
CONTENTION-RESOLVING MODEL PREDICTIVE CONTROL FOR
COUPLED CONTROL SYSTEMS WITH SHARED RESOURCES

A Dissertation
Presented to

The Academic Faculty

By

Ningshi Yao

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Electrical and Computer Engineering

Georgia Institute of Technology

August 2020

Copyright c© Ningshi Yao 2020

CONTENTION-RESOLVING MODEL PREDICTIVE CONTROL FOR
COUPLED CONTROL SYSTEMS WITH SHARED RESOURCES

Approved by:

Dr. Fumin Zhang, Advisor
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Sam Coogan
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Enlu Zhou
School of Industrial and Systems
Engineering
Georgia Institute of Technology

Dr. Yorai Wardi
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Yue Wang
Department of Mechanical Engi-
neering
Clemson University

Date Approved: June 18, 2020

I dedicate this dissertation to my parents, Xu Yao and Shenglin Zheng who have been

supporting me spiritually throughout my life, and my adviser, Dr. Fumin Zhang who

guided me to pursue my dreams and finish my dissertation.

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my sincere and greatest appreciation to

people who have helped and supported me during my Ph.D study.

Foremost, I want to express my deepest gratitude to my advisor, Dr. Fumin Zhang,

for his support, patience and guidance. He provided me with an excellent atmosphere for

doing research, patiently corrected my writing, and financially supported my research. I

would never have been able to finish my dissertation without his guidance and support.

Besides my advisor, I would like to thank the rest of my thesis committee: Dr. Coogan,

Dr. Zhou, Dr. Wardi, and Dr. Wang for their encouragement, insightful comments, and

valuable suggestions.

I would like to thank my fellow lab members and my friends who provided great col-

laboration and assistance during my study.

Last but not the least, I would like to thank all the funding agencies who supported

the research work in this thesis, which are ONR grants N00014-19-1-2556, N00014-19-

1-2266 and N00014-16-1-2667; NSF grants OCE-1559475, CNS-1828678, and S&AS-

1849228; NRL grants N00173-17-1-G001 and N00173-19-P-1412 ; and NOAA grant

NA16NOS0120028 and China Scholarship Council.

iv

TABLE OF CONTENTS

Acknowledgments . iv

List of Figures . ix

Chapter 1: Introduction . 1

Chapter 2: Background . 6

2.1 Scheduling of Real-time Systems . 6

2.1.1 Real-time Systems . 6

2.1.2 Priority-based Scheduling Methods 7

2.1.3 Schedulablility Test for Real-time System 9

2.2 Scheduling and Control Co-design . 10

2.2.1 Networked Control Systems . 10

2.2.2 Traffic Intersection . 12

2.2.3 Human and Multi-robot Collaboration System 13

2.3 Model Predictive Control . 15

Chapter 3: Problem Formulation . 17

3.1 Problem Setup . 17

3.1.1 System Dynamics . 17

v

3.1.2 Task Characteristics . 18

3.2 Priority-based Scheduling . 19

3.3 Formulation of Model Predictive Control 22

Chapter 4: Significant Moment Analysis and Schedulability Test 26

4.1 Timing States . 27

4.2 Delay Prediction Using Timing Model . 30

4.3 Timing Model for Preemptive Network . 30

4.4 Summary of Constraints . 34

4.5 Schedulability Test Using Worst-case Condition 34

4.5.1 Worst-case Scenario Analysis . 35

4.5.2 Least Upper Bound of Utilization 46

Chapter 5: Contention-Resolving MPC Algorithm 51

5.1 Contention Detection . 51

5.2 Construction of Decision Tree . 54

5.3 Schedulability (Feasibility) Test . 55

5.3.1 Finite-time Window Schedulability Test 56

5.3.2 Infinite-time Window Schedulability Test 59

5.4 Branch Cost . 60

5.5 Costs for Search Algorithm . 62

5.6 Contention-resolving MPC Algorithm . 64

5.7 Proof of Optimality . 67

vi

Chapter 6: Application 1: Networked Control System 69

6.1 NCS Models . 69

6.1.1 Problem Formulation . 70

6.2 Timing Model for Non-preemptive Network 71

6.3 Simulation Results . 73

6.3.1 Preemptive Scheduling . 74

6.3.2 Non-preemptive Scheduling . 74

6.3.3 Control Performance . 75

Chapter 7: Application 2: Scheduling and Controlling Vehicles at a Traffic In-
tersection . 77

7.1 Intersection and Vehicle Model . 77

7.2 Intersection Scheduling . 78

7.3 Timing Model for Intersection Scheduling 80

7.4 Contention-resolving Model Predictive Control 82

7.4.1 Formulation of MPC . 82

7.4.2 Contention-Resolving MPC Algorithm 83

7.4.3 Analytical Solution of the Optimal Vehicle Control 85

7.5 Optimality of Contention-resolving MPC 87

7.6 Case Studies . 89

7.6.1 Contention-resolving MPC VS FCFS 89

7.6.2 Contention-resolving MPC VS HSF 91

7.6.3 Numerical Results Without the CIA Assumption 94

vii

Chapter 8: Application 3: Human and Multi-robot Collaboration System 98

8.1 Robot Performance and Human-to-robot Trust Models 99

8.2 Human Attention Scheduling . 100

8.2.1 Formulation of Model Predictive Control 101

8.2.2 Optimal Solution Without Considering Contention 102

8.3 Analytical Timing Model for Human-and-robot Collaboration System . . . 107

8.3.1 Timing Model for Human Attention Scheduling 108

8.4 Contention-Resolving MPC Algorithm . 111

8.4.1 Construction of Decision Tree . 111

8.4.2 Branch Cost . 112

8.4.3 Search Algorithm . 114

8.5 Simulation Results . 114

Chapter 9: Conclusion and Future Work . 117

9.1 Conclusion . 117

9.2 Future Work . 118

9.2.1 Critical time instants for Non-preemptive Systems 118

9.2.2 Multiple-lane and Multiple-intersection Scheduling 119

References . 130

Vita . 131

viii

LIST OF FIGURES

3.1 Three generated tasks of system i indexed by k − 1, k, and k + 1. 19

3.2 Illustration of scheduling three systems. The upper three sub-figures show
the task request times when contentions are not considered. The bottom
sub-figure shows the resource occupation time after priorities are assigned
to resolve the contention that occurs at time 0. 20

4.1 Illustration of the timing states. 28

4.2 Cases of scheduling two systems where system 1 has higher priority. Red
rectangles represent the time occupied by system 1 and blue rectangles rep-
resent the time occupied by system 2. 36

4.3 Cases of scheduling two systems where system 2 has higher priority. Red
rectangles represent the time occupied by system 1 and blue rectangles rep-
resent the time occupied by system 2. 42

4.4 Two cases of utility bounds. 46

5.1 Decision tree to solve the co-design problem for preemptive scheduling
within a finite time window. 54

5.2 Illustration of the schedulability test when constructing a branch (l, j) with
associated priority assignment Pm. 56

5.3 Illustration of branch cost along a path. The ending time of the colored
rectangles with diagonal lines represent the task completion time γi. 61

ix

5.4 Illustration of the subtree constructed by the proposed search algorithm.
The blue circle represents the root v0 and the red circle represents the ter-
minal leaf. Green circles represent leaves in the frontier list. Solid black
arrows represent branches generated by the algorithm and dashed green ar-
rows represent the estimate cost Ĉh(vl). The red arrows represent the path
with lowest cost. 67

6.1 Networked system architecture . 70

6.2 Communication network occupation of scheduling four scalar systems un-
der preemptive scheduling. The occupation value 1 means the system is
occupying the network, 0 means the system does not require access to the
network, and 0.5 means the system access request is delayed by contention.
Black crosses mark times when a contention occurs. 75

6.3 Communication network occupation of scheduling four scalar systems un-
der non-preemptive scheduling discipline. Black crosses mark times when
a contention occurs. 76

6.4 Outputs of four scalar systems. The red solid lines show the output under
optimal priority assignment, and the blue solid lines show the outputs under
EDF. The outputs under RMS are the same as EDF. The dashed lines show
the control ui computed by the MPC in each case. 76

7.1 Example of a one lane intersection. Vehicles follow directions indicated by
arrows. 78

7.2 Illustration of further delaying the arrival of a vehicle. 88

7.3 Intersection occupation for scheduling five vehicles. The y axis value 1
means that the vehicle is occupying the intersection, 0 means that the vehi-
cle has not arrived at the intersection, and 0.5 means that the earliest arrival
of a vehicle is delayed by a contention. The black crosses mark the time
instant when a contention occurs. 90

7.4 Optimal vehicle speed of scheduling five vehicles. The shaded areas mark
the time interval when a vehicle is crossing the intersection. 91

7.5 Decision tree constructed by contention-resolving MPC. Blue numbers rep-
resent branch costs wl,j . The black numbers under leaves represent con-
tention time instant tcl . The red numbers above leaves represent estimated
total costs Ĉf (v). The red arrows represent the path with lowest cost. 92

x

7.6 Intersection occupation for scheduling five vehicles. The y axis value 1
means that the vehicle is occupying the intersection, 0 means that the vehi-
cle has not arrived at the intersection, and 0.5 means that the earliest arrival
of a vehicle is delayed by a contention. The black crosses mark the time
instant when a contention occurs. 93

7.7 Optimal vehicle speed of scheduling five vehicles. The shaded areas mark
the time interval when a vehicle is crossing the intersection. 94

7.8 Intersection occupation for scheduling two vehicles. The First two sub-
figures show the intersection occupation results of vehicle 1 and vehicle 2
computed by contention-resolving MPC under Assumption 3.2.2. The third
sub-figure (from top to bottom) shows the intersection occupation time of
vehicle 2 with an extra 0.4 minutes time delay. The forth sub-figure shows
the intersection occupation time of vehicle 2 with an extra 1 minutes time
delay. 95

7.9 vehicle speed design of scheduling two vehicles. 96

8.1 Decision tree for discrete-time contention-resolving MPC. 113

8.2 Human attention occupation for collaborating with three robots. The y axis
value 1 means that the robot is collaborating witht he human, 0 means that
the robot is not requesting the collaboration, and 0.5 means that the robot’s
collaboration request is delayed by a contention. 116

8.3 Performance values of three robots under the optimal schedule. The ma-
genta dashed line represents Pi,max and the black dashed line represents
Pi,min. 116

xi

SUMMARY

Priority-based scheduling strategies are often used to resolve contentions in resource

constrained control systems. Such scheduling strategies inevitably introduce time delays

into controls, which may degrade the performance or sabotage the stability of control

systems. Considering the coupling between priority assignment and control, this thesis

presents a novel method to co-design priority assignments and control laws for each con-

trol system, which aims to minimize the overall performance degradation caused by con-

tentions. The co-design problem is formulated as a mixed integer optimization problem

with a very large search space, rendering difficulty in computing the optimal solution. To

solve the problem, we develop a contention-resolving model predictive control method to

dynamically assign priorities and compute an optimal control. The priority assignment can

be generated using a sample-based approach without excessive demand on computing re-

sources, and all possible priority combinations can be presented by a decision tree. We

present sufficient and necessary conditions to test the schedulabilty of the generated pri-

orities assignments when constructing the decision tree, which guarantee that the priority

assignments in the decision tree always lead to feasible solutions. The optimal controls can

then be computed iteratively following the order of the generated feasible priorities. The

optimal priority assignment and control design can be determined by searching the low-

est cost path in the decision tree. With the fundamental assumptions required in real-time

scheduling, the solution computed by the contention-resolving model predictive control

is proved to be globally optimal. The effectiveness of the presented method is verified

through simulation in three real-world applications, which are networked control systems,

traffic intersection management systems, and human-robot collaboration systems. The

performance of our method is compared with the well-known and most commonly used

scheduling methods in these applications and demonstrate significant improvements using

our method.

xii

CHAPTER 1

INTRODUCTION

In modern industry, shared resources are widely used as the complexity of the systems

increases. When multiple systems need access to a shared resource at the same time, a con-

tention occurs. An arbitration mechanism is needed to determine which system can access

the resource first. This is a generic problem for the control of complex systems where many

control systems are coupled or connected and need to share resources. Examples of such

systems include networked control systems (or NCSs), swarming robots, smart grids and

traffic intersection management. For NCSs, the communication media (e.g., the network

cable or radio frequency) is the shared resource. Control loops that share the same com-

munication media must be scheduled to communicate at proper times to ensure success in

transmitting messages to guarantee stability[1, 2]. For the case of load management in a

micro power grid, the amount of available electric power generated is a shared resource,

and each electric load needs to be scheduled to consume enough power over a time period

to accomplish its task [3]. For the case of traffic intersection, the limited space of intersec-

tion is a shared resource, and each vehicle needs to be scheduled to avoid collisions [4]. For

the case of one human operator supervising a group of robots, limited human cognitive ca-

pacity is a shared resource, and each robot should be scheduled to have properly allocated

time slots for human intervention to ensure satisfactory performance [5].

A common feature of these applications is that a scheduling policy is needed to resolve

contentions. For some applications, many feasible scheduling policies can be used. It is

sometimes sufficient to use the one that is easiest to implement or easiest to analyze [6, 7].

However, in many applications, a choice of the scheduling policy may affect performance

significantly [8]. For example, well-known scheduling policies, such as rate monotonic

scheduling (or RMS) and earliest deadline first (or EDF) algorithms introduced in [9], are

1

widely used in real-time systems. These algorithms are optimal in real-time scheduling

in the sense that they can maximize the number of tasks that can be scheduled before

deadlines. However, they are not optimized for control purposes. Priority assignments

scheduled by EDF and RMS can violate the stability of the whole system [10]. The first-

come-first-serve (or FCFS) scheduling mechanism has been used to guarantee fairness; see

[11, 12, 13]. However, the FCFS mechanism is conservative, in the sense that it prevents the

scheduler from reordering the request of tasks. It may lead to poor scheduling and possible

congestion. The drawbacks of these existing scheduling methods motivate the co-design

of scheduling and control to improve coordination among control systems and obtain more

reliable control performance.

Recent works showed encouraging results by co-designing the scheduling and control

in the scenario when multiple control systems need to share a resource, e.g. a shared com-

munication media or limited power resources [14]. One co-design approach is to determine

a specific scheduling strategy first and then design the control law to compensate for the

time delays or packet dropout induced by the scheduling strategy; see [15, 16, 17, 18, 19,

20]. Another approach is to use optimization-based methods to solve a mixed-integer op-

timization problem to optimize scheduling decisions along with the control laws. There

are relatively fewer studies [21, 22, 23, 24, 25] which take this approach. The co-design

problems were formulated as mixed integer quadratic programs (or MIQPs) or mixed inte-

ger linear program (or MILP) problems, and were solved by optimization packages such as

IBM CPLEX solver. Although these methods can obtain an optimal or a local optimal so-

lution, the major disadvantage is the computation requirement. The optimization problem

formulated for co-designing scheduling and control is high dimensional and takes a long

time for optimization solvers to find an optimal solution.

Model predictive control (or MPC) offers a natural way to solve the scheduling and

control co-design challenge. Instead of considering the whole design time window, MPC

performs a prediction-optimization procedure on a finite optimization time horizon [26,

2

27]. MPCs can incorporate contentions as system constraints and coordinate all the control

systems. Many works utilized MPC to design the schedule and control laws for networked

control systems [28, 29, 30, 31, 32, 33], energy storage systems [34, 35, 36] and chemical

processes [37]. While promising, MPC is largely based on prediction models that are

usually nonlinear and non-convex. Therefore, a major challenge in implementing MPC for

complex control systems is real-time computational performance.

In this thesis, we propose a contention-resolving model predictive control method to co-

design optimal priorities and control in coupled control systems. The contention-resolving

MPC can dynamically assign priorities to each control system to minimize the overall per-

formance degradation caused by contentions. Our method differs from existing methods,

because we consider priorities as independent decision variables in the objective function

of the MPC, not as constraints as was done in previous works [21, 38, 39]. By computing

the priorities of each control system, MPCs can achieve better performance. Although the

problem can be formulated as a mixed integer optimization problem (or MIP) with a very

large search space, doing so would produce difficulty in computing an optimal solution.

Therefore, this work proposes a sample-based method to solve this optimization problem

without excessive demand on computing resources. The major contributions in this work

are as follows:

1. Sufficient and necessary condition to compute contention time instants. We utilize the

significant moment analysis published in work [19] and establish analytical timing models

for preemptive-resume, preemptive-repeat and non-preemptive real-time systems. Based

on the timing models, we present sufficient and necessary conditions to determine the time

instants when contentions occur and compute the significant moments when a control sys-

tem actually gains access to the shared resource and when the resource is not occupied.

Based on these significant moments, the priority assignment and control law design can

be decoupled and we can construct a decision tree to efficiently search all of the possible

priority assignments.

3

2. Co-design decision tree formulation. Enabled by the significant moments computed

by the timing model, the infinite dimensional priority and control co-design optimization

problem can be converted into a path planning problem for a decision tree with only finitely

many leaves and branches. Our algorithm assigns priorities only at the significant moments

when contentions occur, which are a finite number of time instances on the MPC optimiza-

tion horizon. The decision tree contains a finite number of branches and each branch cor-

responds to one possible priority assignment. The optimal control law design is embedded

in the computation of branch costs. An optimal solution of the co-design problem must

be a path from the root of the decision tree to one of the terminal leaves. There are only

finitely many such paths that can be searched. Second, among the finitely many paths, not

all need to be searched to find the optimal solution. To the best of our knowledge, the use

of a decision tree to decouple the coupled priority assignments and control design had not

previously been documented in the literature. In addition, we present a new formula to

compute branch costs in the decision tree that is constructed by contention-resolving MPC.

The cost function can handle cases where a control system’s access to the shared resource

is delayed multiple times.

3. Sufficient and necessary conditions for schedulability (feasibility). Based on the timing

states and significant moments analysis, we developed a finite-time schedulability test to

check if there exit some tasks which are not schedulable under a priority assignment along

one branch, and an infinite-time schedulability test based on the timing states of the end leaf

of a branch to check if this end leaf will definitely lead to unschedulability under all posible

priority assignments. We rigorously show that the schedulability consitions are sufficient

and necessary.

4. Co-design algorithm. We provide a significant modification of the A-star algorithm

from [40] to search for the optimal priority assignment. The A-star algorithm is a sampling

based algorithm that has been widely used for online path planning in robotics. Different

from the works [41, 42], which use a genetic algorithm or an MIP solver to find optimal

4

schedules, our method searches through a greatly reduced number of possible paths in the

decision tree, which can provide scalable methods that eliminate the need for an exhaustive

search through the full decision tree.

5. Practical application case study. We apply contention-resolving MPC to networked

control systems with shared communication media, to scheduling automated vehicles in

traffic intersection, and to scheduling human operator to collaborate with multiple robots.

We evaluate the performance of the contention-resolving MPC through simulations and

compare the results with classical scheduling methods. The optimal priority assignment

computed by contention-resolving MPC achieves significant improvement compared to the

priority assignment computed by the popular rate monotonic scheduling (or RMS) and ear-

liest deadline first (or EDF), first come first serve (or FCFS), highest speed first (or HSF)

and highest trust first (or HTF) scheduling methods.

Compared to the standard MPC framework, contention-resolving MPC produces a

computationally tractable approach that lends itself to optimal control and priority assign-

ment co-design. It is a theoretical framework that is general and can be applied to many

connected or coupled control systems with shared resources. Our works on contention-

resolving MPC have been publish in [10, 43, 44, 45, 46].

The rest of this thesis is organized as follows. Chapter 2 presents the background in-

formation and literature review of the existing scheduling and control co-design methods.

Chapter 3 introduces the general contention-resolving MPC formulation. Chapter 4 re-

views the analytical timing models and presents the sufficient and necessary conditions

for infinite-time feasibility test. Chapter 5 presents the path planning problem converted

from the priority assignment and MPC design problem. Chapters 6, 7 and 8 present the

results of applying contention-resolving MPC to three real-world applications. Chapter 9

summarizes this thesis and discuss the potential future work.

5

CHAPTER 2

BACKGROUND

This chapter provides the background information of scheduling and control co-design. In

particular, the first part gives an overview of real-time control systems and the most famous

scheduling methods. The second part discusses the motivation of conducting scheduling

and control co-design and the existing co-design methods. The third part presents the

background of model predictive control and the limitations of using the traditional model

predictive control to solve the scheduling and control co-design problem.

2.1 Scheduling of Real-time Systems

The problems of real-time scheduling arise in many practical situations such as telecom-

munication and computer systems. The scheduling behavior depends on the types of a

real-time system and scheduling algorithms used for the system.

2.1.1 Real-time Systems

Real-time systems are first developed for computing systems. In real-time computing sys-

tems, multiple tasks are computed simultaneously on the processor. A successful real-time

computing system requires that all tasks can be computed before their respective deadlines.

Since the processor can only compute one task at a time, a proper real-time scheduling is

required to determine the order of task execution so that each task can meet its deadline.

Later, real-time systems have been developed for distributed environments. In distributed

environments, each operation is realized by a set of distributed nodes exchanging informa-

tion over some form of communication networks. To meet deadlines of operations, it is

required that the communication among distributed nodes to be real-time.

Historically, the order of task execution in real-time systems were designed by static

6

scheduling. In static scheduling, the schedule of tasks was constructed in an ad hoc man-

ner off-line, based on the prior knowledge of task parameters, timing requirements, and

scheduling constraints [47]. Each task is assigned with a distinct time interval such that it

can access the shared resource without any conflict with tasks from other systems during

the designated time intervals. Once a static schedule is made, the tasks are executed ac-

cording to that schedule. The static scheduling was widely used in the 1960s. However,

during the 1970s and 1980s, it was understood that static scheduling can be very inflexible

and difficult to maintain because the schedule produced offline cannot be modified online

[6]. This understanding leads to an explosion of research and publications on dynamic

scheduling by assigning the systems with priorities.

2.1.2 Priority-based Scheduling Methods

In dynamic scheduling, the order of tasks’ access to a shared resource is determined by

continuously comparing priorities and selecting one task with highest priority from a set of

contended tasks. Based on whether preemption is allowed [48], a real-time system can be

classified into two categories, preemptive and non-preemptive.

In preemptive system, if a task with higher priority requests access to the shared re-

source, then it interrupts a lower prioritized task that is occupying the resource. The pro-

cessing of the low prioritized task can be resumed or repeated once the higher prioritized

task is completed. Many earlier works study properties of preemptive scheduling, such as

reliability, schedulability and time delay [49, 50]. One practical application for preemptive

system is a networked control system (or NCS) where feedback control loops are closed

through a preemptive real-time network. In non-preemptive system, if a task is occupying

the shared resource, no other tasks can interrupt the current task until it completes the us-

age of the share resource [51]. Traffic intersection scheduling is a typical non-preemptive

system, because once a vehicle has entered the intersection, it is unreasonable and uncon-

ventional for it to backup and be interrupted by the vehicles arriving later. Existing analysis

7

techniques for preemptive scheduling are either invalid for non-preemptive scheduling or

exhibit high computational complexity. Many works contribute towards establishing new

results for non-preemptive scheduling [51, 52, 53]. In our work, we will study both pre-

emptive and non-preemptive systems.

Despite whether preemption is allowed, different priority assignment methods, or can

be called scheduling algorithms, also result in different timing behavior in the real-time

systems. The scheduling algorithms can be classified to fixed priority scheduling and dy-

namic priority scheduling. For fixed priority scheduling, rate monotonic scheduling (or

RMS) presented in [9], which assigns higher priorities to tasks with shorter periods, is

probably the most famous one. RMS is proved to the optimal fixed priority scheduling

algorithm for preemptive system with periodic tasks in the sense of resource utilization.

For non-preemptive system, such as controller area network (or CAN) [54], fixed prior-

ity scheduling algorithms are also widely utilized due to the easy implementation, where

priorities are pre-determined by the importance of each sub-system. For dynamic priority

scheduling, earliest deadline first (or EDF) scheduling is the optimal one for preemptive

real-time system with periodic tasks. EDF dynamically assign priorities such that a task

with earliest deadline has highest priority and it can further improve the resource utiliza-

tion compared to the system using RMS. Using similar ideas as EDF, researchers developed

various dynamic priority scheduling methods. A method, named maximum-error-first with

try-once-discard (or MEF-TOD), is designed for networked control systems to assign high-

est priority to the control loop with largest error [55]. For traffic intersection management,

many works utilize a first-come-first-serve (or FCFS) scheduling strategy to assign higher

priorities to vehicles which arrive earlier at the intersection and coordinate them to cross

the intersection first.

Dynamic scheduling is flexible and adaptive because the schedule is constructed online.

However, the implementation of priority-based scheduling requires a schedulability test to

determine whether each task in a given set of tasks can be excuted before their deadlines.

8

2.1.3 Schedulablility Test for Real-time System

When dealing with real-time systems, the first question that needs to be answered is whether

a system is schedulable under certain priority assignments. Schedulability means that each

task in a real-time system can be executed before its deadline. If there exists no priority

assignment that can lead to schedulability, then it means that the scheduling and control

co-design problem has no feasible solution.

