advance in ERK5 selectivity over AP-1. A potential disadvantage of this assay is
that it may ‘report’ the activity of any one of the MEF2 proteins that can bind to the minimal binding site and
it may also report on the activity of MEF2-interacting proteins that may be regulated by other pathways. This
assay can be made more specific for ERK5 by driving ERK5 activation with co-transfected MEK5D.
A variation of this assay involves fusing the region of MEF2 housing ERK5 phosphorylation sites and the

MEF2 TAD to the DNA-binding domain of the yeast transcription factor GAL4 (Figure 1C). This MEF2-GAL4
fusion can then be expressed together with a luciferase reporter controlled by multimerised GAL4 response ele-
ments (GREs), ERK5 and MEK5D to stimulate the pathway. This system has been shown to work for MEF2A,
C and D [17] and although it has more components, it is a far more direct readout of ERK5 activation since
ERK5 interacts directly with the MEF2-GAL4 reporter construct to drive luciferase expression. We have used
this assay to measure the pharmacological inhibition of MEK5 and ERK5 [38,55,56].
Transcription-based readouts of ERK5 activity do not readily differentiate between the contribution of the

kinase and TAD activities when a full length construct of (or endogenous) ERK5 is assessed. For example, we

Part 2 of 2

Figure 3. ERK5 inhibitors.
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have found that a truncation mutant of ERK5 that lacked the TAD could drive MEF2D:GAL4 activity when
co-transfected with MEK5D, but also that a kinase dead full-length form of ERK5 (that contains the TAD)
could drive MEF2D:GAL4 luciferase activity following ERK5i treatment (see below) [55]. However, by using
these different constructs, the contribution of the kinase domain and TAD can be delineated.

Development of MEK5 and ERK5 kinase inhibitors
By analogy with the RAF–MEK1/2–ERK1/2 pathway, one could conceive of targeting the ERK5 pathway at any
step from MEKK2/3 to MEK5 or ERK5 itself (Figure 1). However, unlike RAF, which appears to be very select-
ive for activation of MEK1/2, MEKK2/3 are able to activate other MKKs in addition to MEK5 [59] such that
inhibition of MEKK2/3 may impact on JNK, p38 or ERK1/2 activity as well as ERK5. This may explain why
efforts to selectively target ERK5 signalling have focused on MEK5 or ERK5. A summary of current MEK5 and
ERK5 inhibitors is presented in Table 1 and Figure 3.
The first pathway inhibitors to be reported were the MEK5 inhibitors, BIX02188 and BIX02189. These inhi-

bitors are relatively selective for MEK5, with the strongest off-target effect on Src [58]. They have been useful
for dissecting the role of the MEK5–ERK5 pathway in cells [28,60]. More recently, SC-1-181 has been
described; however, the selectivity data have yet to be reported [61,62].
The majority of effort has focused on the development of small molecule ERK5i, probably because ERK5 is

the ‘effector kinase’ in the pathway. However, ERK5 is proving to be a challenging target. The first ERK5i to be
described were XMD8-92 [63], cpd 25 (XMD17-26) and cpd 26 (also known as XMD17-109 and ERK5-IN-1)
[44]. Although selective for ERK5 over other kinases, they had off-target effects on the bromo-domain contain-
ing protein, BRD4 [64] — an epigenetic reader involved in transcriptional regulation [65]. AX15836, an ana-
logue of XMD8-92, was engineered to lack bromo-domain activity and is a potent and selective inhibitor of
ERK5 kinase activity. However, cell-based experiments showed that AX15836 did not phenocopy genetic ERK5
knockdown. This brings into question results obtained using XMD8-92. Even though XMD8-92 phenocopies
the biological effects of siRNA knockdown of ERK5, it is likely this arises through different mechanisms;
XMD8-92, through binding to bromo-domain containing proteins, and siRNA to ERK5 by ablating the kinase
domain and the C-terminus (including the TAD). This study also suggested that the ERK5 C-terminal domain
is important for the biological function of ERK5 [64]. Heedful researchers have since used BRD4 inhibitors,
such as JQ1, to delineate the role of BRD4 in their systems [25,45,55,56] and testing of ERK5 inhibitors against
BRD4 is now an essential step in ERK5 drug discovery. Adding to the complexity, we have found that cpd 26

