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SUMMARY

Today’s data mining tasks aim to extract meaningful information from a large amount

of data in a reasonable time mainly via means of — a) algorithmic advances, such as fast

approximate algorithms and efficient learning algorithms, and b) architectural advances,

such as machines with massive compute capacity involving distributed multi-core processors

and high throughput accelerators. For current and future generation processors, parallel

algorithms are critical for fully utilizing computing resources. Furthermore, exploiting data

properties for performance gain becomes crucial for data mining applications. In this work,

we focus our attention on power-law behavior —- a common property found in a large class

of data, such as text data, internet traffic, and click-stream data. Specifically, we address the

following questions in the context of power-law data: How well do the critical data mining

algorithms of current interest fit with today’s parallel architectures? Which algorithmic and

mapping opportunities can be leveraged to further improve performance?, and What are the

relative challenges and gains for such approaches?

Specifically, we first investigate the suitability of the “frequency estimation” problem for

GPU-scale parallelism. Sketching algorithms are a popular choice for this task due to their

desirable trade-off between estimation accuracy and space-time efficiency. However, most

of the past work on sketch-based frequency estimation focused on CPU implementations. In

our work, we propose a novel approach for sketches, which exploits the natural skewness

in the power-law data to efficiently utilize the massive amounts of parallelism in modern

GPUs.

Next, we explore the problem of “identifying top-K frequent elements” for distributed

data streams on modern distributed settings with both multi-core and multi-node CPU

parallelism. Sketch-based approaches, such as Count-Min Sketch (CMS) with top-K heap,

have an excellent update time but lacks the important property of reducibility, which is

needed for exploiting data parallelism. On the other end, the popular Frequent Algorithm

xii



(FA) leads to reducible summaries, but its update costs are high. Our approach Topkapi,

gives the best of both worlds, i.e., it is reducible like FA and has an efficient update time

similar to CMS. For power-law data, Topkapi possesses strong theoretical guarantees and

leads to significant performance gains, relative to past work.

Finally, we study Word2Vec, a popular word embedding method widely used in Ma-

chine learning and Natural Language Processing applications, such as machine translation,

sentiment analysis, and query answering. This time, we target Single Instruction Multiple

Data (SIMD) parallelism. With the increasing vector lengths in commodity CPUs, such

as AVX-512 with a vector length of 512 bits, efficient vector processing unit utilization

becomes a major performance game-changer. By employing a static multi-version code

generation strategy coupled with an algorithmic approximation based on the power-law

frequency distribution of words, we achieve significant reductions in training time relative

to the state-of-the-art.
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CHAPTER 1

INTRODUCTION

Large scale data processing is ubiquitous in today’s computational environments given the

ever-increasing sources of structured and unstructured data. We can see “big data” scenarios

in a wide range of fields, such as internet search, social media, e-commerce, genomics,

weather prediction, complex physics simulation, meteorology, and so on. As a consequence,

there has been a surge in designing methods for extracting valuable statistical information

from a large amount of data, which we can see from Deep Learning (DL) or in general

Machine Learning (ML) and data mining communities. Interestingly, most of these methods

require non-trivial computing power and are made practical in part through advances in

processor technology. Another means to address the intractability of traditional algorithms

on big data, is to develop approximate solutions, which give approximately correct results

with some bound on the error metric while reducing the computation significantly.

There has been tremendous growth in the processing power over the last two decades, and

we are now at a stage where the current generation supercomputers deliver peak performance

in the range of hundreds of petaflops. However, this advancement has not followed a simple

linear path during the last 15 years. Before 2004, architects used Dennard scaling to

dramatically increase the frequency of processors to improve performance. However, as

leakage power became significant, Dennard scaling was no longer feasible. As a practical

solution, architects started using multiple cores in a single chip to improve processor

performance without increasing clock frequency. As we reach the limit of Moore’s law,

the computer architecture community significantly increased investments in the design of

custom accelerators. One widely adopted accelerator in the ML community is the General

Purpose Graphics Processing Unit (GPGPU).

A consistent trend during the last decade for both homogeneous and heterogeneous

1



processors has been an increasing level of parallelism over time. For example, we have:

• Distributed nodes with multi-core CPUs in current supercomputers, e.g., the recent

AMD R© EPYC [1] CPU has up to 64 cores per chip

• Fine-grain single instruction multiple data (SIMD) parallelism in vector processing

units where the vector length can be as high as 512 bits (AVX-512) in the x86 ISA

• Fine-grain single instruction multiple thread (SIMT) parallelism in GPGPUs, e.g., the

NVIDIA R© V100 [2] GPU has 84 streaming multi-processors, each of which contains

64 FP32 cores, 32 FP64 cores, 64 INT32 cores, and 8 Tensor cores that can be used

simultaneously by 32-thread warps.

• Low power multi-core CPUs and GPUs for mobile devices, e.g., the Qualcomm R©

630 mobile platform [3] has 8 Arm R© Cortex R©-A53 cores in its CPU and 96 ALUs

in its AdrenoTM 508 GPU

Needless to say, developing parallel algorithms is a necessity to exploit the computing power

of modern hardware efficiently.

On the other frontier of handling big data by approximate solutions, we see a tremendous

amount of progress over the last decade, to the point where we can enable data mining

technology in edge or IoT devices too. For example, Stochastic Gradient Descent [4, 5], one

of the most common computations in Deep Learning (DL), approximates error propagation

in the feedback loop of Neural Networks, network pruning and compression techniques [6,

7, 8] enable DL applications to run on low memory devices, and sketch [9] based methods

produce data summaries in a single pass over the data while using sub-linear memory. While

presenting a comprehensive survey of all related work in this area is beyond the scope of

this thesis, the important takeaway is that currently, the community has a keen interest in

developing and advancing approximate data mining methods.

It is noteworthy to mention that we have reached a point where more and more commu-

nity efforts are focusing on adopting data-centric approaches. Examples include sparsity-

2
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Figure 1.1: Frequency distributions of elements in different real-world datasets

3



aware compression of Neural Network parameters [13, 8], exploiting the power-law behavior

of data in frequent elements mining [14, 15], and data-centric workload optimizations [16,

17]. In the context of this thesis, we consider the power-law distribution of frequencies of

elements present in data, which is commonly found in a large class of data, such as text,

internet traffic, click-stream data, etc. As motivation, we show the frequency distribution

of elements in log-log scale for representative real-world datasets from different classes

of data in Figure 1.1. From a broad classification viewpoint, Kosarak [10], Webdocs [10],

CAIDA [11], and Criteo [12] datasets represent click-stream, web text, internet traffic, and

search log datasets respectively. A general intuition behind power-law behavior is that we

perform computations associated with frequent elements exponentially more often compared

to the rare items.

Given the current interest in approximate data mining algorithms and data-centric perfor-

mance optimization approaches, we explore opportunities for improvement in performance

characteristics of important data mining tasks on power-law data. Given the multitudes of

parallelism in contemporary processors, an important question that follows is: how well do

these algorithms map on to current parallel architectures when executed with power-law

data? Another way to look at this problem is to analyze the available parallelism in the

algorithms and how well they scale to different types of parallelisms employed in various

architectures. Better yet, can we exploit the power-law property of data in our parallel

algorithm design to further improve the performance? Are these efforts worthwhile, i.e.,

how much performance gain can we achieve through careful parallel data mining algorithm

designs? We answer these questions in our thesis by performing a deep analysis on three

very important and frequently faced problems in data mining community - a) frequency

estimation [18, 14, 19] b) identification of most frequent elements [20, 21], and c) word

embedding [22, 23].

4



1.1 Thesis Statement

“Data-centric algorithmic and mapping optimizations can deliver significant improvements in

the performance of approximate data mining applications with power-law data on modern

parallel architectures.”

5



CHAPTER 2

MATRYOSHKA: FREQUENCY ESTIMATION WITH GPU PARALLELISM FOR

SKEWED DATA

One of the most fundamental operation in large-scale data stream processing is frequency

estimation of elements. To get an exact solution for the frequency estimation task, one has

to store all the items from the data stream and then sort them to get the respective counts,

or use counters for all the unique items to track their counts. However, big data scenarios

involve a massive amount of data streams, which make such a “store and sort” strategy

impractical from both computational and memory requirement perspective. Furthermore,

the number of unique items in these scenarios is also rather very high, and the “counter”

based approach with dynamic counter creation requires a high computational cost along

with linear memory in terms of number of unique items which become prohibitive.

An alternative approach that has been pursued for improved scalability is to develop

approximate stream processing algorithms with probabilistic data structures [18, 14, 24, 25],

which usually require a single pass over the data and sub-linear memory space. Sketches

are a popular choice among these approximate solutions, mainly due to their improved time

and space bounds [18] in tasks associated with summarizing data streams. We can find their

application in a wide variety of areas, including click-through prediction [26], real-time IP

traffic measurements [27, 28, 29], feature selection [30], semi-supervised learning [31, 32,

33], and natural language processing [34].

Over the last decade, there has been a significant effort in improving the accuracy of

sketch-based algorithms. Since many real world data sets obey the power law [35], the

frequency distribution of items in a data stream is often highly skewed. That means few

items have a very high frequency (referred to as “hot items” or “heavy hitters”) and most

of the remaining items have a low frequency (referred as “cold items”). While applying

6



sketching techniques, significant frequency estimation errors occur for every hash collision

between two “hot items” and also between a “hot item” and a “cold item”. To improve

accuracy, recent works on sketches, such as Augmented sketch [36], Pyramid sketch [37],

HeavyGuardian [38], and Learning-Based Frequency Estimation [19] try to exploit the

skewness by handling “hot items” and “cold items” separately. All these approaches

significantly reduce the average frequency estimation error compared to base-line sketches.

Interestingly, most of the past work on improving the accuracy of sketches also improve

performance. However, the “performance” metric for sketching methods primarily focuses

on sequential execution on CPUs [38, 37, 39]. A few cases [40, 36] also considers parallel

algorithms for multi-core CPUs. However, if we look into architectures of current generation

computing resources, including mobile processors, it is almost impossible to find one

without parallelism. GPUs represent one of the most popular platforms in the machine

learning community due to their throughput oriented architecture with massive parallelism

(80 streaming multi-processor for nVidia R©Volta GPU [2], each capable of running 2048

threads). Current trend [41] indicates we are going to see more new architectures [42,

43] with increasing levels of parallelism in the future. So, there is a strong motivation for

designing effective parallel sketching strategies for current and future generation massively

parallel hardware.

Although sketches appear to be easily parallelizable, we argue that scaling it to massive

parallelism is a daunting task. For example, pipeline parallelism explored in Augmented

sketch [36] scales only to two cores. Another popular SPMD style parallelism strategy with

sketches [44] on multi-core CPUs executes the sketching kernel sequentially within each

parallel worker. We can see from Augmented sketch [36], when we increase the number

of cores from 2 to 16, we gain roughly 3x improvement on throughput using this strategy.

It clearly indicates that achieving good scalability for parallel sketching algorithms is a

challenging problem.

Taking GPU scale parallelism into consideration, we currently have a lack of effective
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strategies for designing parallel sketching techniques. If we opt for exploiting data paral-

lelism with reducible [40] or mergeable [45] sketches, we have to create local copies of

the sketch for each parallel threads and at the end, we merge those local copies to get the

final sketch. It is quite clear that this strategy [46] is not scalable to GPU level parallelism

since we are dealing with hundreds of thousands of threads. Another solution is converting

updates to buckets in a sketch to “atomic” updates if an atomic operation can replace

the bucket update step. Using this strategy, we implement Count-Min Sketch [18], one

of the most popular choice for sketching algorithms, for GPU. Figure 2.1 represents its

performance analysis with kosarak [10] data set on nVidia R©V100 GPU. As we can see, the

efficiency of this approach is particularly bad (details of the metrics are in Section 2.6.5).

In this work, we address this hard problem by introducing the Matryoshka sketching

strategy which enables efficient data parallelism on sketches and scales sketches to highly

parallel architectures, such as GPUs. We argue that, in addition to improving accuracy,

skewness in data can also be exploited for reducing contention in high-throughput parallel

execution. Thus, we have an excellent opportunity to harness the high performance of the

throughput-oriented massive architectures if we enable data-aware parallelization of the

sketching algorithms.

Our Contributions. 1) We propose Matryoshka sketching, a nested strategy which

hierarchically exploits skewness present in the data to improve contention when exploiting

fine-grain data parallelism. 2) We coupled our strategy with the popular Count-Min Sketch

algorithm [18]. Compared to a reference Count-Min Sketch implementation on GPU, we

achieve roughly 1.2x to 5.74x throughput improvement on real datasets and 5.95x to 32x

improvement on synthetic datasets following the Zipf distribution. 3) We provide precise

mathematical quantification of contention reduction and also prove the soundness of our

approach. 4) To enable Matryoshka sketching, we propose a lightweight online “heavy-hitter”

detection algorithm that works in practice. 5) Our work also provides empirical evidence

that it is worthwhile to invest in designing parallel sketching techniques for current and
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future generation highly parallel architectures.

2.1 Frequency Estimation Problem

The frequency estimation problem can be formalized as follows: given a stream S consisting

of M unique elements {e1...em} from some universe U , estimate frequency fi, the number

time ei appears in S. Skewed data or stream refers to the frequency distribution, i.e.

distribution of fi being skewed. Many real world frequency distributions follow power

law or Zipf’s law and the corresponding data refers to as “power law data” or “Zipf data”

respectively. Given a parameter α for skewness, fi = ci−α (where c is a constant) for power

law data. With Zipf data, fi = N
iαζ(α)

where N =
∑M

i=1 fi and ζ(α) is Riemann’s zeta

function with value ζ(α) =
∑∞

i=1
1
iα

.
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Figure 2.1: Naive CMS Parallelization Efficiency on GPU

As mentioned earlier, the exact solutions to the frequency estimation problem involves

high computational cost and memory requirement, rendering quite impractical for large data

sizes. People usually resort to approximate solutions with sub-linear memory requirements.

These approximate approaches come in mainly two flavors - a) sketch-based and b) counter-

based.

Hashing-based approximate solutions, such as sketches usually guarantee a small error
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bound with high probability. In a trade-off, they offer high memory efficiency and fast

processing. Due to this nice property and theoretical guarantees, they are a popular choice

for the frequency estimation task. There has been an extensive effort to improve on its

memory efficiency [37] and accuracy [18, 44, 36, 38, 19, 47]. Some very popular sketching

solutions are Count-Sketch [14], Count-Min Sketch (CMS) [18], and multi-stage filters [48].

2.2 Sketch - Overview & Parallelism	

	 	 	 	 +u 	 	 	 	 	

	 	 +u 	 	 	 	 	 	 	

	 	 	 	 	 	 	 +u 	 	

	 	 	 +u 	 	 	 	 	 	

h1() 

h2() 

hl() 

… 

b buckets 
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Figure 2.2: Sketch Data Structure

Briefly, as depicted in Figure 2.2, a sketch data structure consists of l arrays, M1,M2

, ...,Ml, where each array contains b buckets. We have l pair-wise independent uniformly

random hash functions, h1(), h2(), ..., hl(), each associated with its respective array. These

hash functions maps an element e ∈ U to B, i.e. hi : U → B ∀ i ∈ {1, 2, ..., l} where

B represents the set {1, 2, ..., b}. During stream processing, for each element e in stream

S, sketching algorithms compute h1(e), h2(e), ..., hl(e). Then, it performs update u on

the counters of the mapped buckets, M1[h1(e)], M2[h2(e)], ...,Ml[hl(e)] according to the

specifics of the algorithm. During query, an element is hashed the same way and based on

the related l counter values, the algorithm gives an estimate of its frequency. [9] gives a

good summary on different sketching methods.

Count-Min Sketch (CMS). This widely adopted sketching technique, proposed by

Cormode and Muthukrishnan [18], increments the counters in each mapped bucket by the

count associated with each element during performing update u. So, it always overestimates

the counts. During query phase, it reports the minimum of the l counts of the buckets a
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element hashes into. [18] proved that the expected error in frequency estimation using CMS,

is always an overestimate ≤
(
N
b

)
where N is the total number of elements and the error

reduces exponentially with l. Hence, given an error parameter ε and an error probability

δ, if we set l = O(log 1
δ
) and b = O(1

ε
), the error in frequency estimation is ≤ εN with

probability (1− δ).

If we think of designing a parallel sketching algorithm for multi-core CPU, we find that

we have abundant data parallelism. As long as the sketch data structure is reducible [40] or

mergeable [45], we can easily exploit the data parallelism. We can create a separate sketch

data structure for each parallel worker to process different chunks of data independently.

At the end of the sketch update process, we merge the local copies sketches to produce the

final sketch. [45] proved that the merged sketch would give the same error guarantees as the

original sketch we would get from running the algorithm sequentially.

Figure 2.3: Parallel Sketch on Multi-core CPU

This parallelization strategy, as depicted in Figure 2.3, is suggested for CMS in [46] and

used in [44, 40]. However, one thing to note that there are two overheads with this approach

- a) memory overhead of creating local copies of sketches which grows linearly with the

parallelism employed and b) a computational overhead of merging the thread-local copies of

sketches which grows at least logarithmically with the parallelism used. We can easily see,

11



this approach is not scalable for hundreds of thousands of threads, such as in GPU, since the

overhead would forfeit the benefits from parallelism.

2.2.1 Overview of GPU Parallelism

GPU is a throughput oriented architecture with Single Instruction Multiple Thread (SIMT)

parallelism. For ease of discussion, we consider nVidia R© GPUs. The fundamental unit in

GPU is Streaming Multi-processor (SM). Each SM privately owns several streaming pro-

cessors or simple cores, Register File, L1 Cache/Shared Memory. SMs have

in-order issue pipeline and use warp scheduler for scheduling hardware threads.

GPUs have a device wide L2 Cache and high bandwidth Global Memory, shared

across all SMs. In the CUDA parallel programming model, threads are partitioned into

threadblocks. Smallest execution unit is warp, which usually consists of 32 threads.

So, threads inside a threadblock are scheduled in warps. Multiple threadblocks

are assigned to each SM. Thus, Shared Memory and Register File are partitioned

among threadblocks, which in turn restricts the number threadblocks that can be

assigned to a SM. For more details on the GPU architecture, one can look into [2]. A

reference to CUDA programming model can be found in [49].

2.2.2 Problem: Sketch on GPU

Considering feasible parallelization of sketches on GPU, one straight-forward solution is

converting each update to buckets in a sketch to “atomic” update if an atomic operation

can replace the bucket update. This guarantees that if multiple threads try to modify a bucket,

the accesses get serialized and the results are the same as doing the computation sequentially

(we assume the operation being associative, i.e., the order does not influence the final result).

The strategy is shown in Figure 2.4. The sketch data structure is shared among threads.

Since we want to leverage data parallelism, different threads process different shards of

data in parallel. In Figure 2.4, thread T1 and T3 encounter the same element e1 and try to
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Figure 2.4: Parallel Sketch on GPU

modify the same bucket in row 1. The red-colored update u refers to the updates getting

serialized. On the other hand, thread T2 and T4 do not face any contention and thus perform

their respective updates in parallel, represented as green color update u.

