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Abstract—Subspace clustering is a useful technique for many
computer vision applications in which the intrinsic dimension
of high-dimensional data is often smaller than the ambient
dimension. Spectral clustering, as one of the main approaches
to subspace clustering, often takes on a sparse representation
or a low-rank representation to learn a block diagonal self-
representation matrix for subspace generation. However, exist-
ing methods require solving a large scale convex optimization
problem with a large set of data, with computational complexity
reaches O(N3) for N data points. Therefore, the efficiency and
scalability of traditional spectral clustering methods can not be
guaranteed for large scale datasets. In this paper, we propose a
subspace clustering model based on the Kronecker product. Due
to the property that the Kronecker product of a block diagonal
matrix with any other matrix is still a block diagonal matrix, we
can efficiently learn the representation matrix which is formed
by the Kronecker product of k smaller matrices. By doing so,
our model significantly reduces the computational complexity to

O(kN3/k). Furthermore, our model is general in nature, and can
be adapted to different regularization based subspace clustering
methods. Experimental results on two public datasets show that
our model significantly improves the efficiency compared with
several state-of-the-art methods. Moreover, we have conducted
experiments on synthetic data to verify the scalability of our
model for large scale datasets.

I. INTRODUCTION

In many computer vision applications, such as face recog-

nition [1], [2], texture recognition [3] and motion segmen-

tation [4], [5], visual data can be well characterized by sub-

spaces. Moreover, the intrinsic dimension of high-dimensional

data is often much smaller than the ambient dimension [6].

This has motivated the development of subspace clustering

techniques which simultaneously cluster the data into multiple

subspaces and also locate a low-dimensional subspace for each

class of data.

Many subspace clustering algorithms have been developed

during the past decade, including algebraic [7], [8], itera-

tive [9], [10], statistical [11], [12], and spectral clustering

methods [4], [2], [13], [14], [15], [16], [3], [17], [18], [19].

Among these approaches, spectral clustering methods have

been intensively studied due to their simplicity, theoretical

soundness, and empirical success. These methods are based

on the self-expressiveness property of data lying in a union

of subspaces. This states that each point in a subspace can

be written as a linear combination of the remaining data

points in that subspace. Two typical methods falling into this

category are sparse subspace clustering (SSC) [4] and low-rank
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Fig. 1. Speed-up-factor of our Kronecker product based model over four
baseline methods (SSC [4], LRR [2], TRR [20] and NVR3 [3]) (see Table I
and Table II for details). It is evident that as size of dataset grows, the speed-
up-factor significantly increases.

representation (LRR) [2]. SSC uses the ℓ1 norm to encourage

the sparsity of the self-representation coefficient matrix. LRR

uses nuclear norm minimization to make the coefficient matrix

low-rank.

Motivated by SSC and LRR, some self-representation based

methods have been developed, which use different regular-

ization terms on the coefficient matrix. For example, least

squares regression (LSR) [14] uses ℓ2 regularization on the

coefficient matrix. Correlation adaptive subspace segmentation

(CASS) [13] uses a mixture of ℓ1 and ℓ2 regularization.

Low-rank sparse subspace clustering (LRSSC) [21] and non-

negative low-rank sparse (NNLRS) [22] construct regulariza-

tion term as a blend of ℓ1 and the nuclear norms. Because

the nuclear norm does not achieve the accuracy in estimating

the rank of real world data, subspace clustering with log-

determinant approximation (SCLA) [17] replaces the nucle-

ar norm used in LRR by non-convex rank approximations.

Feature selection embedded subspace clustering (FSC) [18]

reveals that not all features are equally important in the recov-

ery of the low-dimensional subspaces. With feature selection

both nuclear norm and non-convex rank approximations may

give enhanced performance. Latent space sparse subspace

clustering (LS3C) [15] seeks a linear projection of the data

and learns a sparse representation in the projected latent low-

dimensional space.

Despite the fact that SSC, LRR and their variants have
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achieved encouraging results in practice, they have critical

limitations. In these approaches, the key idea is to learn a

coefficient matrix which denotes the correlation between the

data points. As the size of the coefficient matrix is N2 for N

data points, the SVD decomposition operation for solving the

coefficient matrix has computational complexity of O(N3).
This is time consuming when the size of the data is large,

so the efficiency of these approaches can not be guaranteed.

Experiments in [19] and also in this paper show that some

existing methods need to run for several hours on a normal

computer when the number of test data reaches 104, which

constrains the feasibility of these methods.