Research of schedulability test starts from the work of Liu and Layland in [9] that is

generally regarded as the foundational work in real-time scheduling. Liu and Layland [9]

considered a real-time computing system with the following assumptions: (1) all tasks are

periodic, preemptive, and synchronized; (2) all tasks have their relative deadlines equal to

their periods. They introduced an idea of critical time instant analysis to study the worst

case when all the scheduling tasks are requested at the same time. At the critical time

instant, a task will endure the longest response time. Liu and Layland introduced timing

analysis into the study of real-time scheduling. They proved that a set of tasks on the

processor is schedulable under RMS algorithm if their total processor utilization satisfies∑N
i=1 Ui ≤ N(21/N − 1), in which Ui represents the processor utilization of an individual

task i, and N is the number of total tasks on the processor. Also, they proved that a set

of tasks is schedulable under EDF algorithm if their total processor utilization satisfies∑N
i=1 Ui ≤ 1. Based on the similar timing analysis in [9] , extensive research has been

conducted to improve the results made in Liu and Layland’s work. Bini et al [56] derived a

hyperbolic bound for tasks scheduled under RMS. The hyperbolic bound is less pessimistic

than Liu and Layland’s utilization bound. Lehoczky et al [57] showed that the average

processor utilization, for a large set of randomly chosen tasks schedulable under RMS, is

approximately 88%. Abdelzaher et al [58] relaxed the periodic restriction on tasks and

derived an utilization bound for non-periodic tasks. In work [51, 59], the authors present

the a necessary and sufficient schedulabilty condition for non-preemptive periodic system.

In [60], the schedulability analysis for a combination of non-preemptive periodic tasks and

9

preemptive sporadic tasks under fixed priority scheduling is presented. The timing analysis

in these work focus on the state of scheduled tasks at critical time instant. However, the

state of real-time system cannot be fully described at the critical time instant, especially for

more complex real-time systems.

Research work in [61] introduces a concept of significant moment analysis, which can

represent the complete status of scheduled tasks in a real-time system at any time instant

and perform timing analysis beyond the critical time instant. Schedulability test for non-

preemptive periodic tasks is presented in [19], where fixed priority scheduling is used for

the system. In [62], the authors establish a timing model for a discrete real-time system

and present schedulability analysis under the discrete time setup. However, these work can

only perform the schedulability test for a finite time window assuming the priority assign-

ments are known. They cannot guarantee schedulability if priorities are undetermined. In

this thesis, we derived the necessary and sufficient conditions of schedulabilty using the

significant moment analysis.

2.2 Scheduling and Control Co-design

If more than one feasible priority assignments exist to ensure schedulability of coupled

control systems, then finding an optimal priority assignment which can minimize the degra-

dation caused by contentions is the goal of the scheduling and control co-design problem.

The idea of co-design scheduling and control is first introduced in [63]. It shows that the

timings in real-time scheduling will affect the control performance.

2.2.1 Networked Control Systems

Control systems in modern industry are characterized by using shared communication net-

works to increase modularity and flexibility [64]. Sensors, controllers and actuators con-

nected to the network are regarded as nodes of networked control systems (NCSs). The

bandwidth for communication between nodes is mostly limited in NCSs, disallowing sen-

10

sor messages to transmit immediately after generation, and this causes time delays in the

NCSs [6].

Two different types of systems occur in networked control systems namely: time-

triggered and event-triggered NCSs [65]. In time-triggered NCSs, an activity in each node

is assigned with a distinct time interval such that it can access the communication network

without any conflict with other nodes. No contention occurs in the time-triggered control

network and the time delays are deterministic and fixed, at least in ideal operating condi-

tions. In event-triggered NCSs, the transmission requests of each node are triggered by its

own timer or by certain values of system state variables [66]. Contentions are unavoidable

in event-triggered NCSs because of the lack of explicit timing control of events. Usually,

priorities are assigned to events to resolve the contentions. This priority-based scheduling

introduces time-varying delays for control loops, which may dramatically degrade control

performance if not compensated by the controllers. A challenge for controlling event-

triggered network systems lies in the integration of control with time delays caused by

contentions [67, 68, 18]. In many cases, priorities need to be designed for NCSs because

poor priority assignment can violate the stability of the NCSs [69].

Zhang et al further explores the relationship between real-time task periods and the con-

trol performance of physical plants [7]. They define an operation point as a collection of

periods of all real-time tasks. The goal is to find an optimal operation point that maximizes

control performance under the schedulability constraint. The similar idea is extended to

control design on automotive ECUs [70]. Since the automotive ECUs only support a finite

number of task periods, the paper focuses on finding a possible sequence of task periods

such that the resulting average task period is close to optimal ones. In [71], the authors

proposed to compensate for the time delays or packet dropout induced by the schedul-

ing strategy. Similar approaches are adopted in [15, 16, 18, 19]. Another approach is to

use optimization-based methods to solve a mixed-integer optimization problem to optimize

scheduling decisions along with the control laws. There are relatively fewer studies which

11

take this approach. In [22], the co-deign optimization problem of non-preemptive schedul-

ing of control tasks and control law is formulated using H2 norm. Then the problem is

decomposed into two sub-problems. The first sub-problem aims to find the optimal off-line

schedule and is solved using the famous branch and bound method [72] for mixed integer

optimization. The second sub-problem determines the optimal control gains based on the

solution of the first sub-problem. Another widely used method for solving mixed integer

optimization is the genetic algorithm [73]. In [24], authors present a modified genetic algo-

rithm to solve the joint optimization of the scheduling and control of electrical loads. Using

optimization packages is another approach used in works [25, 74] to solve the co-design

problem.

2.2.2 Traffic Intersection

Traffic intersection is another example of resource in our daily life where vehicles need

to share the physical space in the intersection. For traffic intersection, the traffic light has

been the most commonly used device for intersection scheduling since 1868. However,

while traffic lights ensure the safety of conflicting movements at intersections, they also

cause increased delay, fuel use, and tailpipe emissions. Frequent stops and starts caused by

traffic lights also frustrates drivers and passengers. Smarter intersection management and

scheduling are needed to better control vehicles at intersections [4].

Connected and automated vehicles provide significant new opportunities for improving

intersection efficiency. A recent study showed that changing the intersection scheduling

from traffic lights to coordinating automated vehicles has the potential of doubling the

intersection capacity and reducing traffic delays [75]. With the introduction of vehicle-to-

vehicle as well as vehicle-to-infrastructure communication, automated vehicles can assist

drivers with better decision making and reduce fuel consumption, emissions, and traffic

congestion. Numerous research efforts have explored the scheduling and control of au-

tomated vehicles [76, 77, 78]. Many works assume that the arrival times of automated

12

vehicles at an intersection satisfy a certain random process. Then based on the arrival

time, they utilize a first-come-first-serve (or FCFS) scheduling mechanism, so that con-

trollers can be designed to coordinate the crossing speed of vehicles [11, 13, 12]. However,

the FCFS mechanism may lead to poor scheduling and possible congestion. For instance,

FCFS schemes can give crossing orders in which several faster vehicles must slow down

to favor a slow vehicle, which may not be optimal in the context of total traveling time

or energy consumption. FCFS is conservative in the sense that it prevents the intersec-

tion scheduler from reordering the entrance of automated vehicles to the intersection. In

those cases, the highest-speed-first (or HSF) scheduling, which schedules the vehicles with

higher speed to pass the intersection first, is another strategy for intersection scheduling.

Optimization-based approaches have been proposed to compute the optimal schedule

for coordinating automated vehicles. The works in [79, 80] utilized a genetic algorithm to

dynamically coordinate traffic at intersections and their results were verified through sim-

ulation using real traffic data. In [74], the authors used mixed integer quadratic program

(or MIQP) to compute an approximate solution to schedule the order of vehicles crossing

the intersection. In [81], the intersection scheduling problem was formulated as a mixed

integer linear program (or MILP) problem, and was solved by the IBM CPLEX optimiza-

tion package. Although these methods can obtain an optimal or a local optimal solution for

intersection scheduling, the major disadvantage is the computation requirement.

2.2.3 Human and Multi-robot Collaboration System

Recent advances in robotics have enabled the reduction in price, size, and operational com-

plexity of robots. A natural outgrowth of these advances are systems comprised of large

numbers of robots that collaborate autonomously in diverse applications. However, even

though the autonomous task execution capabilities of robots have progressed rapidly, the

human’s advantage in high-level reasoning and planning is still needed. As a consequence,

the form of human and multi-robot collaboration systems has become a popular and impor-

13

tant topic of research [82, 83]. For human and robots collaboration systems, as the human

labor cost increases, it can be envisioned that the number of robots that one human operator

needs to work with will increase to a large extent. However, a human has limitation on at-

tention capacity. In a famous psychology paper [84], it was revealed that one human cannot

efficiently pay attention to more than about seven meaningful items. In more recent studies,

researchers discovered that a human can pay attention to only two to four items at the same

time [85, 86]. Therefore, when a human is collaborating with multiple robots, the human

operator cannot effectively serve or collaborate with all robots at the same time. Which

robot the human operator should collaborate with first is a general question for human and

multi-robot collaboration systems.

How to allocate or schedule a human’s attention to each robot is a research topic studied

in real-time scheduling. Inappropriately scheduling a human operator to collaborate with

robots has been found to have a negative effect on overall performance in human-robot

systems [87]. Numerous research efforts have explored how to better schedule a human’s

attention to robots. In [88], the authors compared two types of scheduling methods, open-

queue (or OP) and shortest job first (or SJF) scheduling, and showed that SJF scheduling

can provide more stable robot performance. In [62], the authors proposed a highest trust

first (or HTS) based on a robot performance model from [89] and a human–robot mutual

trust model, to determine the human operator’s schedule to interact with one robot at each

time such that the human–robot trust level can always be maintained within a proper range.

However, both the SJF and HTS cannot guarantee that the overall performance of robots

can be optimized. Murray et al. formulated an integer programming problem to effectively

schedule multiple unmanned aerial vehicles and humans to time-sensitive geographically-

dispersed tasks and optimize the overall system performance [90].

14

2.3 Model Predictive Control

Model predictive controllers (or MPCs) is originally developed for industrial process con-

trol [91, 92]. Instead of considering the whole design time window, MPC performs a

prediction-optimization procedure iteratively, using a predefined cost function (which usu-

ally considers the overall performance and efficiency) while receding a finite optimization

time horizon [27]. Specially designed MPC can tolerate uncertainty, disturbance and can

deal with complicated system constraints. These advantages make MPC attractive to solve

the scheduling and control co-design challenge.

Many works utilize MPC to design the schedule and control laws. For networked con-

trol system, works (including [21, 38, 39]) have shown the effectiveness of using MPC

to compensate for time delays in event-triggered NCSs. However, these methods assume

that a pre-defined priority assignment is chosen and do not consider time delay induced by

contentions. For traffic system, MPC are used to schedule vehicles and design the vehicle

speed for ramp metering [29, 30]. In [33, 30, 93, 94], model predictive control is applied

to control and coordinate urban traffic networks. However, due to the nonlinearity of the

prediction model, the optimization formulated in MPC is a nonlinear and non-convex opti-

mization problem. The authors need to reformulate the problem into a mixed-integer linear

optimization problem to increase the real-time feasibility of solving MPC. In energy stor-

age systems, a special type of MPC, called Economic MPC, is applied to scheduling the

operations of operations of lighting and powering heating, ventilation, and air conditioning

systems while aiming to minimize the total cost of energy consumption [36, 35, 34]. MPC

is also used to solve the integrated scheduling and control problem for chemical processes

[95, 37]. The integrated approach can improve the overall process performance by incor-

porating process dynamics into scheduling considerations, but the computational time is

generally too long for online implementation. In summary, while very promising, MPC is

largely based on prediction models that are usually nonlinear and non-convex. Therefore, a

15

major challenge in implementing MPC for complex control systems is real-time computa-

tional performance. This motivates us to develop a new MPC design which can produce a

computationally tractable for the optimal control and priority assignment of the co-design

problem for real-time systems.

16

CHAPTER 3

PROBLEM FORMULATION

Multiple control systems share the same resource, such as computation resource (e.g. pro-

cessor), communication resource (e.g. communication bus or limited bandwidth), physical

spaces (e.g. traffic intersection) or collaborators for their operations. Each control system

consists of a sequence of tasks that are repeatedly executed. Each activation of a task may

have its own release time, execution time and deadline. The proposed contention-resolving

MPC is a general theoretical framework to address resource allocation for coupled control

systems with asynchronous task release time, execution time and deadline. In this chapter,

we present the setup and formulation of co-design problems.

3.1 Problem Setup

Consider N control systems that must share a limited resource.

3.1.1 System Dynamics

Assume that the i-th control system for i = 1, 2, ..., N is modeled in the form

ẋi(t) = fi(xi(t), ui(t)), yi(t) = gi(xi(t)) (3.1)

where xi, ui, and yi represent the state vector, control, and output, respectively. Here and

in the sequel, we make the following assumption about the system dynamics, where we use

measurability and essential boundedness in the Lebesgue measure sense of [96]:

Assumption 3.1.1 The function fi for i = 1, ..., N in (3.1) is such that this holds for each

i: For each measurable essentially bounded function ui and each initial state x0
i and each

17

T > 0, the initial value problem for the dynamics fi and the initial condition xi(0) = x0
i

has a unique solution on [0, T].

The preceding assumption is satisfied under standard Lipschitzness conditions, e.g., from

[97, Chapter 7].

3.1.2 Task Characteristics

In real-time scheduling, each control system is viewed as a customer that must be served

to access the shared resource. The i-th customer has a sequence of tasks, denoted by

{τi[1], τi[2], ..., τi[k], ...}, where k ≥ 1 is the task index of customer i. The completion of

each task requires a certain time amount usage of the shared resource.

The timing characteristics of customer i is shown by figure 3.1. The time instant when

task τi[k]’s request to the shared resource is generated is denoted by αi[k], which uses the

same index k as the task τi[k]. The task generation time αi[k] are usually determined by

an event generator of the form hi(xi(αi[k]), yi(αi[k])) = 0 [98, 99, 100]. The function

hi(·) is defined so that when the state xi and the system output yi enter a certain set at time

αi[k], an event will be generated. Event based control is an effective way to reduce the

use of shared resources, and is gaining popularity in the control of complex systems [100,

101, 102]. The generation time instants do not need to be determined by event-triggered

control, since we also allow the task generation time αi[k] to be pre-determined, such as the

periodic sampling time used by digital control systems. The amount of time for which the

task τi[k] needs to occupy the resource is denoted by Ci[k]. The task occupation time can

be pre-determined or can be a function of control command of system i. The completion

time instant when task τi[k] finishes the occupation of the shared resource is denoted as

γi[k].

Assumption 3.1.2 At any given time, only one customer can occupy the shared resource.

Assumption 3.1.2 is valid in many real world applications. In the automotive industry, the

vehicle communication buses such as the control area network (or CAN) [54] and FlexRay

18

Figure 3.1: Three generated tasks of system i indexed by k − 1, k, and k + 1.

[103] only allow one device to transmit messages at any time. Also, in a warehouse, a pas-

sageway (e.g., a narrow space between two aisles) may only allow one forklift to enter and

transport packages. For traffic intersections, only one vehicle can occupy the intersection to

guarantee that no collisions occur among vehicles when they are passing the intersection.

In a real-time system, it is required that each task must be completed before its deadline,

in order for the system to be schedulable. In our setup, we define the deadline for a task

τi[k] to be the time instant when the next task of customer i is generated, i.e., αi[k+1].

Therefore, for a task to be schedulable, the inequality γi[k] ≤ αi[k+1] must be satisfied.

We also use Ti[k] to denote the amount of time between two successive resource occupation

requests from customer i, i.e., Ti[k] = αi[k+1]− αi[k], which we assume satisfy:

Assumption 3.1.3 For each i ∈ {1, . . . , N}, there is a constant Tmin
i > 0 such that Ti[k] ≥

Tmin
i for all k.

Since the time interval between two successive requests is bounded below by Tmin
i for each

customer i, and since there are only a finitely number N of customers, the total number of

requests should be less or equal to
∑N

i=1(tf−t0)/Tmin
i , which is a finite number. Therefore,

it follows that there are only finitely many requests for access on the time interval [t0, tf].

Also, the request for the resource will be modeled by a tuple (αi, Ci, Ti)[k].

3.2 Priority-based Scheduling

When there are no contentions among customers, the following equation is always satisfied:

γi[k] = αi[k] + Ci[k]. (3.2)

19

Figure 3.2: Illustration of scheduling three systems. The upper three sub-figures show the
task request times when contentions are not considered. The bottom sub-figure shows the
resource occupation time after priorities are assigned to resolve the contention that occurs
at time 0.

When multiple customers request the shared resource at the same time, a contention occurs

and equation (3.2) will not hold. An example of three systems sharing one resource is

shown in Figure 3.2. A contention occurs at time 0. The scheduling algorithm determines

the order of customers’ access to the resource by assigning them priorities. Each customer

i is assigned a unique priority number pi(t), in which case contentions can be resolved by

comparing the priorities pi among all customers who are competing for the resource. In

what follows, P({1, ..., N}) denotes the set of all permutations of {1, ..., N}.

Definition 3.2.1 A priority assignment is a tuple P(t) = (p1(t), ..., pi(t), ..., pN(t)) ∈

P({1, ..., N}), where pi(t) is the priority assigned to customer i at time t and such that

for each i and j in {1, ..., N}, we have pi(t) < pj(t) if and only if customer i is assigned

higher priority than customer j at time t. For each t ∈ [t0, tf], the value of pi(t) is a

positive integer in {1, . . . , N}, such that pi(t) 6= pj(t) if i 6= j.

Assumption 3.2.1 When a contention occurs, only the control system with the smallest pi

will be granted access.

This assumption follows the convention in the scheduling literature of giving smaller num-

20

bers to the higher prioritized tasks [48]. Based on the Definition 3.2.1, each task has a

unique priority number. Therefore, there exist no ties among the priority assignments when

a contention occurs.

The resource access times of lower prioritized systems are delayed by higher priori-

tized vehicles. A lower prioritized system can gain the access to the shared resource right

at or after the time instant when all the higher prioritized contended systems finish the

occupation of the shared resource.

Assumption 3.2.2 If a contention occurs at time t and pi(t) + 1 = pj(t), then system j

start to utilize the shared resource at time γi[ki], where ki is the index of task of system i.

This assumption is also used in the priority-based real-time scheduling mechanism from

[48], where no inserted idle time should be allowed if there are one or more tasks waiting

to use the shared resource. The other scheduling strategies such as RMS, EDF and FCFS

are also based on this assumption. For the convenience of later references, we call this

assumption the condition of immediate access (or CIA). We will show that the CIA is

a necessary condition for finding a global optimal solution for the co-design problem in

Chapter 7.

When a contention occurs, the completion times of the tasks of lower prioritized cus-

tomers are delayed by the higher prioritized customers. We introduce the delay δi[k]

so that αi[k] + Ci[k] + δi[k] is the task completion time for all i and k, i.e. γi[k] =

αi[k] + Ci[k] + δi[k].

Definition 3.2.2 If αi[k] + Ci[k] + δi[k] ≤ αi[k + 1] for all i and k, then we say system i

is schedulable or the schedulability of the system i is guaranteed.

This definition means that all tasks are able to be completed before or at their deadlines.

In order to check whether a system is schedulable or not, it is essential to compute the

value of time delays δi[k]. However, the computation of δi[k] is not trivial.

21

Example 1 Consider tasks τ1, τ2 and τ3 with

(C1[k], C2[k], C3[k])=(0.5, 1, 1.5) and (T1[k], T2[k], T3[k])=(3, 4, 5) for all k ≥ 1

as illustrated in Figure 3.2. Let the priority assignment be p1(t) = 1, p2(t) = 2, and

p3(t) = 3. Due to the occupation times of systems 1 and 2, system 3 has the longest time

delay. If we exchange the priority assignments between system 1 and 3, i.e., p1(t) = 3,

p2(t) = 2 and p3(t) = 1, then system 1 has the longest time delay.

This simple example shows that time delays depend on priority assignments. In Chapter

4, we will present a timing model which can accurately compute the time delays given a

specific priority assignment.

3.3 Formulation of Model Predictive Control

We formulate and solve a contention-resolving model predictive control problem to com-

pute optimal priority assignments P∗(t) = (p∗1(t), ..., p∗N(t)) and an optimal control com-

mand u∗(t) = (u∗1(t), ...u∗N(t)) on a time interval [t0, tf]. The times t0 and tf are the

starting and ending points of the MPC time horizon, respectively, and t0 and tf will move

forward in time when the MPC is initiated. Given initial states x(t0) = (x1(t0), ..., xN(t0)),

initial controls u(t0) = (u1(t0), ..., uN(t0)), starting time t0 and ending time tf , the co-

design method is to find values for the optimal P∗(t) and u∗(t) by solving the optimization

problem

min
P(t),u(t)

N∑
i=1

Vi
(
xi(t,P(t0∼ t),ui(t0∼ t)), ui(t,P(t0∼ t))

)
(3.3)

over all u and P where the cost functions Vi for i = 1, 2, ..., N incorporate the control

effort and tracking error. The notation P(t0 ∼ t) represents all priority assignments P(`)

for all ` ∈ [t0, t). The term xi(t,P(t0∼ t), ui(t0∼ t)) represents that the system state xi is

an implicit function of priority assignment P(t) and control laws u(t) from the initial time

t0 to time t. Similarly, ui(t,P(t0∼ t)) represents that the control law ui is also an implicit

22

function of priority assignment P(t) from the time t0 to time t. The specific functions will

be introduced in Section 4.4 once we presented the analytical timing model to compute the

timing and formulate the contention constraints. For example, if the system i is linear and

time-invarying, i.e., ẋi(t)=Aixi(t)+Biui(t), then Vi can take a quadratic form

Vi
(
xi(t,P(t0∼ t), ui(t0∼ t)), ui(t,P(t0∼ t))

)
=

1

2

∫ tf

t0

(
|xi(t,P(t0∼ t), ui(t0∼ t))−x̄i(t)|2Qi + |ui(t,P(t0∼ t))−ūi(t)|2Ri

)
dt (3.4)

+ ρ|xi(tf ,P(t0∼ tf), ui(t0∼ tf))− x̄i(tf)|2Ki ,

where |v|2M = vTMv for any vector v and matrix M for which the matrix multiplication

is defined, and where Qi, Ri, and Ki are positive definite. The parameter ρ > 0 is a

constant. The notations x̄i and ūi are fixed choices of the corresponding trajectory and

control inputs that tracks a given reference signal λi(t), and x̄i(tf) is the terminal state of

the corresponding trajectory x̄i(t) at time tf . If contentions occur, then time-varying delays

can degrade the control performance and increase the tracking errors [19].

While minimizing the cost function, a set of constraints need to be satisfied for all

t ∈ [t0, tf]. One constraint is the system dynamics ẋi(t) = fi(xi(t), ui(t)) that must be

satisfied for each i. Then the control needs to satisfy ui(t) ∈ Ui for all t, where Ui is a given

constraint set for control commands. These constraints appear in most MPC formulations

and we assume these sets are compact. The mathematical formulations of these constraints

will be presented in Section 4.4.

Since u(t) is a vector of real numbers and P(t) is a vector of integers at each time t, the

contention-resolving MPC problem is a mixed integer optimization problem (or MIP). It

is a nonlinear and non-convex optimization problem that is difficult to solve [104]. Mixed

integer programming problems are usually solved by two categories of optimization meth-

ods. The first category is combinatorial optimization [105], such as genetic algorithms.

However, since the decision variables u and P are functions of time, the search space of

23

the solution is very large and does not lend itself to genetic algorithms in real time. The

second category of optimization algorithms comprise the branch-and-bound type of algo-

rithms [72]. In branch-and-bound algorithms, the integers are first relaxed to real numbers

so that convex optimization algorithms can apply, and then the real valued solutions are

rounded up to the nearest higher integer values. Multiple choices of the integer values lead

to different “branches” of sub-problems where convex optimization will be applied again.

The branch-and-bound algorithm searches for branches with lower estimated cost first, so

that the optimal solution can be found without exhausting all permutations of the integers.

The branch-and-bound algorithm is computationally efficient but cannot be used to solve

the MIP problem associated with contention-resolving MPC, for two reasons. First, the

priority assignments pi(t) cannot be relaxed to be real numbers. Second, the cost function

Vi for each i is not an explicit function of the priority assignment P(t), therefore convex

optimization cannot be applied.

We now describe how to refine this problem for contention-resolving MPC.

Assumption 3.3.1 A controller is triggered at each time instant when a task is completed.

Hence, each model predictive controller only generates one control command for each

request. The resulting control command is applied to the control system, and remains con-

stant until the control system’s next task completion time. Therefore, the control ui is

piece-wise constant. This design follows the idea of zeroth-order-hold (or ZOH) mech-

anism that is frequently used in sampling based control [106, 107]. At each γi[k], the

control command is updated based on the measurement xi(γi[k]) of customer i and the

control value computed by MPC based on the state value xi(γi[k]). Then with ZOH, the

continuous-time control ui(t) is a piece-wise constant function of the form

ui(t) = ui[k] for all t ∈ [γi[k], γi[k + 1]) and k, (3.5)

which defines the control ui at all times when customer i can access the shared resource. As

24

mentioned in Section 3.2, the time delays δi[k] depend on the priority assignment among

the customers. The priority assignment and control design are coupled through δi[k]. With

this problem set up, our goal is to solve the MPC problem formulated in Section 3.3 and

compute optimal priorities and optimal controls to compensate for the performance degra-

dation caused by contentions and delays.