In this strategy, we lose parallel performance for the updates which get serialized. Clearly,

this strategy would be helpful if the number of serialized accesses is smaller compared

to independent or parallel accesses. However, in the case of skewed data following Zipf

or power-law frequency distribution for elements, the situation is exactly the opposite.

The majority of the active threads encounter “heavy-hitters”, and their attempts to update

the respective counters get serialized. Consequently, the performance degradation due to

contention becomes dire.

Using this strategy, we implement CMS on GPU. Figure 2.1 represents its performance

analysis with Kosarak [10] dataset on nVidia R© V100 GPU. As we can see from the

values of the GPU performance metrics, the efficiency of this approach is particularly

bad. One important thing to notice in Figure 2.1 is that the atomic updates are facing

serious contention which results in retrying the atomic updates many times before getting
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successful. It directly correlates to our hypothesis that the contention will be very high

on Zipf or power-law data. This observation motivates us to design an efficient parallel

sketching strategy for highly parallel architectures.

2.3 Our Proposal: Matryoshka

As mentioned in Section 2.2.2, one of the main source of inefficiency in atomic update

based parallel sketching approach is the heavy contention on atomic transactions. Now,

let us think of a skewed stream. If a large number of threads are working concurrently

on the stream, chances are many threads will encounter “heavy hitters”. Apparently, the

number threads encountering a common element will be proportional to the frequency of

that element in the stream. When these threads try to update the same bucket corresponding

to the common element, they face contention. Seemingly, the main sources of contention

are the “heavy hitters” since they have the highest frequencies in the stream.

An obvious question followed after the above insight is that how we can address this

skewness in a highly parallel system where it is impractical, or worse, impossible to make

local copies of the sketch. Fortunately, most data follow power law [35], and the number of

“heavy hitters” is much smaller compared to the total size of the element set. So, conceptually,

if we create local copies of the buckets for only these “heavy hitters”, we will be able to

avoid a significant amount of contention.

With the above-mentioned strategy in our hand, we face two stumbling blocks - 1)

how do we identify “heavy hitters” and make local copies of the respective buckets in a

one-pass frequency estimation algorithm, and 2) even if we are able to identify “heavy

hitters”, how to determine the cut-off point in the frequency distribution to define the “heavy

hitters” set. We target the second problem in the next section and address the first problem

in Section 2.3.2.
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2.3.1 Matryoshka - Hierarchical Exploitation of Skewness

A “heavy hitters” set HH contains all elements whose frequency is greater than some

threshold frequency fk. The size of HH or the number of “heavy hitters” in HH is

determined by the position of fk in the frequency distribution. Sincefk is generally high, we

have a small number of “heavy hitters” in HH . As a result, making copies of corresponding

buckets is very feasible. However, unless the frequency is ultra-skewed, we will be missing

many elements with moderately high frequencies, and thus, we will fail to avoid a great

portion of contention in parallel execution. Whereas, if we choose fk to be moderately low,

we will be able to accommodate most of the “heavy hitters” of interest. But, the size of

HH may become too large for us to make local copies.

A very similar problem was faced by researchers in the computer architecture community

when they tried to bridge the gap between memory speed and processor speed. As a practical

and effective solution, memory cache system was invented. We take inspiration from this

hierarchical memory system. In theory we can have n number of “heavy hitters” sets

HH1, HH2, ..., HHn where HHi ⊂ HHj if i < j ∀ i, j ∈ {1, 2, ..., n}. We can then

make Ci local copies of HHi, where Ci > Cj if i < j ∀ i, j ∈ {1, 2, ..., n}. The number of

threads sharing a local copy at i-th level is Ti, where Ti < Tj if i < j ∀ i, j ∈ {1, 2, ..., n}.

A sample adoption of the strategy is depicted in Figure 2.5. An interesting observation,

the cache system is designed for latency, whereas we are using similar kind of hierarchical

system to improve throughput.

The data structure we choose for HH can be called a Counting Bloom Filter with one

hash function or a sketch with only one row. However, each bucket not only has a counter

for frequency estimation, but also an id field for identifying the corresponding “heavy

hitter”. If the elements require more bits than the number of bits assigned to id, we can

store a hash fingerprint in the id.

Algorithm 1 presents pseudocode for updating CMS using our proposed Matryoshka

sketching strategy. For ease of discussion and algorithmic representation, we assume two
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Figure 2.5: Matryoshka Sketching Strategy

levels of HH , i.e. we have HH1 and HH2. Let HH1 and HH2 contain b1 and b2 buckets

respectively. The hierarchy here is as follows: HH1 → HH2 → Base Sketch (CMS). If the

base sketch contains b buckets per row, then b1 << b2 << b.

In the beginning, we initialize CMS and HH sets. We set the count fields in all the

buckets in CMS and HH sets to zero. Now, assuming the identity of the “heavy-hitters” are

given, i.e., id fields of HHs are already set, we start processing elements from the given

stream. After applying the first hash function h1(), if we find that the id of the element

matches the id in the corresponding bucket in HH1, we increment the respective counter in

HH1. If the id check fails, we do the same for HH2. After checking HH2, if there is no

match in id, we go to CMS and perform the regular CMS update procedure. After the stream

processing completes, we need to fold the counts of the elements tracked by HH sets to

their respective counters in CMS. For that, we first fold the values of HH1 to HH2. This

phase presented in lines 16 to 19 in Algorithm 1. For ease of presentation and correctness,

we have mentioned that we first merge the C1 copies of HH1 in groups of C1

C2
and then

fold the counts from the merged HH1s to the respective HH2 copy among the C2 copies.

However, in actual computation, this is done by a group of parallel threads, and they directly
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Algorithm 1: Matryoshka Sketching
Data: Input stream S
Result: Updated Count-Min Sketch CMS

1 b←− d e
ε
e //ε is error parameter

2 l←− log 1
δ
//δ is error probability

3 CMS ←− l×b counters
4 HH1.count[i]←− 0 ∀i ∈ {1, 2, .., b1}
5 HH2.count[i]←− 0 ∀i ∈ {1, 2, .., b2}
6 //Assume HH1.id and HH2.id are given
7 for e ∈ stream S do
8 if e == HH1.id[h1(e)%b1] then
9 HH1.count[h1(e)%b1]←− HH1.count[h1(e)%b1] + 1

10 else if e == HH2.id[h1(e)%b2] then
11 HH2.count[h1(e)%b2]←− HH2.count[h1(e)%b2] + 1
12 else
13 for i ∈ 2, 3, ..., l do
14 calculate hi(e)
15 CMS[i][hi(e)]←− CMS[i][hi(e)] + 1

16 perform reduction on batch of C1

C2
copies of HH1

17 for j ∈ 1, 2, ..., b1 do
18 bucket←− h1(HH1.id[j])%b2
19 HH2.count[bucket]←− HH2.count[bucket] +HH1.count[j]

20 perform reduction on C2 copies of HH2

21 for j ∈ 1, 2, ..., b2 do
22 for k ∈ 1, 2, ..., l do
23 bucket←− hk(HH2.id[j])
24 CMS[k][bucket]←− CMS[k][bucket] +HH2.count[j]

25 return CMS

update the counts in HH2 through atomics. We fold the counts from HH2 to CMS in

similar fashion.

2.3.2 Head-first Scan - Light Weight Heavy Hitter Detection

Now that we have Matryoshka sketching strategy, which exploits “heavy hitters” to reduce

contention in a massive parallelism scenario, the critical part left is “heavy hitters” iden-

tification. It is indicated in line 6 of Algorithm 1 where we mention that the identities of

the “heavy hitters” are given. As discussed in the beginning of this chapter, we have a rich
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Algorithm 2: Head-first scan
Data: Input sub stream Ssub
Result: Updated HH1 and HH2

1 HH1.count[i]←− 0 ∀i ∈ {1, 2, .., b1}
2 HH2.count[i]←− 0 ∀i ∈ {1, 2, .., b2}
3 for e ∈ stream Ssub do
4 CMS[1][h1(e)]←− CMS[1][h1(e)] + 1
5 if HH2.count[h1(e)%b2] < CMS[1][h1(e)] then
6 HH2.count[h1(e)%b2]←− CMS[1][h1(e)]
7 if HH2.id[h1(e)%b2] 6= e then
8 HH2.id[h1(e)%b2]← e

9 do rest of the CMS update

10 for r ∈ b2
b1

do
11 Find max among HH2.count[r ∗ b2b1 : (r + 1) ∗ b2

b1
]

12 place corresponding HH2.id entry in HH1.id[r]

13 return HH1 and HH2

literature in improving the accuracy of sketches by separately handling “heavy hitters”. For

example, we can employ the recurrent neural network based strategy mentioned in [19] for

a robust solution or a table look-up type strategy used in [36] for quick identification.

Additionally, in this work, we propose a lightweight online strategy for “heavy hitters”

detection to aid Matryoshka sketching in improving parallel performance for frequency

estimation. We call it head-first scan. Our aim here is not to give another competing “heavy

hitters” detection algorithm. Rather, we want to design a very lightweight technique to

keep thread divergence (a big performance bottleneck in GPU) as low as possible. If the

streaming data is not adversarial and the data is uniformly random, i.e., it is not towards

sorted or clustered type data, then we can use head-first scan for our purpose of identifying

“heavy hitters” to apply Matryoshka sketching.

As we can see in Algorithm 2, for the small portion of a stream on which we use

head-first scan, we perform the regular CMS updates for all elements. For an element, after

doing the update in CMS for the first row, we check whether the corresponding count in

HH2 is less than the count in CMS. If the check succeeds, we set the count of HH2 to

that of CMS. Then we check if the corresponding id field of HH2 bucket matches with the
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current element id. If not, we replace the id field with the current element id. At the end

of substream processing, we divide the range of HH2 into equal-sized slots of number the

same as the range of HH1. We take the max counts and corresponding ids from these slots

to fill HH1 fields.

The idea is to run the head-first scan algorithm for a small subset of data to build the

HH sets and then rely on the HH set for the rest of the data. There can be two strategies

- a) run head-first scan at the very beginning for few iterations and then use the “heavy

hitters” info, and b) periodically run head-first scan for few iterations to build HH and then

use this HH for several iterations. A pseudocode for head-first scan algorithm is given in

Algorithm 2. We carried out extensive experiments on real datasets along with synthetic

datasets generated using Zipf distribution and found that our head-first scan method works

in practice. In the worst case, we can always resort to the sketch itself periodically to identify

the heavy hitters.

2.4 Theoretical Analysis

In this section, we provide some theoretical analysis and fundamental properties of our

approach.

2.4.1 Matryoshka Sketching Analysis

Theorem 2.4.1. The heavy hitter sets, i.e., HH sets in Matryoshka sketching do not have

any error in their counter array, i.e., HH.count.

Proof: Since, HH sets contain ids of the “heavy hitters” they are tracking, a counter

only gets incremented when the corresponding id matches. Hence, the counters embedded

in HH buckets give an accurate count of the number of times the element is observed.

Theorem 2.4.2. Matryoshka sketching does not introduce any additional errors; it gives

the same error guarantee as the base sketching algorithm does.
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Proof: As Theorem 2.4.1 proves that the counters in HH sets contain an accurate

measure of the partial counts, when Matryoshka strategy adds these partial counts to all

counter arrays of the base sketch, it does not introduce any error. The counts in base

sketch are exactly the same as they have been without applying Matryoshka sketching. This

theoretical result is also confirmed by the accuracy results in Section 2.6.3.

Definition 2.4.1. Contention. We define “contention” as the situation where more than one

parallel worker (for example, threads) encounters same unique element from a stream and

thus the attempts to modify the corresponding bucket in the shared sketch data structure gets

linearized for correctness (for example, using an atomic operation). We define “contention

factor” as the product of the number of parallel workers participating in the contention and

the expected value of the contention.

Definition 2.4.2. Parallel Update. Here “T-way data parallel” update means T parallel

counter updates are being performed at a given time instance. Naturally, this number will

be less than or equal to the number of active threads.

Theorem 2.4.3. A T -way data parallel CMS update, over a stream of lengthN consisting of

M unique elements {e1, e2 , .., eM} with frequencies {f1, f2, ..., fM}, encounters contention

of factor
∑T

j=2

∑M
i=1 j ×

(
T
j

)
× (fi/N)j without considering the hash collisions in CMS.

Proof: Assuming the stream is uniform, the probability of any 2 threads among T

threads processing the same element ei is (fi/N)2. As there can be
(
T
2

)
such scenarios, the

expected value for contention in this case is:

(
T

2

)
× (fi/N)2 (2.1)

If we consider the situation for all elements in {e1, e2, .., eM} instead of a specific

element ei, the expected value from Equation 2.1 becomes:

M∑
i=1

(
T

2

)
× (fi/N)2 (2.2)
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Now, the degree of contention is determined by the number of threads participating in

the contention. So, the contention factor here will be:

2×
M∑
i=1

(
T

2

)
× (fi/N)2 (2.3)

We can have contention for any scenario where two or more threads are processing the

same element. Hence, we can have contention among 2 to T threads here. Consequently,

the complete contention factor becomes:

T∑
j=2

M∑
i=1

j ×
(
T

j

)
× (fi/N)j (2.4)

Theorem 2.4.4. Applying Matryoshka sketching using one level of HH with K buckets and

C copies on top of CMS in the scenario mentioned in Theorem 2.4.3, reduces the contention

factor by
∑T

j=2

∑K
i=1 j ×

(
T
j

)
× (fi/N)j − C ×∑ T

C
j=2

∑K
i=1 j ×

(
T
j

)
× (fi/N)j where

{f1, f2, ..., fk} represents the approximate top-K frequencies.

Proof: As each HH has K buckets, they are tracking K unique elements. Also, we

have C copies of HH . So, a group of T
C

threads accessing each HH . Replacing M with K

and T with T
C

in Equation 2.4, we get the contention for each HH:

T
C∑
j=2

K∑
i=1

j ×
(
T

j

)
× (fi/N)j (2.5)

Since,HH tracks approximately the top frequent elements, {f1, f2, ..., fk}will represent

the approximate top-K frequencies from set {f1, f2, ..., fM}.

Assuming a simplification that all C copies of HH are tracking same K elements, the

accumulated contention factor from all HH will be:

C ×
T
C∑
j=2

K∑
i=1

j ×
(
T

j

)
× (fi/N)j (2.6)
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Apart from the K elements tracked by HH , all other elements will contribute to the

contention factor the same way as they did in Equation 2.4. So, the contention factor for

CMS will be:
T∑
j=2

M∑
i=k+1

j ×
(
T

j

)
× (fi/N)j (2.7)

To get the contention factor reduction due to application of Matryoshka sketching

strategy, we sum equation 2.6 and 2.7, and then subtract it from Equation 2.4, which is:

T∑
j=2

K∑
i=1

j ×
(
T

j

)
× (fi/N)j − C ×

T
C∑
j=2

K∑
i=1

j ×
(
T

j

)
× (fi/N)j (2.8)

Theorem 2.4.5. For Zipf data, the upper bound on contention reduction from Matryoshka

sketching becomes T (2T−1 −2(T/C−1)).

Proof: If we consider Zipf data with parameter α, fi in Equation 2.8 becomes N
iαζ(α)

where ζ(α) is Riemann’s zeta function and ζ(α) =
∑∞

i=1
1
iα

. After replacing the value of fi

and approximating
∑K

i=1
1
iα

as ζ(α), Equation 2.8 becomes:

T∑
j=2

j ×
(
T

j

)
− C ×

T
C∑
j=2

j ×
(
T

j

)
(2.9)

After replacing the values for the summation over binomial coefficients, Equation 2.9

becomes:

T ×
(
2T−1 − 1

)
− C × T

C

(
2
T
C
−1 − 1

)
(2.10)

After simplification of Equation 2.10, the final expression we get for contention factor

reduction is:

T (2T−1 − 2(T/C−1)) (2.11)

Remark. We can apply Theorem 2.4.3 to 2.4.5 on HH set at any level of an arbitrarily

deep Matryoshka sketching strategy by replacing CMS with the HH set situated just below

the level we are considering.
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Theorem 2.4.6. Assuming t1, t2 and tS as the update time for HH1, HH2, and CMS

respectively, the average update time for Matryoshka sketching is (t1
∑b1

i=1 fi+t2
∑b2

i=b1+1 fi

+tS
∑M

i=b2+1 fi)/N where t1 � t2 � tS .

Proof: If we assume we have perfect information on top frequent elements, the elements

tracked by HH1 will be top frequent b1 elements in the stream. Similarly, HH2 will track

top frequent b2 elements. Rest of the elements will be handled by CMS. Consequently, the

update time for b1 elements will be t1. Since HH1 ⊂ HH2, (b1 + 1)th to b2th most frequent

elements will have update time associated with HH2, which is t2. The rest of the elements,

i.e. (b2 + 1)th to M th elements (assuming M unique elements in the stream) will update

CMS counters with update time tS . Now, to get the average update time per element, we

need to perform a weighted average of the respective update times based on the frequency

of elements. Hence, the average update time will be:

(
t1

b1∑
i=1

fi + t2

b2∑
i=b1+1

fi + tS

M∑
i=b2+1

fi

)
/N (2.12)

Theorem 2.4.7. Considering Zipf data with parameter α, the average update time for

Matryoshka sketching becomes t1 + t2
ζ(α)

∑b2
i=b1+1 i

−α + tS
ζ(α)

∑M
i=b2+1 i

−α.

Proof: For Zipf data with parameter α, the value for frequency fi becomes N
iαζ(α)

where ζ(α) =
∑∞

i=1 i
−α. Replacing fi with this value in Equation 2.12 and approximating∑b1

i=1 i
−α as ζ(α), the average update time becomes:

t1 +
t2
ζ(α)

b2∑
i=b1+1

i−α +
tS
ζ(α)

M∑
i=b2+1

i−α (2.13)

2.4.2 Head-first Scan Analysis

Theorem 2.4.8. For sequential version of Head-first Scan on Zipf or power law data, the

average accuracy in HH2 is
∑b2

i=1

(
i
b2

)(b2−i+1) (
1− i−1

b22

)
assuming random order arrival
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in input data and suitable sample size.

Proof: If we assume random arrival order in input data and a sufficiently large sam-

ple size, Head-first Scan encounters a similar frequency distribution (assumed Zipf with

parameter α) and the same b2 most frequent elements, as the complete data.

Now, the accuracy for HH2 can have b2 distinct values, i.e. { 1
b2
, 2
b2
, ..., 1} with respec-

tively 1, 2, ..., b2 tracked elements being accurate. Considering Zipf or power law data and

assuming the case of no collisions in the hash buckets of CMS, the probability associated with

these accuracy values are respectively
(

1
b2

)b2−1

,
(

1− 1
b22

)
∗
(

2
b2

)(b2−2)

, ...,
(

1− (b2−1)

b22

)
,

ignoring higher order terms of b2. So, the expected value for accuracy in HH2 is:

b2∑
i=1

(
i

b2

)(b2−i+1)(
1− i− 1

b2
2

)
(2.14)

If we consider collisions in the hash buckets of CMS, the load factor for each bucket is

(M/b). Picking an element e will be ∝ f(e)/
∑M/b

i=1 f(ei) where f(e) represents frequency

of element e. As we are dealing with most frequent elements from Zipf data in HH2, this

ratio becomes 1 for average case. Hence, the average accuracy is the same as Equation 2.14.