To overcome this limitation, we propose an efficient sub-

space clustering model based on the Kronecker product which

achieves a significant reduction of computational complexity

over quadratic [23]. Using the fact that each data point in a

subspace can be written as a linear combination of all other

points in that subspace, we can obtain points lying in the same

subspace by learning the sparsest combination. Hence, in our

model, we first learn a self-representation coefficient matrix

formed by the Kronecker product of a series of small sparse

matrices. Then we can constract a similarity matrix based on

the coefficient matrix. Finally, a segmentation of the data can

be obtained by spectral clustering on the similarity matrix.

The main contributions of this paper are as follows:

1) We propose an efficient subspace clustering model based

on the Kronecker product. Our model uses the Kro-

necker product of a set of small matrices to build

the self-representation coefficient matrix, which leads

to a significant reduction of space and computational

complexity.

2) Our model is adaptive for different regularization based

subspace clustering methods [4], [2], [20], [3]. And we

theoretically prove that the Kronecker product approxi-

mation in our model has good adaptivity.

3) Experimental results on large scale synthetic data and

real world public datasets show that our method leads

to a significant improvement in the clustering efficiency

compared with the state-of-the-art methods while also

achieving competitive accuracy.

II. RELATED WORKS

In this section, we review some classical and state-of-the-art

methods for subspace clustering.

A. Sparse Subspace Clustering (SSC)

Given a data matrix X = [xi ∈ R
D]Ni=1 that contains N data

points drawn from n subspaces {Si}
n
i=1. SSC [4] aims to find

a sparse representation matrix C showing the mutual similarity

of the points, i.e., X = XC. Since each point in Si can be

expressed in terms of the other points in Si, such a sparse

representation matrix C always exists. The SSC algorithm

finds C by solving the following optimization problem:

min
C

‖C‖1 s.t. X = XC, diag(C) = 0, (1)

where diag(C) = 0 eliminates the trivial solution.

B. Low-Rank Representation (LRR)

As pointed out in [2], SSC finds the sparsest representation

of each data vector individually. There is no global constraint

on its solution, so the SSC method may be inaccurate at

capturing the global structures of data. Liu et al. [2] proposed

that low rank can be a more appropriate criterion. Similar to

SSC, LRR aims to find a low-rank representation of X by

solving the following optimization problem, since the nuclear

norm ‖C‖∗ is the best convex approximation of rank(W )
over the unit ball of matrices:

min
C

‖C‖∗ s.t. X = XC, (2)

where ‖C‖∗ is the sum of the singular values of C.

C. Thresholding Ridge Regression (TRR)

The SSC and LRR methods solve the robust subspace

clustering problem by removing the errors from the original

data space and obtaining a good affinity matrix based on a

clean dataset. Thus they need prior knowledge of the structure

of the errors, which usually is unknown in practice. Peng et

al. [20] proposed a robust subspace clustering method which

overcomes this limitation by eliminating the effect of errors

from the projection space with a model based on thresholding

ridge regression (TRR):

min
C

‖X −XC‖2F + λ‖C‖2F s.t. diag(C) = 0, (3)

where λ is a balancing parameter and small values in C are

truncated to zero by thresholding.

Based on TRR, a 2D nonlinear variance regularized ridge

regression (NVR3) [3] was proposed to directly use 2D data,

and thus the spatial information is maximally retained.

Each of these related works learns the coefficient matrix

C with computational complexity O(N3). This has limited

the scalability of these methods on large scale datasets. Due

to the effectiveness of the Kronecker product in reducing the

computational complexity of matrix operations, we present a

Kronecker product based subspace clustering model which can

significantly improve the efficiency of the existing methods.

III. KRONECKER PRODUCT BASED MODEL

In this section, we describe our subspace clustering model

based on the Kronecker product and develop an associated

optimization scheme.

We first introduce the Kronecker product. Let A ∈ R
m×n,

B ∈ R
p×q , the Kronecker product of matrices A and B is

A⊗B ∈ R
mp×nq which is defined as:

A⊗B =







a11 ×B · · · a1n ×B
...

. . .
...

am1 ×B · · · amn ×B






,

where aij is the element at the i-th row and j-th column of

A.
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Fig. 2. Left: Three 1D subspaces in R
2 with normalized data points. Right: The solutions of conventional sparse subspace clustering method (upper) and

our Kronecker product based model (lower). As shown, the space and computational complexity of our model achieve significant reduction compared with
conventional method.

