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ARTICLE OPEN

Flux sampling is a powerful tool to study metabolism under

changing environmental conditions
Helena A. Herrmann 1, Beth C. Dyson1,3, Lucy Vass 2,4, Giles N. Johnson 1 and Jean-Marc Schwartz 2

The development of high-throughput ‘omic techniques has sparked a rising interest in genome-scale metabolic models, with

applications ranging from disease diagnostics to crop adaptation. Efficient and accurate methods are required to analyze large

metabolic networks. Flux sampling can be used to explore the feasible flux solutions in metabolic networks by generating

probability distributions of steady-state reaction fluxes. Unlike other methods, flux sampling can be used without assuming a

particular cellular objective. We have undertaken a rigorous comparison of several sampling algorithms and concluded that the

coordinate hit-and-run with rounding (CHRR) algorithm is the most efficient based on both run-time and multiple convergence

diagnostics. We demonstrate the power of CHRR by using it to study the metabolic changes that underlie photosynthetic

acclimation to cold of Arabidopsis thaliana plant leaves. In combination with experimental measurements, we show how the

regulated interplay between diurnal starch and organic acid accumulation defines the plant acclimation process. We confirm

fumarate accumulation as a requirement for cold acclimation and further predict γ–aminobutyric acid to have a key role in

metabolic signaling under cold conditions. These results demonstrate how flux sampling can be used to analyze the feasible flux

solutions across changing environmental conditions, whereas eliminating the need to make assumptions which introduce

observer bias.

npj Systems Biology and Applications            (2019) 5:32 ; https://doi.org/10.1038/s41540-019-0109-0

INTRODUCTION

High-throughput technologies have resulted in a rapid increase in
available ‘omic data sets.1 Large-scale metabolic networks
constructed using these data integrate known and predicted
metabolic pathways.2 These large-scale networks can be con-
strained using experimental data and the system behavior can be
analyzed using metabolic modeling. Metabolism describes a
cellular phenotype under given conditions, and changes in
metabolite concentrations and reaction fluxes can be used to
assess a cellular response to changing environmental conditions.
With the existence of large-scale metabolic networks comes the

need to have appropriate modeling techniques available for their
analysis. The majority of techniques for analyzing large-scale
metabolic networks fall within the paradigm of constraint-based
modeling (CBM).3 CBM imposes stoichiometric constraints on the
metabolic reactions and analyzes the possible flux solutions at
steady state. Because the system is assumed to be at steady state,
even genome-scale models can be solved at little computational
expense.
Two of the most widely used forms of CBM are flux balance

analysis (FBA) and flux variability analysis (FVA).4 The key feature
of FBA and FVA is that they compute the steady state of a model
using an objective function. The objective function defines a
reaction that is to be maximized or minimized when solving the
system under the set constraints. A typical objective is “maximum
biomass production”, whereby essential macromolecules such as
proteins and lipids are defined at known ratios or quantities in an

outgoing reaction of the metabolic system.5,6 FBA computes
single steady-state solutions, which satisfy the objective. However,
often multiple solutions exist and their range can be computed
using FVA.7 FVA provides no indication as to whether all single-
point solutions within the range are feasible and which solutions
are the most likely. In order to reduce the number of feasible
solutions of FBA and to further constrain the feasible flux ranges
returned by FVA, it is common practice to introduce multiple
objective functions.8

However, defining one or multiple objective function(s)
intrinsically introduces an observer bias as to what the main
“goal” of the cell is, in the context of the analysis.9 Although
biomass production as estimated by FBA was seen to match
experimental data in Escherichia coli,10 this may not be an
appropriate objective when studying short-term environmental
changes. In the green algae Chlamydomonas reinhardtii, a 13C-
metabolic flux analysis was shown to contradict the assumptions
of a prior FBA analysis by demonstrating that maximum biomass
and maximum ATP production cannot stand alone as cellular
objectives.11 Optimal growth conditions, to which most objective
functions are tailored, are an exception in natural environments.5