Theorem 2.4.9. Considering HH2, the parallel version of Head-first Scan will have the

same accuracy as the sequential version if each threadblock gets a minimum sample size of

(ζ(α)(b2 + 1)α)2.

Proof: Using Hoeffding’s inequality, for θ-heavy hitters, a sample size of (1/θ2) is

required. Here, HH2 tracks b2 most frequent elements, or in other words, θ corresponds

to (b2 + 1)th frequency. Hence, a loose lower bound on the sample size for HH2 will

be (ζ(α)(b2 + 1)α)2. We can ensure that the parallel version of Head-first Scan has same

accuracy as the sequential version, if for each copy of HH2, the group of threads building

HH2, encounters the minimum sample size. Hence, the minimum sample size for each

threadblock will be (ζ(α)(b2 + 1)α)2.

Remark. One can do a similar analysis for HH1.
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2.5 Implementation

To show the effectiveness of our parallel sketching strategy on massively parallel architecture,

we have implemented our approach Matryoshka sketching along with head-first scan for

nVidia R©GPUs using CUDA. We choose CMS as our base sketching algorithm on which we

apply Matryoshka. The main reason behind this decision was to show improvement on a

widely adopted sketching algorithm and CMS fits this criterion well.

Matryoshka Mapping on GPU. To implement Matryoshka sketching on GPU, we

mapped the first level of “heavy hitters” set, i.e. HH1 to GPU Register File. So, each

thread will have its own HH1 copy and there is no contention in updating counters in HH1.

The next level, HH2 is mapped to GPU Shared Memory. So, each threadblock

will have its own HH2 summary and the group of threads inside a threadblock will

share HH2. Finally, the CMS buckets map to GPU Global Memory and shared by

all the threads system wide. The b1 and b2 parameters are constrained by GPU architec-

ture parameters. From a purely parallel algorithm point of view, the higher the values

of b1 and b2, the better. So, once we fix the target GPU occupancy, we can set b1 to be

(register-size/(maximum-number-of-threads × occupancy))/size-of-each-bucket-in-HH1.

Similarly, we can set b2 to be (shared-memory-size/number-of-thread-blocks-per-SM)/

size-of-each-bucket-in-HH2.

We can see here, the multiple levels of HH data structures are important for exploiting

parallelism hierarchies in GPUs. A single HH set at the Register File level is sub-

optimal for a GPU, because increasing the registers in a thread can decrease the number

of threads that can run in parallel in a threadblock. Likewise, a single HH set at the

Shared Memory level can limit the number of threadblocks that can run in a SM

while incurring more serialization overhead from Shared Memory atomics.
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2.6 Evaluations

2.6.1 Experimental Setup

2.6.1.1 Hardware Configuration

We carried out all our GPU experiments on a machine with nVidia R© Tesla R© V100 GPU.

This GPU is based on VoltaTM GV100 architecture which has 80 Streaming Multiprocessors

(SM), 16GB High Bandwidth Memory as main memory, Shared Memory per SM con-

figurable up to 96KB, and 256KB Register File per SM. The operating system of the

machine is Red Hat Enterprise Linux 6.7. On the other hand, all our CPU experiments were

carried out on a machine with Intel R© Xeon R© Platinum 8180 CPU (Skylake architecture)

having 28 cores @ 2.5GHz with maximum Turbo frequency being 3.8GHz. The machine

has a total of 756 GB DRAM and runs on CentOS Linux 7 operating system.

2.6.1.2 Software Configuration

We implemented our work in C++ using CUDA [49] APIs for GPU code. Codes for all

the methods we compare with are also in C++. In the case of parallel CMS on CPU, we

use OpenMP for exploiting multi-threaded shared memory parallelism. We incorporate as

many common frameworks (such as hash functions) as possible, across the implementations,

to ensure the comparisons are meaningful. Finally, we compile our GPU codes using

NVCC version 9.1.85 and for compilation of CPU codes, we use GCC version 4.8.5 with O3

optimization level.

2.6.1.3 Datasets

In our experiments, we have used synthetic datasets as well as real datasets. The details of

the data sets are as follows:

Zipf - It is synthetic stream data generated following Zipf distribution with the skewness

parameter varying from 1.25 to 2 with steps of 0.25. These datasets contain 720 million
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items.

Kosarak [10] - An anonymized click-stream data of a Hungarian online news portal. It

is a relatively small dataset with around 8 million elements, of which 41720 is unique.

Webdocs [10] - This data set is built from a spidered collection of web html documents

and contains roughly 300 million items belonging to a set of 5.3 million unique items.

CAIDA - It is an internet traffic dataset from CAIDA UCSD Anonymized Internet

Traces Dataset 2016 [11]. It contains IP packets with source IP addresses and destination IP

addresses. Our dataset includes 472 million items comprising 6.6 million unique items.

Criteo - Criteo search conversion log dataset [12] contains anonymized logs from

Criteo Predictive Search. Each entry includes conversion feedback and feature values,

such as product information, timestamp of click, user characteristics for clicked display

advertisements sampled over a two month period from Criteo live traffic data. It contains

near 398 million elements composed of 23 million unique elements.

Figure 2.6a, 2.6b, 2.6c, and 2.6d represent the frequency distributions of elements in

Kosarak, Webdocs, CAIDA, and Criteo datasets respectively.

2.6.1.4 Metrics for Empirical Analysis

We have mainly used three metrics for our empirical study in this work, namely Insertion

Throughput (Mips), Query Throughput(Mqps), and ARE. We give the details of these

metrics here. Metrics used in performance counter based performance analysis is

given separately in the respective location (Section 2.6.5) of discussion to maintain locality

of reference.

Insertion Throughput(Miqs). This is a performance measurement metric for insertion

or update operation in sketches. As sketches require one pass over the data to have estimated

counts for all the elements, the performance for this phase can be measured in terms of time

spent. If we want to compare the performance across different datasets, it is meaningful to

normalize the performance with respect to data size or the total number of items. Throughput
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Figure 2.6: Frequency distributions of items in different real datasets (presented again for
ease of reference)

is a metric inverse of time spent per item. Specifically, we measure the insertion or update

throughput as millions of insertions per second or Mips.

Query Throughput(Mqps). Similar to the insertion phase, we measure the performance

of the query phase in sketching algorithms in terms of throughput or more specifically

millions of queries processed per second (Mqps).

ARE. To compare accuracy of methods, the error metric we used in our experiments is

average relative error or ARE. Relative error for a frequency estimation query is given as the

difference between the estimated frequency (f̂ ) and the true frequency (f), divided by the

true frequency, or in other words the ratio presented by |f̂−f |
f

. Hence, ARE can be defined

as follows: for a query stream S consisting of Q query elements {e1, e2, ..., eQ}, the ARE
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for frequency estimation will be 1
Q

∑
ei

|f̂i−fi|
fi

∀ i ∈ {1, 2, .., Q}, where f̂i is the estimated

frequency for ei and fi is the true frequency of ei.

2.6.1.5 Methods of Comparison

For a comparative evaluation of our method, we include the following sketching approaches:

CMS CPU. An implementation of basic sequential CMS on CPU.

HeavyGuardian CPU. This method refers to the HeavyGuardian [38] algorithm on

CPU. To the best of our knowledge, HeavyGuardian gives the state-of-the-art throughput

for Sketching-based methods for single-thread CPU execution. So, we compared our

performance results against HeavyGuardian to get a notion of performance improvement

over the best sequential CPU method.

CMS Multi-thread CPU. A shared-memory based multi-threaded parallel implementa-

tion of CMS on CPU. The strategy used for exploiting parallelism here is the first approach

mentioned in Section 2.2, i.e., each thread with its local copy of CMS, processes different

chunks of data. In the end, thread-local copies of sketches get merged to produce final CMS.

CMS GPU. Reference implementation of vanilla CMS on GPU following the paralleliza-

tion strategy mentioned in section 2.2.2.

MatryoshkaCMS GPU. It is our Matryoshka sketching strategy with CMS as the base

sketch. It uses head-first scan to build the heavy-hitter sets in Matryoshka sketching. The

implementation details are in Section 2.5.

2.6.2 Performance Results

Here, we present throughput based performance evaluation of the methods on the real and

synthetic datasets mentioned in Section 2.6.1.3. For consistency of performance comparison,

we set the sketch parameters as follows - 1) the number of buckets or b set to 32K and 2)

the number of rows or l set to 8. For all the graphs referenced in this section, the error

bars represent the standard deviation in performance results. We repeated the experiments
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for each scenario 10 times and then took the average and standard deviation of the results.

As for execution, both CMS CPU and HeavyGuardian CPU run sequentially on Intel R©

Xeon R© 8180 CPU. We execute CMS Multi-thread CPU with 28 threads on the same CPU.

For GPU based approaches, i.e. CMS GPU and MatryoshkaCMS GPU, we use nVidia R©

Tesla R© V100 GPU.

2.6.2.1 Performance on Synthetic Datasets

Figure 2.7 shows the comparison of achieved throughput in sketch update computation

on Zipf datasets with varying skewness of 1.25, 1.5, 1.75, and 2. For skewness 1.25,

MatryoshkaCMS GPU attains roughly 5.95x, 28x, 251x, and 438x higher throughput com-

pared to respectively CMS GPU, CMS Multi-thread CPU, HeavyGuardian CPU, and CMS

CPU. With 1.5 skewness, the performance improvement is 14x, 45x, 176x, and 655x over

respectively CMS GPU, CMS Multi-thread CPU, HeavyGuardian CPU, and CMS CPU.

The same throughput improvements become 24x, 69x, 241x, and 925x when we increase

the skewness to 1.75. Finally, for the extremely skewed Zipf dataset with skewness 2,

the respective performance gains are 32x, 82x, 253x, and 1090x. The large improvement

gains clearly show the effectiveness of our solution for sketch updates with skewed data on

massively parallel architectures.

Furthermore, we see from Figure 2.7, as the skewness increases from 1.25 to 2, the

performance of MatryoshkaCMS GPU increases by a factor of 2.7x. In fact it consistently

gives better throughput with increasing skewness. Whereas, the performance of CMS GPU

monotonically deteriorates as the skewness increases from 1.25 to 2. This empirical evidence

backs up our intuition behind the design of our hierarchical sketching strategy, i.e., CMS

GPU faces higher contention with increasing skewness, while Matryoshka exploits the

skewness to give better performance. CMS CPU and CMS Multi-thread CPU both show

similar performance over varying skewness because their execution does not depend much

on skewness. On the other hand, HeavyGuardian CPU shows a small improvement in
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Figure 2.7: Performance comparison for updates on Zipf datasets

throughput as the skewness increases since it exploits skewness for performance.

We present the comparison of query processing throughput on Zipf datasets with varying

skewness of 1.25, 1.5, 1.75, and 2 in Figure 2.8. We consider query tasks as reading an

array of elements and returning an array of corresponding estimated frequencies. Since this

task involves a very regular access pattern for elements and frequency array and as we are

only reading from the sketch (thus no contention for updating buckets), we have the same

query kernel for both naive CMS GPU and MatryoshkaCMS GPU. So, in Figure 2.8, we see

almost the same throughput for both of them. Now, in comparison to CMS Multi-thread

CPU, we get 35x, 47x, 53x, and 52x higher throughput respectively for the skewness of

1.25, 1.5, 1.75, and 2. The improvements are respectively 260x, 148x, 211x, and 219x for

HeavyGuardian CPU, and for CMS CPU, we have 551x, 578x, 693x, and 779x increase in

throughput. This shows the potential of performance gain from GPU scale parallelism when

we have regular memory access patterns as in query processing.

2.6.2.2 Performance on Real Datasets

In Figure 2.9, we present update throughput of the methods on four real datasets, namely

Kosarak, Webdocs, CAIDA, and Criteo. On Kosarak dataset, MatryoshkaCMS GPU gives
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Figure 2.8: Performance comparison for query on Zipf datasets

1.96x, 30x, 90x, and 183x higher insertion throughput compared to CMS GPU, CMS Multi-

thread CPU, HeavyGuardian CPU, and CMS CPU respectively. Kosarak is a relatively

small dataset and our significant performance gain over other methods show that our

solution is quite effective on relatively small size of data. Now, for the same comparison on

Webdocs dataset, we see throughput improvements of factor 1.5x, 15x, 151x, and 250x from

MatryoshkaCMS GPU. Webdocs is a moderately large size dataset among the real datasets we

consider in this work and our methods performs well on it, as evident from the throughput

results.

If we consider CAIDA dataset, we find in Figure 2.9 that, MatryoshkaCMS GPU attains

roughly 1.2x, 12x, 176x, and 193x improvement in update throughput over CMS GPU, CMS

Multi-thread CPU, HeavyGuardian CPU, and CMS CPU respectively. CAIDA is a relatively

big dataset, and as mentioned in [19], the heavy-hitters change dynamically over the data

length, which corresponds to the time of collection of internet traffic. Due to this dynamic

nature of heavy-hitters, our Head-first Scan is less effective on this dataset. Hence, we get

relatively lower performance gain over CMS GPU compared to other datasets. However,

we still get large improvements over CPU based methods, including the state-of-the-art

HeavyGuardian. For Criteo dataset, the same comparison shows a stark insertion throughput
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Figure 2.9: Performance comparison for updates on real datasets

improvement of 5.74x, 25x, 272x, and 290x over the respective methods as mentioned in

the previous comparison. Criteo is also a relatively big dataset and our large performance

gain shows that our solution works great on large data if we have relatively small dynamic

changes in heavy-hitters.

Figure 2.10 presents the comparison of throughput in query processing phase on real

datasets. As mentioned and reasoned in Section 2.6.2.1, we have same query processing

kernel in both MatryoshkaCMS GPU and CMS GPU. So, similar to Figure 2.8, we also

see almost same query throughput here for both the methods on different real datasets.

Compared to query throughput of CMS Multi-thread CPU, HeavyGuardian CPU, and CMS

CPU respectively, we get 31x, 61x, and 236x improvement on Kosarak dataset, 15x, 67x,

and 199x improvement on Webdocs dataset, 15x, 183x, and 256x gain on CAIDA dataset,

and finally, a factor of 25x, 291x, and 444x higher throughput on Criteo dataset. This shows

the impressive performance gain that can be obtained in query processing by exploiting

massive parallelism on GPU.

One important thing to note from all the performance results, even though the state-of-

the-art HeavyGuardian beats vanilla sequential CMS CPU in all the cases, both parallel

versions of CMS, i.e. CMS Multi-thread CPU and CMS GPU surpasses it in performance
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Figure 2.10: Performance comparison for query on real datasets

in a significant manner. We recognize that, from the perspective of errors in frequency

estimation, there is a large gap between HeavyGuardian and CMS. However, from the

performance viewpoint, it reveals an important point - the significance of designing parallel

algorithms for achieving practical performance on current and future generation computing

architectures.

2.6.3 Accuracy Comparison with CMS

Our metric of accuracy measurement is average relative error or ARE. Details of this metric

is given in Section 2.6.1.4. Figure 2.11 gives the accuracy comparison between CMS and

MatryoshkaCMS GPU on Zipf data with varying skewness of 1.25, 1.5, 1.75, and 2. Similarly,

Figure 2.12 presents the same comparison on four real datasets - a) Kosarak, b) Webdocs, c)

CAIDA, and d) Criteo. In Section 2.4, we theoretically shown that Matryoshka sketching

strategy does not incur any extra error, it produces the same error as the base sketch. With

the base sketch being CMS here, we wanted to validate our theoretical results with empirical

study. As both the Figures 2.11 and 2.12 indicate, MatryoshkaCMS GPU and CMS produces

same ARE for all the synthetic and real datasets. This is a great property since, we do not

sacrifice on the accuracy of the base sketch, and yet achieves much higher throughput.
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2.6.4 Effects of Parameters

In this section, we present the sensitivity of our approach on two main sketch parameters,

specifically - 1) number of buckets or b and 2) number rows or depth or l.

The results in Figure 2.13 shows the effects we get by varying b. For this experiment,

we used the Zipf data with skewness factor of 1.5. From Figure 2.13, we see that the

ARE reduces significantly as we increase b while the insertion throughput remains quite

similar. This is helpful since we can reduce the error by increasing b while maintaining the

performance.
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Figure 2.13: Effect of b
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Figure 2.14: Effect of l

Figure 2.14 represents the effect of depth parameter (l) of sketch. We used Zipf data

with a skewness factor of 1.5 for this experiment too. Here, ARE reduces as we increase

l while the update throughput degrades with increasing l. As there is a trade-off between

accuracy and throughput here, we have to choose a suitable point based on our requirements.

2.6.5 Performance Analysis on GPU

In Section 2.2.2, we showed and discussed inefficiencies in terms of GPU performance

metrics in a reference CMS implementation on GPU. Now, to give reasoning behind our

immense throughput gain, we present the percentage improvement we achieve in terms

of various GPU performance parameters by applying Matryoshka sketching on CMS. The
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resulting plot is in Figure 2.15. The performance metrics are for the update phase on the

Kosarak dataset. We collected the GPU performance metrics using nvprof on V100 GPU.

“Atomic Transaction Reduction” is derived from the metric atomic transactions.

We defined it as the percentage reduction in atomic transactions in MatryoshkaCMS

GPU from CMS GPU. atomic transactions refers to serialized access to a shared

value for correctness. Reduction in atomic transactions relates to the contention

reduction mentioned in Theorem 2.4.4. As we are hierarchically reducing the number

threads accessing a shared counter, the number of atomic accesses for counter updates

becomes lower.

“Executed IPC” is derived from ipc metric which refers to instructions executed per

cycle. This a popular performance metric as it indicates the efficiency of execution. The

more stalls a computing resource faces, the less ipc becomes for the execution. Close

to 3x improvement on “Executed IPC” means our MatryoshkaCMS GPU is far efficient than

CMS GPU from the execution viewpoint.

“Issue Slot Utilization” refers to the same nvprof metric issue slot utilization.

It indicates the number of cycles the warp scheduler issued at least one instruction and

relates to how efficiently the units in GPU are being utilized. Almost 2.5x improvement on
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this metric shows that our method uses the GPU much more efficiently.

“DRAM Read Throughput” refers to the same nvprof metric dram read throughput,

which indicates how much bandwidth of the device memory is being used on average. Fig-

ure 2.15 indicates that our MatryoshkaCMS GPU is able to use twice as much of the memory

bandwidth of the HBM2 device memory of V100 GPU as used by CMS GPU.

“Eligible Warps per Active Cycles” is the number of warps that can issue instructions

at a given cycle. It has same value as the metric eligible warps per cycle. There

can be several reasons for a warp becoming stalled (opposite of eligible). However, one

main difference between our approach and the reference CMS is the efficiency of memory

operations. So, a 2x improvement here indicates the effectiveness of our method in the

reduction of stalled memory operations.