25

CHAPTER 4

SIGNIFICANT MOMENT ANALYSIS AND SCHEDULABILITY TEST

Even though the control systems evolve continuously in time, there are certain moments in

time that are more significant than other moments. The moments when a control system

requests access and finishes the usage of the shared resource are called significant moments.

They are significant because the status of the system changes at these moments due to

whether access to the shared resource is granted or not. The time instants that systems

request access to the shared resource, i.e. αi[k], are significant because these are the times

when contentions may start and new priority vectors P(t) will be assigned. The time when

a control system finishes the usage of the shared resource, i.e., the task completion moments

γi[k], are significant because these are the times when the control law ui(t) will be updated

as shown in (3.5).

In order to obtain the significant moments, it is important to compute the value of the

δi[k], which is not easy to compute since we need to consider how many control systems

are competing for the shared resource and whether they will be delayed based on different

scheduling disciplines. In scheduling theory [108], priority-based scheduling can be clas-

sified into two categories, preemptive and non-preemptive scheduling. Therefore, in this

thesis, we model the scheduling behavior of both preemptive and non-preemptive real-time

systems. In our previous work [19] and [109], we developed a significant moment anal-

ysis to show how the priority assignment changes the delays. In this section, we present

analytical timing models which can determine all significant moments and compute the

delays under preemptive scheduling. In Chapter 6, the timing model of continuous time

non-preemptive systems will be presented. In Chapter 7, a continuous-time preemptive-

repeat task model will be used to model the scheduling behavior at a traffic intersection

and its corresponding timing model will be presented. In Chapter 8, the timing model of a

26

discrete time non-preemptive system will be presented.

4.1 Timing States

At each time t ∈ [t0, tf], we define the timing state variable Z(t) = (D(t), R(t), O(t))

using the following variables from [109], where a task is a request for access to the shared

resource:

Definition 4.1.1 The vector D(t) = (d1(t), ..., di(t), ..., dN(t)) is the deadline variable,

where di(t) denotes how long after time t the next task of customer i will be generated,

i.e.,

di(t) = αi[k+1]− t, if t ∈ [αi[k], αi[k+1]).

Definition 4.1.2 The vector R(t) = (r1(t), ..., ri(t), ..., rN(t)) is the remaining time vari-

able, where ri(t) is the remaining time after time t that is required to complete the most

recently generated task of customer i, i.e.,

ri(t) =

 γi[k]− t, if t ∈ [αi[k], γi[k]]

0, otherwise
.

Definition 4.1.3 The vector O(t)=(o1(t), ..., oi(t), ..., oN(t)) is the dynamic response time

variable, where oi(t) denotes the length of time from the most recent request from customer

i to the minimum of (a) the time when the most recent request from customer i is completed

and (b) the current time t, i.e.,

oi(t) = min{γi[k], t} − αi[k], if t ∈ [αi[k], αi[k+1]).

We use the example in Figure 4.1 to further explain D, R and O.

27

(a) Scheduled behavior.

(b) Significant moments tw.

Figure 4.1: Illustration of the timing states.

Example 2 Again, consider the three periodic tasks are scheduled under a priority as-

signment p1(t) = 1, p2(t) = 2 and p3(t) = 3. At time t = 3.25, the next tasks τ1[3], τ2[2]

and τ3[2] will be generated at times 6, 4 and 5 respectively. Thus, according to Defini-

tion 4.1.1, the deadline are
(
d1(3.25), d2(3.25), d3(3.25)

)
=
(
6−3.25, 4−3.25, 5−3.25

)
=(

2.75, 0.75, 1.75
)
. After t = 3.25, only the request of τ1[2] has not been finished and will

be completed at time 3.5. The remaining time for τ1[2] at time 3.25 is 3.5−3.25=0.25, i.e.

r1(3.25) = 0.25. Therefore, by Definition 4.1.2, we have
(
r1(3.25), r2(3.25), r3(3.25)

)
=(

0.25, 0, 0
)
. To compute the dynamic response time, for τ1[2], its request is generated at 3

and will be completed at time 3.5, which is greater than the current time 3.25. Therefore,

the dynamic response time for τ1[2] at time 3.25 is 3.25−3 = 0.25, i.e. o1(3.25) = 0.25.

For τ2[1], its request is generated at time 0 and is finished at time 1.5, which is less

than the current time 3.25. Therefore, the dynamic response time for τ2[1] at time 3.25

28

is 1.5−0=1.5. For τ3[1], its request is generated at time 0 and finishes at time 3, which is

less than time 3.25. Therefore, the dynamic response time for τ3[1] at time 3.25 is 3−0=3,

i.e. o3(3.25) = 3. Thus,
(
o1(3.25), o2(3.25), o3(3.25)

)
=
(
0.25, 1.5, 3

)
. Similarly, at time

t = 5.4, if we assume that α1[3] = α2[3] = α3[3] = 7, then we have the timing state vectors

D(5.4)=
(
0.6, 2.6, 2.6

)
, R(5.4)=

(
0, 0, 1.1

)
and O(5.4)=

(
0.5, 1.0, 0.4

)
.

For non-preepmtive scheduling, in addition to the above variables, we need:

Definition 4.1.4 The index variable is ID(t) denotes the index of the control system which

is occupying the shared resource at time t. We use the convention that if no control system

is occupying the resource at time t, then ID(t) = 0 and r0(t) = 0.

Therefore, for non-preepmtive scheduling, the timing state variable is

Z(t) = (D(t), R(t), O(t), ID(t)).

To support the continuous timing model, we redefine the characteristics tuple of a task

in the continuous time domain as follows:

Definition 4.1.5 At any time t within [t0, tf], we define Ci(t), Ti(t) and Pi(t) to be the

execution time, the period, and the priority of task i in continuous time domain, respectively.

The values of these functions are

Ci(t) = Ci[k], Ti(t) = Ti[k] and Pi(t) = Pi[k] (4.1)

where k is the largest integer satisfying αi[k] ≤ t and αi[1] = t0.

By this definition, we can convert the discrete-time timing characteristics into piece-wise

constant functions in continuous time, which will be used in the formulas for the analytical

timing model.

The evolution rules for Z(t) within a time interval [t0, tf] can be expressed by mathe-

matical equations. These equations lead to a timing model. It is an analytical model that

29

is efficient to compute, and it supports the implementation of real-time model predictive

control.

4.2 Delay Prediction Using Timing Model

We use this notation to represent the timing model:

Z(t) = H
(
t;Z(t0),S,P(t0∼ t)

)
, (4.2)

where t0 is a starting time, S is the set of all triples of the form (αi, Ci, Ti) for i =

1, 2, . . . N . The timing model consists of a set of analytical algebraic and differential equa-

tions that can account for time-varying priorities and interruption of access to the resource

by higher priority tasks. By the definition of the state variable O(t), we have

δi[k] = oi(αi[k + 1]−)− Ci[k]

for all k and i, where αi[k + 1]− denotes the limit from the left.

Different real-time systems may have different timing models, which depends on whether

the real-time systems allow pre-emptions or not, and the systems are in continuous time

domain or discrete time domain. In this section, we will take the preemptive system as an

example to show how the analytical timing model can be derived. In Chapters 6, 7 and 8,

the timing models of specific applications will be presented.

4.3 Timing Model for Preemptive Network

The work [61] established a dynamic timing model for the preemptive scheduling disci-

pline. This section consists of a brief review of the timing model from [61]. We divide

[t0, tf] into disjoint sub-intervals [tw, tw+1) such that tasks are only generated at tw, but

not at any other time point within (tw, tw+1). The difference between two successive task

30

generating times is defined by

tw+1 − tw = min {d1(tw), ..., dN(tw), tf−tw} . (4.3)

Example 3 Consider the example in Figure 4.1. The division of [0, 7] into consecutive

sub-intervals is carried out using the following procedure. At the beginning of the first sub-

interval, let t0 = 0. We choose the first window t1−t0 = min {d1(0), d2(0), d3(0), 7−0}=

min {3, 4, 5, 7}=3 and the end of the sub-interval is t1. Then we choose the window length

t2−t1 and let the end point of this time interval be t2. The process is repeated until one

sub-interval reaches the ending time 7.

After we divide the optimization horizon into sub-intervals. The evolution of Z(t)

within any sub-interval [tw, tw+1) can be derived as follows:

At time tw: We first discuss the value of [di(t), ri(t), oi(t)] at times tw. For any task τi, the

values of the state vector at time tw, i.e. [di(tw), ri(tw), oi(tw)], depend on whether an new

task of τi is released at tw.

(1) if no task of τi is released at tw, we have that di(t−w) > 0. In this case, the state vector

holds its values from t−w to tw where t−w denotes the limit from left

dn(tw)=dn(t−w), rn(tw)=rn(t−w), on(tw)=on(t−w). (4.4)

(2) if a new task of τi is released at tw and the old task of τi is completed, then we have that

di(t
−
w)=0 and ri(t−w)=0. In this case, the state vector [di(t), ri(t), oi(t)] is updated as

di(tw)=Ti(tw), ri(tw)=Ci(tw), oi(tw)=0. (4.5)

According to equations (4.4) and (4.5), the evolution rules at the times tw can be summa-

31

rized as:

di(tw) = di(t
−
w) +

(
1− sgn(di(t

−
w))
)
Ti(tw),

ri(tw) = sgn(di(t
−
w) + ri(t

−
w)) ri(t

−
w) +

(
1− sgn(ri(t

−
w))
) (

1− sgn(di(t
−
w))
)
Ci(tw),

oi(tw) = oi(t
−
w) sgn(di(t

−
w)) + oi(t

−
w) sgn(ri(t

−
w))
(
1− sgn(di(t

−
w))
)
, (4.6)

where sgn is defined by sgn(q) = 1 if q > 0 and sgn(q) = 0 if q = 0 and the superscripts

− indicate a limit from the left.

On the Intervals (tw, tw+1): For the deadline variable di(t), it decreases constantly with

rate ḋi(t)=−1 within time interval (tw, tw+1). Therefore, the equation for di(tw + ∆t) for

values ∆ ∈ (0, tw+1 − tw) is written as

di(tw + ∆t) = di(tw)−∆t. (4.7)

For the remaining time ri(t), we know that the resource occupation time of τi is preempted

until the occupation of all higher priority tasks are completed. Then, the amount of time

within [tw, tw + ∆t] that is available to τi is

max

0,∆t−
∑

q∈HPi(tw)

rq(tw)

 ,

where HPi(tw) = {j ∈ {1, . . . , N} : pj(tw) < pi(tw)} is the set of all indices of control

systems which have higher priorities than control system i at time tw. The function max

guarantees that it will not give a negative result. Therefore, the remaining time of τi at time

tw + ∆t is

ri(tw + ∆t)=max

0, ri(tw)−max

0,∆t−
∑

q∈HPi(tw)

rq(tw)

 . (4.8)

32

For the deadline variable oi(t), we know that oi(t) will continuously increase before τi

finishes the occupation of the shared resource. Therefore, if τi has finished the occupation

before tw, i.e. ri(tw) = 0, we have

oi(tw + ∆t) = oi(tw). (4.9)

On the other hand, if τi has not finished the occupation before tw, i.e. ri(tw) > 0, then we

have that

oi(tw+∆t)=oi(tw)+min

∆t, ri(tw)+
∑

q∈HPi(tw)

rq(tw)

where ri(tw)+

∑
q∈HPi(tw)rq(tw) denotes the time needed for τi to complete its most recently

generated task. Our use of the min guarantees that the increase of oi(t) on [tw, tw + ∆) will

not exceed ∆t. Based on the above analysis, obtain

oi(tw+∆t) = oi(tw)+sgn(ri(tw)) min

∆t, ri(tw)+
∑

q∈HPi(tw)

ri(tw)

 (4.10)

Combining all of the evolution rules in (4.6)−(4.10) leads to the timing model (4.2) of

preemptive scheduling.

33

4.4 Summary of Constraints

We have refined the contention-resolving MPC design problem by making the constraints

related to timing more explicit. In summary, the co-design problem is

min
P(t),u(t)

N∑
i=1

Vi
(
xi(t,P(t0∼ t), ui(t0∼ t)), ui(t,P(t0∼ t))

)
; (4.11a)

s.t Z(t) = H
(
t;Z(t0),S,P(t0∼ t)

)
, δi[k] = oi(αi[k + 1]−)− Ci[k],

γi[k] = αi[k] + Ci[k] + δi[k] for k=1, ..., Ki; (4.11b)

ẋi(t) = fi(xi(t), ui(t)), yi(t) = gi(xi(t)), with ui(t)=ui(t0), t∈ [γi[0], γi[1])

and ui(t)=ui[k] for all t ∈ [γi[k], γi[k + 1]), k=1, ..., Ki; (4.11c)

ui(t) ∈ Ui, P(t) ∈ P({1, ..., N}); (4.11d)

where Ki is the largest index k satisfying γi[k+1] < tf and we define γi[0] = t0 for all

i. Equation (4.11b) is the timing model to compute δi[k] which has been introduced in

Sections 4.3 and 6.2. Equation (4.11c) represents the system dynamics, which summarizes

(3.1) and (3.5). Equation (4.11d) represents the control constraints and the priority assign-

ments are constrained to be in the set P({1, ..., N}) of all permutations of {1, 2, . . . , N}

following Definition 3.2.1.

4.5 Schedulability Test Using Worst-case Condition

In this section, we reproduce the same results as in Liu and Layland’s work [9] using the

timing state and significant moment analysis, which can provide guidance for deriving the

schedulability condition for more complicated systems. To achieve this goal, we consider

N periodic tasks characterized by (Ci, Ti) where i = 1, ..., N , assuming T1 < T2 < · · · <

TN , which is the same as [9].

34

4.5.1 Worst-case Scenario Analysis

The infinite-time feasibility condition is derived when considering the worst-case scenario.

If at the moment when the worst case occurs, the feasibility is satisfied, then the feasibility

is guaranteed at any time. We first study the case where N = 2 and later in this section

we will extend N to general cases. For systems with two periodic tasks, there are only two

possible priority assignments.

1. Task 1 has higher priority

The first priority assignment is that system 1 has higher priority than system 2. It is trivial

that if C1 ≤ T1, then system 1 is always schedulable. We define the b·c to be the rounding

down operator, i.e. bxc is the largest integer that is less than or equal to x. And the operator

{·} takes the fractional part of a real number, i.e., {x} = x− bxc.

Lemma 4.5.1 Task 2 is schedulable within time [tcl , t
c
l + T2] if OP1(d1(tcl)) + C2 ≤ T2

where OP1(d1(tcl)) is the resource occupation time of task 1 within [tcl , t
c
l + T2] satisfying

OP1(d1(tcl))=

C1

⌊
T2−d1(tcl)

T1

⌋
+min

(
T1

{
T2−d1(tcl)

T1

}
, C1

)
, if 0 ≤ d1(tcl) ≤ T1−C1

d1(tcl)−(T1−C1)+C1

⌊
T2−d1(tcl)

T1

⌋
+min

(
T1

{
T2−d1(tcl)

T1

}
, C1

)
,

if T1−C1 < d1(tcl) ≤ T1

(4.12)

Proof. Since the time interval we consider is one complete period of system 2, there is

only one task from system 2. And because system 2 has lower priority than system 1, not

all the time occupied by system 1 can be used by system 2. We first need to compute the

time occupied by system 1. The formula to compute the time occupied by system 1 need

to consider two cases, which is illustrated by Figure 4.2.

Case 1: if 0 ≤ d1(tcl) ≤ T1 − C1 as the Case 1 illustrated in Figure 4.2, then within the

time [tcl , t
c
l + d1(tcl)), the task from system 1 has been executed. The number of complete

35

Figure 4.2: Cases of scheduling two systems where system 1 has higher priority. Red
rectangles represent the time occupied by system 1 and blue rectangles represent the time
occupied by system 2.

periods of system 1 is

⌊
tcl + T2 − (tcl + d1(tcl))

T1

⌋
=

⌊
T2 − d1(tcl)

T1

⌋
.

And the end of the last complete period of system 1 within the time interval [tcl +d1(tcl), t
c
l +

T2] is tcl + d1(tcl) + T1

⌊
T2−d1(tcl)

T1

⌋
.

Within
[
tcl + d1(tcl), t

c
l + d1(tcl) + T1

⌊
T2−d1(tcl)

T1

⌋]
, the time occupied by system 1 is

C1

⌊
T2−d1(tcl)

T1

⌋
. And within the time interval

[
tcl + d1(tcl) + T1

⌊
T2−d1(tcl)

T1

⌋
, tcl + T2

]
, the

maximal time that will be occupied by system 1 is C1 since within this time interval, there

is no complete period of system 1. But the time that can be occupied by system 1 may be

less than C1 if the total duration of
[
tcl + d1(tcl) + T1

⌊
T2−d1(tcl)

T1

⌋
, tcl + T2

]
is less than C1,

which is illustrated by Case 1 in Figure 4.2. Therefore, we need to compare the value of

the duration and C1 and take the smaller value as the time that can be occupied by system

1. The duration of the time interval
[
tcl + d1(tcl) + T1

⌊
T2−d1(tcl)

T1

⌋
, tcl + T2

]
is

(tcl + T2)−
(
tcl + d1(tcl) + T1

⌊
T2 − d1(tcl)

T1

⌋)
= T2 − d1(tcl)− T1

⌊
T2 − d1(tcl)

T1

⌋
= T1

(
T2 − d1(tcl)

T1

− T1

⌊
T2 − d1(tcl)

T1

⌋)
= T1

{
T2 − d1(tcl)

T1

}
.

36

Therefore, the time occupied by system 1 within the time interval [tcl , t
c
l + T2] can be com-

puted as

OP1(d1(tcl)) = C1

⌊
T2 − d1(tcl)

T1

⌋
+ min

(
T1

{
T2 − d1(tcl)

T1

}
, C1

)
. (4.13)

Case 2: if T1 − C1 < d1(tcl) ≤ T1 as the Case 2 illustrated in Figure 4.2, then within the

time [tcl , t
c
l + d1(tcl)), the time duration d1(tcl) − (T1 − C1) is occupied by system 1. The

time occupied by system 1 within time interval [tcl + d1(tcl), t
c
l + T2] has the same formula

as Case 1. Therefore, we have

OP1(d1(tcl))=d1(tcl)−(T1−C1)+C1

⌊
T2−d1(tcl)

T1

⌋
+min

(
T1

{
T2−d1(tcl)

T1

}
, C1

)
(4.14)

Combining the above two cases, we have the formula (4.12). �

To extend Lemma 4.5.1 to infinite-time window, we need to find the worst case. Since

C2 and T2 are constant, the worst case occurs when OP1(d1(tcl)) is maximized.

Theorem 4.5.1 The maximal value of OP1(d1(tcl)), denoted as OP1,max, is obtained when

d1(tcl) = 0 or T1 and

OP1,max = C1

⌊
T2

T1

⌋
+min

(
T1

{
T2

T1

}
, C1

)
. (4.15)

Proof. For the Case 1 where 0 ≤ d1(tcl) ≤ T1 − C1, if d1(tcl) decreases, the term T2−d1(tcl)

T1

increases. Denote a d′1(tcl) which satisfies 0 ≤ d′1(tcl) < d1(tcl) ≤ T1 − C1. Then we have
T2−d′1(tcl)

T1
>

T2−d1(tcl)

T1
. Take the difference

OP1(d′1(tcl))−OP1(d1(tcl)) = C1

(⌊
T2 − d′1(tcl)

T1

⌋
−
⌊
T2 − d1(tcl)

T1

⌋)
+ min

(
T1

{
T2 − d′1(tcl)

T1

}
, C1

)
−min

(
T1

{
T2 − d1(tcl)

T1

}
, C1

)
.

The term
⌊
T2−d′1(tcl)

T1

⌋
−
⌊
T2−d1(tcl)

T1

⌋
can only be either 0 or 1 because of the rounding down

37

operator and d1(tcl)− d′1(tcl) < T1.

If
⌊
T2−d′1(tcl)

T1

⌋
−
⌊
T2−d1(tcl)

T1

⌋
= 0, i.e., the integer part does not change, then the fractional

part
{
T2−d′1(tcl)

T1

}
must be greater than

{
T2−d1(tcl)

T1

}
. Therefore, OP1(d′1(tcl))−OP1(d1(tcl)) ≥

0. If
⌊
T2−d′1(tcl)

T1

⌋
−
⌊
T2−d1(tcl)

T1

⌋
= 1, then

OP1(d′1(tcl))−OP1(d1(tcl)) = C1 + min

(
T1

{
T2 − d′1(tcl)

T1

}
, C1

)
−min

(
T1

{
T2 − d1(tcl)

T1

}
, C1

)
.

Since min
(
T1

{
T2−d′1(tcl)

T1

}
, C1

)
≥ 0 and min

(
T1

{
T2−d1(tcl)

T1

}
, C1

)
≤ C1, we have

min

(
T1

{
T2 − d′1(tcl)

T1

}
, C1

)
−min

(
T1

{
T2 − d1(tcl)

T1

}
, C1

)
≥ −C1

which leads to OP1(d′1(tcl))−OP1(d1(tcl)) ≥ C1 − C1 = 0.

Therefore, for Case 1, we can conclude that if d1(tcl) decreases, then OP1(d1(tcl)) in-

creases. The maximal value is obtained when d1(tcl) = 0 and OP1(0) = C1 bT2/T1c+

min (T1 {T2/T1} , C1).

For the Case 2 where T1−C1 < d1(tcl) ≤ T1, denote a d′′1(tcl) which satisfies T1−C1 <

d1(tcl) < d′′1(tcl) ≤ T1. Then we have T2−d′′1 (tcl)

T1
<

T2−d1(tcl)

T1
. Take the difference

OP1(d′′1(tcl))−OP1(d1(tcl)) = d′′1(tcl)− d1(tcl) + C1

(⌊
T2 − d′′1(tcl)

T1

⌋
−
⌊
T2 − d1(tcl)

T1

⌋)
+ min

(
T1

{
T2 − d′′1(tcl)

T1

}
, C1

)
−min

(
T1

{
T2 − d1(tcl)

T1

}
, C1

)
. (4.16)

The term
⌊
T2−d′′11(tcl)

T1

⌋
−
⌊
T2−d1(tcl)

T1

⌋
can only be either 0 or −1 because of the rounding

down operator. Similarly as the discussion of Case 1, if
⌊
T2−d′′11(tcl)

T1

⌋
−
⌊
T2−d1(tcl)

T1

⌋
= 0,

38

then

{
T2 − d′′1(tcl)

T1

}
−
{
T2 − d1(tcl)

T1

}
=
T2−d′′1(tcl)

T1

− T2−d1(tcl)

T1

=
d1(tcl)− d′′1(tcl)

T1

< 0 and

OP1(d′′1(tcl))−OP1(d1(tcl))=d′′1(tcl)−d1(tcl)

+ min

(
T1

{
T2 − d′′1(tcl)

T1

}
, C1

)
−min

(
T1

{
T2 − d1(tcl)

T1

}
, C1

)
.

Because of the minimal operator, we discuss the following three cases:

1. If C1 ≤ T1

{
T2−d′′1 (tcl)

T1

}
< T1

{
T2−d1(tcl)

T1

}
, then we have min

(
T1

{
T2−d′′1 (tcl)

T1

}
, C1

)
= C1

and min
(
T1

{
T2−d1(tcl)

T1

}
, C1

)
= C1. Therefore, OP1(d′′1(tcl))−OP1(d1(tcl)) = d′′1(tcl)−

d1(tcl) > 0.

2. If T1

{
T2−d′′1 (tcl)

T1

}
< T1

{
T2−d1(tcl)

T1

}
≤ C1, then we have min

(
T1

{
T2−d′′1 (tcl)

T1

}
, C1

)
=

T1

{
T2−d′′1 (tcl)

T1

}
and min

(
T1

{
T2−d1(tcl)

T1

}
, C1

)
= T1

{
T2−d1(tcl)

T1

}
. Therefore, OP1(d′′1(tcl))−

OP1(d1(tcl)) = d′′1(tcl)− d1(tcl) + T1

{
T2−d′′1 (tcl)

T1

}
− T1

{
T2−d1(tcl)

T1

}
= d′′1(tcl)− d1(tcl) +

T1
d1(tcl)−d

′′
1 (tcl)

T1
= d′′1(tcl)−d1(tcl) + d1(tcl)−d′′1(tcl) = 0.

3. If T1

{
T2−d′′1 (tcl)

T1

}
< C1 ≤ T1

{
T2−d1(tcl)

T1

}
, then we have min

(
T1

{
T2−d′′1 (tcl)

T1

}
, C1

)
=

T1

{
T2−d′′1 (tcl)

T1

}
and min

(
T1

{
T2−d1(tcl)

T1

}
, C1

)
= C1. Therefore, OP1(d′′1(tcl))−OP1(d1(tcl))=

d′′1(tcl)−d1(tcl)+T1

{
T2−d′′1 (tcl)

T1

}
−C1 ≥ d′′1(tcl)−d1(tcl)+T1

{
T2−d′′1 (tcl)

T1

}
−T1

{
T2−d1(tcl)

T1

}
= 0.

Summarizing the above three cases, we have OP1(d′′1(tcl))−OP1(d1(tcl)) ≥ 0.