Evolutionarily, metabolism is most likely optimized for overall
robustness across many conditions, rather than a single condition-
specific objective. Bacillus subtilis mutants, which outperform the
wild-type in terms of biomass production in control conditions
have been found experimentally; the wild-type, however, is more
robust to both environmental and genetic perturbations and
therefore holds an evolutionary advantage.12
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Understanding the optimization process that allows an organ-
ism to tolerate changing environmental conditions is of particular
interest in crop sciences, where increasing yields will need to be
achieved, despite rapidly changing environmental conditions.
Owing to their sessile nature, plants are exposed to frequent and
sometimes extreme environmental fluctuations. Plant metabolism
can therefore be presumed to hold an inherent robustness to
changing environmental conditions. Furthermore, plant metabo-
lism is highly intricate as it includes multi-cellular autotrophic and
heterotrophic tissues with complex cellular compartmentalization.
Analyses of plant metabolism and of plant metabolic strategies
can therefore be considered a comprehensive case study of
metabolism in general. Genetic modifications do not always
produce a desired effect owing to network robustness:13,14 in crop
sciences, optimization for increased yield in control conditions
rather than in changing environments is a likely explanation for
discrepancies between laboratory and in field results.15,16

If we wish to use CBM techniques to assess network robustness
and phenotypic plasticity, we must be able to capture all
alternative solutions and the probability with which they occur
(the solutions space) of a metabolic network across different
conditions. To calculate the exact properties of the solution space,
we can use mathematical techniques such as convex analysis and
vertex enumeration;17 however, owing to their computational
intensiveness, these methods are only efficient when applied to
small, simple networks18 or genome-scale models with one or
more objective function.19 When wanting to analyze genome-
scale metabolic networks without the use of an objective function,
such approaches cannot practically be applied. Sampling of
feasible flux solutions provides a realistic alternative.
Flux sampling generates a sequence of feasible solutions (called

a chain) that satisfy the network constraints, until the entire
solution space is analyzed. Enough samples need to be generated
for the samples to provide an accurate representation of the
feasible solution space.18 A chain of samples is said to have
converged once it contains enough samples to give an accurate
representation of the solution space.20 Flux sampling provides
information both on the range of feasible flux solutions (similar to
FVA) but also on their probability. Importantly, unlike FBA, flux
sampling does not require (but also does not exclude the option
for) an objective function to be specified. Therefore, flux sampling
methods hold great potential for analyzing optimization strategies
that are not defined by clear objectives such as a simple biomass
reactions.
When plants are exposed to a change in environmental

conditions, such as temperature, which last only for a few days,
optimizing biomass production during this period is arguably of
secondary importance; sustaining metabolic function with mini-
mal cost may be a higher priority to plants. For example, the
allocation of carbon into different transient storage compounds
accumulated to maintain cellular processes, has been shown to
change when plants are exposed to environmental stresses.21–25

Starch, malate, and fumarate are the three major carbon storage
compounds which accumulate during the day in leaves of the
model plant Arabidopsis thaliana.21,26,27 Increased cytosolic
fumarate accumulation is a known cold response of A. thaliana
leaves and has been linked to an increased photosynthetic
capacity that sustains metabolism in cooler temperatures.24

Evidently, tight regulation of carbon partitioning is required for
successful cold acclimation. Given the large number of reactions
and pathways involved in linking primary carbon assimilation to
its downstream storage products starch, malate, and fumarate,
CBM seems appropriate. Of the CBM methods available, flux
sampling allows us to gain a detailed understanding of the
solution space and the interdependence of the different carbon
stores under different temperature conditions, without imposing
the constraint of an objective function.