2.7 Related Works

We give a brief overview of some related works here.

Exploiting Skewness for Accuracy of Sketches. Interestingly, most of the works on

accuracy improvement of sketching techniques, take into consideration the skew present in

the frequency distribution of elements. For example, Augmented sketch [36] adds a filtering

stage before the original sketch data structure to separate “heavy hitters” from the rest of

elements. Pyramid sketch [37] assigns gradually increasing amounts of additional counters

according to the current frequency of an element. So, “hot items” get more memory assigned

as required while the “cold items” take small memory. HeavyGuardian [38] modifies each

bucket of the sketch with a heavy part which tracks “hot items” and a light part for tracking

“cold items”. Due to having separate counters for a limited number of “hot items” and “cold

items”, collision is greatly reduced. Learning-Based Frequency Estimation [19] uses learned

neural networks (Recurrent Neural Networks) as an oracle to separate “heavy hitters”.

Other Frequency Estimation Methods. There are several bloom filter [50] based

methods for frequency estimation. These work essentially extend bloom filters from an-
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swering set queries to estimate frequencies over multiset (set having repetitions). Popular

choices include Counting Bloom Filter (CBF) [51], Spectral Bloom Filter [25], and Dynamic

count filters [52]. Some “non-hash” based methods employ only counters, for example,

Randomized Counters [29] and Counter Braids [53]. In this work, we mainly focus on

hash-based methods.
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CHAPTER 3

TOPKAPI: FREQUENT ELEMENTS FINDING WITH SHARED AND

DISTRIBUTED MEMORY PARALLELISM

Counting and identifying frequently occurring items, or “heavy hitters”, is one of the most

important and intuitive metrics to gain insight into large-scale data. The naive way to extract

top-K items from a data stream is to count the exact number of occurrences of each distinct

item, then sort the histogram to obtain the most frequent items. This naive but popular

approach suffers from a time complexity of O(n log n), in which n is the total number of

elements in the dataset, and also a space requirement ofO(n), assuming sorting is performed

in linear space. In a distributed environment, where data sharding is common, the problem is

quite severe. We have to keep a local frequency histogram on each node, which is usually of

size n itself. These local histograms are communicated across before final merging followed

by sorting. Thus, each node needs to communicate O(n) sized histogram, which can be

prohibitively large. Consider the simple task of keeping track of most popular phrases, of up

to 4 words, on twitter feeds. With a vocabulary of over a million 106, the total number of

items we need to keep track of becomes n = (106)4 = 1024. Similarly, counts of the number

of clicks on “Amazon.com”, given specific user’s features and their combinations, in the

past hour, are common in clickthrough prediction [54]. O(n) time complexity becomes

unacceptably large for “big data”.

Fortunately, approximations often suffice in practice. Frequencies in most real word

applications follow the Power Law [18], and therefore even approximately knowing the

counts are enough to identify frequent items, also known as heavy hitters, efficiently.

This feasibility for approximations allows for a significant reduction in computational and

memory requirements. As a result, approximate counting is a very active and widely studied

research area. There has been a remarkable success in obtaining algorithms for finding
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heavy hitters with exponential improvements in memory requirements, and a lot is known

about the theoretical complexity of these algorithms [20]. Several of these algorithms are

deployed in practice. Two notable algorithms include Count-Min Sketch (CMS) [18] which

is hashing based and Frequent algorithm (FA) [21] which is based on maps (or dictionaries).

However, even after 30 years of research on approximate counting over data streams,

developing a practical algorithm that can fully utilize the massive amounts of available

parallelism in the form of multi-core and multi-node (or distributed parallelism) is still an

active area of research. Prior algorithms, such as [55], only rely on the theoretical reduction

in communication, but require synchronized updates, for every increment, making them

expensive. In [56], the authors identify mergeable or reducible as a critical property that

eliminates the need for synchronization. With the reducible property, every node can create

their summarization of the local data and transmit this exponentially small summary. Each

of these little sketches can be merged to obtain the global summary of the data from which

global heavy hitters can be identified.

It was argued in [56] that most popular algorithms, including CMS, are not suitable for the

distributed setting because they lose the reducible property, i.e., it is not possible to identify

top-K by merging local top-K and their CMS summaries. Our experiments (sec 3.6.5)

confirm the significantly poor precision for CMS in distributed settings. Fortunately, the

same paper [56] showed that FA is reducible and thus suitable for distributed computing.

However, FA is costly to update which requires operation linear in the size of the summary.

Slow updates are also one of the main reason why CMS, despite being theoretically inferior,

is preferred [18]. On the contrary, CMS has only logarithmic update cost, which is desirable,

but local CMS summaries cannot be combined (not reducible). Thus, even if CMS is known

to be faster than FA, it is not a suitable option in distributed setting.

To summarize, the popular hashing based CMS has logarithmic update cost but do not

have the crucial reducibility property required for utilizing massive parallelism. On the other

hand, non-hashing based FA summaries are reducible, but updates are significantly costly.
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In this work, we propose a theoretically sound and superior algorithm which combines both

CMS and FA in a novel way that achieves the best-of-the-both worlds – logarithmic (efficient)

updates as well as reducibility needed for parallelism. Our experiments show that the new

proposal is on average 2.5x faster in practice than FA for distributed and multi-threaded

execution.

Our Contributions. The problem we address here is to find the identities of top-K

frequent items in a given data (formal definition in Section 3.1). For this problem, we

present Topkapi, a fast and parallel approximate algorithm. 1) Topkapi combines CMS

and FA in a novel way that makes the summary reducible and at the same time enabling

parallelism. 2) We show that Topkapi retains the provable probabilistic error guarantees

analogous to popular sketching algorithms in the literature. 3) We provide optimized

parallel implementations for FA, CMS and our proposed Topkapi. Our implementation is

optimized to overlap communication with computation and is capable of exploiting both

multi-node and multi-core parallelism effectively. 4) We provide rigorous evaluations,

profiling, and comparisons of two popular algorithms CMS and FA with Topkapi on large-

scale word counting benchmarks. Our experiments indicate significant performance gains

with Topkapi compared to existing approximate heavy hitters problem. 5) Our work also

provides empirical quantification of the benefits of using approximate algorithms over exact

state-of-art distributed implementation in Spark. Our results show disruptive performance

gains, with Topkapi, over some of the fastest known exact implementations, at the cost of

small approximations.

3.1 Problem Statement

We will refer the problem of finding the top-K most frequent items in the data stream as the

“top-K problem”. Let’s assume we have D distributed data streams {S1...SD}, for example,

D text streams. Let us assume that there are in total M words {w1...wm}. Our goal here

is to find K most frequent words in these streams as an aggregate, i.e., ∪Di=0Si where the
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union represents concatenation (or aggregation) of the streams. We represent the frequency

of a word w by f . Also, let N denotes the summation of all the frequencies, i.e., N =
∑
f .

If the K-th most frequent word has frequency fK , then we want to report all the words for

which f ≥ fK .

3.1.1 φ-Approximate Heavy Hitters

Several approximate formulations of the heavy hitter problem were proposed to overcome

the linear memory barrier. We use the standard formulation given in [56]. Given an

approximation parameter ε, the approximate heavy hitters solution returns a set of words

(items) HH that satisfies the following two conditions with high probability (≥ 1− δ) - a)

All words w having f > φ×N is present in the returned set HH and b) every word in the

set HH is guaranteed to have f > (φ− ε)N .

We collectively call the algorithms solving this approximation as “approximate algo-

rithms”. Approximation breaks the linear complexity barrier and allows us to work with

only logarithmic memory, with an insignificant loss in accuracy.

We will interchangeably use the word sketches and summary. They mean the same thing.

Approximate algorithms for heavy-hitters produce a summary output which is typically

much smaller than the data. This summary can be used to answer the heavy-hitters or other

estimation queries.

Since we will be using approximate (lossy) algorithms over distributed clusters, where we

will need to merge different summaries from different nodes, we need to define reducibility

of the summaries (or sketches). Reducibility will ensure that the algorithm can be parallelized

efficiently. Our definition of reducibility is inspired from the definition of mergeability

in [56]. However, our definition is simpler and more generic for better readability.

Reducible Summary: Given the output summary O1 from running algorithm A on data

stream S1 and output summaryO2 with running the sameA on data S2. We call an algorithm

reducible if we can recover some summary Ô directly from the two output summaries O1
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and O2, such that, if we use the combined summary Ô to replace O, which is a summary

obtained after running A on S1 ∪ S2, we still retain all theoretical guarantees of algorithm

A. In addition, we want two more conditions: – 1) The computation cost of calculating Ô

from O1 and O2 should be less than the cost of running A over S1 ∪ S2 and 2) The space

required by Ô should not be more than that of O.

Note that sometimes the algorithm A, such as FA (defined later), is sensitive to the

order in which it sees the input data. In such cases, we cannot guarantee that the combined

summaryO will be equal to Ô, but so long as the final outputs have same accuracy guarantees

and computation time, we can distribute it efficiently.

3.2 Previous Solutions & Their Limitations

3.2.1 Exact Algorithms

Exactly solving the top-K problem requires O(M) memory and have O(MlogM) runtime

complexity. One can compute all the frequencies f using standard word count or histogram

computation. Then sort the words based on the frequencies f as the key and report the

top-K words. We can utilize hash-maps to store words and update frequencies as we read

the data. Finally, we sort the map.

A unique advantage of this exact method is that it is easy to parallelize. We can perform

separate hash map updates with separate data in parallel, and at the end, we perform reduction

by key to get the final frequencies. Then we sort the words to get the top-K frequent words.

Several state-of-the-art implementations, such as Spark based wordcount() + sort()

use this method. However, our experiments in sec 3.6.6 reveal that O(M) storage and

communication, even with the best possible distributed implementation can be orders of

magnitude slower compared to approximate solutions in a distributed setting.
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3.2.2 Approximate Algorithms

Algorithms for finding approximate heavy hitters is a heavily studied topic in database and

theory community. These algorithms mainly come in two flavors - 1) counter-based and 2)

sketch-based.

Counter-based Algorithms: Counter-based algorithms maintain a set of counters

(maps) associated with a subset of words (or maps with counters) from the data stream it

has traversed. This subset of words is called the monitored set. There are several variants,

such as Frequent [21], Lossy Counting [57], and Space Saving [58]. Please see [39] for a

good survey on them. Note that, [39] explored only sequential version of these algorithms

whereas we are mainly interested in parallelism here. In our work, for comparison with

counter-based approach in general from the perspective of parallelism, we consider one of

the most popular variant – Frequent Items or simply Frequent algorithm (FA). The main

advantage of this approach is the summaries are reducible whereas the main disadvantage is

high update time.

Frequent Algorithm. In 1982, Misra and Gries [59] first proposed a generalization of

Majority algorithm (finds the most frequent element) to extend it for “top-K problem”. The

same algorithm was rediscovered in 2002 by Demain et al. [60] and Karp et al. [21]. We

refer to these algorithms by the general term “Frequent” algorithm (FA). FA keeps (1/φ)

number of counters for finding all words with f > φ×N . During stream traversal, each

new word is compared against the monitored set. If the element exists in the monitored set,

then its count is incremented. Else, if there is some non-allocated counter, i.e., counter with

count zero, then allocate the counter for the new item and set its count to 1. If all counters

are already allocated, decrement all counters. In this process, if the count of any counter

becomes 0, declare the counter as non-allocated and remove the associated word from the

monitored set. As observed by Bose et al. [61], setting the number of counter to (1/ε) for

FA solves the approximate frequency estimation problem. This algorithm is deterministic

and achieves optimal theoretical guarantees.

45



The algorithm requires maintaining a map from strings to integer of size (1/ε). We

briefly highlight three important aspects of this algorithm which will be used to contrast it

with other algorithms

1. (1/ε) per Update The update cost of addition is (1/ε) in the worst case as we have to

decrement counters.

2. Reducible It was shown in [56] that maps used in FA is reducible, and hence can be

easily parallelized across multiple nodes.

3. Map Overheads To identify the items exactly, we need a map of strings to counters.

Addition to maps creates additional overheads of resolving the hash collisions [62].

Sketch-based Algorithms: Instead of maintaining counters for a monitored set of

words, sketch-based algorithms use lossy hashes to create a summary which can be used

to estimate the frequency of any given item. For this study, we consider one of the most

popular and efficient among the sketching algorithms – Count-Min Sketch (CMS), which is

widely adopted in practice. Sketch-based approach provides fast update of summary but has

significant disadvantage when it comes to reducibility because heap, which is not reducible,

is needed for recovering identity of counters.

Count-Min Sketch. The Count-Min Sketch (CMS) algorithm proposed by Cormode

and Muthukrishnan [18] is inspired by widely popular data structure called Bloom Filter[50]

which is used for estimating counts of items over data stream while using high level of

compression. The sketch is a two-dimensional array M of l × b counters. Here we use l 2-

universal hash functions h1, h2, ..., hl which map words to {1, 2, ..., b}. These hash functions

are pair-wise independent. For each occurrence of word w in data stream, we increment the

counter hi(w), in the ith row for ∀i : 1 ≤ i ≤ l. Any query of frequency estimation f̂ of any

word w returns min{hi(w)∀i : 1 ≤ i ≤ l}. [18] proved that the expected error in frequency

estimation is always an overestimate ≤
(
N
b

)
and using l hash functions reduces the error
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exponentially with l. So, using l = O(log 1
δ
) and b = O(1

ε
) ensures the error in frequency

estimation is ≤ εN with probability 1− δ.

Since the algorithm only needs lossy hash functions, it does not require a map and can

work with arrays. However, as the hash functions are not invertible, sketch-based methods

do not preserve the identity of words associated with specific counters. Thus, to identify

heavy hitters, we need additional data structures. There are two workarounds – 1) Dyadic

interval trick [14] and 2) use of Heaps. The dyadic interval trick requires a tree of individual

count-sketches and the memory overhead of tree is prohibitive in practice. The common

workaround is to maintain a heap of top-K words along with the sketch while reading the

data stream. We will focus on this practical variant.

The sketch keeps track of the number of words processed so far (n). For each word w in

the data stream, we first update the sketch and then query the frequency estimation f̂ of that

word. If f̂ ≥ φ× n, we search the word in heap. If the word already exists in a heap, then

we update its count. Otherwise, we insert the word to the heap. If the heap is already full,

we check if f̂ is greater than the min count in a heap. If so, we do delete-min on the heap

and insert the word.

Count-Min Sketch with Heap has the following key properties

1. max (log 1
δ
, logK) per Update: The update cost only requires adding to log 1

δ
coun-

ters. If we need to update the heap, it requires additional logK operation. The total

cost is logarithmic and hence significantly smaller than (1/ε) in practice.

2. Not Reducible: Since only the identities of top-K items are stored in a heap, we

cannot merge top-K over two different streams to obtain the global top-K.

3. Heap Overheads: Although, the sketch only consists of arrays, and 2-universal hash

functions are cheap, to identify top-K items we have to use the heap data.

Although there has been a significant development in past years on approximate heavy

hitters [20, 15, 18, 57, 60], little focus has been given on the parallelism aspects except a
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very few, such as [63, 64, 65, 66]. When it comes to parallelism, there are several choices.

Parallelizing the individual updates is not a good option as the computation is too low to

justify parallelism. Data parallelism, i.e., performing computation for different blocks of

data in parallel, is more preferred because we have a much better granularity of parallelism.

Thus, with enough data, it is always preferred to have each parallel worker work on its

own summary and later perform a one-time merge. We also get a very high degree of

parallelism due to the large size of the data. Thus, it is essential for the algorithm to be

reducible. However, with data parallelism, the algorithmic update time becomes a factor

with a significant impact on performance. [63, 64, 65] discuss parallel counter-based Space

Saving [58] algorithm over CPU, GPU, and distributed environment respectively. However,

none of them addresses distributed environment with multi-threading. Also, we can see in

[64] that the counter-based approach has significant update time even on massively-parallel

architecture such as GPU. Interestingly, [66] explored fine grain parallelism to speedup

Space Saving on modern CPUs with advanced vector instructions. This kind of exploitation

of fine grain parallelism is complementary to coarse grain parallelism which is the main

focus of this work.

3.3 Our Proposal: Topkapi

3.3.1 Intuition

Consider the CMS matrix M (sec 3.2.2) without the overhead of updating the heap for

identifiability. Note that every row of this matrix is a simple hashed counter, and all rows

are independent. Thus, without the heaps, CMS are reducible summaries, i.e., different

summaries with the same hash functions can be merged by simply adding the sketches. The

update time is mere log 1
δ

(δ is failure probability) which is also the number of independent

hash functions needed. Following [26], in all our experiments, only 4 hash functions suffice

in practice. An important observation is that the sketch matrix M is enough to estimate

the counts of any given item accurately but cannot identify the frequent items on its own.
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Thus, without identifiability, we need another pass over every item, estimate its count, and

then report top-K. Given the number of unique items is astronomical, this is prohibitive.

However, if we can somehow efficiently identify a small enough set of candidates CS which

likely contains the most frequent elements then we just have to check every element in CS,

instead of all the items.

It should be noted that due to simple hashing, every cell of CMS will count the total

occurrence of a small set of items ( εN in expectation where ε is approximation parameter).

If a heavy hitter item HH with f ≥ φ×N hashes to this counter, it is very likely to be the

most frequent item in the cell. Thus, if we can identify the heaviest element in the subset of

stream in every cell efficiently, then there is hope of getting a good enough candidate set

CS.

FA keeps the identity of the heavy hitters in a map. The update time is equal to the size

of the map, which needs to be 1
ε

for reporting all the heavy hitters. However, if we are

interested in just the heaviest item, then we don’t need maps and the update time will be

constant. We just need two cells; one stores the identity of the heaviest element and another

a counter to increment/decrement.

The above observations form the basis of our proposal. We propose to associate a FA

summary of size 1 to each counter of CMS. We later show that it has sound theoretical

guarantees analogous to CMS for solving approximate heavy hitters problem. Furthermore,

this modification eliminates all the issues mentioned in sec 3.2.2.

3.3.2 Topkapi: Algorithm Descriptions

Topkapi contains a CMS summary, i.e., a two-dimensional array l×b M . As a reminder,

b represents number of buckets for a hash function and l represents the number of hash

functions. We have l pair-wise independent hash functions h1, h2, ..., hl to map words to

the range {1, 2, ..., b}. b is set to (1
ε
) and l is set to log 2

δ
. Now, each cell Mi,j has in addition

two more components: - 1) LHHcountij representing the count of frequent item associated
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with Mij (Local Heavy Hitter count) and 2) LHHij containing the word (identity) whose

frequency is stored in the LHHcountij . This LHHij will ideally be the most frequent item

mapping to Mij . Note, each item is mapped to l cells in M .

During initialization, all the LHHcounts as well as M are set to 0. During processing

of data stream, we do the usual update of M , the CMS. In addition, for each word w,

we compare w with the LHH of the cell at hi(w). If it matches, then we increment the

corresponding LHHcount of the cell at hi(w). Otherwise, we decrement the LHHcount.

If the decrement causes the LHHcount to become 0, then we replace the LHH of hi(w)

with w and set the corresponding LHHcount to 1. We do this ∀i : 1 ≤ i ≤ l.

