
This is a repository copy of Automatic generation of UML profile graphical editors for
Papyrus.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/165192/

Version: Published Version

Article:

Wei, Ran, Zolotas, Athanasios, Hoyos Rodriguez, Horacio et al. (3 more authors) (2020)
Automatic generation of UML profile graphical editors for Papyrus. Software and Systems
Modeling. ISSN 1619-1366

https://doi.org/10.1007/s10270-020-00813-6

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Software and Systems Modeling

https://doi.org/10.1007/s10270-020-00813-6

SPEC IAL SECT ION PAPER

Automatic generation of UML profile graphical editors for Papyrus

Ran Wei1 · Athanasios Zolotas2 · Horacio Hoyos Rodriguez2 · Simos Gerasimou2 · Dimitrios S. Kolovos2 ·

Richard F. Paige2,3

Received: 3 March 2019 / Revised: 8 May 2020 / Accepted: 10 June 2020

© The Author(s) 2020

Abstract

UML profiles offer an intuitive way for developers to build domain-specific modelling languages by reusing and extending

UML concepts. Eclipse Papyrus is a powerful open-source UML modelling tool which supports UML profiling. However, with

power comes complexity, implementing non-trivial UML profiles and their supporting editors in Papyrus typically requires

the developers to handcraft and maintain a number of interconnected models through a loosely guided, labour-intensive and

error-prone process. We demonstrate how metamodel annotations and model transformation techniques can help manage

the complexity of Papyrus in the creation of UML profiles and their supporting editors. We present Jorvik, an open-source

tool that implements the proposed approach. We illustrate its functionality with examples, and we evaluate our approach by

comparing it against manual UML profile specification and editor implementation using a non-trivial enterprise modelling

language (Archimate) as a case study. We also perform a user study in which developers are asked to produce identical editors

using both Papyrus and Jorvik demonstrating the substantial productivity and maintainability benefits that Jorvik delivers.

Keywords Model-driven engineering · UML profiling · Papyrus

Communicated by A. Pierantonio, A. Anjorin, S. Trujillo, and H.

Espinoza.

B Athanasios Zolotas

thanos.zolotas@york.ac.uk

B Richard F. Paige

richard.paige@york.ac.uk; paigeri@mcmaster.ca

Ran Wei

ranwei@dlut.edu.cn

Horacio Hoyos Rodriguez

horacio.hoyos@york.ac.uk

Simos Gerasimou

simos.gerasimou@york.ac.uk

Dimitrios S. Kolovos

dimitris.kolovos@york.ac.uk

1 School of Artificial Intelligence, Dalian University of

Technology, Dalian, China

2 Department of Computer Science, University of York, York,

UK

3 Department of Computer Science, McMaster University,

Hamilton, Canada

1 Introduction

The unified modelling language (UML) [19] is the de facto

standard for object-oriented software and systems modelling.

It offers a broad range of abstractions that can be used

to express different views of a system, including Class,

Use Case, State, Collaboration and Sequence diagrams.

Since version 2.0, UML offers an extension and customisa-

tion mechanism named UML Profiling [13]. UML profiling

enables the users to derive domain-specific languages (DSL)

from UML’s set of general language concepts. The flexibil-

ity and open-ended boundaries of UML profiles facilitated

the development of profiles in applications such as perfor-

mance analysis [48], quality-of-service investigation [8] in

component-based systems, as well as context modelling in

mobile distributed systems [41], Web applications [36] and

smart homecare services [44].

An important advantage of UML profiling for design-

ing DSLs is that it allows the reuse of existing UML tools

while exploiting readily, widely available UML expertise.

The basic premise of UML profiling is that all domain-

specific concepts are derived as extensions or refinements of

existing UML concepts (referred to as UML meta-elements).

The extension mechanism is realised using UML Stereotypes,

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-020-00813-6&domain=pdf
http://orcid.org/0000-0003-2191-1359

R. Wei et al.

which extend standard UML meta-elements to describe user-

defined DSLs. Consequently, a profile-based UML model

can be created and manipulated by any tool that supports

standard UML. Moreover, the concepts underlying profile

specialisations of existing UML concepts enable users with

UML knowledge to adapt to the approach with less effort.

Although domain-specific modelling languages and tools

that support them, like Sirius [43] or Eugenia [28], are becom-

ing more popular, UML is still widely used in model-based

software engineering (MBSE) [11]. As a result, alternative

ways to define domain-specific languages using dedicated

metamodels and textual/graphical editors are available to the

users [4,37].

Papyrus [34] is a leading open-source UML modelling

tool developed under the Eclipse Foundation and driven

by the PolarSys Initiative and the Papyrus Industry Con-

sortium, which are spearheaded by large high-technology

companies such as Airbus, Thales, Saab and Ericsson. After

more than a decade of development, Papyrus is close to

becoming a critical mass for wider adoption in industry as

means of 1) escaping proprietary UML tooling lock-in, 2)

leveraging the MBSE-related developments in the Eclipse

modelling ecosystem enabling automated management of

UML models (e.g. model validation and model-to-model

(M2M) and model-to-text (M2T) transformation languages)

and 3) enabling multi-paradigm modelling using a combina-

tion of UML- and EMF-based DSLs. OMG-compliant UML

profiles, like SysML [12] and MARTE [17], offer implemen-

tations for Papyrus. As highlighted in the recent systematic

survey on execution of UML models and UML profiles [7],

Papyrus is the most widely used tool for developing UML

profiles.

Despite the ability of Papyrus to support the develop-

ment of non-trivial UML profiles, the learning curve and

development effort required for developing these profiles

are substantial. As reported in [47], the manual definition

of new UML profiles is typically a tedious, time-consuming

and error-prone process.

Papyrus also supports the creation of profile-specific

graphical editors which enables the users to define their own

creation palettes, custom styles and related artefacts based

on their own UML profiles. However, the process of creating

profile-specific graphical editors is typically difficult because

it requires a high level of modelling expertise and it can also

be a repetitive and error-prone process.

In this paper, we simplify and automate the process of

developing distributable Papyrus UML profiles and their sup-

porting editors. We present Jorvik, an approach supported by

an Eclipse plug-in, which enables the use of annotated Ecore

metamodels to capture the abstract and graphical syntax of

UML profiles at a high level of abstraction. These metamod-

els are then automatically transformed to UML profiles and

artefacts that contribute to distributable Papyrus graphical

editors based on the UML profiles.

We evaluate the efficiency of Jorvik for the automatic

generation of Archimate, a non-trivial enterprise modelling

language, and its corresponding Papyrus editor against an

equivalent manually created UML profile and its Papyrus

editor. We then apply our approach on several other DSMLs

of varying size and complexity [46], to demonstrate its gen-

erality and wide applicability. Furthermore, we evaluate the

productivity improvement of Jorvik in a user study where

developers are asked to create two UML profiles and their

Papyrus graphical editors, both manually and with Jorvik.

We report our findings and the efficiency of Jorvik based on

the results.

This paper extends the prototype approach for automated

generation of UML profile graphical editors for Papyrus from

our conference paper [49] in the following ways:

1. Refactoring of Jorvik to adapt to the new underlying

structure of Papyrus 3.0+. Since Papyrus 3.0, a stan-

dard of creating Papyrus editors have been introduced

(i.e. using the new Architecture design). This involves

changes to Papyrus’ underlying metamodels. In turn, the

process of creating editors has changed significantly. We

therefore re-implement a majority of our work to adapt

the changes.

2. Enhanced experimental evaluations by conducting user

experiments. Significant time has been spent on studying

the efficiency of our approach, compared to the manual

approach.

3. Additional validations to check user defined DSLs. Addi-

tional validation script provides useful feedback to the

users to assist them in creating correct DSLs (with proper

annotations).

4. Support of more styling properties for diagrams created

with our approach. We add support for font styling, and

we add support for line styling.

The rest of the paper is organised as follows. In Sect. 2, we

motivate the need of the proposed approach. In Sect. 3, we

describe the proposed approach while in Sect. 4, we discuss

in detail the artefacts needed to create a working Papyrus

editor and the implementation details of automatically gen-

erating these artefacts. In Sect. 5, we present the evaluations

we conducted. In Sect. 6, we discuss related work and finally,

and in Sect. 7 we conclude the paper and highlight the plans

for future work.

2 Background andmotivation

In this section, we outline the process for defining a UML pro-

file and its supporting graphical editing facilities in Papyrus.

123

Automatic generation of UML profile graphical editors for Papyrus

This process typically involves the manual creation of a

number of interrelated models and configuration files. We

motivate the need of automatic generation of these artefacts

by highlighting the labour-intensive and error-prone activi-

ties involved in creating a UML profile and its supporting

Papyrus editor.

2.1 UML profile

A UML Profile in Papyrus is an EMF model that conforms

to the UML Ecore metamodel. In order to create a new UML

Profile, developers need to create instances of Stereotype,

Property, Association, etc. to create the elements of their

domain-specific modelling languages, their properties and

relationships among the elements.

Papyrus offers, among other choices, the mechanism of

creating UML profiles using a Profile Diagram editor. Users

can use the palette provided in the UML Profile Diagram

editor to create all elements required to form a UML profile.

The properties of each element (e.g. data types of proper-

ties, multiplicity, navigability, etc.) can then be set using the

properties view. In a profile, each Stereotype needs to extend

a UML concept (hereby referred to as meta-element). The

users need to define which meta-elements their Stereotypes

extend. This is achieved by importing the meta-elements and

by adding appropriate extension links between their Stereo-

types and the meta-elements by using the tool provided in

the palette. The process of creating a UML profile can be

repetitive and labour-intensive, depending on the size of the

profile. Having created a profile, users can then apply it to

a UML model. To do this, users typically create instances

of UML meta-elements (e.g. UML::Class) and apply their

Stereotypes defined in their UML profiles. For example, if a

Stereotype extends the UML::Class meta-element, users can

apply it to selected instances of UML::Class in their models.

In this sense, the users are creating instances of the elements

they define in their DSLs.

One of the limitations of UML profiles in Papyrus is that

links between Stereotypes can be instantiated as edges in a

diagram only if they extend a connector meta-element (e.g.

UML::Association). For example, if ‘Stereotype A’ refers to

‘Stereotype B’ via an ‘A_to_B’ reference, then in order to

be able to draw this connection as an edge on the diagram,

‘A_to_B’ should be created as a separate Stereotype. These

connector Stereotypes do not hold any information about the

Stereotypes that they can connect, so users need to define such

restrictions by manually writing OCL constraints to validate

at least two things: (1) if the source and target nodes are of the

correct type and (2) if the connector is in the correct direction

(e.g. for ‘A_to_B’), the edge should lead from ‘Stereotype

A’ to ‘Stereotype B’. These constraints can be rather long

and need to be manually written and customised for each

edge Stereotype. As illustrated in Sect. 4.3, this can also be

a labour-intensive and error-prone process.

2.2 Distributable custom graphical editor

With the UML profile created, users can apply it to UML

diagrams. Users select a UML element (e.g. an instance of

UML::Class) and manually apply a Stereotype in the UML

profile they define. A Stereotype can only be applied to

instances of the meta-elements they extend. For example,

a Stereotype that extends the UML::Package meta-element

in the profile cannot be applied to an instance of UML::Class.

This task is arguably labour-intensive and repetitive. In addi-

tion, users typically need to remember the meta-element that

each Stereotype extends in their UML profile.

To address this recurring concern, Papyrus offers at least

three possible options for creating a custom palette which

allows users to create UML elements and apply selected

Stereotypes on them in a single step. For the first option,

users can make use of the customisation facility to create

their own palettes and then specify what Stereotypes should

be instantiated for the creation tools in the palette. Although

this is an easy-to-use approach, it must be done manually

every time a new diagram is created. In addition, it cannot

be shared in case the editor needs to be distributed to collab-

orators. The second option involves the manual definition of

an XML-based Palette Configuration file which is automat-

ically loaded every time the profile is applied to a diagram.

This option, however, is discouraged by Papyrus as it does

not allow the full use of Papyrus functionality. Furthermore,

this option is based on a deprecated framework; hence, its use

is discouraged. The third option is to create a Papyrus editor

associated with the UML profile, which includes the man-

ual creation of a number of interrelated models and artefacts,

including a Palette Configuration model, an ElementType-

sConfiguration model, which is used to associate Stereotypes

in the UML profile with its UML meta-element and the con-

crete syntax of the meta-element, etc. Although this option

provides a whole solution to create a UML profile editor, in

the paper we illustrate that it is a labour-intensive and error-

prone process.

The definition of custom shapes for the instantiated Stereo-

types is another common requirement. In Papyrus, Scalable

Vector Graphics (SVG) shapes can be bound to Stereotypes

during the profile creation process. However, to make these

shapes visible, users need to set the visibility of the shape of

each Stereotype to true. Although this is an acceptable trade-

off, the users typically need to hide the default shapes by

writing custom style rules in a Cascading Style Sheet (CSS),

as by default the SVG shape bound to a Stereotype overlaps

with the default shape of the base meta-element. The CSS can

be written once but need to be loaded each time manually on

every diagram that is created.