Multiple large-scale metabolic networks of the model plant A.
thaliana have been constructed.28–32 Here, we used three of them
to formally assess for the efficiency of existing and easily
accessible flux sampling algorithms: the coordinate hit-and-run
with rounding (CHRR),33 the artificially centered hit-and-run
(ACHR)34 and the optimized general parallel (OPTGP)35 algorithms.
We identified the most efficient sampling method based on run-
time and convergence, and applied it to study plant acclimation to
cold. We experimentally measured diurnal CO2 uptake and
organic carbon accumulation of A. thaliana in control and cold
conditions. By constraining a leaf metabolic model to the two
conditions and using an appropriate flux sampling algorithm, we
were able to explore inherent metabolic robustness to tempera-
ture and predict the metabolic changes required to support a
photosynthetic acclimation response to cold.
Although flux sampling has previously been applied as a

technique for studying the solution space of metabolic net-
works,29,36,37 this will, to our knowledge, be the first time that the
available algorithms are formally compared with one another in
the context of metabolic modeling, and that flux sampling is
applied to study network robustness across changing environ-
mental conditions.

RESULTS

Both run-time and convergence are fastest when using CHRR in
MATLAB

We compared the run-time and convergence of the CHRR, ACHR,
and OPTGP algorithms using three metabolic models of A.
thaliana. We tested the run-times of 500,000, 5,000,000, and
50,000,000 samples (S), of which 5000 were stored and the rest
were discarded with constant measures of thinning. For S=
50,000,000, the CHRR algorithm was 2.5 times faster than the
OPTGP and 5.3 times faster than the ACHR for the Arnold model
(Fig. 2). This difference in speed increases with model complexity,
such that, for the Poolman model, the CHRR was 3.3 times faster
than the OPTGP and 8.0 times faster than the ACHR (Fig. 2). The
OPTGP was run in two parallel processes; however, even when
running it as a single process it is faster than the ACHR. Although
we cannot exclude the fact that MATLAB may have a faster
connection to Gurobi than Python, flux sampling is fastest when
using the CHRR setup as available in the COBRA toolbox for
MATLAB.
The number of reactions that did not satisfied the convergence

criteria were assessed for each chain (Table 1). The longer run-
times of ACHR and OPTGP implementations in Python are not
outweighed by faster convergence. In fact, as the three pilot
chains with varying thinnings show, the CHRR algorithm, across all
model reactions, converges the fastest, with the lowest number of
samples required for convergence, the least amount of auto-
correlation, and the lowest discrepancy between chains (Table 1).
We confirmed this difference in convergence by inspecting trace
and auto-correlations plots of individual reactions, such as those
for the biomass reaction of the Arnold model shown in Fig. 2 (C).
CHRR shows little dependence between consecutive samples even
with a thinning of T= 100, whereas OPTGP and ACHR show low
levels of autocorrelation only when T= 10,000.
Our results show differences in the outcomes when conver-

gence is reached according to the different convergence
diagnostics. All convergence diagnostics agree that the CHRR
performs best (Table 1). According to the Raftery & Lewis and the
IPSRF diagnostics, all of the flux samples of reactions in the Arnold
and Poolman models converge in < 5000 samples with a thinning
constant of 10,000 when using CHRR. The fact that such large
numbers of samples are required for model convergence shows
that, owing to the irregular solution shape of genome-scale
metabolic networks, autocorrelation in chains is a common
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problem and must be overcome and tested for using appro-
priate convergence diagnostics. Analyzing samples that have
not achieved convergence can lead to incorrect conclusions
about the metabolic fluxes under study. Currently, many
applications of the ACHR, OPTGP, and CHRR algorithms to
biological networks do not report whether convergence has
actually been achieved.29,37–39

Previous comparisons between the ACHR and CHRR algo-
rithms33 have been made using 15 different metabolic models but
were based only on a single convergence diagnostic, the potential
scale reduction factor (PSRF).40 Notably, different convergence

diagnostics test different features and may not always be in good
agreement. Therefore, more than one diagnostic should be used
to confirm that the sampling chain is likely to have reached
convergence.20,41 The ACHR and OPTGP algorithms have been
compared using five genome-scale metabolic models and three
different convergence diagnostics, including the PSRF.35 However,
the PSRF assumes a normal distribution of solutions,42 which is
questionable given that sampling is most needed when the
distribution of flux estimates is non-normal,41 as is often the case
in metabolic modeling.