In the end, we consider the union of all the unique LHH values as the candidate set CS.

We estimate their counts using the CMS and finally report all elements with the count higher

than some threshold like φ×N for φ-heavy hitters problem.

3.3.3 Topkapi: Properties

Here, we summarize the main algorithmic properties of Topkapi. Detailed theoretical

analysis of Topkapi is given in sec 3.4. An important thing to note here is that we do not

require any heap for Topkapi.

1. Topkapi with size l = log[2
δ
] and b = 1

ε
solves the φ-approximate heavy hitter problem

provided (ε < φ).

2. Topkapi data structure is reducible. As a result, Topkapi can exploit parallelism easily.

3. Topkapi data structure has update cost of log 2
δ

which is similar to logarithmic update

cost of CMS.

It is noteworthy to mention that if we want to get the frequency estimates along with the

identities of top-K frequent elements, we can use both CMS count (overestimates) and LHH

count (underestimates) to take an average and decrease the error constants, else we can

always use the estimate from CMS. So, we are strictly better.
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Algorithm 3: Topkapi
Data: Input text stream S, parameter K
Result: top-K frequent words in HH

1 b←− d1
ε
e

2 l←− log 2
δ

3 C ←− l×b counters
4 C[i][j].LHHcount←− 0 ∀i ∈ {1, 2, .., l} and ∀j ∈ {1, 2, ..., b}
5 for w ∈ stream S do
6 for i ∈ 1, 2, ..., l do
7 calculate hi(w)
8 if C[i][hi(w)].LHH == w then
9 C[i][hi(w)].LHHcount←− C[i][hi(w)].LHHcount+ 1

10 else
11 C[i][hi(w)].LHHcount←− C[i][hi(w)].LHHcount− 1
12 if C[i][hi(w)].LHHcount == 0 then
13 C[i][hi(w)].LHH ←− w
14 C[i][hi(w)].LHHcount←− 1

15 for j ∈ 1, 2, ..., b do
16 if

C[1][j].LHH OR C[i][hi(C[1][j].LHH)].LHH > Threshold ∀i ∈ {2, .., l}
then

17 CS.insert(C[1][j])

18 sort(CS) in descending order of LHHcount
19 report LHH of CS entries with top K highest LHHcount
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3.3.4 Practical Considerations

In Topkapi, the only use of CMS counters in M is estimation. It turns out that in practice

LHHcount itself is also a good estimator of the true frequency of LHH . This is because

we are using FA summary of size 1 on a tiny stream. Thus, if our goal is only to get the

identities of top-K frequent elements, we can altogether get rid of CMS counters and reduce

the memory overhead significantly.

Finally, towards the end, instead of considering all the unique LHHs, we can be little

smarter. Note that every item is mapped to every row and all the rows are independent. The

idea is to perform a linear scan over only the 1st array (l = 1) of counters and add LHH

into CS if the corresponding LHH is greater than a threshold in any of the l rows. Then

we sort the candidate set CS to identify top-K candidates according to their LHHcounts

and report the LHHs associated with highest LHHcounts. Pseudocode of this practical

version of Topkapi is given in Algorithm 3. We will use this algorithm in experiments.

3.4 Topkapi: Theoretical Analysis

Before we argue about Topkapi, we review one useful known theoretical fact about CMS

which we will use in the proofs.

Theorem 3.4.1. For every w with frequency f and its estimate f̂ using CMS of size l =

log[1
δ
] and b = 1

ε
, we have the following with probability 1− δ

f ≤ f̂CMS ≤ f + εN (3.1)

Note, we need l = log[1
δ
] to ensure the above for all N after union bound.

Using the theorem above, we can show the following for Topkapi.

Theorem 3.4.2. Topkapi with size l = log[2
δ
] and b = 1

ε
solves the φ-approximate heavy

hitter problem provided (ε < φ) (Definition in sec 3.1.1)
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Proof: Follows from two lemmas below combined with the definition of approximate

heavy hitters instance.

Lemma 3.4.3. Topkapi with l = log[2
δ
] and b = 1

ε
(ε < φ) misses to reportw with f ≥ φ×N

with probability at most δ
2

Proof: w is missed if it is not in hi(w).LHH ∀i. For any i, hi(w).LHH 6= w im-

plies that the CMS counter for hi(w) given by Mi,hi(w).CMScounter ≥ 2f , otherwise

local FA summary will not miss w. Thus, w is not reported by any of the i rows implies

hi(w).CMScounter ≥ 2f ∀i. Since the CMS estimate is the minimum of all i rows, it

means the estimate of CMS is at least 2f or f̂CMS > f + f > f + εN which happens with

probability at most δ
2

from Theorem 3.4.1.

Lemma 3.4.4. Topkapi with l = log[2
δ
] and b = 1

ε
reports w with f ≤ (φ − ε) × N with

probability at most δ
2
.

Proof: We report w only when its estimate f̂CMS ≥ φN . Thus, if we report w and

f ≤ (φ− ε)×N , it implies that f̂CMS ≥ φN ≥ f + εN . Thus, the error of CMS estimate

exceeds εN which happens with probability at most δ
2

from Theorem 3.4.1.

The following is immediately clear from the description of the algorithm

Theorem 3.4.5. Topkapi data structure has update cost of log 2
δ
.

Finally, we can easily show that Topkapi is reducible

Theorem 3.4.6. Topkapi data structure is reducible.

Proof: The counters in CMS is reducible, and furthermore, FA is reducible. The proof

follows from the fact that every cell of Topkapi (CMS counter and FA of size 1) is reducible.

3.5 Implementation

It is imperative that we use multi-core parallelism along with distributed parallelism to make

effective use of current and future computing systems.
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3.5.1 Multi-core Parallelism

When considering intra-node parallelism using multi-threaded execution, we have several op-

tions for Topkapi. We can use different threads for different hash functions in {h1, h2, ..., hl}.

However, this limits the number of threads to the number of hash functions which is usually

quite low. Another option is to use different threads to process different chunks of data

and use a single sketch shared across different threads. The threads will then have to use

locks or atomic variables to perform the shared update of counters in the sketch. The use of

locks or atomic variables can create significant contention due to the distribution of word

frequencies. As the heavy hitters are most frequent, it is highly likely that many threads

encounter the same heavy hitter word and try to update the same counter in the sketch.

We can mitigate the problems mentioned in the previous options by exploiting high level

of data parallelism at the cost of extra local memory. We can create thread-local copies of

sketches and use different threads to process different chunks of data.Then we exploit the

reducibility property of the sketch and merge the thread-local sketches at the end of the data

traversal to produce a single sketch for a node. We observe that even for a large dataset, we

only need a small sketch. For example, with l = 4 and b = 1024, the size of the count array

is 16KB and the size of the id array is 64KB. So, the amount of extra memory required is

quite low. As different threads are working on their own local copies of the sketch, we do

not need locks to update a counter anymore.

3.5.2 Distributed Parallelism

Since our algorithm is reducible, distributed parallelism is quite straightforward. We start

with multi-threaded execution of Topkapi on each node following the method mentioned

in sec 3.5.1. When we have the final summaries ready at each node, we perform a parallel

reduction or merging of the summaries to get a final summary at the root node. Once we have

that, we use the final summary at the root node to perform the potential top-K candidate set

(CS) construction, sort CS, and report top-K words steps from the sequential Topkapi
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pseudocode mentioned in Algorithm 3.

Communication cost - One important factor considering distributed computation is the

communication overhead. The communication traffic for merging summaries between two

nodes is the size of a single summary. As we use a parallel reduction strategy to merge the

summaries at different nodes, we perform logD such merging steps between different pairs

of nodes, where D is the total number of nodes.

Overlapping Communication with Computation - In distributed computing, one can

hide some of the communication overhead by carefully coordinating the communication

so that it overlaps with the computation. In our implementations, we also exploit such

opportunities. The reduction algorithm merges all the counters of a summary independently,

i.e., a merged counter only depends on the respective two counters from the two summaries

being merged. Hence, we can overlap the communication for a specific row of b counters

with the computation of merging the previous rows of b counters. We use MPI non-blocking

communication to achieve this overlapping.

Algorithm 4: Topkapi Parallel(S[][], K, N, T)
1 for i ∈ nodes N do
2 for j ∈ threads T do
3 create thread local copies of Topkapi summary;
4 execute Topkapi for data S[i][j] in parallel using summary j with only the

summary update phases;

5 merge thread local summaryj ∀j ∈ {1, ..., T} to produce node final
summaryi;

6 use parallel reduction strategy to merge node final
summaryi ∀i ∈ {1, ..., N} to produce a final summary at root node;

7 construct CS using final summary at root node;
8 sort CS and report top-K words from root node

For an overview of distributed and multi-threaded implementation of Topkapi, we present

the pseudocode in Algorithm 4 which extends the pseudocode from Algorithm 3.
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3.5.3 Parallelizing Baselines: Frequent Algorithms and Count-min Sketch

For the purpose of performance comparison, we choose the two most popular algorithms,

namely “FA” and “CMS” as representatives from counter-based algorithms and sketch-based

algorithms respectively.

As mentioned in sec 3.2.2, CMS requires a heap for finding top-K and is not reducible.

Due to this exact reason, [56] instead used FA for mergeability. Unfortunately, without

reducibility, it is hard to exploit massive data parallelism independently, and the implemen-

tations are unlikely to be efficient. We made a simplifying assumption that each subsample

of the stream is uniformly distributed and hence merging two top-K still make sense.

There were two main quest behind making this dumb assumption with CMS. 1) Does

Reducibility Matters in Practice? Subsampling streams is one of the most popular ways

of reducing computation. The assumption is that the frequent item in the whole stream is

also a frequent item in any small subsample of the stream. If this holds, then merging top-K

across substreams should be possible and reducibility may not matter much in practice

for accuracy. We aimed to check this hypothesis. 2) In the most lucky world, is CMS

still the fastest? CMS, even with heaps, has significantly faster update time compared

to FA (experimental results in Figure 3.6). Can Topkapi beat this cheap CMS variant on

performance?

Thus, to understand the performance benefits, we ignored the accuracy aspect and merged

the heaps. To merge the heaps, we perform naive merge where we take two heaps and sort

them to make a final heap containing top-K candidates. One can argue that increasing the

heap size (e.g., 2K) would improve the accuracy of CMS. So, we give CMS more room

to get better accuracy by using a heap size of 4K. It should be noted that only the sketch

(counters) in CMS is reducible and the reduction is performed similarly as Topkapi.
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3.6 Evaluations

3.6.1 Code and Experimental Setup

The implementations of our algorithm1and competing algorithms are in C++ under a com-

mon framework to ensure as much of an apples-to-apples comparison as possible when

presenting relative performance results. We would like to mention that we have used a heap

size of 4K for CMS to allow better accuracy since the heap containing top-K frequent words

lacks the reducibility property. We used MurmurHash3 [67] for hash functions in all of the

implementations to maintain comparability across different algorithms.

We compiled all codes using GCC 6.2.0 with the following flags: a) GNU C++11

extension, b) “O3” optimization flag, and c) OpenMP flag because we used OpenMP for

multi-threading inside a node. We also used Boost 1.64.0 and OpenMPI 1.10.3 libraries

for our code. To evaluate performance scalability for multi-node distributed computing

with multi-threaded execution on each node, we ran many of our experiments on cluster of

Intel R©Westmere nodes with 12 processor cores per node running at 2.83 GHz. All of these

nodes are connected via QDR InfiniBand (40 Gb/s) to each other. We used 8 threads per node

for all of these experiments. Further, to show performance scalability in executions with

large numbers of threads, we ran our experiments on a cluster of IBM POWER7 R©(P750)

processors with 32 cores per node running at 3.8 GHz. IBM POWER7 R©processor supports

4-way SMT (simultaneous multi-threading) which let us launch up to 128 hardware threads

per node.

3.6.2 Performance Metrics

Here, we define the performance metrics used in our work and also in past work:

Precision - The metric “Precision” here represents the ratio of number of correct top-K

frequent words reported to the total number of words reported.

1https://github.com/ankushmandal/topkapi.git
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Figure 3.1: Performance comparison with FA and CMS for 16GB data. Number of threads
per node is 8. Used a cluster of Intel R©Westmere processors with each node having 12 cores.

Speedup - When we say performance “Speedup”, we refer to the following ratio:

execution time of referred algorithm

execution time of Topkapi

3.6.3 Datasets

We give a thorough performance evaluation on standard large-scale word counting bench-

marks evaluating all possible aspects of the algorithms. We used two sources to compose

our data of different sizes:

Gutenberg - This is text data from the Project Gutenberg [68] corpus. The data consists of

text from eBooks in the English language. The data used in our experiments of size up to

16GB are from this source.

PUMA Dataset - We also used “Dataset2” of size 150GB under description “Wikipedia”

from PUMA Datasets [69]. We created data of size 32GB, 64GB, and 128GB from this data

set to use in our experiments.

The task is to identify the top-100 most frequent words in the data, i.e. we use K=100 for all

the experiments unless otherwise stated explicitly.
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Figure 3.2: Performance comparison with FA and CMS for 128GB data. Number of threads
per node is 8. Used a cluster of Intel R©Westmere processors with each node having 12 cores.

3.6.4 Performance Comparison with Approximate Methods

3.6.4.1 Scalability over Number of Nodes

We present strong scaling (fixed data size) performance results over varying number of

nodes for two different data sizes: a) 16GB (Gutenberg dataset) and b) 128GB (Puma

dataset). Figure 3.1 and Figure 3.2 represents the speedup of Topkapi over Frequent(FA)

and Count-Min Sketch(CMS) for 16GB and 128GB data sizes respectively for 1 to 16 nodes

with each node running 8 threads. We see that our proposal consistently get roughly 2.5x

speedup over FA for both the data types whereas we usually get sightly lower speedup over

CMS. It should be noted that we used the dumb merging of top-K heap for CMS which loses

significant accuracy (see sec 3.6.5). Despite this cheap approximation with CMS, we still

observe 2x-2.6x speedup for 16GB data and 1.6x-2x speedup for 128GB data over CMS.

3.6.4.2 Scalability over Number of Threads

Figure 3.3 represents the performance improvement of Topkapi over FA and CMS for 1 to

64 threads on a single node with 32 cores. We used 16GB data for this experiment. The plot

shows that we get around 2x speedup over CMS for all the data points whereas we get similar

performance improvement over FA till 8 threads; after that speedup over FA increases steeply
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Figure 3.3: Performance comparison with FA and CMS for varying number of threads. Data
Size=16GB and Number of Nodes=1. Used a single node with 32 cores from four IBM
Power R©7 chip.

and we get 22x speedup with 64 threads. As an optimized implementation of FA requires

two hash-maps with size being in the order of number of counters, the memory footprint of

FA is quite high. This negatively affects the performance after a threshold when L3 cache

can not contain all the data footprint of two or more threads in the same processor chip. This

performance degradation becomes more pronounced when more than one hardware thread

is executed on the same core. For example, the configuration with 64 threads uses the SMT

feature of Power R©7 and executes 2 threads on each core.

3.6.4.3 Scalability over Data Size

To see the effects of data size on performance, we fix the number of nodes to 8 and vary the

data size from 16GB to 128GB. The resulting plot with speedup over FA and CMS is given

in Figure 3.4. The figure represents around 2.5x speedup over FA, and 1.5x-2x speedup over

CMS. Beside these good performance improvements, the consistency of speedup indicates

that Topkapi performs well for a wide range of data sizes.
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Figure 3.4: Performance comparison with FA and CMS for varying data size on 8 nodes.
Number of threads per node is 8. Used a cluster of Intel R©Westmere processors with each
node having 12 cores.
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Figure 3.5: Performance comparison with FA and CMS for high number of threads (32 and
64) in distributed setting. Used a cluster of IBM Power R©7 processors where each node has
32 cores from four processor chips.

61



Execution Time (ms)
0 100 200 300 400 500 600

Topkapi

CMS

Frequent

Performance Analysis (4 nodes, 1GB Data)

Update of Summaries
Overhead of Maintaing TopK Heap
Merging Thread Local Summaries
Merging Summaries across Nodes

Figure 3.6: Execution time break down for Topkapi, FA, and CMS for 4 nodes and 1GB data
size. Number of threads per node is 8. Used a cluster of Intel R©Westmere processors with
each node having 12 cores.

3.6.4.4 Scaling over Number of Nodes with Increasing Data Size

Now, we increase the data size along with the number of nodes and use high number of

threads (32 and 64 threads) on each node to find out how we perform in terms of weak

scaling. Figure 3.5 presents the resulting plot. As we can find from the plot, we get consistent

speedup of roughly 2x for CMS. However, we see some interesting pattern for FA. For 32

threads, the speedup over FA decreases significantly as move from one node to 2 nodes

setting. On the other hand, the speedup remains high (more than 16x) for 64 threads through

out all data points. In case of FA, the merging of summaries has lower computational

overhead compared to CMS and Topkapi. So, when we move to distributed setting with 2 or

more nodes, it boils down to which factor has more impact - the performance gain from low

overhead merging step or the performance degradation from high level of multi-threading.

3.6.4.5 Performance Analysis

Figure 3.6 represents the performance break down of Topkapi, FA, and CMS execution.

The plot supports our analysis that FA, among all three algorithms, has the highest update

time for the summary but lowest cost when it comes to merging summaries across nodes.
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Figure 3.7: Performance comparison with FA and CMS for K=50, 200 on 16GB data.
Number of threads per node is 8.

Undoubtedly, CMS has lowest update time for the summary because it involves only calcu-

lating the bucket through hashing and then incrementing the respective counter. However,

its performance for “top-K problem” is highly thwarted by the overhead of maintaining

probable top-K words summary. So, the effective update time for CMS becomes quite high.

While Topkapi needs a slightly higher update time than CMS, its effective update time is

much lower because it does not involve any overhead from maintaining heap. Furthermore,

Topkapi has quite low computational cost for merging summaries across nodes whereas

CMS has the highest cost in this regard.

3.6.4.6 Performance over Varying K

We carried out the experiments related to Figure 3.1 for K=50 and K=200, and represented

the results in Figure 3.7. We used 512 and 2048 buckets or counters respectively for K=50

and K=200. Speedup of Topkapi over FA, for K=50, increases to the range 2.73x-3.01x

and for K=200, it decreases to 2.21x-2.36x compared to K=100. However, the speedup

over CMS remained almost the same. When K is smaller, FA should slow down since it

now has a lesser number of counters (1/ε or O(K)) or tracked elements. So, it will more
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Table 3.1: Precision Comparison between Approximate Methods

Precision(%)
Data Size Topkapi (1024

Counters)
CMS (1024
Counters)

CMS (2048
Counters)

FA (1024 Coun-
ters)

16GB 96 64.4 68.33 87
128GB 95 11.6 49.66 94

frequently perform the computation related to element not found, which is costly. For the

same reason, FA will be faster when K is larger. For each match, it only has to increment the

corresponding counter, which is cheap. On the other hand, we do not expect the performance

of Topkapi and CMS to change much apart from slight slowdown with increasing sketch

size.