123

R. Wei et al.

Fig. 1 Models/files developers

need to write manually to

develop a fully functional

distributable Papyrus profile

editor for Papyrus 3.0+

To create a distributable (i.e. an Eclipse plug-in) graph-

ical editor that has diagrams tailored for the profile and to

avoid all the aforementioned drawbacks, users need to create

a number of interrelated models and files and to implement

extension points in an Eclipse plug-in project. Figure 1 shows

all the artefacts needed to be created for having a distributable

Papyrus UML profile editor for Papyrus 3.0+1. These arte-

facts include:

– An Element Types Configuration model;

– A Palette Configuration model;

– A Cascading Style Sheet for customised styles;

– A Java Creation Command class to initialise the diagram;

– An Architecture model to describe the architecture of the

editor;

– Plug-in-related files for extensions and dependencies.

Through our experiment (see Sect. 5), we found out that

it is difficult, if not impossible, to create these models with-

out any working examples, taking also into account that the

documentation of Papyrus provides limited useful insight in

this matter.

Detailed discussions about the artefacts needed in order

to create a UML profile editor are provided in Sect. 4. A few

hundred lines of code need to be written, while tedious and

repetitive tasks (e.g. model creation) should be done. This is

backed by our studies in the evaluation, which is discussed

in Sect. 5.

As mentioned in [25], in different phases of the system

engineering process, different metamodels created using the

1 Metamodels for Element Types Configuration, Palette Configuration

have been changed since our previous work (pre-Papyrus 3.0, rendered

in blue). The Architecture model and the Java Creation Command class

are new concepts introduced in Papyrus 3.0+ since our previous work

(rendered in green).

same modelling language could be used based on the cur-

rent phase’s needs. Papyrus opted for the option allows the

definition of UML profiles based on the UML specifications

defined by the OMG standard. As a result, it may be the

case that problems, when using tools that implement UML,

arise due to the use of an inappropriate version of the meta-

model by the tool vendors. Examples of solutions in tackling

such problems that are a result of potential design flaws in

OMG specifications are presented in [3] and [26]. However,

our personal experience, which is verified by the evalua-

tion results, shows that the problems with the creation of

UML profiles and graphical editors in Papyrus arise from

the labour-intensive and repetitive tasks related mostly in the

definition of all the other artefacts (which are a result of a

design decision by the tool vendor) rather than the UML

profile itself. We argue that this labour-intensive, repetitive

and error-prone tasks could be automated.

In this paper, we present our tool—Jorvik, which uses a

single-source input to automatically generate a UML profile

and models/files mentioned above for the generation of a

distributable Papyrus editor that supports the UML profile.

3 Proposed approach

In this section, we present Jorvik, an automatic generation

tool for Papyrus UML profiles and Papyrus editors that sup-

port modelling with them. Through Jorvik, developers can

define the abstract syntax and the concrete (graphical) syn-

tax of their DSLs (i.e. the UML profile) in the form of an

annotated Ecore metamodel. The annotations can be used to

specify the Stereotypes to be created in the UML profile and

what meta-elements they extend. With the annotations, the

developers can also specify the graphical syntax and related

information (e.g. shapes for the Stereotypes and the icons for

123

Automatic generation of UML profile graphical editors for Papyrus

Fig. 2 Overview of the

proposed approach

the creation tools in the palette). The annotated Ecore meta-

model is then processed by Jorvik and transformed into a

UML profile and related Papyrus models/artefacts needed for

a distributable Papyrus editor. This is done through a series of

model management operations like model validation, model-

to-model (M2M) and model-to-text (M2T) transformations.

An overview of our proposed approach is presented in Fig. 2.

We discuss the steps involved in the process in detail in the

remainder of this section, followed by a running example.

Technical details about the different steps of the proposed

approach are provided in Sect. 4

The first step is to create an annotated Ecore metamodel

to define the intended DSL. In order to do this, a number of

annotation keywords are defined for the users to use:

1. @Diagram annotations are used to define diagram-

specific information like the name and the icon of the

diagram. This annotation can be applied to EPackages

and should always be applied to the EPackage at the top

level.

2. @Node annotations are used to indicate the Stereotypes

that should be instantiated as nodes in the diagrams. The

UML meta-element that this Stereotype extends is pro-

vided through the base property. The SVG shape to be

used on the canvas and the icon of the specific element

in the palette are specified through the shape and icon

properties, respectively.

3. @Edge annotations are used to denote Stereotypes that

should be instantiated as edges in the diagrams. The

UML meta-element extended by this Stereotype is pro-

vided through the base property2. The icon of the specific

element in the palette is also passed as property along

with the desired style of the line. This annotation can be

applied either to an EClass or to an EReference.

2 Due to the vast amount of edge types in UML, we currently support

only the following types: Association, Dependency, Generalization,

Realization, Usage and InformationFlow.

In the metamodel, all annotated EClasses are automat-

ically transformed into Stereotypes. Stereotypes are also

created from annotated EReferences (more about this below).

Depending on the required graphical syntax of the Stereotype

(i.e. if it should be represented as a node or as an edge on the

diagram), developers need to use the appropriate annotations

on EClasses/EReferences (i.e. @Node or @Edge, respec-

tively). A detailed list of all valid annotation properties is

provided in Appendix A.

With the annotated Ecore metamodel in place, the next

step is to check the validity of the annotations in order to pro-

ceed with the generation process. Therefore, a custom-made

model validation script written in the Epsilon Validation Lan-

guage (EVL) [29] (see Fig. 2) is used. The validation rules

(which we describe in detail in Sect. 4) check if the annota-

tions provided and their attributes match the expected ones

by Jorvik (e.g. each annotated element includes a reference

to the UML base element it extends). If the validation fails,

feedback is provided to users to fix the problems detected.

Otherwise, the annotated Ecore metamodel is consumed by

a workflow of M2M and M2T transformations illustrated in

Fig. 4 and described in detail in Sect. 4. The transformations

are written in the Epsilon Transformation Language (ETL)

[27] and the Epsilon Generation Language (EGL) [39]. In

principle, any other model validation, M2M and M2T lan-

guage could be used (e.g. ATL [24] and Acceleo3). The

transformations produce the UML profile with the appro-

priate OCL constraints and all the configuration models and

files needed by Papyrus. In addition, an M2M transforma-

tion is also generated that can be used later by developers

to transform the UML models that conform to the generated

UML profile, back to EMF models that conform to the Ecore

metamodel used as source. (In cases where the users change

their UML profiles, they wish to propagate the changes back

to their EMF metamodels.) The benefit of adopting this pro-

cess is that model management programs already developed

3 https://www.eclipse.org/acceleo/.

123

https://www.eclipse.org/acceleo/

R. Wei et al.

to run against models conforming to the EMF metamodel

can be reused.

Jorvik offers the option of polishing transformations,

where developers are able to write their own (optional) trans-

formations to fine-tune the generated artefacts produced by

the built-in transformations. In the following section, the pro-

posed approach is explained via a running example.

3.1 Running example

In this example, we define a DSL—the Simple Development

Process Language (SDPL)—in an annotated Ecore meta-

model and we generate the corresponding UML profile and

Papyrus graphical editor using Jorvik. We start by defin-

ing the abstract syntax of the DSL using Emfatic4, a textual

notation for Ecore, which is shown in Listing 1 (ignore the

annotations at this point). A process defined in SDPL consists

of Steps, Tools and Persons participating in it. Each ‘Person’

is familiar with certain ‘Tools’ and can have different Roles

in steps of a process, while each ‘Step’ refers to the next step

that follows using the next reference.

In order to generate the UML profile and the Papyrus

graphical editor, we need to add the following concrete

syntax-related annotations shown in Listing 1. Due to the

relevance of our work with Eugenia [28], a tool that uses

the same principles for the generation of GMF editors and

inspired our work, and to be as consistent as possible, the

syntax of our annotations match those in Eugenia, where

possible.

– Line 2: The name and the icon that should be used by

Papyrus in the custom diagrams menus are defined using

the name and icon properties of the @Diagram annota-

tion.

– Lines 5, 10 & 15: The @Node annotation is used to

define that the three DSL elements (i.e. ‘Steps’, ‘Roles’

and ‘Tools’) should be Stereotypes in the UML profile

that will be represented as nodes in the diagram. The base

parameter is used to define which UML meta-element the

Stereotype should extend (i.e. Class in this example5).

The shape of the node in the diagram and the icon in the

palette for each Stereotype are given using the shape and

icon annotation details. We also change the font style by

setting the bold details to true (see line 10).

– Lines 19 & 22 The EReference ‘familiarWith’ and

the ‘Role’ EClass are added in the profile as Stereo-

types that extend the meta-element Association of UML

(UML::Association). These Stereotypes should be repre-

sented as links in the diagrams and thus are annotated

4 https://www.eclipse.org/emfatic/.

5 Class is in fact UML::Class, we omit the ‘UML::’ prefix to improve

clarity.

1 @namespace(uri="sdpl",prefix="sdpl")

2 @Diagram(name="SDPL", icon="ic/sdpl.png")

3 package Process;

4

5 @Node(base="Class", shape="sh/step.svg", icon="icons/step.png")

6 class Step {

7 attr String stepId;

8 ref Step[1] next;

9 }

10 @Node(base="Class", shape="sh/tool.svg", icon="icons/tool.png",

bold="true")

11 class Tool {

12 attr String name;

13 attr int version;

14 }

15 @Node(base="Class", shape="sh/per.svg", icon="icons/per.png")

16 class Person {

17 attr String name;

18 attr int age;

19 @Edge(base="Association", icon="icons/line.png", fontHeight="

15")

20 ref Tool[∗] familiarWith;

21 }

22 @Edge(base="Association", icon="icons/line.png", source="src",

target="tar")

23 class Role {

24 attr String name;

25 ref Step[1] src;

26 ref Person[1] tar;

27 }

Listing 1 The annotated Emfatic code that defines the metamodel of

SDPL and can be used to generate the UML profile and the associated

Papyrus editor.

with the @Edge annotation. In contrast to the ‘famil-

iarWith’ EReference, the types the ‘Roles’ edge should

be able to connect are not know and need to be spec-

ified as properties of the annotation (i.e. source=‘src’

and target=‘tar’). This denotes that the source/target

nodes of this connector are mapped to the values of the

EReferences: ‘src’ and ‘tar’, respectively. Note in here,

we use keywords source and target to denote the ori-

gin of the Association (ownedEnd) and the destiny of

the Association (memberEnd). We do this to avoid con-

fusions to EMF users (as EReferences may naturally

map to Association). However, there are other types of

edges that we support, i.e. Dependency, Generalization,

Usage, Realization and InformationFlow. These types

are UML::DirectedRelationship and therefore also have

source and target. It is to be noted that the @Edge anno-

tation is applicable to EReferences with any multiplicity.

In line 19, we set the font height to 15 for the labels of

the ‘familiarWith’ edges.

123

https://www.eclipse.org/emfatic/

Automatic generation of UML profile graphical editors for Papyrus

Fig. 3 SDPL editor for Papyrus

where two steps in the software

development process are defined

and responsible persons are

attached to them along with the

tools they are specialised on

– NB: In line 8, the next EReference is not required to

be displayed as an edge on the diagram; thus, it is not

annotated with @Edge. However, it will be a property of

the ‘Step’ Stereotype in the generated profile, so it can

be set in the model (but it will not be displayed on the

diagram).

The automated M2M and M2T transformations are then

executed on the Ecore file, and the produced SDPL Papyrus

editor (with supporting palette and custom shapes for the

SDPL profile) is presented in Fig. 3.

3.2 Polishing transformations

The generated editor is fully functional, but it can be further

customised to fit the users’ custom needs. For example, by

default, our automatic transformations dictate the diagram,

through the CSS file to show the Stereotype name applied

to each node. However, in this example we want to hide the

Stereotype names and display labels in red font. This can

be achieved by manually amending the generated CSS file.

However, the CSS file will be automatically overridden if the

user regenerates the profile and the editor in the future (e.g.

because of a change in the metamodel). To avoid this, users

can use the *optional* CSS generation polishing transfor-

mation (#5b in Fig. 4) shown in Listing 2. Every time the

profile and editor generation is executed, the polishing trans-

formation will be executed, which will set the visibility of

the Stereotypes to false automatically.

The EGL template in Listing 2 generates a CSS rule

in lines 1–3 that sets the visibility property of the Stereo-

types’ labels to false. It stores all the elements in the Ecore

metamodel that are annotated as @Node (line 6) in a col-

lection and iterates though them in lines 7–10. For each of

the node Stereotypes, it generates the static text ‘[applied-

Stereotypes =’ followed by the name of each Stereotype and

a comma. At the end, it prints the curly brackets (lines 10

and 12) and the text ‘fontColor:red;’ in line 11. The resulted

output that is amended automatically in the original CSS file

(by the polishing transformation) is shown in Listing 4.