39

If
⌊
T2−d′′11(tcl)

T1

⌋
−
⌊
T2−d1(tcl)

T1

⌋
= −1, then

{
T2 − d′′1(tcl)

T1

}
−
{
T2 − d1(tcl)

T1

}
=
T2−d′′1(tcl)

T1

−
⌊
T2 − d′′11(tcl)

T1

⌋
−
(
T2−d1(tcl)

T1

−
⌊
T2 − d1(tcl)

T1

⌋)
=
T2−d′′1(tcl)

T1

− T2−d1(tcl)

T1

−
(⌊

T2 − d′′11(tcl)

T1

⌋
−
⌊
T2 − d1(tcl)

T1

⌋)
=
d1(tcl)− d′′1(tcl)

T1

+ 1 =
d1(tcl)− d′′1(tcl) + T1

T1

and

OP1(d′′1(tcl))−OP1(d1(tcl))=d′′1(tcl)−d1(tcl)− C1

+ min

(
T1

{
T2 − d′′1(tcl)

T1

}
, C1

)
−min

(
T1

{
T2 − d1(tcl)

T1

}
, C1

)
.

Because T1 − C1 < d1(tcl) < d′′1(tcl) ≤ T1, we have d′′1(tcl) − d1(tcl) < T1 − (T1 − C1) =

C1. Therefore,
{
T2−d′′1 (tcl)

T1

}
−
{
T2−d1(tcl)

T1

}
> T1−C1

T1
> 0. If T1

{
T2−d1(tcl)

T1

}
≥ C1, i.e.,{

T2−d1(tcl)

T1

}
≥ C1

T1
, then

{
T2−d′′1 (tcl)

T1

}
> C1

T1
+ T1−C1

T1
= 1, which is contradict to the fact that{

T2−d′′1 (tcl)

T1

}
is a fractional part. Therefore, we must have T1

{
T2−d1(tcl)

T1

}
< C1. We will

discuss the following two cases:

1. If T1

{
T2−d1(tcl)

T1

}
< C1 ≤ T1

{
T2−d′′1 (tcl)

T1

}
, then we have min

(
T1

{
T2−d1(tcl)

T1

}
, C1

)
=

T1

{
T2−d1(tcl)

T1

}
and min

(
T1

{
T2−d′′1 (tcl)

T1

}
, C1

)
= C1. Therefore, OP1(d′′1(tcl))−OP1(d1(tcl))=

d′′1(tcl)−d1(tcl)− C1 + C1 − T1

{
T2−d1(tcl)

T1

}
≥ d′′1(tcl)−d1(tcl)− T1

{
T2−d1(tcl)

T1

}
≥ 0.

2. If T1

{
T2−d1(tcl)

T1

}
< T1

{
T2−d′′1 (tcl)

T1

}
≤ C1, then we have min

(
T1

{
T2−d′′1 (tcl)

T1

}
, C1

)
=

T1

{
T2−d′′1 (tcl)

T1

}
and min

(
T1

{
T2−d1(tcl)

T1

}
, C1

)
= T1

{
T2−d1(tcl)

T1

}
. Therefore, OP1(d′′1(tcl))−

OP1(d1(tcl))=d′′1(tcl)−d1(tcl)− C1 + T1

{
T2−d′′1 (tcl)

T1

}
− T1

{
T2−d1(tcl)

T1

}
= d′′1(tcl)−d1(tcl)−

C1 + T1
d1(tcl)−d

′′
1 (tcl)+T1
T1

= T1 − C1 > 0.

Summarizing the above two cases, we have OP1(d′′1(tcl))−OP1(d1(tcl)) ≥ 0. Therefore,

for Case 2, we can conclude that if d1(tcl) increases, then OP1(d1(tcl)) increases. The maxi-

mal value is obtained when d1(tcl) = T1 and OP1(T1) = C1 bT2/T1c+min (T1 {T2/T1} , C1).

�

Remark 1 Here d1(tcl) = 0 or T1 is actually the critical time instant introduced in [9].

40

Theorem 4.5.1 shows the great advantage of using the SMA because the worst case can be

justified by derivations from mathematical equations.

Then based on the Theorem 4.5.1, we can have

Corollary 4.5.1 Tasks from system 2 are schedulable at any time t satisfying t ≥ tcl if

C1 bT2/T1c+min (T1 {T2/T1} , C1) + C2 ≤ T2.

Proof. If a task from system 2 is schedulable at the worst-case moments, i.e., the moment

shown in Theorem 4.5.1, then it is always schedulable. �

2. Task 2 has higher priority

The other priority assignment is that system 2 has higher priority than system 1. It is trivial

that if C2 ≤ T2, then system 2 is always schedulable.

Lemma 4.5.2 Task 1 is schedulable within time [tcl , t
c
l + T1] if OP2(d1(tcl)) + C1 ≤ T1

where OP2(d1(tcl)) is the resource occupation time of task 2 within [tcl , t
c
l + T1] satisfying

OP2(d2(tcl))=

min (T1 − d2(tcl), C2) , if 0 ≤ d2(tcl) ≤ T2−C2

T1 − T2 + C2, if T2−C2 < d2(tcl) ≤ T1

d2(tcl)− (T2 − C2), if T1 < d2(tcl) ≤ T2.

(4.17)

Proof. Since the time interval we consider is one complete period of system 1, there is at

most one task from system 2. And because system 1 has lower priority than system 2, not

all the time occupied by system 2 can be used by system 1. We first need to compute the

time occupied by system 2. The formula to compute the time occupied by system 2 need

to consider three cases, which is illustrated by Figure 4.3.

Case 1: if 0 ≤ d2(tcl) ≤ T2−C2, then a task from system 2 is generated at time

tcl + d2(tcl). If the end of the execution of this task may end earlier than or at tcl + T1,

then OP2(d2(tcl)) = C2. If the end of the execution of this task may end later than

41

Figure 4.3: Cases of scheduling two systems where system 2 has higher priority. Red
rectangles represent the time occupied by system 1 and blue rectangles represent the time
occupied by system 2.

tcl + T1, illustrated in Figure 4.2, then OP2(d2(tcl)) = T1 − d2(tcl). Therefore, we have

OP2(d2(tcl)) = min (T1 − d2(tcl), C2).

Case 2: if T2−C2 < d2(tcl) ≤ T1, then part of the task from system 2 is executing at

time tcl . The occupation time of the current task from system 2 is d2(tcl)−(T2−C2). And

since d2(tcl) ≤ T1, the generation time of next task from system 2 tcl + d2(tcl) is within the

interval [tcl , t
c
l + T1]. Therefore, the idle time within the interval [tcl , t

c
l + T1] is T2 −C2 and

we have OP2(d2(tcl)) = T1 − (T2 − C2) = T1 − T2 + C2.

Case 3: if T1 < d2(tcl) ≤ T2, then part of the task from system 2 is executing at time

tcl and the generation time tcl + d2(tcl) of next task from system 2 is greater than tcl + T1.

Therefore, the occupation time of the task from system 2 is OP2(d2(tcl)) = d2(tcl)− (T2 −

C2). �

Theorem 4.5.2 The maximal value of OP2(d2(tcl)), denoted as OP2,max, equals to C2,

which is obtained when d2(tcl) = T2 if T1 < C2 or d2(tcl) = T2 and 0 ≤ d2(tcl) ≤ T1 − C2.

Proof. From Case 3 in (4.17), OP2(d2(tcl)) increases if d2(tcl) increases. Therefore, the

maximal value of OP2(d2(tcl)) is obtained when d2(tcl) = T2 and OP2,max = C2.

42

For Case 2 in (4.17), OP2(d2(tcl)) is a constant T1 − T2 + C2. Since T1 ≤ T2, we have

T1 − T2 + C2 ≤ C2.

For Case 1 in (4.17), if T1 < C2, then the maximal value of T1 − d2(tcl) is T1 and

T1 < C2. Therefore, min (T1 − d2(tcl), C2) = T1−d2(tcl). And since 0 ≤ d2(tcl) ≤ T2−C2,

then maximal value of T1−d2(tcl) is T1 which is less thanC2 in Case 3. If T1 ≥ C2, then the

maximal value of T1 − d2(tcl) is T1 and T1 > C2. Therefore, min (T1 − d2(tcl), C2) = C2

when 0 ≤ d2(tcl) ≤ T1 − C2, which equals to C2 in Case 3. �

Corollary 4.5.2 Tasks from system 1 are schedulable at any time t satisfying t ≥ tcl if

C1 + C2 ≤ T1.

Proof. If a task from system 1 is schedulable at the worst-case moments, i.e., the moment

shown in Theorem 4.5.2, then it is always schedulable. �

3. Task 1 should have higher priority

Then we will prove a better priority assignment is that system 1 has higher priority than

system 2 in the sense of schedulability, which is the priority assignment under RMS.

Theorem 4.5.3 If task 2 is assigned with higher priority and the system is schedulable at

any time, then the system must be schedulable if task 1 is assigned with higher priority than

task 2.

Proof. We will show thatC1+C2 ≤ T1 impliesC1 bT2/T1c+min (T1 {T2/T1} , C1)+C2 ≤

T2. Since T2 ≥ T1, we have bT2/T1c ≥ 1 and

C1 bT2/T1c+min (T1 {T2/T1} , C1) ≤ C1 bT2/T1c+ T1 {T2/T1}+ C2

≤ C1 bT2/T1c+ T1 {T2/T1}+ C2 bT2/T1c

= (C1 + C2) bT2/T1c+ T1 {T2/T1} . (4.18)

43

Because C1 + C2 ≤ T1, we have (C1 + C2) bT2/T1c+ T1 {T2/T1} ≤ T1 bT2/T1c+

T1 {T2/T1} = T1 · T2/T1 = T2. �

4. Schedulability for N Tasks

We now extend our results to N tasks using the results of two tasks.

Corollary 4.5.3 If a feasible fixed priority assignment exists for some task set, the RMS

priority assignment is feasible for that task set.

Proof. Let τ1, τ2, ..., τN be a set of N tasks with a certain feasible priority assignment P.

Let τi and τj be two tasks of adjacent priorities in such an assignment with τi being the

higher priority one, i.e., pj = pi + 1, and satisfying that Ti > Tj . If we can not find such a

pair. Then the feasible priority assignment P is assigned by RMS strategy. If we can find

such pair, then we will interchange the priorities of τi and τj which leads to a new priority

assginment P′ with p′j = pi, p′i = pj and p′n = pn if n 6= i and n 6= j. Then we will

show that if the tasks τ1, τ2, ..., τN are schedulable under P, they must also be schedulable

under P′. Since tasks i and j have adjacent priorities, interchanging the priorities of τi and

τj does not affect the scheduling behaviors of the other tasks that are neither i nor j. This

means that a task n with n 6= i and n 6= j occupies the exactly same time intervals under P′

as under P. Therefore, we only need to consider two tasks case as discussed in Theorem

4.5.3, which has already shown that if task i with larger period is assigned with higher

priority and the system is schedulable at any time, then the system must be schedulable if

task j with smaller period is assigned with higher priority than task i. And since the rate-

monotonic priority assignment can be obtained from any priority ordering by a sequence

of pairwise priority re-orderings as the way we interchange the priorities between i and j,

we prove this corollary. �

Based on Corollary 4.5.3, RMS is the optimal fixed scheduling methods. In the rest of

this subsection, we will directly use the priority assignments under RMS, i.e., if there are

systems j and i with indices j < i, then pj < pi because Tj < Ti.

44

Lemma 4.5.3 Task iwhere i ≥ 2 is schedulable within time [tcl , t
c
l+Ti] if

∑i−1
j=1 OPj(dj(t

c
l))+

Ci ≤ Ti where OPj(dj(t
c
l)) is the resource occupation time of task j within [tcl , t

c
l +Ti] sat-

isfying

OPj(dj(t
c
l))=

Cj

⌊
Ti−dj(tcl)

Tj

⌋
+min

(
Tj

{
Ti−dj(tcl)

Tj

}
, Cj

)
, if 0 ≤ dj(t

c
l) ≤ Tj−Cj

dj(t
c
l)−(Tj−Cj)+Cj

⌊
Ti−dj(tcl)

Tj

⌋
+min

(
Tj

{
Ti−dj(tcl)

Tj

}
, Cj

)
,

if Tj−Cj < dj(t
c
l) ≤ Tj

(4.19)

Proof. Since the optimal fixed priority assignment is RMS, for any task from system i, the

tasks from system with index j < i have higher priority than i. For the task from system

i to be schedulable, the total occupation time of all the higher prioritized tasks should be

less than or equal to Ti − Ci. The occupation time of tasks from system j can be derived

similarly as 4.12 in Lemma 4.5.1 with system j replacing system 1 and system i replacing

system 2. Then we can obtain (4.19) �

Theorem 4.5.4 The maximal value of OPj(dj(t
c
l)), denoted as OPj,max, is obtained when

dj(t
c
l) = 0 or Tj and OPj(dj(t

c
l)) = Cj

⌊
Ti
Tj

⌋
+min

(
Tj

{
Ti
Tj

}
, Cj

)
.

Proof. The proof is similar as Theorem 4.5.1 with system j replacing system 1 and system

i replacing system 2. �

This theorem shows that the worst-case occurs when tasks from all systems are generate

at the same time, which is the critical instant proved in Theorem 1 in [9]. Then we can have

the infinite-time schedulability test for tasks from system i as

Corollary 4.5.4 Task i is schedulable at any time t ≥ tcl if
∑i−1

j=1 OPj,max + Ci ≤ Ti.

Proof. Since the optimal fixed priority assignment is RMS, for any task i, the tasks with

index j < i have higher priority than i. Therefore, the worst-case scenario for task i is the

occupation time of the higher prioritized systems reach their maximal and
∑i−1

j=1 OPj,max +

Ci is less than or equal to one period of task i. �

45

4.5.2 Least Upper Bound of Utilization

In real-time system, utilization factor U =
∑N

i=1(Ci/Ti) is used to test feasibility. Since

RMS is optimal fixed priority assignment, the utilization factor achieved by the RMS is

greater than or equal to the utilization factor for any other priority assignment for that task

set. Therefore, the least upper bound of utilization factor is the infimum of the utilization

factors corresponding to the RMS over all possible request periods and run-times for the

tasks. The bound is first determined for two tasks, then extended for an arbitrary number

of tasks.

Figure 4.4: Two cases of utility bounds.

Theorem 4.5.5 For a set of two tasks with fixed priority assignment, the least upper bound

to the processor utilization factor is Umin = 2(2
1
2 − 1).

Proof. Let τ1, τ2 be two tasks with periods T1 and T2, respectively. Assume that T1 ≤ T2.

According to RMS, τ1 has higher priority. We will adjust C2 to fully utilize the available

shared resource time. Similar as Lemma 4.5.1, we need to consider two cases as illustrated

in Figure 4.4:

Case 1: if C1 ≤ T1 {T2/T1}, then min (T1 {T2/T1} , C1) = C1. Therefore, C2 ≤ T2 −

C1 bT2/T1c − C1 = T2 − C1 dT2/T1e where d·e is the rounding up operator. Then U =

C1

T1
+ C2

T2
≤ 1 + C1 [(1/T1)− (1/T2)dT2/T1e] and U decreases if C1 increases.

Case 2: if C1 > T1 {T2/T1}, then min (T1 {T2/T1} , C1) = T1 {T2/T1}. Therefore, C2 ≤

46

T2 − C1 bT2/T1c − T1 {T2/T1} = −C1 bT2/T1c + T2 bT2/T1c. Then U = C1

T1
+ C2

T2
≤

(T2/T1)bT2/T1c+ C1 [(1/T1)− (1/T2)bT2/T1c] and U increases if C1 increases.

We define the upper bound of the utilization factor as

U

(
C1,

T2

T1

)
=

1+C1 [(1/T1)−(1/T2)dT2/T1e] , if 0≤C1≤T1{T2/T1}

(T2/T1)bT2/T1c+C1 [(1/T1)−(1/T2)bT2/T1c] , if C1>T1{T2/T1}

When C1 =T1{T2/T1}, we have

U

(
T1

{
T2

T1

}
,
T2

T1

)
= 1− (T1/T2) [dT2/T1e−(T2/T1)] [(T2/T1)−bT2/T1c] (4.20)

Let I = bT2/T1c and f = {T2/T1}, we can rewrite (4.20) as

U(I, f)=1− f(1− f)/(I + f).

Since U(I, f) is monotonic increasing with I , the minimum of U(I, f) occurs at the small-

est possible value of I , namely, I = 1. Then when minimizing U over f , we can take the

derivative of U(1, f) with respect to f and have

∂U(I, f)

∂f
=
f 2 + 2f − 1

(1 + f)2
.

When f =
√

2− 1, ∂Umin(1,f)
∂f

= 0. And if 0 ≤ f <
√

2− 1, ∂Umin(1,f)
∂f

< 0 and if
√

2−1 < f < 1,∂Umin(1,f)
∂f

> 0, U = U(2,
√

2−1) = 2(
√

2−1), which is the relation we

want to prove. �

Corollary 4.5.5 For a set of N tasks with fixed priority order, and the restriction that the

ration between any two request periods is less than 2, the least upper bound to the processor

utilization factor is Umin = N(2
1
N − 1).

Proof. The proof of this corollary is the same as the proofs of Theorem 4 in [9]. Here

47

we will recap the proof. Let C1, C2, ..., CN be the execution times of the tasks that fully

utilize the processor and minimize the processor utilization factor. Assume that TN >

TN−1 > · · · > T2 > T1. Let U denote the processor utilization factor. We will show that

C1 = T2 − T1 by proof of contradiction.

First we assume thatC1 = T2−T1+∆ with ∆ > 0 andC2, ..., CN be the execution times

of the tasks that fully utilize the processor and minimize the processor utilization factor. Let

C ′1 = T2 − T1. In order to let the tasks fully utilize the processor, we can let C ′2 = C2 + ∆

and we have C1 + C2 = C ′1 + C ′2 which means that C ′1 and C ′2 utilize the same amount of

time as C1 and C2 in the time horizon [0, T2]. Then we assume that C ′3 = C3, ..., C
′
N = CN .

Let U ′ denote the corresponding utilization factor of C ′1, C
′
2, ..., C

′
N . Since C1, C2, ..., CN

fully utilize the processor and minimize the processor utilization factor, we have U ′ ≥ U .

However, if we compute the difference between U and U ′, then we have

U − U ′ =
(
C1

T1

+
C2

T2

+ · · ·+ CN
TN

)
−
(
C ′1
T1

+
C ′2
T2

+ · · ·+ C ′N
TN

)
=
C1 − C ′1
T1

+
C2 − C ′2
T2

=
∆

T1

− ∆

T2

Since T1 < T2, we have ∆
T1
− ∆

T2
> 0 which means that U > U ′. It contradicts to the fact

that C1, C2, ..., CN minimize the processor utilization factor.

Alternatively, we assume that C1 = T2 − T1 − ∆ with ∆ > 0 and C2, ..., CN be the

execution times of the tasks that fully utilize the processor and minimize the processor uti-

lization factor. Let C ′′1 = T2−T1, C ′′2 = C2−2∆,..., and C ′′N = CN . Again, C ′′1 , C
′′
2 , ..., C

′′
N

fully utilize the processor. Let U ′′ denote the corresponding utilization factor. We have

U − U ′′ =
(
C1

T1

+
C2

T2

+ · · ·+ CN
TN

)
−
(
C ′′1
T1

+
C ′′2
T2

+ · · ·+ C ′′N
TN

)
=
C1 − C ′1
T1

+
C2 − C ′2
T2

= −∆

T1

+
2∆

T2

> 0

which contradicts to the fact that C1, C2, ..., CN minimize the processor utilization factor.

48

Therefore, if U is the minimum utilization, then C1 = T2 − T1. In a similar way,

we can show that C2 = T3 − T2, C4 = T4 − T3, ..., CN−1 = TN − TN−1 and CN =

TN − 2(C1 + C2 + · · ·+ CN−1).

To simplify the notation, we define gi = (TN − Ti)/Ti where i = 1, 2, ..., N . Thus,

Ci = Ti+1 − Ti = giTi − gi+1Ti+1 where i = 1, 2, ..., N − 1 and CN = TN − 2g1T1.

And we have

U =
N∑
i=1

Ci
Ti

=
N−1∑
i=1

[
gi − gi+1

Ti+1

Ti

]
+ 1− 2g1

T1

TN

=
N−1∑
i=1

[
gi − gi+1

gi + 1

gi+1 + 1

]
+ 1− 2

g1

g1 + 1

= 1 + g1
g1 − 1

g1 + 1
+

N−1∑
i=2

gi
gi − gi−1

gi + 1
. (4.21)

To find the least upper bound to the utilization factor, (4.21) must be minimized over the

gj’s. This can be done by setting the first derivative of U with respect to each of the gj’s

equal to zero, and solving the resultant difference equations:

∂U

∂gi
=
g2
j + 2gj − gj−1

(gj + 1)2
− gj+1

gj+1 + 1
= 0, j = 1, 2, ..., N − 1. (4.22)

with the definition g0 = 1 for the convenience. The general solution to (4.22) is

gj = 2(m−j)/m − 1, j = 0, 1, ..., N − 1. (4.23)

It follows that

Umin = N
(

2
1
N − 1

)
which is the result we want to prove. �

Then, we will remove the restriction that the ration between any two request periods is

less than 2, which we can state as:

49

Theorem 4.5.6 For a set of N tasks with fixed priority order, the least upper bound to the

processor utilization factor is Umin = N(2
1
N − 1).

Proof. Let τ1, τ2, ..., τN be a set ofN tasks that fully utilize the processor. Let U denote the

corresponding utilization factor. Suppose that for some i, bTN/Tic ≥ 2. To be specific, let

TN = qTi + r, q ≥ 2 and r ≥ 0. We can replace the task τi by a task τ ′i such that T ′i = qTi

and C ′i = Ci, and increase CN by the amount needed to again fully utilize the processor.

This increase is at most Ci(q − 1), the time within the critical time zone of τN occupied

by τi but not by τ ′i . Let U ′ denote the utilization factor of such a set of tasks. We have

U ′ < U+[(q−1)Ci/TN]+(Ci/T
′
i)−(Ci/Ti) or U ′ ≤ U+Ci(q−1)[1/(qTi+r)−(1/qTi)].

Since q − 1 > 0 and 1/(qTi + r)− (1/qTi) ≤ 0, we have U ′ ≤ U . Therefore we conclude

that in determining the least upper bound of the processor utilization factor, we need only

consider task sets in which the ratio between any two request periods is less than 2. The

theorem thus follows directly from Corollary 4.5.5. �

50

CHAPTER 5

CONTENTION-RESOLVING MPC ALGORITHM

In this Chapter, we propose a novel method to solve the mixed integer programming prob-

lem associated with contention-resolving MPC formulated in Chapter 3.3 and introduce

a general framework for the contention-resolving MPC algorithm. The proposed method

converts the difficult MIP into a path planning problem that can be solved iteratively. The

key idea of this method is based on two insights. First, we only need to assign priorities

at the significant moments when contentions occur, which are a finite number of time in-

stances on [t0, tf]. Besides, at each contention moment, there are only a finite number of

customers competing for the resource. Each assignment of the priority to the finite number

of customers will produce a branch of a decision tree, as illustrated by Figure 5.1. The

tree will contain a finite number of branches, and an optimal solution must be a path from

the root of the tree at the starting time t0 to one of the leaves at time tf . There are only

finitely many such paths that can be searched. Second, among the finitely many paths, not

all need to be searched to find the optimal solution. A search algorithm such as the A-star

can efficiently search the branches that most likely constructing the optimal path.

5.1 Contention Detection

The first step of our method is to find the significant moments when contentions occur. The

significant moment analysis and timing model offer a natural way to detect the contention

moments. The following propositions explain how to detect contentions:

Proposition 5.1.1 In preemptive scheduling, a contention starts at time t if and only if the

51

following three conditions hold:

N∑
i=1

sgn(ri(t)) ≥ 2,
N∑
i=1

sgn(ri(t
−)) ≤ 1, and t = αi[k] for some i and some k. (5.1)

Proof. Based on Definition 4.1.2, if a control system i has not finished the current task at

t, then ri(t) > 0 and sgn(ri(t)) = 1. Since ri(t) is always non-negative, sgn(ri(t)) ≥ 0 for

all t. Therefore,
N∑
i=1

sgn(ri(t)) ≥ 2

is equivalent to two or more customers wanting to access the shared resource, which means

a contention is occurring at time t. Since

N∑
i=1

sgn(ri(t
−)) ≤ 1

means that no contention happens at time instants before t that are close to t, the result

follows. �

Proposition 5.1.2 In non-preemptive scheduling, a contention starts at time t if and only

if t is a significant moment tw that satisfies the following two conditions hold:

N∑
i=1

[1− sgn(Ci(tw)− ri(tw))] ≥ 2, rID(t−w) = 0 (5.2)

where rID(t) is a simplified notation for the remaining time rID(t)(t) of timing state variable

ID at any t and tw is a significant moment computed by equation (6.5).

