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SUMMARY

Recent breakthroughs in artificial intelligence and machine learning, as well as the

availability of large datasets, are transforming many aspects of daily life, businesses, and

industries. On the other hand, the complexity of deep learning problems has increased

significantly in recent years. Hence, training or real-time inference of modern deep models

on end-user devices or a single processing node is unappealing or nearly impossible due to

the required storage, memory or computational power. The overarching theme of my Ph.D.

thesis is addressing the challenges raised in deep learning due to the complexity of models.

Especially, we consider communication bottleneck in distributed training and inference of

deep models.

Distributed Deep Learning

One of the main challenges in distributed training is the communication cost due to

the transmission of the parameters or stochastic gradients (SGs) of the deep model for

synchronization across processing nodes (a.k.a. workers). Compression is a viable tool to

mitigate the communication bottleneck. However, the existing methods suffer from a few

drawbacks, such as increased variance of SG, slower convergence rate, or added bias to SG.

In my Ph.D. research, we have addressed these challenges from three different perspectives:

1. Information Theory and the CEO Problem: we argued that the computations at each

worker can be considered as noisy observations of the true update (or gradient), θ∗, and

the objective of distributed learning would be reliable estimation of θ∗ with minimum

communication from workers. We use this principle to develop a framework for efficient

data communication in distributed learning.

2. Matrix Factorization: One way of compressing the SGs is low-rank matrix factorization

and quantization. However, naively pursuing such an approach is costly in distributed

machine learning, in terms of the computations and the training error. By exploiting

the factorization inherent in the backpropagation algorithm, quantizer optimization, and

xii



controlled dithering, we develop two novel Indirect SG Quantization (ISGQ) methods.

ISGQ is unbiased, and with the same number of quantization levels, it has lower MSE

and computational complexity than most SG compression methods.

3. Compressive Sampling: The performance and compression gain of ISGQ are limited by

the structure of neural networks. To achieve arbitrarily large unbiased compression of

SG, we considered projecting SG into a small random subspace, and then compressing it.

Inspired by the structured random mixing matrices and utilizing controlled dithering and

quantization, we developed Quantized Compressive Sampling (QCS). We showed that

QCS is unbiased and can achieve orders of magnitude smaller MSE than other unbiased

compression methods, resulting in superior convergence rate.

Next, we consider federated learning over wireless multiple access channels (MAC).

Efficient communication requires the compression algorithm to satisfy the constraints

imposed by the nodes in the network, communication channel, and data privacy. To

satisfy these constraints and take advantage of the over-the-air computation inherent in

MAC, we propose a framework based on random linear coding and develop efficient

power management and channel usage techniques to manage the trade-offs between power

consumption, communication bit-rate, and convergence rate of federated learning.

Model Restructuring and Adjustment for Distributed Inference

While the complexity of modern deep neural networks allows them to learn complicated

tasks, the computational complexity and memory footprint limit their usage in many real-

time applications as well as deployment on many end-user devices with limited resources.

Hence, model reduction and adjustment is a highly desirable process for deep neural net-

works. In the second part of my thesis, we consider the distributed parallel implementation

of an already-trained deep model on multiple workers. As such, the deep model is divided

into several parallel sub-models, each of which is executed by a worker. Since latency due to

synchronization and data transfer among workers negatively impacts the performance of the

parallel implementation, it is desirable to have minimum interdependency among parallel

xiii



sub-models. To achieve this goal, we develop and analyze RePurpose, an efficient algorithm

to rearrange the neurons in the neural network and partition them (without changing the

general topology of the neural network) such that the interdependency among sub-models is

minimized under the computations and communications constraints of the workers.

xiv



CHAPTER 1

INTRODUCTION AND LITERATURE SURVEY

In recent years, the size of deep learning problems has been increased significantly, both

in terms of the number of available training samples as well as the number of parameters

and complexity of the model. On the other hand, the limited RAM memory capacity and

computational power of a single processing unit make training of modern deep models

challenging. Moreover, the increased inference time of large models makes them unfavorable

for real-time applications such as virtual assistants and autonomous vehicles. In this thesis,

we consider the challenges encountered in training and inference of large deep models,

especially on nodes with limited computational power and capacity. We consider two

classes of related problems; 1) distributed training of deep models, and 2) compression

and restructuring of deep models for efficient distributed and parallel inference to reduce

execution times on devices and networks with limited resources.

1.1 Distributed Data Training

Availability of large datasets is one of the main deriving forces for the recent surge in the

applications of deep models. However, in practice, transferring all data to a central powerful

node may be infeasible due to (i) the dataset is too large to be stored in a single node, (ii)

the data is inherently distributed, or (iii) moving data is expensive or prohibited due to

the privacy concerns. Hence, training deep models on a single processing node can be

unappealing or nearly impossible. On the other hand, as the complexity of deep models

increases (i.e., number of parameters or layers), massive amounts of storage, memory,

and computational power are required for training deep models in a reasonable amount

of time. As such, large-scale distributed machine learning in which the training samples

are distributed among different repository or processing units (referred to as workers) has
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𝒈𝑃 or 𝜹𝒘𝑃

Worker 1 Worker P

ഥ𝒈 or 𝜹𝒘
𝒈1 or 𝜹𝒘1 ഥ𝒈 or 𝜹𝒘

Figure 1.1: Overview of distributed data training

started to become a viable approach for tackling the challenges in complex deep learning

problems [1, 2, 3, 4, 5, 6, 7, 8].

In the first part of the thesis, we consider the problem of deep learning when training

data is distributed. We assume that each worker has access to its own training data (a subset

of the entire training samples) and uses its training samples to locally update the model. The

models at the workers are then synchronized by exchanging information (such as stochastic

gradients or updates of model’s parameters) between workers and a parameter server in the

centralized distributed training, or among workers in the decentralized setting. Ideally, it is

expected that by increasing the number of workers and hence the total computational power,

the training time would be decreased proportionately. However, as the scale of distributed

systems grows large, the extensive information exchanges for model synchronization across

workers incur significant communication overhead. The resulting communication over the

limited channel bandwidth increases in the total training time in practice.

In recent years, there has been a great amount of effort on mitigating the communication

bottleneck in distributed training. Most of these methods can be applied to both centralized

and decentralizes settings although we will present them in the context of centralized training

for simplicity. The existing methods can be summarized as follows:

1. Quantization: Reducing the number of bits in representing SG (or parameter updates)

is a well-known technique to decrease the communication bit-rate. For example, [9]

2



suggested quantizing the gradients to 1-bit by mapping positive values to τ+ and

negative ones to τ−. The reconstruction points τ+ and τ− are found via minimizing

the mean squared error of the quantizer. They showed that the 1-bit quantization

scheme can significantly reduce the communication overhead without any major

loss in the accuracy of the final trained model, as long as the quantization error is

carried forward to the next mini-batch. However, the reduced accuracy of gradients

and quantization bias may impair the convergence rate. Using different quantization

levels and/or adaptive quantizers, one can alleviate such issues [10, 11, 12]. Other

techniques such as SignSGD [13, 14] are also proposed to directly use only the sign of

the gradients, {−1,+1}, for the optimization. One major drawback of using ordinary

(deterministic) quantization methods is the added bias to the stochastic gradients.

To ensure the convergence of the training algorithm with biased SG, it is crucial to

incorporate the error feedback during quantization. An alternative approach to avoid

the quantization bias is using random (stochastic) quantization, i.e., ĝ is a random

variable such that E[ĝ] = g. QSGD [15] and TernGrad [16] are examples of such

approaches which guarantee the convergence of the training algorithm without using

error feedback and provide a trade-off between the gradient precision and the model

accuracy. However, the reduced precision of SG due to the quantization error can

potentially increase the training time.

2. Sparsification: Another approach to reduce the communication overhead is trans-

mitting only the important or a small subset of the gradients. [17] was among the

early works to use sparsification in conjunction with thresholded quantization to

further compress the gradients; it compacts and threshold gradients whose magnitude

exceed a certain value. As choosing the right threshold for gradient sparsification is

difficult in practice, other approaches have been proposed such as transmitting only

a fixed portion of the gradients [10, 18, 19, 20], TopK SGD [21, 22], deep gradient

compression [23], and sparse communication [24]. Since generally the sparsification

3



results in biased stochastic gradients, it is crucial to aggregate the residuals to ensure

the convergence of the learning algorithm. In parallel, [25] has proposed random

(stochastic) sparsification and scaling of the gradients to achieve both sparsity and

unbiasedness. A similar approach, Atomo [26], considers the sparsification of the

gradients in the transform domain such that the variance of error is minimized subject

to a given average sparsity budget.

3. Using Error Feedback: Application of quantization or sparsification techniques in

deep learning may introduce two major issues: (i) increase in the variance of the

aggregated gradients, and (ii) insertion of a bias to the stochastic gradient. These may

degrade the convergence speed or even cause the learning algorithm fail to converge.

A key component in tackling both of these issues is aggregating the compression

residuals (i.e., quantization or sparsification errors) and carrying forward to the next

mini-batch. This ensures that the true values of SG are eventually applied to the

parameters of the deep model, although it may take several transmissions. Exploiting

such a feedback can speed up the convergence rate or ensure the convergence of

the learning algorithms such as stochastic gradient descents even in the presence of

(biased) gradient compression [19, 27, 28]. However, it is worth noting that storing

the residuals increases the memory footprint of the algorithm proportional to the size

of the deep model which might be undesirable in some applications, especially for

large models. Moreover, since adding the residual to the gradients can potentially

increase the variance of the values, it is important to adjust the learning parameters

accordingly to avoid divergence of the algorithm.

4. Entropy Coding: The outcome of quantization/sparsification steps may be followed

by simple entropy coding algorithms such as adaptive arithmetic coding or ad-hoc

compression techniques to further reduce the communication overhead [29, 15].

5. Stale Synchronous and Asynchronous Training: Finally, another group of works
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attempts to reduce the communication bottleneck by relaxing the synchronization

between workers [30, 31, 32, 33]. Each worker may continue its own computations

while some others are still communicating and exchanging parameters. Carefully

scheduling and managing the asynchronous parameter exchange can lead to a better

utilization of both the communication bandwidth and the computational power of

the distributed system [34, 35, 36, 37]. Examples of such approaches include Down-

pourSGD [38] and Stale Synchronous Parallel model of computation [39, 40, 41].

Hogwild! [31] and Hogwild++ [42] allow the workers to access a shared memory

with possibility of overwriting each other’s work. It is shown that when most gradient

updates are sparse, it achieves a nearly optimal rate of convergence.

Another technique to minimize the communication among workers is synchronizing

the models among workers only occasionally. Local SGD is based on running SGD

independently in parallel on different workers and averaging the parameters of the

model only once in a while. [43, 44, 45] have shown that this scheme can converge at

the same rate as mini-batch SGD.

Throughout chapters 2, 3, and 4 of the thesis, we assume the synchronous distributed

training scheme, and focus on improving the training speed via reducing the communication

bit-rate or improving the variance of the compression algorithm for faster convergence rates.

In chapter 2, we argue that the deep model’s parameters or stochastic gradients can be

highly correlated among different workers; providing opportunity for distributed compres-

sion [46]. Moreover, the main objective in distributed learning is a good estimate of the

model’s parameters at the server by using the information received from workers, rather than

the exact recovery of model’s updates (or gradients) from each individual worker. Hence,

we frame the distributed training as the Central Estimation Officer (CEO) problem [47, 48,

49]. To reduce the communication overhead, we model the dependency among parameters

computed by the workers and propose different distributed compression algorithms to take

advantage of that correlation [50, 51].
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In chapter 3, we consider factorization of SG into smaller matrices and then compressing

the factorized terms for SG compression. However, naively pursuing such an approach is

costly in distributed machine learning, in terms of both computational complexity and the

training error. By exploiting the factorization inherent in the backpropagation algorithm,

quantizer optimization, and controlled dithering, we develop Indirect SG Quantization

(ISGQ) method. ISGQ is unbiased, and with the same number of quantization levels, it

has lower MSE and computational complexity than most SG compression methods, which

translates into faster convergence rates [52].

In chapter 4, we investigate the problem of obtaining arbitrarily large unbiased com-

pression gains while ensuring that the mean squared error (MSE) of the compressed SG

is low. To achieve this goal, we consider projecting SG into a small random subspace,

and then compressing it. Inspired by the structured random mixing matrices and utilizing

controlled dithering and quantization, we develop Quantized Compressive Sampling (QCS).

We show that QCS is unbiased and can achieve orders of magnitude smaller MSE than

other unbiased compression methods, resulting in superior convergence rate. Moreover, we

develop weighted error feedback and analyze how it can reduce the gap in the convergence

rate compared to the baseline [53].

Finally, we consider federated learning over wireless multiple-access-channels in chap-

ter 5. Federated learning differs from traditional distributed machine learning as 1) the data

observed by the nodes are usually unbalanced and non-iid, and 2) all nodes may not transmit

at every round of communications. Hence, distributed optimization algorithms which are

often developed for high performance computing clusters are not readily applicable to feder-

ated learning [54, 55, 56, 57, 58, 59]. We develop an efficient communication algorithm

that satisfies the constraints imposed by the communication medium and take advantage of

its characteristics, such as over-the-air computations inherent in wireless multiple-access

channels (MAC) [60, 61], unreliable transmission and idle nodes in the the network, limited

transmission power, and preserving the privacy of data [62].
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1.2 Parallel and Distributed Inference

In recent years, the size and complexity of deep neural networks has been increased signif-

icantly in terms of model’s structure and number of parameters. Consequently, real-time

implementation and inference in many machine learning (ML) problems has become a

challenging task. Although the execution time of deep neural networks can be improved sig-

nificantly by the application of parallel computing algorithms and using multiple processing

units (such as GPU’s or clusters of computing nodes), it generally requires synchronization

and data exchange among processing units to some extent. This is mainly due to the fact

that in parallel computations, each processing unit performs a portion of the computations,

its inputs generally depend on the outputs from other units, and the results of computa-

tions should be aggregated to yield the desired output. These co-dependencies can lead to

significant delays in computations. For example, in a GPU, accessing the shared memory

within a block of threads has lower latency compared to accessing the global shared memory.

Moreover, synchronization among separate blocks of threads can lead to idle processing

times and lower computing efficiency. Hence, it is more desirable to run blocks of threads

independently. Moreover, in some real-world scenarios, such as sensor networks, the infer-

ence is done on the data observed by the entire network, i.e., each node in the network only

observes a portion of the input data. However, transferring all data to a central powerful

node to aggregate and perform the ML task is undesirable due to the sheer amount of data to

be collected, limited computational power, privacy concerns, or even availability of such

a node. Hence, it is more favorable to develop a distributed equivalence of a deep model

for deploying over the processors/sensor network. As such, the network, as a whole, would

become a computing engine of the original deep model for inference from data observed by

all nodes.

In the aforementioned applications, straightforward parallel computing algorithms cannot

be arbitrarily scaled up for deep models with complex connectivity structures. As such,
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Figure 1.2: Examples of parallel distributed model, (a) a multicore system, (b) GPUs,
(c) distributed model over a sensor network

there is an increasing interest in efficient parallel execution, reducing complexity of deep

models, or modifying their structure for nearly optimal deployment with only subtle changes

in their performance.

The majority of past works on distributed/parallel execution of deep neural networks are

concerned with algorithmic aspects of the parallel implementation of the neural network

(e.g., [1, 63, 64]). However, in chapter 6, we focus on the structure of deep models and how

we can modify it for efficient parallel distributed implementation. The majority of these

approaches can be classified into three categories:

1. Knowledge Distillation: In knowledge distillation, the goal is to train a shallow

or small model (referred to as student network) that mimics the behavior of an

already trained complex model (referred to as teacher network) or an ensemble of

teacher networks [65]. Using soft targets instead of the hard labels has the benefits

of preventing the student model from being too sure during training, and allowing

each training data to impose more constraints on the weights. Extensions of such

approaches include Fitnets [66] and Attention transfer [67]. However, one major

drawback of knowledge distillation is that it can only be applied to classification tasks

with softmax output.

2. Using Structured Parameters to reduce the size of deep model or its processing
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time. Examples include using circulant matrices [68] or Adaptive Fastfood trans-

form [69] for fully connected layers, and separable filters [70] or low-rank tensor

decomposition [71] for convolutional layers.

3. Reducing Parameters via Quantization, Pruning and Clustering: Network prun-

ing has been used to reduce the complexity of the model as well as to address the

over-fitting. `1 regularization, group-sparsity [72, 73] or `0 [74] can promote sparsity

of the parameters during training. Network pruning algorithms such as the Optimal

Brain Damage [75], the Optimal Brain Surgeon [76], hard-thresholding the parameters

[77], and similar works [78, 79], mainly focus on removing the insignificant edges

or nodes to reduce the size of the model. They generally consider the magnitude of

the weight or an approximation to the Hessian matrix as a measure of the importance.

Alternatively, Net-Trim, [80, 81], uses a convex optimization technique to prune the

parameters of the deep model by analyzing the signals in the neural network.

Another approach to reduce the memory footprint of deep models is via quantizing

the parameters and using fewer bits. [82] used vector quantization to compress the

parameters of CNN. [83] quantizes the parameters of a pre-trained model and proposes

an optimization technique for training fixed point deep CNNs. Higher compression

gains can be achieved via layer-specific quantization levels. On the extreme case,

some works, such as Binaryconnect [84], Binarized neural networks [85], TBN [86],

Trained Ternary quantization [87], and XNOR-Net [88], try to directly train a 1-bit or

Ternary deep neural network.

Although it is possible to design deep models according to the capability and constraints

of the processing system, following such an approach requires training a new deep model

for every target hardware which is infeasible or demanding in many ML problems. Further,

imposing a possibly unnecessary structure in advance during training a deep model would

likely be limiting in terms of model performance and accuracy. It will be also an undesirable
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Figure 1.3: Restructuring a neural network to reduce communication between processing
units

approach for parallel implementation since a model specifically designed for optimum

implementation on a target platform or architecture may be far from optimum on other

platforms (e.g., GPUs with different compute capabilities, or CPU vs GPU vs sensor

network). Hence optimizing and fixing the structure for one particular parallel distributed

setting in advance would limit the optimal deployment on other platforms. As a result, in

[89], we assume that a complex deep model has already been trained with minimum or no

hardware-specific constraints on its parameters or structure. Our goal would be readjusting

the model via restructuring the layers and manipulating the parameters of the neural network

without changing its general topology for more efficient parallel implementation. Without

changing the general topology of the neural network, we propose to rearrange the neurons

and partition the deep model into sub-models with minimum co-dependency subject to the

computation and communication constraints on the workers.

As an example, consider the simple neural network in Fig. 1.3(a). Simply partitioning

the model into two sub-models (as depicted by a dashed line in the Fig. 1.3(a)) imposes

lots of communication between the two partitions. However, by rearranging the neurons

properly, the co-dependency (and hence required communications) between the two sub-

models (the red edges in Fig. 1.3(b)) is reduced substantially. It is worth mentioning that

there are approximately O(PN) different partitioning to distribute computations of a neural

network’s layer with N neurons over P workers. Hence, enumerating all such possibilities
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and choosing a good one is infeasible specially for large networks. In chapter 6, we propose

a systematic approach to perform such partitioning and parameter adjustment to ensure

efficient implementation of the modified model while keeping its accuracy close to the

original model.
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1.3 Notations

Bold lowercase letters represent vectors and the i-th element of the vector x is denoted

as xi. Matrices are denoted by bold capital letters such as X , with the (i, j)-th element

represented by Xi,j or [X]i,j , the i-th row byXi,. and the j-th column byX.,j or xj . A�B

is the Hadamard product of A and B. A� v for vector v is computed by expanding the

dimension of v appropriately to make it the same size asA.

Given a real number x ∈ R, bxc is the largest integer smaller than or equal to x, dxe

the smallest integer greater than or equal to x and bxe represents the nearest integer to x.

sign(x) is the sign of x defined as +1 for x > 0 and −1 for x ≤ 0. log and log2 denote the

natural and base 2 logarithms, respectively.

A Normal distribution with mean µ and variance σ2 is denoted by N (µ, σ2). Likewise,

U(a, b) is uniform distribution over interval (a, b).
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CHAPTER 2

DISTRIBUTED TRAINING AND THE CEO PROBLEM

2.1 Introduction

One of the main challenges in distributed training is the communication cost due to the

transmission of the parameters or stochastic gradients of the model and synchronization

across processing nodes (a.k.a. workers). To mitigate the communication bottleneck, many

works have considered reducing the transmission bit-rate by compressing the stochastic

gradients (or parameter updates) via techniques such as quantization, sparsification, and

entropy coding. However, these works have some drawbacks: 1) the existing methods do

not leverage the redundancy in the information transmitted by different workers. Model’s

parameters at different workers are highly correlated, which provides an opportunity for

distributed compression to reduce the communication bit-rate, and 2) the main objective in

distributed learning is a good estimate of the model’s parameters at the server by using the

information received from workers, rather than the exact recovery of model’s updates (or

gradients) from each worker. For example, in distributed stochastic gradient computation,

the objective is computing the average of the stochastic gradients computed by all workers,

not recovering the exact value of the SG of each individual worker.

In this chapter, we address the above shortcomings of existing methods by leveraging

information theoretic tools, especially compression of correlated sources and coding for

function computations.

2.2 Problem Statement

Consider the problem of distributed optimization of a cost function J (w) = Ex∈X [f(x;w)],

where X is the whole training dataset and f(x;w) measures the error in fitting the model
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determined by parameters w to the input data point x. In this chapter, we focus on the

synchronous distributed training where a central node, a.k.a. the server, is responsible for

aggregating the parameters/information from the workers, computing a shared model update

and broadcasting it back to the workers.

We consider the following general framework at each iteration of distributed training:

1. The server broadcasts its initial guess of the model’s parameters to all workers.

2. Each worker refines its local copy of the parameters by training over its available

dataset and then sends back the new parameters (or the updates) to the server.

3. The server merges the received information and estimates a better parameter for the

deep model.

At an arbitrary iteration t of the distributed training algorithm with P workers, let

w0 ∈ RN be the model’s parameter, shared by all workers and the server.1 The p-th worker

uses its available local data and updates the parameters towp which it believes is a better

solution to minimize the objective function J (w). Ideally, if all data were available at a

single node, we would expect to arrive at the updated parameter w∗ for the next iteration of

the learning algorithm. However due to access to only a subset of the training dataset, the

estimate of the optimum parameters by the p-th worker would be noisy. Hence, we model

the updated parameters at the p-th worker by

wp = w∗ + np, (2.1)

or alternatively,

θp = θ∗ + np, (2.2)

where θ∗ = w∗ −w0, θp = wp −w0 is the amount of update in the parameters by the p-th

worker, and np is the parameter estimation noise at the p-th worker, assumed to have mean
1Note that w0 and the parameters computed by the workers and the server depend on the iteration t.

However, for the sake of simplicity, we omitted such dependencies in our the notations.
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Figure 2.1: Distributed training as the CEO problem

zero and variance σ2
p := E[‖np‖2]. The objective is estimating θ∗ from the θp’s computed

by the workers such that the estimation error of θ∗ is minimized subject to a given constraint

on the average communication bits. Hence, the distributed learning can be viewed as a

Central Estimating Officer (CEO) problem, well-known in information theory [47, 48, 90];

each worker has a noisy observation of an unknown variable and wants to compress and

transmit it to the server, from which the server can estimate the optimum parameter reliably

and broadcasts back to the workers for the next iteration of training (Fig. 2.1).

Remark 1. For distributed computation of the stochastic gradients, we can simply assume

that θp is the stochastic gradient (SG) computed by the p-th worker over its mini-batch

and θ∗ is the true gradient of the cost function. Assuming that the noises in (2.2) are

i.i.d. Gaussian, the best estimate of the true gradient would be the average of all workers’

SGs. Hence, the objective of the CEO in the distributed training would be minimizing the

communication rate for computing the average of SGs from the workers.