(XMD17-109) and AX15836, cause a conformational change in the kinase domain which leads to exposure of
the C-terminal NLS and paradoxical activation of the ERK5 TAD [55] (see below and Figure 2).
Additional ERK5i in the public domain include JWG-045 and JWG-071, a further development of the

XMD8-92 series. Both have selectivity over BRD4 but inhibit LRRK2 and are classed as dual ERK5/LRRK2
inhibitors. The kinase selectivity data for JWG-071 have been published, showing that it only inhibits three
other kinases (LRRK2, PLK2, DCAMKL1 and 2) at low micro molar concentrations. In cell-based assays, an
inhibitor that blocks LRRK2 activity (such as JWG-048 [45]), and not ERK5 activity, could be used to confirm
ERK5 kinase involvement. A multi-site collaboration reported cpd 46; this inhibitor is distinct from the
XMD8-92 series, has no activity towards BRD4 or LRRK2, is highly selective for ERK5 and is also suitable for
use in animal studies [56]. Bayer have reported BAY-885, which like AX15836 is very selective for ERK5 and
did not significantly inhibit other kinases or BRD4 [57]. However, like AX15386 it also paradoxically activates
ERK5 transcriptional activity (Figure 4A and Table 1).
Recently a triple ERK1/2/5 inhibitor, ADTL-EI1712, has been reported [66]. This was developed to simultan-

eously block the ERK1/2 and ERK5 pathways in cancers where ERK5 activity can compensate for inhibition of
the RAS–RAF–MEK1/2–ERK1/2 pathway [31,34]. Two other kinases, Kit and Axl are also inhibited to a
similar extent as ERK1, ERK2 and ERK5, but BRD4 engagement was not assessed [66].
All the above inhibitors are type I inhibitors, and have either been shown experimentally or predicted to

bind to the active form of ERK5 where the phenylalanine from the activation-loop DFG motif is ‘in’, the cata-
lytic αC-helix is ‘in’, the inhibitors occupy part of the adenine binding pocket and form hydrogen bonds with
the kinase hinge region (which connects the N and C-terminal lobes of the enzyme) (Figure 4B). For a review
on the classification of kinase inhibitors see [67]. A type IV ERK5 inhibitor, cpd 5, has been identified by
Chen et al. [68]. Type IV inhibitors do not bind the ATP or peptide substrate binding sites and are considered
to act as allosteric inhibitors. Although cpd 5 does not bind directly to the ATP-binding site, it displaces the
kinase P-loop into the ATP-binding site and thus is ATP competitive. This inhibitor has off-target effects

© 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY).10

Biochemical Society Transactions (2020)

https://doi.org/10.1042/BST20190338

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://p

o
rtla

n
d
p
re

s
s
.c

o
m

/b
io

c
h
e
m

s
o
c
tra

n
s
/a

rtic
le

-p
d
f/d

o
i/1

0
.1

0
4
2
/B

S
T

2
0
1
9
0
3
3
8
/8

9
3
0
2
2
/b

s
t-2

0
1
9
-0

3
3
8
c
.p

d
f b

y
 U

K
 u

s
e

r o
n
 1

7
 S

e
p

te
m

b
e
r 2

0
2
0



Figure 4. ERK5 small molecule inhibitor binding to the ERK5 kinase domain. Part 1 of 2

(A) BAY-885 induces transcriptional activity in the ERK5:MEF2D reporter system. HEK293 cells were transfected with

GAL4-MEF2D, GAL4:LUC and CMV:Renilla, together with either wild-type HA-ERK5 (full length) or HA-ERK5ΔTAD and

EGFP-MEK5D or EGFP (control) as indicated. Four hours post-transfection, cells were treated with either DMSO (control) or

BAY-885. Twenty-four hours post transfection, cells were lysed and firefly luciferase activity was measured and normalised to

Renilla. The results are presented as the mean of three independent experiments ± SEM. For full method see [55]. (B,C)

Comparison of the binding mode of selected ERK5 inhibitors with ATP highlights the divergence in solvent channel groups and

the extension of the BAY series (exemplified by cpd35) toward the back pocket. (B) Inhibitors shown within the context of

ERK5 (cartoon representation); the gatekeeper residue (L137) is shown as spheres and the αC-helix is labelled. (C) ATP-binding

site viewed from the N-terminal lobe of ERK5; protein atoms omitted for clarity. (D) Comparison of the conformations of the