Proof. For non-preemptive scheduling, a task for a control system i is waiting to get access

to the shared resource at a time t or is generated at time t if and only if ri(t) = Ci(t),

i.e., 1− sgn(Ci(t)− ri(t)) = 1. Therefore,
∑N

i=1 [1− sgn(Ci(t)− ri(t))] ≥ 2 if and only

if two or more control systems are waiting for access to the shared resource at time t or

generating tasks at time t. Therefore, for necessity, if a contention starts at time t, then t

52

is one significant moment tw for some i and w, and the highest prioritized control system

among the contending control systems at time t will either finish a task at time t and then

start a new task at time t using the shared resource, or else it will go from not occupying the

shared resource to occupying the shared resource at time t, so the condition rID(t−) = 0

from (5.2) holds. For sufficiency, if the two conditions (5.2) are satisfied, then at time tw,

multiple control systems are in contention for the shared resource which must be a time

when some control system requests usage of the shared resource, so a contention starts at

time t. �

Based on the contention moments, we introduce a tree structured directed graph which

will be used to model how different priority assignments affect the system behavior and

analyze our algorithm. Figure 5.1 shows an example of decision tree. In the decision

tree, each leaf represents a contention time satisfying Proposition 5.1.1 or 5.1.2. In this

figure, the blue circle represents the root of the decision tree, and grey circles and dots

represent internal leaves. The decision tree is expanded in the direction of the arrows,

which represent branches. The integers in brackets represent the priorities. The red cross

means that the branch does not satisfy the schedulability test and will lead to infeasible

solutions, therefore, it has been cut off. The bottom sub-figure shows the schedule along

the green path. Colored rectangles without diagonal lines in the lower figure represent the

time delay δi. Colored rectangles with diagonal lines represent times when each control

system occupies the resource.

We denote the contention times by tcl where l is the index of its corresponding leaf. At

each contention time, there are only a finite number of control systems competing for the

resource. Each possible assignment of the priority to the finite number of control systems

will produce a branch of a decision tree.

Remark 2 The construction of the entire decision tree is not necessary for contention re-

solving MPC to search for an optimal solution. However, for the purpose of clearly pre-

senting the concept for the sampling based optimization method, we will discuss how the

53

Figure 5.1: Decision tree to solve the co-design problem for preemptive scheduling within
a finite time window.

tree can be fully constructed.

5.2 Construction of Decision Tree

The decision tree construction starts from the root v0 associated with the MPC starting

time t0. The construction is performed iteratively. During the construction, if a leaf has no

branches pointing out from it, then it is called unexpanded. At each iteration, new branches

are generated from each unexpanded leaf and new leaves are generated at the end of each

branch. For an unexpanded leaf l, let Λ(tcl) denote the set of control systems having con-

tentions at a contention time tcl , where Λ(tcl) = {i ∈ {1, .., N} : ri(t
c
l) > 0} for preemptive

scheduling and Λ(tcl) = {i ∈ {1, .., N} : ri(t
c
l) = Ci(t

c
l)} for non-preemptive schedul-

ing. Also, M is the number of elements of Λ(tcl). Let Pm denote the m-th permutation in

P({1, ...,M}), so m ∈ {1, 2, ..,M !}. For leaf l, we generate M ! branches from it. Each

branch corresponds to a unique choice of the priority assignment in P({1, ...,M}). The

m-th branch expands from vl and connects to a new leaf vj+m based on Pm, where j is

the number of existing leaves in the tree before we generate new branches from leaf vl.

54

We say that the leaf vj+m is a child leaf of vl or leaf vl is the parent leaf of vj+m. The

contention time associated with the leaf vj+m is the next contention time occurring after

tcl that is scheduled by priority assignment Pm. Different branches may end with different

next contention times after tcl . The iterative construction terminates when the contention

times of all unexpanded leaves are greater than or equal to tf . We call these unexpanded

leaves terminal leaves and assign tf to them as their contention times.

Let us revisit the example shown in Figure 5.1. Contentions happen four times across

the time interval [t0, tf]. At the first contention time tc1, control system 1 and 2 have a

contention. The leaf 1 has two branches corresponding to the 2! = 2 different priority

assignments. Similarly, at each of the following three contention times, two control systems

have contentions, and each leaf has two branches corresponding to two different priority

assignments.

5.3 Schedulability (Feasibility) Test

To guarantee normal operation of the real-time system, the first task is to check whether all

the control systems are schedulable under the priority assignment along one branch. When

constructing the decision tree, it may expand a branch (l, j) with its associated priority

assignment Pm which will unavoidably lead to unschedulablility. This means that some

tasks scheduled under the priority assignment Pm within
[
tcl , t

c
j

]
are not schedulable or

based on the timing state values of leaf vj , some tasks are not schedulable under any priority

assignments. Then we should prune branch (l, j) instead of generating this branch and leaf

vj . To identify the branch and leaves that will lead to unschedulablility, we need conditions

to test the schedulability given the timing states of a leaf.

When constructing a branch (l, j) with its associated priority assignment Pm. The

schedulability test are divided into two steps as illustrated in Figure 5.2:

1. Finite-time schedulability test for branch (l, j) under fixed priority assignment Pm within

the finite-time window
[
tcl , t

c
j

]
, where tcl and tcj are the contention time instants of leaves vl

55

Figure 5.2: Illustration of the schedulability test when constructing a branch (l, j) with
associated priority assignment Pm.

and vj , respectively.

2. Infinite-time schedulability test after the contention time instant of leaf vj under the

“best” priority assignment. For example, for periodic and preemptive systems, EDF has

been proved to be the best scheduling methods in [9].

If the branch (l, j) fails any of the above schedulability tests, then this branch leads to

infeasible solutions. Therefore, it need to be pruned when constructing the decision tree,

as the one be cover by the red cross in Figure 5.1.

5.3.1 Finite-time Window Schedulability Test

Since the priority assignment within the time interval is selected to be the fixed Pm, we

need to perform the schedulability analysis as follows:

Definition 5.3.1 A finite-time schedulability test over a time interval
[
tcl , t

c
j

]
checks if all

tasks for all control systems are able to meet their deadlines within
[
tcl , t

c
j

]
under the prior-

ity assignment Pm.

Consider a set of tasks Γ = {τ1, ..., τi, ..., τN} within
[
tcl , t

c
j

]
. The task set Γ is schedu-

lable within
[
tcl , t

c
j

]
if and only if Γ is schedulable within each sub-interval [tw, tw+1) ⊆[

tcl , t
c
j

]
, and Γ is schedulable within a sub-interval [tw, tw+1) if and only if each individual

task τi ∈ Γ is schedulable within [tw, tw+1). The following theorem states the necessary

56

and sufficient conditions for the schedulability of τi within a sub-interval [tw, tw+1).

Theorem 5.3.1 A task τi is schedulable within [tw, tw+1) if and only if it satisfy ONE of the

following conditions:

1. oi(t−w+1) = Ti(t
−
w+1) and ri(t−w+1) = 0;

2. oi(t−w+1) < Ti(t
−
w+1).

Proof. If the dynamic response time of τi is equal to its relative deadline at time t−w+1, i.e.

oi(t
−
w+1) = Ti(t

−
w+1), then the schedulability of τi within [tw, tw+1) is satisfied if and only

if the effective task of τi has completed before time t−w+1, i.e. ri(t−w+1) = 0.

If the dynamic response time of τi is smaller than its relative deadline at time t−w+1, i.e.

oi(t
−
w+1) < Ti(t

−
w+1), the schedulability of τi within [tw, t

−
w+1) is automatically guaranteed.

�

At any time tcl , given the task characteristics {Ci(t), Ti(t)}Ni=1 for t ∈
[
tcl , t

c
j

]
, we can

use Algorithm 1 to perform the dynamic schedulability test over the time interval
[
tcl , t

c
j

]
.

Algorithm 1 iteratively checks the schedulability of Γ within each sub-interval in the fol-

lowing ways:

1. At the beginning of any sub-interval, it calculates the end of the current sub-interval

according to equation (4.3), as shown in Lines 12 of Algorithm 1.

2. It utilizes the dynamic timing model in equation (4.2) to obtain the values of the

timing state variables at the end of the current sub-interval, as indicated by Line 12.

3. It evaluates the schedulability of τi, where i = 1, ..., N , within [tw, t
−
w+1] according

to Theorem 5.3.1, as shown in Lines 14 − 22. To make the sub-interval propagates

seamlessly within
[
tcl , t

c
j

]
, it assigns the starting time of the next sub-interval to be

the ending time of the current sub-interval, as indicated by Line 23.

The variable dsi[w] indicates the dynamic schedulability test result of τi within [tw, t
−
w+1]:

when τi is schedulable within [tw, t
−
w+1], dsi[w] = 1; otherwise, dsi[w] = 0. The set

57

Algorithm 1 Dynamic Schedulability Test
1: Data: tcl , t

c
j , Z(tcl), {Ci(t), Ti(t)}Ni=1

2: Result: {DSi}N
i=1

3: tw = tcl ;
4: for each τi ∈ Γ do
5: DSi = [];
6: while tw < tcj do
7: for each τi ∈ Γ do
8: if di(t−w) = 0 then
9: di(tw) = Ti(tw);

10: else
11: di(tw) = di(t

−
w);

12: tw+1 = tw + min{d1(tw), ..., dN(tw), tcj − tw};
13: Z(t−w+1) = H

(
t−w+1;Z(t−w),S,Pm

)
;

14: for each τi ∈ Γ do
15: if di(t−w+1) = 0 then
16: if oi(t−w+1) < Ti(t

−
w+1) then

17: dsi = 1;
18: else
19: dsi = 0;
20: else
21: dsi = 1;
22: DSi = {DSi, dsi};
23: w = w + 1;

DSi = { dsi[1], dsi[2], · · · } contains the dynamic schedulability test results of τi within all

sub-intervals that belong to
[
tcl , t

c
j

]
. The task τi is schedulable within

[
tcl , t

c
j

]
if and only if

minw{DSi} = 1.

Condition 5.3.1 (Finte-time Schedulability): The task set Γ is schedulable within
[
tcl , t

c
j

]
if and only if all individual tasks are dynamically schedulable within

[
tcl , t

c
j

]
, i.e.

min
1≤i≤N

{
min

w≤w≤w
dsi[w]

}
= 1.

wherew is the smallest integerw satisfying tw ≥ tcl andw is the largest integerw satisfying

tw ≤ tcj .

58

5.3.2 Infinite-time Window Schedulability Test

The condition can be formualted as

Condition 5.3.2 (Infinte-time Schedulability): For a leaf j, if DS∞
(
Z(tcj)

)
≤ 0, then the

system is schedulable for any time t ≥ tcj .

The function DS∞
(
Z(tcj)

)
can be viewed as the maximal utility bound given the initial

timing state of leaf j minus a constant. For systems with different task models, we need to

derive different formula for DS∞
(
Z(tcj)

)
.

For example, as we already shown in Section 4.5, for a preemptive and periodic system

under fixed priority assignment, the function is

DS∞
(
Z(tcj)

)
=

N∑
i=1

Ci
Ti
−N(2

1
N − 1).

For a preemptive and periodic system under dynamic priority assignment, the function

is

DS∞
(
Z(tcj)

)
=

N∑
i=1

Ci
Ti
− 1. (5.3)

As already proved in [110], if (1) all the timing characteristics of all system are integers

and (2) there is no inserted idle time, then the sufficient and necessary condition for infinte-

time schedulability of non-preemptive system is

Theorem 5.3.2 A set of tasks is schedulable without preemption if and only if the following

two conditions are satisfied:

1.
∑N

i=1
Ci
Ti
≤ 1;

2. ∀i, 1 < i ≤ N ;∀L, T1 < L < Ti : L ≥ Ci +
∑i−1

j=1 Cj

⌊
L−1
Tj

⌋
.

The assumption (1) that the timing parameters are integers can be satisfied in a discrete-

time systems, which we will discuss in Chaper 8. The assumption (2) that there is no

59

inserted idle time is equivalent to the CIA assumption. Therefore, for a discrete-time non-

preemptive system, the function are

DS∞0 =
N∑
i=1

Ci
Ti
− 1 and

DS∞i (L) = Ci +
i−1∑
j=1

Cj

⌊
L− 1

Tj

⌋
− L,∀i, 1 < i ≤ N ; ∀L, T1 < L < Ti. (5.4)

5.4 Branch Cost

After constructing the decision tree and pruning the infeasible branches, we define a cost

for each branch. Along one branch (l, j) whose associated priority assignment is Pm, we

first calculate the significant moments γi[k] for all i and k such that tcl ≤ γi[k] ≤ tcj ,

Z(t) = H
(
t;Z(tcl),S,Pm

)
and γi[k] = αi[k] + oi(αi[k + 1]−) (5.5)

where oi(αi[k + 1]−) for each k is generated by the timing model except with a known

priority assignment Pm instead of all possible priority assignments as in (6.4c). Then the

branch cost wl,j is defined as

wl,j =
N∑
i=1

wil,j (5.6)

where wil,j is the cost of control system i and it can be computed by solving the following

optimization problem based on the significant moments calculated along a branch. For

each i such that there is a completion time γi[k + 1] ∈ (tcl , t
c
j], let ki be the smallest index

k satisfying γi[k + 1] > tcl and ki be the largest index k satisfying γi[k + 1] ≤ tcj . Then we

set

wil,j =

ki∑
k=ki

min
ui[k]

Vi(ui[k];xi(αi[k]), γi[k], γi[k + 1]) subject to (4.11c) and (4.11d). (5.7)

60

Figure 5.3: Illustration of branch cost along a path. The ending time of the colored rectan-
gles with diagonal lines represent the task completion time γi.

The meaning of (5.7) is as follows. If the (k+1)-st task of control system i is completed

between the contention times tcl and tcj , i.e. γi[k+ 1] ∈ (tcl , t
c
j], then the cost within the time

interval [γi[k], γi[k+1]] is included in the branch cost wl,j . If no task request of control

system i is completed within (tcl , t
c
j], then we set wil,j = 0. This branch cost formulation

ensures that all costs included in one branch are determined and will not be changed by the

priority assignments at or after time tcj . The cost of the uncompleted (ki+1)-st task will be

included by the branches following the branch (l, j).

Figure 5.3 shows an illustration of the defined branch cost for the blue path and green

path in Figure 5.1. The different priority assignments at tc5 caused different branch cost

computation. In the blue path, the second cost of control system 1 considers a shorter time

interval than the second cost of control system 1 in the green path.

Remark 3 Along any arbitrary path in the decision tree, all the significant moments are

deterministic and can be computed by the timing model. For any γi[k + 1] along this path,

we can always find the consecutive contention times tcl and tcj such that γi[k + 1] ∈ [tcl , t
c
j)

and the cost of the task before γi[k + 1] is added in the branch cost.

Remark 4 The optimal control design is embedded in the branch cost calculation. To

calculate win,j in (5.7), we need to solve the optimization problem (5.7) by optimizing the

61

control law ui(t). Since the priority along one branch is already knowm, we can use the

MPC design methods from [27] and [111] to solve (5.7) and compute u∗i (t). After solving

(5.7) for each control system i, we obtain the optimal control u∗(t) between two successive

contention time instants.

Based on the decision tree model, the MIP formulated in (4.11a) can now be converted

to the problem of finding a path from the root v0 to a terminal leaf such that the cost along

the entire path is the lowest. The constructed decision tree contains multiple paths and

the total path cost has the same formula as the cost function in (4.11a). Among all the

paths, the lowest cost path can be found by path planning algorithms [112] and the priority

assignments and control commands along the lowest cost path will be solutions for the MIP

problem.

However, constructing the entire decision tree would be exhaustive and unrealistic when

considering a relatively large number of control systems or a long time window. This

motivates Section 5.5, where we propose a search algorithm that only needs to construct a

subtree of the decision tree while searching for an optimal path. This method is inspired

by the A-star algorithm [40] that has been widely used for online path planning in robotics,

which has been found to significantly reduce computation time. We present proofs to show

that optimality is guaranteed using our proposed algorithm in Section 5.7.

5.5 Costs for Search Algorithm

The A-star algorithm will iteratively generate and search the leaves starting from the root

and terminate when it reaches a terminal leaf. To use the A-star algorithm, we define leaves

in two categories: i) If a leaf has been generated and all its child leaves have been generated

by the search algorithm, then we call such a leaf closed. ii) If a leaf has been generated

and at least one of its child leaves has not been generated by the search algorithm, then we

call such a leaf open. If a leaf is open and its parent leaf is closed, then the leaf is called a

frontier leaf. All frontier leaves are added to a set called the frontier list, which keeps track

62

of the leaves that can be expanded by the A-star algorithm. The frontier list is a sorted list

where all the leaves in it are sorted according to a function

Cf (vl) = Cg(vl) + Ch(vl) (5.8)

from the smallest to largest value where l is the index of a leaf. The functionCg(vl) is called

the stage cost, which is the sum of branch costs along the path starting from the root to the

current leaf vl and Ch(vl) is the minimal future cost from the current leaf vl to a terminal

leaf where the minimization is over all priority assignments and allowable controls.

Since the path from the root v0 to a leaf vl is unique, the stage cost can be computed

using Cg(vl) = Cg(vp) + wp,l where p is the index of the parent leaf of vl. For the A-

star algorithm to work, an estimation Ĉh(vl) of future cost (also called the heuristic cost) is

needed for which Ĉh(vl) ≤ Ch(vl) for all vl, so the estimated cost Ĉf (vl) = Cg(vl)+Ĉh(vl)

equals to the actual cost Cf (vl) when vl is a terminal leaf. The value of the MPC cost

function may be increased because of the contentions. Using this monotone property of

the cost function, we can estimate the future cost Ĉh(vl) by solving the following MPC

optimization problem

Ĉh(vl) = min
uh(t)

N∑
i=1

Vi(u
h
i (t);xi(t

c
l), ui(t

c
l), t

c
l , tf), (5.9)

s.t. ẋi(t) = fi(xi(t), u
h
i (t)), u

h
i (t) ∈ Ui, for all t

where uh(t) = (uh1(t), ..., uhi (t), ..., u
h
N(t)) is Lebesgue measurable and essentially bounded

(as defined for instance in [96]), and tcl is the contention time instant corresponding to leaf

vl. Notice that the above optimization problem does not have the contention constraints

from (6.4c).

During the search, all leaves v in the frontier list are sorted according to their Ĉf (v)

63

value, from the smallest to the largest. At each iteration, the algorithm expands the leaf

with the smallest Ĉf by generating all its child leaves and then removes the expanded leaf

from the frontier list. All of its child leaves are added to the frontier list. The heuristic

cost Ĉh(vl) will make it possible to search the most promising paths first, and the optimal

solution can be found without examining all possible paths. Therefore, the search algorithm

leveraging A-star does not generate the entire decision tree.

In addition to the frontier list, we also have a generated set which consists of all leaves

that have been generated by the A-star algorithm. Each leaf vl in the generated set is

also assigned a pointer PT (vl) which equals the index of its parent leaf so that the A-star

algorithm can backtrack from it to its parent leaf.

5.6 Contention-resolving MPC Algorithm

Algorithms 2-4 present the pseudocode for our proposed algorithm based on the A-star

algorithm to solve the optimization problem (3.3). Algorithm 2 presents the search algo-

rithm. The optimal path search starts from the root v0. The search algorithm keeps updating

two sets, which are the frontier list and the generated set. At the beginning of the search

algorithm, the root leaf v0 is added in the frontier list. The generated set only contains the

root leaf v0 initially. Let Ĉf (v0) equal the heuristic cost Ĉh(v0). At each iteration of the

main program in Algorithm 2, the algorithm determines which leaf to expand further by

selecting the leaf vl with minimal Ĉf cost in the frontier list. After selecting the leaf vl,

there are two cases that need to be considered:

1. If the contention time instant of the selected leaf equals tf , then the search algorithm

has found the path from the root leaf to a terminal leaf with the lowest Ĉf cost, which

equals the actual cost Cf . The search algorithm is terminated.

2. If the contention time instant of the selected leaf does not equal tf , then leaf vl will

be expanded by generating its children leaves and all of its children leaves are added

64

Algorithm 2 Main Program
1: Data: t0, tf , λi for 1 ≤ i ≤ N , x(t0), u(t0), Z(t0)
2: Result: P∗(t), u∗(t)
3: Let frontier list=generated set= {v0};
4: Ĉf (v0) = Ĉh(v0), t = t0;
5: while tcl ≤ tf do
6: vl is the leaf in frontier list with minimal Ĉf cost;
7: tcl is the contention time instant corresponding to vl;
8: Let p = PT (vl); . vp is the parent leaf of leaf vl.
9: if tcl = tf then

10: return Reconstruct(vl); Break;
11: else
12: j is the number of elements in generated set;
13: for m-th permutation Pm∈P({1, ...,M}) do
14: (vj+m, t

c
j+m, wl,j+m)=Expand(vl, Pm, tcl);

15: if (l, j+m) passes both schedulability conditions under Pm then
16: Add vj+m into frontier list and generated set;
17: Cg(vj+m) = Cg(vl) + wl,j+m;
18: Solve (5.9) to obtain Ĉh(vj+m);
19: Ĉf (vj+m) = Cg(vj+m) + Ĉh(vj+m);
20: PT (vj+m) = l;
21: Remove vl from frontier list;

to frontier list and generated set. Then the algorithm calculates the costs Ĉf for the

children leaves. Since the leaf vl has child leaves after the expansion, it is not a

frontier leaf. The search algorithm removes the expanded leaf vl from frontier list.

Then the algorithm goes to the next iteration.

Algorithm 3 backtracks the path from the selected terminal leaf to v0 when case (1)

is satisfied in the search algorithm. The backtracking starts from the terminal leaf vl and

utilizes the pointer PT (vl) to obtain the parent leaf vp. The optimal priority assignment

P∗(t) for the time interval between the contention time instants of vp and vl equals the

priority assignment along the branch connecting vp and vl. Then we repeat this process with

vl and vp replaced by vp and the parent leaf of vp, respectively. We repeat the backtracking

process to obtain the optimal priority assignment P∗(t) until the contention time instant

equals t0. Algorithm 3 returns the optimal priority assignment P∗(t) for all t ∈ [t0, tf] to

65

Algorithm 3 Reconstruct
1: Data: vl
2: Let t = tf and p = PT (vl);
3: while t > t0 do
4: Let P∗(t) be the priority assigned to the branch that connects vp and vl, from the

contention time tcp of leaf vp to the contention time tcl of vl;
5: Let l = p and p = PT (vp);
6: Let t be the corresponding contention time of vl;
7: return P∗(t);

Algorithm 4 Expand
1: Data: vl, Pm, t
2: Find the next contention time under priority Pm based on (5.1) or (5.2), and denote

this contention time as tcj+m;
3: Check the finite-time using Algorithm 1 and infinite-time schedulability condition;
4: if schedulable then
5: Solve the optimization formulated by (5.7) to obtain u∗i (t) and compute wil,j+m for

each i = 1, ..., N ;
6: Compute wl,j+m using (5.6);
7: return vj+m, tcj+m, wl,j+m;

the main program in Algorithm 2.

Algorithm 4 expands the selected leaf from the frontier list when case (2) is satisfied in

the search algorithm. It utilizes Proposition 5.1.1 or 5.1.2 to determine the next contention

time after a contention time t. Then it checks both finite-time and infinite-time schedula-

bility conditions. If the branch is schedulable, then the algorithm solves the optimization

problem (5.7) to obtain the optimal control u∗i (t) and compute the branch cost wl,j+m. Al-

gorithm 4 returns the child leaf vj+m, the next contention time tcj+m and the branch cost

wl,j+m to the main program in Algorithm 2.

Figure 5.4 is an illustration of the subtree constructed by our algorithm described above,

using the same example as Figure 5.1. Compared with the entire decision tree in Figure

5.1, some internal leaves in the subtree are open because our algorithm does not expand

every leaf but intelligently expands a subset of leaves without losing optimality. Once the

construction of the subtree reaches the terminal leaf, our algorithm backtracks the path

along the red arrows. The total number of branches generated by the algorithm is 11,

66

Figure 5.4: Illustration of the subtree constructed by the proposed search algorithm. The
blue circle represents the root v0 and the red circle represents the terminal leaf. Green
circles represent leaves in the frontier list. Solid black arrows represent branches generated
by the algorithm and dashed green arrows represent the estimate cost Ĉh(vl). The red
arrows represent the path with lowest cost.

reducing the computational workload for generating the entire tree which has totally 28

branches as shown in Figure 5.1.

5.7 Proof of Optimality

In this section, we prove that our algorithm finds the optimal solutions P∗(t) and u∗(t)

which minimize (3.3). We first show that the heuristic cost Ĉh(vl) defined in Section 5.5

satisfies the requirements for the A-star algorithm.

Proposition 5.7.1 The condition Ĉh(vl) ≤ Ch(vl) holds for all vl in the decision tree.

Proof. The estimated cost Ĉh(vl) is obtained by solving the optimization problem (5.9).

The actual future cost Ch(vl) is obtained by solving the optimization problem defined by

(3.3) given the initial condition x(tcl). Comparing (5.9) and (3.3) with x(tcl), these two op-

timization problems have the same cost function and initial conditions. The differences are

that the decision variable u(t) in (3.3) is constrained to be piecewise constant function that

depends on the priorities, while uh(t) in (5.9) can be any arbitrary real valued function as

long as it is Lebesgue measurable and essentially bounded. Therefore, the optimal solution

u∗(t) in (3.3) must be feasible but may not be an optimal solution for (5.9). Hence, Ĉh(vl)

is less or equal to Ch(vl) for all vl. �

67

Theorem 5.7.1 Based on Assumptions 3.1.1, 3.1.2 and 3.2.2, Algorithm 2 finds an optimal

solution P∗(t) and u∗(t) for the optimization problem (4.11a).