A. Problem Statement and Formulation

Let X = [xi ∈ R
D]Ni=1 ∈ R

D×N be a collection of data

points drawn from different subspaces. The goal of subspace

clustering is to find the segmentation of the points according

to the subspaces. Based on the self-expressiveness property of

data lying in a union of subspaces, i.e., each point in a sub-

space can be written as a linear combination of the remaining

points in that subspace, we can obtain points lying in the same

subspace by learning the sparsest combination. Therefore, we

need to learn a sparse self-representation coefficient matrix C,

where X = XC, and Cij = 0 if the i-th and j-th data points

are from different subspaces.

As our model aims to reduce the computational complexity

with data size N , we rewrite X as X = {yTi ∈ R
N}Di=1,

where T denotes matrix transpose and yi ∈ R
N×1 is the i-

th dimension of the data points. Without loss of generality,

we assume that the self-representation matrix is formed by

the Kronecker product of two smaller matrices C1 and C2,

where C1 ∈ R
p1×q1 and C2 ∈ R

p2×q2 , where p1p2 = N

and q1q2 = N . Here we use the important property that the

Kronecker product of a block diagonal matrix with any other

matrix is still a block diagonal matrix (as shown in Figure 2).

We follow [20] to minimize the loss of self-representation.

The optimization problem can be written as:

min
Ci

‖X −X(C1 ⊗ C2)‖
2
F + λ‖C1 ⊗ C2‖

2
F , (4)

where λ is a balancing parameter, and ‖.‖F is the Frobenius

norm.

B. Optimization

We solve problem (4) by updating each small matrix at a

time, while keeping the other one fixed. Considering updating

C1, while C2 fixed, we start by rewriting ‖X−X(C1⊗C2)‖
2
F

as:

‖X −X(C1 ⊗ C2)‖
2
F

=tr((X −X(C1 ⊗ C2))
T (X −X(C1 ⊗ C2)))

=‖X‖2F − 2tr(X(C1 ⊗ C2)X
T )

+ tr(X(C1 ⊗ C2)(X(C1 ⊗ C2))
T ).

(5)

Since ‖X‖2F is a constant, let

Φ = −2tr(X(C1⊗C2)X
T )+tr(X(C1⊗C2)(X(C1⊗C2))

T ),

then, the problem that minimizing ‖X − X(C1 ⊗ C2)‖
2
F is

equivalent to minimizing Φ.

According to the block property of Kronecker product [24]:

aT (C1 ⊗ C2) = (vec(CT
2 Mp2,p1

(a)C1))
T ,

where a ∈ R
N and vec(X) forms a vector by column-wise

stacking of the matrix X into a vector, and Mp2,p1
(a) reshapes

a p1p2 = N dimensional vector a to a p2 × p1 matrix by

extracting column from the vector a. Then

Φ =

D
∑

i=1

(−2yTi (C1 ⊗ C2)yi + yTi (C1 ⊗ C2)(y
T
i (C1 ⊗ C2))

T )

=

D
∑

i=1

(−2(vec(CT
2 Mp2,p1

(yi)C1))
T yi

+ (vec(CT
2 Mp2,p1

(yi)C1))
T vec(CT

2 Mp2,p1
(yi)C1)).

(6)

Let Hi = CT
2 Mp2,p1

(yi), Gi = Mq2,q1(yi). Then, using the

property of trace that tr(ABC) = tr(BCA) and tr(AT ) =
tr(A),

Φ =

D
∑

i=1

(−2tr((HiC1)
TGi) + tr((HiC1)

THiC1))

=
D
∑

i=1

(−2tr(HiC1G
T
i ) + tr((HiC1)

THiC1))

=
D
∑

i=1

(‖Gi −HiC1‖
2
F − ‖Gi‖

2
F ).

(7)

Since ‖Gi‖
2
F is a constant, the optimization objective func-

tion of C1 can be written as:

min
C1

‖G−HC1‖
2
F + λ‖C1‖

2
F (8)

where H =
∑D

i=1
Hi, G =

∑D
i=1

Gi. Eq. (8) is a well known

ridge regression problem [25] whose optimal solution is C1 =
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Algorithm 1: Subspace Clustering Based on Kronecker

Product.

Input: A set of data points X = {xi}
N
i=1, the number of

subspaces n, the number of small matrices k and

the balance parameter λ.

Steps:

1. Learn the small matrices C1, C2, · · · , Ck.

for i = 1, ..., k do
Fix C1, · · · , Ci−1, Ci+1, · · · , Ck, update Ci.