ERK5 activation loop (N-terminal DFG motif to C-terminal APE motif ), αC- and C-terminal helices in the presence and absence

of ATP and selected inhibitors demonstrates the similarity in positioning of the αC- and C-terminal helices in the inhibitor- and

ATP-bound structures and their divergence from the apo structure, whilst the majority of inhibitor-bound activation loops adopt

a similar conformation, they all differ from both the apo and ATP-bound states. In panels (B–D), inhibitor carbon atoms (B,C) or

© 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY). 11
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against five other kinases at concentrations required to inhibit ERK5 in cells [68] but it has not been tested
against BRD4.
Some ERK5i have anti-tumour activity (Table 1). As XMD8-92, ADTL-EI1712 and TG-02 all have off-target

effects (either on BRD4 or other kinases), it is impossible to conclude whether or not this is a direct conse-
quence of ERK5 kinase inhibition (even when it phenocopies knockout techniques, for the reasons discussed
above). Cpd 46 is a selective ERK5i, with mild paradoxical activation effects, that prevents tumour growth by
inhibiting angiogenesis [56]. These findings show that it is important to understand how targeting ERK5 works
— inhibition of tumour cell proliferation or survival, inhibition of tumour angiogenesis, or in appropriate
models, reducing the tumour promoting role of the immune system.

Paradoxical signalling induced by ERK5 kinase inhibitors

differs from other kinases — classification of kinase

inhibitor-induced paradoxical activation
The unintended activation of kinase signalling through inhibitor binding to the kinase, termed paradoxical acti-
vation, has emerged as a significant challenge to kinase inhibitor development. The first kinase that was
reported to be paradoxically activated by selective small molecule inhibitors was PKB. Inhibitor binding pro-
motes PKB membrane localisation, regulatory site phosphorylation (T308 and S473) by PDK1 and mTORC2,
and acquisition of a phosphatase-resistant conformation; consequently, when the inhibitor is removed the
‘primed’ kinase is fully active [69,6]. Other kinases that undergo ‘priming paradoxical activation’ (Figure 2)
include PKC [70], PKD [71], AMPK [72] and JAK2 [73,74,75]. This mechanism can have severe physiological
consequences; for example, a life-threatening cytokine-rebound syndrome occurs when the JAK2 inhibitor, rux-
olitinib, is withdrawn too quickly and this is due to priming paradoxical activation of JAK2 [73,74,75].
The second and best-known example of paradoxical kinase activation is seen with the first generation

BRAFV600E/K inhibitors vemurafenib and dabrafenib. These inhibitors were developed to selectively inhibit
BRAFV600E/K and although they are effective in treating BRAFV600E/K-driven melanoma they cause adventitious
tumour progression in non-melanoma tissue. This is because inhibitor binding to wild-type RAF isoforms
induces RAS-GTP-dependent CRAF homodimers or BRAF-CRAF heterodimers in which the drug-bound pro-
tomer trans-activates the drug-free promoter leading to MEK1/2–ERK1/2 activation [76,77] (Figure 2).
Another example of this ‘paradoxical activation by trans-activation’ is bosutinib binding to the pseudokinase
HER3 which induces an EGFR-dependent proliferative signal [78,79] (Figure 2). These examples highlight the
importance of anticipating whether a kinase is susceptible to inhibitor-induced paradoxical activation.
We have recently shown that the binding of cpd 25 (XMD17-26), 26 (XMD17-109) or AX15836 to the

ERK5 kinase domain promotes NLS and TAD exposure which in turn promotes nuclear localisation and para-
doxical activation of ERK5 transcriptional activity [55]. The ERK5 kinase domain and the NLS and TAD nor-
mally inhibit each other through an intramolecular interaction that is relieved by ERK5i binding (Figure 2).
Generation of inhibitor-resistant ERK5 mutants confirmed that this was an ‘on target’ effect of ERK5i binding
to the kinase domain. This represents a new mechanism redolent of steroid hormone receptor activation, where
ligand binding induces nuclear translocation and transcriptional activity. Thus, we have termed this ‘auxiliary
domain paradoxical activation’ (Figure 2).
Do all ERK5i induce paradoxical activation? We have subsequently tested XMD8-92, cpd 46 and BAY-885

in the MEF2D:GAL4 assay (Figure 1). All three paradoxically activate ERK5 in the assay, albeit to differing
degrees (Figure 4A, Table 1). We have compared the binding of XMD8-92, cpd 25 (XMD17-26), cpd 35 (an
analogue of BAY-885) and cpd 46 to ERK5 to ATP (Figure 4B,C). These ERK5i all occupy a similar space
within the adenosine-binding region of the ATP-binding site (Figure 4B,C) and engage in hydrogen bonds
with the hinge region, whilst they differ somewhat in the positioning of their solvent-exposed moieties. In add-
ition, cpd 35 extends to occupy an area termed the ‘back pocket’. This region, which lies between the ‘gate-
keeper’ residue (L137 in ERK5) and the αC helix, is not occupied by ATP. Comparison of the conformation of