2.3 Distributed Learning as the CEO Problem

Recall that the distributed training can be modeled as the CEO problem where each worker

observes a noisy replica of the desired variable θ∗ as

θp = θ∗ + np, (2.3)
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where np is a zero-mean noise with σ2
p := E[‖np‖2]. Inspired by coding for the CEO

problem [48], the proposed communication scheme for the distributed training consists of

the following building blocks:

1. Quantization: Each worker p quantizes θp to a sequence qp such that the distortion is

within a given bound.

2. Compression: The workers use appropriate (distributed or entropy source) coding to

compress the quantized sequences and transmit them to the server.

3. Decoding and Estimation: The server decodes the received sequences and estimates

θ∗ by θ̂ such that E
[
‖θ∗ − θ̂‖2

2

]
is minimized.

In the following, we elaborate more on each of the aforementioned steps.

2.3.1 Quantization at the Workers

It is well-known that the error in ordinary (deterministic) quantization depends on the input

signal, especially when the number of quantization levels is low. This can adversely affect

the convergence of distributed training algorithms. As such, we propose using dithered

quantization or nested quantization of the parameters at the workers.

Dithered Quantization

In dithered quantization, an independent (pseudo-)random dither signal is added to the

input signal prior to the quantization and is subtracted after dequantization. By carefully

controlling the properties of the dither signal, one can achieve the desired statistical behavior

of the quantized values.

Definition (Dithered Quantization). Let % be the quantization step size. For an input signal

x, assume that u is a random dither signal, generated independently of x. The dithered

quantization of x is defined as x̃ = %(bx/%+ ue − u), where bαe is the nearest integer to α.
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Remark 2. To transmit the dithered quantization of x, it is sufficient to send the index of the

quantization bin that x/% + u resides in, i.e., q = bx/%+ ue. The receiver can reproduce

the (pseudo-)random sequence u using the same random number generator algorithm and

seed number and then compute the quantized value as x̃ = %(q − u).

Characteristics of the dither signal has a major impact on the properties of the quanti-

zation noise. It is known that if the dither signal is generated uniformly over (−1/2, 1/2),

i.e. u ∼ U(−1/2, 1/2), then the quantization noise e = x− x̃ is independent of the signal x

and e ∼ U(−%/2, %/2).

We consider the following dithered quantization at the p-th worker; LetM be the number

of quantization levels, κp = ‖θp‖∞/M be the scale factor, and up ∼ U(−1/2, 1/2) be a

random dither signal generated independently by the p-th worker. The dithered quantization

at worker p is given by

qp =

⌊
up +

θp
κp

⌉
, (2.4)

where bxe is the closest integer to x.

To reconstruct θp, the server has to generate the same random sequence up and receive

the scale factor κp in addition to the quantized values qp.2 The dequantized value at the

server is then computed as

θ̃p = κp(qp − up). (2.5)

Note that the range of the quantized values would be {−M, . . . , 0, . . . ,+M}. Further, as a

result of [91], the scaled quantization error (θp − θ̃p)/κp would be independent of θp and

uniformly distributed over (−1/2, 1/2).

2To generate the same dither signal, the server and worker are both initialized to the same seed value for
random number generation. By using the same random number generation algorithm and updating the seed
number in the same manner, both can generate the same dither up. Here, we do not consider any quantization
or compression for the transmission of the scale factors as their communication overhead is negligible.
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Nested Quantization

It is well-known that correlated signals can be communicated more efficiently via distributed

compression than the traditional entropy coding algorithms [46]. Nested Quantization has

been proven to be a viable tool in distributed compression [92] when a correlated side

information is available at the receiver. Here, we briefly overview a variant of the nested

quantization in one-dimension which our proposed distributed training is based on it.

Consider the problem of transmitting x where a side information y is available at the

receiver. Let (Q1, Q2) be a pair of nested quantizers with quantization step sizes ∆1 and

∆2, respectively, i.e., Qi(v) = ∆i bv/∆ie for i = 1, 2. 3 To quantize and transmit x, the

transmitter first generates a random dither u ∼ U(−∆1/2,∆1/2) and computes t = x+ u.

Then t is quantized and encoded as

s = Q1(t)−Q2(t), (2.6)

i.e., it transmits the position of the fine quantization bin relative to the coarse one (shown

by indexes −1, 0, 1 in Fig. 2.2). At the receiver, by knowing s alone, x cannot be estimated

reliably as multiple values can produce the same s. To resolve that ambiguity, it is required

to know which coarse quantization bin x belongs to. This is achieved by the help of the side

information y, available at the receiver. In this case, the estimated x is computed as follows:

r = s− u− y, x̂ = y + r −Q2(r). (2.7)

Note that quantizing x does not require y, however estimating x at the server depends on the

information provided by y. Figure 2.2 shows an example of using nested quantization, where

∆1 = 1 and ∆2 = 3, x = −4.2, y = −3.4 and u = 0.3. Therefore, the nested quantized

value would be s = −1. Note that many points can produce the same s, some are shown

3For our purposes, to have a pair of nested quantizers, it suffices to have ∆2 = k ∆1 where k > 1 is an
integer number.
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by �. However, having access to y at the receiver can resolve that ambiguity, resulting in

x̂ = −4.3.

-1 0 1 -1 0 1

x x+u

𝑠 = 𝑄1 𝑥 + 𝑢 − 𝑄2 𝑥 + 𝑢

**
-1 0 1

transmitter

-1 0 1 -1 0 1
*
y

-1 0 1

ො𝑥
ො𝑥 = 𝑠 − 𝑢 + 𝑄2(𝑦 − 𝑠 + 𝑢)

Receiver

Figure 2.2: Example of nested quantization, ∆1 = 1 and ∆2 = 3. For x = −4.2 and
u = 0.3, the nested quantized value would be s = −1. Note that many points can produce
the same s, some are shown by �. However, having access to y = −3.4 at the receiver can
resolve that ambiguity, resulting in x̂ = −4.3.

Applying the above quantization scheme for distributed training requires having access

to a correlated side-information. This is achieved via dividing the workers into two groups:

the first group, P1, uses ordinary dithered quantization whose transmitted data is used to

generate the required side information for nested quantization, and the second group, P2,

uses the above nested quantization scheme for the quantization and compression of their

parameters. Let θ̄ be the side information computed using data received from workers in

P1, e.g., by dequantizing and averaging the received values. The nested quantization uses θ̄

at the server as the side information to compute θ̃p for worker p in the second group. We

assume that the parameters of the p-th worker can be modeled as θp = θ̄ + zp, where zp is

an independent random noise. The following lemma bounds the probability of error and

variance of the quantization error;

Lemma 1. If the parameters at a worker is modeled by θ = θ̄ + z, E[‖z‖2] = σ2
z , and the

worker uses nested quantizer with step-sizes ∆1, ∆2, then with probability at least 1− p, θ̃,

the nested quantization of θ, will be estimated correctly (i.e., the distance between θ and θ̃
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would be less than ∆2), where

p = Pr

(
|z + u| > ∆2

2

)
≤ ∆2

1

3∆2
2

+ 4
σ2
z

∆2
2

, (2.8)

for u ∼ U [−∆1/2,∆1/2). Specially if |z| < ∆2−∆1

2
, then p = 0. In this case,

E
[
‖θ̃ − θ‖2

2

]
=

∆2
1

12
. (2.9)

Note that nested quantization results in the same quantization variance as dithered

quantization with step-size ∆1. However, nested quantization requires log2(∆2/∆1) bits

to transmit each value, less than the ordinary quantization methods which require almost

log2(2/∆1) bits.

2.3.2 Compression

To further reduce the communication bit-rate, each worker p applies source coding to the

quantized sequence qp. There are two possible approaches: 1) Simple entropy coding

algorithms such as adaptive arithmetic coding, and 2) more complex distributed source

coding methods. Since θp’s are correlated, there is a dependency among the quantized

sequences qp’s and distributed source coding (DSC) algorithms [46] can be used to further

reduce the communication bit rate. We propose using DISCUS [93] based on LDPC codes

because of its simple ‘encoding’ algorithm at the workers and reliable decoding using

message passing at the server. For the simplicity, we use asymmetric DSC; the workers

are divided into two groups, C1 ad C2. Workers in C1 use entropy coding to compress their

data. The decoded sequences from these workers serve as side-information at the server

for decoding the data from the workers in C2 which use DISCUS. Moreover, the joint

probability distribution The decoded sequence from these workers serve as side information

for decoding the data of the next worker. Let θ̂1 be the estimated θ∗ using received data from
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workers in C1. The conditional distribution of the sequences from C1 w.r.t. θ̂1 is considered

as an estimate of the conditional pdf of the sequences from C2 and used at the server for

decoding.

Knowing the compression rates at the workers is enough to use the appropriate DISCUS

encoder. Therefore, few encoders of various rates are pre-designed and deployed at the

workers. The appropriate encoder is determined by the server via statistical analysis of the

quantized values received from the workers in C1.

2.3.3 Estimating θ∗

Recall that the quantization noise, ep = θ̃p − θp, in the dithered quantization is independent

of the signal and uniformly distributed4 with variance η2
p := E[‖ep‖2] = Nκ2

p∆
2
1/12, where

N is the number of the parameters (θp ∈ RN ), κp = ‖θp‖∞ and ∆1 is the quantization

step-size. Hence,

θ̃p = θ∗ + νp, (2.10)

where νp = ep + np, E[‖νp‖2
2] = η2

p + σ2
p .

As the prior distribution on θ∗ is not known, we consider minimax linear MMSE

estimator.

Lemma 2. The weights of the minimax MMSE linear estimator θ̂P =
∑P

i=1 αiθ̃i are given

by

αi =
1

γp E[‖νi‖2
2]
, (2.11)

where γp is chosen such that
∑p

i=1 αi = 1.

The following recursive equations computes θ̂p’s for p = 1, . . . , P :

4Here, we ignored the dependency on the scaling factor κp as it is treated separately in our distributed
system.
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γ1 = 1/E
[
‖ν1‖2

2

]
, θ̂1 = θ̃1 (2.12a)

γp+1 =
1

E[‖νp+1‖2
2]

+ γp (2.12b)

θ̂p+1 =

(
γp θ̂p +

θ̃p+1

E[‖νp+1‖2
2]

)
/γp+1 (2.12c)

Note that the above linear estimator is also Minimax estimator if the total noise in (2.10)

follows Gaussian distribution.

2.4 Experiments

For our experiments, we have considered different models, a fully connected neural network

with two hidden layers of sizes 300 and 100 (herein, referred to as FC-300-100) and a

Lenet-5 like convolutional network [94] over MNIST, as well as a convolutional network

on Cifar10 [95] (referred to as CifarNet). We have used stochastic gradient descent and

Adam training algorithms. The initial learning rates are 0.01 with decay rate 0.9 per training

epoch. The batch size is fixed at 200 and divided evenly among the workers. We compare

our proposed communication methods against the baseline (no quantization of gradients),

QSG [15] with the same quantization accuracy, and one-bit quantization [9] for different

number of workers. For fair comparison, we apply entropy coding to the quantized sequences

of these methods as well.

First, we compare the performance of nested quantization followed by adaptive arith-

metic coding to the other existing methods. For nested quantization, we divided the workers

in half, the first group uses ordinary dithered quantization and the second group uses nested

quantization with (∆1,∆2) = (1/3, 1). All workers use adaptive arithmetic coding (AAC)

for further compression of the quantized values. Table 2.1 shows the raw (un-compressed)

and compressed communication bits per worker at each iteration of training for different

neural networks and 16 workers. It is worth mentioning that almost the same communication

bit-rate was observed for distributed training using 2, 4, 8, . . . workers. Note that although
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the raw communication bit-rate of one-bit quantization [9] is less than the others, it is less

compressible which results in almost the same compressed communication bits per worker.

On the other hand, as observed by others as well, the low accuracy of one-bit quantization

adversely affects the convergence speed and requires more iterations of the distributed train-

ing algorithm. Hence, generally one-bit quantization results in more overall communication

for the convergence of the distributed learning algorithm. Moreover, the requirement to

store the quantization error and carry it forward to the next mini-batch imposes additional

memory requirement which is unappealing esp. for sensor networks. Figure 2.3 shows the

convergence rate of the proposed nested quantization scheme compared with the baseline

(no quantization of the parameters) using SGD training algorithm. As seen from the plots,

the proposed method perfroms closely to the raw (unquantized) transmission of parameters.

Table 2.1: Raw and compressed communication bits per worker (Mbits per iteration of
training) for different networks. First row is the raw transmission rate and the second row is
the quantized and compressed rate.

Method Baseline Nested Quantization QSG One-Bit

FC300-100
8.53 0.61 0.78 0.35
— 0.328 0.36 0.339

Lenet
53.23 3.758 4.775 1.898

— 2.42 2.673 1.895

CifarNet
34.19 2.435 3.088 1.254

— 1.269 1.312 1.253

Next, we evaluate the performance of distributed training using distributed source coding.

For this purpose, we considered FC-300-100 model and used SGD as the training algorithm.

Our proposed scheme is based on dithered quantization of the stochastic gradients followed

by distributed source coding using DISCUS (denoted as DQSG+DSC). Table 2.2 compares

the proposed distributed coding (DQSG+DSC) with Nested Quantization, QSG [15] and

one-bit [9] methods. Finally, figure 2.4 shows the convergence rate of the proposed scheme

for 4 workers. It is worth noting that although the DQSG+DSC can further reduce the

communication bit rate compared to the Nested quantization and QSG at the expense of
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Figure 2.3: Convergence rate of the distributed training using nested quantization compared
to the baseline.
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Figure 2.4: Convergence rate of DQSG+DSC compared to the baseline for FC

more complex decoding at the server, its convergence speed is almost the same as the

baseline (raw transmission). We have observed similar behavior for higher number of

workers (8, 16, . . .).

Table 2.2: Communication bits per worker (Kbits per iteration of training) for different
methods.

Workers DQSG+DSC Nested Q. QSG One-Bit

4 299.9181 374.3954 410.9895 340.8525
8 293.7495 354.5950 389.1265 340.0748
16 285.2091 328.2543 359.6669 339.1252

2.5 Conclusion

In this chapter, we argued that centralized distributed deep learning can be considered as a

CEO problem; at each round of training the workers compute a noisy version of the true

update (or stochastic gradient), and the goal is efficient transmission of the locally computed

values to a central server to estimate the true update reliably. As such, we proposed a

compression and estimation scheme, consisting of i) dithered and nested quantization at the

workers, ii) distributed source coding to take advantage of the correlation among workers,

and iii) decoding the data received from the workers and estimating the optimum parameters

at the server. We showed that this approach can reduce the communication bit-rate, or

alternatively, increase the precision of the aggregated SG at the server with similar or
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less communication bit-rate. In our experiments, distributed learning with the CEO-based

communication achieved it can achieve nearly the same convergence speed as of the baseline

training.
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CHAPTER 3

INDIRECT STOCHASTIC GRADIENT QUANTIZATION

3.1 Introduction

In the previous chapter, we have explored utilizing correlation among workers to reduce the

communication bit-rate. However, the amount of correlation relies on the homogeneity of

training data across workers and batch-size, which limits the its application and the amount

of achievable compression gain. Moreover, generally, the existing communication methods

that rely on directly compressing the stochastic gradients have either limited compression

gains, high variance, or suffer from scalability issues as the total transmission bits scale

almost linearly with the number of workers.

In this chapter, we consider compressing the SG matrix by factorizing it into low-rank

matrices and then compressing them. However, naively pursuing such an approach is costly

in distributed machine learning, in terms of the computational complexity and the training

error. To overcome these issues, first, we take a deeper look at how the stochastic gradients

are computed in practice. We observe that the cost function of a neural network w.r.t. the

parameters of a layer,W , can be reformulated as Ex[f(Wx)] where x is the ‘virtual’ input

of that layer. Therefore, we first consider the SG compression for this class of functions

and develop a new algorithm, indirect stochastic gradient quantization via factorization

(ISGQ). Then, we extend the algorithm to distributed training of deep neural networks. By

analyzing the signals propagating in the neural networks, we observe that the forward and

backward signals in neural networks are more compression-friendly than the stochastic

gradients, themselves. Hence, ISGQ can achieve superior performance in terms of total

transmission bits and quantization error compared to the traditional approaches.
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3.2 Problem Statement and Motivation

To develop indirect stochastic gradient quantization, first we consider distributed learning of

a generalized linear function given as J (W ) = Ex[f(Wx)].

For an arbitrary x ∈ X , G = ∇W f(Wx) = ∇yf(y)|y=Wx x
T is a SG of J . It

is common to compute and average the SG over a batch of data to reduce its variance.

Let X = [x1, · · · ,xL] ∈ Rn×L be a training batch of size L, δk = ∇yf(y)|y=Wxk
for

k = 1, . . . , L and ∆ = [δ1, · · · , δL] ∈ Rm×L. Therefore,

G =
1

L

L∑
k=1

Gk =
1

L

L∑
k=1

δkx
T
k =

1

L
∆XT. (3.1)

Our proposed method for quantization and compression of the stochastic gradients,

computed via (3.1), is motivated by the following observation:

Instead of computing the gradients and then compressing them, our idea aims at compressing

the intermediate signals, ∆ and X , and transmitting them. We refer to this approach as

indirect compression, in contrast to the direct quantization and compression of the stochastic

gradientsG. This is specially helpful when the number of parameters is large relative to the

batch size; since the dimension of SG is m× n, direct method requires transmission of mn

values forG. On the other hand, the indirect method requires transmitting only L(m+ n)

values for a batch of size L. Moreover, as it will be investigated later, these signals are

more compression-friendly, i.e., they tend to be sparser and having less entropy than the

stochastic gradients.

3.3 Indirect SG Quantization via Factorization

Here, we introduce and analyze the proposed indirect quantization of SG. Let X̃ and ∆̃ be

the quantized values ofX and ∆, respectively. Then the indirect SG quantization (ISGQ) is
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defined as

G̃ =
1

L
∆̃X̃

T
. (3.2)

Here, we focus on unbiased indirect quantizers, i.e., E
[
G− 1

L
∆̃X̃T

]
= 0. We consider two

classes of quantizers forX and ∆, namely, deterministic and random dithered quantization.

3.3.1 Deterministic Indirect SG Quantization

We call a quantizer Q(·) deterministic if for any v, repeated application of the quantizer to v

results in the same value. A quantizer Q(·) is statistically optimized for random variable z if

it is unbiased and has the minimum mean squared error (MSE) [96, 97], hence 1

Ez[z −Q(z)] = 0, Ez[(Q(z)− z) Q(z)] = 0. (3.3)

Let g = Gi,j be an arbitrary element of the SG, x := (Xj,.)
T and δ := (∆i,.)

T be the

j-th and i-th row of X and ∆, respectively. Hence, g = 1
L
δTx = 1

L

∑
k xk δk. Further,

assume that the signals have bounded joint second moment, i.e., E[‖x‖2‖δ‖2] <∞.

One may hope that if the quantizers for x and δ are designed optimally w.r.t. each

individual signal, then the resulting indirect quantization of SG becomes almost optimal as

well. We refer to this quantization approach as naı̈ve ISGQ.

Lemma 3. Assume that the quantizers x and δ are designed optimally and g̃ is the naı̈ve

indirect quantization of g.

– If x and δ are independent random variables, then g̃ is an unbiased and bounded-

variance SG. Moreover, in 1-bit quantization, if xk’s are i.i.d. Folded Normal2 and δk’s

are Normal random variables, then the MSE gap with the optimum direct quantizer is

less than 4%.
1Obviously, designing such a quantizer requires knowledge about the probability distribution of data or

accessing the entire dataset.
2If U has Normal distribution U ∼ N (0, 1), then V = |U | has folded normal distribution, denoted by

V ∼ FN (0, 1).
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Figure 3.1: Performance of naı̈ve-ISGQ w.r.t. the baseline (non-quantized) for training a
fully connected deep model over MNIST.

– If x and δ are correlated random variables, the naı̈ve ISGQ is not necessarily unbiased.

Unfortunately, designing optimum individual quantizers for x and δ is not feasible in

many applications. Further, the independence assumption between x and δ is not generally

satisfied in practice and by Lemma 3, the naı̈ve ISGQ is likely to become biased. These

shortcomings limit the effectiveness of naı̈ve ISGQ in many applications such as distributed

deep learning (see Fig. 3.1).

The drawbacks of naı̈ve-ISGQ are mainly due to the fact that the quantizers for the

signals are designed independently, i.e., the quantized signals x̃ and δ̃ are obtained by

minimizing E[(x− x̃)2] and E
[
(δ − δ̃)2

]
separately without considering their joint effect on

the computed SG. To overcome the problems of naı̈ve ISGQ, we propose jointly optimizing

the individual quantizers forX and ∆ such that the MSE of the resulting ISGQ is minimized.

If the joint statistical properties of X and ∆ are available, one can aim at analytically

finding optimum individual quantizers for unbiased minimum MSE ISGQ (please refer to

the supplementary document). Here, we focus on empirical methods (using data of each

training mini-batch) to approximately find good indirect quantizers.

Note that the quantization of X can be written as X̃ =
∑K

k=1Akαk, where K is the

number of quantization bins, [Ak]i,j = 1 if [X]i,j is in the k-th quantization bin (and

[Ak]i,j = 0, otherwise) and αk is the reconstruction point associated with the k-th bin.
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Algorithm 1 Empirical MSE-ISGQ
1: Initialize α and β
2: for few iterations do
3: Fix α and solve (3.6) to update β.
4: Fix β and solve (3.6) to update α.
5: return Quantizers forX and ∆.

Similarly, we can represent quantization of ∆ as ∆̃ =
∑

kBkβk. Therefore, ISGQ can be

computed as

G̃ =
1

L
∆̃X̃T =

1

L

∑
k,l

BlA
T
k αkβl =

∑
k,l

Ck,l αkβl. (3.4)

where Ck,l = 1
L
BlA

T
k . Define the empirical bias as

bias :=
∑
i,j

(
Gi,j −

1

L
[∆̃X̃T]i,j

)
=
∑
i,j

[
G−

∑
k,l

Ck,lαkβl
]
i,j

= Ḡ− βTPα, (3.5)

where Ḡ =
∑

i,j Gi,j and Pk,l =
∑

i,j[Ck,l]i,j . Since the problem of optimizing the quanti-

zation bins for ISGQ is non-convex and computationally complex, we decide to fix them

and only adjust the reconstruction points of each quantizer. Hence, the mappingsX 7→ Ak

and ∆ 7→ Bk are known. For example, in 1-bit ISGQ for correlated normal X and ∆,

the quantization threshold is set to zero and only the reconstruction values for positive and

negative X and ∆ are adjusted. We propose to adjust the quantizers for the empirical

MSE-ISGQ via the optimization problem

min
α,β
‖G− G̃‖2

F + λ(bias)2

= min
α,β
‖G−

∑
k,l

Ck,lαkβl‖2
F + λ(βTPα− Ḡ)2, (3.6)

where λ controls the trade-off between the MSE and empirical bias of MSE-ISGQ.
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Computational Complexity.

Since, the optimization problem (3.6) is bi-convex, we suggest the iterative approach sum-

marized in Alg. 1 to solve it. The quantizers forX and ∆ can be initialized approximately

based on the expected properties of the signals or as uniform quantizer.

Note that

‖G− G̃‖2
F = ‖G−

∑
k,l

Ck,lβlαk‖2
F =

‖G‖2
F +

∑
k,l

(
αkαl

∑
i,j

βiβj trace
(
Ck,iC

T
l,j

))
− 2

∑
k

(
αk
∑
i

βi trace
(
Ck,iG

T
))

.