Optimize Eq. (8), estimate Ci by ridge regression

solution.
end

2. Calculate the self-representation coefficient matrix C

by the Kronecker product of small matrices,

C = ⊗k
i=1Ci.

3. Construct an affinity matrix by W = |C|+ |C|T .

4. Calculate the Laplacian matrix L of W .

5. Calculate the eigenvector matrix V of L corresponding

to its n smallest nonzero eigenvalues.

6. Perform k-means clustering algorithm on the rows of

V .

Output: The clustering result of X .

(HTH + λI)−1HTG. We can solve C2 in a similar manner

to C1, when C1 is fixed. As H ∈ R
q2×p1 , G ∈ R

q2×q1 and

p1p2 = N, q1q2 = N , the computational complexity for this

solution is O(2N3/2).
When the number of small matrices is k, we can also solve

it by updating one small matrix at a time, while keeping the

remaining matrices fixed. In this situation, the problem is the

same as k = 2 solved above. As
∏k

i=1
pi = N ,

∏k
i=1

qi = N ,

then the computational complexity of the whole optimization

is O(kN3/k).
We have obtained the optimal solution of self-representation

coefficient matrix C = ⊗k
i=1Ci, where Cij = 0 if the i-

th and j-th data points are from different subspaces. Hence,

the affinity matrix W can be defined as W = |C| + |C|T ,

where |C| denotes the absolute value matrix of C. Then

the segmentation of the data X in different subspaces can

be obtained by applying a spectral clustering algorithm to

the affinity matrix W . The whole Kronecker product based

subspace clustering model is summarized in Algorithm 1.

IV. THEORETICAL ANALYSIS

In this section, we give a theoretical analysis of our Kro-

necker product based model, including a) the adaptivity on

different regularizations, b) theoretical convergence analysis,

c) complexity analysis.

A. Adaptivity on Different Regularizations

Since many self-representation based methods use different

regularizations on the coefficient matrix, we show that our

model can be applied to a variety of different regularizations.

We refer to our subspace clustering method described in

Section III as KrTRR (Kronecker product based TRR). It

utilizes the Frobenius norm to regularize the coefficient matrix.

In Eq. (8), we simplify the sparsity constraint from ‖C1⊗C2‖
2
F

to ‖C1‖
2
F , using the Kronecker product lemma:

Lemma 1. Let C = C1 ⊗ C2, then ‖C‖2F = ‖C1‖
2
F ‖C2‖

2
F .

Proof. Assume Cij is the i-th column j-th row elemen-

t in C, C1 ∈ R
m×n, C2 ∈ R

p×q , C ∈ R
mp×nq .

Then ‖C‖2F = ‖C1 ⊗ C2‖
2
F =

∑m
i=1

∑n
j=1

‖Cij
1 C2‖

2
F =

∑m
i=1

∑n
j=1

(Cij
1 )2‖C2‖

2
F = ‖C1‖

2
F ‖C2‖

2
F .

Here we introduce two additional Kronecker product lem-

mas to show that our model can be applied to alternative

regularizations.

Lemma 2. Let C = C1 ⊗ C2, then ‖C‖1 = ‖C1‖1‖C2‖1.

Proof. Assume Cij is the i-th column j-th row elemen-

t in C, C1 ∈ R
m×n, C2 ∈ R

p×q , C ∈ R
mp×nq .

Then ‖C‖1 = ‖C1 ⊗ C2‖1 =
∑m

i=1

∑n
j=1

‖|Cij
1 |C2‖1 =

∑m
i=1

∑n
j=1

|Cij
1 |‖C2‖1 = ‖C1‖1‖C2‖1.

Lemma 3. Let C = C1 ⊗ C2, then ‖C‖∗ = ‖C1‖∗‖C2‖∗.

Proof. Assume the SVD decompositions of C1 and C2 are

C1 = U1Σ1V
T
1 and C2 = U2Σ2V

T
2 , respectively. Then ‖C1‖∗

is the sum of nonzero entries in the diagonal matrix Σ1, ‖C2‖∗
is the sum of nonzero entries in the diagonal matrix Σ2. C =
C1 ⊗C2 = (U1Σ1V

T
1 )⊗ (U2Σ2V

T
2 ) = (U1 ⊗U2)((Σ1V

T
1 )⊗

(Σ2V
T
2 )) = (U1⊗U2)(Σ1⊗Σ2)(V1⊗V2)

T . Because Σ1⊗Σ2

is a diagonal matrix, then the SVD decomposition of C is

C = (U1 ⊗ U2)(Σ1 ⊗ Σ2)(V1 ⊗ V2)
T . So that ‖C‖∗ is the

sum of nonzero entries in the diagonal matrix Σ1 ⊗Σ2 which

is the product of the sum of nonzero entries in the diagonal

matrix Σ1 and Σ2. Then ‖C‖∗ = ‖C1‖∗‖C2‖∗.