1 Label[type=StereotypeLabel]{

2 visible:false;

3 }

4

5 [%

6 var allNodeStereotypes = Source!EClass.all().select(c|c.

getEAnnotation("Node").isDefined());

7 for (stereo in allNodeStereotypes) {%]

8 [appliedStereotypes~=[%=stereo.name%]][% if (hasMore){%],

9 [%}

10 }%] {

11 fontColor:red;

12 }

Listing 2 The polishing transformation for the CSS file generation that

sets the visibility of the names of the nodes to true.

1 Label[type=StereotypeLabel]{

2 visible:false;

3 }

4

5 [appliedStereotypes~=Step],

6 [appliedStereotypes~=Tool],

7 [appliedStereotypes~=Person] {

8 fontColor:red;

9 }

Listing 3 The output that is amended in the original CSS file using the

CSS polishing transformation of Listing 2

1 Label[type=StereotypeLabel]{

2 visible:false;

3 }

4

5 [appliedStereotypes~=Step],

6 [appliedStereotypes~=Tool],

7 [appliedStereotypes~=Person] {

8 fontColor:red;

9 }

Listing 4 The output that is amended in the original CSS file using the

CSS polishing transformation of Listing 2

123

R. Wei et al.

Fig. 4 Overview of the transformation workflow

4 Implementation

In this section, we discuss the technical implementation of

Jorvik which underpins the process of our approach discussed

in the previous section.

Figure 4 shows workflow of Jorvik. Each step in the

workflow is identified by a number (#1–#9 in Fig. 4) for

easier reference. Before generating all the artefacts, a pre-

transformation validation script (#1 in Fig. 4) is executed to

verify the correctness of the annotations and provide useful

feedback to the users if there is anything wrong. Moreover,

supporting files needed for the creation of the Papyrus Plug-

in are also generated while icons and shapes are placed next

to the annotated metamodel (#8 in Fig. 4). As the transfor-

mations consist of about 1000 lines of code, we will describe

them omitting low-level technical details6.

4.1 Pre-transformation validation (#1)

To check the correctness of the annotated Ecore metamodel, a

model validation program is first executed against the meta-

model. The program is written using EVL and consists of

several rules that check if the annotated Ecore elements have

all the necessary information (e.g. a UML base class) and

if the values provided are correct (e.g. font size for labels is

a positive integer). Listing 5 presents an example of a rule

written in EVL which checks if the value provided for the

6 Full implementations and instructions are available at https://github.

com/wrwei/Jorvik.

1 constraint NodeAnnotationBoldValueIsCorrect {

2 guard : self.getEAnnotation("Node").isDefined() and

3 self.getEAnnotation("Node").details.get("bold").

isDefined()

4 check : self.getEAnnotation("Node").details.get("bold").equals

("true")

5 or

6 self.getEAnnotation("Node").details.get("bold").equals("

false")

7 message : "Bold value for element " + self.name + " is not

correct.

8 Possible values are: true or false."

9 }

Listing 5 Example rule that checks that the values provided to the ‘bold’

styling detail for @Node annotations is correct.

‘bold’ details in a @Node annotation is correct (i.e. true or

false) 7.

Table 1 enumerates all the rules included in the pre-

transformation validation step along with their descriptions

and the conditions that are checked.

4.2 EMF to UML profile generation (#2)

The EMF to UML profile generation executes a model-to-

model transformation written in ETL. The source model of

this transformation is the annotated Ecore metamodel (e.g.

Listing 1), and the target model is a UML profile model.

7 Interested readers can find the Ecore metamodel that includes

some of the elements used in this EVL example and other list-

ings of this paper in http://www.kermeta.org/docs/org.kermeta.ecore.

documentation/build/html.chunked/Ecore-MDK/ch02.html.

123

https://github.com/wrwei/Jorvik
https://github.com/wrwei/Jorvik
http://www.kermeta.org/docs/org.kermeta.ecore.documentation/build/html.chunked/Ecore-MDK/ch02.html
http://www.kermeta.org/docs/org.kermeta.ecore.documentation/build/html.chunked/Ecore-MDK/ch02.html

Automatic generation of UML profile graphical editors for Papyrus

Table 1 List of the rules checked for the annotated Ecore metamodel

Rule description Condition checked

1 There is exactly one Diagram annotation The number of the @Diagram annotations is 1

2 Diagram annotation has a name detail The name detail is defined

3 Diagram annotation has acceptable details provided There are no other details provided rather than name

and/or icon

4 Node/Edge annotations have base class set Any string is provided

5 Edge annotations of EClasses have source/target defined The source/target details are defined

6 An acceptable lineStyle value for Edge annotations is provided The value is dashed, solid, dotted, hidden or double

7 An acceptable bold value for Node/Edge annotations is provided The value is either true or false

8 An acceptable fontHeight value for Node/Edge annotations is provided The value is a positive integer

9 Node annotations have acceptable details provided There are no other details provided rather than base,

fontHeight and/or bold

10 Edge annotations have acceptable details provided There are no other details provided rather than base,

source, target, fontHeight, bold and/or lineStyle

11 Edge annotated elements have different names There are no elements annotated as @Edge that have

the same name

This transformation consists of two main rules, one that cre-

ates a Stereotype for each EClass element of the metamodel

and a second that creates a Stereotype for each EReference

annotated as @Edge:

– rule eclass2stereotype: This transformation rule trans-

forms each EClass element in the annotated Ecore

metamodel to an element of type Stereotype in the tar-

get UML model. All attributes of each EClass are also

transformed across to the created Stereotype.

– rule reference2stereotype: This rule creates a new

Stereotype with the same name in the UML profile model

for each of the EReferences that are annotated as @Edge

in the Ecore metamodel. No attributes are added to the

Stereotype as EReferences do not support attributes in

Ecore.

When all Stereotypes are created, a number of post-

transformation operations are executed to (1) create the

generalisation relationships between the Stereotypes, (2)

add the references/containment relationships between the

Stereotypes, (3) create the extension with the UML base

meta-element and (4) generate and add the needed OCL con-

straints for each edge:

(1) For each superclass of an EClass in the metamodel, we

create a Generalisation UML element. The generalisa-

tion element is added to the Stereotype created for this

specific EClass and refers via the generalization refer-

ence to the Stereotype that was created for the superclass.

(2) For each reference (ref or val, where ref denotes a

non-containment reference and val denotes a contain-

ment reference) in the metamodel, a new Property UML

element is created and added to the Stereotype that rep-

resents the EClass. A new Association UML element is

also created and added to the Stereotype. The name and

the multiplicities are also set.

(3) By default, the Stereotype extend the Class base ele-

ment unless a different value is passed in the base

property of the @Node/@Edge annotation. In this post-

transformation operation, the necessary Import Meta-

class element and Extension reference are created and

attached to the Stereotype.

(4) In the last operation, the OCL constraints are created for

each Stereotype that will be represented as an edge on

the diagram. Two Constraint and two OpaqueExpression

elements are created for each edge Stereotype that check

the two necessary constraints. The OCL constraints are

explained in details in the section that follows.

4.3 OCL constraints

To illustrate the OCL constraints, we provide a partial view

of the SDPL UML profile in Fig. 58.

In Fig. 5, there are three Stereotypes. ‘Person’ and

‘Tool’ extend meta-element UML::Class, and they corre-

spond to classes ‘Person’ and ‘Tool’ in the metamodel

shown in Listing 1. Stereotype ‘familiarWith’, which extends

meta-element UML::Association, corresponds to the refer-

ence‘familiarWith’ in the ‘Person’ class in Listing 1. In Fig. 3,

the ‘familiarWith’ association is used to connect ‘Person

Alice’ with ‘Tool StarUML’. However, Papyrus, by default,

allows the ‘familiarWith’: Stereotype to be applied to any

Association, and not strictly to Associations which connect

8 The attributes of the Stereotypes are omitted for simplicity.

123

R. Wei et al.

Fig. 5 Example UML profile for SDPL showing Person, Tool and the

familiarWith association

‘Person’ and ‘Tool’ stereotyped elements. Therefore, con-

straints are needed to check (at least) two aspects:

– End Types: one of the elements a ‘familiarWith’ associ-

ation connects to, has the ‘Person’ stereotype applied to

it while the other has the ‘Tool’ Stereotypes applied to it;

– Navigability: the ‘familiarWith’ association starts from

an element stereotyped as ‘Person’ and points to an ele-

ment stereotyped as ‘Tool’.

4.3.1 End types

Listing 6 shows the OCL code for the End Types constraint9.

Line 1 accesses the types (instances of UML::Class that have

Stereotypes defined in the profile applied to them) that ‘famil-

iarWith’ connects. Lines 3 and 4 check if the types that

‘familiarWith’ connects are either a ‘Person’ Stereotype or

a ‘Tool’ Stereotype. In this way, if a ‘familiarWith’ associa-

tion connects two types that are not ‘Person’ or a ‘Tool’, the

constraint fails.

1 let classes = self.base_Association.endType→

2 selectByKind(UML::Class) in

3 classes→exists(c|c.extension_Person→notEmpty()) and

4 classes→exists(c|c.extension_Tool→notEmpty())

Listing 6 The End Types constraint in OCL

4.3.2 Navigability

Listing 7 shows the OCL code for the Navigability constraint.

In this case, we are interested in checking the isNaviga-

ble property of each end. Thus, in lines 2 and 3, we obtain

the member ends that ‘familiarWith’ connects with. If these

ends are obtained successfully (line 4), we check that the

personEnd (connecting element stereotyped as ‘Person’) is

not navigable (line 5) and the toolEnd (connecting element

stereotyped as ‘Tool’) is navigable (line 6). Therefore, we

are checking that a ‘familiarWith’ association can only go

from ‘Person’ to ‘Tool’ and not the other way around. We

9 Please refer to Sect. 11.8.1 in the UML2.5.0 specification for proper-

ties of UML::Association https://www.omg.org/spec/UML.

need to highlight that currently, opposite references are not

supported; plans for future work are outlined in Sect. 7.

1 let memberEnds=self.base_Association.memberEnd in

2 let toolEnd=memberEnds→select(type.oclIsKindOf(UML::Class)

and type.oclAsType(UML::Class).extension_Tool

→notEmpty()),

3 personEnd=memberEnds→select(type.oclIsKindOf(UML::Class)

and type.oclAsType(UML::Class).extension_Person

→notEmpty()) in

4 if personEnd→notEmpty() and toolEnd→notEmpty() then

5 personEnd→first().isNavigable() = false and

6 toolEnd→first().isNavigable() = true

7 else

8 false

9 endif

Listing 7 The Navigability constraint in OCL

With these two constraints implemented, we are able

to automatically generate OCL constraints for Stereotypes

that extend UML::Association. We use the End Types and

Navigability constraints as templates with dynamic sections

(where the specific Stereotype names are inserted dynami-

cally, e.g. ‘Person’ and ‘Tool’). So far we have only explored

constraints for Stereotypes that extend UML::Association.

The constraint templates for Stereotypes that extend other

UML relationships need to be developed separately as the

means to access source/target elements of the relationship

are different.

4.4 Element Types Configuration transformation(#3)

Apart from the UML profile, Papyrus graphical editors

require an Element Types Configuration model, which asso-

ciates the Stereotypes defined in the UML profile with their

abstract syntax (the meta-elements in UML they extend) and

their concrete syntax (the graphical notations of the meta-

elements in UML they extend)10.

This transformation is responsible for creating an Element

Types Configuration model (of extension .elementtypescon-

figuration) that contains type specialisation information for

the Stereotypes in the UML profile. For each element of

type Stereotype, two SpecializationTypeConfigurations are

created, one links the Stereotype to its UML meta-element,

and another links the Stereotype to the concrete syntax of its

UML meta-element. For example, a Stereotype that extends

UML::Class needs to specialise the UML::Class Metamod-

elTypeConfiguration defined in the UML Element Types

Configuration model, and it needs to specialise the Class

10 For detailed explanation for the ElementTypesConfiguration frame-

work of Papyrus, please refer to Papyrus Guide/Toolsmith Guide/Ele-

mentTypeConfiguration Framework in Papyrus official documentation.

123

https://www.omg.org/spec/UML

Automatic generation of UML profile graphical editors for Papyrus

Shape SpecializationTypeConfiguration defined in the UML

diagram Element Types Configuration model11. In addition

to SpecializationTypeConfigurations, for each Stereotype

element an ApplyStereotypeAdviceConfiguration needs to be

created, which associates the SpecializationTypeConfigura-

tion to the actual Stereotype in the UML profile.