CHRR-based flux sampling generates verifiable hypotheses
concerning plant acclimation to cold

When plants of A. thaliana are transferred from 20 °C to 4 °C,
photosynthesis is inhibited.24 Metabolism slows down in cooler
temperatures and, in order to sustain normal metabolic functions,
plants need to acclimate their CO2 uptake, altering the
concentrations of metabolic enzymes to achieve a new steady
state.24,43,44 After 7 days of cold, we observe that the A. thaliana
wild-type Col-0 is able to achieve the same level of photosynthesis
as measured in control conditions (Fig. 3). The allocation of carbon
to the three main carbon storage compounds, malate, fumarate,
and starch, shifts in the cold as part of the metabolic acclimation
response. After 7 days of acclimation both photosynthesis and
transient carbon accumulation attain a new cold acclimated state.
Most notably, after 7 days of cold treatment a larger proportion of
carbon is partitioned into fumarate (Fig. 3).
Using the experimental data shown in Fig. 3 to constrain the

CO2 input and the malate, fumarate, and starch accumulation
reactions using the Arnold model (please see methods for further
details), we were able to compute converged flux sampling
distributions for all reactions. We did so for both control and cold
conditions, which allowed us to overlay the sampling distributions
of reaction fluxes and to assess changes required in plant
metabolic behavior for acclimation (Fig. 4).
In order to demonstrate how the application of an objective

function for an FBA analysis can lead to vastly different
conclusions, we have overlaid FBA results for maximum biomass
production (under the same model constraints as applied for the
sampling) over the flux sampling distributions (Fig. 4). This further
emphasizes how an objective function, if inappropriate for the
analyses under consideration, can be misleading.
Both sucrose export to other tissues and cytosolic pyruvate

production as a precursor for the tricarboxylic acid (TCA) cycle are
predicted to be unchanged. The model suggests that, given equal
carbon assimilation in control and cold conditions, cellular
maintenance and export functions are supported equally in both
conditions on the time scale considered. Although sucrose export
is difficult to measure experimentally, we observed the rate of
respiration in the cold to be the same as in control conditions
(Fig. 3). Given that, for both conditions, the model shows equal
fluxes from cytosolic pyruvate into the TCA cycle (Fig. 4), which
feeds directly into respiration, this model prediction is in
agreement with our experimental data.
For fumarate (and other metabolites not shown) the model

predicts a shift in cellular compartmentalization with temperature.
Model results show an increase in fumarate export from the
mitochondrion into the cytosol in the cold. The reverse is shown
for fumarate export from the chloroplast, where it is produced via
the breakdown of arginosuccinate (Fig. 4). Leaves developed in
the cold have increased cytoplasmic and decreased vacuolar
volumes;45 a reshuffling of metabolites across cellular compart-
ments has therefore previously been proposed as an important
temperature acclimation response.46

Model results suggest an increase in flux from cytosolic malate
to fumarate via cytosolic fumarase (FUM2) (Fig. 4). This is
consistent with previous experimental results from mutant studies

Table 1. Convergence diagnostics comparing three chains of

5000 samples run for all reactions in the Poolman, Arnold, and

Dal’Molin models using the ACHR, OPTGP, and CHRR algorithm with

the indicated thinning

Model Sampler Thinning Convergence diagnostics

Nmax

(Raftery
& Lewis)

% I > 5
(Raftery
& Lewis)

% Z >
1.28
(Gweke)