Define [D(k,l)]i,j = trace
(
Ck,iC

T
l,j

)
and [E]k,i = trace

(
Ck,iG

T
)
. Note that for K-level

quantization, the total computational complexity and memory requirement ofD’s andE are

O(K4) which is negligible for small K. Moreover, these computations are only done once

prior to optimizing α and β. To analyze the complexity of each iteration of the optimization

algorithm, let β be fixed. Set [Q]k,l = βTD(k,l)β, r = Eβ and p = P Tβ. Then, the

optimum α can be found as

argmin
α

[
αTQα− 2rTα+ λ(pTα− Ḡ)2

]
=
(
Q+ λppT

)−1 (
r + λḠp

)
. (3.7)

Fixing α and optimizing β can be done similarly. In our experiments, we found out that

only 1-2 iterations of Alg. 1 yields satisfactory results.

3.3.2 Dithered Indirect SG Quantization

The main drawback of using the deterministic approach for the quantization is the depen-

dency of the quantization noise to the signal. Since x and δ are generally correlated, this

forced us in §3.3.1 to adjust the individual quantizers for each batch of data (X and ∆) to

minimize the MSE and bias of ISGQ. The extra computational complexity due to the re-
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quired optimization in MSE-ISGQ can adversely affect the training time in distributed deep

learning. Here, we pursue a different approach and develop a simple and fixed quantization

scheme whose noise is independent of the signals.

We consider the dithered indirect quantization of SG as follows: Let Kx and Kd be the

number of desired quantization levels forX and ∆, respectively. X is quantized as

Qx = bX/κx +Ue , X̃ = κx (Qx −U) , (3.8)

where the scale factor κx = ‖X‖∞/Kx maps the signal into the range [−Kx, Kx] prior to

quantization and U ∼ U(−1/2, 1/2) is an independently generated random dither signal. It

can be easily verified that the scaled quantization noiseEx = (X−X̃)/κx is independent of

the signalsX and ∆, and uniformly distributed over (−1/2, 1/2). The dithered quantization

of ∆ is defined similarly.

Theorem 4. LetG = 1
L
∆XT be a stochastic gradient of J (W ). Then, the Dithered-ISGQ,

G̃ = 1
L
∆̃X̃T with number of quantization levels Kx and Kd, for X and ∆ respectively,

has the following properties:

P1. G̃ is unbiased, i.e., E[G̃] = ∇J ,

P2. Its variance is bounded as E[‖G̃−∇J‖2
F ] ≤ mn

L
γ E[‖X‖2

∞ ‖∆‖2
∞]+E[‖G−∇J‖2

F ],

where γ is a constant depending only on the number of quantization levels Kx and Kd.

As a simple example, assume thatX follows a Normal or Folded-Normal distribution

with variance σ2
x, and ∆ ∼ N (0, σ2

d), whereX and ∆ are generated independently. In this

case, indirect quantization ofG = 1
L
∆XT results in the MSE

E
[
‖G̃−∇WJ ‖2

F

]
≤ mn

L
σ2
xσ

2
d

( ln(
√

2nL)

3K2
x

+ 1
)
×
( ln(
√

2mL)

3K2
d

+ 1
)
.

Note that although the Dithered-ISGQ may have higher variance than MSE-ISGQ

in some applications, it has the advantages of having fixed quantizers and not requiring
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joint-optimization of the individual factorized quantizer.

Rate-Distortion Analysis.

It is worth exploring the relation between the variance of Dithered-ISGQ (i.e., the distortion)

and the total number of bits (i.e., the transmission rate). Since the quantizer index of X ,

Qx ∈ {−Kx, . . . , Kx} can take at most 2Kx + 1 distinct values and X has nL elements,

the total number of bits for quantizedX would be nL log(2Kx+ 1). Similarly, total number

of bits for quantized ∆ would be mL log(2Kd + 1). Hence, the total number of bits for

dithered ISGQ is R = L
(
n log(2Kx + 1) +m log(2Kd + 1)

)
per training iteration.

Considering the rate-distortion with respect to the batch-sizeL, we realize thatR = O(L)

while from (3.9) MSE= O( ln(L)2

L
). Thus, the rate increases linearly w.r.t. the batch-size but

the decrease in quantization noise is sublinear.

Similarly, to analyze the rate-distortion w.r.t. the number of quantization levels, we

observe that doubling the number of quantization levels increases the number of bits by 1

per sample. For sufficiently large nL and mL (relative to Kx and Kd), the MSE would be

reduced approximately by a factor of 16. However, when ln(nL)� K2
x and ln(mL)� K2

d ,

which corresponds to more quantization levels (i.e. finer quantization of X and ∆), the

MSE of Dithered-ISGQ would be the same as the non-quantized SG and any further increase

in the number of bits would not improve the accuracy anymore.

Computational Complexity.

It is worth mentioning that only the intermediate signals, X and ∆, are required to be

available for Dithered-ISGQ and there is no need to compute the SG via (3.1). Moreover,

quantizingX can be done in parallel while performing the forward and backward compu-

tations. Hence, generally the computation time of Dithered-ISGQ is less than other direct

quantization methods.
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Convergence Analysis.

The convergence analysis of the Dithered-ISGQ relies on the fact that the proposed quanti-

zation method is unbiased and has bounded variance. Consider stochastic gradient descent

learning algorithm with ISGQ in which at the t-th iteration, the parameters are updated as

Wt+1 = Wt − ηtG̃t, (3.9)

where ηt is the learning rate. Convergence of the learning algorithm can be easily verified

under almost the same assumptions as in [98, §5.1], i.e.,

A1. f(·) is lower bounded and 3-times differentiable with continuous derivatives.

A2. Learning rates satisfy
∑
ηt = +∞ and

∑
η2
t <∞.

A3. Over the support of cost function f(·), the signals have bounded joint fourth moment

E[‖X‖4
F .‖∆‖4

F ] <∞.

A4. IfW grows too large, the gradient descent direction points towards zero.

Theorem 5. Assume that conditions (A1) to (A4) hold. Then gradient descent with Dithered-

ISGQ (3.9) converges almost surely to a local extremum, i.e., ∇WtJ
a.s.→ 0 as t → +∞.

3.4 Application to Distributed Training of Neural Networks

In this section, we show how ISGQ can be employed for efficient communication of

stochastic gradients in distributed training of deep neural networks. Consider the l-th layer

of a neural network, whose input signal is x(l−1) and the weights and biases areW (l) and

b(l), respectively. By concatenating b(l) toW (l) and appending 1 to x(l−1) 3, the input signal

3i.e.,W (l) ← [W (l), b(l)] and x(l) ← [x(l); 1].

35



into the nodes and the output of the l-th layer are given by

y(l) = W (l)x(l−1) , x(l) = σ(y(l)), (3.10)

where σ(·) is the activation function, applied element-wise.

There exists a function g(·) such that the final output of the neural network, y, can

be represented as y = g(x(l)), where g(·) may depend on other signals and parameters

of the neural network. Hence the loss function w.r.t. x(l) and desired output t is given

by `(g(x(l)), t). By defining f(v) = `(g(σ(v)), t), the training loss function with respect

to the parameters of the l-th layer would be J = E
[
f(W (l)x(l−1))

]
, where x(l−1) can be

considered as the virtual input of the l-th layer.

Moreover, it is worth mentioning that the backpropagation algorithm, widely used in

deep learning [99, 100], is indeed a realization of (3.1) and chain-rule. It is well-known that

gradient of the cost function for an input x w.r.t. the parameters of the l-th layer can be

computed as

∇W (l)J = δ(l)
(
x(l−1)

)T
, (3.11)

δ(l) = σ′(y(l))�
(
(W (l+1))Tδ(l+1)

)
. (3.12)

where δ(l)
j := ∂f

∂y
(l)
j

is the partial derivative of the cost function w.r.t. input signal of the

j-th node of the l-th layer, i.e., δ(l) = ∇yf(y)|y=W (l)x(l−1) . These observations imply the

potential application of the ISGQ algorithms developed in §3.3 for the compression of SG

and distributed training of deep models. Using ISGQ in distributed learning can provide the

following benefits:

• Since calculating SGs at the workers is generally done via backpropagation algorithm,

computing forward and backward signals does not incur extra computational com-

plexity. On the other hand, in Dithered-ISGQ, there is no need to compute the SG

via (3.11) and having access to X and ∆ (computed via (3.12)) is sufficient. Since
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the complexity of quantizing individual signals is less than matrix multiplication, we

argue that Dithered-ISGQ can slightly reduce the computational load at the workers

in addition to reducing the total transmission bits.

• As the majority of signals are sparse due to the structure of neural networks and the

forward and backward signals have generally less entropy, they are more compressible

than the gradients (please refer to the supplementary document and [Anonymized]).

For example, with ReLU activation function, σ(y) = σ′(y) = 0 for y < 0. Hence,

the forward and backward signals (x, δ) in the hidden layers are mostly sparse, and

because of (3.10) and (3.12) their sparsities are correlated which can be used to further

reduce the communication bit rate.

• Since the quantization of the signals are performed separately, it can be potentially

implemented in parallel, and some operations (such as generating random dither

signal) can be executed simultaneous to the neural network’s forward and backward

computations.

Note that the proposed indirect quantization is more suitable when the batch-size is

smaller then the number of parameters. For layers with weight sharing schemes such as

convolutional layers which generally have fewer parameters for transmission, distributed

training benefits more from direct compression and transmission of the stochastic gradients

using methods such as [15, 16].

3.5 Experiments

In this section, we evaluate the properties of the developed ISGQ algorithms and their

performance in distributed training. For the simulations, we consider MNIST database

with fully-connected (784-1000-300-100-10) neural network (hereafter referred to as FC)

and Lenet model [94], CIFAR-10 database using CifarNet [95], and Imagenet [101] using

AlexNet deep model [95]. The considered deep models, FC, Lenet, CifarNet and AlexNet
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have approximately 1.16, 1.66, 1.07 and 62.4 million parameters, respectively. In all

our experiments, we use stochastic gradient descent or Adam algorithm with batch-sizes

256 or 128 per worker. To evaluate the reduction in the transmission bits as well as the

performance loss of the trained model, we compared our proposed method against the

baseline distributed training without any quantization (i.e., 32 bits used for the transmissions

of values) and other direct quantization methods: 1-bit quantization of [9], TernGrad [16]

and QSGD [15]. For implementation details and the distributed learning algorithm, please

refer to the supplementary document.

Quantizer Performance.

First, we investigate how our proposed ISGQ methods are compared against the direct

Lloyd-Max quantization [97, 96]4. For this purpose, we consider different neural networks

at various stages of training and repeated the experiments numerous times to compute the

mean and variance of the desired metrics. Some of the results are presented in figures 3.2

and 3.3.

We observe that generally the forward and backward signals are sparser (Fig. 3.2a),

and their optimum quantized values have less entropy and normalized MSE (defined as

‖v− ṽ‖2/‖v‖2 for vector v) than the SG (Fig. 3.2). Hence, quantization of the intermediate

signals generally requires fewer number of bits and has smaller individual quantization noise

than directly quantizing the signals, confirming that these signals are more compression-

friendly.

Moreover, our proposed MSE-ISGQ (using only 1 iteration of Alg. 1) and Dithered-ISGQ

usually performs comparable or better than the optimum (Lloyd-Max) direct quantization of

the SG (see Fig. 3.3), showing the effectiveness of ISGQ.

4The designed quantizer achieves lower MSE than other direct quantization techniques such as QSG,
TernGrad and 1-bit.
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(a) Percentage of Non-Zeros

(b) Normalized MSE

(c) Entropy

Figure 3.2: Sparsity at different stages of training, Normalized MSE and Entropy of quan-
tized SG vs signals of the 2nd hidden layer of FC at accuracy=40% for various number of
quantization levels.
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Figure 3.3: Comparing ISGQ with optimum direct SG quantization, second hidden layer of
FC at accuracy=40%.

Processing Time per Iteration.

Next, we measure the complexity of the proposed SG compression technique by measuring

the average time required to process (e.g., feed mini-batch and compute the SG), quantize

and communicate the SGs. Let Tp be the total processing and quantization time and Tc be

the average communication time to transmit the raw parameters of the model. Obviously, if a

worker compresses the gradients by a factor of k, its communication time would be reduced

approximately by Tc/k, while on the other hand, its processing time might increase slightly.

As a result, in a centralized synchronous distributed training with P identical workers, the

total processing time would be Tp + PTc/k + Tu, where Tu is the communication time to

broadcast back the aggregated gradients to the workers by the server.

First, we compare the required total processing and quantization times of the proposed

ISGQ with QSG [15] and baseline (no quantization) for different batch-sizes and different

models using Intel Core i7 CPU and Nvidia Titan Xp GPU. Since, baseline transmission

only computes the SGs, the total processing time is expected to be larger when quantization

is added. Tables 3.1 and 3.2 show the results for processing 200 batches on CPU and

GPU, respectively. Since the dithered-ISGQ does not require computing the SG via (3.11)

and only relies on back-propagation calculations, when matrix multiplications are costly

(e.g., on CPU or for large matrices), its computation time is significantly lower than other

quantization techniques and comparable to the baseline.
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Figure 3.4: Final accuracy of the trained FC model, shaded areas represent 1 standard
deviation.

Next, to find the effectiveness of different quantization schemes in terms of communica-

tion overhead, we calculated and compared compression gain of each scheme as

compression gain =
32× (# model’s parameters)
# transmitted bits per worker

.

Some of the results are presented in Tbl. 3.3 for different models, batch-sizes and various

quantization schemes.

One can easily conclude that 1000 iterations of decentralized distributed training Alexnet

with 4 workers, batch-size 128 per worker using Titan Xp GPUs connected via InfiniBand

links would take approximately 3.9 minutes using ISGQ compared to 4.5 minutes by QSG

and 9 minutes by Baseline (no SG compression), while centralized single node training with

the same total batch-size takes approximately 14.8 minutes to execute.

Accuracy of the Distributed Training.

Although it is possible to evaluate the performance of the quantization and compression

schemes in both synchronous and asynchronous settings, here we assume that the workers

and server are synchronous. The main reason for such a setting is to cancel-out the perfor-

mance degradation (in terms of training accuracy or speed) that may be caused by the stale

gradients in asynchronous updates and to solely compare the effect of the quantization algo-

rithms. Through our simulations, we have found that distributed training of the considered
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Table 3.1: Computation time (sec.) with Core i7 CPU

Batch size 256 128 64

FC
Baseline 1.2 0.78 0.63
QSGD 1.85 1.43 1.23
D-ISGQ 1.29 0.76 0.52

Lenet
Baseline 14.4 8.17 5.1
QSGD 15.79 9.1 5.9
D-ISGQ 15.12 8.45 4.98

CifarNet
Baseline 30.33 16.31 9.2
QSGD 31.59 17.1 9.92
D-ISGQ 31.4 16.77 9.19

Alexnet
Baseline 66.4 34.5 18.9
QSGD 70 37.6 21.8
D-ISGQ 66.7 34.4 18.4

Table 3.2: Computation time (sec.) w/ Titan Xp GPU

Batch size 256 128 64

FC
Baseline 0.29 0.26 0.25
QSGD 0.34 0.32 0.31
D-ISGQ 0.36 0.33 0.31

Lenet
Baseline 1.27 0.84 0.62
QSGD 1.39 0.98 0.77
D-ISGQ 1.41 1.0 0.79

CifarNet
Baseline 3.27 1.62 0.92
QSGD 3.34 1.69 0.99
D-ISGQ 3.26 1.7 1.01

Alexnet
Baseline 83 45.2 25
QSGD 86 46.1 25.5
D-ISGQ 84 44.4 24.1
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Figure 3.5: Convergence rate of distributed training with 8 workers using different quantiza-
tion methods.
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Table 3.3: Average compression gains of different methods in distributed learning

Batch size 256 128 64

FC

1-bit ISGQ 33 67 133
1-bit quantization [9] 28.4 28.4 28.4
TernGrad / 1-bit QSGD 20.2 20.2 20.2

L
en

et 1-bit ISGQ 56 105 180
1-bit quantization [9] 28 28 28
TernGrad / 1-bit QSGD 20 20 20

C
ifa

rN
et 1-bit ISGQ 38 65 98

1-bit quantization [9] 28 28 28
TernGrad / 1-bit QSGD 20.1 20.1 20.1

A
le

xN
et

1-bit ISGQ 117 170 221
2-bits ISGQ 80 118 153
1-bit quantization [9] 29 29 29
TernGrad / 1-bit QSGD 19.4 19.4 19.4

deep models using either of the quantization schemes eventually converges to ±1% of the

accuracy of the baseline model. However, the convergence speed of the 1-bit method [9] is

considerably slower than the others for complex models, while ISGQ performs comparably

well. For example, Fig. 3.4 compares the final accuracy of the trained model with ISGQ

using different number of workers with the baseline5. As seen, the accuracy loss due to the

training with quantized SG is small (less than 0.2% most of the time for 2-bit ISGQ).

Figure 3.5 shows the test accuracy of the model at each iteration during training with

stochastic gradient descent using baseline (no quantization), 1-bit quantization [9] and

our proposed ISGQ. Note that here we omitted the time delays that is caused by more

communication overhead in the baseline and 1-bit quantization and assumed that the speed

of connection link is infinity. As shown in the figure, the convergence rate of ISGQ closely

follows the baseline while it has the potential of achieving compression gains of beyond

32, much higher than the traditional direct quantization methods. On the other hand, the

convergence rate of 1-bit quantization is severely affected by the larger quantization noise.

5We ran experiments multiple times with different initializations to find the average and standard deviation
of the final trained model.
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3.6 Conclusion

In this chapter, we proposed a novel approach, indirect stochastic gradient quantization

via factorization, instead of commonly used direct methods. Our method takes advantage

of the characteristics of the backpropagation algorithm and the statistical properties of the

forward and backward signals during training. For the quantization of the forward and

backward signals, we proposed two approaches; optimizing the quantization points such

that the error in the reconstructed SG is minimized, and random dithered quantization of

the factorized terms. We showed that despite its simplicity, ISGQ can perform close to

the Lloyd-Max quantization algorithm in terms of the reconstruction error while requiring

fewer bits. Moreover, ISGQ leads to significant reduction in the communication overhead,

achieving compression gain of more than 100, without sacrificing the training speed or

accuracy. Especially for a fixed total batch-size, at each worker the required transmission

bit-rate of the fully connected layers decreases as the number of workers increases. This

results in the reduction of total bits for transmission of the parameters in ISGQ, in contrast

to the existing direct approaches whose transmission bit-rate remains fixed regardless of the

number of workers.
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CHAPTER 4

QUANTIZED COMPRESSIVE SAMPLING

4.1 Introduction

In chapters 2 and 3, we have proposed two different techniques based on the CEO problem

and indirect SG quantization via factorization. However, the performance of the CEO-based

communication is limited by the amount of the correlation among workers and the amount of

compression achievable by ISGQ depends on the structure of neural network and batch-size.

In this chapter, we investigate the problem of achieving arbitrarily large compression gains

while ensuring that the compressed SGs are unbiased and have low variance.

The existing quantization methods have drawbacks such as

• Due to the quantization noise, the total variance of the SG would be increased. Hence,

the learning algorithm with quantized SG may not converge with the same set of

training hyper-parameters as the baseline algorithm. As a result, the hyper-parameters

must be adjusted to ensure the convergence of the learning algorithms, which in turn

can increase the required number of training iterations for the convergence of the

model.

• If the quantizer is biased (e.g., sign SGD), the training algorithm is not guaranteed to

converge (see, e.g., [28]).

• Since the small gradients are suppressed by the larger ones and thus would be most

likely quantized to zero, the parameters whose gradients are relatively small may not

be updated even if their gradients point to the same direction in multiple consecutive

iterations of training.

Although using error-feedback [27, 28] can alleviate these issues to some extent, the
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requirement to store the residual of quantization at each worker increases the memory

footprint of the training algorithm significantly.

In this chapter, we introduce our proposed Quantized Compressive Sampling (QCS)

method for the compression of stochastic gradients or parameter updates of deep models.

4.2 Quantized Compressive Sampling of Stochastic Gradient

Let g ∈ Rn be the stochastic gradient of the model. Instead of directly compressing g, our

proposed method is based on mapping g onto Rk, k ≤ n, via v = Tg and then compressing

v. Here, T is a random mixing matrix chosen from a class of appropriate transforms T .

Inspired by the work on structured measurement matrix in compressed sensing, we consider

the following class of random mixing matrices

T =
1√
k
HR, (4.1)

where R is a random Rademacher diagonal matrix, i.e., R = diag(r), P(ri = 1) =

P(ri = −1) = 0.5, andH is constructed by picking up the first k rows1 from the Hadamard

matrixHn ∈ Rn×n. Note that the random transformation can be alternatively applied as

v =
1√
k
H(r � g). (4.2)

Lemma 6. The random mixing matrix T = 1√
k
HR has the following properties:

TT T =
n

k
I, E

[
T TT

]
= I. (4.3)

The quantization and compression of v is based on dithered quantization [91, 102]. Let

1It is possible to choose any arbitrary or random subset of k rows from Hn, but the performance and
analysis would be the same.

47



Q be the desired range of quantization levels and u ∼ U(−1/2, 1/2) be the random dither

signal, independent of v. The dithered quantization of v is computed as

q = bv/%+ ue , (4.4)

where the scale factor % = ‖v‖∞/Q maps the elements of v into the range [−Q,Q]. For

1-bit dithered quantization, set % = 2‖v‖∞ and

q = sign(v/%+ u). (4.5)

The Quantized Compressive Sampling (QCS) of g is then computed via first dequantizing v

as

v̂ = % (q − u) , (4.6)

and then estimating g from v̂. Note that the quantization of v can be written as

v̂ = v + %ε, (4.7)

where the scaled quantization noise ε is independent of the signals and ε ∼ U(−1/2, 1/2).2

Note that although T is a random matrix, the server can reproduce it by using the same

random number generators and seed numbers. We consider two different criteria for

reconstructing g; 1) minimizing the mean squared error E[‖g − ĝ‖2
2] and 2) finding an

unbiased estimator. To have simple yet efficient estimation of g from v̂, we restrict ourselves

to the class of linear estimators given by

ĝ = ATv̂, (4.8)

whereA = αT and α is a scalar which may depend on % but is independent of g.

2Note that this is not the case for ordinary quantization or stochastic quantization (QSG) of [15].
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4.2.1 Unbiased Estimator

We constraint the reconstruction matrix such that the resulting quantizer be unbiased,

E[ĝ] = g, for any arbitrary g. Using Lemma 6, it can be easily verified that for an unbiased

QCS, the reconstruction matrix is given by

α = 1, A = T . (4.9)

The following theorem summarizes the properties of the proposed QCS.

Theorem 7. The QCS with α = 1 is unbiased and has bounded variance error. More

specifically, for an arbitrary g ∈ Rn, let ĝ = T Tv̂ be the QCS of g and e = g − ĝ. Then,

P1. The quantizer is unbiased, i.e., E[e] = 0.

P2. The variance of error is bounded as E[‖e‖2
2] ≤ γ‖g‖2

2 where γ is a constant given

by

γ =


n
k
− 1 + n

4Q2

log(k)
k−1

k ≥ 2

n− 1 k = 1

(4.10)

Thm. 7 provides a trade-off between the number of transmission bits per value and the

variance of QCS. Assuming that the overhead to transmit scale factor % is negligible, the

total transmission bits would be k log(2Q+ 1) and hence the compression gain is

gain =
nb

k log2(2Q+ 1)
, (4.11)

where b is the number of bits used in representing each parameter (generally, in floating point

computations b = 32). For a fixed compression gain, minimizing (4.10) would result in the

optimum number of quantization levels Q and k. Figure 4.1 shows the minimum achievable

γ using the proposed unbiased QCS and compares it with QSG (Lemma 3.1 of [15]) and the
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Figure 4.1: Variance bound γ vs. compression gain.

lower bound of the expected compression gain of the unbiased sparsification [25]. Note that

the compression gain of [15] is at most 32. As shown in the figure, the variance bound of

our proposed unbiased QCS is orders of magnitude lower than both other approaches.