Figure 4. ERK5 small molecule inhibitor binding to the ERK5 kinase domain. Part 2 of 2

protein cartoon (D) are coloured as indicated in the key. Crystal structures of ERK5 kinase domain alone and in complex with

ATP or selected ATP-competitive inhibitors were overlaid using the ssm algorithm in CCP4MG [94]. Co-ordinates were

extracted from the PDBe [https://www.ebi.ac.uk/pdbe/] using the entry codes indicated in the key.

© 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY).12

Biochemical Society Transactions (2020)

https://doi.org/10.1042/BST20190338

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://p

o
rtla

n
d
p
re

s
s
.c

o
m

/b
io

c
h
e
m

s
o
c
tra

n
s
/a

rtic
le

-p
d
f/d

o
i/1

0
.1

0
4
2
/B

S
T

2
0
1
9
0
3
3
8
/8

9
3
0
2
2
/b

s
t-2

0
1
9
-0

3
3
8
c
.p

d
f b

y
 U

K
 u

s
e

r o
n
 1

7
 S

e
p

te
m

b
e
r 2

0
2
0



the ERK5 αC helix and activation loop in the presence and absence of inhibitors or ATP (Figure 4D) reveals
that the inhibitors bind to a more ‘active-like’ conformation of ERK5. Furthermore, our structural simulations
with AX15836 showed a reduction in flexibility of the activation loop [55]. The exact mechanism that causes
NLS exposure and TAD paradoxical activation when ERK5i bind to the ERK5 kinase domain remains elusive.
It could be conformational changes elicited by inhibitor binding, solvent-exposed moieties preventing auto-
inhibition, effects on Hsp90 binding, post-translational modifications or a combination of events. We ruled out
changes in phosphorylation of known key sites on ERK5 [55], but ERK5 SUMOylation remains to be tested.
Promoting nuclear localisation of ERK5 is an undesirable consequence of ERK5i. Nuclear ERK5 is linked to

a high Gleason grade, bone metastasis and ultimately a poor prognosis in prostate cancer [35,80–82]. In HCC
there is an increase in ERK5 nuclear localisation but no increase in ERK5 kinase activity [83], and overexpres-
sion of the oncogene, Cdc37, promotes kinase-inactive nuclear localisation of ERK5 while increasing cell prolif-
eration [22]. Thus, ERK5i that promote nuclear localisation in tumours with predominately cytosolic ERK5,
may exacerbate tumour progression. If tumours have kinase active nuclear ERK5, ERK5i may have some effect
if the kinase activity is driving tumorigenesis, but not if ERK5 transcriptional activity is required. Some
tumours already have nuclear kinase-inactive ERK5 [83], here ERK5i may increase its transcriptional activity.
This highlights the importance of understanding the mechanism of action of ERK5i and determining whether
ERK5 kinase and/or transcriptional activity is required for the cellular role of ERK5.

Conclusions
These findings show that it is essential that all ERK5i are tested not just for off-target activity against kinases and
bromo-domain containing proteins, but also for promotion of nuclear localisation and paradoxical transcriptional
activation using appropriately sensitive assays. For ERK5 this can be assessed using the ERK5:MEF2D reporter
assays, such as the GAL4-MEF2D driven GRE reporter (Figures 1B,C). It should be noted that when using
exogenously expressed ERK5, a large tag on the N-terminus, such as GST or GFP will hide this effect and should
be avoided (PAL, unpublished results). It also remains to be seen whether other kinases with auxiliary functional
domains are activated by small molecules in a similar way to ERK5. To delineate the role of the ERK5 kinase
domain in cells, AX15836, cpd 46 and BAY-885 are ERK5 kinase selective inhibitors, but all cause TAD paradox-
ical activation (to varying degrees) so care must be taken when interpreting results. This highlights the need to
find a selective paradox-breaking ERK5i or to use an alternative approach such as a PROTAC [84] to completely
remove ERK5 from cells. Critically, these results also raise the question of the relative importance of the ERK5
kinase domain and NLS/TAD functions in normal ERK5 biology and in diseases where ERK5 is implicated.