%
IPSRF
< 0.9
or
IPSRF
> 1.1

Poolman ACHR 100 2862482 53 28 30

1000 1557990 46 23 16

10,000 1083360 41 20 14

OPTGP 100 1664187 53 22 13

1000 1099330 45 21 11

10,000 1717480 40 17 6

CHRR 100 303880 15 14 0

1000 27906 0 12 0

10,000 4636 0 10 0

Arnold ACHR 100 385177 49 39 9

1000 312384 12 34 3

10,000 323570 9 23 0

OPTGP 100 910210 45 36 7

1000 1538190 12 30 3

10,000 1679346 9 32 17

CHRR 100 122760 17 24 0

1000 17508 0 21 0

10,000 4198 0 19 0

Dal’Molin ACHR 100 41951912 37 13 17

1000 4982459 28 12 10

10,000 1544792 23 10 6

OPTGP 100 1834104 37 17 14

1000 1891665 27 11 6

10,000 1700907 22 11 3

CHRR 100 550776 10 16 3

1000 387456 4 16 3

10,000 226856 3 13 2

Three samples sets (chains) were computed for each reaction using the

indicated models, algorithms and thinnings. Nmax indicates the maximum

number of total samples suggested by the Raftery & Lewis diagnostic.

% I > 5 and % z > 1.28 indicate the average percentage of reactions which

do not pass the Raftery & Lewis and Gweke convergence diagnostics

according to the three chains. The three chains were used for each reaction

in order to compare within and between sample differences as indicated

by the interval-based potential scale reducing factor (IPSRF) diagnostic.

The percentage of reactions with IPSRF < 0.9, IPSRF > 1.1 is shown
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that show that the fum2.2 mutant of Col-0 is unable to acclimate
to cold.24 This reaction is thus essential for photosynthetic
acclimation to cold.

Flux sampling distributions suggest a link between carbon and
nitrogen metabolism to support cold acclimation

The sampling distributions suggest a trade off between increased
carbon compound accumulation and decreased amino-acid
production (Fig. 4), linking nitrogen and carbon metabolism.
Synthesis of γ-aminobutyric acid (GABA), however, is predicted to
increase in the cold. GABA has previously been reported to
accumulate in response to environmental stresses, including cold
treatment.47 GABA has been suggested as a signaling molecule of
the carbon to nitrogen status in plant leaves and evidence for its
role in regulating nitrate uptake exists for both rapeseed and A.
thaliana.48–50 A. thaliana plants in the cold show increased
nitrogen assimilation compared with those in control conditions.51

If GABA is indeed involved in carbon:nitrogen signaling,48 it may
be counteracted by the increased accumulation of malate.
Increased levels of malate have previously been shown to
suppress nitrate reductase expression and activity in tobacco
leaves.52 Malate levels in Col-0 may be kept below a certain
threshold, by redirecting carbon to fumarate, thereby supporting
adequate nitrogen assimilation and an increased photosynthetic
capacity. This hypothesis is supported by the observation that A.
thaliana mutants, which show increased levels of malate and
decreased levels of fumarate, grow significantly less well in high-
nitrogen conditions than Col-0.22 Fumarate has few known
metabolic functions in A. thaliana leaves,26 and may thus serve
the purpose of a carbon storage buffer in changing environmental
conditions.

DISCUSSION

Based on run-time and platform, CHRR is faster than OPTGP, which
is itself faster than ACHR. CHRR also converges faster than both
OPTGP and ACHR. Users with unrestricted access to MATLAB are
therefore recommended to use CHRR. For those who wish to work
using an open-source platform, OPTGP is recommended over
ACHR; in general, OPTGP converges faster than ACHR, has a
shorter run-time and allows for parallel processes.
When running sampling algorithms, sets of flux samples are

produced for each reaction in the model. Here, we have tested
convergence for all reactions of the models using three different
sample chains. We have highlighted the importance of checking
for convergence using different diagnostics when analyzing an
irregular solution space of large networks. If only a subset of
reaction fluxes are of interest, only those distributions will have to
be checked for convergence. Flux sampling provides a powerful
tool for exploratory analyses assessing metabolic differences
across different environmental conditions. Our results further
confirm the notion that it is not possible to fully automate
convergence analyses using a single diagnostic20 and that results
should confirmed via manual inspections of trace and
autocorrelation plots.
Flux sampling is currently an under-utilized technique in the