Based on these two lemmas, the ℓ1 norm and nuclear

norm regularizations on the coefficient matrix ‖ ⊗k
i=1 Ci‖1,

‖⊗k
i=1Ci‖∗ can be simplified to ‖Ci‖1 and ‖Ci‖∗ as shown in

Eq. (8). So we can also utilize the ℓ1 norm and nuclear norm on

the self-representation coefficient matrix with a manner similar

to SSC and LRR, i.e.

min
Ci

‖X −X(⊗k
i=1Ci)‖

2
F + λ‖ ⊗k

i=1 Ci‖1 (9)

and

min
Ci

‖X −X(⊗k
i=1Ci)‖

2
F + λ‖ ⊗k

i=1 Ci‖∗ (10)

We refer to these two methods as KrSSC and KrLRR.

Following [3], we can preprocess the data by 2DPCA [26] to

retain the spatial information in the 2D data. Then we can use

the KrTRR method to learn the coefficient matrix C as done

in [3]. We refer to this method as KrNVR3. The optimization

of these variants of the Kronecker product based method are

essentially the same as KrTRR.

In summary, we can leverage the Kronecker product to re-

duce the computational complexity of learning the coefficient

matrix with different regularization options, e.g. Frobenius

norm, ℓ1 norm and nuclear norm. We present four methods

KrSSC, KrLRR, KrTRR and KrNVR3 based on different
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regularizations and compare them with baseline methods in

Section V.

B. Theoretical Convergence Analysis

Here, we prove the reliability of Kronecker product approx-

imation using a theoretical convergence analysis.

According to the idea of mathematical induction, we con-

sider the special condition that k = 2 to approximate a p2×p2

matrix C by A ⊗ A, where A is a p × p matrix. The matrix

C is partitioned into p2 matrices with dimension p× p, i.e.

C =







C11 · · · C1p

...
. . .

...

Cp1 · · · Cpp







Let

C∗ = [vec(C11), vec(C12), · · · , vec(Cpp)]

Then, we can denote the approximate loss function by:

l = tr(A⊗A− C)2

= (tr(A)2)2 − 2aTC∗a+ tr(C)2
(11)

where a = vec(A). Since

tr(A⊗A)C = (vec(C))T vec(A⊗A)

= (vec(C∗))T (vec(A)⊗ vec(A))

= (vec(C∗))T vec((vec(A)(vec(A))T )

= trC∗(vec(A))(vec(A))T

= (vec(A))TC∗vec(A)

= aTC∗a

(12)

Let ν(A) be the vector with non-duplicate elements of

vec(A) and a = vec(A) = Dν(A), here D is the duplication

matrix. Then, the first differential of l is

dl = 4(tr(A)2)aT da− 4aTC∗da

= 4(tr(A)2)aTDdν(A)− 4aTC∗Ddν(A)
(13)

The first derivative is

∂l

∂ν(A)
= 4(tr(A)2)DT vec(A)− 4DTC∗vec(A) (14)

Then, we obtain the first-order condition

tr(A)2vec(A) = C∗vec(A) (15)

This is an eigenvalue problem in terms of C∗. The vector a

minimizing Eq. (11) must be proportional to the eigenvector

corresponding to the largest eigenvalue of C∗. In other words,

for an arbitrary matrix with any dimension, we can partition

it based on the dimensions of small matrices needed to

approximate the large matrix via Kronecker product. moreover,

the small matrices always have a convergent solution through

the largest eigenvector of the partitioned large matrix. This

means that the technique used to approximate the large self-

representation matrix by the Kronecker product of small

matrices in our model is reliable.

C. Complexity Analysis

Here we discuss the space memory requirement and compu-

tational complexity of our Kronecker product based methods

and compare it to the relevant methods in the literature. When

the data size is N , methods in [4], [2], [20], [3] need to solve

the self-representation coefficient matrix C with the dimension

N×N , i.e., the memory space complexity of these methods is

O(N2). But in our work, we leverage the Kronecker product of

a set of small matrices to approximate the self-representation

coefficient matrix C. When the number of small matrices is k,

the size of small matrices is N2/k. Thus, the space complexity

of our methods is O(kN2/k).
For learning process the self-representation coefficient ma-

trix C with size N2, existing methods use a SVD decompo-

sition operation whose computational complexity is O(N3).
As our methods update one small matrix at a time, and the

size of the small matrix is N2/k, we achieve O(kN3/k)
computational complexity. Since N1/k ≪ N when k > 1,

there is significant reduction in both the memory space and

computational complexity compared with the existing meth-

ods. This efficiency gain is achieved by using the Kronecker

product.