3.6.4.7 Comparing CMS with Separate top-K Pass

In batch processing environment, one may employ a two-pass algorithm where the first pass

consists of pure CMS to get frequency estimates and a separate second pass for hash-based

top-K identification. In our experiments using 1 to 16 nodes (8 threads on each node) with

16GB data, we find that the execution time of this two-pass algorithm is on an average 0.97x

of single-pass CMS+heap based approach. It is noteworthy to mention that the comparison

is not fair since in a streaming setting, remembering the items itself, for the second pass, is

of linear cost which is prohibitive.

3.6.5 Precision for Reported top-K

As Topkapi is reducible, it is expected to give good precision and Table 3.1 shows us exactly

the same thing. Topkapi outperforms CMS and FA for precision over 16GB and 128GB data.

Moreover, the poor precision observed for CMS indicates that the simplification we assumed

in sec 3.5.3 to favor better performance for CMS does not hold true.
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Figure 3.8: Performance comparison with Exact Method - Spark wordcount() +
parallel sort() for 16GB and 128GB data. Number of threads per node is 8. Used a
cluster of Intel R©Westmere processors with each node having 12 cores.

3.6.6 Performance Comparison with Exact Method

Here, we compare the performance of Topkapi against “exact methods” which give com-

pletely accurate results at a cost of linear memory space and communication. Representative

from this class of algorithms, we select the popular Spark wordcount() + parallel sort()

method.

3.6.6.1 Scalability over Number of Nodes

We present strong scaling (fixed data size) performance results over varying number of nodes

for two different data sizes: a) 16GB (Gutenberg dataset) and b) 128GB (Puma dataset).

Figure 3.8 gives the overview of speedup variation of Topkapi over Spark wordcount() +

parallel sort() method for 1 to 16 nodes with each node running 8 threads. As expected,

we see significant speedups across the board. Topkapi gives 8x-20x speedup over Spark

wordcount() + parallel sort() method for both the data sizes. In this case, the costly sorting

step associated with the exact method incurs a huge performance penalty.
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Figure 3.9: Performance comparison with Exact Method - Spark wordcount() +
parallel sort() for varying data size on 8 nodes. Number of threads per node is 8.
Used a cluster of Intel R©Westmere processors with each node having 12 cores.

3.6.6.2 Scalability over Data Size

To see the effects of data size on performance, we fix the number of nodes to 8 and

vary the data size from 16GB to 128GB. The resulting plot with speedup over Spark

wordcount() + parallel sort() is given in Figure 3.9 which represent 10x-15x speedup over

Spark wordcount() + parallel sort().
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CHAPTER 4

WORD EMBEDDING WITH EFFICIENT FINE GRAIN PARALLELISM

In this era of Artificial Intelligence (AI), enabling machines to understand human language

is one of the crucial tasks. The applications associated with such goal belongs to the fields of

either Natural Language Processing (NLP) or Machine Learning (ML) or some intersection

of them. As one can imagine, processing textual data and extracting meaning from them

is of high importance towards the goal of automating human language decoding. Example

of such applications with significant community attention are machine translation [70],

named entity recognition [71], sentiment analysis [72], and document classification [73].

Interestingly, input to all of these applications are some distributed representations of words

in a vector space rather than raw textual data. The main reason being high quality vector

representations of words help learning algorithms perform better on NLP tasks [23].

We find one of the earliest use of word representation in [74]. This idea has its application

in statistical language modeling [75], where the neural network based language models [76,

75] predict word pairs with syntactic and semantic similarity. We can see its successfully

adoption in a wide range of applications [72, 70, 71, 73, 77]. Recently, Word2Vec [22]

model gained considerable attention in the ML and NLP community. It is a neural network

based model which learns high quality word representations in vector space from a large

amount of unstructured data. [23] further Word2Vec by introducing Skip-gram model with

negative sampling (SGNS). This method provides state-of-the-art performance on word

similarity word analogy tasks [23, 78].

The objective of the Word2Vec model is to capture large number of syntactic and

semantic relationship between words in their vector representation. The distributional

hypothesis states that words with similar contexts tends to have similar meaning. To

group similar words together, Skip-gram model maximizes average log probability of
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Figure 4.1: Strategies used in different Word2Vec algorithms

getting a context word as output given a current word. SGNS simplifies and reduces the

computation significantly with negative sampling. To solve the optimization problem,

Stochastic Gradient Descent (SGD) is used. However, original Word2Vec [23] formulation

has severe computational drawback - the SGD computation involves vector-vector operations

which correspond to level-1 BLAS routines. It is well known that this kind of operations are

limited by memory bandwidth and not amenable to high performance.

pWord2Vec [78] addressed the problems in original Word2Vec formulation of SGD

by applying mini-batching with “negative sample sharing” strategy. Basically, the main

objective is to transform the level-1 BLAS operations inside SGD to level-3 BLAS operations

(matrix-matrix operations), which has better arithmetic intensity per memory operation. The

strategy is depicted in Figure 4.1. pSGNScc [79] improves on pWord2Vec by using “context

combining” strategy, as represented also in Figure 4.1. This strategy essentially, increases

the number of context words at a given instance, and thus increases the matrix size.

One of the main problem in pWord2Vec is that the level-3 BLAS calls inside the SGD

computation typically involve extremely skewed and small size matrices. It is well known

that general BLAS routines do not perform well on the matrices with small dimensions [80,
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81] and skewed size [82]. We can see empirical evidence in Figure 4.4b. pSGNScc improves

the situation only slightly, but not completely mitigates the problem. Furthermore, the

formulation of SGD computation in both pWord2Vec and pSGNScc involves three BLAS

library calls and activation function application in between. This strategy inhibits us

from fusing the loop bodies corresponding to BLAS routine calls and activation function

application. Thus, we do not exploit register reuse among the computations.

For our proposed solution, namely NinjaVec, we take a comprehensive approach involv-

ing both code optimization (specifically compiler optimization) and algorithmic modification.

We address the shortcomings of pWord2Vec and pSGNScc in NinjaUpdate, the code opti-

mization component of our work, by introducing our own code generation strategy for the

SGD computation. To handle the broad range of unusual matrix dimensions in Word2Vec,

we perform code specialization through multi-versioning at static compilation time. Nin-

jaUpdate is equipped with a novel vector register blocking tactic carefully designed to

handle extreme cases of skewed and small matrix dimensions. It is noteworthy to mention

that, even though one can consider the vectorization and loop fusion strategy in NinjaUpdate

as standard compiler optimization techniques, it is not so straightforward to apply in our

case due to extremeness of the loop bounds, and thus differ significantly from standard

practices and heuristics seen in GEMM optimization.

In our work, we also look into algorithmic opportunities for improvement in perfor-

mance. We come up with FrequentSkip method, which aggressively discards frequent words

from consideration in SGD computation. Although FrequentSkip is somewhat similar to

subsampling of frequent words in the original Word2Vec [23], the main differences are - a)

we discard the frequent words not only from sentence but also from negative samples, b) we

devise FrequentSkip for shared-memory based parallel execution, keeping in mind the goal

of improving memory locality. As a result, FrequentSkip effectively prunes computation to

aid speedup in training and at the same time, improves cache locality in the shared-memory

multi-threaded execution.
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4.1 Background on Word2Vec

4.1.1 Word2Vec: Learning Model

Given a large amount of unstructured text data, the learning objective in Word2Vec is to

find good quality distributed vector representations for words that capture the syntactic

and semantic word relationships well. The learning model is based on the distributional

hypothesis [83], which states that the words from the same syntactic and semantic categories

tend to have similar meanings if they appear in similar contexts. Essentially, Word2Vec maps

each wordw appearing in the training corpus having vocabulary V , to aD dimensional dense

vector ~vw in an embedding space RD such that a distance metric encodes many linguistic

patterns and regularities. The mapping : w → ~vw ∀w ∈ V is learned by considering

sentence contexts, following the distributional hypothesis.

To reduce the computational complexity of neural network based language models, [22]

proposes two log-linear model architectures for learning continuous vector representation of

words from very large datasets, namely - a) Continuous Bag-of-Words (CBOW) model, and

b) Continuous Skip-gram model. CBOW model tries to predict the current word based on

the context words. In contrast, the Skip-gram model predicts the surrounding words given

the current word. Skip-gram with Negative Sampling (SGNS) [23] extends the continuous

Skip-gram model to improve the quality of word vectors as well as training speed. As

mentioned in [23, 78, 79], the SGNS model gives the state-of-the-art performance and is

widely adopted in the NLP community. Hence, in our work, we focus on the SGNS model.

4.1.1.1 Skip-gram with Negative Sampling

As depicted in Figure 4.2, the Skip-gram model is a neural network with a single hidden

layer, which is a log-linear classifier with a continuous projection layer. We feed each

current word as input to the hidden layer and predict words within a given context range,

i.e., words before and after the current word for a defined range. More formally, given a
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Figure 4.2: Skip-gram model architecture

training corpus with word sequence {w1, w2, w3, . . . , wT}, the goal of the Skip-gram model

is to maximize the average log probability

1

T

T∑
t=1

∑
−c≤j≤c,j 6=0

log p(wt+j | wt) (4.1)

where c is the training context size, which can be a function of the current word wt. One can

imagine the context for wt being a variable length sliding window. Based on the assumption

that distant words are less related to the current word than the ones close to it, the training

procedure gives less weight to distant words by sampling less from those words. The

conditional probability p(wt+j | wt) denotes the probability of seeing word wt+j in the

context given the center word is wt. In the Skip-gram formulation, we define p(wt+j | wt)

using the softmax function:

p(wO | wI) =
exp(〈~vwIin , ~vwOout〉)∑V
w=1 exp(〈~vwIin , ~vwout〉)

(4.2)

where ~vwin and ~vwout are respectively “input” and “output” vector representations of word w,

and 〈· , ·〉 denotes the inner product. This formulation is impractical from the perspective of

computational cost because the cost is proportional to V or vocabulary size, which is often

very large.

A computationally efficient approximation to maximize the log of softmax function is

negative sampling, which is based on Noise Contrastive Estimation [84]. We define negative
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sampling by the approximation

log p(wO | wI) ≈ log σ(〈~vwIin , ~vwOout〉)

+
K∑
k=1

Ewk∼Pn(w)[log σ(−〈~vwIin , ~vwkout〉)] (4.3)

where σ(x) = 1
1+exp(−x)

is a sigmoid (the logistic) function. So, we are separating out wO

from noise words using logistic regression. The expectations for noise words are computed

by sampling K random words from the noise distribution Pn(w) and we call these samples

“negative samples”. As the number of negative samples K is much smaller compared to the

vocabulary size V , this approach is very efficient.

4.1.1.2 Subsampling of Frequent Words

Based on the observation that frequent words occur many more times compared to the rare

words and they provide less information value, [23] proposed a subsampling strategy based

on word frequency. Any word wi in training corpus is discarded with probability

P (wi) = 1−
√

λ

f(wi)
(4.4)

where f(wi) is the frequency of word wi and λ is a chosen threshold parameter (typically ∼

10−5). This heuristically chosen subsampling formula aggressively subsamples words with

frequency greater than λ. In practice, it improves learning speed and generates significantly

better accuracy for the learned vectors of the rare words.

4.1.2 Word2Vec Algorithms

To solve the optimization problem represented by Equation 4.1 & 4.3, Stochastic Gradient

Descent (SGD) is commonly used. For shared memory parallelism with multi-threaded

execution, usually the parallel SGD employs Hogwild [4] strategy for exploiting data
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parallelism. Hogwild parallelism ignores the conflicts between shared model updates

from different threads while processing different chunks of data and allow updates to be

carried out in presence of conflicts. Here, we give brief descriptions of three algorithms on

CPU - a) original Google Word2vec implementation [85, 23], b) pWord2Vec [78], and c)

pSGNScc [79].

Algorithm 5: Google Word2Vec
Data: training corpus S
Result: updated word vectors ~vwin & ~vwout ∀w ∈ V

1 α←− learning parameter
2 C ←− context window size
3 K ←− number of negative samples
4 for each wt ∈ S do
5 target word w0

out ←− wt

6 b←− random integer between 0 and C
7 for i ∈ {b, b+ 1, . . . , 2 ∗ C + 1− b} ∧ i 6= C do
8 input word wiin ←− wt−C+b

9 ~vtemp ←− ~0
10 for k ∈ {0, 1, . . . , K} do
11 if k 6= 0 then
12 target word wkout ←− a negative sample from V
13 label←− (k = 0) ? 1 : 0

14 prod←− 〈~vw
i
in

in , ~v
wkout
out 〉

15 ∆←− label − σ(prod)

16 ~vtemp += ∆ ∗ ~vwkoutout

17 ~v
wkout
out += α ∗∆ ∗ ~vw

i
in

in

18 ~v
wiin
in += α ∗ ~vtemp

Google Word2Vec. In this implementation, each thread updates the word vectors using

the strategy represented in Algorithm 5. As we can see from the pseudocode, in each

iteration, we choose an input word wiin from a decided context range, and a target word wkout,

which is either current word wt or a negative sample from vocabulary V . Then we calculate

gradient of the objective function given in Equation 4.3 w.r.t. the word vectors for wiin and

wkout. Finally, we apply small updates, based on learning parameter α, to the respective word
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vectors.
 

“Tang is a common reef fish. Bahamas is a popular coral reef.”	

context window 1 context window 2 

current word !!  context words !!"!  
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!!"#! = reef 
!!"#! …  !!"#!  

K negative samples 
!!"#! = reef 
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K different negative samples 
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Same K negative 
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context words 
 

pSGNScc 
!!"#! =  !! 
!!"#! …  !!"#!  

 
 
Similar contexts combined 

X 
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X 

Parameters: C=1  

Training 
Corpus 

Figure 4.3: Strategies used in different Word2Vec algorithms (presented again for ease of
reference)

pWord2Vec. As shown in Algorithm 5, Google Word2Vec involves vector-vector op-

erations in line 14, 16, 17, and 18 of the pseudocode. To improve the computational

efficiency, pWord2Vec converted these vector-vector operations to matrix-matrix operations

(GEMM) using “negative sample sharing” strategy. The transition from Google Word2Vec

to pWord2Vec is presented in Figure 4.3. In Google Word2Vec, we choose different negative

samples for each of the context words. In contrast, pWord2Vec shares a set of negative

samples between all the context words for a given current word. This GEMM formulation,

implemented with Intel R©MKL calls, gives 2.6x speedup [78] over Google Word2Vec on

One Billion Words[86] data till 8 threads and even higher speedup for higher number of

threads since Google Word2Vec shows poor scaling compared to pWord2Vec.

pSGNScc. Figure 4.3 depicts the strategy adopted by pSGNScc. In order to increase the

floating point throughput for GEMM operations in pWord2Vec, pSGNScc aims to increase

the matrix size. This is achieved by employing “context combining” approach where similar

contexts are combined to increase the number of context words sharing same current word

and negative samples. To find similar contexts, pSGNScc performs reverse indexing of
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words in training data. This method provides a 1.28x speedup [79] over pWord2Vec.

4.2 Shortcomings of Current Solutions

As we see, pWord2Vec formulates the SGD computation in word2vec as three GEMM calls -

1) line 14 in Algorithm 5 is replaced by a matrix multiply between Xt
in and (Xt

out)
T and to

produce matrix prodXt, where Xt
in is comprised of ~vw

i
in

in as row vectors and has maximum

size 2C ×D, Xt
out is comprised of ~vw

k
out

out and has maximum size (K + 1)×D, and prodXt

contains the inner product values of 〈~vw
i
in

in , ~v
wkout
out 〉 and has maximum size 2C×(K+1). After

applying activation to prodXt as per line 15, and then performing scalar multiplication

with α, the remaining two GEMM calls are - 2) line 16 is replaced by GEMM between

prodXt and Xt
out, and 3) line 17 is replaced by GEMM between (prodXt)T and Xt

in.

The size of Xt
in varies with b because the number of context words is 2(C − b) and

also sentence beginning and end. Let us denote the number of context words at step t

as M . Consequently, Xt
in is a M × D matrix. Now, repetitions in choosing K negative

samples cause the size of Xt
out to vary. If we represent the number of output words, which

is ≤ (K + 1), as N , the size of Xt
out becomes N ×D. Thus, prodXt is of size M ×N .

Since, typically D is in hundreds while C,K < 20, Xt
in and Xt

out have very skewed

sizes. If we consider the parameter settings from [78] for training on One Billion Words[86]

dataset, where D = 300 and C,K = 5, the bounds on dimensions M and N become:

1 ≤M ≤ 10 and 1 ≤ N ≤ 6. It is well known that general BLAS routines do not perform

well on the matrices with small dimensions [80, 81] and skewed size [82]. Figure 4.4

presents a performance analysis of Intel R© MKL on the first GEMM call in pWord2Vec

for training on One Billion Words dataset. Details about the experimental setup can be

found in section 4.4.1. We have the frequency distribution of different cases of (M,N)

combinations in Figure 4.4a. The showed cases account to 99.14% of total number of

calls. Next, Figure 4.4b gives the throughput of MKL in these cases. The “Reference

GEMM” is a GEMM between two regular size matrices of size 32× 64 and 48× 64 (having
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Figure 4.4: Statistics for the first GEMM call in pWord2vec over One Billion Words dataset
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similar memory footprint as matrices of size 6 × 300 and 10 × 300 respectively). As we

can see, the throughput for GEMM over regular sized small matrices is 117.84 GFLOPS

whereas the weighted average (according to frequencies) of throughput for different cases in

pWord2Vec is 57.32 GFLOPS. This large gap in performance indicates a significant room

for improvement.

Furthermore, in pWord2Vec, we have three separate GEMM calls with an application

of activation function between first and second GEMM call. As the computations reuses

Xt
in, Xt

out, and their inner product prodXt, there is a good opportunity for register reuse.

However, the strategy here, involving separate library calls, inhibits us from fusing the loop

bodies corresponding to GEMM calls and activation function application. Thus, we do not

exploit register reuse among the computations. This is a significant performance limiter for

long length vector instructions, such as AVX-512, because vector load and store are

costly.

pSGNScc improves the throughput of GEMM calls by employing “context combining”

strategy as depicted in Figure 4.1. With this approach, only the number of context words or

M is increased. However, the degree of increment is not to the point where Xt
in changes

to regular size. On the other hand, Xt
out remains same for a given K. Moreover, the

“context combining” strategy requires reverse indexing of words, which has a significant

overhead [79]. Apart from increasing M , pSGNScc uses the same BLAS routine based three

GEMM call approach as pWord2Vec, which prevents register reuse through loop fusion.

4.3 Proposed Approach

In this section, we first describe our proposed solution to optimize SGD computation -

NinjaUpdate. It addresses all the problems mentioned in section 4.2. Next, we describe

another strategy - FrequentSkip, which exploits the power-law frequency distribution of the

words in textual data to accelerate the training process further.
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Figure 4.5: Workflow for NinjaUpdate

4.3.1 NinjaUpdate

Figure 4.5 depicts a high-level overview of the workflow strategy used in our NinjaUpdate

approach. Training Word2Vec model usually takes a large amount of time, often tens of

hours for big datasets, of which SGD computation is of highest importance [78, 79]. Hence,

it makes sense to optimize the SGD computation to accelerate the training process, as is

done in previous works [78, 79]. Towards this goal, we adopt a static multi-version code

generation approach.