4.5 Palette Configuration transformation (#4)

This transformation is responsible for creating a Palette Con-

figuration model (of extension .paletteconfiguration) that

configures the contents of the custom palette for the diagram

in Papyrus. The model conforms to the PaletteConfiguration

metamodel that ships with Papyrus. The transformation cre-

ates a new PaletteConfiguration element and adds two new

DrawerConfiguration elements that represent two different

tool compartments in our palette (i.e. one for the tools that

create nodes and one for those creating edges). For each ele-

ment in the Ecore metamodel annotated as @Node/@Edge,

a new ToolConfiguration element is created and added to the

nodes/edges drawer, respectively. The kind of ToolConfigu-

ration is decided based on the @Node/@Edge annotation.

For nodes, the kind is CreationTool while for edges, the kind

is ConnectionTool. An IconDescriptor element is also cre-

ated and added to the ToolConfiguration pointing to the path

of the icon for that tool. (This is the path passed as argument to

the icon property of the @Node/@Edge annotation.) Finally,

each ToolConfiguration needs to refer to the element types

they conform to, which are defined in the Element Types Con-

figuration model transformed in Step #3. In this way, when

an element is created in the diagram using the palette, behind

the scene, Papyrus is able to locate the Stereotype element

and determine the UML syntax it specialises.

4.6 CSS file generation (#5)

As stated above, the look and feel of diagram elements in

Papyrus can be customised using CSS. In this transforma-

tion, we generate our default CSS style rules that define the

appearance of nodes and edges in diagrams. Each node on

a diagram has a set of compartments where the attributes,

shapes, etc. appear. Initially, for all nodes that will appear

on the diagram, we create a CSS rule to hide all their com-

partments and another rule to enable the compartment that

holds the shape. The latter rule also hides the default shape

inherited from the meta-element that the Stereotype extends.

Then, for each Stereotype that appears as a node, a CSS rule

is generated to place the SVG figure in the shape compart-

ment. For elements of type Stereotype, the assignment of the

SVG shapes to the Stereotypes is achieved by assigning the

11 Both models reside in the Papyrus plug-in org.eclipse.

papyrus.uml.service.types.

path of the SVG file to the svgFile property available in CSS.

Finally, we generate the CSS rules for each edge, e.g. if a

lineStyle parameter is set, then the lineStyle property for that

Stereotype is set to the value of the lineStyle parameter (e.g.

‘solid’, ‘dashed’, etc.).

4.7 Creation command generation (#6)

In order for Papyrus to create a diagram, it requires the initial-

isation of the diagram. The creation command is a Java class

which is responsible for initialising Papyrus diagrams. The

creation command class is needed since Papyrus 3.0+. The

rationale for the creation command is that it creates a UML

model from the UMLFactory as the root element of the dia-

gram. The minimal requirement for diagram initialisations

is:

– UML primitive types: the primitive types need to be

imported to the diagram in order for the users to reference

to them;

– UML profiles: the standard UML profile and the user

defined UML profile need to be applied in order to ini-

tialise the UML diagram (with the user-defined UML

profile).

In order to apply the user-defined UML profiles, they

need to use the pathmap defined in their plug-ins, which is

explained in #8. The Java class is generated using a model-

to-text transformation written in EGL.

4.8 Architecture model generation (#7)

Papyrus adopted the notion of an Architecture model in order

to describe the architecture of the graphical editors since

Papyrus 3.0+. This transformation synthesises an Architec-

ture model using a model creation program written in the

Epsilon Object Language (EOL) [30]. The program needs 1)

the annotated Ecore metamodel for the DSL, 2) the Element

Types Configuration model and 3) the Palette Configuration

model; thus, it should be executed after the transformations

that generate the latter 2 artefacts (i.e. Steps #3 and #4). In

particular, in the Architecture model, the generation program

creates:

– An ArchitectureDomain which represents the domain of

the DSL;

– A number of Concerns to describe the concerns of the

domain;

– A number of Stakeholders involved in the domain;

– An ArchitectureDescriptionLanguage to describe the

architecture, which consists of a number of Viewpoints, a

number of PapyrusDiagrams. The ArchitectureDescrip-

tionLanguage points to the Element Types Configuration

123

R. Wei et al.

and the creation command class. The PapyrusDiagrams

point to the Palette Configuration model and the CSS file.

The Architecture model then needs to be registered and

acts as the entry point to all the models/files for a Papyrus

editor, which is done in Step #9.

4.9 Icons, shapes and supporting files (#8)

Jorvik supports the generation of the UML profile and its

supporting editor in either a new Eclipse plug-in project or

in the same Eclipse plug-in project where the annotated Ecore

metamodel resides. In both scenarios, the ‘MANIFEST.MF’,

the ‘build.properties’ and the ‘plugin.xml’ files are created

(or overridden respectively). The ‘plugin.xml’ file includes

all the necessary extensions for Papyrus to be able to register

the UML profile and create the diagrams (e.g. extensions that

point to the Architecture model). For the creation of a Papyrus

editor, in the ‘plugin.xml’, three extension points need to be

implemented:

– org.eclipse.emf.ecore.uri_mapping, in which the users

create a mapping between the path of the folder that hold

their UML profile, and a PATHMAP, which they can ref-

erence in the files/models they create;

– org.eclipse.papyrus.uml.extensionpoints.UMLProfile, which

points to the location of the UML profile that the users

define;

– org.eclipse.papyrus.infra.architecture.models, which points

to the location of the Architecture model that the trans-

formation generated in Step #7.

For the scenario where the Papyrus plug-in is created as a new

project, the shapes (SVG files) and the icons (PNG files) are

copied to the newly created plug-in project.

Finally, two files that only consist of the XML and the

XMI header (namely ‘*.profile.di’ and ‘*.profile.notation’)

are generated. These files are necessary for Papyrus to con-

struct the UML profile model12.

4.10 UML to EMF transformation generation (#9)

1 rule PersonUML2PersonEMF

2 transform s: UMLProcess!Person

3 to t: EMFProcess!Person {

4 t .name = s.name;

5 t .age = s.age;

6 t .familiarWith ::= s.familiarWith;

7 }

12 The diagram layout information cannot be generated and is not

related to this work.

Listing 8 Example of an auto-generated ETL rule that transforms

elements stereotyped as ‘Person’ in the UML model to elements of

type ‘Person’ in an EMF model.

This M2T transformation generates the ETL file that can

be used to transform the UML models created in Papyrus and

conform to the UML profile generated by our approach, back

to EMF models that conform to the source Ecore metamodel

given as input to the approach. The reason behind this is to

allow the users to propagate any changes they make in their

transformed UML profiles back to their EMF models. One

rule is generated for each of the Stereotypes that transforms

them back to the appropriate type of the Ecore metamodel.

Each Stereotype has the same attributes and references as

the original EClass; therefore, this EGL script also generates

the statements in each rule that populate the attributes and

the references of the newly created instance of each EClass

with the equivalent values of the UML model. An example of

an auto-generated rule is shown in Listing 8. This rule trans-

forms elements stereotyped as ‘Person’ in the UML model to

elements of type ‘Person’ in an EMF model which conforms

to the Ecore metamodel presented in Listing 1.

ETL provides the :: = operator for rule resolution. When

::= is used, the ETL execution engine inspects the estab-

lished transformation traces and invokes the applicable rules

(if necessary) to calculate the counterparts of the source ele-

ments contained in the collection.

In our example (line 6 in Listing 8), the expression

‘s.familiarWith’ returns a collection of UMLProcess!Tools

(denoted by ct). By using ‘::=’, the ETL engine will look

for the rules that transform UMLProcess!Tool to EMFPro-

cess!Tool and invoke the rules if necessary (if the source

elements have not been transformed, as shown in the trans-

formation trace) and put the transformed elements into

sub-collections (denoted by sc). After the ETL engine goes

through all the elements in ct , the sub-collections scs are

returned (flattened to a single collection if more than one)

and are added to ‘t.familiarWith’.

4.11 Polishing transformations (#2b–#5b)

For transformations #2–#5, users are able to define pol-

ishing transformations (#2b–#5b, whereas #2b–#4b are

model-to-model transformations and #5b is a model-to-

text transformation) that complement those included in our

implementation. After each built-in transformation is exe-

cuted, the workflow looks to find a transformation with the

same file name next to the Ecore metamodel. If a file with the

same name exists, it is executed against the Ecore metamodel

and targets the already created output model of the original

transformation. The execution of the polishing transforma-

tion is set not to overwrite the target model but to refine it

instead. Table 2 shows the names that each polishing trans-

formation is expected to have.

123

Automatic generation of UML profile graphical editors for Papyrus

Table 2 Polishing transformations file names

Transformation ID Required file name

#2b emf2umlProfile.etl

#3b elementTypesConfigurationsM2M.etl

#4b paletteConfigurationM2M.etl

#5b cssFileGeneration.egl

4.12 Adding support for nested relations

In EMF, a reference between two classes can be flagged as

a containment relation, which is consistent with the contain-

ment definition of UML associations (with exception of the

deletion cascade mechanism). These types of relations, when

presented visually, can benefit from showing the contained

elements shapes inside the shape of the container, as opposed

to the line/arrow presentation. For example, if a package

is represented with an empty rectangle, classes contained in

the package would appear inside this rectangle.

Ideally, a custom profile editor should allow this contain-

ment relations to be represented as visual containment too.

Papyrus does allow providing custom shapes for elements, so

we explored the feasibility of supporting visual containments

too. However, the current structure of the Papyrus visual edi-

tor does not allow this functionality. Currently, the shape

concept at the editor level provides separate graphical sec-

tions for the custom shape and the contained elements. These

two sections are presented visually one after the other. Hence,

with the current Papyrus implementation it is not possible to

have nested elements inside a custom shape.

5 Evaluation

In this section, we evaluate Jorvik in three different ways.

In the first evaluation, we apply Jorvik to generate a Papyrus

editor for the non-trivial Archimate UML profile [21,23]. We

use the Adocus Archimate for Papyrus13 (an open-source

tool that includes a profile for Archimate and the appro-

priate editors for Papyrus) for reference. Archimate is an

open and independent enterprise architecture modelling lan-

guage to support the description, analysis and visualisation of

architecture within and across business domains in an unam-

biguous way. We compare the proportion of the tool that

Jorvik is able to generate automatically, check the number

of polishing transformations that the user needs to write to

complete the missing parts and finally identify the aspects

of the editor that our approach is not able to generate. As a

result, we can measure the efficiency of Jorvik in generating

13 https://github.com/Adocus/ArchiMate-for-Papyrus.

profiles/editors against an existing relatively large profile/ed-

itor.

In the second evaluation, we assess the completeness of

Jorvik by applying it to a number of metamodels collected as

part of the work presented in [46]. This way, Jorvik is tested

to check if it can successfully generate profiles and editors

for a wide variety of scenarios.

In the third evaluation, we conduct a user experiment in

which we ask participants to build Papyrus editors for two

UML Profiles. We first ask the participants to create the pro-

files and editors manually and then ask them to create the

same profiles and editors using Jorvik. We measure the time,

report problems encountered during the experiment for both

approaches, and we compare the results.

5.1 Efficiency

The Archimate for Papyrus tool offers five kinds of diagrams

(i.e. Application, Business, Implementation and Migration,

Motivation and Technology diagrams). Each diagram uses

different Stereotypes from the Archimate profile. In this sce-

nario, we create five Ecore metamodels and annotate the

elements that need to appear as nodes/edges in the diagrams.

We then generate the editors for all five Archimate diagrams.

At this point, five fully functional editors are generated that

can be used to create each of the five types of diagrams that

the Archimate for Papyrus tool also supports.

However, our generated editors do not offer some special

features that the Archimate for Papyrus tool offers. For exam-

ple, Archimate for Papyrus offers a third drawer in the palette

for some diagrams that is called ‘Common’ and includes

two tools (named ‘Grouping’ and ‘Comment’). Another fea-

ture that is not supported by our default transformations is

the fact that in Archimate for Papyrus, users are able to

have the elements represented either by their shapes or by

a coloured rectangle depending on the CSS class applied to

them. Finally, Archimate for Papyrus also organises the cre-

ation of the Junction (which is a node that acts as a junction for

edges) node in the relations’ drawer in the palette. In order to

be able to implement such missing features, we need to write

the extra polishing transformations. We do not go into details

of the polishing transformations for this specific example14.

In our previous work [49], we compared our approach

with Archimate for Papyrus. However, as we mentioned in

Sect. 2, Papyrus changed its underlying metamodels and the

mechanism for creating UML-specific editors. To ensure that

our results are still valid for Papyrus 3.0+, we regenerated all

the Archimate editors using Jorvik. We add the lines of code

needed for Jorvik to our findings in the previous work.

14 The generated plug-ins for Archimate and the polishing transforma-

tions are available from https://github.com/wrwei/Jorvik.

123

https://github.com/Adocus/ArchiMate-for-Papyrus
https://github.com/wrwei/Jorvik

R. Wei et al.

Table 3 summarises the efficiency of Jorvik, both for

Jorvik pre-Papyrus 3.0 version and for Jorvik post-Papyrus

3.0 version15. To make a fair comparison, we count both the

lines of code and the number of model elements in each arte-

fact that constitutes to a working editor. Hence, the numbers

in Table 3 are shown in the format of Lines of Code/Number of

Model Elements. For artefacts which are not models (e.g. the

CSS file), we only provide the lines of code metric as well for

artefacts created by polishing transformations in Jorvik, as

these were generated by the polishing transformation scripts.