Proof. From [40, Theorem 1], the A-star algorithm finds the minimal total cost from v0 to

a terminal leaf if Ĉh(vl) ≤ Ch(vl) for all vl. Since we already showed that this condition is

satisfied in Proposition 5.7.1, the theorem follows.

Remark 5 Since P({1, ...,M}) contains all possible priority assignments, it also includes

the priorities following RMS, EDF, FCFS, HSF and HTF rules. Therefore, the priorities

assigned by the RMS, EDF, FCFS, HSF or HTF strategies are represented by paths in the

decision tree, but not necessarily the path with the minimal cost. Therefore, our method

guarantees that we find a better or the same solution as these strategies.

68

CHAPTER 6

APPLICATION 1: NETWORKED CONTROL SYSTEM

The networked control system is a system in which feedback control loops are closed via

shared communication media. The integration of the communication and feedback con-

trol loops can bring many benefits, such as system flexibility and easy maintenance. In

recent years, a number of results have been reported on designing networked control sys-

tem [64]. Sensors, controllers and actuators connected to the network are regarded as

nodes of networked control systems (NCSs). The bandwidth for communication between

nodes is mostly limited in NCSs, disallowing sensor messages to transmit immediately af-

ter generation, and this causes time delays in the NCSs [6]. A challenge for controlling

event-triggered network systems lies in the integration of control with time delays. In this

chapter, we propose the contention-resolving model predictive control method to dynami-

cally assign priorities for control systems in event-triggered NCSs, to minimize the overall

performance degradation caused by time delays in the network.

6.1 NCS Models

We consider an NCS with N independent feedback control loops sharing a priority-based

communication bus, as illustrated in Figure 6.1. The control loops consist of distributed

sensors, controllers and actuators. We assign distinct priority to each feedback control loop

and each loop utilizes the communication bus to send plant sampling data to a controller. At

any time, only one control loop can access the communication bus and transmit data. Such a

system model has practical applications. For example, in the automotive industry, electrical

control units (ECUs) are implemented as the controllers for different vehicle plants. All

sensor data are transmitted to ECUs through priority-based control area networks (CAN).

Each sensor in a control loop generates one recurring message chain, denoted as ξi,

69

Figure 6.1: Networked system architecture

where i=1, ..., N . Each message chain includes a sequence of sampling messages, denoted

as {τi[1], τi[2], ..., τi[k], ...}, where k is the message index of sensor i. The generating time

of sensor message τi[k] is αi[k]. Each sensor message τi[k] contains the measurement of

plant i. And Ci[k] is the amount of time needed for sensor i to transmit τi[k] to controller i

when no contention occur.

6.1.1 Problem Formulation

For the i-th control loop in Figure 6.1, we assume that the system equation has the form:

ẋi(t) = fi(xi(t), ui(t)), yi(t) = gi(xi(t)) for some functions fi and gi (6.1)

where xi(t) are the plant states, yi(t) is the plant output, and ui(t) is the control command.

We formulate a continuous-time MPC problem with a dynamic priority assignment. The

goal is to find an optimal priority assignment P∗(t) = (p∗1(t), ..., p∗N(t)) and an optimal

control command u∗(t) = (u∗1(t), ...u∗N(t)) within the time interval [t0, tf], such that the

output of each plant can track a reference signal λi. That is to say, we want to steer the

state xi(t) to the target state x̄i corresponding to the reference signal λi that satisfies the

following equations,

gi(x̄i) = λi, and fi(x̄i(λi), ūi) = 0. (6.2)

70

We denote the solution of the above equation by (x̄i(λi), ūi(λi)). If multiple solutions exist,

(x̄i(λi), ūi(λi)) is selected such that |xi(t0)−x̄i(λi)|2 is minimal, where xi(t0) is the initial

state of plant i. The notation indicates that dependence of the reference signal λi.

Given initial states x(t0) = (x1(t0), ..., xN(t0)), initial control u(t0) = (u1(t0), ..., uN(t0))

and message chain parameters S = (αi, Ci, Ti)[k] for all k, the contention resolving MPC

is to find the value of decision variables P(t) and u(t) which solves the following opti-

mization problem:

min
u(t),P(t)

N∑
i=1

1

2

∫ tf

t0

{
|xi(t)−x̄i(λi)|2Qi+|ui(t)−ūi(λi)|

2
Ri
}dt+ ρ|xi(tf)−x̄i(λi)|2Ki , (6.3)

where |xi(t)−x̄i(λi)|2Qi = [xi(t)− x̄i(λi)]TQi[xi(t)− x̄i(λi)], |ui(t)−ūi(λi)|2Ri = [ui(t)−

ūi(λi)]
TRi[ui(t) − ūi(λi)]. Qi, Ri and Ki are positive definite matrices and ρ > 0 is a

constant. The optimization problem should satisfy the following constraints:

ẋi(t) = fi(xi(t), ui(t)), yi(t) = gi(xi(t)); (6.4a)

ui(t) = ui(t0), t∈ [0, γi[1]), ui(t) = ui[k], t∈ [γi[k], γi[k+1]); (6.4b)

Z(αi[k+1]−)=H(αi[k+1]−;Z(t0),S,P(t0∼αi[k+1])), (6.4c)

δi[k] = Z2N+i(αi[k+1]−), γi[k] = αi[k] + δi[k], for all k such that t0 ≤ γi[k] ≤ tf ;

ui(t) ∈ Ui,P(t) ∈ P({1, ..., N}) ⊆ NN . (6.4d)

6.2 Timing Model for Non-preemptive Network

The work [19] presented a timing model for the CAN bus, which is a non-preemptive

communication network. Here, we propose evolution rules for general non-preemptive

real-time systems. We divide [t0, tf] into sub-intervals [tw, tw+1] such that tasks are only

generated at tw, but not at any other time instant within (tw, tw+1). Also the occupation is

the shared resource can only be completed at tw, not at any other time within (tw, tw+1). If

the shared resource is not occupied at time tw, i.e. 1−sgn(ID(tw)) = 1, then it is the same

71

case as preemptive scheduling where tw+1 − tw = min {d1(tw), ..., dN(tw), tf−tw}. If the

shared resource is occupied by task ID(tw) at time tw, i.e. sgn(ID(tw)) = 1, then we will

require that tw+1−tw ≤ min {d1(tw), ..., dN(tw), tf−tw}, and in addition, tw+1−tw should

be less or equal to rID(tw) so that the occupation completion time tw + rID(tw) ≥ tw+1.

Summarizing the above two cases, we have

tw+1 − tw = sgn(ID(tw)) min{rID(tw), d1(tw), ..., dN(tw), tf−tw}

+ (1−sgn(ID(tw))) min{d1(tw), ..., dN(tw), tf−tw}

for all w. The evolution rules of the timing state variables Z(t) can also be derived through

two steps.

At tw: The changes of variables di, ri and oi at the times tw are the same as (4.6). For the

timing state variable ID, if rID(t−w)> 0, which means the task ID(t−w) that was occupying

the shared resource has not completed the occupation at time tw, then ID(tw) is the same

as ID(t−w) because the system is non-preemptive. If rID(t−w) = 0, which means the task

ID(t−w) completed the occupation of the shared resource at time tw, then ID(tw) needs to

switch to the task which is scheduled to access the shared resource. Combining these two

cases, the evolution rule for the timing state ID can be expressed as

ID(tw) = ID(t−w) sgn(rID(t−w)) +

(
argmin
i∈Λ(tw)

pi(tw)

)(
1− sgn(rID(t−w))

)
(6.5)

when Λ(tw) 6= ∅, where Λ(tw) = {i ∈ {1, ..., N} : ri(tw) = Ci(tw)} is the set of all indices

of control systems which request access to the shared resource at time tw. If the set Λ(tw)

is empty, then ID(tw) = 0.

On (tw, tw+1): The state ID(tw + ∆t) remains unchanged because tw+1− tw ≤ rID(tw). If

72

ID(tw) 6= 0, the evolution rules for control system ID(tw) are

dID(tw+∆t)=dID(tw)−∆t, rID(tw+∆t)=rID(tw)−∆t and oID(tw+∆t)=oID(tw)+∆t

(6.6)

where dID(t) and oID(t) are defined analogously to rID(t). For a control system i where

i 6= ID(tw), the evolution rules are

di(tw + ∆t) = di(tw)−∆t, ri(tw + ∆t) = ri(tw) and oi(tw + ∆t) = oi(tw) + sgn(ri(tw))∆t.

(6.7)

Combining all of the evolution rules in (6.5)−(6.7) leads to the timing model (4.2) of

non-preemptive scheduling.

6.3 Simulation Results

The systems simulated are four scalar systems, although our assumptions allow nonlinear

cases as well

ẋi(t) = aixi(t) + ui(t), yi(t) = xi(t), i = 1, 2, 3, 4

with parameters (a1, a2, a3, a4) =
(
1, 6

5
, 4

3
, 3

2

)
. The initial conditions are xi(0) = 1 and

ui(0) = 0 for each i. The control constraints are ui(t) ∈ [−3, 3] for i = 1, ..., 4. Notice that

four plants are all stabilizable from the initial condition if no contention exists.

The time horizon [t0, tf] for the simulation is from 0 to 6 seconds. The cost function is

Vi(xi(0), 0) =
1

2

∫ 6

0

{
x2
i (t) + 0.0001u2

i (t)
}

dt+ x2
i (6).

73

The reference signal is λi(t) = 0 for all i and t ∈ [0, 6]. The task parameters are

(C1[k], C2[k], C3[k], C4[k]) = (0.3, 0.3, 0.2, 0.2) and

(T1[k], T2[k], T3[k], T4[k]) = (1, 1.25, 1.5, 2) in seconds.

6.3.1 Preemptive Scheduling

For the preemptive scheduling, we compare the optimal priority assignment computed by

our proposed algorithm with the priority assignments under RMS and EDF. The priorities

assigned by EDF are P(t) = (1, 2, 3, 4) for all t, which are the same as the priorities

assigned by RMS. The optimal priority assignments computed by our method are different

from priorities assigned by RMS and EDF. The communication network occupation result

scheduled by the optimal priority assignments is shown in Figure 6.2. Eight contentions

occur in time window [0, 6], represented by the crosses in the figure. At time 0, the first

contention occurs among the four systems and the optimal priority assignment computed

by our method is that P∗(t) = (4, 3, 2, 1) for t ∈ [0, 1.25) seconds, i.e. system 4 has

highest priority and system 1 has lowest priority. Therefore, system 4 gains access to the

communication network at time 0 and all the other three systems are delayed. At time 1.25,

the second contention occurred between systems 1 and 2. The contention-resolving MPC

assigns system 1 with higher priority than system 2. System 1 gain access to the network

and system 2 is delayed for 0.05 seconds.

6.3.2 Non-preemptive Scheduling

For non-preemptive scheduling, we compare the optimal priority assignment computed by

our proposed algorithm with the priority assignments under RMS. The priorities assigned

by RMS are P(t) = (1, 2, 3, 4) for all t. The optimal priority assignments computed by our

method are different from priorities assigned by RMS. The communication network occu-

pation result scheduled by the optimal priority assignments is shown in Figure 6.3. Five

74

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

0

0.5

1

System 1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

0

0.5

1

System 2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

0

0.5

1

System 3

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

0

0.5

1

System 4

Figure 6.2: Communication network occupation of scheduling four scalar systems under
preemptive scheduling. The occupation value 1 means the system is occupying the network,
0 means the system does not require access to the network, and 0.5 means the system access
request is delayed by contention. Black crosses mark times when a contention occurs.

contentions occur in time window [0, 6], represented by the crosses in the figure. Similar

to the preemptive scheduling case, for t ∈ [0, 1) seconds, system 4 has highest priority and

system 1 has lowest priority. At time 2, the second contention occurs between system 1

and 4. The contention-resolving MPC assigns system 4 with higher priority than system

1. System 4 gains access to the network and system 1 is delayed for 0.2 seconds. At time

3, the third contention occurs between systems 1 and 3. The contention-resolving MPC

assigned system 3 a higher priority than system 1. For the forth and fifth contentions at

times 4 and 5 seconds, the contention-resolving MPC assigns system 1 a higher priority,

which is different from the first three contentions.

6.3.3 Control Performance

The outputs of the four scalar systems under preemptive scheduling are presented in Figure

6.4. Systems 3 and 4 are unstable under the priorities assigned by RMS and EDF, because

the third and fourth systems have lower priorities and longer delays. Under the optimal

priority assignment, the four systems are all stable because the optimal priority assignment

slightly sacrifices the control performance of system 1, by assigning system 1 the lowest

priority and system 4 with the highest priority and system 3 with second highest priority

75

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

0

0.5

1

System 1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

0

0.5

1

System 2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

0

0.5

1

System 3

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

0

0.5

1

System 4

Figure 6.3: Communication network occupation of scheduling four scalar systems under
non-preemptive scheduling discipline. Black crosses mark times when a contention occurs.

from 0 to 1 second. The outputs of the four scalar systems under non-preemptive scheduling

are the same as Figure 6.4, except that u3(t) = −2.69 during time interval [0.4, 1.8] for the

non-preemptive scheduling case, while u3(t) = −2.76 during time interval [0.4, 1.7] for

the preemptive scheduling case.

0 1 2 3 4 5 6

-2

0

2

System 1

0 1 2 3 4 5 6

-2

0

2

System 2

0 1 2 3 4 5 6
-4

-2

0

2

4

6

8
System 3

0 1 2 3 4 5 6
-4

-2

0

2

4

6

8
System 4

EDF (RMS) output

u under EDF (RMS)

Optimal output

u under optimal priority

Figure 6.4: Outputs of four scalar systems. The red solid lines show the output under
optimal priority assignment, and the blue solid lines show the outputs under EDF. The
outputs under RMS are the same as EDF. The dashed lines show the control ui computed
by the MPC in each case.

76

CHAPTER 7

APPLICATION 2: SCHEDULING AND CONTROLLING VEHICLES AT A

TRAFFIC INTERSECTION

In this chapter, we address the problem of optimally scheduling automated vehicles cross-

ing an urban intersection by assigning vehicles with priorities. We formulate the inter-

section scheduling problem as a MIP problem which co-designs the priority and traveling

speed for each vehicle. The co-design aims to minimize the vehicle waiting time at the

intersection area, under a set of safety constraints. And the contention-resolving MPC

method is applied to dynamically assign priorities and compute the optimal speed for each

vehicle. Different from the optimal control design presented in Chapter 6, because of the

special form of objective cost function in MPC formulation in the intersection scheduling

application, we can design an analytical decentralized control law to control each vehicle

to travel with an optimal speed given a specific priority assignment. The optimal priority

assignment can be determined by searching the lowest cost path in the decision tree. The

solution computed by contention-resolving MPC is proved to be global optimal given the

condition of immediate access (or CIA) required in real-time scheduling. The effectiveness

of the proposed method is verified through simulation and compared with the first-come-

first-serve (or FCFS) and highest-speed-first (or HSF) scheduling strategies.

7.1 Intersection and Vehicle Model

In the traffic intersection scheduling application, we introduce a simplified traffic intersec-

tion setup, which illustrates the key features of our proposed contention-resolving MPC.

Consider N automated vehicles traveling along a track that has a “figure-eight” shape with

just one lane as shown in Figure 7.1. The figure eight consists of a shaded intersection

area and two half cycles, which are the portions of the figure eight that are separated by

77

Figure 7.1: Example of a one lane intersection. Vehicles follow directions indicated by
arrows.

the shaded intersection area. Vehicles travel in the direction marked by arrows, S is the

arc length of a vehicle’s path through the intersection, L is the length of a vehicle, and the

two half cycles have the same arc length D. The motion of i-th vehicle for i = 1, ..., N is

modeled as

ẋi(t) = ui(t), xi(t0) = x0
i (7.1)

where xi(t) and ui(t) denote the position and speed of vehicle i respectively at each time

t, and x0
i is the initial position where x0

i = 0 when the front end of a vehicle is at the

intersection. We assume that vehicle speed satisfies

0 ≤ ui(t) ≤ ui,max (7.2)

where ui,max > 0 is the maximum speed limit. In our problem setup, each vehicle passes

through the intersection with a universal constant speed uint satisfying uint < ui,max for all

i.

7.2 Intersection Scheduling

Let αi[ki] denote the time when vehicle i gains access to the intersection after having trav-

eled through ki half cycles. For any index ki, C is the amount of time from the instant when

the front end of the vehicle arrives at the intersection to the time instant when the rear end

78

of the vehicle i leaves the intersection, i.e. C = S+L
uint

. An intersection-exit time γi[ki] is the

time instant when the rear end of vehicle i leaves the intersection for the ki-th half cycle,

satisfying γi[ki] = αi[ki] + C.

When there is no contention among vehicles, it is trivial that all the vehicles should

travel with their maximal speed in order to minimize the total traveling time. The following

equation needs to be satisfied if no contention occurs:

αi[ki] = γi[ki − 1] + Ti. (7.3)

where Ti is the least amount of time for vehicle i to travel through the ki-th half cycle,

namely,

Ti =
D − L
ui,max

. (7.4)

When a contention occurs to vehicle i while it is passing the intersection for the ki-th time,

equation (7.3) will not hold because it may be interrupted by other vehicles. Priorities are

needed to determine which vehicle enters the intersection first. Each vehicle i is assigned a

unique priority number pi(t), in which case contentions can be resolved by comparing the

priorities pi among all vehicles that are competing for the access to the intersection. We

introduce the delay variable δj[kj] and α̃j[kj] as the earliest time that vehicle j can arrive at

the intersection, so that

αj[kj]= α̃j[kj] + δj[kj], α̃j[kj + 1]=αj[kj] + C + Tj. (7.5)

Using the concept of the earliest arrival time, we can then mathematically define the crucial

event of the intersection scheduling problem, which is a contention occurring between

vehicles.

Definition 7.2.1 If there exist indices i and j such [α̃i[ki], α̃i[ki]+C)∩[α̃i[kj], α̃i[ki]+C) 6=

79

∅ for some i and j, then a contention occurs between vehicle i and vehicle j.

The physical meaning of this definition is that if the earliest possible intersection occupation

time of vehicle i overlaps with the occupation time of vehicle j, then a contention occurs

between vehicles i and j.

7.3 Timing Model for Intersection Scheduling

In task scheduling theory [48], if an on-going task (with process time C) can be interrupted

by the arrival of other tasks, the scheduling type is called preemptive. Furthermore, if

the interrupted task has to repeat its whole processing after the preemption, regardless

how much it has been processed before the preemption. This scheduling type is called

preemptive-repeat. The repeating process ends until there is an uninterrupted time window

of length C.

We model the earliest arrival time α̃i[ki] as the resource requesting time of a task

in scheduling theory and define the total process time of this task to be the intersec-

tion occupation time C. If there are no other vehicles which have the same earliest ar-

rival time as α̃i[ki], this task can start processing. If there are no other tasks satisfying

[α̃i[ki], α̃i[ki] + C) ∩ [α̃i[kj], α̃i[ki] + C) = ∅, i.e. no contention occurs to vehicle i within

its ki-th half cycle, then there is no preemption and task i can finish the process. If there

exists a task j such that [α̃i[ki], α̃i[ki] + C) ∩ [α̃i[kj], α̃i[ki] + C) 6= ∅ and j is assigned a

higher priority than i, then the process of task i is preempted by j and the whole process-

ing of task i will be repeated at γj[kj]. Task i may be preempted by the arrival of another

higher prioritized task again until there is an uninterrupted time window of length C. This

time window is the true intersection occupation time interval of vehicle i. The preemp-

tion mechanism guarantees that the intersection entrance order follows priority assignment

and satisfies the CIA assumption. The task repeating mechanism guarantees the physical

constraint that there is no interruption once a vehicle get the access to the intersection.

The evolution rules for the timing state Z(t) of the intersection scheduling on [t0, tf] are

80

expressed by mathematical equations. We divide [t0, tf] into sub-intervals [tw, tw+1] such

that tasks can only be generated at either tw or tw+1. Note here tw is one of the α̃i[ki], i.e.

di(t
−
w) = 0 for some i. At time tw, the timing states Z(t) of task i exhibit jumps,

di(tw) = Ti + C, ri(tw) = C, oi(tw) = 0. (7.6)

For task j which does not request processing at tw, i.e. dj(t−w) 6= 0, there are three different

cases. The first case is that task j has completed processing, i.e. rj(t−w) = 0. The second

case is that task j is processing, i.e. rj(t−w) > 0 and task j has higher priority than task i,

i.e. pj(t−w) < pi(t
−
w). In these two cases, the timing states of task j is not affected by task i.

Hence, there exist no jumps for the value of timing states of vehicle j,

dj(tw) = dj(t
−
w), rj(tw) = rj(t

−
w), oj(tw) = oj(t

−
w). (7.7)

The third case is that task j is processing, i.e. rj(t−w) > 0 and task j has lower priority

than task i, i.e. pj(t−w) > pi(t
−
w). In this case, task i preempts task j, so the timing states of

task j are reset

dj(tw) = Tj + C, rj(tw) = C, oj(tw) = oj(t
−
w) (7.8)

where dj(tw) and rj(tw) are reset to be initial values as in (7.6).

Defining Sj,i = {t ∈ [t0, tf] : pj(t) < pi(t)} following from Equation (7.7) and (7.8),

we can express the evolution of the timing states Z(t) for vehicle j from t−w to tw as:

dj(tw) = sgn
(

(1− sgn(rj(t
−
w))) + 1Scj,i(t

−
w)
)
dj(t

−
w) + sgn(ri(t

−
w))1Sj,i(t

−
w)Tj,

rj(tw) = sgn
(

(1− sgn(rj(t
−
w))) + 1Scj,i(t

−
w)
)
rj(t

−
w)

+ sgn(ri(t
−
w))1Sj,i(t

−
w) (C + Tj),

oj(tw) = oj(t
−
w), (7.9)

81

where sgn is defined by sgn(p) = 1 if p ≥ 0 and sgn(p) = 0 if p < 0 and 1S(t) is defined

to be 1 if t∈S and 0 if t /∈ S for any set S and Sc is the complement of set S. For any time

tw + ∆t ∈ (tw, tw+1), the evolutions for all vehicles are

di(tw + ∆t) = di(tw)−∆t, (7.10)

ri(tw + ∆t) = max

0, ri(tw)−max

0,∆t−
∑

q∈HPi(tw)

rq(tw)

 , (7.11)

oi(tw + ∆t) = oi(tw) + sgn(ri(tw))min

∆t, ri(tw) +
∑

q∈HPi(tw)

rq(tw)

 , (7.12)

where HPi(tw) = {j ∈ {1, . . . , N} : pj(tw) < pi(tw)} is the set of all indices of vehicles

which have higher priorities than vehicle i at time tw.

Combining all of the evolution rules leads to the timing model of intersection schedul-

ing, which computes the value of Z(t) at time t, given the initial state variable Z(t0), the

vehicle timing parameters (C, Ti) for all i and a specific priority assignment P(t0∼ t).

7.4 Contention-resolving Model Predictive Control

7.4.1 Formulation of MPC

We formulate a contention-resolving model predictive control problem to compute opti-

mal priority assignments P∗(t) = (p∗1(t), ..., p∗N(t)) and an optimal vehicle speed u∗(t) =

(u∗1(t), ...u∗N(t)) on a time interval [t0, tf]. The times t0 and tf are the starting and ending

points of the MPC time horizon, respectively, and t0 and tf will move forward in time when

the MPC is initiated. Given initial states x(t0) = (x1(t0), ..., xN(t0)) and initial controls

u(t0) = (u1(t0), ..., uN(t0)), the co-design method is to find values for the optimal P∗(t)

82

and u∗(t) by solving the optimization problem

min
P(t),u(t)

N∑
i=1

Ki∑
ki=1

∫ αi[ki](P(t),u(t))

γi[ki−1](P(t),u(t))

1

2
[ui,max−ui(t)]2 dt (7.13)

s.t. (7.1), (7.2) and (7.5),∀t ∈ [t0, tf],

xi(γi[ki − 1])=S+L+ (ki − 1) · (S +D) + x0
i ,

xi(αi[ki])= ki · (S +D) + x0
i for all i and ki (7.14)

where Ki is the largest index of the half cycle which vehicle i has traveled satisfying

γi[Ki] ≤ tf . The notation γi[ki−1](P(t),u(t)) and αi[ki](P(t),u(t)) represent that these

time instants are implicit functions of priority assignment P(t) and vehicle speed u(t).

The cost function aims to increase the speed as much as possible to increase the intersec-

tion capacity. If a contention happens and a vehicle needs to slow down or stop, then the

cost increases. The interval [α[ki], γi[ki]] is not included in the formulation because ui(t) is

fixed to be uint. A set of constraints (7.1), (7.2) and (7.5) need to be satisfied for all times

t ∈ [t0, tf]. Equation (7.14) is the boundary condition by the definitions of γi[ki] and αi[ki].

7.4.2 Contention-Resolving MPC Algorithm

First, based the timing model introduced in Section 7.3, the contention time instants can be

computed by the following Proposition,

Proposition 7.4.1 Contention happens at time t if and only if the following conditions

hold:

N∑
i=1

sgn(ri(t)) ≥ 2,
N∑
i=1

sgn(ri(t
−)) ≤ 1 and t = α̃i[ki] for some i and ki (7.15)

where ri(t−) is the limit from the left.