4.2.2 Minimum Mean Squared Error Estimator

In MMSE-QCS, the objective is finding the reconstruction matrix such that E[‖ĝ − g‖2
2] is

minimized. However the quantizer is not necessarily unbiased. In this case, the reconstruc-

tion matrix is approximately given by setting

α =
1

γ + 1
, (4.12)

where γ is as in (4.10).

Lemma 8. For an arbitrary g ∈ Rn, let ĝ = αT Tv̂ be the QCS of g and e = g − ĝ. Then,

for α given by (4.12), we have

E
[
‖e‖2

2

]
≤ (1− α)‖g‖2

2. (4.13)

Algorithm 2 summarizes the proposed quantization and reconstruction for Unbiased-

QCS and MMSE-QCS. Note that both QUANTIZE and DEQUATNIZE functions generate the
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Algorithm 2 Quantized Compressive Sampling of SG
1: function QUANTIZE(g,H , Q)
2: Generate random Rademacher vector r.
3: Generate random dither u ∼ U(−1/2, 1/2).
4: v ← 1√

k
H(r � g)

5: %← ‖v‖∞/Q
6: q ← bv/%+ ue
7: return q and %

8: function DEQUANTIZE(q, %,H)
9: Set α. . via (4.9) or (4.12)

10: Reproduce random Rademacher vector r.
11: Reproduce random dither u ∼ U(−1/2, 1/2).
12: v̂ = % (q − u)
13: ĝ = α√

k
r � (HTv̂)

14: return ĝ

same random Rademacher and uniform sequences via utilizing identical random number

generation algorithms with the same seed values.

4.3 Weighted Error Feedback

Application of quantization or sparsification techniques in deep learning may introduce

two major issues: (i) increase in the variance of the aggregated gradients, and (ii) insertion

of a bias to the stochastic gradient. These may degrade the convergence speed or even

cause the learning algorithm fail to converge. A key component in tackling both of these

issues is aggregating the compression residuals (i.e., quantization or sparsification errors)

and carrying forward to the next mini-batch. This ensures that the true values of SG

are eventually applied to the parameters of the deep model, although it may take several

transmissions, i.e., it resembles stale (partial) gradient updates. Exploiting such a feedback

can speed up the convergence rate or ensure the convergence of the learning algorithms such

as stochastic gradient descents even in the presence of (biased) gradient compression [19,

27, 28].

Since adding quantization error from previous steps can potentially increase the overall
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variance of SG and the staleness of the gradients, we add a forgetting factor β in the error

feedback which is a crucial part in bounding the variance of error feedback as we will show

next. Let rt be the running compression residue at the t-th iteration, with r0 = 0, and

COMPRESS denotes quantizing and then dequantizing using Alg. 2. At the t-th iteration of

training, we have

zt ← gt + βrt (4.14a)

ẑt ← COMPRESS(zt) (4.14b)

et ← zt − ẑt (4.14c)

rt+1 ← (1− β)rt + et (4.14d)

and the parameters of the model are updated using ẑt instead of SG gt. The next lemma

states the sufficient conditions on β for the residual signal rt be `2 bounded.

Lemma 9. Assume that the SGs are `2 bounded, i.e., E[‖g‖2
2] ≤ B. Then, E[‖rt‖2

2] ≤ ηB,

where

• for Unbiased-QCS,

η =
γ

1− ((1− β)2 + β2γ)
, (4.15)

for 0 < β < min(1, 2/(1 + γ)).

• For MMSE-QCS,

η =
γ(√

γ + 1− (1− β)2 −√γ
)2 , (4.16)

for 0 < β ≤ 1

Note that for Unbiased-QCS, since γ might be greater than 1, the residual signal’s

magnitude may become unbounded for β = 1 (i.e., the traditional error feedback method),

and hence the learning algorithm would not converge with error feedback. Note that for

Unbiased-QCS, since γ might be greater than 1, β = 1 (traditional error feedback) can
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cause the residual signal’s magnitude to blow up and prevent the convergence of the learning

algorithm using error feedback. On the other hand, in MMSE-QCS all values of 0 ≤ β ≤ 1

are viable choices for convergence with the error feedback.

Remark 3. We can choose β to minimize the upper bound on the `2 norm of the residual

signal. In this case, the optimum values of β for Unbiased-QCS and MMSE-QCS are given

by (4.17) and (4.18), respectively;

β∗u =
1

γ + 1
, η∗u = γ(γ + 1) (4.17)

β∗m = 1, η∗m =
γ(√

γ + 1−√γ
)2 . (4.18)

Moreover, as it can be easily verified, η∗u < η∗m. Hence, the theoretical upper bound for

Unbiased-QCS with weighted error feedback is smaller than MMSE-QCS.

Remark 4. Using Lemma 3 of [28], by simple derivations and noting that δ in their notation

is the same as 1/(γ + 1) for MMSE-QCS, we realize that the upper bound in [28] equals to

ηk = 4γ(γ + 1) which can be easily verified that it is larger than η∗m derived here.

4.4 Convergence Analysis

In this section, we show the convergence of the proposed SG compression algorithms with

and without error feedback. In our analysis, we consider the gradient descent algorithm with

the compressed stochastic gradients and we make the following assumptions;

Assumption 1. The loss function is Lipschitz-smooth, i.e., there exists a constant L such

that for all w1 and w2

‖∇J (w1)−∇J (w2)‖2 ≤ L‖w1 −w2‖2. (4.19)
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Assumption 2. The stochastic gradients are `2 bounded, i.e., ∃B > 0 such that

E
[
‖g‖2

2

]
≤ B. (4.20)

Remark 5. Note that Assumption 2 can be relaxed to have bounded variance SG, i.e.,

E[‖g −∇f‖2
2] ≤ σ2 for some constant σ. The analysis would be slightly more involved,

however the convergence results would be similar to the ones that are stated here. (see

supplementary document)

First, we consider training for T iterations of SGD with fixed step-size µ using Unbiased-

QCS and MMSE-QCS without any error feedback, i.e., at the t-th iteration, the parameters

are updated as

wt+1 = wt − µĝt, (4.21)

where ĝt is compressed SG from either Unbiased-QCS or MMSE-QCS.

Lemma 10. Let f ∗ be the minimum of objective function f(·). Assuming (4.19) and (4.20)

hold, in training with Unbiased-QCS, we get

1

T

T−1∑
t=0

E
[
‖∇f(wt)‖2

2

]
≤ f(w0)− f ∗

Tµ
+
L

2
µ(1 + γ)B.

Similarly, for MMSE-QCS we have

1

T

T−1∑
t=0

E
[
‖∇f(wt)‖2

2

]
≤ (1 + γ)

f(w0)− f ∗

Tµ
+
L

2
µB.

In both cases, by appropriate choice of step size, we can achieve O(1/
√
T ) convergence

rate

min
t

E
[
‖∇f(wt)‖2

2

]
≤
f(w0)− f ∗ + L

2
(1 + γ)B

√
T

. (4.22)
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Comparing the convergence rates of Unbiased-QCS and MMSE-QCS with that of the

SGD with uncompressed gradients, we observe that both achieve asymptotically the same

rate of convergence O(1/
√
T ), however the constant term in the rate is slightly larger due

to the compression.

Next, we consider the effect of using weighted error feedback on the convergence of the

training algorithm. At the t-th iteration, the parameters are updated as

zt ← gt + βrt

ẑt ← COMPRESS(zt)

et ← zt − ẑt

wt+1 ← wt − µẑt

rt+1 ← (1− β)rt + et

The following lemma proves the convergence of the training algorithm.

Lemma 11. Let f ∗ be the minimum of objective function f(·) and assume (4.19) and (4.20)

hold. Then,

1

T

T−1∑
t=0

E
[
‖∇f(wt)‖2

2

]
≤ f(w0)− f ∗

Tµ/2
+ LB

(
µ+ 4Lηµ2

)
,

where η is given by (4.15) for Unbiased-QCS and by (4.16) for MMSE-QCS.

With a slightly tighter analysis and setting µ =
√

1+ε√
T

for arbitrary ε > 0, we have

min
t

E
[
‖∇f(wt)‖2

2

]
≤

f(w0)− f ∗ + L
2
B(1 + ε)

√
T

+ L2B
(1 + ε)2

√
1 + ε− 1

η

T
. (4.23)

Comparing the convergence rates of (4.22) and (4.23) with that of SGD, we observe that

the excess term in the convergence rate due to the compression of SG are proportional to

γ/
√
T and η/T , respectively, for training without and with feedback. When γ � 1, η ≈ γ
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and using error feedback dwarfs the effect of the compression on the convergence by an

additional factor 1/
√
T . On the other hand, for high compression gains and hence large γ,

we have η ≈ γ2. Using error feedback reduces the term in (4.23) due to the compression of

SG from O(1/
√
T ) to O(1/T ), resulting in faster diminishing of the extra term and closing

the gap with the SGD.

4.5 Experiments and Discussions

Our experiments are divided into three parts. First, we evaluate the performance of the

proposed quantization methods. Next, we investigate the execution time of training with

the proposed quantizers and finally, we evaluate the performance of distributed learning

using different number of workers and various quantization parameters. To evaluate our

algorithms, we considered a fully connected neural network with hidden layers of sizes

1000− 300− 100 (herein, referred to as FC) and a Lenet-5 like convolutional network [94]

over MNIST, a convolutional network on Cifar10 (referred to as CifarNet) and Alexnet [95]

over Imagenet database. We compare QCS-SG with various communication bit-rates against

the baseline (no quantization of gradients), 1-bit quantization [9], QSG [15] and Top-K

SGD [25]. In most cases, the experiments were repeated 10-100 times to obtain reliable

results for mean and variance of the behavior of the desired quantities.

In our implementation of QCS, we divided the gradients into partition to reduce the

complexity of the algorithm and improve its performance, similar to the approach suggested

in [15]. Depending on the size of each layer’s parameters, the partition sizes were chosen

to be a power of 2 or from the set {96, 100, 192, 200, 288, 320, 384}. For these choices, the

Hadamard matrices are designed using Sylvester’s, Payley’s or Williamson’s construction

algorithm.
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Figure 4.2: Relative quantization error vs. accuracy of model during training of Lenet over
MNIST. Shaded areas represent 1σ variations.

Quantizer Evaluation.

To examine the effectiveness of the quantization scheme, we measured the relative quanti-

zation error, defined as ‖g−g̃‖
2
2

‖g‖22
, for different models, datasets and with different number of

quantization levels. Figure 4.2 compares the relative quantization error of Unbiased-QCS

against QSG [15] during training for different models and compression gains. The results

confirm our findings in Thm. 7 and theoretical comparisons in 4.1. It is worth noting that

unlike QSG, the relative quantization error of QCS is highly concentrated around the mean

value. This suggest that training with QCS-SG is similar to training with unquantized SG

corrupted by a (Gaussian) noise with fixed signal to noise ratio..

Processing Time.

We measured the required time to compute and quantize the gradients for processing 100

batches of training data using different batch-sizes (not accounting for loading data from

HDD or communicating among workers) and compared with the baseline (no quantization)

and QSG [15] over a Titan Xp GPU. Figure 4.3 shows the results for different batch-sizes

per worker. We note that although the compression gain of our proposed QCS can become

arbitrarily large, its processing time is slightly higher that QSG and much lower than Top-K
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(a) Cifarnet (b) Alexnet

Figure 4.3: Time to process and compress SG for 100 batches

sparsification.

As an example, 100 iterations of decentralized distributed training Alexnet with 4

workers, batchsize 128 per worker using Titan Xp GPUs connected via InfiniBand links

would take approximately 22 seconds using QCS with compression gain 100, compared

to 27 seconds by QSG, 42 seconds by Top-K SGD3, and 55 seconds by Baseline (no SG

compression), while centralized single node training with the same total batch-size takes

approximately 90 seconds to execute.

It is worth noting that as the models become more complex and the number of parameters

increases, the overhead of applying transforms to the partitions of SG, which have small

size d < 500, becomes negligible relative to the computational complexity of the backprop-

agation algorithm. Hence, the more desirable properties of QCS and its relatively negligible

overhead compared to QSG and other quantization methods make QCS a favorable choice

for distributed learning of large deep models.

Performance in Distributed Deep Learning.

To analyze the convergence rate of QCS, first we evaluate the effect of compression noise on

training a simple linear regression problem, and next we consider distributed deep learning.

Linear Regression- Consider learning a linear regression model z = Wx with mean

squared error (MSE) cost function J = 0.5E[‖y −Wx‖2
2], where y ∈ Rm is the desired

3The parameters are chosen to achieve the same compression gain.
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(target) signal and x ∈ Rn is the input. Assume that x is a zero-mean multivariate Gaussian

random vector with correlation matrixR whose maximum and minimum eigenvalues are

λmax(R) = 4 and λmin(R) = 1, respectively. It is known that gradient descent with step-

size µ < 1/λmax = 1/4 converges to the optimal solution. To investigate the impact of

compressing SG on the convergence rate, we consider learningW via stochastic gradient

descent algorithm with batch-size 32 and using no quantization (baseline), QSGD [15], Top-

K SGD [25], and our proposed method. The parameters are adjusted such that compression

gains of all methods are approximately 21, except the method labeled as ‘Proposed, Fewer

Bits’ in Fig. 4.4b which uses approximately 40% fewer bits. We set n = 64, m = 50

and repeated the experiments several times with different values of learning rate to obtain

the range of µ that the training algorithm converges and the corresponding convergence

rate. Figure 4.4a shows the percentage of times different learning algorithms converge vs.

step-size µ. We nose that quantization or sparsification reduces the range of µ for which

SGD converges. However, our proposed method significantly increases that range compared

to existing methods. Although using smaller µ ensures the convergence for QSGD and

Sparsified SGD (see Fig. 4.4b), it sacrifices the potential of higher convergence rates that

can be achieved by using larger step-sizes (Fig. 4.4c). In this example, our proposed method

consistently outperforms the other existing algorithms. Even by step-size µ = 0.10, the

convergence time can be reduced by a factor of 2 compared to the QSGD with µ = 0.05.

Distributed Deep Learning- We evaluate the convergence and the number of commu-

nication bits in a distributed learning system with different number of workers. In our

simulations, the batch-size per worker is fixed at 128. Hence, by increasing the number

of workers, the effective total batch-size increases. Although it is possible to evaluate the

performance of the quantization and compression schemes in both synchronous and asyn-

chronous settings, here we assume that the workers and server are synchronous. The main

reason for such a setting is to cancel-out the performance degradation (in terms of training

accuracy or speed) that may be caused by the stale gradients in asynchronous updates, and
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Figure 4.4: Effect of different compression techniques on the convergence of SGD on
learning simple linear regression model. The shaded region represents variations of ±1.5
standard deviation. Note that the scale of convergence plots is logarithmic.
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Figure 4.5: Accuracy of distributed training vs number of workers, using SGD learning
algorithm

to solely investigate the effect of the quantization/compression algorithms.

We consider two different settings: QCS-1 achieves compression gain of approximately

32 by optimally setting k and Q (see Thm. 7 and the discussion after), and in QCS-2 k = n

and Q = 1. Hence, QCS-2 achieves the same compression gain as QSG. Figure 4.5 shows

the accuracy of the final trained model vs different number of workers for FC and Lenet

models. Moreover, in Figures 4.6 and 4.7, we have compared the convergence rate of QCS

w.r.t. baseline (no quantization) for different settings. It is interesting to note that QCS

improves the convergence rate of the training in some occasions compared to the baseline

(no quantization). We believe this is mainly due to the characteristics of the quantization

noise. Since the noise from the QCS behaves similar to a (Gaussian) noise with fixed

signal to noise ratio, our method is likely to result in a better convergence property than the

aforementioned techniques for complex training data [103, 104].

4.6 Conclusion

The performance of the CEO-based communication is affected by the amount of correlation

among the workers. On the other hand, the compression gain and performance of ISGQ is

limited by the structure of neural network and batch-size. In this chapter, we considered the

problem of achieving an arbitrarily large unbiased compression of SG. To achieve that goal,
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(a) FC (b) Lenet

Figure 4.6: Convergence rate of distributed training of FC and Lenet models, 4 workers with
SGD learning algorithm

Figure 4.7: Convergence rate of distributed training of CifarNet, 4 workers with Adam
learning algorithm

we considered projecting the SGs into a small subspace via a random linear transformation,

and then quantize the signals in the lower dimension space. We showed that by using

appropriate random transformation and dithered quantization, the proposed technique (QCS)

can achieve orders of magnitude smaller MSE compared to the state-of-the-art unbiased

compression techniques. For non-convex optimization problems, stochastic gradient descent

with the proposed QCS compression enjoys the same convergence rate of O(1/
√
T ) as the

baseline training, where T is the number of training iterations. However, since the constant

factor in the rate is slightly larger due to the compression, there is an O(1/
√
T ) gap w.r.t.

the baseline training. We showed that utilizing weighted error feedback reduces the effect of

SG compression on convergence rate to O(1/T ) [53]. The experiments confirm that QCS is

computationally fast and has better convergence rate than the considered methods.
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CHAPTER 5

FEDERATED LEARNING OVER WIRELESS MULTIPLE ACCESS CHANNELS

5.1 Introduction

The training data in a wireless edge network is generally unevenly distributed over a large

number of nodes with limited resources such as communication bandwidth and battery

power. Transferring data from edge nodes to a central server to train a deep model is

often infeasible due to the limited wireless bandwidth and battery power as well as privacy

concerns in some applications. Hence, it is desired to train the deep model over an edge

network in a distributed manner. Federated learning [56, 54, 55, 59] enables such networks

to collaboratively learn a unified deep model without transmitting the training data to a

central server.

Federated learning differs from traditional distributed machine learning as 1) the number

of edge nodes is generally very large, 2) the data observed by the nodes are usually unbal-

anced and non-iid, and 3) some nodes may not transmit at each round of communication.

The majority of existing methods to reduce communication overhead in distributed learning

rely on quantizing the SGs [9, 29, 15, 13, 10, 12, 50, 51, 53, 52], sparsification [17, 18,

24, 19, 25, 21] or a combination of both. However, direct application of these compression

methods requires transmission of the compressed values without any interference from other

nodes in the wireless channel. Therefore, such approaches require channel assignments

to individual nodes (e.g., through TDMA or FDMA), which increases the latency. The

majority of past works in federated learning over wireless Multiple Access Channel (MAC)

are restricted to the transmission of raw (uncompressed) SGs or parameter updates [105,

106, 107, 108]. The exceptions are [109, 110] which implicitly require SGs to have almost

the same sparsity patterns, and thus limiting their use to the iid datasets where the SGs
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Figure 5.1: Wireless Edge Network

computed by the edge nodes have similar sparsity pattern. In contrast, we seek to develop

a framework that incorporates the requirements of ML in wireless networks, and exploits

properties such as over-the-air computation in wireless-MAC.

5.2 Problem Statement

Figure 5.1 illustrates the wireless edge network considered throughout this chapter. We

will refer to the edge device as edge node or simply a node throughout. The uplink

communication is over a wireless Multiple Access Channel (MAC), which naturally performs

an analog over-the-air addition on incoming signals from the edge nodes to the router.

However, the downlink communication from the edge router to the edge nodes is wireless

broadcast. Like edge nodes, the edge router is also assumed to have some memory and

computing power.

For the communication between edge nodes and the edge router (ER), we assume symbol

level synchronization (e.g., via a synchronization channel or synchronized clocks). During

the uplink transmission, let xi ∈ Rm be the symbols transmitted by the i-th node. The

received signal at the ER is given by

y =
∑
i

hi � xi + η, (5.1)

where hi ∈ Cm is subchannels’ gains from node i to ER, and η ∼ CN (0, σ2I) is the MAC
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channel noise, assumed to be complex Gaussian and independent across subchannels. In

the downlink, if ER broadcasts y to the edge network, each node receives a noisy scaled

replica of y. For simplicity, we assume the channel state information is available at the

nodes. Hence, by compensating for the downlink channel gains, the reconstructed value at

the i-th node is given by ŷi = y + η′i, where η′i ∼ N (0, σ2
i I).

Consider training a deep model with a cost functionF (θ) = Eξ[`(ξ;θ)] ≈ 1
n

∑
ξ∈X `(ξ;θ),

where θ ∈ Rd is the parameters of the deep model, `(ξ;θ) is the loss function of the model

corresponding to input data ξ, X is the training dataset and n = |X | is the number of

training samples. Assume that node i observes only subset Xi ⊂ X , |Xi| = ni. Hence,

its local objective function is fi(θ) = 1
ni

∑
ξ∈Xi `(ξ;θ), and the total cost function can

be reformulated as F (θ) =
∑

i αifi(θ), where αi = ni/n is introduced to compensate for

unbalanced training data sets among edge nodes.

Here, we focus on federated learning over wireless edge, with the focus on compressing

SGs to reduce communication overhead. Further, we require the compression algorithm

to be tailored to satisfy the constraints imposed by the communication medium and take

advantage of its characteristics, i.e.,

P1 The MAC channel (5.1) can naturally compute weighted average of the transmitted

values.

P2 The transmission power of each individual node is bounded, i.e., E[‖xi‖2] ≤ Pi.

P3 All edge nodes may not transmit at every round of communication.

P4 Edge-node’s private information should not leak to ER.

5.3 Preliminaries

The high level diagram of federated learning over wireless MAC is shown in Fig. 5.2. Let

gi ∈ Rd be the stochastic gradient computed at node i, such that E[gi] = ∇fi(θ). Therefore,
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Figure 5.2: Federated learning over Wireless MAC. Node i observes data ξi and based
on its local model, computes the model’s stochastic gradient gi. Compression engine
Ci compresses αigi to xi and transmits over MAC. The edge router receives the noisy
aggregated data y =

∑
i hi � xi + η and broadcasts it back to the edge nodes.

the SG of F (θ) would be given as g =
∑

i αigi. For each node, our goal is to design an

efficient encoding algorithm Ci(·) : Rd → Rm to compress scaled SGs, where m� d and

will be selected to control the trade offs among the wireless bandwidth requirement, the

communication latency, and the training convergence rate.

For simplicity, we assume that the channel state information and hence hi is known

at node i. After compensating for the channel loss1, xi = h−1
i � Ci(αigi) would be the

transmitted signal at node i. Then the received signal at the ER is given by

y =
∑
i∈K

Ci(αigi) + η, (5.2)

where K ⊂ {1, 2 . . . , K} is the subset of nodes transmitting their data. The aggregated

signal y is then broadcasted back to the nodes to estimate an SG of F (θ). Ideally, at each

node, we wish to be able to compute g =
∑

i αigi, i.e., the stochastic gradient of the

objective function F (θ). However, due to the limited bandwidth, channel noise and the loss

1Note that here, for the presentation simplicity, we did not ignore sub-channels with huge losses. However,
in practice, those poor channels can be discarded during data transmission.
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of information due to the compression by Ci(·)’s, the estimated SG may not be the same as

g. We consider two additional criteria in developing the encoders Ci(·)’s:

C1 For privacy, given y, the ER should not be able to infer any information about

individual gi’s.

C2 Each participating node should be able to estimate an unbiased stochastic gradient

of F (θ) from y. This ensures the convergence of the SG-based learning algorithms.

Otherwise, the training procedure can drift away from converging to the optimum (or

good) solution, unless the bias in SG is compensated by error-feedback [28, 27, 53].

This, in turn, increases the memory footprint of the compression algorithm.