For Jorvik pre-Papyrus 3.0 (columns under Jorvik (pre-

Papyrus 3.0)), we need to manually create five annotated

Ecore metamodels, which involve writing 436 lines of code

in Emfatic, which is equivalent to 668 model elements. For

polishing transformations, we need to write 11 lines of code

in the transformation script for Element Types Configura-

tion, 50 lines for Palette Configuration, 195 lines for CSS

and 10 lines for types configuration. For Jorvik post-Papyrus

3.0 (columns under Jorvik (post-Papyrus 3.0)), we need the

same Ecore metamodels (i.e. five); thus, the numbers do not

change. For polishing transformations, we need to write 50

lines for the Palette Configuration and 195 lines for CSS.

It can be observed from the numbers, for Jorvik, we create

63.5% less objects, and we write 63.7% code in CSS in order

to produce editors that matches the original Archimate for

Papyrus editors. In addition to the working editors (which

offer the same functionalities and features as the original

Archimat for Papyrus tool), Jorvik also produces the OCL

constraints for the profiles, as well as the ETL transforma-

tions which allows the interoperability from UML profiles to

annotated EMF metamodels.

5.1.1 Threats to validity

There are a few minor features of the original Archimate for

Papyrus tool that our approach could not support. Most of

them are related to custom menu entries and creation wizards.

For those to be created, the developers needs to extend the

‘plugin.xml’ file. In addition, the line decoration shapes of

Stereotypes that extend the Aggregation base element (i.e.

diamond) can only be applied dynamically by running Java

code that will update the property each time the Stereotype

is applied. Our default and polishing transformations are not

able to generate those features automatically; these should be

implemented manually. For that reason, we excluded these

lines of code needed by Archimate for Papyrus to implement

these features from the data provided in Table 3 for a fair

comparison.

15 Cells in grey are artefacts not needed for implementation. For exam-

ple, creation command and Architecture model are concepts in Papyrus

version 3.0+ and therefore are not applicable to Jorvik pre-Papyrus 3.0

version and Archimate for Papyrus. T
a
b
le
3

L
in

es
o
f

m
an

u
al

ly
w

ri
tt

en
co

d
e

o
f

ea
ch

fi
le

fo
r

cr
ea

ti
n
g

a
P

ap
y
ru

s
U

M
L

p
ro

fi
le

an
d

ed
it

o
r

fo
r

A
rc

h
iM

at
e

Jo
rv

ik
(p

re
-P

ap
y
ru

s
3
.0

)
L

o
C

/N
u
m

b
er

o
f

M
o
d
el

E
le

m
en

ts
Jo

rv
ik

(p
o
st

-P
ap

y
ru

s
3
.0

)
L

o
C

/N
u
m

b
er

o
f

M
o
d
el

E
le

m
en

ts
A

rc
h
im

at
e

fo
r

P
ap

y
ru

s
(p

re
P

ap
y
ru

s
3
.0

)

F
il

e
H

an
d

-w
ri

tt
en

H
an

d
-w

ri
tt

en
(P

o
li

sh
in

g
)

T
o
ta

l
H

an
d

-w
ri

tt
en

H
an

d
-w

ri
tt

en
(P

o
li

sh
in

g
)

T
o
ta

l
T

o
ta

l
h

an
d

-w
ri

tt
en

E
co

re
4
3
6
/6

6
8

0
4
3
6
/6

6
8

4
3
6
/6

6
8

0
4
3
6
/6

6
8

0

P
ro

fi
le

0
0

0
0

0
0

1
8
6
7
/1

0
8
9

E
le

m
en

t
T

y
p
es

C
o
n
fi

g
u
ra

ti
o
n

0
1
1

1
1

0
0

0
2
3
7
/6

1

P
al

et
te

C
o
n
fi

g
u
ra

ti
o
n

0
5
0

5
0

0
5
0

5
0

1
3
0
5
/3

2
3

C
S

S
0

1
9
5

1
9
5

0
1
9
5

1
9
5

5
3
7

C
re

at
io

n
co

m
m

an
d

0
0

0

A
rc

h
it

ec
tu

re
m

o
d
el

0
0

0

T
y
p
es

co
n
fi

g
u
ra

ti
o
n

0
1
0

1
0

7
8
8
/3

2
7

D
ia

g
ra

m
co

n
fi

g
u
ra

ti
o
n

0
0

0
5
8
/2

8

T
o
ta

l
4
3
6
/6

6
8

2
6
6

7
0
2
/6

6
8

4
3
6
/6

6
8

2
4
5

6
8
1
/6

6
8

4
7
9
2
/1

8
2
8

123

Automatic generation of UML profile graphical editors for Papyrus

Table 4 Names and sizes of the

ten metamodels against which

the approach was evaluated to

test completeness

Name #Types (#Nodes/#Edges) Name #Types (#Nodes/#Edges)

Professor 5 (4/5) Ant Scripts 11 (6/4)

Zoo 8 (6/4) Cobol 13 (12/14)

Usecase 9 (4/4) Wordpress 20 (19/18)

Conference 9 (7/6) BibTeX 21 (16/2)

Bugzilla 9 (7/6) Archimate 57 (44/11)

5.2 Completeness

In addition to the generation of the Archimate profile/edi-

tors, we test Jorvik with nine more Ecore metamodels from

different domains. The names of the metamodels (including

Archimate) and their size (in terms of types) are provided

in Table 4. Next to the size, in parenthesis, the number of

types that should be transformed so they can be instantiated

as nodes/edges is also provided.

As illustrated in Table 4, the metamodels vary in size, from

small profiles (with five Stereotypes) to large profiles (with

up to 57 Stereotypes). The approach is able to produce the

profiles and the editors for all metamodels, demonstrating

that it can be used to generate the desired artefacts for a wide

spectrum of domains. The time needed for the generation

varies from milliseconds up to a few seconds. In the future,

we plan to assess further the scalability of our approach using

larger metamodels.

5.3 User experiment

We have argued that Jorvik provides significant gains in

productivity when building custom UML Profile editors for

Papyrus. We design a user experiment to substantiate our

claim and quantify the productivity improvement. As dis-

cussed in Sect. 4, there are eight major steps to be taken in

order to create a UML profile as well as its supporting editor.

In this experiment, we compare the time needed to develop an

editor using Papyrus infrastructure (hereby referred to as the

Papyrus approach) with the time needed to develop the same

editor using Jorvik. For the Papyrus approach, we design

eight tasks, each with its own deadline (see Table 5) for the

participants to complete towards manually creating a UML

profile and a working UML editor for the profile. For Jorvik,

we design one task for the participants to complete to auto-

matically generate a UML profile and a working UML editor

for that profile. We ask two participants to take part in the

experiment and work on two profiles we choose. We record

the time taken for the participants to complete the experiment

using both approaches and we compare the times.

5.3.1 Papyrus approach experiment set-up

For the purpose of this experiment, we have chosen a partic-

ipant with relatively more experience in modelling (hereby

referred to as Participant 1) and a candidate with less experi-

ence in modelling (hereby referred to as Participant 2). Both

participants have an Eclipse IDE installed on their comput-

ers, with Eclipse Epsilon 1.6 Interim version16 and Eclipse

Papyrus 4.0.017 installed. We ask the participants to perform

the tasks involved in the Papyrus approach first on one profile

(the Website profile18) and then repeat the experiment for a

second profile (the Fault Tree profile19). The SVG shapes and

icons for both cases are provided to the participants. Before

the experiment is conducted, a pre-experiment questionnaire

is handed to the participants, to assess their expertise in UML,

UML profiles and Papyrus20. In addition, a 20-30 minutes

introduction to UML profiles and Papyrus is given to them

while an example of a custom UML profile Papyrus editor is

being presented to them.

For each of the eight steps, there is a set deadline; the

participants are asked to try to complete the step within the

deadline. The tasks and the deadlines are derived from our

own experience in developing an UML profile and its dis-

tributable Papyrus editor. Initially, we spent 3 months on

creating an example editor, due to the lack of documenta-

tion and the lack of tool support when referencing model

elements among the models required for the editor. After we

found out how to create an editor, we recorded the amount of

time required for us to perform the eight steps to derive the

deadlines. We then normalise the deadlines through a pilot

study with a volunteer from our research group. (We also

make adjustments to our experiment set-up in the pilot study

based on what we learnt from it).

In each step, the participants are asked to complete a mini-

mal task first (e.g. for UML profile, create a Stereotype that is

displayed as a node and a Stereotype that is displayed as an

16 https://www.eclipse.org/epsilon/.

17 https://www.eclipse.org/papyrus/download.html.

18 https://github.com/wrwei/Jorvik/tree/master/org.papyrus.website.

19 https://github.com/wrwei/Jorvik/tree/master/org.papyrus.faulttree.

20 The questions can be viewed in https://github.com/wrwei/Jorvik/

wiki/Pre-Experiment-Self-Assessment-Questionnaire.

123

https://www.eclipse.org/epsilon/
https://www.eclipse.org/papyrus/download.html
https://github.com/wrwei/Jorvik/tree/master/org.papyrus.website
https://github.com/wrwei/Jorvik/tree/master/org.papyrus.faulttree
https://github.com/wrwei/Jorvik/wiki/Pre-Experiment-Self-Assessment-Questionnaire
https://github.com/wrwei/Jorvik/wiki/Pre-Experiment-Self-Assessment-Questionnaire

R. Wei et al.

Table 5 Tasks and times (in

minutes) for the Papyrus

approach

Task Total (m) Default (m) Essential (m)

1. UML profile 60 40 20

2. Element Types Configuration model 60 40 20

3. Palette Configuration model 30 20 10

4. Cascading Style Sheet 30 20 10

5. Creation command 30 20 10

6. Architecture model 40 30 10

7. Plug-in configuration 20 12 8

8. OCL constraints 60 40 20

edge)21. They are asked to continue with the rest if there

is still time left. If the participants miss the deadline but

they are working towards the correct solution, they are asked

to give an estimate of how long they believe it would take

them to finish the whole step. At the beginning of each step,

we provide a piece of Default knowledge22, which covers

ground knowledge for the step to be completed. Participants

are also allowed to search for any information over the Inter-

net which may assist them in their tasks at any point during

the experiment. At a certain point for each step, we assess if

the participants are able to complete the step within the time

frame, and we provide a piece of Essential knowledge23,

which contains key information (which is not accessible on

the Internet) for the participants to complete the step.

Table 5 lists an overview of the tasks. It also includes the

times (in minutes) for the total time given (i.e. Total (m)) and

the deadlines (in minutes) for the task with the default (i.e.

Default (m)) and the essential (i.e. Essential (m)) knowledge.

The task descriptions are as follows:

1. UML Profile—An image of a UML profile is provided to

the participants, and they are required to create the profile

within 60 minutes.

2. Element Types Configuration Model—Participants are

asked to create an Element Types Configuration model

for the editor for the profile they create in task 1.

3. Palette Configuration Model—Participants are asked to

create a Palette Configuration model for the editor/pro-

file.

4. Custom Style—Participants are asked to create a CSS file

to customise the styles of the editor.

5. Creation Command—Participants are asked to create the

creation command Java class to initialise the Papyrus dia-

gram .

21 Detailed descriptions of the tasks can be found at https://github.com/

wrwei/Jorvik/tree/master/User_Experiment.

22 See an example at https://github.com/wrwei/Jorvik/blob/master/

User_Experiment/Step1_Default.pdf.

23 See an example at https://github.com/wrwei/Jorvik/blob/master/

User_Experiment/Step1_Essential.pdf.

6. Architecture Model—Participants are asked to create an

Architecture model for the editor/profile.

7. Plug-in Configuration—Participants are asked to con-

figure their plug-ins in order to make use of all the

models/artefacts to form a working editor

8. OCL constraints (optional)—In this optional task, partic-

ipants are asked to create OCL constraints mentioned in

Sect.4.3 for all connector Stereotypes, within 60 minutes.

We do not expect this task to be taken by participants,

as it typically requires experienced MDE practitioners 2

weeks to complete the constraint templates described in

Sect. 4.3. For the record, no participants agreed to take

this optional task.

For each step, when participants express that they have

completed the step, we stop the timer and assess the solutions.

If the solutions are not correct, we tell the participants that

they need more work and resume the timer. Since each step

depends on the previous being completed, at the beginning of

each step, the participants are given a solution that contains

complete and correct assets for all the previous tasks.

After participants have completed the manual process, a

post-experiment questionnaire is handed to them, in which

they evaluate the difficulties of each task and if enough time

was provided for each task24.