Perspectives
• Importance of the field: Protein kinase inhibitors can induce unintended paradoxical signalling.

Paradoxical kinase activation can exacerbate disease, such as stimulating tumour growth.

ERK5 nuclear localisation and transcriptional activity is paradoxically stimulated by ERK5i.

• Current thinking: Characterising the mode of action of kinase inhibitors on their targets using

appropriately sensitive assays is critical for all drug discovery programmes. Determining

whether ERK5i promote transcriptional activation of ERK5 is essential for any new potential

ERK5 therapeutic.

• Future directions: Activation of ERK5 transcriptional activity by ERK5i raises significant ques-

tions about the role of ERK5 kinase and transcriptional activities in ERK5 biology, including

disease biology and therapeutics.
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Abbreviations

ABL, Abelson murine leukaemia homolog; AMPK, 50 AMP-activated protein kinase; AP-1, activator protein-1;

ATF, activating transcription family; AXL, AXL, coming from the Greek word ‘anexelekto’, means uncontrolled;

BRD4, bromo-domain-containing protein 4, a transcriptional and epigenetic regulator; bZIP, basic leucine zipper

domain; CDC37, cell division cycle 37; CDK1/2/3/4/5/7/9, cyclin dependent kinase1/2/3/4/5/7/9; CREB, cAMP

response element-binding protein; CSF1R(FMS), colony-stimulating factor 1 receptor (Feline McDonough

Sarcoma); DCAMKL1/2, doublecortin and CaMK (Ca2+/calmodulin-dependent protein kinase)-like 1/2/3; EGF,

epidermal growth factor; EGFR, epidermal growth factor receptor; ERK1/2, extracellular signal-regulated protein

kinase 1/2; ERK5, extracellular signal-regulated protein kinase 5; ERK5i, small molecule ERK5 inhibitor; FGFR1,

fibroblast growth factor receptor 1; FLT3/4, FMS (Feline McDonough Sarcoma)-like tyrosine kinase 3/4; FOS,

cellular homolog of the viral oncoprotein v-fos; FRA, Fos-related antigen; Fyn, src family kinase; GAL4, yeast

transcription factor; GSK3α, glycogen synthase kinase 3α; HER3, human epidermal growth factor receptor 3;

Hsp90, heat-shock protein 90; JAK1/2, Janus kinase 1/2; JNK, c-Jun N-terminal kinases; JUN, cellular homolog

of the viral oncoprotein v-jun; LCK, lymphocyte-specific protein tyrosine kinase; LRRK2, leucine-rich repeat

serine/threonine-protein kinase 2; MAF, cellular homolog of the viral oncoprotein v-maf (musculoaponeurotic

fibrosarcoma); MAPK, mitogen-activated protein kinase; MAP3K15, mitogen-activated protein kinase kinase

kinase 15; MEF2 A, C and D, myocyte enhancer factor-2 A, C and D; MEKK2/3, MAPK/extracellular

signal-regulated kinase kinase 2/3; MEK5, MAPK kinase 5; MEK5D, constitutively active form of MEK5 where the

regulatory activation-loop phosphorylation sites are mutated to aspartic acid to mimic phosphorylation; MKK,

MAP kinase kinase; MKKK, MAP kinase kinase kinase; MST2, mammalian serine/threonine 2 kinase; mTORC2,

mammalian target of rapamycin complex 2; NLS, nuclear localisation signal; P38δ, class of mitogen-activated

protein kinases that are responsive to stress stimuli; PDK1, phosphoinositide-dependent kinase-1; PH, pleckstrin

homology; PKC, protein kinase C; PKD, protein kinase D; PROTAC, proteolysis targeting chimeras; RAF, rapidly

accelerated in fibrosarcoma kinase; RAS, Rat sarcoma small GTPase; RBD, RAS binding domain; RSK2/4,

ribosomal protein S6 kinase 2/4; SLK, Ste20-like serine/threonine protein kinase; Src, short for sarcoma kinase;

STK, spleen tyrosine kinase; TAD, trans-activation domain; TYK2, non-receptor tyrosine-protein kinase 2;

TYRO3, tyrosine-protein kinase receptor.
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