Note that the above conditions imply that there exists a functionD(·), such that ĝ = D(y)

gives an unbiased estimation of g, i.e., E[D(y)] = g =
∑

i αigi. As a measure of privacy,

we require that the server should not be able to infer extra information about individual gi’s,

as long as at least two nodes are transmitting their data. Specifically, if there is another set

of stochastic gradients {g′i}i which results in the same SG for F (θ), they should not be

distinguishable. This implies that for a given g and for all {gi}i such that
∑

i αigi = g, the

output
∑

i Ci(αigi) should not depend on the individual gi’s and is dependent only on g.

Lemma 12. The conditions in C1 and C2 impose a Homomorphic property on the encoder.

As such, it is necessary that the encoders, Ci(·)’s, be identical linear transforms for all i.

As a result of Lemma 12, we focus on the encoders given by Ci(z) = Az, where

A ∈ Rm×d to be designed. On the other hand, note that if A is chosen to be fixed and

deterministic, the information in the SGs residing in the Null space of A would be lost,

hindering the learning algorithm from exploring the entire space of parameters while trying

to minimize the objective function. As such, it is crucial to changeA every few iterations of

training to allow the SGs to navigate different directions in the parameter space.

One possible approach is generating elements ofA, aij , iid according to a zero-mean

distribution such as Gaussian, Rademacher or aij ∈ {−1, 0,+1}. However, inspired by QCS
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(chapter 4, [53]), in the proposed Random Linear Coding, we restrictA to be of the form

A = 1√
m
HR whereH ∈ {±1}m×d is a partial Hadamard matrix,HHT = dI , andR is a

random diagonal Rademacher matrix, i.e., R = diag(r), P(ri = 1) = P(ri = −1) = 0.5.

Hence, the encoding at the i-th node is given as

Ci(αigi) = αiAgi =
αi√
m
H(r � gi), (5.3)

where fast Walsh-Hadamard algorithms can be used to perform multiplication byH . Note

that the edge nodes must use a common seed and follow the same random number generation

protocol to generate a common random matrix for encoding.

5.4 Proposed Method: Random Linear Coding

To develop the proposed RLC, first assume that all edge nodes transmit their SG. Hence, the

received signal over wireless-MAC at ER would be y =
∑

iA(αigi) + η = Ag + η. The

node i estimates SG from received y (or its noisy version y + ηi) from ER via

ĝ = ATy. (5.4)

Lemma 13. ĝ is an unbiased SG estimator with mean squared error

E
[
‖g − ĝ‖2

2

]
= (

d

m
− 1)‖g‖2

2 + dσ2, (5.5)

where σ2 is the variance of the communication noise.2

We have thus far incorporated P1 and privacy P4 into the proposed RLC framework.

Now, we take into account the constraints P2 and P3, while ensuring that the estimated

values at the edge nodes be an unbiased SG of F (·). Specifically, the developed RLC and

the estimation algorithm ((5.4) or its variants) should be insensitive to the local decisions

2Note that the expectation is generally taken w.r.t. randomness in the coding, i.e., random matrixA.
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made at each individual node, as will be explained later.

5.4.1 Power Constraint

One major challenge in federated learning in wireless edge networks is the limited trans-

mission power. Note that the average transmission power at node i can be computed

as

E
[
‖xi‖2

2

]
= E

[
‖h−1

i � (αiAgi)‖2
2

]
= α2

i ‖gi‖2
2

‖h−1
i ‖2

2

m
.

To control the transmission power, xi’s of all nodes can be scaled appropriately by the same

value such that the transmission power constraint of all nodes are satisfied. Moreover, since

the contribution of sub-channels with huge losses (small entries in hi) is remarkable in the

transmission power, those sub-channels might be ignored to preserve energy at the expense

of lower transmission rate. Note that the channel selection of each node in the network is

performed locally and might not be known by others. Hence, it is desirable to have SG

estimation at the edge nodes be independent of those local decisions. Let

[
qi
]
l
=


[h−1

i ]l if sub-channel l is being used,

0 o.w.
(5.6)

To have an unbiased SG estimation given by (5.4) or its variants, we suggest scaling the

transmitted signal inversely proportional to the number of channels as

xi = cαi
m

mi

(
qi � (Agi)

)
, (5.7)

where mi is the number of sub-channels being selected for data transmission by node i (i.e.,

mi = ‖qi‖0 the number of non-zero entries of qi), and c is a global parameter shared by

all nodes to control all nodes’ transmission powers and may vary at different transmission
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rounds. It can be easily verified that the average transmitted power at node i is

E
[
‖xi‖2

2

]
= mc2α2

i ‖gi‖2
2

‖qi‖2
2

‖qi‖2
0

. (5.8)

Lemma 14. Let the transmitted signals by each edge node be given as (5.7). The recon-

struction given via ĝ = 1
c
ATy provides an unbiased SG estimator. Moreover, the variance

of error is bounded as

E
[
‖g − ĝ‖2

2

]
≤ (
∑
i

d

mi

αi‖gi‖)(
∑
i

αi‖gi‖)− ‖g‖2
2 +

d

c2
σ2. (5.9)

In summary, the proposed RLC framework controls the transmitted power by appropri-

ately adjusting c and choosing ”good” sub-channels. Specifically, for a given c, to satisfy the

power constraint P2 while minimizing the MSE (5.9), it suffices to select the most number

of elements from hi with the largest magnitude such that E[‖xi‖2
2] given via (5.8) is at most

Pi. Similarly, for given mi’s (and hence qi’s), maximizing global c under the given power

constraints, E[‖xi‖2] ≤ Pi for all i, results in minimum MSE (5.9).

5.4.2 Transmission by a Subset of Nodes

In the wireless network, due to nodes being idle and unreliability in transmission, some

nodes may not transmit their data. Let bi ∈ {0, 1} be a random variable denoting whether

node i is transmitting its data at the current iteration of training or not. We assume an iid

probabilistic transmission, i.e., node i transfers its data with probability πi at each round

of training, independent of other nodes, hence bi ∼ Bernoulli(πi). To compensate for this

random behavior and still be able to recover an unbiased SG estimate, we propose to scale

the transmitted signals by 1/πi, i.e.,

xi = cαi
bi
πi

m

mi

(
qi � (Agi)

)
, (5.10)
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where bi = 0 corresponds to node i not transmitting any data. Intuitively, if a node does not

transmit for τ − 1 round of training, at the τ -th round, its effect on the computed SG should

be scaled proportionate to τ to compensate for the missing contribution in the previous

rounds of training. Similar to Lemma 14, it can be shown that the reconstruction given via

ĝ = 1
c
ATy provides an unbiased and bounded-variance SG estimator. However, the average

transmission power would be scaled by 1/πi.

Remark 6. As shown in [53], using local weighted error feedback at individual nodes can

improve the convergence rate at the expense of larger memory usage at edge nodes, even

for biased SG compression. Hence, by relaxing the unbiasedness constraint on RLC, for

example, we can easily control the transmission power by

xi = si (qi � (Agi)) , (5.11)

where si is an appropriately chosen constant, optimized locally at node i. However, to ensure

convergence, the remaining portion of gi, given as ei = gi − 1
c
ATxi should be stored for

transmission at later rounds of training.

5.5 Experiments and Discussions

To evaluate the performance of the proposed RLC framework, we considered training

various deep models over networks of 32 and 50 nodes at different channel signal to noise

ratios. Further, we assume that all nodes have the same power constraint P , and they may

transmit their data with probability πi = 0.5. For comparison, we also implemented the

digital communication scheme which first compresses and encodes the stochastic gradients

and then transmits the compressed values of each node one at a time. For digital data

compression, we used quantized compressive sampling (QCS) [53] which provides state-of-

the-art performance in terms of compression gain and convergence rate. To have the same

number of channel uses (hence, the same latency per training iteration) for a network of K
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Figure 5.3: Convergence rate vs training iteration for Cifarnet. QCS has approximately 350 times
more channel uses than RLC.

nodes, if the compression gain of RLC is set to be γ, the digital communication scheme have

to achieve a compression gain of Ke times larger, Keγ, where Ke is the number of non-idle

transmitting nodes. Further, we optimize the parameters of QCS to achieve the minimum

MSE while having the desired compression gain. We also consider baseline transmission

(no SG compression and assuming infinite channel band-width). Due to the large number of

nodes in the network and unbalanced distributed dataset over nodes, analog compression

based on sparsity such as [110] causes large amount of distortion in the reconstructed SG,

hindering the convergence of the learning algorithm.

First, we consider a network of 50 edge nodes, communicating to the ER with channel

signal to noise ratio SNR = 18dB. Hence, P/σ2 ≈ 63 and the capacity of end-to-end

channel is C = 3 bits per symbol. We then consider training Cifarnet, a deep convolutional

model with approximately one million parameters, over Cifar10 dataset using stochastic

gradient descent (SGD) algorithm. Traditional communication of SGs using QCS with a

compression gain of 30 requires total transmission of approximately 53e6 symbols, which

results in 17.8e6 channel uses. On the other hand, the proposed RLC framework with

compression gain of 20 achieves the same performance with only 50e3 channels uses,

reducing the communication latency by a factor of at least 350. Moreover, as shown in

Fig. 5.3, the convergence rate of the proposed algorithm follows that of the QCS and baseline

(no SG compression) closely, in terms of accuracy vs. number of iterations. But since the
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Figure 5.4: Convergence rate vs training iteration for Lenet over a network of 32 nodes. Baseline
(blue) represents the ideal case of no SG compression and infinite communication resources.

communication latency of RLC is much lower, the training time using RLC is orders of

magnitude smaller than digital communication.

Next, we consider training a Lenet-5 like convolutional network [94] over MNIST dataset

using SGD with step-size µ = 0.05. We consider different compression gains γ = 2, 5, 20

and 100 over a network of 32 nodes (with unbalanced datasets). The experiments are ran

several times with different initial points to derive the mean and variance of the performance

during federated learning, and are compared against QCS with the same communication

requirements and Baseline (no compression and infinite communication bandwidth). As

shown in 5.4, for low compression gains, the performance of training with compressed SGs

are close to the baseline, although RLC slightly performs better than digital communication

with QCS. However, for large compression gains, RLC outperforms QCS significantly. we
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have observed similar results with different SGD step-sizes, different channel SNRs and

different neural networks.

Comparing results of analog compression via RLC for federated learning over wireless-

MAC with those of digital communication methods confirms that designing a compression

method that utilizes the characteristics and constraints of the wireless-MAC, P1–P4, can

significantly improve the convergence rate and reduce the training latency.

5.6 Conclusion

In this chapter, we considered federated learning (FL) in edge networks with communication

over wireless multiple-access channels (MAC). Efficient distributed training of deep models

over wireless MAC requires the communication scheme satisfy the constraints imposed by

the communication medium and the network, such as unreliable transmission and idling

of nodes in the network, limited transmission power, and preserving the privacy of data.

Moreover, taking advantage of the characteristics of the MAC channels, such as over-the-air

computations, can greatly reduce the communication latency. We developed a framework

based on Random Linear Coding to reduce the communication overhead and training latency

in FL over wireless MAC. In addition to the requirements imposed by the communication

channel, we required the proposed encoding and decoding algorithms to result in an unbiased

SG estimation of the deep model’s cost function. This ensures that by proper adjustment of

the training hyper-parameters, learning with the compressed SGs would converge. Further,

we developed efficient power management and channel usage techniques to manage the

trade-offs between power consumption, communication bit-rate, and convergence rate.

Finally, through simulations, we showed the superior performance of the proposed method

over other existing techniques.
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CHAPTER 6

RESTRUCTURING, PRUNING, AND ADJUSTMENT OF DEEP MODELS FOR

PARALLEL DISTRIBUTED INFERENCE

6.1 Introduction

The real-time inference and execution of many modern machine learning models has become

a challenging task due to the significant increase in the complexity of deep models. Although

the execution time of deep neural networks can be improved significantly by the application

of parallel computing algorithms and using multiple processing units, it generally requires

synchronization and data exchange among processing units to some extent. Moreover,

in some real-world scenarios, such as sensor networks, the inference is done on the data

observed by the entire network. However, transferring all data to a central powerful node to

perform the ML task is undesirable due to the sheer amount of data to be collected, limited

computational power, as well as privacy concerns. Hence, it is more favorable to develop a

distributed equivalence of a trained deep model for deploying over the sensor network.

In the aforementioned applications, straightforward parallel computing algorithms cannot

be arbitrarily scaled up for deep models with complex connectivity structures. Although it is

possible to design deep models according to the capability and constraints of the processing

system, following such an approach requires training a new deep model for every target

hardware which is infeasible or demanding in many deep learning problems. As a result, in

this chapter, we assume that a complex deep model has already been trained with minimum

or no hardware-specific constraints on the parameters or structure of the neural network. Our

goal is readjusting the model via restructuring the layers and manipulating the parameters of

the neural network for more efficient parallel implementation.
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Figure 6.1: Communication between workers in parallel execution of a model over two
workers. The intra-worker computations are denoted by yellow and green connections,
while required communication between the workers are denoted by red edges. The binary
mask matrix (right image) can be used to determine the edges between the two workers.

6.2 Problem Statement and our Approach

Consider the problem of parallel distributed implementation of a trained deep neural network

over P workers, where the deep model is divided into P sub-models, each of which is

executed by a worker. As managing the synchronization and data transfer among workers

degrades the efficiency of the parallel implementation (e.g., higher latency), it is crucial

to reduce the communication among workers. The communication is needed between the

workers when the input of a neuron in a sub-model is from the output of a neuron belonging

to a different sub-model which resides in another worker. These co-dependencies can lead

to significant delays in computation.

For the sake of simplicity in presentations and analysis, here, we mainly focus on

feedforward deep models, specifically fully-connected layers.

Consider an arbitrary neural network with L layers and parameters {θ(l)}Ll=1, where

θ(l) = {W (l), b(l)} is the parameters of the l-th layer. Let x(l) be the input signal to the l-th

layer. Then, the output of the layer (input to the next layer) would be given by

y(l) = (W (l))Tx(l) + b(l), x(l+1) = σ(y(l)), (6.1)

where σ(·) is the activation function.

To analyze the communication bottleneck, consider an arbitrary layer with input x,

and parameters W and b (Fig. 6.1). Hence, y = W Tx + b would be the input signal
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to the neurons of the layer. Suppose that xk and yk are subsets of the signals that are

processed by the k-th worker. Without loss of generality, we assume that the neurons are

ordered such that the k-th block of consecutive neurons belongs to the k-th sub-model, i.e.,

x = [x1;x2; . . . ;xP ]. By partitioningW and b accordingly, we observe that

yk = (W T
k,kxk + bk) + (

∑
l 6=k

W T
k,lxl). (6.2)

Note that the first term can be computed at the k-th worker independent of the others,

whereas computing the second term requires synchronization and communication from the

other workers. Hence, to reduce the dependency among workers and the communication

cost, we consider minimizing the number of non-zero elements inWk,l, for l 6= k.

By defining an appropriate binary maskM (Fig. 6.1 (right)), the connections between

sub-models can be determined by the non-zero elements ofM �W . In general, if ιk and

ok are the number of input and output neurons assigned to the k-th worker, then M is an

anti-diagonal block matrix, given by

M = 1− diag
(
1ι1×o1 , . . . ,1ιP×oP

)
.

Remark 7. Note that the bias b does not contribute to the communication between workers

and can be safely ignored in computing the cost. Further, ‖M �W ‖0 can be viewed as

the number of edges between sub-models, and be used as an approximation to the latency

caused by the communication and synchronization among workers. Similarly, by defining

an appropriate binary maskMij , we can find the edges from worker j to i from the non-zero

entries of Vij := Mij �W . Depending on the communication protocol among workers,

the number of non-zero edges, number of non-zero rows, or number of non-zero columns of

Vij can be interpreted as a measure of latency due to the communication from worker j to

i. For the sake of simplicity, in this work, we consider ‖M �W ‖0 as a measure of total

communication latency. However, the extensions of our proposed approach to other cases is
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straightforward and left as future work.

To reduce the communication, one may attempt to reduce the number of cross-edges

among sub-models. However, as we observed in our experiments, generally there are many

important connections between neurons from different sub-models, and removing those

connections can severely affect the performance of the neural network. Hence, it is important

to have such neurons in the same sub-model. On the other hand, the problem of neuron

assignment to the workers is combinatorial and discrete with complexity O(PN) for a layer

with N neurons and P workers. Hence, enumerating all possibilities or using ordinary

optimization techniques as well as genetic algorithms or simulated annealing would fail due

to the complex nature of interactions among neurons in a deep neural network. Based on the

above observations, we devise RePurpose, a layer-wise neural network restructuring and

pruning for efficient parallel implementation. The gist of the idea is as follows;

The neurons of the input layer are assigned to the sub-models based on each worker’s

computational power and/or structure of the input data. For example, in a sensor

network, it is dictated by the input of each sensor. Next, we restructure and adjust the

neural network, sequentially one layer at a time. For the l-th layer, the assignments of

the neurons in layer l−1 are assumed to be fixed and known from the previous steps. The

neurons in layer l are rearranged and assigned to each sub-model, and the parameters of

the layer are pruned and fine-tuned, such that (i) the performance of the modified neural

network is close to the original one, and (ii) the communication between the sub-models

(measured by the number of edges connecting neurons from different sub-models) is

minimized.

6.3 RePurpose: Restructuring and Pruning Deep Models

Consider the l-th layer of neural network and assume that the neurons in the previous layers

have already been partitioned and rearranged, i.e., the input of the layer is partitioned as

[x1; . . . ;xP ], where xk is computed at the k-th worker. Let y and W are the signals and
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Figure 6.2: Rearranging neurons of a layer and adjusting parameters such that the k-th block
of signals, ŷk, is processed at the k-th worker.

parameters of the l-th layer in the original model. RePurpose rearranges the neurons such

that the k-th block of neurons are being assigned to the k-th worker (Fig. 6.2). Note that the

rearrangement of the neurons can be captured via a permutation matrix Π. Hence, if we

use the same weights, the effect of neuron-rearrangement can be formulated as ŷ = Πy

and Ŵ = WΠT, and the number of cross-edges between workers would be ‖M � Ŵ ‖0.

To further reduce the communication between workers, RePurpose not only rearranges the

neurons, but it also prunes and adjusts Ŵ . Hence, the optimization problem for RePurpose

is formulated as

min
Ŵ ,Π

‖M � Ŵ ‖0 s. t. ‖Ŵ −WΠT‖2
F ≤ ε, (6.3)

where ε is a parameter controlling the closeness of the parameters. Directly solving (6.3)

is infeasible as it is (mixed-)discrete, non-convex, and there are N ! different permutation

matrices. In the following, we propose an alternative and efficient approach to solve (6.3).

Recall that if neuron i is assigned to worker j, the signal at that neuron can be rewritten

as ŷi = bi + ŵT
i x = bi + ŵT

ijxj +
∑

k 6=j ŵ
T
ikxk, where ŵi is the i-th column of Ŵ , and

ŵik is the k-th block of ŵi corresponding to xk. Hence, the communication cost from other

workers to worker j would be ‖ŵi,\j‖0 :=
∑

k 6=j ‖ŵik‖0. By incorporating an additional

optional cost to encourage the total sparsity of the parameters, ‖ŵi‖0, the cost of assigning
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Algorithm 3 Parameter-Space RePurpose

1: procedure REPURPOSEP(W , {nk}Pk=1, η1, η2)
2: Compute the cost matrix C, where [C]j,i is calculated via (6.4) and (6.5).
3: Construct C̃ by repeating the k-th row of C, nk times.
4: (I, J) = MUNKRES(C̃)
5: Define permutation matrix as ΠI,J = 1.
6: return Π.

neuron i to worker j would be

cji = min
ŵi
‖wi − ŵi‖2

2 + η1‖ŵi‖0 + η2‖ŵi,\j‖0, (6.4)

where η1 and η2 control the trade-off between the error, sparsity, and cross-communication.

Lemma 15. The solution of (6.4) is given by element-wise hard-thresholding wi, i.e.,

[ŵi]n =

 0 | [wi]n | ≤
√
η

[wi]n o.w.
(6.5)

where η = η1 or η1 + η2, depending on whether neuron n from the previous layer has been

assigned to the j-th worker or not.

Restructuring and neuron assignment can be interpreted as selecting elements from

the cost matrix C, whose (j, i)-th element is given by (6.4), such that (i) from row k, nk

elements are selected, i.e., nk neurons are assigned to worker k, (ii) from each column,

only one element is selected, i.e., each neuron can be assigned to only one worker, and (iii)

the sum of selected elements is minimized, i.e., the total cost of neuron assignment and

parameter adjustment is minimum.

Algorithm 3 summarizes the proposed solution, where MUNKRES(·) uses the Munkres

assignment algorithm [111, 112] to find the (row-column) index pairs that minimizes the

total sum cost
∑

n[C̃]
In,Jn

.
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Theorem 16. Algorithm 3 finds the optimum solution of

min
Ŵ ,Π

‖Ŵ −WΠT‖2
F + η1‖Ŵ ‖0 + η2‖M � Ŵ ‖0, (6.6)

with time complexity O(N3), where N is the number of layer’s neurons (number of columns

ofW ).

Note that by setting η1 = 0, (6.6) would be the Lagrangian of (6.3) and choosing

appropriate value for η2 can lead to the desired error bound ‖Ŵ −WΠT‖2
F ≤ ε. Finally, it

is worth mentioning that the bias term does not contribute to the communication cost and is

given by b̂ = Πb.

Remark 8. In model pruning and compression, it is common to retrain the modified model to

fine-tune the parameters and improve the accuracy of the model. This extra post-processing

is generally referred to as post-training phase. The same principle can be applied to our

proposed algorithm.

Algorithm 4 Applying RePurpose to Deep Neural Networks

1: Input {W (l)}
l
, {b(l)}

l
, {n(l)

k }k,l , η1, η2

2: Output {Π(l)}l, {Ŵ (l)}l, {b̂(l)}l
3: E = η1 + η2M
4: Π(0) ← I
5: for layers l = 1, . . . , L do
6: T ← Π(l−1)W (l)

7: Π(l) ← REPURPOSE(T , {n(l)
k }k , η1, η2)

8: Ŵ (l) ← HE
(
T (Π(l))T

)
9: b̂(l) ← Π(l)b(l)

Remark 9. Recall that when applying RePurpose to layers of a neural network, permuting

neurons of layer l with matrix Π changes the signal of that layer by ŷ(l) = Πy(l) and affects

the weight matrix of that layer byW (l)ΠT. As a result, x̂(l+1) = Πx(l+1) and to have the

same signal at the next layer, y(l+1), the weight matrix of layer l + 1 should be modified as

ΠW (l+1). The detailed application of RePurpose to a deep neural network with weights and
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biases {W (l), b(l)} is presented in Algorithm 4, whereHE(·) is the (modified) element-wise

hard-thresholding operator, defined as

Y = HE(X) : Yij =

 0 if |Xij|2 ≤ Eij

Xij o.w.
(6.7)

6.4 Performance of RePurposed Model

To analyze the performance of the modified neural network, assume that the original neural

network has the following properties:

A1. The activation functions are 1-Lipschitz, i.e., for all u, v, |σ(u)− σ(v)| ≤ |u− v|.

A2. The Frobenius norms of the weights of the neural network are bounded, i.e., for some

constant τ > 0, ‖W (l)‖F ≤ τ , for all layers l = 1, . . . , L.

A3. The signals in the neural networks are bounded, i.e., there exists a constant B > 0

such that for input signal x(1) = xin, and forward signals {x(l)}Ll=2 (outputs of the

hidden layers), ‖x(l)‖2 ≤ B for l = 1, . . . , L.