5.3.2 Jorvik experiment set-up

The experiment then proceeds to the use of Jorvik, where the

participants need to complete one task: Annotated Ecore

Metamodel and Generation—participants are provided

with the same images of the profiles (one each time), and

they are asked to create an annotated Ecore metamodel for

the profile and generate the UML profile and its supporting

Papyrus editor, within 50 minutes. The Default information

is provided at the beginning.

24 The questions can be viewed in https://github.com/wrwei/Jorvik/

wiki/Post-Experiment-Self-Assessment-Questionnaire.

123

https://github.com/wrwei/Jorvik/tree/master/User_Experiment
https://github.com/wrwei/Jorvik/tree/master/User_Experiment
https://github.com/wrwei/Jorvik/blob/master/User_Experiment/Step1_Default.pdf
https://github.com/wrwei/Jorvik/blob/master/User_Experiment/Step1_Default.pdf
https://github.com/wrwei/Jorvik/blob/master/User_Experiment/Step1_Essential.pdf
https://github.com/wrwei/Jorvik/blob/master/User_Experiment/Step1_Essential.pdf
https://github.com/wrwei/Jorvik/wiki/Post-Experiment-Self-Assessment-Questionnaire
https://github.com/wrwei/Jorvik/wiki/Post-Experiment-Self-Assessment-Questionnaire

Automatic generation of UML profile graphical editors for Papyrus

Table 6 Times (in minutes) obtained from the Papyrus approach and the Jorvik approach experiments

Task Time given Time taken Correctness Participant Remarks

Default (essential) Web FTA Web FTA

Papyrus

1. UML profile 40 m (20 m) 25 m 30 s 15 m � � #1 –

40 m 24 m �� � #2 –

2. Element Types Configuration 40 m (20 m) 56* 38 m � � #1 1©

60 m* 58 m* � � #2 2©

3. Palette Configuration 20 m (10 m) 26 m 30 s* 25 m � � #1 3©

30 m* 30 m* � �� #2 4©

4. Custom style 20 m (10 m) 15 m 30 s 16 m �� � #1 –

30 m* 19 m �� �� #2 –

5. Creation command 20 m (10 m) 25 m* 16 m � � #1 5©

30 m* 25 m � � #2 –

6. Architecture model 30 m (10 m) 40 m* 25 m � � #1 6©

40 m* 40 m* � �� #2 7©

7. Plug-in configuration 12 m (8 m) 20 m* 5 m � � #1 8©

19 m 10 m � � #2 –

Total 182 m (88 m) 208 m 30 s 140 m #1

249 m 206 m #2

EMF + Annotations 30 m (20 m) 32 m 30 s* 14 m 51 s � � #1 –

Jorvik

36 m 55 s* 37 m 27 s* � � #2 –

Legend

� : Correct

�� : Partially correct

�: Incorrect

* : Essential information given

5.3.3 Results

Table 6 shows the times obtained from the user experiment.

Participant #1 is a PhD student who has a high level of exper-

tise in modelling and has used Papyrus before. Participant #2

is a postdoctoral researcher who has an intermediate level of

expertise in modelling and has used Papyrus on a limited

number of occasions. Both of the participants have no expe-

rience in creating distributable editors for UML profiles using

Papyrus.

In the table, the Task column specifies the name of the

steps. The Time Given column specifies the time we give

the participants for each step having the Default knowledge

only and in parenthesis the time we gave to them having

the Essential knowledge information. The Time Taken col-

umn records the time taken for the participants to complete

the Website profile (Web) and the Fault Tree profile (FTA).

Times with an asterisk (*) denote that the participant asked

and was given the essential information25. The Correctness

column records if the participants are able to provide correct,

25 In some tasks, participants knew how to complete the task with no

more information given to them, but they hit the default knowledge

partial correct (e.g. participants miss some style properties

in the CSS file) and incorrect solutions. The participants are

distinguished using the Participant column. We record any

comments/remarks made by the participants in the Remarks

column. (We discuss the remarks made by the participants

later in this section.)

Below is an example of how the table should be read (the

summary of the experiment for Participant 1 for the Papyrus

approach for the Website profile):

1. Participant 1 was able to finish the UML profile creation

in 25 minutes without the Essential knowledge.

2. Participant 1 finished the Element Types Configuration

in 56 minutes with the help of the Essential knowledge.

3. Participant 1 finished the tasks in Step 3 in 26 minutes

with the help of the Essential knowledge.

4. Participant 1 finished a partial solution for the CSS in 15

minutes.

deadline. In such cases, we were assessing the solution and if it was

indeed towards the correct direction they were allowed to use the time

remaining to complete the task without giving the essential information.

123

R. Wei et al.

5. Participant 1 could not figure out how to create a creation

command, therefore Essential knowledge is provided,

and she finished the step in 25 minutes in total.

6. Participant 1 could not figure out how to create an

Architecture model, even with the Essential knowledge

provided and missed the deadline.

7. Participant 1 was not able to configure the editor plug-

in to successfully run the editor, even with the Essential

knowledge.

We also note some remarks made by the participants dur-

ing the experiment. Below is a list of the description of the

remarks in the table, which should be read together with the

experiment results:

– Remark 1©: In the Website experiment, in Step 2, Par-

ticipant 1 claims that she found a solution online26 that

made the task significantly easier. She also claims that

without the solution, there is no way he/she could have

finished the task, even with the Essential knowledge.

– Remark: 2© In both the Website and the Fault Tree exper-

iment, in Step 2, Participant 2 claimed that he could never

complete the step, without the essential information. He

also claims that the Element Types Configuration is rather

confusing. In the Fault Tree experiment, he claims he

would need 40+ minutes to complete the whole model.

– Remark 3©: In the Website experiment, in Step 3, Par-

ticipant 1 finishes the minimal task with the help of the

essential information. She claims that she would need 20

more minutes to finish the model.

– Remark 4©: In the Website experiment, in Step 3, Par-

ticipant 2 misses the deadline even with the essential

information. He claims that he would need 30 more min-

utes to finish the step.

– Remark 5©: In the Website experiment (and presumably

in the Fault Tree experiment), in step 5, participant 1

claims that she copied the actual solution for the essential

information provided to her.

– Remark 6©: In the Website experiment, in step 6, par-

ticipant 1 misses the deadline even with the essential

information. She claims that the tool support for the

Architecture model by Papyrus is not well implemented.

(It does not support the reference to model elements in

other models.)

– Remark 7©: Participant 2 in both rounds of this experi-

ment claims that he finishes the step before the deadline

(both with the help of the essential information), but he

could not get the solutions right. This is typically due

26 Which is the forum thread where the authors obtained the correct

way of creating Element Types Configurations: https://www.eclipse.

org/forums/index.php/t/1096471/.

to the fact that there are somewhat confusing model ele-

ments in the Architecture metamodel by Papyrus.

– Remark 8©: In the Website experiment, in step 7, Partic-

ipant 1 cannot configure the plug-in to a working order,

and she claims that she would need more than 20 minutes

to inspect other models to find out what went wrong.

For the results obtained using Jorvik, participant 1 is able to

generate the correct Papyrus editor for the Website profile in

32 minutes. She is also able to create the correct editor for

the Fault Tree profile in 15 minutes. Participant 2 needs 37

minutes and 38 minutes for the creation of a correct Papyrus

editor for the Website and the Fault Tree profiles, respec-

tively, using Jorvik.

5.3.4 Analysis

We begin our analysis with useful insights from the responses

to the pre and post-experiment questionnaires. From the

pre-experiment questionnaires27, we found out that both par-

ticipants had intermediate knowledge of UML but have not

created a UML profile in the past using any tool (including

Papyrus).

By analysing the responses to the post-experiment ques-

tionnaires28 for the Papyrus approach, both participants feel

that the time assigned to the tasks, most of the times, is not

enough for the first round of the experiment (the Website

experiment). However, they feel the time was enough for the

second round of the experiment (the Fault Tree experiment).

This is because participants are able to refer to their Website

solution in the second round. Both participants mention it is

difficult to find the documentation needed to finish the steps

(NB: this applies only to responses after the first experiment

as they mostly referred to the editor produced in that one

when executing the second).

For all the steps in the Papyrus approach, except the one

in which participants have to create the UML profile, they

declare that they have low to moderate confidence that they

will be able to complete the task before receiving the essential

information. This can be explained from the lack of experi-

ence in developing UML profile editors with Papyrus before.

For the same steps (i.e. 2–7), participant 2 highlights that he

feels completely lost before receiving the Essential informa-

tion. However, both of them declare to have moderate to high

confidence after receiving the Essential information, except

for step 2, where both are still confused by the concept of

27 Available at https://github.com/wrwei/Jorvik/blob/master/

User_Experiment/Pre-Experiment_Self_Assessment_Responses.

pdf.

28 Available at https://github.com/wrwei/Jorvik/blob/master/

User_Experiment/Post_Experiment_Self_Assessment_Responses.

pdf.

123

https://www.eclipse.org/forums/index.php/t/1096471/
https://www.eclipse.org/forums/index.php/t/1096471/
https://github.com/wrwei/Jorvik/blob/master/User_Experiment/Pre-Experiment_Self_Assessment_Responses.pdf
https://github.com/wrwei/Jorvik/blob/master/User_Experiment/Pre-Experiment_Self_Assessment_Responses.pdf
https://github.com/wrwei/Jorvik/blob/master/User_Experiment/Pre-Experiment_Self_Assessment_Responses.pdf
https://github.com/wrwei/Jorvik/blob/master/User_Experiment/Post_Experiment_Self_Assessment_Responses.pdf
https://github.com/wrwei/Jorvik/blob/master/User_Experiment/Post_Experiment_Self_Assessment_Responses.pdf
https://github.com/wrwei/Jorvik/blob/master/User_Experiment/Post_Experiment_Self_Assessment_Responses.pdf

Automatic generation of UML profile graphical editors for Papyrus

Element Types Configuration. This confirms our findings as

this task is the one that participants perform the worst (see

Table 6).

To summarise, from the responses received, step 2 (Ele-

ment Types Configuration), step 3 (Palette Configuration),

Step 5 (Creation Command) and step 6 (Architecture Model)

are identified as typical obstacles for the participants in com-

pleting the whole experiment.

Regarding the questionnaires from the Jorvik experiment,

participant 1 describes herself as knowledgeable of EMF,

has created EMF metamodels in the past and has also used

annotations. Participant 2 had limited EMF experience in the

past and has created a limited number of EMF metamodels.

Finally, both mention that the time given is enough and that

they feel more confident after receiving the essential infor-

mation.

By analysing the results provided in Table 6, comparing

the Papyrus approach with Jorvik, we can conclude that using

Jorvik, the users are able to increase the productivity by at

least 10 times (especially when participants claim that they

would need additional time to finish the complete solution

for some steps). This is also due to the fact that both partic-

ipants chose not to complete the optional Step 8 (the OCL

constraints), which may take significant amount of time, even

for experienced OCL programmers.

We are also able to draw the conclusion that it is rather

difficult to derive the models/artefacts needed for a working

UML profile-specific editor. This is based on the experi-

ment results that both participants get the majority of their

models/artefacts wrong for the Website profile, which is the

first profile and editor they work on. Although we provide

the Essential information, parts of which, to the best of our

knowledge, are not available in Papyrus documentation, par-

ticipants still cannot get the models/artefacts right because

of the interrelated nature of the models. For example, both

participants find it difficult to comprehend the purpose of

the Element Types Configuration, they actually find that it

is the most challenging part of the experiment. The candi-

dates also find it difficult to link creation tools in the Palette

Configuration model to elements in the Element Types Con-

figuration. They also find it hard to understand the rationale

behind referencing to Element Types Configuration. Finally,

both participants claim that it is rather difficult to create

the Architecture model, as there are concepts defined in

it which purposes are not orthogonal to their experience.

In addition, due to the interconnected nature among the

models/artefacts, participants find it difficult to debug their

solutions, as there are many places where things may go

wrong. In contrast, Jorvik provides feedback based on the

validation rules applied to the annotated Ecore metamodel,

which helped participants in debugging. In practice, during

the Jorvik experiment, we notice that participants make use

of the feedback provided by Jorvik to debug their annotated

Ecore metamodels.

When participants work on the Fault Tree profile, they are

able to refer to their solutions to the Website profile. There-

fore, we observe that the correctness of the models/artefacts

for the Fault Tree profile improves significantly comparing

to the Website profile. This matches our experience with

using the Papyrus infrastructure for the development of dis-

tributable editors for UML profiles, where we have to reverse

engineer other editors available online to try to understand

how to proceed. Although they may have adapted their Web-

site solutions to their Fault Tree solution, the recorded time

shows that Jorvik still performs significantly better than the

manual process, especially taking the OCL constraints into

consideration.

It is worth mentioning that Participant 1 is an expert user of

Ecore, where Participant 2 only used Ecore from the training

provided prior to the experiment. We observe the advantage

of being familiar with Ecore based on Participant 1’s time

taken for the experiments (especially after she got familiar

with the annotation rules for Jorvik). However, for both levels

of expertise in Ecore, the experiment suggests that the time

taken is still significantly better using Jorvik compared to the

Papyrus approach.