metabolic modeling of large-scale networks. Using cold acclima-
tion of the model plant A. thaliana, we demonstrate how flux
sampling can be used effectively to analyze alternative feasible
solutions across multiple conditions whilst eliminating the need to
make assumptions that introduce observer bias. Given short-term
environmental changes, adequately sustaining basic metabolic
functions with minimal resource investment may be a more-likely
cellular objective on that time scale than, for example, maximizing
growth. We therefore did not set an objective function for flux
sampling but used four experimentally measured flux values (CO2

input and fumarate, malate and starch accumulation) to constrain

a leaf metabolic model.28 We further demonstrated how these flux
sampling results can lead to different conclusion than traditional
FBA analyses.
By constraining the model to both cold and control conditions

we were able to select reactions that show different flux
distributions across the two conditions. Our model highlights
reactions that are essential to change with temperature (i.e., the
flux distribution of the two temperature conditions do not
overlap) such as the production of cytosolic fumarate via malate.24

The model further demonstrates the properties of the flux
distributions of GABA to differ in cold and control conditions,
highlighting GABA as a plausible signaling molecule for support-
ing a shift in the nitrogen and carbon balance, required to sustain
photosynthesis in the cold. Thus, through flux sampling, we were
able to generate novel hypotheses about the roles of GABA,
fumarate and malate in cold acclimation, which would have been
unfeasible to detect using FBA and FVA methods.
By overlaying different FBA solutions onto flux sampling

distributions obtained under condition-specific model constraints,
FBA in combination with flux sampling, could, in future work, be
used to determine plausible objective functions and help generate
predictions about how cellular objectives might be changing in
response to environmental changes.

METHODS

COBRA methods for flux sampling

Constraint-based reconstruction and analysis (COBRA) methods for
genome-scale metabolic networks are integrated in the COBRA tool-
box53,54 for the MATLAB programming language and the COBRApy
package55 for the open-source Python programming language. Three
algorithms for flux sampling exist across the two platforms: CHRR
(MATLAB), ACHR (MATLAB and Python), and OPTGP (Python). Further
flux-sampling algorithms exist;37,56–58 however, as they are not currently
available in the COBRA packages, they are here not considered for
comparison.59,60

1. The artificially centered hit-and-run (ACHR) sampler estimates the
center of the solution space in a “warm-up” phase. This estimate is
then continuously revised with further sampling. The center
estimate is used to inform the direction of further sampling such
that the full solution space is covered in fewer steps than in
traditional hit-and-run sampling (where the direction of the next
sample is chosen at random).34 Although the Markovian nature of
hit-and-run (i.e., the fact that each future sampling state is
dependent only on the current sampling state) is lost in the ACHR,
it overcomes the edge-trapping limitation of the standard hit-and-
run algorithm (i.e., it no longer gets stuck at the bounds of a solution
space if these are of an elongated shape, a frequent feature in
metabolic models).

2. The optimized general parallel sampler (OPTGP) is argued to be an
improvement on the ACHR, because from the warm-up point it
generates multiple short chains from the estimated center and only
considers the last point in the chain as a sample.35 It thereby
increases the randomness and efficiency with which the total
solution space is explored. Furthermore, it allows for parallel
sampling. Larger samples can thus be generated in shorter run-
times.

3. The coordinate hit-and-run with rounding (CHRR) algorithm starts
with a pre-processing step that rounds the solution space to a more
regular, convex shape, and therefore a Markov chain can be used to
explore the rounded solution space without the limitation of edge-
trapping. After sampling, the solutions are back-transformed to
match the original solution space in order to obtain the true value of
the sampled points.33,61

Assessing convergence

The aim of flux sampling is to generate enough consecutive samples
(a long enough chain) in order to get an accurate depiction of the solution
space. A sample chain is considered to have converged once it can be
assumed that the sampled subset of solutions represent the properties of
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the true solutions obtained from an infinite amount of samples (i.e., when
the shape of the flux distribution no longer changes with more samples).62

In flux sampling, an algorithm’s efficiency is defined by the run-time and
the number of samples required for apparent convergence to the true flux

distribution. Here, we apply three different diagnostics in order to test for
convergence:

1. Raftery & Lewis diagnostic: this diagnostic estimates the total number
of samples, Nmax, required for a set of samples to achieve
convergence, based on a given subset of samples (pilot chain).63

We estimated Nmax required for convergence using the CODA
package in R.64 The diagnostic further returns a dependence factor,
I, which is indicative of autocorrelation (the degree of dependence
between consecutive samples). Chains with I > 5 are here consid-
ered to be problematic as this value suggests high dependence
between samples or influential starting values (i.e., the chain was not
run long enough).