V. EXPERIMENTS

We have conducted three sets of experiments on both

real and synthetic datasets to verify the effectiveness of the

proposed methods. Several state-of-the-art or classical spectral

subspace clustering methods were taken as the baseline algo-

rithms. These included sparse subspace clustering (SSC) [4],

low-rank representation (LRR) [2], thresholding ridge regres-

sion (TRR) [20], and nonlinear variance regularized ridge

regression (NVR3) [3]. In the experiments, we used the codes

provided by the respective authors for computing the self-

representation matrix C, where the parameters were tuned

to give the best clustering accuracy. Then we applied the

normalized spectral clustering in [27] to the affinity matrix

W = |C|+ |C|T .

Evaluation criteria: we used both the clustering accuracy

and running time of the whole clustering process to evaluate

the performance of the subspace clustering methods, where

the clustering accuracy is calculated as

clustering accuracy =
# of correctly classified points

total # of points
× 100

In all our experiments, the clustering accuracy and running

time were averaged over 10 trials. All experiments were

implemented with MATLAB code and ran on a PC with Intel

Core-i7 3.6GHz CPU, 32GB RAM.

A. Face Clustering

As subspaces are commonly used to capture the appearance

of faces under varying illuminations, we test the perfor-

mance of our method on face clustering with the CMU PIE

database [28]. The CMU PIE database contains 41,368 images

of 68 people under 13 different poses, 43 different illumination

conditions, and 4 different expressions. In our experiment,
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TABLE I
THE AVERAGE RUNNING TIME (SECONDS) AND CLUSTERING ACCURACY ON THE CMU PIE DATABASE WITH DIFFERENT NUMBER OF OBJECTS. EACH

OBJECT CONSISTS OF 170 FACE IMAGES UNDER DIFFERENT ILLUMINATIONS AND EXPRESSIONS. ’-’ DENOTES THAT THE COMPUTATIONAL COST IS

UNACCEPTABLE FOR OUR PC, DUE TO THE MEMORY AND TIME LIMIT.

No. Objects
5 Objects 10 Objects 20 Objects 40 Objects 60 Objects

Time Acc. Time Acc. Time Acc. Time Acc. Time Acc.

SSC 243.6 92.47 1182 89.25 3618 84.31 14502 82.37 - -

KrSSC 12.7 91.28 26.8 88.27 61.4 83.86 150.2 81.75 274.3 79.48

LRR 216.4 94.53 852.5 92.14 2743 89.21 11463 85.47 - -

KrLRR 9.7 92.51 20.4 90.72 57.2 88.13 145.8 85.21 254.8 83.65

TRR 152.7 97.35 548.2 96.05 2167 94.54 8427 91.74 - -

KrTRR 7.5 95.21 18.3 94.52 52.8 93.84 143.5 90.23 260.1 87.26

NVR3 190.5 98.51 624.6 97.51 2536 95.75 11826 93.15 - -

KrNVR3 11.3 97.14 25.7 96.26 72.4 93.96 180.4 91.57 312.5 89.15

we used the face images in five near frontal poses (P05,

P07, P09, P27, P29). Then each people has 170 face images

under different illuminations and expressions. Each image was

manually cropped and normalized to a size of 32×32 pixels. In

each experiment, we randomly picked n ∈ {5, 10, 20, 40, 60}
individuals to investigate the performance of the proposed

method. For our models, we set the number of small matrices

k = 2 and λ = 0.25. For different number of objects n, we

randomly chose n people with 10 trials and took all the images

of them as the subsets to be clustered. Then we conducted

experiments on all 10 subsets and report the average running

time and clustering accuracy with a different number of objects

in Table I.