Moreover, suppose that the parameters η1 and η2 at each call of the REPURPOSE are

adjusted such that the solution of Lagrangian formulation (6.6), given by REPURPOSE, is

also the solution of the following constrained optimization problem

min
Ŵ ,Π

‖M � Ŵ ‖0 s. t. ‖Ŵ − TΠT‖2
F ≤ ε. (6.8)

Hence, by Alg. 4 and the cascade application of RePurpose, the modified weight matrix

of the l-th layer of neural network satisfies ‖Ŵ (l) −Π(l−1)W (l)(Π(l))T‖2
F ≤ ε. For the

simplicity in notations, let ε =
√
ε.

Theorem 17. For an input data x, let y and ŷ be the outputs of the original and RePurposed

neural network, respectively. If Π is the permutation of the final output neurons in the
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RePurposed neural network, then under assumptions A1-3,

‖ŷ −Πy‖2 ≤ ε
(τ + ε)L − 1

τ + ε− 1
B. (6.9)

Especially, if the parameters of the neural network are normalized such that ‖W (l)‖F = 1,

then ‖ŷ −Πy‖2 ≤
(
(1 + ε)L − 1

)
B.

Therefore, if the hyperparameters of RePurpose are chosen carefully, we can ensure that

the output of the modified neural network is close to the original model (after accounting for

the possible rearrangement of the neurons of the output layer).

6.5 Experiments

To evaluate the performance of the RePurpose algorithm, we consider different neural

network architectures and compare the accuracy, communication and wall-clock times

w.r.t. naive implementation where the input data is communicated to all nodes in the

network, so they all have the entire input data, baseline which is parallel implementation

of the deep model without any modification to the parameters or structures, and sparse

implementation which sparsifies the parameters to reduce cross-edges between the workers

without re-arranging the neurons. We evaluate the accuracy-communication trade-off in

different sensor networks, as well as the reduction in total computation time (wall-clock

time) in Edge and Data Center platforms.

6.5.1 Sensor Network

Setup 1. Figure 6.3(a) shows a 2 sensors network, sensor i observes location xi of a target

object and each sensor’s task is to determine whether the object is in the blue or green

region. A simple neural network (Fig. 6.3(b)) is trained at a central node to perform the task

with accuracy 94.5%. In the naive approach, the sensors exchange their observations (xi’s)

and run the inference (NN) independently. Hence, the NN is executed twice throughout
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the network at the cost of higher computational complexity. Alternatively, we can apply

RePurpose to efficiently distribute the inference over the sensors. We applied RePurpose

with η1 = 0, η2 = 0.01 (Fig. 6.3(c)), and η2 = 0.1 (Fig. 6.3(d)). As a result, the number of

cross-worker communications reduced significantly to 1.7%, 1.5% and 1.6% for η2 = 0.01,

and 0.7%, 0.1% and 0.3% for η2 = 0.1 for layers 1, 2, and 3, respectively. Specifically,

with only 6 communicated values, the computational complexity at each sensor is reduced

by almost a factor of 4 compared to the naive implementation. However, the accuracy of

the distributed parallel model, prior to the post-training phase, is reduced to 93.5%. By

retraining the modified model for few iterations (and imposing the structural constraints

found through RePurpose), the accuracy of the fine-tuned model becomes 94.4%.

Setup 2. Next, we consider a network of P sensors where each sensor observes an image

of a digit xi (from MNIST dataset) and the goal is finding the rounded average
[∑

i xi
P

]
. We

adapted a Lenet-5 like structure [94] for the neural network which is trained in a central

server (Fig. 6.6), and repeated the experiments several times. Note that one might attempt

to classify the digits at each individual sensor and then share the value with other nodes to

compute the average. However, in addition to the increased computational complexity at

each individual node, it is worth mentioning that if the accuracy of digit recognition is ρ,

close to 1, then the final accuracy in computing the average would be approximately 1+8ρP

9
.

For example, for a network with 6 nodes and ρ = 0.98, the final accuracy would be less than

90%. We applied the RePurpose algorithm on the trained model for distributed inference

over the sensor network with different communication (cross-worker edges) constraints.

Fig. 6.4 compares the results of RePurpose with the baseline and direct sparsification, in a

network with P = 6 sensors.

Setup 3. Next, we consider P sensors (cameras) that observe a scene and detect whether

an specific object exists or not. For this purpose, we used a Resnet-like neural network [113]

over CIFAR10 and the objective is detecting the presence of a ”dog” in any of the images

(Fig. 6.7). Fig. 6.5 shows the results of RePurpose, the baseline, and direct sparsification, in
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Figure 6.3: Setup 1. Distributed inference over a sensor network to classify location of
an object. The zero coefficients are represented by empty (white) spaces, inner-worker
connection by green pixels and cross-worker edges by red pixels in the images. Note that
for the illustration purposes, the coefficient matrix of the first layer is transposed.
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Figure 6.5: RePurpose vs Sparsification, a network with 2 workers in Setup 3
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Figure 6.7: Structure of neural network for Setup 3

a network with P = 2 sensors.

In figures 6.4a and 6.5a, we verified the effect of the parameter η2 in (6.6) on the accuracy

of the restructured and pruned model. By increasing η2, i.e., decreasing the number of

cross-communication among workers, the accuracy of the distributed model decreases. As

seen from the figures, RePurpose significantly outperforms direct sparsification in terms of

th accuracy of the modified model. Although the accuracy of the modified model is dropped

for large η2 (i.e., extremely low cross-communications), with 1 or 10 epochs of post-training

for MNIST and CIFAR10, respectively, (”FT RePurpose” in the figures) it achieves almost

the same accuracy as the original model, while direct sparsification fails to provide good

accuracy. Figures 6.4b and 6.5b shows the number of cross-communication among workers

versus η2 for the individual hidden layers of the considered neural networks. Interestingly,

RePurpose sparsifies the cross-edges between workers significantly for the hidden layers.

The restructured model can achieve the same performance as the original model by using

less than 0.0003 of the cross-edges (i.e., between 10 to 30 connections out of more than

100000 edges between workers). Finally, figures 6.4c and 6.5c compare the accuracy vs the

cross-communication between workers. Clearly, direct sparsification performs well only

when there is sufficient cross-communication among the workers, while the accuracy of the

model obtained by RePurpose does not change for a vast sparsity range.

Finally, it is worth mentioning that in the naive approach to inference over the sensor

network, each node has to transmit its observations to other nodes, hence the communication

between any two pair of nodes would be 784 or 1024 values for Setups 2 and 3, respectively.

However, RePurpose can achieve the same accuracy with exchanging less than total of 200
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Table 6.1: Target Accelerator Evaluation Platforms

Name Node Compute Node Memory Network Bandwidth Number of Nodes
Datacenter 125 TOPS 4GB 150 GB/s (NVLink) 1-32

Edge 0.5 TOPS 1GB 100 MB/s (Ethernet) 1-32

values across the entire network.

6.5.2 System Evaluations

Methodology- We evaluate RePurpose on two distributed accelerator platforms, described

in Tbl. 6.1, simulated using ASTRA-sim [114]. ASTRA-sim is an open-source distributed

Deep Learning platform simulator that models cycle-level communication behavior in details

for any partitioning strategy across multiple interconnected accelerator nodes. ASTRA-sim

takes the compute cycles for each layer of the model as an external input, and manages

communication scheduling similar to communication libraries like NVIDIA NCCL [115].

We obtained compute cycles for the Datacenter configuration from a NVIDIA V100 GPU

implementation, and for the Edge configuration (e.g., sensor network) from a separate DNN

accelerator simulator [116].

We tried to stress the aforementioned platforms under various sized problems to show the

efficiency of RePurpose. In all models, we assumed a stack of 5 layers with same number of

neurons. In our notation, N refers to the number of neurons per layer (or matrix dimensions).

For the datacenter system, N varies from 1K to 1M , while for edge system the variation

is from 1K to 32K. We also assumed strict ordering between current communication and

computation of next layer, meaning that each node begins computation of each layer only

when it has all inputs available.

We picked 4 different flavors of RePurpose with 50%, 75%, 90% and 99% sparsity

factor named as RP-50, RP-75, RP-90, and RP-99, respectively. In addition, we changed the

number of worker nodes from 1 to 32 for both system configurations.

Results- Fig. 6.8 shows the total amount of data that each node needs to send out for
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Figure 6.8: Theoretical amount of data each node needs to send out for N = 8K.

one input sample for N = 8K. Clearly, specification has the linear effect on the amount

of communicating data. On the other hand, partitioning across more nodes also increases

the total communicating data. But the increase in rate diminishes as the number of nodes

increases, converges to 2X more data compared to the case of 2 nodes.

To further investigate the effect of RePurpose in reducing the computation and commu-

nication times, Fig. 6.9 shows the simulation results of the communication and computation

breakdown for the baseline system and RePurpose for N = 8k. As seen from Fig. 6.9a,

in a datacenter system, on average and across different number of nodes, RP-50, RP-75,

RP-90 and RP-99 achieve 1.7×, 2.76×, 4.77× and 10.47× speed-up in computations, re-

spectively. The average improvement for communication ratio is 1.2×, 1.45×, 1.74× and

1.75×, respectively. The reason for lower improvements of communication time is that due

to NVLink’s high bandwidth. For N = 8K, network communication time is mostly network

latency limited. Hence, reduction in input size does not correspond to linear reduction in

communication time.

Fig. 6.9b shows the similar results but for edge system. Here, due to much lower network

bandwidth, the effect of communication is more considerable. On average applying RP-50,

RP-75, RP-90 and RP-99 improve computation times by 1.7×, 2.77×, 4.78× and 11.01×,

respectively. This value for communication is 1.2×, 1.38×, 1.82× and 3.04× respectively.

As the number of nodes grow, the communication gap between the baseline and RePurpose

decreases. This is mostly because of the congestion in the network (e.g. switch) that
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Figure 6.9: Communication and computation breakdown across different systems and
N = 8K

1

10

100

1000

10000

100000

1000000

1K 8K 64K 256K 1M

ti
m
e	
(u
s)

baseline	comm baseline	comp
baseline	total RP	comp
RP	comm RP	total

(a) Datacenter Platform results

100

1000

10000

100000

1000000

1K 8K 16K 24K 32K
ti
m
e	
(u
s)

baseline	comp baseline	comm
baseline	total RP	comp
RP	comm RP	total

(b) Edge Platform results

Figure 6.10: The effect of communication vs. computation times as the model size N grows

decreases the effect of benefits gained by RePurpose.

Fig. 6.10 shows how communication, computation and total times change as the the

number of neurons grows. For each network size, computation and communication times are

averaged across different sparsity factors and node counts. For datacenter system (Fig6.10a),

computation is the dominant factor. This is expected since the computation grows as O(N2)

while communication increases as O(N). Since the network band-width is very high in

datacenter, the effect of communication is negligible. In general, the total time ratio increase

from 1.01× in N = 1K to 2.06× in N = 1M . On the other hand, communication remains

a considerable factor in the edge systems (Fig. 6.10b) due to: (i) low network bandwidth,

and (ii) lower dimensions of workloads on edge systems. The total time improvement for

edge system is 1.55× for N = 1K and it increases to 3.8× for N = 32K.
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6.6 Conclusion

In this chapter, we considered the problem of efficient parallel distributed inference of an

already trained deep model over a cluster of processing units or a sensor network. Required

communication and synchronization among processing units or network nodes (i.e., workers)

can adversely affect the computation time. Moreover, in the wireless sensor networks, it

may significantly increase the power consumption due to the transmission of large amounts

of data. We claimed that traditional approaches to prune or compress the deep models fail to

consider the constraints imposed in such distributed inference systems. To overcome the

shortcomings of the existing methods, we devised RePurpose, a framework to restructure

the deep model by rearranging the neurons, optimum assignment of neurons to the workers,

and then pruning the parameters, such that the dependency among workers is reduced. To

efficiently solve RePurpose, we used `0 optimization and the Munkres assignment algorithm.

We showed that RePurpose can significantly reduce the number of cross-communication

between workers and improve the computation time significantly, while the performance

loss of the modified model is negligible.
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CHAPTER 7

CONCLUSION

7.1 Summary of Achievements

In recent year, the complexity of deep learning problems has increased significantly, both in

terms of the number of parameters and the available training data samples. Hence, training or

real-time inference of modern deep models on end-user devices or a single processing node

is unappealing or nearly impossible due to the required storage, memory or computational

power. In this dissertation, we investigated challenges in distributed training and inference of

deep models. As communication overhead is a major bottleneck in such distributed systems,

in my research, we focused on reducing the required communication among workers to

improve the convergence rate in distributed deep learning or execution time during inference.

In the first part of my dissertation, we considered distributed deep learning. To reduce

the communication overhead, we developed and analyzed various algorithms from three

different perspectives: Information Theory and Central Estimation Officer (CEO) problem,

matrix factorization, and compressive sampling.

In chapter 2, we framed distributed learning as a CEO problem. We argued that the

computations at the workers can be considered as noisy observations of the true update

(or gradient), θ∗, and the objective of distributed learning would be reliable estimation of

θ∗ with minimum communication from workers. Based on this principle, we developed

and analyzed a framework for distributed learning. The proposed method consists of three

major blocks: 1) dithered and nested quantization at the workers, 2) distributed source

coding to incorporate the correlation among workers for further reduction in communication

bit rate, and 3) decoding the data received from the workers and estimating the optimum

parameters at the server. Via simulations, we showed that the proposed method reduces the
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communication bit-rate compared to the other existing methods while it can achieve nearly

the same convergence speed as of the baseline training [51, 50].

In chapter 3, we considered compressing the stochastic gradients via low-rank matrix

factorization and then quantizing the factorized terms. However, naı̈vely pursuing such an

approach in distributed machine learning is costly, both in terms of the computations and

the resulting error during training. We advocated using the factorization inherently provided

during the backpropagation algorithm. However, traditional quantization of these factors

results in biased compression and large MSE, which adversely affect the convergence of

distributed learning. We devised two novel Indirect SG Quantization (ISGQ) methods with

the ultimate goal of providing an unbiased SG compression with minimum error in the

reconstructed SG. We showed that with the same number of quantization levels, the MSE of

ISGQ is comparable to or better than Lloyd-Max direct quantization of SGs which translates

into better convergence rates. Moreover, ISGQ has less computational complexity than

traditional quantization schemes, and it can achieve compression gains of more than 100,

while the compression gain of the existing quantization methods is at most 32 [52].

In chapter 4, we considered the problem of achieving an arbitrarily large unbiased

compression of SG while ensuring the mean squared error (MSE) is low. Inspired by

the design of structured mixing matrices in compressed sensing, we developed Quantized

Compressive Sampling (QCS) and showed that it can achieve orders of magnitude smaller

MSE compared to the state-of-the-art unbiased compression techniques, resulting in superior

convergence rate. More precisely, for non-convex optimization problems, stochastic gradient

descent with the proposed QCS compression enjoys the same convergence rate of O(1/
√
T )

as the baseline training, where T is the number of training iterations. However, since the

constant factor in the rate is slightly larger due to the compression, there is an O(1/
√
T )

gap w.r.t. the baseline training. We showed that utilizing weighted error feedback reduces

the effect of SG compression on convergence rate to O(1/T ) [53].

Next, in chapter 5, we considered federated learning in wireless edge networks. Efficient
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communication requires the compression algorithm to satisfy the constraints imposed by

the communication medium and take advantage of its characteristics, such as over-the-air

computations inherent in wireless multiple-access channels, unreliable transmission and idle

nodes in the edge network, limited transmission power, and preserving the privacy of data.

To achieve these goals, we proposed a novel framework based on Random Linear Coding

and developed efficient power management and channel usage techniques to manage the

trade-offs between power consumption, communication bit-rate, and convergence rate of

federated learning over wireless MAC. We showed that the proposed encoding/decoding

results in an unbiased compression of SG, hence guaranteeing the convergence of the training

algorithm without requiring error-feedback. Finally, through simulations, we showed the

superior performance of the proposed method over other existing techniques [62].

Finally, in chapter 6, we investigated the problem of distributed parallel inference and

how to modify the structure or parameters of already-trained deep neural networks to make

them suitable for efficient deployment on target platforms. To reduce the latency due to

the communication across workers in distributed inference, we proposed to rearrange the

neurons in the neural network and partition them (without changing the general topology of

the neural network), such that the interdependency among sub-models is minimized under

the computations and communications constraints of the workers. We developed RePurpose,

a layer-wise model restructuring and pruning technique that guarantees the performance

of the overall parallelized model. To efficiently solve RePurpose, we used `0 optimization

and the Munkres assignment algorithm. We showed that, compared to the existing methods,

RePurpose significantly improves the efficiency of the distributed inference via parallel

implementation, both in terms of communication and computational complexity [89].
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7.2 Future Research Directions

7.2.1 Distributed Learning and Inference over Graphs

In this dissertation, we have assumed that all workers can communicate with each other or a

central node. However, in many networks, the communication among workers has to be done

in a certain order or follow the topology of the network. An immediate research problem

would be how to adjust or extend our results to arbitrary decentralized graph networks. For

example, since each node can communicate only with its neighbors, it is more desirable to

have model update (in distributed learning) or computations (in distributed inference) at a

node depend solely on the neighbors. However, extension of the proposed algorithms such

as quantized compressive sampling to graph networks remained as an open research problem.

Moreover, in RePurpose, we implicitly assumed that all nodes can communicate with each

other and considered the total number of communications in the network as a measure of

latency. Extending RePurpose to more general networks and analyzing its performance

would be a topic of future research.

7.2.2 Robust Distributed Inference

In this thesis, we assumed that all nodes are robust against failure and they synchronously

communicate with each other or a central node whenever it is required. However, in practice,

some nodes may have high computational latency or susceptible to failures. Hence, results

from a subset of nodes may not be available in time. In recent years, inspired by the results

in channel coding for error correction, it was proposed to incorporate some redundancy into

the computations, such that by receiving results from only a random fraction of workers,

the desired objective can be computed. As an example, computing y = [W1;W2]x can be

distributed as y1 = W1x, y2 = W2x and y3 = (W1 +W2)x over 3 workers. By receiving

computations from any two workers, the server can easily compute y. As a possible future

research direction, we suggest incorporating redundancies when restructuring complex deep
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models and distributing the computations across a sensor/processing network, such that not

only it satisfies the communication and computational constrains of the network, but also is

robust against node failures.

7.2.3 Distributed Model Training

Sometimes the deep model is too large to fit in a single node’s RAM memory to execute

the training algorithm, or the deep-model training could be computationally too heavy to

be done at a single node in a reasonable amount of time. To overcome the challenges, we

propose a new paradigm; distribute the complex deep model across different workers such

that the number of parameters and the complexity of each sub-model would not exceed the

computational capabilities of the workers. A fundamental question that arises is how we

may train such a network as each worker possesses only a small subset of the model but its

parameters’ updates depend on the model parameters of other workers.

Ideally, it is desired to update each worker’s sub-model without any communication from

other workers. As an example, consider the linear regression problem, y = Wx. If worker

k has only a subset Ωk of coefficientsW , i.e.,W
∣∣
Ωk

, and set the rest to zero, then we have

shown that knowing some statistical properties of input x can help to find the optimum

Wo for linear regression from partially computed W
∣∣
Ωk

’s after the local sub-models are

converged. Hence, distributed model training can be achieved with only one round of

communications. However, for more complex deep models, it remains open as how to merge

the locally computed partial parameters and what kind of extra information is required.
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APPENDIX A

DITHERED QUANTIZATION

It is well-known that the error in ordinary quantization, especially when the number of

quantization levels is low, depends on the input signal and is not necessarily uniformly

distributed. In Dithered Quantization, a (pseudo-)random signal called dither is added to

the input signal prior to quantization. Adding this controlled perturbation can cause the

statistical behavior of the quantization error be more desirable [91, 102, 117].

Let Q(·) be an M-level uniform quantizer with quantization step size of ∆, i.e., Q(v) =

∆ bv/∆e and the output range of Q(·) is {−M, . . . , 0, . . . ,M}.1 The dithered quantizer is

defined as follows;

Definition (Dithered Quantization). For an input signal x, let u be a dither signal, indepen-

dent of x. The dithered quantization of x is defined as x̃ = Q(x+ u)− u.

Remark 10. To transmit the dithered quantization of x, it is sufficient to send the index of

the quantization bin that x + u resides in, i.e., b(x+ u)/∆e. The receiver reproduces the

(pseudo-)random sequence u using the same random number generator algorithm and seed

number as the sender. It is then subtracted from Q(x+ u) to reconstruct x̃.

Theorem 18 ([91]). If 1) the quantizer does not overload, i.e., |x+ u| ≤ M∆
2

for all input

signals x and dither u, and 2) The characteristic function of the dither signal, defined

as Mu(jν) = Eu[ejνu], satisfies Mu(j
2πl
∆

) = 0 for all l 6= 0, then the quantization error

e = x− x̃ is uniform over (−∆/2,∆/2] and it is independent of the signal x.

It is common to consider U(−∆/2,∆/2) as the distribution of the random dither signal

which can be easily verified that it satisfies the conditions of Thm. 18.

1Throughout the paper, we assume that all quantizers are centered around 0 (with the exception of sign-
based quantization). This is the case also for ternary [16] and stochastic quantization [15].
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In some cases, the receiver may not be able to reproduce the dither signal to subtract from

Q(x+u). Hence, quantization is simply defined as x̃h = Q(x+u). We refer to this approach

as the half-dithered quantization as the dither signal is applied only to the quantization, not

the reconstruction of x. In this case, the quantization error is not necessarily independent

of the signal, however by an appropriate choice of the dither signal, the moments of the

quantization error will be independent [102]. For example, if the dither signal u is the sum

of k independent random variables, each having uniform distribution U(−∆/2,∆/2), then

the k-th moment of the quantization error, ε = x− x̃h, would be independent of the signal;

E
[
εk|x

]
= E

[
εk
]
.

Remark 11 (1-Bit Dithered Quantization). Note that the output range of the dithered quanti-

zation is {−M, . . . ,+M}. Hence, each value is represented by minimum of log2(1 + 2M)

bits (without applying any compression to the quantized sequence). Reducing the number

of bits to only 1-bit while keeping the desired properties of the dithered quantizers can

potentially reduce the transmission bits by almost 50% (from at least log2 3 ≈ 1.58 bits to 1

bit).

Without loss of generality, assume that |x| ≤ 1/2. We propose the following dithered

1-bit quantization:

q = sign(x+ u) :=

 +1 if u+ x > 0

−1 o.w.
, (A.1)

where u ∼ U(−1/2, 1/2) is the random dither signal. The dequatized value is then given by

x̃ = q − u. (A.2)

It is straightforward to show that this 1-bit dithered quantizer is unbiased and the quantization
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noise is uniformly distributed and independent of x;

E[x̃− x] = 0, Var[x̃− x] =
1

12
. (A.3)

Relationship with Ternary and Stochastic Quantizations

Without loss of generality, assume that the vector x is normalized such that |xi| ≤ 1.

Although the reconstruction of quantized values in our method is different from those in

TernGrad and QSGD, we show that these quantizers can be considered as a special case of

the half-dithered quantizer.

M -level Stochastic Quantization in [15] is defined as

Q(s)(xi) =

 sign(xi)
l
M

with prob. 1− d(xi)

sign(xi)
l+1
M

with prob. d(xi)
(A.4)

where l is the quantization bin that |xi| resides in, i.e., |xi| ∈ [l/M, (l+ 1)/M ] and d(xi) :=

M |xi| − l. The ternary quantizer of [16] can be considered as a special case of stochastic

quantizer with M = 1.

Lemma 19. Stochastic quantization is the same as (2M + 1)-level half-dithered quantizer

with step-size ∆ = 1
M

and uniform dither u ∼ U(− 1
2M
, 1

2M
).