In our experience, the training parameters affecting the SGD performance (context size

C, the number of negative samples K, and hidden layer size D) do not change much for

similar-sized datasets. Moreover, the compilation time is insignificant compared to the

training time. So, we kept our code specialization approach static. In our workflow, we

abstracted out the SGD computation with an API, for which our static multi-version code

generator generates the code. Finally, we use a standard compiler to compile the Word2Vec

code along with our specialized code for SGD. For reference purposes, we present the SGD

code in Figure 4.6. Next, we give the details about our code generator.
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1 // first GEMM
2 f o r ( i n t m=0; m<M; ++m) {
3 f o r ( i n t n=0; n<N; ++n) {
4 f o r ( i n t d=0; d<D; ++d) {
5 prodXt[m][n] += Xt

in[m][d] * Xt
out[n][d];

6 }}}
7 // applying activation
8 f o r ( i n t m=0; m<M; ++m) {
9 f o r ( i n t n=0; n<N; ++n) {

10 i f (n == 0) label=1;
11 e l s e label=0;
12 prodXt[m][n] = label - sigmoid(prodXt[m][n]);
13 prodXt[m][n] *= α;
14 }}
15 // second GEMM
16 f o r ( i n t m=0; m<M; ++m) {
17 f o r ( i n t d=0; d<D; ++d) {
18 f o r ( i n t n=0; n<N; ++n) {
19 ∆Xt

in[m][d] += prodXt[m][n] * Xt
out[n][d];

20 }}}
21 // third GEMM
22 f o r ( i n t n=0; n<N; ++n) {
23 f o r ( i n t d=0; d<D; ++d) {
24 f o r ( i n t m=0; m<M; ++m) {
25 ∆Xt

out[n][d] += prodXt[m][n] * Xt
in[m][d];

26 }}}

Figure 4.6: SGD code

4.3.1.1 Vectorization

Needless to say, vectorization is one of the most critical optimizations for achieving peak

single-thread performance for compute-bound tasks (GEMM being one of them) on CPUs.

As mentioned in section 4.2, typically M and N have very small and irregular values,

whereas D is in hundreds. Hence, for vectorization, it is only worthwhile to consider the

d-loop inside the loop nests associated with SGD code, as presented in Figure 4.6.

In the loop nest of first GEMM, the d-loop is a reduction loop. Hence, targeting vector-

ization of this loop means performing parallel reduction. Considering each prodXt[m][n]

element as a scalar, and then applying scalar expansion to each such element enables vector-

ization of the d-loop. Later, we perform reduction of those temporary array variables to

get the corresponding prodXt[m][n] elements.

Now, for loop nest in second GEMM, we interchange the d-loop with the innermost
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n-loop, i.e. an interchange between loops in line 17 and 18 for second GEMM. This is

legal since there is only output dependence along n-loop, and loop interchange between

d-loop and n-loop does not violate this dependence. This loop interchange enable

vectorization of the d-loop in innermost position. Similarly, we apply loop interchange

between the d-loop and the innermost m-loop at line 23 and 24 respectively for the third

GEMM, and then perform vectorization on the d-loop.

4.3.1.2 Loop Fusion

As we can see from the code in Figure 4.6, the computations reuse all three matrices -

Xt
in, Xt

out, and prodXt. To exploit these reuse, we consider loop fusion after we apply

vectorization. If we consider the first three loop nests, we can fuse the loop bodies inside a

single loop nest of m-loop followed by n-loop (loops at line 17 and 18 are interchanged

after vectorization). However, the fourth loop nest has m-loop and n-loop in exactly

opposite order. Now, we can fuse all four loop nests by interchanging m-loop and n-loop

in fourth loop nest, which increases the reuse distance for ∆Xt
out from D to (N ∗D) while

decreasing the reuse distance for Xt
in from (M ∗D) to D.

Another option for fusing four loop nests is to interchange m-loop and n-loop in

the first three loop nests. This increases the reuse distance for ∆Xt
in from D to (M ∗D)

while decreasing the reuse distance for Xt
out from (N ∗D) to D in third loop nest. We also

see similar changes in reuse distance for Xt
in and Xt

out respectively, in the first loop nest.

Additionally, we have strided access for prodXt which hurts its spatial locality. Although

one can argue that we can replace prodXt with its transpose to mitigate the problem. Since,

both the strategies are quite equivalent, it boils down to values of M and N to decide which

strategy to choose. In our experience, usually M > N in Word2Vec parameter settings. So,

we choose the first strategy with loop order m→ n→ d (d-loop being the innermost) to

fuse four loop nests.
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4.3.1.3 Vector Register Blocking

In general, register blocking helps improve instruction level parallelism (ILP). In the case of

vectorized code, vector register blocking is of high importance because vector arithmetic

instructions usually take longer cycles to complete compared to scalar instructions. For

example, vFMADD (fused multiply add) from AVX-512 ISA takes 4 cycles on Intel R©

Skylake CPU. If we have two vector processing units (VPU) in a core, then we need at least

8 independent vFMADD instructions to keep the VPU pipeline busy. This can be achieved

by applying a vector register blocking of factor 8. In our case, apart from keeping VPUs

busy, the register blocking factor along m-loop and n-loop also determines the degree

of register reuse from loop fusion in the previous section 4.3.1.2. As we are dealing with

extremely irregular and small dimensions (M and N ), this critical optimization becomes

very challenging.

A Case of Code Specialization - Let’s consider the scenario from section 4.2 for

Word2Vec training on One Billion Words dataset. We have the bounds on m-loop and

n-loop as follows - 1 ≤M ≤ 10 and 1 ≤ N ≤ 6. Consequently, (M ∗N) can vary from

1 to 60. In comparison, we have 16 vector registers in the AVX-256 scheme and 32 vector

registers in the AVX-512 scheme. One can easily see that, we can not apply a fixed blocking

factor on m-loop and/or n-loop for all (M,N) cases, which is big enough to make full

use of the available vector registers. Furthermore, even if we were able to find a fixed

relatively good blocking factor for (M,N) values closer to the upper bounds, the blocked

loop would be very small, and the peeling loop would significantly degrade the performance.

Mainly, for this reason, we adopt multi-version code generation, which specializes in M

and N values.

Register Blocking in Specialized Code - As reasoned above, a fixed blocking factor is

not suitable in our case due to irregularity and extremeness of loop bounds. As a solution,

we consider partitioning the iteration space of a loop into different sized chunks, i.e., a

variable number of blocking iterations where each of them can have different loop bounds.
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So, instead of a scalar value for the blocking factor, now we will have a vector:

−→
bf =(lb1, lb2, . . . , lbB) where lbi ∈ Z+ ∀ i ∈ {1, 2, . . . , B}

s.t.
B∑
i=1

lbi = OLB (4.5)

variable dimension B denotes the loop bound of the blocked loop, lbi denotes the loop

bound of i-th blocking loop, and OLB is the original loop bound before we apply blocking.

We call
−→
bf as “blocking vector”.

Essentially, to form
−→
bf , we are looking for partitions of OLB where summation is

non-commutative. For a given p ∈ Z+, the number of ways OLB can be represented as a

sum of p positive integers is
(
OLB−1
p−1

)
. Now, if we want the number of ways OLB can be

represented as sum of two or more positive integers or itself, it becomes
∑OLB

p=1

(
OLB−1
p−1

)
.

This is exponential. Consequently, if we consider blocking both m-loop and n-loop, the

total number of possible cases would be
∑M

p=1

(
M−1
p−1

)
×∑N

q=1

(
N−1
q−1

)
. The situation looks

quite dire.

Fortunately, we can leverage several simplifications here. First of all, we now get the

advantages of M and N having small values. Even if we go for an exhaustive search, the

search space is not absurdly huge or non-tractable. In our experience, the upper bound on

N is usually very small. Thus, we can have
−→
bfn as (N), i.e. a vector of dimension 1. We

completely unroll-and-jam the n-loop. Hence, we only have to search for optimal
−→
bfm for

m-loop. We can further prune the search space heavily by applying a simple constraint

related to the first GEMM - the sum total of a blocking loop bound from m-loop, the value

of N , and their multiplication has to be less than or equal to the total number of vector

registers.

Cost Function - Before describing the algorithm for finding an optimal blocking vector,

we give an overview of our cost model associated with a specific blocking vector. We define

a cost function Fcost((
−→
bfm) which gives an estimated execution cost for a given blocking
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Algorithm 6: Find Optimal Blocking Vector
Input: M = µ, N = ν (specific values)
Output: Optimal blocking vector

−→
bf optm

1 OptCost ←− INF

2 Ω←− GetBlockingVectors(~0, µ, µ, ν)

3 for
−→
bfm ∈ Ω do

4 CurCost ←− Fcost(
−→
bfm)

5 if CurCost < OptCost then
6 OptCost ←− CurCost

7
−→
bf optm ←−

−→
bfm

vector
−→
bfm by considering latency of instructions. This cost function helps in the evaluation

of a specific blocking vector. It thus provides a means to compare two blocking vectors for

the purpose of finding an optimal blocking vector. The calculation of execution cost inside

the cost function consider latency of operations, and comprised of the following symbolic

costs:

• VReg(
−→
bfm) - number of vector registers required for each computation step, i.e. three

GEMMs in Figure 4.6. We use this cost in enforcing register constraint.

• LdSt(
−→
bfm) - estimated cycles for load and store instructions.

• FP(
−→
bfm) - estimated cycles for all types of floating-point arithmetic operations. Our

code involves vector operations for multiply, add, fused multiply add, and division in

the arithmetic category.

• Shuff (
−→
bfm) - estimated cycles for all types of vector register shuffle operations.

Based on the symbolic costs, the cost function is calculated as follows:

Fcost(
−→
bfm) =


∞ if VReg(

−→
bfm) > # vec regs

LdSt(
−→
bfm) + FP (

−→
bfm)

# VPUs + Shuff(
−→
bfm)

(4.6)
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Algorithm 7: Find Set of Blocking Vectors

Input: current blocking vector
−→
bf curm , µrem is remainder from µ, µ is value of M , ν

is value of N
Output: Ω - set of candidate blocking vectors

−→
bfm

1 Function GetBlockingVectors(
−→
bf curm , µrem, µ, ν):

2 Ω←− ∅
3 nVecReg←− max number of vector registers
4 for i ∈ 1, 2, . . . , µ do
5 if (i+ ν + i ∗ ν) > nVecReg then
6 break

7 insert i at the end of
−→
bf curm

8 if |−→bf curm |1 > µ then
9 break

10 if |−→bf curm |1 == µ then
11 Ω←− Ω ∪ {−→bf curm }
12 else
13 Ω′ ←− GetBlockingVectors(

−→
bf curm , µrem − i, µ, ν)

14 Ω←− Ω ∪ Ω′

15 delete last element of
−→
bf curm

16 return Ω

Now that we have the cost function to compare across different blocking vectors, we find

the optimal blocking vector using the method depicted in Algorithm 6. First, we enumerate

a set of candidate blocking vectors and then iterating over them, we calculate the cost

function for each of them to select the blocking vector with least cost since the cost presents

estimated latency of execution. Algorithm 6 uses function GetBlockingVectors()

to get the candidate set of blocking vectors for a given (M,N) pair. We present the

function GetBlockingVectors() in Algorithm 7. This is a recursive function that

starts from the most fragmented iteration space or highest length blocking vector possible.

As mentioned earlier, we use vector register capacity constraint from the first GEMM (line

5 in Algorithm 7) to prune the search space. The function also exits when the L-1 norm of

blocking vector exceeds the original loop bound of m-loop as this constraint is monotonic

with the increase in loop bound of blocking loops.
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After applying all the optimization and code specialization, the code from Figure 4.6

transforms to the code shown in Figure 4.7. As we can see, we unroll-and-jam both n-loop

and blocking m-loop represented now by mm-loop to perform vector register blocking.

We further unroll the blocked m-loop represented in Figure 4.7 as i-loop, which makes

our code branch free. One thing we haven’t shown here is that, when µ and ν are extremely

small, we further employ vector register blocking along d-loop to boost the ILP. This is

mainly for better readability and clarity of presentation.

1 // Given M = µ and N = ν

2 find optimal blocking vector
−→
bfoptm = (lb1, lb2, . . . , lbB)

3 // unrolled completely
4 f o r ( i n t i=1; i≤ B; ++i) {
5 // complete unroll-and-jam
6 f o r ( i n t mm=0; mm<lbi; ++mm) {
7 m = mm + (i > 1) ? (

∑i−1
j=1 lbj) : 0;

8 // complete unroll-and-jam
9 f o r ( i n t n=0; n<ν; ++n) {

10 // vectorized
11 f o r ( i n t d=0; d<D; ++d) {
12 // first GEMM
13 prodXt[m][n] += Xt

in[m][d] * Xt
out[n][d];

14 }
15 // applying activation
16 i f (n == 0) label=1;
17 e l s e label=0;
18 prodXt[m][n] = label - sigmoid(prodXt[m][n]);
19 prodXt[m][n] *= α;
20 // vectorized
21 f o r ( i n t d=0; d<D; ++d) {
22 // second and third GEMM
23 ∆Xt

in[m][d] += prodXt[m][n] * Xt
out[n][d];

24 ∆Xt
out[n][d] += prodXt[m][n] * Xt

in[m][d];
25 }
26 }}}

Figure 4.7: Optimized SGD code with specialization

4.3.1.4 Static Multi-versioning

As depicted in Figure 4.5, we abstract out the SGD computation with an API in the main

Word2Vec code. Our static code generator implements this API. From the parameters of the

Word2Vec training, we first deduct all possible (M,N) cases. Next, we generate specialized

code for each of those cases. Finally, we implement multi-versioning based on M and N
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1 // specialized for (M,N) = (1,1)
2 func_1x1();
3 // specialized for (M,N) = (1,2)
4 func_1x2();
5 . . .
6 sw i t ch((M-1) * Nmax + N) {
7 case 1:
8 func_1x1(); break;
9 case 2:

10 func_1x2(); break;
11 . . .
12 d e f a u l t:
13 . . .
14 }

Figure 4.8: Outline of code generated for multi-versioning

values with a switch-case inside the main API for SGD. For each of those cases, we

call the corresponding optimized code.

4.3.2 FrequentSkip

As mentioned previously in section 4.1.1.2, in Word2Vec model training, we discard any

word wi in the training corpus with probability P (wi) = 1 −
√
λ/f(wi), where f(wi) is

the frequency of word wi. It is argued in [23] that frequent words have less information

value, and the respective word vectors for frequent words remain unchanged for a large

amount of time. Discarding them gives better accuracy for rare words while accelerating

the training process. [87] argued that the subsampling of frequent words has the effect of

implicitly increasing the effective context size. So, meaningful context words get included,

which improves the accuracy.

In many real world datasets, the frequency distribution of words follows power law

or Zipf’s law [35]. Given a parameter α for skewness and sorted words in descending

order according to their frequencies, f(wi) = ci−α (where c is a constant) for power law

distribution, and with Zipf distribution, f(wi) = N
iαζ(α)

where N =
∑M

i=1 fi and ζ(α) is

Riemann’s zeta function with value ζ(α) =
∑∞

i=1
1
iα

. For example, [88] reported Zipf

distribution with α ≥ 1.4 in real-world datasets. The question that comes to our mind is, can

we do a more aggressive discarding of frequent words in these extremely skewed frequency
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distributions?

With the subsampling strategy mentioned earlier, the expected frequency of word wi

with f(wi) > λ becomes:

E(f(wi)) =
√
λ ∗ f(wi) (4.7)

If we consider training on One Billion Words dataset, λ is set to 10−4 and the most frequent

words have frequency in the range ∼ 108. Hence, the expected frequency becomes ∼ 102.

Which is still rather large compared to a large number of rare words.

Furthermore, frequent words are good candidates for negative sampling and, conse-

quently, chosen more frequently as negative samples since we draw from the unigram

distribution of words raised U(w) raised to the 3/4-th power. In a multi-threading execution

where threads update word vectors without locks or atomics, such as Hogwild, there is a

high chance of getting cache line ping-ponging [78] for these frequent words in the negative

samples.

To address the two issues mentioned above, we define a parameter θ where θ ≤ λ−1,

and distribute the index set {1, 2, . . . , θ} among Γ threads in round-robin fashion. If we

consider {f(wi)} ∀ 1 ≤ i ≤ θ, the θ most frequent words are evenly distributed between

threads. For the set of θ
Γ

frequent words associated with a thread, the frequency distribution

is similar to original one.

Now, we employ further discarding frequent words in two ways - a) if a thread γ faces

a frequent word wi 3 i ≤ θ and i is not in its assigned index set, it skips the target word,

and b) if a thread γ gets a frequent word wi 3 i ≤ θ as negative sample, and i is not in

its assigned index set, it discards that negative sample. The first strategy has an effect of

lowering the expected frequency of word wi 3 i ≤ θ in output words set by a factor Γ, i.e

E(f(wi)) =

√
λ ∗ f(wi)

Γ
for target word (4.8)

The second strategy effectively lowers the frequency of word wi 3 i ≤ θ appearing in a
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negative sample set by a factor Γ, and thus giving more weight to the negative samples of

lower frequency. One thing to note, our strategy assumes that the corpus does not have an

adversarial word arrival order, which is true in most of the real text corpus. We show the

effectiveness of our strategy empirically on real text datasets in section 4.4.3.2.

4.4 Evaluation

4.4.1 Experimental Setup

4.4.1.1 Hardware Configuration

We carried out all our experiments on a machine with two socket Intel R©Xeon R©Platinum

8280 CPU @ 2.70GHz with maximum Turbo frequency being 4.00GHz. The machine has a

total of 56 cores (each socket having 28 cores) and 756 GB DRAM. The operating system

of the machine is CentOS Linux 7.

4.4.1.2 Software Configuration

We implemented our work in C++. Our work exploits shared memory parallelism using

OpenMP. We compiled our software framework with Intel R©C++ Compiler 18.0.0 with O3

optimization level. We used -xCORE-AVX512 compiler flag to target CORE-AVX512

instruction set. We used the same compiler and Intel R©MKL 2018.0.128 for the compilation

of methods we compare with here.

4.4.1.3 Datasets

Training Datasets - we perform the training of Word2Vec models on three datasets, namely:

• Text8[89] - a small dataset of 17 million words consisting primarily of English text

from Wikipedia dump.

• One Billion Words Benchmark[86] - a popular dataset for evaluating language mod-

elling techniques.
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• UMBC webbase corpus[90] - a dataset of 3 billion words containing English para-

graphs.

Different datasets encompassing a large range of sizes and statistics are used to show that

our approach is versatile enough. However, we primarily use One Billion Words for most of

the analysis works. Hence, one can safely assume the dataset for any experiment to be One

Billion Words unless otherwise stated explicitly.