2. Interval-based potential scale reduction factor (IPSRF): adapted from
the original Gelman-Rubin diagnostic, PSRF,40 the IPSRF is based on
comparing the differences between consecutive samples (within
sequence interval length) with the total differences observed
between all samples (between sequence interval length). Because
interval length, rather than variance of the samples (on which the
original version is based), is considered, a normal distribution of the
samples is no longer a requirement.42 As with PSRF, the IPSRF

Fig. 1 Summary of the general influx and outflux of the Arnold
model, as set up in our analysis. Differences in pathways linking
carbon assimilation and diurnal carbon storage were compared
across the two temperatures (20 °C and 4 °C) in order to predict
metabolic changes required for cold acclimation of A. thaliana

Fig. 2 Run-times for each of the algorithms on their respective platforms (CHRR: MATLAB; ACHR: Python; OPTGP: Python) when sampling flux
solution for the Poolman a, Dal’Molin b, and Arnold model c. Trace and autocorrelation (ACF) plots (showing sampling chains and sample
dependence, respectively) for chains of length 5000 with thinnings of T= 100, 1000, and 10,000 of the biomass reaction, as obtained when
using each of the algorithms on the Arnold model
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approaches 1 with chain convergence. Here, we consider chains to
have failed this convergence diagnostic if IPSRF < 0.9 or IPSRF > 1.1
as calculated using the MCMC Diagnostics toolbox in MATLAB.

3. Gweke diagnostic: this diagnostic, as implemented in the R CODA
package,64 tests whether the mean of the first samples of the chain
(10%) is significantly different from the mean of the last set of
samples (50%) of the chain.65 Assuming that the last set of samples
has converged to the stationary distribution, if the two subsets are
not significantly different, the entire chain can be considered to
have converged. Here we consider chains to have failed this
convergence diagnostic if z > 1.28.

Because each of the convergence diagnostics tests for different criteria,
we use all of the above in order to assure sample convergence. Here, we
consider the flux sampling distribution of a reaction to have converged if it
passes all of the above criteria.

COBRA toolbox and COBRApy setup

COBRA Toolbox version 3.0.0 and COBRApy version 0.10.1 were installed
on MATLAB R2017a and Python version 3.5.2, respectively.55 The linear
programming solver used was Gurobi, version 8.0.0. The samplers were
used in accordance with COBRA documentation using default parameter
settings unless otherwise specified. Although an ACHR implementation is
available both in the COBRA toolbox and in COBRApy, the comparisons
made here are based on the Python implementation of the ACHR sampler
because it is open-source and because the OPTGP, which is available only
in Python, directly builds on the general parallel sampler (GP) of the ACHR.
We did collect preliminary convergence and run-time data of the ACHR
algorithm in MATLAB; however, because its convergence was evidently
slower than CHRR, we have chosen to omit its MATLAB implementation
from further analyses. OPTGP and CHRR algorithms were run using two
parallel processes; there is currently no option to run ACHR as multiple
processes.