Proof. Based on Definition 4.1.2, if a vehicle i has not finished the current intersection

occupation at t, then ri(t) > 0 and sgn(ri(t)) = 1. Since ri(t) is always non-negative,

83

sgn(ri(t)) ≥ 0 for all t. Therefore,
∑N

i=1 sgn(ri(t)) ≥ 2 is equivalent to two or more

vehicles wanting to access the intersection, which means a contention is occurring at time

t. Since
∑N

i=1 sgn(ri(t
−)) ≤ 1 means that no contention happens at time instants before t

that are close to t, the result follows. �

Based on the contention times, we can construct a decision tree using the procedure in

Section 5.2. branch cost wl,j is defined as

wl,j =
N∑
i=1

wil,j (7.16)

where wil,j is the cost of vehicle i and it can be computed by solving the following opti-

mization problem based on the significant moments calculated along a branch. Let ki be

the smallest index satisfying γi[ki] > tcl and ki be the largest index satisfying γi[ki] ≤ tcj . If

ki ≤ ki, then

wil,j =

ki∑
ki=ki

min
ui(t)

∫ αi[ki]

γi[ki−1]

1

2
[ui,max−ui(t)]2 dt (7.17)

s.t. (7.1), (7.2), (7.14) and given γi[ki − 1], αi[ki]

where ri[0] is defined to be t0 for all i. The meaning of (7.17) is as follows. If the ki-th

intersection occupation of vehicle i is completed between the contention times tcl and tcj , i.e.

γi[ki] ∈ (tcl , t
c
j], then the cost of the (ki−1)-th half cycle, traveled between [γi[ki−1], αi[ki]],

is included in the branch cost wl,j . If no intersection occupation of vehicle i is completed

within [tcl , t
c
j], i.e. ki > ki, thenwl,j = 0. This branch cost formulation ensures that all costs

included in one branch are determined and will not be changed by the priority assignments

at or after time tcj . The cost of the incompleted (ki+1)-th half cycle will be included by

the branches following the branch (l, j). Since if no contention occurs, all the vehicles can

travel with their maximal speed limit. Therefore, we can replace the future cost Ĉh(vl) in

84

(7.18) with

Ĉh(vl) = 0, (7.18)

The optimal vehicle control design is embedded in the branch cost calculation. We need

to solve the optimization problem (7.17) to obtain the optimal control law u∗i (t). In the next

section we present an analytical solution for this optimal control problem.

7.4.3 Analytical Solution of the Optimal Vehicle Control

First, we need to show the constrained optimal control problem

min
ui(t)

∫ αi[ki]

γi[ki−1]

1

2
[ui,max−ui(t)]2 dt s.t. (7.1), (7.2), (7.14) (7.19)

has feasible solutions.

Lemma 7.4.1 Given γi[ki−1] and αi[ki], a feasible solution always exists for constraints

(7.1), (7.2) and (7.14).

Proof. If αi[ki] = α̃i[ki], the unique feasible solution is that a vehicle travels with the

maximal speed ui,max. If αi[ki] > α̃i[ki], vehicle i can travel with a lower speed and arrives

at the intersection later than α̃i[ki]. And since ui(t) can be infinitely small, any time αi[ki]

greater than α̃i[ki] is feasible. �

Then we can compute the optimal control law for vehicle i within the time window

[γi[ki − 1], αi[ki]).

Theorem 7.4.1 The optimal solution for (7.17) must satisfy

u∗i (t) =
D − L

αi[ki]− γi[ki − 1]
for all ki ≥ 1. (7.20)

Proof. We use a constrained optimization argument based on [113]. Using (7.17), the sys-

tem dynamics (7.1), and the control/state constraints (7.2), it follows that for each vehicle

85

i, the Lagrangian function is

Li(t,xi, ui) =
1

2
(ui,max − ui)2 + λi(t) · ui + µi,1(ui − ui,max) + µi,2(−ui) (7.21)

where λi(t) is the co-state, and µi,1 and µi,2 are Lagrange multipliers. The Euler-Lagrange

condition becomes

λ̇i = −∂Li
∂xi

= 0.

Then λi(t) = νi for all t where νi is a constant. Based on [113], the necessary condition

for optimality is

∂Li
∂ui

= −ui,max + ui(t) + λi(t) + µi,1 − µi,2 = 0.

Therefore, the optimal vehicle speed is a constant given by u∗i (t) = ui,max−νi−µi,1 +µi,2.

Then (7.1) gives

xi(t) = xi(γi[ki − 1]) + u∗i (t) (t− γi[ki − 1]) , t ∈ [γi[ki − 1], αi[ki]]. (7.22)

Using the boundary condition xi(αi[ki]) = xi(γi[ki−1]) + D − L from (7.14) and setting

t = αi[ki] in (7.22), we then have the equality

xi(γi[ki − 1]) +D − L = xi(γi[ki − 1]) + u∗i (t) (αi[ki]− γi[ki − 1])

which produces the formula for u∗i (t) where ki ≥ 1. �

Theorem 7.4.1 computes the analytical solution of the optimal speed for vehicle i, given

the speed of vehicle j and the significant moments from the dynamic timing model. With

this solution, we can directly compute the branch cost. The pseudo code to compute each

branch cost is presented by Algorithm 5. The algorithm solves the optimal control design

86

Algorithm 5 Branch cost
1: Data: tcl−1, tcl , M , Pm

2: Result: u∗(t), wl,j
3: u∗i (t) = ui,max, i = 1, ..., N and t ∈ [tcl−1, t

c
l];

4: for k = 2 : M do
5: i is the index of vehicle such that pi = k;
6: j is the index of vehicle such that pj = k − 1;
7: Compute u∗i (t) based on (7.20);
8: wl,j =

∑N
i=1

∑ki
ki=ki

minui(t)
∫ αi[ki]
γi[ki−1]

1
2

[ui,max−u∗i (t)]
2 dt

iteratively in the order of priorities.

7.5 Optimality of Contention-resolving MPC

In this section, we prove that our algorithm finds the optimal solutions P∗(t) and u∗(t)

which minimize (7.13) given the necessary CIA assumption.

Proposition 7.5.1 The CIA assumption is a necessary condition for contention-resolving

MPC algorithm to find the global optimal solution.

Proof. We prove the contrapositive of this proposition: if the CIA assumption is relaxed,

then there are situations where a better solution exists compared to the solution computed

by contention-resolving MPC.

Assume that a contention occurs among vehicle i and some other vehicles at time α̃i[ki].

Then after the computation of contention-solving MPC, the priority assignment is deter-

mined and the time delay of vehicle i, δi[ki], can be computed by (4.2) given the priorities

computed by MPC. And we assume after k0 − 1 half cycles, the second contention occurs

to vehicle i at time α̃i[ki + k0] and the time delay of vehicle i is δi[ki + k0]. For the k0 − 1

half cycles between the time interval [α̃i[ki] + δi[ki] + C, α̃i[ki + k0]], vehicle i can travel

with its maximal speed. Figure 7.2 shows an illustration of the considered case. The cost

under such schedule can be computed as

JMPC =

(
ui,max−

D−L
Ti+δi[ki]

)2

(Ti+δi[ki]) +

(
ui,max−

D−L
Ti+δi[ki+k0]

)2

(Ti+δi[ki+k0]).

87

Figure 7.2: Illustration of further delaying the arrival of a vehicle.

Now we consider the case where the actual arrival time of vehicle i is further delayed by

∆ at the first contention time, i.e., vehicle i arrives at the intersection at α̃i[ki] + δi[ki] + ∆.

All the earliest arrival times after time α̃i[ki] + δi[ki] + ∆ are also delayed by ∆. And

we assume the delay ∆ does not affect the schedule of other vehicles and introduce more

contentions. The cost under such schedule can be computed as

J(∆)=

(
ui,max−

D−L
Ti+δi[ki]+∆

)2

(Ti+δi[ki]+∆)

+

(
ui,max−

D−L
Ti+δi[ki+k0]−∆

)2

(Ti+δi[ki+k0]−∆)

where ∆ > 0. Then, if we take the difference of these two costs, we have

JMPC−J(∆)=
(D−L)2(2Ti+δi[ki]+δi[ki+k0])(δi[ki+k0]−δi[ki]−∆)∆

(Ti+δi[ki])(Ti+δi[ki+k0])(Ti+δi[ki]+δi[ki+k0])Ti
(7.23)

From (7.23) we can see, if 0 < ∆ < δi[ki+k0] and δi[ki+k0]−δi[ki]−∆ > 0, we have

JMPC > J(∆). In other words, if the time delay δi[ki+k0] is greater than δi[ki], then we

can always find a ∆ satisfying 0 < ∆ < δi[ki+k0]−δi[ki] and the cost J(∆) will be less

than JMPC. In the case where δi[ki+k0] > δi[ki], contention-resolving MPC can only find

a sub-optimal solution if Assumption 3.2.2 is relaxed. �

A numerical exmaple where the conditions 0 < ∆ < δi[ki+k0] and δi[ki+k0]−δi[ki]−∆ >

88

0 are satisfied will be presented in Section 7.6 to further justify the proof above.

Remark 6 And since all the scheduling strategies and the optimal solution are based on

Assumption 3.2.2, we will also provide a insight discussion about the cases where Assump-

tion 3.2.2 is relaxed in Section 7.6.3.

7.6 Case Studies

This section presents the simulation results obtained by the proposed method implemented

in Matlab. We compare our proposed method with first come first serve scheduling (or

FCFS) strategy and highest speed first (or HSF) strategy and demonstrate that our optimal

scheduling method can provide a better solution than FCFS and HSF.

In the simulation, we consider 5 vehicles traveling on the figure eight track. The vehicle

length L is 15 feet. We choose S and D such that S + L= 0.75 miles, D − L= 6 miles.

Let tf =25 minutes and the speed limit of the first vehicle be umax1 =1.25 miles per minute

(75 mph). Let the speed limit of the other four vehicles be the same, umax2 =umax3 =umax4 =

umax5 = 1 mile per minute (60 mph). The intersection speed uint = 0.75 mile per minute

(45 mph).

7.6.1 Contention-resolving MPC VS FCFS

For the first studied case, we set the initial positions to be x0
1 = 4.25, x0

2 = 4.85, x0
3 = 3.25,

x0
4 = 0.75 and x0

5 = 0 miles. In this setup, vehicle 5 arrives at the intersection at time 0.

The earliest arrival times of vehicles 1, 2, 3 and 4 are 2, 1.9, 3.5 and 6 minutes, respectively.

The algorithm only takes 0.12 seconds to find the solution for this example. The total cost

is 0.3758.

The intersection occupation result is shown in Figure 7.3. The vehicle speed design is

shown in Figure 7.4. Four contentions occur in the time interval [0, 25]. The first contention

occurs at time 2. Although the earliest arrival time of vehicle 2 is smaller than vehicle 1,

the priority assignment computed by our method gives vehicle 1 higher priority (which is

89

different from the priority assigned by the FCFS strategy) because it has a higher speed

limit than vehicle 2. At time 3.5, the second contention occurs between vehicles 2 and 3,

which creates the possibility that vehicle 2 can be delayed twice. Our method can solve

this problem and determines that the optimal priority assignment is that vehicle 2 crosses

the intersection before vehicle 3. Two more contentions occur at 14 and 20 minutes, and

vehicle 1 is assigned a higher priority to resolve these two contentions.

For comparison, if we always assign higher priority to the vehicle which arrives at the

intersection first, i.e. following the FCFS strategy, and use regular MPC to design the

vehicle speeds, then the cost would be 0.5114, which is 36% higher than our solution.

While the example is simple, the simulation results show that our method performs better

than the FCFS. Notice that in this specific simulation case, vehicle 1 always has highest

priority, which agrees with the HSF scheduling strategy because vehicle 1 has the highest

traveling speed. However, HSF is not always the optimal solution, which will be shown in

the next subsection.

0 5 10 15 20 25
0

0.5
1

Vehicle 1

0 5 10 15 20 25
0

0.5
1

Vehicle 2

0 5 10 15 20 25
0

0.5
1

Vehicle 3

0 5 10 15 20 25
0

0.5
1

Vehicle 4

0 5 10 15 20 25

Time (minutes)

0
0.5

1
Vehicle 5

Figure 7.3: Intersection occupation for scheduling five vehicles. The y axis value 1 means
that the vehicle is occupying the intersection, 0 means that the vehicle has not arrived at the
intersection, and 0.5 means that the earliest arrival of a vehicle is delayed by a contention.
The black crosses mark the time instant when a contention occurs.

90

Figure 7.4: Optimal vehicle speed of scheduling five vehicles. The shaded areas mark the
time interval when a vehicle is crossing the intersection.

7.6.2 Contention-resolving MPC VS HSF

In the previous simulated case, the optimal priority assignment is the same as the priority

assignment under HFS. However, if we change the initial condition, the HFS will not be

optimal and we will show that our optimal priority assignment can perform significantly

better than HSF strategy.

Let the initial condition to be x0
1 = 1.75, x0

2 = 3.75, x0
3 = 4.75, x0

4 = 5.75 and x0
5 = 0

miles. In this setup, vehicle 5 arrives at the intersection at time 0. The earliest arrival times

of vehicles 1, 2, 3 and 4 are 4, 3, 2 and 1 minutes, respectively. The contention-resolving

MPC algorithm only takes 0.09 seconds to find the solution for this example. The total cost

is 0.4662.

The decision tree constructed by contention-resolving MPC is shown in Figure 7.5. Six

contentions occur in the time interval [0, 25]. Therefore, the total number of leaves in the

fully constructed decision tree is 26 = 64. And we can see that using the A-star inspired

91

searching algorithm, contention-resolving MPC only needs to generate 24 leaves to find

the optimal solution.

Figure 7.5: Decision tree constructed by contention-resolving MPC. Blue numbers repre-
sent branch costs wl,j . The black numbers under leaves represent contention time instant
tcl . The red numbers above leaves represent estimated total costs Ĉf (v). The red arrows
represent the path with lowest cost.

The intersection occupation result where the vehicles are scheduled under the optimal

priority assignment is shown in Figure 7.6 and the vehicle speed design is shown in Figure

7.7. The first contention occurs between vehicles 1 and 3 at time 9.8, marked by the black

cross. The second contention occurs between vehicles 1 and 2 right after the first contention

at time 10, marked by the purple cross. As we can see from Figure 7.6, although the

maximal speed limit of vehicle 1 is larger than vehicle 3, the priority assignment computed

by our method assigns vehicle 3 with higher priority (represented by the branch between

leaf 1 and 3 in Figure 7.5). The intuitive reason for such solution is that vehicle 3 only

needs an extra 0.2 minutes to pass the intersection when the first contention occurs, while

92

vehicle 1 needs 1 minute to pass the intersection. Therefore, assigning vehicle 3 with higher

priority leads to a smaller cost. Under such priority assignment, the optimal speed u∗1(t) of

vehicle 1 is reduced to 1.2 miles per minute, which is shown within the time interval [5, 10]

in Figure 7.7. Vehicle 1 only needs to slightly sacrifice its maximal speed to resolve this

contention while vehicle 3 travels with its maximal speed. Then at the next contention time

10, the second contention occurs between vehicles 1 and 2, which creates the possibility

that vehicle 1 can be delayed twice. Our method can resolve this issue and determine that

the optimal priority assignment is that vehicle 1 has higher priority than vehicle 2. Seen

from 7.7, under this priority assignment, the optimal speed of vehicle 2 is 6
7

miles per

minute within time interval [4, 11] minutes. Similar situations occur twice at 15.8 and 21.8

minutes, where vehicle 1 is assigned with a lower priority than the first contended vehicle

and a higher priority than the second contended vehicle.

0 5 10 15 20 25
0

0.5
1

Vehicle 1

0 5 10 15 20 25
0

0.5
1

Vehicle 2

0 5 10 15 20 25
0

0.5
1

Vehicle 3

0 5 10 15 20 25
0

0.5
1

Vehicle 4

0 5 10 15 20 25

Time (minutes)

0
0.5

1
Vehicle 5

Figure 7.6: Intersection occupation for scheduling five vehicles. The y axis value 1 means
that the vehicle is occupying the intersection, 0 means that the vehicle has not arrived at the
intersection, and 0.5 means that the earliest arrival of a vehicle is delayed by a contention.
The black crosses mark the time instant when a contention occurs.

For comparison, if we always assign higher priority to the vehicle with the highest

speed limit, i.e. vehicle 1 always has highest priority following the HSF strategy, and use

93

Figure 7.7: Optimal vehicle speed of scheduling five vehicles. The shaded areas mark the
time interval when a vehicle is crossing the intersection.

regular MPC to design the vehicle speeds, then the cost would be 1.4235, which is 205%

higher than our solution.

7.6.3 Numerical Results Without the CIA Assumption

In this subsection, we will discuss cases where the CIA assumption is relaxed and show

a numerical example where the contention-resolving MPC can only find a sub-optimal

solution.

Consider 2 vehicles traveling on the figure eight track. Let the speed limit of the first

vehicle be umax1 =1.5 miles per minute (90 mph). Let the speed limit of the second vehicle

be umax2 = 1 mile per minute (60 mph). The intersection speed is uint = 0.75 mile per

minute (45 mph). The initial positions are x0
1 = 4.8 and x0

2 = 0 miles. All the other

parameters are the same as previous simulations.

Figure 7.8 shows the intersection occupation results of vehicle 1 and vehicle 2 with

and without CIA assumption. With the CIA assumption, we can see two contentions occur

94

0 2 4 6 8 10 12 14 16 18 20 22 24 25
0

0.5

1
Vehicle 1

0 2 4 6 8 10 12 14 16 18 20 22 24 25
0

0.5

1
Vehicle 2 (Contention-resolving MPC)

0 2 4 6 8 10 12 14 16 18 20 22 24 25
0

0.5

1
Vehicle 2 (Extra 0.4 minutes delay)

0 2 4 6 8 10 12 14 16 18 20 22 24 25

Time (minutes)

0

0.5

1
Vehicle 2 (Extra 1 minutes delay)

Figure 7.8: Intersection occupation for scheduling two vehicles. The First two sub-figures
show the intersection occupation results of vehicle 1 and vehicle 2 computed by contention-
resolving MPC under Assumption 3.2.2. The third sub-figure (from top to bottom) shows
the intersection occupation time of vehicle 2 with an extra 0.4 minutes time delay. The forth
sub-figure shows the intersection occupation time of vehicle 2 with an extra 1 minutes time
delay.

between vehicle 1 and vehicle 2 within the time horizon [0, 25]. The first contention occurs

at 7 minutes. To resolve this contention, vehicle 1 is assigned with higher priority and it

leaves the intersection at 7.2 minutes. Therefore, vehicle 2 can only enter the intersection

at or after time 7.2 minutes. Under Assumption 3.2.2, the speed of vehicle 2 is decreased

to be 6
6.2

miles per minute for the time window [1, 7.2] such that vehicle 2 arrives at and

enter the intersection at time 7.2 minutes. And it leaves the intersection at 8.2 minutes.

Then vehicle 2 travels with its maximal speed and arrives at the intersection at time 14.2

without any contention with vehicle 1. The second contention between vehicles 1 and 2

occurs at time 21.2. Vehicle 1 is also assigned with higher priority than vehicle 2 to resolve

this contention. Therefore, vehicle 1 enters the intersection at at time 21.2 and leaves the

intersection at time 22.2. Vehicle 2 travels with a reduced speed 6
7

miles per minute and

arrives at the intersection at time 22.2 and leaves the intersection at time 23.2. The total

95

Figure 7.9: vehicle speed design of scheduling two vehicles.

cost under such scheduling and control co-design solution is

J1 =

(
1− 6

6.2

)2

· 6.2 +

(
1− 6

7

)2

· 7 = 0.1493.

Case 1: if we relax the CIA assumption and let vehicle 2 be delayed for 0.6 minutes at

the first contention (as shown by the third sub-figure in Figure 7.8), then vehicle 2 travels

with a reduced speed 6
6.6

miles per minute and arrives at the intersection at time 7.6, which

is 0.4 minute after the time instant when vehicle 1 leaves the intersection. Since vehicle

2 is delayed for an extra 0.4 minutes compared to the case with the CIA assumption, the

next earliest possible arrival time of vehicle 2 after time 7.6 is 14.6, which is also delayed

for an extra 0.4 minutes compared to the case under the CIA assumption, shown by the

sub-figure in the middle of Figure 7.8. At the earliest arrival time 14.6, vehicle 2 does not

contend with vehicle 2 so it can travel with its maximal speed within time [8.6, 14.6] and

enter the intersection at time 14.6. The next earliest arrival time of vehicle 2 after time 14.6

96

is 22.6 where second contention occurs. Vehicle 1 is also assigned with higher priority than

vehicle 2 to resolve this contention. Therefore, vehicle 1 enters the intersection at at time

21.2 and leaves the intersection at time 22.2. Vehicle 2 travels with a reduced speed 6
6.6

miles per minute and arrives at the intersection at time 22.2 and leaves the intersection at

time 23.2. The total cost under this schedule and vehicle speed control is

J2 =

(
1− 6

6.6

)2

· 6.6 +

(
1− 6

6.6

)2

· 6.6 = 0.1091,

which is less than J1. This numerical result show that if the CIA assumption is relaxed,

contention-resolving MPC cannot find the global optimal solution. A solution which leads

to smaller cost than the solution computed by contention-resolving MPC may exist.

Case 2: if we relax the CIA assumption and further delay the arrival of vehicle 2 at

the first contention, as shown by the bottom sub-figure in Figure 7.8, then vehicle 2 travels

with a reduced speed 6
7.2

miles per minute and arrives at the intersection at time 8.2, which

is 1 minute after the time instant when vehicle 1 leaves the intersection. Then the next

two earliest possible arrival times of vehicle 2 after time 7.6 are 15.2 and 23.2 minutes. At

both arrival times, vehicle 2 does not contend with vehicle 1 which reduces the number of

contentions. It can travel with its maximal speed within time [9.2, 25]. The total cost under

this schedule is

J3 =

(
1− 6

7.2

)2

· 7.2 = 0.2,

which is greater than J1 and J2. This example shows that further delaying the arrival of a

vehicle not only affect the cost of the co-design optimization solution, it can also change

the number of contentions in the future, which changes the structure of the decision tree.

From (7.23), if ∆ ≥ δi[ki+k0], i.e., the extra time delay is large enough such that the

second contention will not occur, then we have δi[ki+k0]−δi[ki]−∆ < 0, which leads

to JMPC < J(∆). Therefore, further delaying the arrival of a vehicle to avoid the second

contention cannot reduce the cost computed by contention-resolving MPC.

97

CHAPTER 8

APPLICATION 3: HUMAN AND MULTI-ROBOT COLLABORATION SYSTEM

In this chapter, we analyze a human and multi-robot collaboration system and apply the

contention-resolving MPC to optimally schedule the human attention when a human op-

erator receives collaboration requests from multiple robots at the same time. The human

attention scheduling problem is formulated as a binary optimization problem which aims

to maximize the overall performance among all the robots, under the constraint that a hu-

man has limited attention capacity. We first present the optimal schedule for the human

to determine when to collaborate with a robot if there is no contention occurring among

robots’ collaboration requests. We rigorously show that for the case where no contention

occurs among robots, the optimal schedule for a robot to maximize its performance is to

start the collaboration with a human operator once the collaboration request is generated.

For the case where contentions occur, the optimal schedule for a robot i is to start the

collaboration right after the time instant when all contended robots that are scheduled to

collaborate before robot i complete their collaborations. This property ensures the Con-

dition of Immediate Access or CIA, which we have shown to be a necessary condition for

contention-resolving MPC to find the optimal solution in Chapter 7. We also developed

discrete-time contention-resolving MPC to dynamically schedule the human attention and

determine which robot the human should collaborate with first. The optimal schedule can

then be determined using a sampling based approach. The effectiveness of our method is

verified through simulations and compared with the highest trust first (or HTF) scheduling

strategy.

98

8.1 Robot Performance and Human-to-robot Trust Models

In this chapter, we consider one human operator collaborating withN robots. In this human

and multi-robot collaboration system setup, the human is considered as an expert so if the

human is collaborating with a robot, then the human can help the robot to improve its

performance on task execution. For a robot i where i = 1, ..., N , we first introduce a

dynamic model describing its performance, which is given by the following model

Pi(k) = (1− ui(k)) [(1− ki,R)Pi(k − 1) + ki,RPi,min]

+ ui(k) [(1− ki,H)Pi(k − 1) + ki,HPi,max] (8.1)

where k denotes the discrete time step and i denotes the index of a robot. The parameters

Pi,min, Pi,max are the minimal and maximal values of the performance value of robot i.

The control variable ui(k) only has two values, 0 or 1. If ui(k) = 1, then the robot is in

collaborative mode with the human operator. If ui(k) = 0, then the robot is in autonomous

mode without the collaboration with the human operator. The parameters ki,R and ki,H

are coefficients for autonomous and collaborative mode, respectively, satisfying 0<ki,H<

ki,R < 1. The robot performance model (8.1) guarantees that Pi(k) is bounded between

[Pi,min, Pi,max], given that their initial performance value Pi(k0) is within [Pi,min, Pi,max].

The performance value Pi(k) will decrease under the autonomous mode because it is a

convex combination of Pi(k−1) and Pi,min. And Pi(k) will increase under the collaborative

mode because it is a convex combination of Pi(k−1) and Pi,max.