Testing Datasets - In order to test the accuracy of trained Word2Vec models, we use two

evaluation methods: a) finding word similarity with reference to human judgement and b)

finding word analogy for questions of the form A is to B as C is to (?), where model has to fill

in the (?). For word similarity tasks, we use very popular WordSim353[91] (WS353) dataset.

In this case, the accuracy is measured as Spearman’s rank correlation co- efficient[92]

between human similarity judgement and cosine similarity of word vectors. We use Google

analogy dataset[22] for word analogy task. It contains 19544 word-analogy queries, among

them 8869 are semantic type, and 10675 are syntactic type. An answer to a query is only

correct if it matches exactly with the correct word. Then the accuracy is measured as the

fraction of queries answered correctly.

4.4.1.4 Word2Vec Parameters

Following pWord2Vec [78], we used the following parameter settings for Word2vec in all

our training tasks:

• Vector Dimension or hidden layer size D = 300

• Context size or window size C = 5

• Number of negative samples K = 5

• Threshold for subsampling λ = 10−4

• Number of epochs or iterations is 5
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4.4.1.5 Performance Parameters

We have extensively used the parameter “speedup” for our performance study. Here, speedup

for a given approach over a specific baseline method is:

Execution time of the baseline method

Execution time of the given approach
(4.9)

4.4.2 Performance Comparison

We present two types of performance measurements concerning Word2Vec training. One is

the time spent in the SGD step, while the other one is the time required for the complete

model training. The former gives a clear picture of the performance improvement we get

from employing different strategies proposed by different Word2Vec algorithms. In contrast,

the later indicates an overall performance gain in the training process. We compare the

performance achieved through our approach NinjaVec with three other methods mentioned in

section 4.1.2, namely - a) Google Word2Vec [23], b) pWord2Vec [78], and c) pSGNScc [79].

We have used 8, 16, and 32 threads for training on Text8, One Billion Words, and UMBC

datasets, respectively, mainly because the sizes of the datasets cover a wide range (the

respective sizes are 97MB, 4GB, and 17GB).

4.4.2.1 Speedup in SGD

Figure 4.9 represents the speedup achieved in SGD computation by all methods of com-

parison over Google Word2Vec on different datasets. pWord2Vec gives 7.93×, 7.54×, and

10.47× speedup on respectively Text8, One Billion Words, and UMBC datasets. pSGNScc

achieves a moderate improvement over pWord2Vec by delivering respectively 8.44×, 9.27×,

and 14.49× speedup on the same datasets. One thing to note here is that, in case of pS-

GNScc, we take into account the overhead of reverse indexing while calculating the time

spent in SGD. On the previously mentioned datasets, our method NinjaVec provides 21.12×,
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Figure 4.9: Comparison of speedups achieved in SGD

44.09×, and 100.7× speedup respectively. As we can see, NinjaVec significantly improves

performance in SGD computation of Word2Vec compared to the state-of-the-art methods on

CPUs, namely pWord2Vec and pSGNScc.

The large increases (∼ 2×) in speedup from Text8 to One Billion Words and further to

UMBC dataset can be explained by weak scaling characteristics. Here, we are increasing the

data size by large factors as we double the number of threads in each step, which is a weak

scaling experiment by nature. NinjaVec shows much better weak scaling of performance

compared to pWord2Vec and pSGNScc, which is a combined effect of FrequentSkip and

NinjaUpdate. As the data size and the number of threads increase, FrequentSkip prunes a

larger amount of computations while contributing to cache locality. Meanwhile, NinjaUpdate

efficiently computes the SGD step for the extreme corner cases of dimensions, which arises

from a higher level of pruning induced by FrequentSkip.

4.4.2.2 Improvement in Training Time

Now that we have looked into the performance improvement for SGD inside Word2Vec

training, in particular, the next step would be to shed some light on the overall training
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Figure 4.10: Comparison of speedups achieved in training time

time improvement. Figure 4.10 exactly addresses that. In coherence with the SGD speedup

analysis, we measure speedup in training time also by considering Google Word2Vec as the

baseline. On Text8, One Billion Words, and UMBC datasets, pWord2Vec achieves a speedup

of 4.26×, 3.45×, and 3.7× respectively. Similar to SGD, pSGNScc moderately improves

those speedups to 5.25×, 4.66×, and 4.93× respectively. Finally, our approach NinjaVec

attains, respectively, 10.15×, 8.58×, and 9.22× speedup on the previously mentioned

datasets. The large gap between speedup in SGD and training time is mainly due to the

overheads of memory copy and random number generation, which is common to all methods.

A possible future improvement could be overlapping memory copy with computation by

assigning two separate threads for computation and memory copy, and allocating extra

buffers for matrices associated with SGD computation.

4.4.2.3 Model Accuracy

Table 4.1 & 4.2 presents the accuracy of the trained word2vec model or word vectors on word

similarity and word analogy tasks respectively. We see that, on One Billion Words and UMBC

datasets, NinjaVec gives superior accuracy for word similarity task while achieving similar
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Table 4.1: Accuracy for word similarity (WS353 dataset)

Methods
Training Datasets

Text8 One Billion Words UMBC
Google Word2Vec 64.9% 64.1% 68.6%

pWord2Vec 66.5% 64.9% 68.2%
pSGNScc 68.5% 64.9% 68.4%
NinjaVec 65.7% 67.8% 71.7%

Table 4.2: Accuracy for word analogy (Google analogy dataset)

Methods
Training Datasets

Text8 One Billion Words UMBC
Google Word2Vec 23.7% 33.3% 36.7%

pWord2Vec 23.8% 33.3% 36.6%
pSGNScc 25.3% 33.5% 36.7%
NinjaVec 22.1% 33.1% 36.2%

accuracy for word analogy task compared to other methods. The improvement in accuracy

from NinjaVec can be contributed to FrequentSkip strategy. The reasoning is similar to the

argument behind subsampling of frequent words in original Word2Vec [23]. We can improve

the accuracy of learned vector representations of the rare words by aggressively skipping

frequent words through FrequentSkip. For Text8 dataset, NinjaVec achieves accuracy close

to Google Word2Vec and pWord2Vec. However, pSGNScc provides better accuracy on

Text8 dataset compared to other methods. This is because, as mentioned in [23], bigger

context size helps in improving accuracy for very small datasets, such as Text8. The “context

combining” strategy in pSGNScc essentially does this by increases the number of context

words for a specific instance.

4.4.3 Empirical Analysis of NinjaVec

After depicting the general system performance landscape in the previous section, we delve

deeper and give a thorough performance analysis on different aspects of our NinjaVec

approach in this section.
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Figure 4.11: Performance gain for gradient update step in different scenarios

4.4.3.1 Performance of NinjaUpdate

In Figure 4.11, we give a detailed breakdown of speedup achieved from our NinjaUpdate

over different (M,N) combinations, where M represents the number of output words (a

target word and at most K negative samples), and N represents the number of context

words. The baseline is Intel R© MKL-based approach used in pWord2Vec. The scenarios

are sorted based on their normalized (w.r.t. total count) frequency of appearance on One

Billion Words dataset after using our FrequentSkip strategy. As we can see, the speedups

vary quite significantly across the board. The geometric mean speedup is 3.71, and the

weighted average of speedups according to their relative frequencies is 3.61. One thing to

notice in Figure 4.11 is that the frequencies are now much more distributed compared to

Figure 4.4a. This is an effect of FrequentSkip strategy. As we are skipping frequent words,

the chances of appearing lower values for M are greatly increased.

4.4.3.2 Analysis of FrequentSkip

We present the effect of FrequentSkip in Figure 4.12. We vary the threshold θ for Fre-

quentSkip from 160 to 1600 in steps of 160, where a threshold θ indicates that θ most

frequent words will be considered in FrequentSkip strategy. The respective gradient update

time and accuracy presented are after applying only FrequentSkip, not NinjaUpdate. All

executions are done with 16 threads on One Billion Words dataset. Figure 4.12 shows that
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Figure 4.12: Execution time and accuracy with varying threshold for FrequentSkip on One
Billion Words dataset

the gradient update time decreases with increasing θ while the accuracy remains quite the

same. Although, the reduction in gradient update time becomes less for higher values of θ.

4.4.3.3 Performance Scaling

Figure 4.13 gives an overview of how our strategies scale with the number of threads. In this

case, we measure the speedup w.r.t. pWord2Vec. Theoretically speaking, the NinjaUpdate

strategy should not have any effect on multi-thread performance, because it optimizes

performance for fine-grain or vector parallelism. The performance will be affected only

when multiple threads execute on single core through simultaneous multi-threading since, at

that point, Vector Processing Unit(s) and L1 and L2 caches of a single core will be shared

among multiple threads. As we did not come across any background work on Word2Vec,

which exploits such a high level of parallelism for single node multi-core CPU, here we

present scaling results for 4 to 16 threads. As expected, the NinjaUpdate performance

remains almost the same with the increasing number of threads.

However, we expect some variation in the performance of the FrequentSkip strategy as

we change the number of threads. Because, in this strategy, the frequencies of the elements
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skipped by a specific thread changes with changing number of threads. We see the same in

Figure 4.13. Consequently, the speedup for NinjaVec as a whole varies a bit as we increase

the number of threads from 4 to 16.

4.4.3.4 Varying Degree of Specialization

One interesting investigation on the code specialization of NinjaVec would be to analyze

how much specialization is sufficient. We present the experimental results for such a study in

Figure 4.14. We first sort the cases, or (M,N) tuples based on their frequency in One Billion

Words dataset, i.e., the order previously presented in Figure 4.11. Then apply NinjaUpdate

for the top τ% cases and use the three GEMM call based approach used in pWord2Vec for

the rest of the cases. We measure the speedup of each scenario w.r.t. pWord2Vec as baseline.

We see that the performance improvement from specialization increases steadily till

40% cases. After that, it drops and remains the same for 80% and 100% cases. This drop is

from an increase in code size crossing the L1-I cache size, which is a well-known limiting

factor [93] in code specialization. The flat tail of the speedup curve over 80% and 100%

follows from the fact that these cases are very infrequent, and hence, specializing them

does not affect the performance much. However, we have to remind one point here that, the

frequencies of (M,N) cases are unavailable before the training process. Hence, it is a naive

yet practical approach to specialize in all possible cases.
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CHAPTER 5

CONCLUSIONS

We need efficient data mining and learning algorithms to extract meaningful pieces of

information from a large amount of data in a reasonable amount of time. As we deal with

more and more data in an increasing number of applications, such as internet search, net-

work traffic analysis, e-commerce, and so on, designing fast data mining methods becomes

more important. Mostly, there have been two paths for improving the execution time of

the algorithms of concern - a) designing approximate algorithms to reduce computation

significantly and b) hardware-centric advancement enabling a rapid increase in processing

power. Observing that parallelism is omnipresent in today’s processors, we see different

types of parallelisms adopted by various architectures. In this thesis, we considered sev-

eral important applications and show how a carefully designed parallel algorithm, often

exploiting power-law data properties, can lead to significant performance gains on current

computing resources.

For the first work, we examined the classical problem of frequency estimation, on

throughput optimized parallel GPGPUs. We find that if we exploit the natural skew present

in the data with a novel hierarchical sketching strategy tailored for the fine-grain parallelism

in GPGPU, we attain impressive performance gain over the standard sketching method. For

the next work, we focused on the problem of identifying the most frequent elements in

distributed data streams. As the current generation servers largely deploy multi-core CPUs

for their multi-node infrastructure, we consider both multi-core and distributed parallelism.

We show how we can combine a counter-based method with a sketch-based method to

achieve the best of both methods, which is parallelism for the counter-based algorithms and

fast update time for the sketch-based algorithms. As a result, compared to both the methods

we combined, our method provides significant performance gains on distributed multi-core

98



settings while preserving the accuracy.

Finally, we studied a popular word embedding method called Word2Vec. This time

we consider fine-grain SIMD parallelism used in current generation CPUs. As the vector

length increases, such as a progression from SSE to AVX-512 in the x86 architecture,

the importance of efficiently using vector processing units becomes more relevant. We

investigated the limitations of current approaches and to address them, we proposed a static

multi-version code generation strategy coupled with an algorithmic approximation based on

the power-law frequency distribution of words.

Future Directions. A major direction for future work would be to explore automating

the key steps in our work, as far as possible. Given a target parallelism model or architecture

and some high-level specifications for power-law distribution or other data properties, one

can aim to automatically generate the optimized code that was created manually in this thesis

work. Doing so will reduce the programming burden and make it easier for data mining

domain experts to adopt our approach. Apart from this, it is worth noting that the frequency

distribution need not specifically be power-law or Zipfian for our work to be applicable.

As long as there is a steep cut-off between frequencies of heavy hitters and cold items,

one can apply our approach. Some examples of such related distributions include the log-

normal distribution and Gibrat’s distribution. However, one needs to verify whether some

additional challenges arise in the case of these related distributions. On that note, it would be

helpful for the research community to have a formal way to identify the separation of heavy

hitters in frequency distributions from real-world data. Another area of future exploration

would be to exploit the skewness in the frequency distribution hierarchically for different

parallelism models at the same time. In recent supercomputers such as Summit, we have

multi-socket CPUs employing SIMD parallelism and multi-core parallelism, accompanied

by multiple GPUs with SIMT parallelism, all in a single compute node. Now, if we consider

multiple such nodes, we have a large hierarchy of different parallelism models. There is a

potential opportunity to exploit the skewness in the frequency distribution in tandem with
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this parallelism hierarchy to efficiently use the computing resources.
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[34] A. Goyal, H. Daumé III, and G. Cormode, “Sketch algorithms for estimating point
queries in nlp,” in Proceedings of the 2012 Joint Conference on Empirical Methods
in Natural Language Processing and Computational Natural Language Learning,
Association for Computational Linguistics, 2012, pp. 1093–1103.

[35] M. E. Newman, “Power laws, pareto distributions and zipf’s law,” Contemporary
physics, vol. 46, no. 5, pp. 323–351, 2005.

103



[36] P. Roy, A. Khan, and G. Alonso, “Augmented sketch: Faster and more accurate stream
processing,” in Proceedings of the 2016 International Conference on Management of
Data, ACM, 2016, pp. 1449–1463.

[37] T. Yang, Y. Zhou, H. Jin, S. Chen, and X. Li, “Pyramid sketch: A sketch framework
for frequency estimation of data streams,” Proceedings of the VLDB Endowment,
vol. 10, no. 11, pp. 1442–1453, 2017.

[38] T. Yang, J. Gong, H. Zhang, L. Zou, L. Shi, and X. Li, “Heavyguardian: Separate
and guard hot items in data streams,” in Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, ACM, 2018,
pp. 2584–2593.

[39] G. Cormode and M. Hadjieleftheriou, “Methods for finding frequent items in data
streams,” The VLDB Journal, vol. 19, no. 1, pp. 3–20, 2010.

[40] A. Mandal, H. Jiang, A. Shrivastava, and V. Sarkar, “Topkapi: Parallel and fast
sketches for finding top-k frequent elements,” in Advances in Neural Information
Processing Systems, 2018, pp. 10 898–10 908.

[41] J. L. Hennessy and D. A. Patterson, “A new golden age for computer architecture,”
Communications of the ACM, vol. 62, no. 2, pp. 48–60, 2019.

[42] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates,
S. Bhatia, N. Boden, A. Borchers, et al., “In-datacenter performance analysis of a
tensor processing unit,” in 2017 ACM/IEEE 44th Annual International Symposium on
Computer Architecture (ISCA), IEEE, 2017, pp. 1–12.

[43] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan,
B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, et al., “A million spiking-neuron
integrated circuit with a scalable communication network and interface,” Science,
vol. 345, no. 6197, pp. 668–673, 2014.

[44] D. Thomas, R. Bordawekar, and C. Aggarwal, “A frequency-aware parallel algorithm
for counting stream items on multicore processors,” Tech. Rep.

[45] P. K. Agarwal, G. Cormode, Z. Huang, J. M. Phillips, Z. Wei, and K. Yi, “Mergeable
summaries,” ACM Transactions on Database Systems (TODS), vol. 38, no. 4, p. 26,
2013.

[46] G. Cormode and S Muthukrishnan, “Approximating data with the count-min data
structure,”

[47] J. Chen and Q. Zhang, “Bias-aware sketches,” Proceedings of the VLDB Endowment,
vol. 10, no. 9, pp. 961–972, 2017.

104



[48] C. Estan and G. Varghese, New directions in traffic measurement and accounting, 4.
ACM, 2002, vol. 32.

[49] NVIDIA Corporation, NVIDIA CUDA C Best Practices Guide, http://docs.
nvidia.com/cuda/cuda-c-best-practices-guide/index.html.

[50] B. H. Bloom, “Space/time trade-offs in hash coding with allowable errors,” Commu-
nications of the ACM, vol. 13, no. 7, pp. 422–426, 1970.

[51] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache: A scalable wide-area
web cache sharing protocol,” IEEE/ACM Transactions on Networking (TON), vol. 8,
no. 3, pp. 281–293, 2000.

[52] J. Aguilar-Saborit, P. Trancoso, V. Muntes-Mulero, and J.-L. Larriba-Pey, “Dynamic
count filters,” Acm Sigmod Record, vol. 35, no. 1, pp. 26–32, 2006.

[53] Y. Lu, A. Montanari, B. Prabhakar, S. Dharmapurikar, and A. Kabbani, “Counter
braids: A novel counter architecture for per-flow measurement,” ACM SIGMETRICS
Performance Evaluation Review, vol. 36, no. 1, pp. 121–132, 2008.

[54] H. B. McMahan, G. Holt, D. Sculley, M. Young, D. Ebner, J. Grady, L. Nie, T.
Phillips, E. Davydov, D. Golovin, et al., “Ad click prediction: A view from the
trenches,” in Proceedings of the 19th ACM SIGKDD international conference on
Knowledge discovery and data mining, ACM, 2013, pp. 1222–1230.

[55] K. Yi and Q. Zhang, “Optimal tracking of distributed heavy hitters and quantiles,”
Algorithmica, vol. 65, no. 1, pp. 206–223, 2013.

[56] P. K. Agarwal, G. Cormode, Z. Huang, J. Phillips, Z. Wei, and K. Yi, “Mergeable
summaries,” in Proceedings of the 31st ACM SIGMOD-SIGACT-SIGAI Symposium
on Principles of Database Systems, ser. PODS ’12, Scottsdale, Arizona, USA: ACM,
2012, pp. 23–34, ISBN: 978-1-4503-1248-6.

[57] G. S. Manku and R. Motwani, “Approximate frequency counts over data streams,”
in Proceedings of the 28th International Conference on Very Large Data Bases,
ser. VLDB ’02, Hong Kong, China: VLDB Endowment, 2002, pp. 346–357.

[58] A. Metwally, D. Agrawal, and A. El Abbadi, “Efficient computation of frequent and
top-k elements in data streams,” in Proceedings of the 10th International Conference
on Database Theory, ser. ICDT’05, Edinburgh, UK: Springer-Verlag, 2005, pp. 398–
412.

[59] J. Misra and D. Gries, “Finding repeated elements,” Science of computer program-
ming, vol. 2, no. 2, pp. 143–152, 1982.

105

http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
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