In the original work, SSC, LRR, TRR, and NVR3 all

test on a small subset which consists of no more than

1,000 data points. Because of the memory and time limit,

these methods can not run on a dataset of size O(104).
In our experiment, the data size is in the range of N ∈
{850, 1700, 3400, 6800, 10200}, corresponding to 5-60 objects

per face. As shown in Table I, the efficiency of all alternative

methods degrades drastically when N increases. When N >

10000 (60 objects), the space and computational complexity

of these methods are unacceptable for our PC. In contrast,

the computational time of Kronecker product based methods

is significantly lower compared with the corresponding ap-

proaches. Our methods can easily handle more than 10,000

data points with an acceptable computing time. Further, we

can see from Table I that the Kronecker product based methods

also obtain competitive clustering accuracy (down 2 percent

at most). This suggests that our model is potentially more

suitable than previous methods on large scale dataset for real

world applications.

B. Handwritten Digit Clustering

Database of handwritten digits is also widely used in sub-

space learning and clustering. We test the proposed methods

on handwritten digit clustering with the MNIST dataset [29].

This dataset contains 10 clusters, including handwritten digits

0-9. Each cluster contains 6,000 images for training and

1,000 images for testing, with a size of 28 × 28 pixels

TABLE IV
THE AVERAGE RUNNING TIME AND CLUSTERING ACCURACY OF OUR

METHODS WITH DIFFERENT k.

k 2 3 4 5

average running time (seconds):

KrSSC 715.6 285.7 61.2 25.4

KrLRR 682.5 274.3 52.7 20.6

KrTRR 755.1 314.2 84.3 31.5

KrNVR3 794.3 321.5 91.6 36.2

average clustering accuracy:

KrSSC 83.14 81.85 75.42 67.25

KrLRR 84.43 82.20 77.16 68.17

KrTRR 90.75 89.06 84.27 73.41

KrNVR3 92.54 90.62 85.34 75.24

in each image. We used all the 70,000 handwritten digit

images for subspace clustering. Different from the experi-

mental settings for face clustering, we fixed the number of

clusters n = 10 and chose different number of data points

for each cluster with 10 trials. Each cluster contains Ni data

points randomly chosen from corresponding 7,000 images,

where Ni ∈ {50, 100, 1000, 3000, 7000}, so that the number

of points N ∈ {500, 1000, 10000, 30000, 70000}. Then we

applied all methods on this dataset for comparison. For our

models, we set the number of small matrices k = 2 and

λ = 0.2. The average running time and clustering accuracy

with different number of data points are shown in Table II.

It can be seen that the efficiency of KrSSC, KrLRR, KrTR-

R and KrNVR3 significantly outperform the corresponding

baseline methods, which indicates the effectiveness of the

Kronecker product method proposed in this paper. Table II

also shows that our method and its variants obtain competitive

clustering accuracy compared with the corresponding baseline

methods.

C. Large-Scale Experiment

To verify the scalability of our method on large s-

cale datasets, we also ran experiments on synthetic da-
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TABLE II
THE AVERAGE RUNNING TIME (SECONDS) AND CLUSTERING ACCURACY ON THE MNIST DATASET WITH DIFFERENT NUMBER OF DATA POINTS. THE

DATA CONSISTS OF RANDOMLY CHOSEN Ni ∈ {50, 100, 1000, 3000, 7000} IMAGES FOR EACH OF THE 10 DIGITS. ’-’ DENOTES THAT THE

COMPUTATIONAL COST IS UNACCEPTABLE ON OUR PC DUE TO THE MEMORY AND TIME COST.

No. Points
500 1000 10000 30000 70000

Time Acc. Time Acc. Time Acc. Time Acc. Time Acc.

SSC 152.4 83.36 638.2 82.45 - - - - - -

KrSSC 7.3 81.25 18.7 81.17 192.4 79.42 411.5 76.15 683.2 73.34

LRR 145.5 85.75 614.8 85.14 - - - - - -

KrLRR 7.1 83.24 16.4 83.20 160.8 81.52 384.5 79.21 641.5 76.53

TRR 113.2 90.28 476.4 89.78 - - - - - -

KrTRR 6.5 88.95 15.8 88.65 168.2 85.76 403.8 83.26 795.6 81.53

NVR3 118.5 91.85 531.1 91.28 - - - - - -

KrNVR3 8.3 90.08 22.5 90.14 243.6 86.27 627.5 83.87 968.4 82.41

TABLE III
THE AVERAGE RUNNING TIME (SECONDS) AND CLUSTERING ACCURACY ON SYNTHETIC DATASET WITH DIFFERENT NUMBER OF DATA POINTS. THE

DATA CONSISTS OF RANDOMLY CHOSEN Ni ∈ {100, 1000, 2000, 10000, 20000} POINTS FOR EACH OF THE 5 SUBSPACES. ’-’ DENOTES THAT THE

COMPUTATIONAL COST IS UNACCEPTABLE FOR OUR PC DUE TO THE MEMORY AND TIME LIMIT.