In other words, stochastic quantizer adds a uniformly distributed dither to the input

signal before quantization. However, the receiver does not subtract the dither from the

quantized value. Therefore, the quantization error is not independent of the signal. It can be

easily verified that although the quantization is unbiased, E
[
x−Q(s)(x)

]
= 0, its variance

depends on the value of the input signal and varies in [0, 1/4M2], depending on the input

signal x;

E
[
([Q(s)(x)− x]i)

2
]

=
d(xi)(1− d(xi))

M2
.

On the other hand, the variance of the dithered quantization noise would be uniformly

99



1/12M2, independent of x. For example, if x is uniformly distributed over [−1, 1], the average

quantization variance of the stochastic quantizer would be 1/6M2, twice the variance of the

dithered quantization.
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APPENDIX B

STATISTICAL PROPERTIES OF THE SIGNALS IN ISGQ

Here, we focus on the neural networks with ReLU activation functions as it is the most

commonly used one in modern deep models. Consider the l-th layer of a neural net. For

a layer with large enough input nodes (dimension of input signal)1, we can approximate

the distribution of the input signals to the nodes, y(l) = W (l)x(l−1) + b(l), as multivariate

Gaussian. It is worth mentioning that in practice, although the hidden layers’ outputs are

generally sparse, but the random-like behavior of signals and weights [118] justifies the

Gaussian behavior as verified by our simulations. Hence, the distribution of the output,

x(l) = max(y(l),0), will have a peak at 0 with an approximately Folded Normal distribution

for positive values.

Similarly for the backward signals, we note that if y(l)
j > 0, δ(l)

j =
∑

k w
(l+1)
k,j δ

(l+1)
k would

be the (weighted) sum of multiple signals from the next layer. Thus, we may approximate

its distribution as Normal. On the other hand, for y(l)
j < 0, δ(l)

j = 0. As the neural network

trains and converges to a (local) minimum solution, the gradients and therefore, the backward

signals become mostly zero or insignificant.

Remark 12. For the Softmax layer with cross-entropy cost function, commonly used in

classification tasks, δ(out) = x(out) − d, where d ∈ {0, 1} is the desired output. Since

0 ≤ x(out) ≤ 1, δ(out) ∈ [−1, 1]. At the initial stages of training, the classification algorithm

behaves randomly and we assume that δ(out) ∼ U [−1, 1]. However, as the network is trained

and its accuracy improves, x(out) becomes closer to d, causing δ(out) to be mostly sparse or

close to 0.

Figure B.1 shows some of the results for the FC network. The neural network is fed with

1In most practical cases, the input signal’s dimension of a fully connected layer is in the order of at least
100s and 1000s, which as verified in our simulations, it is large enough for the validity of our assumptions.
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Figure B.1: Marginal distributions of x(1) and δ(1) in FC network at different stages of
training. Note that the y-axis is broken to make the plots legible.

1000s of samples from the database at different stages of training and the probability density

functions (pdf) of the signals of different layers are estimated. It is observed that the pdfs of

the forward signals closely follow a sparse Folded-Normal distribution and as the neural

network trains and its accuracy improves, the sparsity increases. Similarly, the backward

signals behave like sparse Gaussian random variables.

This behavior can be explained intuitively as follows. The signals in the hidden layers

can be seen as an intermediate ”feature vector” derived from input training data and being

fed as input to the next layers in the network for classification, decision, ... Hence for

different classes or types of inputs from training database, different elements of this ”feature

vector” would be dominant and the rest become insignificant. This sparsity in the signals of

the hidden layers becomes more noticeable as the the neural network is being trained and it

performance improves.
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APPENDIX C

PRACTICAL CONSIDERATIONS IN REPURPOSE

C.1 Complexity of Naive Direct Partitioning

Consider distributing processing of a layer of a deep neural network with N neurons over P

workers. Without assuming any constraint on the number of neurons per worker, there are

P possible assignments for each neuron, hence, the total possible neuron assignments to the

workers would be PN .

Now, assume that exactly nk neurons have to be assigned to the k-th worker, where∑
k nk = N . Clearly, there are (

N

n1, n2, . . . , nP

)
possible neuron assignment to the workers. To have a relatively balanced neuron assignment

(i.e., no worker or a small subset of workers has to process almost all signals), we assume

that nk = ckN , where ck = Θ(1/P ), i.e., there exists α, β > 0 such that αN/P ≤ nk ≤

βN/P . Using Stirling’s approximation for factorial, nk! ∼
√

2πnk (nk
e

)nk , and noting that

nk = NΘ( 1
P

),
∑

k nk = N , we have

(
N

n1, n2, . . . , nP

)
∼

√
2πN (N

e
)N∏P

k=1

√
2πnk (nk

e
)nk

=

√
2πN (N

e
)N∏P

k=1

√
2πNΘ( 1

P
)
(NΘ( 1

P
)

e

)nk
=

1

(2πN)
P
2
−1

1

Θ( 1
PN+0.5 )

= Θ
(
PN+0.5N1−P

2

)
.

Therefore, the direct approach to find good neuron assignment for parallel distributed
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inference requires evaluation of O(PN) different assignments, which for large number of

neurons or number of workers becomes prohibitive.

C.2 Reduction in Computational Complexity

One major benefit of applying RePurpose, as demonstrated in simulations, is the reduction

in the computational complexity. For the sake of simplicity, assume that there are P = 2

workers. Recall that the computations at worker 1 is given as y1 = W T
11x1 + b1 +W T

12x2.

By the application of RePurpose to the weight matrixW , the off-diagonal blocks,W12 and

W21, become sparse. Let Ω be the indexes of the columns ofW12 which are non-zero, and

define W̃ 12 to be the restriction ofW12 to those non-zero columns. Similarly, define x̃2 to

be the restriction of x2 to the indexes given by Ω. Therefore, y1 can be more efficiently

calculated as y1 = W T
11x1 + b1 + W̃ T

12x̃2. IfW12 is an m× n matrix, the computational

complexity and the communication requirement of the cross-term W T
12x2 in the original

calculation would beO(mn) andO(m), respectively. RePurpose reduces these complexities

to O(|Ω|n) and O(|Ω|). As shown in simulations, the set Ω can be extremely small, making

the computational complexity of the cross-term negligible. For example, in applying the

proposed technique to an N ×N matrix to distributed its computations over 2 workers, if

the number of cross dependencies are reduced by a factor of 10, then the computational

complexity of matrix multiplication would be reduced to 0.275N2 per worker, almost 1.8

times reduction from N2/2 in naive parallel implementation.

C.3 Extension of RePurpose to Convolutional Layers

Consider a convolutional layer whose input consists of cin channels of d-dimensional tensors

and its output has cout channels. Let h(z0, . . . , zd−1, cin, cout) be the kernel. For the sake of

simplicity in notations, we ignore strides and dilation in convolution operator. Hence, the
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output would be

O(x0, . . . , xd−1, k) =

cin∑
l=1

∑
z0,...,zd−1

h(z0, . . . , zd−1, l, k) I(x0 + z0, . . . , xd−1 + zd−1, l),

where I(·) is the input d-dimensional tensor with cin channels and O(·) is the output tensor.

Note that due to the nature of the convolution operator, it is not possible to rearrange the

neurons within each channel (e.g., changing locations of pixels in images). However, we

propose to change the order of the channels. Note that the convolution can be rewritten as

Ok(x0, . . . , xd−1) =

cin∑
l=1

hl,k ∗ Il (x0, . . . , xd−1),

where hl,k(· · · ) = h(· · · , l, k) is the kernel connecting input channel l to output channel

k, Il(·) is the l-th channel of the input tensor, and Ok(·) is the k-th output channel. Now,

similar to (6.4), we can define the cost of assigning channel i to the j-th worker as follows:

Cji = min
{ĥl,i}

cin∑
l=1

‖hl,i − ĥl,i‖2
F + η1

cin∑
l=1

I
(
ĥl,i 6= 0

)
+ η2

∑
l:l /∈Cin(j)

I
(
ĥl,i 6= 0

)
, (C.1)

where Cin(j) is the set of input channels located at the j-th worker, and I(z) = 1 if z is true,

and is 0, otherwise. Note that for the convolutional layers, we treat the individual filters as a

whole, and the entire channel filter may be set to zero, not the individual coefficients. The

solution of (C.1) is given by hard-thresholding,

ĥl,i =

 0 ‖hl,i‖2
F ≤ η

hl,i o.w.
(C.2)

where η = η1 if l ∈ Cin(j) and η = η1 + η2, otherwise.

With the new assignment cost, RePurpose for convolutional layers is simply given as in

Alg. 3.
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APPENDIX D

PROOFS

D.1 Proof of Lemma 1

Let e = αg + u−Q1(αg + u) and r = s− u− α¯̃g. Then,

ĝi = ¯̃gi + α(ri −Q2(ri)).

Since ¯̃gi = gi + zi, it can be shown that

ri −Q2(ri) = αzi − ei −Q2(αzi − ei).

Therefore,

ĝi = ¯̃gi + α(αzi − ei)− αQ2(αzi − ei).

The correct decoding occurs when Q2(αzi − ei) = 0. Hence, the probability of correct

recovery would be 1− p where

p = Pr

(
|αz + u| > ∆2

2

)
, u ∼ U [−∆1/2,∆1/2].

In that case,

ĝi = gi − (αei + (1− α2)zi).

Since ei ∼ U [−∆1/2,∆1/2] and zi are independent from each other and from gi, simple

calculations show that

E
[
(g̃i − gi)2

]
= α2 ∆2

1

12
+ (1− α2)2σ2

z .
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D.2 Proof of Lemma 3

–First assume that x and δ are independent random variables.

Unbiasedness. To prove the unbiasedness of the ISGQ, we note that for independent

signals x and δ, δ̃ and x̃ would be independent as well. Since the individual quantizers are

unbiased,

E[G̃] =
1

L
E
[
∆̃TX̃

]
=

1

L
E
[
∆̃T
]
E[X̃] (D.1)

=
1

L
E
[
∆T
]
E[X] =

1

L
E
[
∆TX

]
= E[G]. (D.2)

Therefore, G̃ is an unbiased stochastic gradient.

Bounded-Variance. Consider an arbitrary element g = Gi,j and the corresponding

forward and backward signals x = (Xj,.)
T and δ = (∆i,.)

T. Recall that the quantizers are

designed such that

E
[
x̃T(x− x̃)

]
= 0. ⇒ E

[
‖x̃‖2

]
= E

[
x̃Tx

] (a)

≤
√

E[‖x̃‖2] E[‖x‖2],

where (a) is because of the Cauchy-Schwartz inequality. This implies that

E
[
‖x̃‖2

]
≤ E

[
‖x‖2

]
. (D.3)

Similarly, E
[
‖δ̃‖2

]
≤ E[‖δ‖2]. Therefore,

E
[
g̃2
]

=
1

L2
E
[
(δ̃Tx̃)2

] (b)

≤ 1

L2
E
[
‖δ̃‖2 ‖x̃2‖2

]
(c)
=

1

L2
E
[
‖δ̃‖2

]
E
[
‖x̃2‖2

]
(d)

≤ E
[
‖δ‖2

]
E
[
‖x‖2

] (e)
= E

[
‖δ‖2 ‖x‖2

]
,

where (b) is due to the Cauchy-Schwartz inequality |δ̃Tx̃| ≤ ‖δ̃‖ ‖x̃2‖, and (c) and (e) are
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because of the independence of the signals and (d) is due to (D.3). By the assumption, the

signals have bounded joint second moment, i.e., E[‖x‖2‖δ‖2] < ∞. Therefore, E[g̃2] is

bounded. Since g̃ is unbiased, we conclude that its variance is also bounded.

Performance of One-Bit Indirect Quantizer. Here, we examine properties of 1-bit

Naı̈ve ISGQ when x and δ follow Normal or Folded-Normal distributions. Finding the

optimum quantizers is based on verifying the Lloyd-Max optimality conditions of a 1-bit

quantizer [117]. For a random variable u ∼ p(u), the optimum 1-bit quantizer is given by

Q(u) =

 c0 u ≤ τ

c1 u > τ
,

where the optimality conditions imply that c0 = E[u|u ≤ τ ], c1 = E[u|u > τ ] and τ =

(c0 + c1)/2. E.g., for Normal random variables N (0, 1), τ = 0 and c1 = −c0 =
√

2/π.

Using the optimality conditions for the individual quantizers of x and δ for Normal and

Folded-Normal distributions and the independence of x and δ, it can be easily verified that

1. If xk’s and δk’s are i.i.d. Normal random variables, xk ∼ N (0, σ2
x) and δk ∼ N (0, σ2

d),

then E[(g − g̃)2] = σ2

L
(1− 4

π2 ), where σ = σx σd.

2. If xk’s have Folded Normal distribution, xk ∼ FN (0, σ2
x), and δk’s are Normal,

δk ∼ N (0, σ2
d), then E[(g − g̃)2] = σ2

L
(1− 1.96

π
), where σ = σxσd.

Simple calculations show that for L = 1 the optimum quantizer directly designed for g

has the same MSE as the indirect quantizer. However, as L→ +∞, central limit theorem

implies that g converges in distribution to a Gaussian random variable with mean 0 and

variance σ2/L. The MSE of the optimum 1-bit quantizer for this Normal random variable is

given by σ2

L
(1− 2/π). Comparing the MSE of the optimum direct quantizer and the naı̈ve

indirect quantizer when x follows a Folded-Normal distribution and δ is Normal, reveals

that the difference varies between 0 and 4%.

– Now assume that x and δ are correlated random variables. In deterministic quantiza-

tion, it is well-known that the quantization noise is correlated with the input, i.e., ex = x− x̃
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and x are correlated. Since x and δ are not independent, ex and δ are correlated and E
[
eTxδ

]
would not necessarily vanish. Similar argument shows that E[g̃ − g] is not zero in general

and hence naı̈ve ISGQ for correlated signals is not necessarily unbiased.

As an example, consider correlated normal signals; xk ∼ N (0, 1), δk ∼ N (0, 1) and

E[xkδk] = ρ. Hence, the optimum one-bit quantizer for x is given by

x̃ =


√

2/π x ≥ 0

−
√

2/π x < 0
.

Computing Bias. Due to the structure of the individual quantizers, it can be easily verified

that

E
[
δ̃x̃
]

=
2

π

(
P(x ≥ 0, δ ≥ 0) + P(x < 0, δ < 0)

− P(x < 0, δ ≥ 0)− P(x ≥ 0, δ < 0)
)
.

Since (x, δ) are jointly Gaussian with correlation ρ, It can be easily verified that

P(x ≥ 0, δ ≥ 0) + P(x < 0, δ < 0) = 2

∫ +∞

0

p(x)Φ(
ρx√

1− ρ2
) dx,

P(x < 0, δ ≥ 0) + P(x ≥ 0, δ < 0) = 2

∫ +∞

0

p(x)
(
1− Φ(

ρx√
1− ρ2

)
)
dx,

where p(x) and Φ(·) are the Normal p.d.f. and c.d.f. of x, respectively. Therefore,

E[g̃] = E
[
δ̃x̃
]

=
2

π

(
4

∫ +∞

0

p(x)Φ(
ρx√

1− ρ2
) dx− 1

)
=

4

π2
arcsin(ρ).

On the other hand, E[g] = ρ. Therefore,

E[g̃ − g] =
4

π2
arcsin(ρ)− ρ.
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D.3 Proof of Theorem 4

Unbiasedness. First, we note that

E[G̃] =
1

L
E
[
∆̃X̃T

]
=

1

L
E
[
(∆− κδEδ)(X − κxEx)

T
]
,

whereEx = (X − X̃)/κx andEδ = (∆− ∆̃)/κδ are the scaled quantization noises. Since

E[Ex] = 0, E[Eδ] = 0 and they are independent from other variables,

E[G̃] =
1

L

(
E
[
∆XT

]
− E[κx∆]E

[
ET
x

]
− E[Eδ]E

[
κδX

T
]

+ E[κδκx]E
[
EδE

T
x

])
= E[G].

Variance. To compute the variance, we note that

G̃−∇WJ = G̃−G+G−∇WJ

=
1

L

(
κδκxEδE

T
x − κx∆ET

x − κδEδX
T
)

+
(
G−∇WJ

)
.

Since the quantization noises are independent and zero-mean,

E
[
‖G̃−∇WJ ‖2

F

]
=

1

L2
E
[∥∥κδκxEδE

T
x − κx∆ET

x − κδEδX
T
∥∥2

F

]
+ E

[
‖G−∇WJ ‖2

F

]
.

Expanding the first term of the RHS and using the fact entries of Ex and Eδ are uniformly

distributed over (−1/2, 1/2), independent ofX and ∆, we find that

E
[
‖G̃−G‖2

F

]
=

1

L2

[
E
[
‖κδκxEδE

T
x ‖2

F

]
+ E

[
‖κx∆ET

x ‖2
F

]
+ E

[
‖κδEδX

T‖2
F

]]
=

1

L2

[mnL
122

E
[
(κxκδ)

2
]

+
n

12
E
[
κ2
x‖∆‖2

F

]
+
m

12
E
[
κ2
δ‖X‖2

F

]]
(D.4)
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Using the facts that ‖X‖2
F ≤ nL‖X‖2

∞, κx = ‖X‖∞
Kx

and similar points for ∆, we conclude

that

E
[
‖G̃−G‖2

F

]
≤ 1

L2

[ mnL

122

1

K2
xK

2
d

E
[
‖X‖2

∞‖∆‖2
∞
]
+

n

12

mL

K2
x

E
[
‖X‖2

∞‖∆‖2
∞
]

+
m

12

nL

K2
d

E
[
‖X‖2

∞‖∆‖2
∞
]]

=
mn

L
γ E
[
‖X‖2

∞‖∆‖2
∞
]
,

where γ = 1
144K2

xK
2
d

+ 1
12K2

x
+ 1

12K2
d

. This completes the proof of the first part of the theorem.

For the special case thatX and ∆ are independent Normal random variables, the bound

can be improved further by considering the individual terms as follows:

E
[
‖X‖2

∞‖∆‖2
∞
]

= E
[
‖X‖2

∞
]
E
[
‖∆‖2

∞
]

E
[
‖X‖2

F‖∆‖2
∞
]

= nLσ2
x E
[
‖∆‖2

∞
]

E
[
‖X‖2

∞‖∆‖2
F

]
= mLσ2

δ E
[
‖X‖2

∞
]
.

On the other hand,

E
[
‖X‖2

∞
]
≤ 4σ2

x ln
(√

2nL
)
,

E
[
‖∆‖2

∞
]
≤ 4σ2

δ ln
(√

2mL
)
.

By substituting the terms, we obtain the desired result.

D.4 Proof of Theorem 5

First, we note that as a result of Hölder inequality, for all 0 < r < s

E[‖X‖r] ≤
(
E[‖X‖s]

)r/s
,

111



which in conjunction with assumption A3 implies that the moments E
[
‖G̃−G‖kF

]
are

bounded for k ≤ 4. Further, note that using Cauchy-Schwartz inequality, we conclude that

E
[
‖G‖kF

]
is also bounded for k ≤ 4. It can be easily verified that if the above assumptions

are satisfied, then the conditions of [98, §5.1] are satisfied and the learning algorithm

converges to a local extremum almost surely.

D.5 Proof of Lemma 6

Recall that T = 1√
k
HR. Hence,

TT T =
1

k
HRRTHT (a)

=
1

k
HHT (b)

=
n

k
I,

where (a) is due to the fact thatR = diag(r) and r2
i = 1, and (b) is a result ofH being any

k rows of Hadamard matrixHn satisfyingHnH
T
n = nI .

For the second property,

E
[
T TT

]
=

1

k
E
[
RHHTRT

]
.

Now, consider an arbitrary (i, j)-th element,

[RTHTHR]i,j = ri rj
[
HTH

]
i,j
.

On the other hand, E[ri rj] = 1 if i = j and 0 if i 6= j. Moreover, since Hi,l = ±1,[
HTH

]
i,i

=
∑k

l=1 (Hi,l)
2 = k. Therefore,

E
[
[RTHTHR]i,j

]
=

 0 i 6= j

1 i = j
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D.6 Proof of Theorem 7

For a fixed g, we note that the randomness in ĝ stems from the random mixing matrix T

and dither signal u, which are independent of each other and g. Moreover, the quantization

noise of v can be written as

v̂ = v − %ε = Tg − %ε, (D.5)

where as a result of Thm. 18, ε is an independent random variable and ε ∼ U(−1/2, 1/2).1

Therefore, the quantization noise can be decomposed as

e = g − ĝ =

eg︷ ︸︸ ︷
(I − T TT )g+

ed︷ ︸︸ ︷
%T Tε . (D.6)

Unbiasedness.

E[eg] = (I − E
[
T TT

]
)g

(a)
= 0,

E[ed] = E
[
%T Tε

] (b)
= E

[
%T T

]
E[ε] = 0,

where (a) is due to E
[
T TT

]
= I (Lemma 6) and (b) is because of independence of ε from

%T and E[ε] = 0. This proves the unbiasedness of QCS.

Variance. Note that since eg is a function of only T and g, it is independent of ε and

E
[
eTg ed

]
= E

[
%eTgT

T
]
E[ε] = 0.

Therefore,

E
[
‖e‖2

2

]
= E

[
‖eg‖2

2

]
+ E

[
‖ed‖2

2

]
1Note that this is not the case for ordinary quantization or stochastic quantization of [15].
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For an arbitrary g, note that

E
[
‖Tg‖2

2

]
= gT E

[
T TT

]
g = gTIg = ‖g‖2

2

E
[
‖T TTg‖2

2

]
= E

[
gTT TTT TTg

]
=
n

k
E
[
gTT TTg

]
=
n

k
‖g‖2

2.

Therefore,

E
[
‖eg‖2

2

]
= E

[
‖(I − T TT )g‖2

2

]
= E

[
‖T TTg‖2

2

]
+ ‖g‖2

2 − 2E
[
‖Tg‖2

2

]
= (

n

k
− 1)‖g‖2

2.

On the other hand,

E
[
‖ed‖2

2

]
= E

[
‖%T Tε‖2

2

]
= ET

[
Eε
[
‖%T Tε‖2

2|T
]]

= ET
[
%2 Eε

[
‖T Tε‖2

2|T
]] (c)

= ET
[
%2‖T ‖2

F

12

]
(d)
=

n

12Q2
ET
[
‖Tg‖2

∞
]
,

where (c) is due to ε being i.i.d. U(−1/2, 1/2) and (d) is because of ‖T ‖2
F = n and definition

of % = ‖Tg‖∞/Q.

To bound ET [‖Tg‖2
∞] we need the following lemma.