Metabolic models

To compare the performance of the samplers, three published genome-
scale A. thaliana metabolic models were obtained in SBML format and are
from here on referred to by their first author: the Poolman,32 Arnold,28 and
Dal’Molin2 models. The Poolman model is based on the Aracyc database66

and describes a non-compartmentalized heterotrophic culture using 1406
reactions. The Arnold model describes a compartmentalized,

photoautotrophic system and is based on 549 manually curated A.

thaliana specific reactions. The Dal’Molin model is a compartmentalized

network reconstruction of 1601 reactions, applicable to both photosyn-

thetic and non-photosynthetic tissues of plant metabolism.2 The original

model constraints2,28,32 were used when comparing sampler performance

across these models, such that the Arnold, Poolman, and Dal’Molin model

had 270, 645, and 330 degrees of freedom respectively.
Samples that are close together within a sample chain can be

autocorrelated (i.e., be similar to one another due to the way in which

the algorithm works). In order to avoid the effects of autocorrelation and to

ensure convergence, a large number of samples should be run and a

technique called thinning can be applied.67 Sample chains that are thinned

store only every kth sample in the chain, where T= k is called the thinning

constant. In order to compare autocorrelation of the three algorithms, we

applied three different thinning constants (T= 100, 1000, 10,000) storing

5000 samples for each chain. Three replicate chains were run for each

value of T. Convergence diagnostics were calculated for sample chains

produced for each of the model reactions. Run-times were obtained on a

personal laptop (7.2 GB RAM, i5-6200U CPU processor, 4 cores, 2.3 GHz

capacity, Ubuntu 16.04.4 OS).

Experimental data

Carbon assimilation and respiration (CO2 influx and outflux) by the A.

thaliana wild-type Columbia-0 (Col-0) was measured using infrared gas

analysis at 100 μmol m−2 s−1 light under control conditions (20 °C) and

after 1 week of cold treatment (4 °C) as described previously.24 Fumarate,

malate and starch concentrations at the onset and at the end of the

photoperiod were measured for both control and cold conditions using

enzyme assays.24 Averages of 3–4 replicated were calculated. Measure-

ments taken across the different conditions were tested for significant

differences using an unpaired t test (p < 0.05) assuming unequal variances,

as implemented in R.
Given that previously published data confirm an approximately constant

rate of accumulation of transient carbon storage products during the

day,21,24 we subtracted the beginning of day metabolite concentrations

from the end of day concentrations for each of the products in order to

obtain a flux value for carbon storage over one photoperiod. These flux

values were used to constrain the Arnold model (Fig. 1). This reduced the

degrees of freedom of the model to 266.
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Fig. 3 Carbon influx and outflux and organic carbon compound accumulation in leaves. Measurements were taken at control conditions (red)
and after 7 days of cold treatment (blue), at the beginning of day (BOD) and at the end of day (EOD), using infrared gas analysis and enzyme
assays.24 The s.e.m. of the 3–4 replicates for each measurement is shown as error bars. The above data (excluding carbon outflux) were
converted to mmol

gFW�Day
and used to constrain the Arnold model as outlined in the method. Significant differences between measurements across

the two temperature conditions are indicated by an asterisk
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Model constraints

Given that the Arnold model is leaf specific and manually curated, it suits

the purpose of studying photosynthetic plant acclimation. In order to do

so we constrained the model with our experimental diurnal flux data for

malate, fumarate, and starch accumulation as well as CO2 influx. We set the

cytosolic fumarase reaction, which produces cytosolic fumarate from

malate, to be reversible.24 Outgoing fumarate, malate, and starch reactions

were added to the model in order to simulate diurnal carbon storage (Fig.

1). Diurnal accumulation of the metabolites was calculated by subtracting

average beginning of day concentrations from average end of day

concentration values. Metabolite accumulation and CO2 influx were

converted to mmol (gFW)−1 Day−1. The resulting values were applied as

model constraints. Upper and lower bounds were applied according to the

calculated standard errors of three to four replicates as shown in Fig. 3. To

ensure convergence of all flux sampling distributions, 100,000 flux samples

with a thinning of 10,000 were generated using the CHRR algorithm in the

COBRA Toolbox. A Kruskal–Wallis test, as implemented in the SciPy Python

package, version 0.19.1, was used to assess whether flux samples

generated using either the cold or the control constrained model

stemmed from the same distribution.68

Reporting summary

Further information on research design is available in the Nature Research

Reporting Summary linked to this article.
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