No. Points
500 5000 10000 50000 100000

Time Acc. Time Acc. Time Acc. Time Acc. Time Acc.

SSC 135.4 94.15 1824 93.86 5413 91.05 - - - -

KrSSC 6.2 92.12 53.4 91.18 164.2 89.73 231.5 85.04 285.7 81.85

LRR 118.6 95.27 1645 94.57 4853 92.14 - - - -

KrLRR 6.0 93.24 49.3 92.21 152.7 89.49 216.2 86.03 274.3 82.20

TRR 89.5 98.85 1627 97.15 5825 95.69 - - - -

KrTRR 5.9 98.06 46.7 96.53 185.3 95.05 250.3 93.16 314.2 89.06

NVR3 96.4 99.91 1752 98.61 6024 97.10 - - - -

KrNVR3 6.0 99.07 52.8 98.11 207.5 96.24 260.1 93.89 321.5 90.62

ta. Following [19], we randomly generated n = 5 sub-

spaces, each of dimension d = 6 in an ambient space

of dimension D = 9. Each subspace contains Ni data

points randomly generated on the unit sphere, where Ni ∈
{100, 1000, 2000, 10000, 20000}, so that the number of points

N ∈ {500, 5000, 10000, 50000, 100000}. Due to the memory

and time limit, SSC, LRR, TRR and NVR3 were run for

N ≤ 10000. For our models, λ = 0.2, the number of small

matrices k = 2 for N ∈ {500, 5000, 10000} and k = 3
for N ∈ {50000, 100000}. With different number of sample

points, we conducted experiments on all methods and report

the average running time and clustering accuracy in Table III.

As shown in Table III, the advantage of our method and

its variants over the baseline methods is more marked on

large scale datasets. When the dataset size reaches 10,000, the

computational running time of the alternate methods under

comparison are about two hours each, but our Kronecker

product based methods only need a few thousand seconds even

for 100,000 data points. From Table III, it is also clear that

when k increases from 2 to 3 for N ∈ {50000, 100000}, the

running time decreases significantly. The clustering accuracy

can also be guaranteed compared with existing methods.

Due to the limitations of memory space and computational

complexity, the alternative methods can not be applied to a

dataset of larger than 10,000 points. This again suggests that

our methods are potentially more suitable for large real world

applications.

D. Parameter Sensitivity

Here, we report experimental results on a synthetic dataset

to illustrate the sensitivity of the Kronecker product based

methods to parameter variations. As the parameters k (number

of the small matrices) and λ (the balancing parameter of

Eq. (4)) in our model are both related to the dataset size N ,

we fix N = 100000. Table IV shows the average running

time and clustering accuracy of our methods with different

k ∈ {2, 3, 4, 5}. We can see that when k increases, the running

time significantly decreases but with the sacrifice of clustering

accuracy. This implies that the number of small matrices k

should be determined by the size of dataset with a compromise

between efficiency and accuracy. Figure 3 shows the clustering

accuracy of our methods with different balance parameter λ.

It is evident that the clustering accuracy is insensitive when

λ ∈ (0.1, 0.5).

VI. CONCLUSION

We have presented a fast subspace clustering model based

on the Kronecker product. Due to the property that the Kro-

necker product of a block diagonal matrix and any other matrix

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 576 submitted to 2020 25th International Conference

on Pattern Recognition. Received March 16, 2020.



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

The balance parameter 

10

20

30

40

50

60

70

80

90

100

C
lu

s
te

ri
n

g
 a

c
c
u

ra
c
y

KrSSC

KrLRR

KrTRR

KrNVR3

Fig. 3. The average clustering accuracy of our methods with different balance
parameter λ.

is still a block diagonal matrix, we learn the representation

matrix of spectral clustering using the Kronecker product of

a set of smaller matrices. Thanks to the superiority of the

Kronecker product in reducing the computational complexity

of matrix operations, the memory space and computational

complexity of our methods achieve significant efficiency gain

compared with several baseline approaches (SSC, LRR, TRR,

and NVR3). We have presented four variants of the Kroneck-

er product based method, namely KrSSC, KrLRR, KrTRR

and KrNVR3. Experimental results on face clustering and

handwriting digit clustering show that our methods achieve

significantly improvement in efficiency compared with the

state-of-the-art methods. Moreover, we have presented results

on synthetic data which has verified the scalability of our

methods on large scale datasets.
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