Lemma 20. Let a ∈ Rn be fixed and r be an i.i.d. Rademacher random vector. Then for

all 0 ≤ λ < 1/(2‖a‖2
2),

Er
[
eλ(aTr)2

]
≤ 1√

1− 2λ‖a‖2
2

(D.7)

Proof. Let ω ∼ N (0, 1) be an independent normal random variable. Note that for a fixed r,

eλ(aTr)2 = Eω
[
exp

(√
2λ(aTr)ω

)]
.
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Therefore,

Er
[
eλ(aTr)2

]
= Er

[
Eω
[
exp

(√
2λ(aTr)ω

)
|r
]]

= Eω
[
Er
[
exp

(√
2λ(aTr)ω

)
|ω
]]

(e)
= Eω

[
n∏
i=1

Eri
[
exp

(√
2λωairi

)
|ω
]]

(f)

≤ Eω

[
n∏
i=1

exp
(
λω2a2

i

)]

= Eω
[
exp

(
λ‖a‖2

2ω
2
)]

=
1√

1− 2λ‖a‖2
2

where (e) is because of independence of ri’s, (f) is from Hoeffding’s lemma, �

Using the above lemma, for v = Tg and arbitrary λ > 0,

E
[
‖v‖2

∞
]
≤ 1

λ
E

[
log

(
k∑
i=1

exp
(
λv2

i

))]

≤ 1

λ
logE

[
k∑
i=1

exp
(
λv2

i

)]

=
1

λ
log

(
k∑
i=1

E
[
exp(λv2

i )
])

Note that for an arbitrary fixed i, ζj := rjHi,j would be i.i.d. Rademacher random variables

and vi =
∑

j(
gj√
k
)ζj . Therefore, by Lemma 20

E
[
exp(λv2

i )
]
≤ 1√

1− 2λ‖g‖2
2/k

,

and

E
[
‖v‖2

∞
]
≤ 1

λ
log

(
k√

1− 2λ‖g‖2
2/k

)
.
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For k ≥ 2, let λ = k
2‖g‖22

(1− k−δ). Therefore,

1

λ
log

(
k√

1− 2λ‖g‖2
2/k

)
=

2‖g‖2
2

k

1

1− k−δ
log(k1+δ/2)

= ‖g‖2
2

log(k)

k

2 + δ

1− k−δ
. (D.8)

Setting δ = 1, results in the bound

E
[
‖v‖2

∞
]
≤ 3‖g‖2

2

log(k)

k − 1
. (D.9)

Summarizing the above results for k ≥ 2, we have

E
[
‖ĝ − g‖2

2

]
≤
(
n

k
− 1 +

n

4Q2

log(k)

k − 1

)
‖g‖2

2. (D.10)

For k = 1, note that since v is a scalar, by the definition of the used dithered quantizer

sending magnitude of v and its sign results in v̂ = v and ed = 0. Therefore,

E
[
‖ĝ − g‖2

2

]
= (n− 1)‖g‖2

2. (D.11)

D.7 Proof of Lemma 8

For ĝ = αT Tv̂, using the same argument as for the unbiased QCS, it can be easily shown

that

E
[
‖g − ĝ‖2

2

]
= E

[
‖g − αT TTg + α%T Tε‖2

2

]
= ‖g‖2

2(1− 2α + α2n

k
) + α2 n

12Q2
E
[
‖Tg‖2

∞
]

≤ ‖g‖2
2

(
1− 2α + α2n

k
+ α2 n

4Q2

log(k)

k − 1

)
= ‖g‖2

2

(
1− 2α + α2(γ + 1)

)
,
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where γ = n
k

+ n
4Q2

log(k)
k−1

for k ≥ 2, and γ = n− 1 for k = 1.

Minimizing the upper bound of the error results in

α =
1

1 + γ
,

and by substituting α, the minimum mean squared error is given by

E
[
‖g − ĝ‖2

2

]
≤ ‖g‖2

2

γ

1 + γ

D.8 Proof of Lemma 9

Recall that et = zt − ẑt = (I − αT T
t Tt)zt − α%T T

t ε, where α = 1 for Unbiased-QCS and

α = 1/(1 + γ) for MMSE-QCS, and ε is the scaled quantization noise of Tzt. Therefore,

E
[
‖rt+1‖2

2

]
= (1− β)2 E

[
‖rt‖2

2

]
+ E

[
‖et‖2

2

]
+ 2(1− β)E

[
rTt et

]
.

On the other hand,

E
[
rTt et

]
= E

[
rTt (I − αT T

t Tt)zt
]
− αE

[
rTt %T

T
t ε
]

= E
[
ET
[
rTt (I − αT T

t Tt)zt|rt, · · ·
]]

− αE
[
Eε
[
rTt %T

T
t ε|Tt, rt, · · ·

]]
(a)
= E

[
ET
[
rTt (I − αT T

t Tt)zt|rt, · · ·
]]

(b)
= (1− α)E

[
rTt zt

]
,

where (a) is because of ε being an independent zero-mean random vector and (b) due to

ET
[
T TT

]
= I .
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Therefore,

E
[
‖rt+1‖2

2

]
= (1− β)2 E

[
‖rt‖2

2

]
+ E

[
‖et‖2

2

]
+ 2(1− β)(1− α)E

[
rTt zt

]
.

First, we consider the Unbiased-QCS.

Lemma 21. In Unbiased-QCS with error-feedback, residual signal and the stochastic

gradients are uncorrelated, i.e., ∀t, τ : E
[
gTt rτ

]
= 0.

Proof. The proof is based on induction. For τ = 0, since rτ = 0, the claim holds. Assume

that the claim is true for τ − 1.

E
[
gTt rτ

]
= E

[
gTt ((1− β)rτ−1 + eτ )

]
= (1− β)E

[
gTt rτ−1

]
+ E

[
gTt eτ

]
= E

[
gTt ((I − T T

τ Tτ )zτ + %T T
τ ετ )

]
= E

[
ETτ
[
gTt (I − T T

τ Tτ )zτ
∣∣gt, zτ]]+

E
[
Eετ
[
%gTt T

T
τ ετ

∣∣gt,Tτ ]] = 0.

�

Since in unbiased QCS, α = 1, we have

E
[
‖rt+1‖2

2

]
= (1− β)2 E

[
‖rt‖2

2

]
+ E

[
‖et‖2

2

]
(c)

≤ (1− β)2 E
[
‖rt‖2

2

]
+ γ E

[
‖zt‖2

2

]
= (1− β)2 E

[
‖rt‖2

2

]
+ γ
(
E
[
‖gt + βrt‖2

2

])
(d)
=
(
(1− β)2 + β2γ)E

[
‖rt‖2

2

]
+ γ E

[
‖gt‖2

2

]
(e)

≤
(
(1− β)2 + β2γ)E

[
‖rt‖2

2

]
+ γB (D.12)
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where (c) is due to the fact that for all z, E[‖z − ẑ‖2
2] ≤ γ‖z‖2

2, (d) is from Lemma 21 and

(e) is from boundedness of g. The recursive equation (D.12) with r0 = 0 implies that

E
[
‖rt‖2

2

]
≤ γ

1−
(
(1− β)2 + β2γ

)B, (D.13)

for all β that β < 1 and (1− β)2 + β2γ < 1, hence, β < min(1, 2/(1 + γ)).

For MMSE-QCS, the stochastic gradients and residual signal might be correlated. How-

ever, for an arbitrary c > 0, their correlation can be bounded as

0 ≤ E
[
‖ 1√

c
gt ±

√
crτ‖2

2

]
=

1

c
E
[
‖gt‖2

2

]
+ cE

[
‖rτ‖2

2

]
± 2E

[
gTt rτ

]
⇒ 2

∣∣E[gTt rτ]∣∣ ≤ 1

c
E
[
‖gt‖2

2

]
+ cE

[
‖rτ‖2

2

]
.

Therefore, noting that E[‖e‖2
2] ≤ (1− α)‖z‖2

2 and E[‖gt‖2
2] ≤ B,

E
[
‖rt+1‖2

2

]
= (1− β)2 E

[
‖rt‖2

2

]
+ E

[
‖et‖2

2

]
+ 2(1− β)(1− α)E

[
rTt zt

]
≤ (1− β)2 E

[
‖rt‖2

2

]
+ (1− α)E

[
‖gt + βrt‖2

2

]
+

2(1− β)(1− α)E
[
rTt (gt + βrt)

]
≤
(
1− αβ(2− β)

)
E
[
‖rt‖2

2

]
+

(1− α)(cE
[
‖rt‖2

2

]
+

1

c
B) + (1− α)B

=
(
1− αβ(2− β) + c(1− α)

)
E
[
‖rt‖2

2

]
+

(1− α)(1 +
1

c
)B.
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Therefore, if
∣∣1− αβ(2− β) + c(1− α)

∣∣ < 1,

E
[
‖rt‖2

2

]
≤ 1 + 1/c

αβ(2− β)− c(1− α)
(1− α)B. (D.14)

Minimizing w.r.t. c and substituting α = 1/(1 + γ) results in

E
[
‖rt‖2

2

]
≤ 1− α(√

1− α(1− β)2 −
√

1− α
)2B (D.15)

=
γ(√

γ + 1− (1− β)2 −√γ
)2B. (D.16)

Note that if the SGs have bounded variance, i.e., E[‖g −∇f‖2
2] ≤ σ2, a similar approach

can be used to bound E[‖rt‖2
2] based on the σ2 and the weighted average of ‖∇f(wt−i)‖2

2

for i = 0, . . . , t. This is specially helpful when analyzing the convergence of the training

algorithm with error feedback under the assumption of bounded variance SG.

D.9 Proof of Lemma 10

The proof follows the same line of argument as for ordinary SGD which is repeated here for

the sake of completeness.

Recall that for Lipschitz-smooth function f(·), for arbitrary w and δ,

f(w + δ) ≤ f(w) + δT∇f(w) +
L

2
‖δ‖2

2.

First, we consider Unbiased-QCS. Tt the t-th iteration of training,wt+1 = wt − µĝt, where

E[ĝt] = ∇f(wt) and E[‖ĝt‖2
2] ≤ (1 + γ)E[‖g‖2

2] ≤ (1 + γ)B. Hence,

E[f(wt+1)] ≤ f(wt) + 〈∇f(wt),E[wt+1 −wt]〉

+
L

2
E
[
‖wt+1 −wt‖2

2

]
≤ f(wt)− µ‖∇f(wt)‖2

2 +
L

2
µ2(1 + γ)B.
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Rearranging terms, taking expectation and summing from t = 0 to T − 1, results in

1

T

T−1∑
t=0

E
[
‖∇f(wt)‖2

2

]
≤ f(w0)− E[f(wT )]

Tµ
+
L

2
µ(1 + γ)B

≤ f(w0)− f ∗

Tµ
+
L

2
µ(1 + γ)B.

Setting µ = 1/
√
T , results in

1

T

T−1∑
t=0

E
[
‖∇f(wt)‖2

2

]
≤
f(w0)− f ∗ + L

2
(1 + γ)B

√
T

.

Note that in the case that the stochastic gradients have bounded variance2, i.e., E[‖g −∇f‖2
2] ≤

σ2 , E[‖ĝt‖2
2] ≤ (1 + γ)E[‖g‖2

2] ≤ (1 + γ)(σ2 + ‖∇f‖2
2) and we can modify the above

argument as follows to bound the convergence rate,

E[f(wt+1)]− f(wt) ≤+ 〈∇f(wt),E[wt+1 −wt]〉

+
L

2
E
[
‖wt+1 −wt‖2

2

]
≤ −µ‖∇f(wt)‖2

2 +
L

2
µ2(1 + γ)(σ2 + ‖∇f(wt)‖2

2)

= −(µ− L

2
µ2(1 + γ))‖∇f(wt)‖2

2 +
L

2
µ2(1 + γ)σ2.

Following same argument as before,

1

T

T−1∑
t=0

E
[
‖∇f(wt)‖2

2

]
≤ 2(f(w0)− f ∗)
T (2µ− Lµ2(1 + γ))

+
Lµ2(1 + γ)

2µ− Lµ2(γ + 1)
σ2.

It can be verified that if T > 4L2(γ+1)2, we can find µ ≤ 2/
√
T such that 2µ−Lµ2(γ+1) =

2In this case, it is not necessary to assume that the cost function has bounded gradient everywhere.
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2/
√
T . This simplifies the above equation to

1

T

T−1∑
t=0

E
[
‖∇f(wt)‖2

2

]
≤ f(w0)− f ∗√

T
+

2L(1 + γ)√
T

σ2.

The analysis for MMSE-QCS is straightforward. Note that ĝmmse = 1
γ+1
ĝu, where

ĝmmse is the MMSE-QCS quantized SG and ĝu is the output of Unbiased-QCS. Therefore,

training with MMSE-QCS and step-size µ would be the same as using Unbiased-QCS with

step-size µ/(γ + 1).

Remark 13. Note that since Unbiased-QCS has bounded variance and is unbiased, the

compressed SG will be stochastic gradient itself with bounded variance. Hence, majority of

the results can be readily applied to prove the convergence of Unbiased-QCS and MMSE-

QCS under different conditions such as [98, 119].

D.10 Proof of Lemma 11

The proof is based on the ideas from [28] and follows the similar arguments with slight

modifications, which is repeated here for the sake of completeness.

Let w̃t = wt−µrt. Note that since by Lemma 9 the residue signal has bounded variance,

w̃t would be bounded. It can be easily verified that w̃t+1 = w̃t − µgt. Hence, following

similar argument as in [28], for arbitrary ρ > 0

E[f(w̃t+1)]− f(w̃t)

≤ L

2
E
[
‖w̃t+1 − w̃t‖2

2

]
+ 〈∇f(w̃t),E[w̃t+1 − w̃t]〉

≤ L

2
µ2B − µ(1− ρ)‖∇f(wt)‖2

2 +
1

ρ
L2µ3 E

[
‖rt‖2

2

]
.

On the other hand, from Lemma 9, the residue is bounded as E[‖rt‖2
2] ≤ ηB where η is a

constant depending on the β (weight of error feedback) and γ, according to (4.15) or (4.16)
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of the main paper for Unbiased-QCS and MMSE-QCS. Therefore,

µ(1− ρ)‖∇f(wt)‖2
2 ≤

(L
2
µ2 +

1

ρ
L2µ3η

)
B + f(w̃t)− E[f(w̃t+1)].

Taking expectation, rearranging terms and noting that w̃0 = w0 and E[f(wT )] ≥ f ∗, we

conclude that for 0 < ρ < 1,

1

T

T−1∑
t=0

E
[
‖∇f(wt)‖2

2

]
≤ f(w0)− f ∗

Tµ(1− ρ)
+

LB

1− ρ
(µ

2
+
Lηµ2

ρ

)
.

Setting ρ = 0.5, gives the desired result.

For tighter analysis, let µ and ρ be such that µ(1 − ρ) = 1/
√
T and µ

1−ρ = 1+ε√
T

for

arbitrary ε > 0, i.e.,

µ =

√
1 + ε√
T

, 1− ρ =
1√

1 + ε
.

Therefore,

min
t

E
[
‖∇f(wt)‖2

2

]
≤ 1

T

T−1∑
t=0

E
[
‖∇f(wt)‖2

2

]
≤
f(w0)− f ∗ + L

2
B

√
T

+ L2B
(1 + ε)2

√
1 + ε− 1

η

T
.

D.11 Proof of Lemma 15

The solution of

min
x
‖y − x‖2

2 + η1‖x‖0 + η2‖x\j‖0, (D.17)

is given by element-wise hard-thresholding y, i.e.,

xn =

 0 if |yn| ≤
√
η

yn o.w.
(D.18)

where η = η1 or η1 + η2, depending on whether neuron n is in y\j or not.
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Proof. Let Ω be the indexes in the j-th block. Therefore, x\j consists of elements of x that

are not in the set Ω, and

‖y − x‖2
2 + η1‖x‖0 + η2‖x\j‖0 =

∑
n∈Ω

(yn − xn)2 + η1I(xn 6= 0)

+
∑
n/∈Ω

(yn − xn)2 + (η1 + η2)I(xn 6= 0),

where I(z) = 1 if z is true and is 0 otherwise. Therefore, the minimization in (D.17) can

be cast as separate minimizations over scalars xn. For example, if n ∈ Ω, there are two

possibilities for xn,

 xn = 0 ⇒ cost = y2
n

xn 6= 0 ⇒ cost = minxn 6=0(yn − xn)2 + η1 = η1

Hence, the solution would be

n ∈ Ω : x∗n =

 0 if |yn| ≤
√
η1

yn o.w.

Similarly,

n /∈ Ω : x∗n =

 0 if |yn| ≤
√
η1 + η2

yn o.w.

�

D.12 Proof of Theorem 16

First, we note that for any permutation matrix Π, ‖Ŵ −WΠT‖2
F = ‖ŴΠ −W ‖2

F ,

‖Ŵ ‖0 = ‖ŴΠ‖0, and ‖M � Ŵ ‖0 = ‖(MΠ) � (ŴΠ)‖0. Therefore, by defining
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X = ŴΠ, the optimization (6.6) can be rewritten as

min
Π

min
X
‖X −W ‖2

F + η1‖X‖0 + η2‖(MΠ)�X‖0

= min
Π

min
X

∑
i,k: Πk,i=1

‖xi −wi‖2
2 + η1‖xi‖0 + η2‖mk � xi‖0,

= min
Π

∑
i,k: Πk,i=1

min
xi
‖xi −wi‖2

2 + η1‖xi‖0 + η2‖mk � xi‖0.

On the other hand, recall thatM = 1−diag
(
1ι1×n1

, . . . ,1ι
P
×n

P

)
, and hence ifmk is from

the j-th sub-block, i.e., it corresponds to the j-th worker, the inner minimization would be

Cji = min
xi
‖xi −wi‖2

2 + η1‖xi‖0 + η2‖xi,\j‖0. (D.19)

By repeating the k-th row of matrix C whose elements are defined as (D.19) to construct

the new N ×N matrix C̃, we will have Cji = C̃ki. Therefore,

min
Ŵ ,Π

‖Ŵ −WΠT‖2
F + η1‖Ŵ ‖0 + η2‖M � Ŵ ‖0 = min

Π

∑
(i,k): Πk,i=1

C̃ki.

As a result, selecting the best neuron assignment boils down to choosing N elements from

C̃ such that from each row or column only one element is selected and the sum of the

selected values is minimum. This problem can be solved efficiently in polynomial time

using the Hungarian algorithm. [120, 121] solve the assignment algorithm with O(N3) time

complexity. Since the complexity of creating C̃ is at most O(N2), the total complexity of

Algorithm 1 would be O(N3).

D.13 Proof of Theorem 17

Let x(l) and x̂(l) be the signals in the original and modified neural network, corresponding to

the inputx. Note that Π(0) = I and the input to both networks are the same, x(1) = x̂(1) = x.

Let Π(l) and {Ŵ (l), b̂(l)} be the permutation matrix and parameters of the modified neural
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network, found via (6.3). Therefore, using x(l+1) = σ((W (l))Tx(l) + b(l)), for any arbitrary

layer l,

‖Π(l)x(l+1) − x̂(l+1)‖2

= ‖Π(l)σ((W (l))Tx(l) + b(l))− σ((Ŵ (l))Tx̂(l) + b̂(l))‖2

(a)
= ‖σ(Π(l)(W (l))Tx(l) + Π(l)b(l))− σ((Ŵ (l))Tx̂(l) + b̂(l))‖2

(b)

≤ ‖(Π(l)(W (l))Tx(l) + Π(l)b(l))− ((Ŵ (l))Tx̂(l) + b̂(l))‖2

(c)
= ‖Π(l)(W (l))Tx(l) − (Ŵ (l))Tx̂(l)‖2

= ‖
(
Π(l−1)W (l)(Π(l))T − Ŵ (l)

)T
x̂(l) +

(
W (l)(Π(l))T

)T(
(Π(l−1))Tx̂(l) − x(l)

)
‖2

≤ ‖
(
Π(l−1)W (l)(Π(l))T − Ŵ (l)

)T
x̂(l)‖2 + ‖

(
W (l)(Π(l))T

)T(
(Π(l−1))Tx̂(l) − x(l)

)
‖2

(d)

≤ ‖Π(l−1)W (l)(Π(l))T − Ŵ (l)‖F ‖x̂(l)‖2 + ‖W (l)(Π(l))T‖F ‖(Π(l−1))Tx̂(l) − x(l)‖2

= ‖Ŵ (l) −Π(l−1)W (l)(Π(l))T‖F ‖x̂(l)‖2 + ‖W (l)‖F ‖x̂(l) −Π(l−1)x(l)‖2

(e)

≤ ε‖x̂(l)‖2 + τ‖Π(l−1)x(l) − x̂(l)‖2

≤ ε
(
‖x̂(l) −Π(l−1)x(l)‖2 + ‖Π(l−1)x(l)‖2

)
+ τ‖Π(l−1)x(l) − x̂(l)‖2

= (τ + ε)‖Π(l−1)x(l) − x̂(l)‖2 + ε‖x(l)‖2

≤ (τ + ε)‖Π(l−1)x(l) − x̂(l)‖2 + εB

where (a) is because Πσ(z) = σ(Πz) for arbitrary permutation Π and vector z, (b) is

because σ(·) is 1-Lipschitz, (c) is due to the fact that b̂(l) = Π(l)b(l), (d) is from ‖Az‖2 ≤

‖A‖2‖z‖2 ≤ ‖A‖F‖z‖2 for arbitrary A and z, and (e) is by assumption A2 and (6.3).

Therefore,

‖Π(l)x(l+1) − x̂(l+1)‖2 ≤ (τ + ε)‖Π(l−1)x(l) − x̂(l)‖2 + εB. (D.20)
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Since x = Π(0)x(1) = x̂(1), (D.20) implies that

‖Π(l)x(l+1) − x̂(l+1)‖2 ≤
( l∑
k=1

(τ + ε)l−k
)
εB =

(τ + ε)l − 1

τ + ε− 1
εB. (D.21)

Specifically, for the output signals, y = xL+1 and ŷ = x̂(L+1), it implies that

‖ŷ −Πy‖2 ≤ ε
(τ + ε)L − 1

τ + ε− 1
B.
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M. I. Jordan, and M. Jaggi, “CoCoA: A General Framework for Communication-
Efficient Distributed Optimization,” Journal of Machine Learning Research, vol. 18,
pp. 1–49, 2016. arXiv: 1611.02189.

[6] W. Wang, M. Zhang, G. Chen, H. V. Jagadish, B. C. Ooi, and K.-L. Tan, “Database
Meets Deep Learning: Challenges and Opportunities,” SIGMOD Rec., vol. 45, no. 2,
pp. 17–22, Sep. 2016.

[7] W. Wang, G. Chen, H. Chen, T. T. A. Dinh, J. Gao, B. C. Ooi, K.-L. Tan, S. Wang,
and M. Zhang, “Deep Learning at Scale and at Ease,” ACM Trans. Multimedia
Comput. Commun. Appl., vol. 12, no. 4s, 69:1–69:25, Nov. 2016.

[8] S. Gupta, W. Zhang, and F. Wang, “Model accuracy and runtime tradeoff in dis-
tributed deep learning: A systematic study,” in Data Mining (ICDM), 2016 IEEE
16th International Conference on, IEEE, 2016, pp. 171–180, ISBN: 9780999241103.
arXiv: arXiv:1509.04210v3.

[9] F. Seide, H. Fu, J. Droppo, G. Li, D. Yu, M. Stevenson, R. Winter, and B. Widrow, “1-
bit stochastic gradient descent and its application to data-parallel distributed training
of speech DNNs,” in Interspeech, 2014, pp. 1058–1062, ISBN: 9781510810587.

[10] N. Dryden, S. A. Jacobs, T. Moon, and B. Van Essen, “Communication quantization
for data-parallel training of deep neural networks,” in Proceedings of the Workshop

128

https://arxiv.org/abs/1611.02189
https://arxiv.org/abs/arXiv:1509.04210v3


on Machine Learning in High Performance Computing Environments, ser. MLHPC
’16, Salt Lake City, Utah: IEEE Press, 2016, pp. 1–8, ISBN: 978-1-5090-3882-4.

[11] C.-Y. Chen, J. Choi, D. Brand, A. Agrawal, W. Zhang, and K. Gopalakrishnan,
“AdaComp : Adaptive Residual Gradient Compression for Data-Parallel Distributed
Training,” Thirty-Second AAAI Conference on Artificial Intelligence, pp. 2827–2835,
2017. arXiv: 1712.02679.

[12] T. T. Doan, S. T. Maguluri, and J. Romberg, “Fast convergence rates of distributed
subgradient methods with adaptive quantization,” arXiv preprint arXiv:1810.13245,
2018.

[13] J. Bernstein, Y.-X. Wang, K. Azizzadenesheli, and A. Anandkumar, “SignSGD:
Compressed optimisation for non-convex problems,” in Proceedings of the 35th In-
ternational Conference on Machine Learning, ser. Proceedings of Machine Learning
Research, PMLR, 2018, pp. 560–569.
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