5.3.5 Threats to validity

For the experiment, we invite participants that do not spe-

cialise in creating UML profiles and their supporting editors

for Papyrus. The time taken if our participants were Papyrus

experts might be lower. However, as we have spent signifi-

cant time working with Papyrus and Jorvik, we have run the

experiment ourselves for both the profiles and we observe

the same time benefits (about 10 times faster using Jorvik).

In the Papyrus experiment, we take a waterfall approach.

We derive the eight steps in the Papyrus experiment based on

our own experience, and each step depends on previous steps.

For example, step 2 (Element Types Configuration model)

depends on the whole solution of step 1 (the UML profile),

step 3 (Palette Configuration model) depends on step 2. There

is one exception that step 5 (creation command) depends on

step 7 (plug-in configuration) as the Creation Command Java

class relies on the definition of URI mappings, required in the

plug-in. However, this does not affect the experiment results,

as when participants work on step 7, we notify them that they

need to also alter their solution in step 5.

The Jorvik experiment runs in both cases after the Papyrus

one. Participants may be familiar with the domain described

in the metamodel after finishing the Papyrus experiment, and

this could reduce the time for understanding the domain in the

Jorvik experiment. However, the knowledge of the domain

described in the metamodel is mostly useful when construct-

ing the UML profile. This was the task that the participants

123

R. Wei et al.

perform better in the Papyrus experiment; thus, we do not

believe that this has any (significant) impact in the results

presented.

Finally, participants require the whole solution of the edi-

tor in order to test the correctness of the models/artefacts

produced in each step. Both participants find that it is diffi-

cult to test the models they develop, because it requires the

whole solution in order to test a single model. We do not

consider this a flaw in our experiment as it is a replicate of

our own experience. In addition, to mitigate this issue, we

performed a manual review of the models/artefacts when it

is requested to inspect their correctness.

6 Related work

6.1 UML profiles

Building on the powerful concepts and semantics of UML,

and its wide adoption in modelling artefacts of object oriented

software and systems, UML profiles enable the develop-

ment of DSLs by extending (and constraining) elements

from the UML metamodel [13]. More specifically, UML pro-

files make use of extension mechanisms (e.g. Stereotypes,

tagged definitions and constraints) through which engineers

can specialise generic UML elements and define DSLs that

conform to the concepts and nature of specific applica-

tion domains [40]. Compared to creating a tailor-made DSL

by defining its metamodel and developing supporting tools

from scratch, the use of UML profiles introduces several

benefits including lightweight language extension, dynamic

model extension, model-based representation, preservation

of metamodel state and employment of already available

UML-based tools [33]. Driven by these benefits, several

UML profiles have been standardised by the OMG including

MARTE [17] and SySML [12]) which are now included in

most widely used UML tools (e.g. Papyrus [34]).

In safety-critical application domains such as railway,

avionics and network infrastructures, developed UML pro-

files support the specification and examination of security

patterns [6,38], analysis of intrusion detection scenarios [22]

and modelling and verification of safety-critical software

[5,45,50].

Other researchers have designed UML profiles for the

specification [9,35] and visualisation of design patterns [10].

Also, [42] proposes a methodology for formalising the

semantics of UML profiles based on fUML [20], a subset

of UML limited to composite structures, classes and activ-

ities with a precise execution semantics. For an analysis of

qualitative characteristics of several UML profiles and a dis-

cussion of adopted practices for UML profiling definition,

see [37]. Likewise, interested readers can find a comprehen-

sive review on execution of UML and UML profiles in [7].

Irrespective of the way these UML profiles were devel-

oped, either following ad hoc processes or based on guide-

lines for designing well-structured UML profiles [13,40],

they required substantial designer effort. Also, the learning

curve for new designers interested in exploring whether UML

profiles suit their business needs is steep [15]. In contrast,

Jorvik automates the process of generating UML profiles

using a single annotated Ecore metamodel and reduces sig-

nificantly the developer’s effort for specifying, designing and

validating UML Papyrus profiles (cf. Sect. 5).

6.2 Automatic generation of UML profiles

Relevant to Jorvik is research introducing methodologies for

the automatic generation of UML profiles from an Ecore-

based metamodel [31]. The work in [32] proposes a partially

automated approach for generating UML profiles using a set

of specific design patterns. However, this approach requires

the manual definition of an initial UML profile skeleton,

which is typically a tedious and error-prone task [47]. The

methodology introduced in [15,16] facilitates the deriva-

tion of a UML profile using a simpler DSL as input. The

methodology requires the manual definition of an inter-

mediate metamodel that captures the abstract syntax to be

integrated into a UML profile. The intermediate metamodel

is then compared against the UML metamodel to identify a set

of required UML extensions, as well as the transformation

of the intermediate metamodel into a corresponding func-

tioning UML profile. Similarly, [31] introduces an approach

for the automatic derivation of a UML profile and a corre-

sponding set of OCL expressions for Stereotype attributes

using annotated MOF-based metamodels. Another relevant

research work is JUMP [4] that supports the automatic gener-

ation of profiles from annotated Java libraries [4]. Despite the

potential of these approaches, they usually involve non-trivial

human-driven tasks, e.g. a UML profile skeleton [32] or an

intermediate metamodel [15,16], or have limited capabilities

(e.g. support of UML profile derivation with generation of

OCL constraints [31]). In contrast, Jorvik builds on top of

standard Ecore metamodels that form the building blocks of

MDE [18]. Furthermore, Jorvik facilitates the development

of a full-fledged UML profile and a distributable Papyrus

graphical editor including the generation of OCL constraints

and the definition of optional polishing transformations (cf.

Sect. 4.11).

6.3 From Ecore to UML profiles and back

Jorvik also subsumes research that focuses on bridging the

gap between MOF-based metamodels (e.g. Ecore) and UML

profiles. In [2], the authors propose a methodology that con-

sumes a UML profile and its corresponding Ecore metamodel

and uses M2M transformation and model weaving to trans-

123

Automatic generation of UML profile graphical editors for Papyrus

form UML models to Ecore models, and vice versa. The

methodology proposed in [47] simplifies the specification

of mappings between a profile and its corresponding Ecore

metamodel using a dedicated bridging language. Through

an automatic generation process that consumes these map-

pings, the technique produces UML profiles and suitable

model transformations. Along the same path, the approach

in [14] employs an integration metamodel to facilitate the

interchange of modelling information between Ecore-based

models and UML models. Compared to this research, Jorvik

automatically generates UML profiles (like [47] and [14]),

but requires only a single annotated Ecore metamodel and

does not need any mediator languages [47] or integration

metamodels [14]. Also, the transformation of models from

UML profiles to Ecore is only a small part of our generic

approach (Sect. 4.10) that generates not only a full-fledged

UML profile but also a distributable custom graphical editor

as an Eclipse plug-in.

6.4 Automatic generation of modelling facilities

There are a number of works that use MDE techniques to

generate modelling facilities for models. The most widely

used tool for graphical modelling is the Graphical Modelling

Framework [1] (GMF) provides editor generation facilities

for EMF models. GMF provides the foundation for a num-

ber of tools. However, as stated in [28], creating graphical

editors in GMF typically involves non-trivial, repetitive and

error-prone tasks. Hence, a number of tools emerged, such

as Sirius [43], Eugenia [28] and Papyrus. While other tools

focus on creating editing facilities for EMF models, Papyrus

provides an open-source solution for UML modelling and

UML Profiling.

It is to be noted that editors are only one particular aspect

of an MDE environment supporting UML profiles. There

are a number of tools which focus on transformations, val-

idations, code generations and comparison tools for UML

models. For example, a work which addresses the genera-

tion of basic change operations over UML profile models

has been presented in [3,26].

7 Conclusions and future work

In this paper, we presented an approach for automatic gen-

eration of UML profiles and their supporting distributable

Papyrus editors from annotated Ecore metamodels. Our

approach automatically generates the appropriate UML pro-

file and all the needed artefacts for a fully functional Papyrus

editor for the profile. In addition, it allows users to override/-

complement the built-in transformations to further polish the

generated editor.

We evaluated the efficiency of Jorvik in terms of the

amount of effort required through replicating what Archimate

for Papyrus does. We evaluated the completeness of Jorvik

in terms of its wide applicability through generating a num-

ber of Papyrus editors for a variety of EMF metamodels. We

evaluated the boost in productivity of Jorvik in terms of the

amount of time required through a user experiment. We con-

clude that Jorvik is a complete solution, which improves the

efficiency and boosts the productivity for developers in cre-

ating UML profiles and their supporting editors in Papyrus.

In the current version, we only support the automatic gen-

eration of OCL constraints for connectors for the Association

base element. In the future work, we will try to support

other connector types, such as Dependency and Composi-

tion. Currently, our approach is a one way transformation

from annotated Ecore metamodels to UML profiles and their

editors. In the future work, we plan to support the generation

of editors based on a UML profile. In addition, since there

was a major change in infrastructure of Papyrus version 3.0.0,

we plan to build a migration tool, which uses the generation

of editors based on UML profiles and support the migration

of editors built for pre-Papyrus 3.0.0 to Papyrus 3.0+.

Acknowledgements This work was partially supported by the ‘Funda-

mental Research Funds for the Central Universities’, China; by Innovate

UK and the UK aerospace industry through the SECT-AIR project;

by the EU through the DEIS project (#732242); and by the Defence

Science and Technology Laboratory through the project ‘Technical

Obsolescence Management Strategies for Safety-Related Software for

Airborne Systems’. We would like to thank Mr. Sina Mandani, Ms.

Beatriz Sanchez Pina and Dr. Xiaotian Dai for their contributions to the

evaluation of this paper.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing, adap-

tation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indi-

cate if changes were made. The images or other third party material

in this article are included in the article’s Creative Commons licence,

unless indicated otherwise in a credit line to the material. If material

is not included in the article’s Creative Commons licence and your

intended use is not permitted by statutory regulation or exceeds the

permitted use, you will need to obtain permission directly from the copy-

right holder. To view a copy of this licence, visit http://creativecomm

ons.org/licenses/by/4.0/.

A annotations and parameters

The following are all the currently supported parameters for

the annotations.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

R. Wei et al.

A.1 @Diagram

– name: The name of the created diagrams as it appears on

the diagram creation menus of Papyrus. [required]

– icon: The icon that will appear next to the name on the

diagram creation menus of Papyrus. [optional]

A.2 @Node

– base: The name of the UML meta-element that this

stereotype should extend. [required]

– shape: The shape that should be used to represent the

node on the diagram. [required]

– icon: The icon that will appear next to the name of the

stereotype in the custom palette. [optional]

– bold: The label should be in bold font [optional—false

by default]

– fontHeight: The font size of the label [optional—Papyrus

default value if not provided]

A.3 @Edge

– base: The name of the UML meta-element that this

stereotype should extend. [required]

– icon: The icon that will appear next to the name of the

stereotype in the custom palette. [optional]

– source (for EClasses only): The name of the EReference

of the EClass that denotes the type of the outgoing node

for the edge. [required]

– target (for EClasses only): The name of the EReference

of the EClass that denotes the type of the incoming node

for the edge. [required]

– lineStyle: The style of the line (possible values: solid,

dashed, dotted, hidden, double). [optional]

– bold: The label should be in bold font [optional—false

by default]

– fontHeight: The font size of the label [optional—Papyrus

default value if not provided]

References

1. The graphical modeling project (gmp). Online, http://www.eclipse.

org/modeling/gmp/

2. Abouzahra, A., Bézivin, J., Del Fabro, M.D., Jouault, F.: A practical

approach to bridging domain specific languages with UML profiles.

In: Proceedings of the Best Practices for Model Driven Software

Development at OOPSLA. vol. 5 (2005)

3. Alanen, M., Porres, I.: Subset and union properties in modeling

languages. Technical Report 731, TUCS (2005)

4. Bergmayr, A., Grossniklaus, M., Wimmer, M., Kappel, G.:

JUMP—from Java annotations to UML profiles, pp. 552–568

(2014)

5. Bernardi, S., Flammini, F., Marrone, S., Mazzocca, N., Merseguer,

J., Nardone, R., Vittorini, V.: Enabling the usage of UML in the

verification of railway systems: the DAM-rail approach. Reliab.

Eng. Syst. Saf. 120, 112–126 (2013)

6. Bouaziz, R., Coulette, B.: Applying security patterns for compo-

nent based applications using UML profile. In: 15th International

Conference on Computational Science and Engineering. pp. 186–

193 (2012)

7. Ciccozzi, F., Malavolta, I., Selic, B.: Execution of uml models: a

systematic review of research and practice. Softw. Syst. Model.

18(3), 1–48 (2018)

8. Cortellessa, V., Pompei, A.: Towards a UML profile for QOS: a

contribution in the reliability domain. ACM SIGSOFT Softw. Eng.

Notes 29(1), 197–206 (2004)

9. Debnath, N.C., Garis, A.G., Riesco, D., Montejano, G.: Defining

patterns using UML profiles. In: IEEE International Conference on

Computer Systems and Applications. pp. 1147–1150 (2006)

10. Dong, J., Yang, S., Zhang, K.: Visualizing design patterns in their

applications and compositions. IEEE Trans. Softw. Eng. 33(7),

433–453 (2007)

11. Erickson, J., Siau, K.: Theoretical and practical complexity of mod-

eling methods. Commun. ACM 50(8), 46–51 (2007)

12. Friedenthal, S., Moore, A., Steiner, R.: A Practical Guide to

SysML: The Systems Modeling Language (2014)

13. Fuentes-Fernández, L., Vallecillo-Moreno, A.: An introduction to

UML profiles. UML Model Eng. 2, (2004)

14. Giachetti, G., Marin, B., Pastor, O.: Using UML profiles to

interchange DSML and UML models. In: Third International

Conference on Research Challenges in Information Science. pp.

385–394 (2009)

15. Giachetti, G., Marín, B., Pastor, O.: Using UML as a domain-

specific modeling language: a proposal for automatic generation

of UML profiles, pp. 110–124 (2009)

16. Giachetti, G., Valverde, F., Pastor, O.: Improving automatic UML2

profile generation for MDA industrial development, pp. 113–122

(2008)

17. Object Management Group: Modeling and analysis of real-

time embedded systems. Online (2011), http://www.omg.org/spec/

MARTE/1.1/

18. Object Management Group: Meta object facility (MOF) core spec-

ification. Online (2014), http://www.omg.org/mof/

19. Object Management Group: Unified modeling language. (2015)

http://www.omg.org/spec/UML/

20. Group, O.M.: Semantics of a foundational subset for executable

UML models. In: Technical Report (2010)

21. Haren, V.: Archimate 2.0 specification (2012)

22. Hussein, M., Zulkernine, M.: Umlintr: a UML profile for spec-

ifying intrusions. In: 13th Annual IEEE International Sympo-

sium and Workshop on Engineering of Computer-Based Systems

(ECBS’06). pp. 8–pp. IEEE (2006)

23. Iacob, M.E., Jonkers, H., Lankhorst, M.M., Proper, H.A.: Archi-

Mate 1.0 Specification. Van Haren Publishing, Zaltbommel (2009)

24. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I., Valduriez, P.: Atl:

a GVT-like transformation language. In: Companion to the 21st

ACM SIGPLAN Symposium on Object-Oriented Programming

Systems, Languages, and Applications. pp. 719–720. ACM (2006)

25. Kehrer, T., Kelter, U.: Versioning of ordered model element sets.

Softwaretechnik-Trends 34(2), (2014)

26. Kelter, U., Schmidt, M.: Comparing state machines. In: Proceed-

ings of the 2008 International Workshop on Comparison and

Versioning of Software Models. pp. 1–6. ACM (2008)

27. Kolovos, D., Paige, R., Polack, F.: The Epsilon Transformation

Language. Theory and Practice of Model Transformations pp. 46–

60 (2008)

28. Kolovos, D.S., García-Domínguez, A., Rose, L.M., Paige, R.F.:

Eugenia: towards disciplined and automated development of GMF-

based graphical model editors. Softw. Syst. Model. 16(1), 1–27

(2015)

123

http://www.eclipse.org/modeling/gmp/
http://www.eclipse.org/modeling/gmp/
http://www.omg.org/spec/MARTE/1.1/
http://www.omg.org/spec/MARTE/1.1/
http://www.omg.org/mof/
http://www.omg.org/spec/UML/

Automatic generation of UML profile graphical editors for Papyrus

29. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: Rigorous methods

for software construction and analysis. chap. In: Abrial, J.-R.,

Glässer, U. (eds.) On the Evolution of OCL for Capturing Structural

Constraints in Modelling Languages, pp. 204–218. Springer-

Verlag, Berlin, Heidelberg (2009), http://dl.acm.org/citation.cfm?

id=2172244.2172257

30. Kolovos, D.S., Paige, R.F., Polack, F.A.: The epsilon object

language (EOL). In: Rensink, A., Warmer, J. (eds.) Model

Driven Architecture–Foundations and Applications. pp. 128–142.

Springer (2006)

31. Kraas, A.: Automated tooling for the evolving SDL standard: From

metamodels to UML profiles. In: SDL 2017: Model-Driven Engi-

neering for Future Internet—18th International SDL Forum. pp.

136–156 (2017)

32. Lagarde, F., Espinoza, H., Terrier, F., André, C., Gérard, S.:

Leveraging patterns on domain models to improve UML profile

definition, vol. 4961, pp. 116–130 (2008)

33. Langer, P., Wieland, K., Wimmer, M., Cabot, J.: From UML pro-

files to EMF profiles and beyond. In: International Conference on

Modelling Techniques and Tools for Computer Performance Eval-

uation. pp. 52–67. Springer (2011)

34. Lanusse, A., Tanguy, Y., Espinoza, H., Mraidha, C., Gerard, S.,

Tessier, P., Schnekenburger, R., Dubois, H., Terrier, F.: Papyrus

UML: an open source toolset for MDA. In: Fifth European Confer-

ence on Model-Driven Architecture Foundations and Applications

(ECMDA-FA’09). pp. 1–4 (2009)

35. Mak, J.K.H., Choy, C.S.T., Lun, D.P.K.: Precise modeling of design

patterns in UML. In: 26th International Conference on Software

Engineering (ICSE’04). pp. 252–261 (2004)

36. Moreno, N., Fraternali, P., Vallecillo, A.: WebML modelling in

UML. IET Softw. 1(3), 67–80 (2007)

37. Pardillo, J.: A systematic review on the definition of UML profiles,

pp. 407–422 (2010)

38. Rodríguez, R.J., Merseguer, J., Bernardi, S.: Modelling and

analysing resilience as a security issue within UML. In: 2nd Inter-

national Workshop on Software Engineering for Resilient Systems

(SERENE’10). pp. 42–51 (2010)

39. Rose, L.M., Paige, R.F., Kolovos, D.S., Polack, F.A.: The Epsilon

generation language. In: Schieferdecker, I., Hartman, A. (eds.)

Model Driven Architecture—Foundations and Applications. pp.

1–16. Springer (2008)

40. Selic, B.: A systematic approach to domain-specific language

design using UML. In: 10th IEEE International Symposium on

Object and Component-Oriented Real-Time Distributed Comput-

ing (ISORC’07). pp. 2–9 (2007)

41. Simons, C., Wirtz, G.: Modeling context in mobile distributed sys-

tems with the UML. J. Vis. Lang. Comput. 18(4), 420–439 (2007)

42. Tatibouët, J., Cuccuru, A., Gérard, S., Terrier, F.: Formalizing

execution semantics of UMl profiles with FUML models. In: Inter-

national Conference on Model Driven Engineering Languages and

Systems. pp. 133–148. Springer (2014)

43. Viyović, V., Maksimović, M., Perisić, B.: Sirius: a rapid devel-

opment of DSM graphical editor. In: IEEE 18th International

Conference on Intelligent Engineering Systems INES 2014. pp.

233–238. IEEE (2014)

44. Walderhaug, S., Stav, E., Mikalsen, M.: Experiences from model-

driven development of homecare services: UML profiles and

domain models, pp. 199–212 (2009)

45. Wei, R., Kelly, T.P., Dai, X., Zhao, S., Hawkins, R.: Model based

system assurance using the structured assurance case metamodel.

J. Syst. Softw. 154, 211–233 (2019)

46. Williams, J.R., Zolotas, A., Matragkas, N.D., Rose, L.M., Kolovos,

D.S., Paige, R.F., Polack, F.A.: What do metamodels really look

like? EESSMOD@ MoDELS 1078, 55–60 (2013)

47. Wimmer, M.: A semi-automatic approach for bridging DSMLS

with UML. Int. J. Web Inf. Syst. 5(3), 372–404 (2009)

48. Xu, J., Woodside, M., Petriu, D.: Performance analysis of a soft-

ware design using the UML profile for schedulability, performance,

and time. In: International Conference on Modelling Techniques

and Tools for Computer Performance Evaluation. pp. 291–307.

Springer (2003)

49. Zolotas, A., Wei, R., Gerasimou, S., Rodriguez, H.H., Kolovos,

D.S., Paige, R.F.: Towards automatic generation of UML profile

graphical editors for papyrus. In: European Conference on Mod-

elling Foundations and Applications. pp. 12–27. Springer (2018)

50. Zoughbi, G., Briand, L., Labiche, Y.: A UML profile for devel-

oping airworthiness-compliant (RTCA DO-178B), safety-critical

software. In: International Conference on Model Driven Engineer-

ing Languages and Systems. pp. 574–588. Springer (2007)

Publisher’s Note Springer Nature remains neutral with regard to juris-

dictional claims in published maps and institutional affiliations.

Ran Wei is an Associate Pro-

fessor of the School of Artificial

Intelligence, Dalian University of

Technology. His research interests

include Model-Driven Engineer-

ing, System Assurance Engineer-

ing, Model-Based Functional

Safety and System Assurance. He

contributes to safety standards such

as the Goal Structuring Notation

(GSN) and Object Management

Group’s Structured Assurance Case

Metamodel (SACM), he is also

an Eclipse Foundation commit-

ter contributing to the Eclipse

Epsilon project.

Athanasios Zolotas is a Research

Fellow at the Department of Com-

puter Science, University of York,

U.K. He received his EngD in

Large-Scale Complex IT Systems

from the University of York in

2017. His research interests include

Model-Driven Engineering, Big

Data Analytics, Safety Critical Sys-

tems and Requirements Engineer-

ing.

123

http://dl.acm.org/citation.cfm?id=2172244.2172257
http://dl.acm.org/citation.cfm?id=2172244.2172257

R. Wei et al.

Horacio Hoyos Rodriguez is

a Principal Software Engineer at

Rolls-Royce, where he develops

tools for indexing hetereogenous

models. He is interested in all top-

ics in MDE, in particular model

management languages and model

persistence. He did his PhD on the

execution of Declarative Model

Transformation languages.

Simos Gerasimou is a lecturer

in the Department of Computer

Science, University of York. His

research interests include Model-

Driven Robotics and Autonomous

Systems, Trustworthy Artificial

Intelligence, and Search-Based

Software Engineering.

Dimitris S. Kolovos is a Pro-

fessor of Software Engineering in

the Department of Computer Sci-

ence, University of York, where

he researches and teaches auto-

mated and model-based software

engineering. He is also an Eclipse

Foundation committer, leading the

development of the open-source

Epsilon model-based software

engineering platform, and an asso-

ciate editor of the IET Software

Journal. Prof. Kolovos has co-

authored more than 150 peer-

reviewed papers and his research

has been supported by the European Commission, UK’s Engineering

and Physical Sciences Research Council (EPSRC), InnovateUK and

by companies such as Rolls-Royce and IBM.

Richard F. Paige is a Professor in

the Department of Computing and

Software at McMaster University,

Hamilton, Canada, and holds a

part-time appointment at the Uni-

versity of York, UK. His research

interests are in modelling, model

transformation, model validation,

open-source software and safety-

critical systems. He is on the edi-

torial boards of Journals Software

and Systems Modelling, Empri-

cal Software Engineering and the

Journal of Object Technology. He

chairs the steering committee for

the STAF conference series, and is on the steering committee for the

MoDELS conference.

123

	Automatic generation of UML profile graphical editors for Papyrus
	Abstract
	1 Introduction
	2 Background and motivation
	2.1 UML profile
	2.2 Distributable custom graphical editor

	3 Proposed approach
	3.1 Running example
	3.2 Polishing transformations

	4 Implementation
	4.1 Pre-transformation validation (#1)
	4.2 EMF to UML profile generation (#2)
	4.3 OCL constraints
	4.3.1 End types
	4.3.2 Navigability

	4.4 Element Types Configuration transformation(#3)
	4.5 Palette Configuration transformation (#4)
	4.6 CSS file generation (#5)
	4.7 Creation command generation (#6)
	4.8 Architecture model generation (#7)
	4.9 Icons, shapes and supporting files (#8)
	4.10 UML to EMF transformation generation (#9)
	4.11 Polishing transformations (#2b–#5b)
	4.12 Adding support for nested relations

	5 Evaluation
	5.1 Efficiency
	5.1.1 Threats to validity

	5.2 Completeness
	5.3 User experiment
	5.3.1 Papyrus approach experiment set-up
	5.3.2 Jorvik experiment set-up
	5.3.3 Results
	5.3.4 Analysis
	5.3.5 Threats to validity

	6 Related work
	6.1 UML profiles
	6.2 Automatic generation of UML profiles
	6.3 From Ecore to UML profiles and back
	6.4 Automatic generation of modelling facilities

	7 Conclusions and future work
	Acknowledgements
	A annotations and parameters
	A.1 @Diagram
	A.2 @Node
	A.3 @Edge

	References