Then based on the robot’s performance model, we introduce the concept of human-to-

robot trust. We utilize the human-to-robot trust model in [62] to quantify how good the

collaboration experience is for the human operator. The trust is modeled as

Ti(k) = AiTi(k − 1) +BiPi(k)− CiPi(k − 1) +DiFi(k)− EiFi(k − 1) (8.2)

99

where the function Ti(k) represents the trust level from the human operator to robot i

at time k. It is determined by the previous trust level Ti(k−1), the robot performance

measure Pi(k) and Pi(k− 1), and the robot fault rate Fi(k) and Fi(k − 1), which are

random variables following the standard normal distribution. The parameters Ai, Bi, Ci,

Di and Ei are constant coefficients whose values depend on the human operator, robot i

and the corresponding collaborative task. The trust level should be within a proper range

so the human does not “under-trust” or “over-trust” a robot, i.e.

Ti,min ≤ Ti(k) ≤ Ti,max for all k ∈ [k0, kf] (8.3)

where Ti,min > 0 and Ti,max > 0 are the lower and upper bounds of the trust level for robot

i, respectively and the times k0 and kf are the starting and ending time of the scheduling

time horizon. This will be one constraint which we consider in the problem formulation.

8.2 Human Attention Scheduling

For all N robots, each one needs to execute a sequence of tasks Γi = {τi,1, τi,2, ..., τi,ni , ...}

where i is the index of a robot and ni is the index the task. We assume the tasks are all

periodic for each robot and use the notation Ti to denote the period. Let αi(ni) denote the

time that robot i starts to execute the nith task, which is also the time when robot i requests

to collaborate with the human. For any index ni, Ci(ni) is the collaboration time that robot i

requires to collaborate with the human operator within the time window [αi(ni), αi(ni)+Ti)

satisfying 1 ≤ Ci(ni) < Ti for all i and ni. And at each time αi(ni), the performance value

Pi(αi(ni)) of robot i is reinitialized to be P 0
i (ni) ∈ [Pi,min, Pi,max], because each task in

task sequence Γi may be very different from each other. A collaboration completion time

γi(ni) is the time step when robot i finishes collaborating with the human operator. Since

the system is modeled in discrete time, the parameters αi, Ci, Ti and γi are all integers.

Remark 7 In our problem set up, it is not required that the human and robot collaboration

100

needs to start at the moment αi(ni), but we will show in Section 8.2.2 that the collaboration

starting at the moment αi(ni) is the optimal solution to maximize robot performance value

if the human attention limitation is ignored, i.e., the contention constraint (8.4) is relaxed.

Assumption 8.2.1 For each task τi,ni , once the collaboration starts between the human

and robot i at time k, it will only ends at time k + Ci(ni).

This assumption indicates that the collaboration between the human operator and a robot

cannot be interrupted, which prevents frequent switches among the collaboration with dif-

ferent robots to save human’s energy.

A contention time is defined to be a time when two or more robots request to collaborate

with the human operator at the same time. Due to the human attention capacity limitation,

we make the following assumption when a contention occurs:

Assumption 8.2.2 At any given time, at most one robot can be in collaborative mode with

the human operator and all the other robots are in autonomous mode, i.e.,

N∑
i=1

ui(k) ≤ 1 for all k. (8.4)

Because of contentions, we introduce the delay variable δi(ni) ≥ 0 so that

γi(ni) = αi(ni) + δi(ni) + Ci(ni). (8.5)

8.2.1 Formulation of Model Predictive Control

We formulate a human attention allocation problem to compute optimal scheduling u∗(k) =

(u∗1(k), ..., u∗N(k)) on a time interval [k0, kf].

Given initial human-robot trust level (T1(k0), ..., Ti(k0), ..., TN(k0)) and initial robot

performance value (P1(n1), ..., Pi(ni), ..., PN(nN)) for all i and ni, the optimal scheduling

101

problem is to find values for the optimal u∗(k) by solving the optimization problem

min
u(k)

N∑
i=1

kf∑
k=k0

[Pi,max−Pi(k)] subject to (8.1), (8.2), (8.3), (8.4), (8.6)

ui(k)=0, k∈ [αi(ni), αi(ni)+δi(ni)(u(k))− 1],

ui(k)=1, k∈ [αi(ni)+δi(ni)(u(k)), γi(ni)(u(k))] and

ui(k)=0, k∈ [γi(ni)(u(k))+1, αi(ni+1)−1]

for all ni such that k0 ≤ αi(ni) and αi(ni+1) ≤ kf .

where the notations δi(ni)(u(k)) and γi(ni)(u(k)) represent that these time instants are

implicit functions of u(k). The cost function aims to increase the robot performance as

much as possible to reach the performance upper bounds. Equations (8.1) and (8.2) are

system dynamic equations. Constraint (8.3) aims to maintain the trust level within the

range. Equations (8.4) is the contention constraint where ui(k)’s are coupled. Since u(k)

is a vector of binary integers at each time k, the problem is binary optimization problem. It

is a non-convex optimization problem that is difficult to solve.

8.2.2 Optimal Solution Without Considering Contention

We will first relax the trust level constraint (8.3) and the human attention limitation con-

straint (8.4) in the problem formulation (8.6) to find the optimal solution u(k) to maximize

the overall robot performance value among the time horizon [k0, kf]. After relaxing the two

102

constraints, the problem (8.6) can be decoupled and is equivalent to

N∑
i=1

Ni∑
ni=1

max
δi(ni)

αi(ni+1)−1∑
k=αi(ni)

Pi(k) (8.7)

subject to (8.1) with P 0
i (ni) and

ui(k)=

0, k ∈ [αi(ni), αi(ni)+δi(ni)− 1],

1, k ∈ [αi(ni)+δi(ni), αi(ni)+δi(ni)+Ci−1],

0, k ∈ [αi(ni)+δi(ni)+Ci, αi(ni+1)−1],

where Ni is the largest index of tasks in Γi satisfying αi(Ni) < kf

Theorem 8.2.1 (CIA condition) The optimal solution for problem (8.7) is δi(ni) = 0 for

all 1 ≤ ni ≤ Ni.

Proof. We first define the cost for robot i within the time window [αi(ni), αi(ni+1)−1] to

be

Ji,ni(δi(ni)) =

αi(ni+1)−1∑
k=αi(ni)

Pi(k).

Then we will show that the derivative of Ji,ni(δi(ni)) is less than 0, so Ji,ni(δi(ni)) is strictly

decreasing as δi(ni) increases. For simplification, we will use P 0
i to represent P 0

i (ni) in the

following part of this proof.

During the time k ∈ [αi(ni), αi(ni) + δi(ni)−1], we have ui(k) = 0. The dynamic of

robot i’s performance value according to (8.1) is

Pi(k) = (1− ki,R)Pi(k − 1) + ki,RPi,min with ui(k) = 0.

103

Then for any k ∈ [αi(ni), αi(ni) + δi(ni)],

Pi(k)=(1−ki,R)k−αi(ni)P 0
i +ki,RPi,min

k−1∑
κ=αi(ni)

(1−ki,R)k−1−κ

=(1−ki,R)k−αi(ni)P 0
i +Pi,min

[
1−(1−ki,R)k−αi(ni)

]
=(1−ki,R)k−αi(ni)

(
P 0
i −Pi,min

)
+Pi,min. (8.8)

The sum of costs among the time interval [αi(ni), αi(ni) + δi(ni)] is

J1
i,ni

(δi(ni))=

αi(ni)+δi(ni)∑
k=αi(ni)

Pi(k) =Pi,min [δi(ni)+1]+(P 0
i −Pi,min)

1−(1−ki,R)δi(ni)+1

ki,R
.

Let t1 denote the time step αi(ni)+δi(ni) and P 1
i denote Pi(t1) which can be computed

as Pi(t1)=(1−ki,R)δi(ni) (P 0
i −Pi,min)+Pi,min, which is the initial value for the time interval

k ∈ [αi(ni) + δi(ni), αi(ni) + δi(ni) + Ci(ni) − 1]. With ui(k) = 1 for k ∈ [αi(ni) +

δi(ni), αi(ni) + δi(ni) + Ci(ni)− 1], the dynamic of robot i’s performance value is

Pi(k) = (1− ki,H)Pi(k − 1) + ki,HPi,max

. Then for any k ∈ [αi(ni) + δi(ni) + 1, αi(ni) + δi(ni) + Ci(ni)], we have

Pi(k)=(1−ki,H)k−t1P 1
i +ki,HPi,max

k−1∑
κ=t1

(1−ki,H)k−1−κ

=(1−ki,H)k−t1
(
P 1
i −Pi,max

)
+Pi,max (8.9)

The costs among the time interval [αi(ni)+δi(ni)+1, αi(ni)+δi(ni)+Ci(ni)] is

J2
i,ni

(δi(ni))=

αi(ni)+δi(ni)+Ci(ni)∑
k=αi(ni)+δi(ni)+1

Pi(k)=
1−ki,H
ki,H

[
1−(1−ki,H)Ci(ni)

](
P 1
i −Pi,max

)
+Ci(ni)Pi,max

104

Let t2 denote the time step αi(ni)+δi(ni)+Ci(ni) and P 2
i denote

Pi(t2)=(1−ki,H)Ci(ni)
(
P 1
i −Pi,max

)
+Pi,max (8.10)

=(1−ki,H)Ci(ni)(1−ki,R)δi(ni)
(
P 0
i −Pi,min

)
+(1−ki,H)Ci(ni)(Pi,min−Pi,max)+Pi,max.

For k ∈ [αi(ni) + δi(ni) + Ci(ni) + 1, αi(ni+1)−1], we have ui(k) = 0, which leads to

Pi(k)=(1−ki,R)k−t2
(
P 2
i −Pi,min

)
+Pi,min. (8.11)

The costs among the time interval [αi(ni)+δi(ni)+Ci(ni)+1, αi(ni+1)−1] is

J3
i,ni

(δi(ni)) =

αi(ni+1)−1∑
k=αi(ni)+δi(ni)+Ci(ni)]+1

Pi(k)

=
1−ki,R
ki,R

[
1− (1− ki,R)t3−δi(ni)

] (
P 2
i −Pi,min

)
+(t3−δi(ni))Pi,min

where t3 = Ti−1−Ci(ni). Therefore, the cost is

Ji,ni(δi(ni))=J1
i,ni

(δi(ni))+J2
i,ni

(δi(ni))+J3
i,ni

(δi(ni)).

And if we denote ai=
1−ki,R
ki,R

>0, bi=
1−ki,H
ki,H

>0, ci=P 0
i −Pi,min≥0, di=(1−ki,R)Ci(ni)>0,

ei = (1−ki,H)Ci(ni) > 0, xi = ln(1−ki,R) < 0, yi = (1−ki,R)δi(ni) > 0 and then take the

derivative of Ji,ni(δi(ni)) as

dJi,ni(δi(ni))

dδi(ni))
=
dJ1

i,ni
(δi(ni))

dδi(ni))
+
dJ2

i,ni
(δi(ni))

dδi(ni))
+
dJ3

i,ni
(δi(ni))

dδi(ni))
.

We compute the first term as

dJ1
i,ni

(δi(ni))

dδi(ni))
=−P

0
i −Pi,min

ki,R
ln(1−ki,R)(1−ki,R)δi(ni)+1 + Pi,min = −aicixiyi + Pi,min.

105

The second term can be computed as

dJ2
i,ni

(δi(ni))

dδi(ni))
=

1−ki,H
ki,H

(P 0
i −Pi,min)

[
1−(1−ki,H)Ci(ni)

]
ln(1−ki,R)(1−ki,R)δi(ni)

=bici(1−ei)xiyi.

The third term is computed as

dJ3
i,ni

(δi(ni))

dδi(ni))
=

1−ki,R
ki,R

{[
1−(1−ki,R)t3−δi(ni)

] dP 2
i

dδi(ni))

+
d
[
1−(1−ki,R)t3−δi(ni)

]
dδi(ni)

(
P 2
i −Pi,min

)}
−Pi,min

with dP 2
i

dδi(ni))
=(1−ki,H)Ci(ni)(P 0

i−Pi,min) ln(1−ki,R)(1−ki,R)δi(ni) = cieixiyi and
d[1−(1−ki,R)t3−δi(ni)]

dδi(ni)
=

ln(1−ki,R)(1−ki,R)t3−δi(ni) = (1−ki,R)t3−δi(ni)xi, which leads to
dJ3
i,ni

(δi(ni))

dδi(ni))
=aicieixiyi+

ai(ei−1)xi(1−ki,R)t3−δi(ni)(Pi,min−Pi,max)−Pi,min.

Then the derivative of Ji,ni(δi(ni)) is

dJi,ni(δi(ni))

dδi(ni))
=−aicixiyi+Pi,min+bici(1−ei)xiyi+aicieixiyi

+ai(ei−1)xi(1−ki,R)t3−δi(ni)(Pi,min−Pi,max)−Pi,min

=(bi−ai)(1−ei)cixiyi+ai(ei−1)xi(1−ki,R)t3−δi(ni)(Pi,min−Pi,max).

Since ki,H < ki,R, we have bi −ai > 0. And it is trivial that di−1 < 0, therefore (bi−

ai)(1−ei)cixiyi≤0 and ai(ei−1)xi(1−ki,R)t3−δi(ni)(Pi,min−Pi,max)<0, from which we can

conclude that dJi,ni (δi(ni))

dδi(ni))
< 0. Therefore, when δi(ni) = 0, Ji(δi(ni)) = Jmax

i , which leads

to (8.12). �

Based on Theorem 8.2.1, when there is no contention among robots, the optimal solu-

106

tion for ui(k) is

ui(k) =

1, k ∈ [αi(ni), αi(ni)+Ci(ni)−1],

0, k ∈ [αi(ni)+Ci(ni), αi(ni+1)−1],

(8.12)

for all ni such that k0 ≤ αi(ni) and αi(ni+1) ≤ kf . And it is trivial that

γi(ni) = αi(ni) + Ci(ni). (8.13)

However, if a contention occurs when robot i starts execute and requests to collaborate

with the human, then constraints (8.4) cannot be relaxed and equation (8.13) will not hold

because it may be delayed by the collaboration between the human and other robots, i.e.

δi(ni) 6= 0. And from the proof of Theorem 8.2.1, we know that the derivative dJi,ni (δi(ni))

dδi(ni))

is strictly less than 0, which means the larger time delay δi(ni) will further increase the

cost in (8.6). Therefore, we need a timing model to compute the minimal value which

the time delay variable δi(ni) can take without violating the contention constraint, which

will be introduced in the next section. This property also ensures that the human attention

scheduling problem is analogous to the classic real-time scheduling problems.

8.3 Analytical Timing Model for Human-and-robot Collaboration System

Here we use SMA to derive a discrete-time analytical timing model for the non-preemptive

human and robots collaboration system.

At each time k on our time horizon [k0, kf] of the optimization problem, we define our

timing state variable Z(k)=(D(k), R(k), O(k), ID(k)) as follows.

Definition 8.3.1 The deadline variable is D(k)=(d1(k), ..., di(k), ..., dN(k)), where di(k)

is defined to be how long after time k the next generation time αi(ni) of task τi,ni will

be generated. The remaining time variable is R(k) = (r1(k), ..., ri(k), ..., rN(k)), where

107

ri(k) denotes the remaining collaboration time after time k that is needed to complete

the collaboration of the most recently generated task τi,ni . The delay variable is O(k) =

(o1(k), ..., oi(k), ..., oN(k)), where oi(k) is how long the collaboration completion of task

τi,ni has been delayed from its most recent request time αi(ni) to time k.

Definition 8.3.2 The index variable is ID(k) is index of the robot that is collaborating

with the human operator at time k, where ID(k) 6= 0 implies that the human attention

is occupied by one robot and ID(k) = 0 implies that no robot is occupying the human

attention at time k.

To support the dynamic timing model, we redefine the collaboration time of a task as

follows:

Definition 8.3.3 For all i, ni ≥ 0, and k ∈ [αi(ni), αi(ni+1)], we set Ci(k) = Ci(ni) for

k ∈ [αi(ni), αi(ni+1)).

The evolution rules for Z(k) within a time interval [k0, kf] can be expressed by mathe-

matical equations. These equations lead to a timing model. It is an analytical model that is

efficient to compute, and it supports the implementation of contention-resolving MPC.

8.3.1 Timing Model for Human Attention Scheduling

We express our evolution rules for Z(k) on [k0, kf]. We divide [k0, kf] into sub-intervals

[kw, kw+1] such that

kw+1 − kw = sgn(ID(kw)) min{rID(kw), d1(kw), ..., dN(kw), kf−kw}

+ (1−sgn(ID(kw))) min{d1(kw), ..., dN(kw), kf−kw} (8.14)

for all w, where rID(k) is a simplified notation for the remaining time rID(k)(k) of timing

state variable ID.

108

At time kw, if rID(kw−1) > 1, which means the robot ID(kw−1) that was occupying the

human attention has not completed the collaboration at time kw, then ID(kw) is the same as

ID(kw−1) because the collaboration is non-preemptive. If rID(kw−1) = 1, which means

the robot ID(kw−1) completed the collaboration at time kw, then ID(kw) need to switch to

the robot which is scheduled to collaborate with the human operator, i.e. the robot i with

ui(kw) = 1. Combining these two cases, the evolution rule for the timing state variable ID

can be expressed as

ID(kw) = ID(kw−1) sgn(rID(kw−1)−1) +argmax
i
{ui(kw)}

[
1−sgn(rID(kw−1)−1)

]
(8.15)

where sgn is defined by sgn(q) = 1 if q > 0 and sgn(q) = 0 if q = 0. If the set Λ(kw) is

empty, then ID(kw) = 0.

The values of the timing state variables di, ri and oi have jumps for some i. If the

deadline variable of robot i satisfies di(kw−1) = 1, then

di(kw) = Ti, ri(kw) = Ci(kw) and oi(kw) = 0. (8.16)

If di(kw−1)>1, then there are no jumps for the timing states for robot i and we have

di(kw)=di(kw−1)−1, ri(kw)=ri(kw−1)−1(ID(kw−1)= i),

and oi(kw) = oi(kw−1)+sgn(ri(kw−1)). (8.17)

where 1(·) is an indicator function which is defined to be 1 if the condition ID(kw−1) = i

holds and 0 otherwise. Combining the two cases depending on the different values of

di(kw−1), the evolution rules of the timing state variables di, ri and oi at the times kw can

109

be summarized as

di(kw)=di(kw−1)−1+
[
1−sgn(di(kw−1)−1)

]
Ti, (8.18)

ri(kw)=sgn(di(kw−1)−1)
[
ri(kw−1)−1(ID(kw−1)= i)

]
+
[
1−sgn(di(kw−1)−1)

]
Ci(kw)

oi(kw)=
[
oi(kw−1)+sgn(ri(kw−1))

]
sgn(di(kw−1)−1)

During any time kw+∆k ∈ [kw+1, kw+1−1], the state ID(kw+∆k) remains unchanged

because kw+1 − kw ≤ rID(kw). If ID(kw) 6= 0, the evolution rules for control system

ID(kw) are

dID(kw+∆k)=dID(kw)−∆k, rID(kw+∆k)=rID(kw)−∆k,

and oID(tw+∆t)=oID(tw)+∆t (8.19)

where dID(k) and oID(k) are defined analogously to rID(k). And during this time window

uID(kw+∆k)=1. (8.20)

For robot i where i 6= ID(kw), the evolution rules are

di(kw + ∆k) = di(kw)−∆k, ri(kw + ∆k) = ri(kw)

and oi(kw + ∆k) = oi(kw) + sgn(ri(kw))∆k. (8.21)

During this time window, for robot i where i 6= ID(kw)

ui(kw+∆k)=0. (8.22)

Combining all of the evolution rules in (8.14)−(8.21) leads to the timing model of non-

preemptive human attention scheduling, which provides the value of Z(k) at each time k,

110

given the initial state variable Z(k0), the vehicle timing parameters Ci(ni) and Ti for all

i and ni, and the value of u(k0 ∼ k), where u(k0 ∼ k) is our simplified notation for the

decision variable for all robots at all time steps in the interval [k0, k].

Remark 8 Notice that the only times when the value of timing state depend on the decision

variable ui is at the significant moments kw. Therefore, we only need to determine the value

of ui at those times.

8.4 Contention-Resolving MPC Algorithm

In this section, we consider the original problem formulation where constraints (8.3) and

(8.4) are not relaxed. We convert the problem formulated by (8.6) into a path planning

problem that can be solved iteratively. The conversion is based on the insight that value of

the decision variable u only need to be decided at the significant moments when contention

occurs.

8.4.1 Construction of Decision Tree

We use the timing model to determine when contentions occur by checking the following

condition:

Proposition 8.4.1 A contention starts at time k if and only if the following three conditions

hold:

N∑
i=1

[1− sgn(Ci(k)− ri(k))] ≥ 2, rID(k − 1) ≤ 1 (8.23)

and k = kw for some i and some w where kw is a significant moment computed by equation

(8.14).

Proof. A collaboration request from robot i is waiting at a time k or is generated at

time k if and only if ri(k) = Ci(k), i.e., 1 − sgn(Ci(k) − ri(k)) = 1. Therefore,

111

∑N
i=1 [1− sgn(Ci(k)− ri(k))] ≥ 2 if and only if two or more robots are waiting to collab-

orate with the human operator at time k or generating requests at time k. Therefore, if a

contention starts at time k, then k is one significant moment kw for some i and w. And the

robot that was collaborating with the human one time step before k will either finish the

collaboration at time k, i.e., rID(k − 1) = 1 or the human was not collaborating with any

robot one time step before k, i.e., rID(k − 1) = 0, so the condition rID(k − 1) ≤ 1 from

(8.23) holds. Conversely, if the three conditions (8.23) are satisfied, then at time k, multiple

robots are in contention to collaborate with the human which is a necessary condition, so a

contention starts at time k. �

Based on the contention times, we can construct a decision tree. Each possible value

of u will produce a branch of a decision tree. An example of scheduling three robots for

four consecutive contentions is shown in Figure 8.1. The upper part of the figure shows

the constructed decision tree and the lower part shows the human attention occupation

scheduled along the path with blue arrows. The infinite-time feasibility function of the

discrete-time system represented by (5.4). The branch costs wi,j will be defined below.

8.4.2 Branch Cost

After constructing the decision tree, we define a cost for each branch. Along one branch

(l, j) associated, since the decision variables u(k) are determined for all i and k ∈ [kcl , k
c
j],

we can calculate the significant moments γi(ni) for all i and ni such that kcl ≤ γi(ni)≤ kcj

as follows:

Z(k) = H
(
k;Z(kcl), (Ci(ni), Ti)i=1,...,N ,um

)
and

γi(ni) = αi(ni)+oi(αi(ni+1)−1) +sgn(ri(αi(ni+1−1)) (8.24)

112

Figure 8.1: Decision tree for discrete-time contention-resolving MPC.

where ri(αi(ni+1)−1) and oi(αi(ni+1)−1) for each ni are generated by the timing model

except with a known um. Then the branch cost wl,j is defined as

wl,j =
N∑
i=1

wil,j (8.25)

where wil,j is the cost of robot i. For each i such that there is a completion time γi(ni+1) ∈

(tcl , t
c
j], let ni be the smallest index ni satisfying γi(ni + 1) > kcl and ni be the largest index

ni satisfying γi(ni + 1) ≤ kcj . Then we set

wil,j =

γi(ni)−1∑
k=γi(ni)

[Pi,max−Pi(k)] with u(k)=um(k) for k ∈ [γi(ni), γi(ni)−1]. (8.26)

If no collaboration of robot i is completed within [tcl , t
c
j], i.e. ni > ni, then we define

wl,j = 0. And if for any time k ∈ [tcl , t
c
j], we have Ti(k) < Ti,min or Ti(k) > Ti,max, then we

define wl,j = +∞. The meaning of (8.26) is as follows. If γi(ni) ∈ (kcl , k
c
j], i.e., the nith

collaboration of robot i is completed between the contention times kcl and kcj , then the cost

113

of the nith task is included in the branch cost wl,j . This branch cost formulation ensures

that all costs included in one branch are determined and will not be changed by the decision

variable u at or after time kcj . The cost of an uncompleted (ni+1)st collaboration will be

included by the branches following the branch (l, j).

8.4.3 Search Algorithm

Based on the decision tree, the integer optimization problem in Section 8.2.1 can now be

converted to the problem of finding a path from k0 to kf such that the whole cost along the

path is lowest. In Chapter 5, we presented the contention-resolving MPC framework that

leverages the A-star algorithm to search for an optimal path in the decision tree. We define

the same stage cost Cg(vl) to be the same as Chapter 5. And the heuristic future cost Ĉh(vl)

to be

Ĉh(vl) =
N∑
i=1

kf∑
k=γi(ni)

Pi(k) subject to (8.1),

ui(k) = 1, k ∈ [αi(ni), αi(ni)+Ci(ni)−1], ui(k) = 0, k ∈ [αi(ni)+Ci(ni), αi(ni+1)−1],

for all ni such that kcl ≤ αi(ni) and αi(ni+1) ≤ kf .

which is the cost without considering contention constraints and is less than or equal to

the true future constraints. We have shown in Chapter 5 that the minimal cost path is

guaranteed to be found with these defined costs. The search algorithm does not generate

the whole decision tree. Instead, it efficiently generates a subtree without losing optimality.

8.5 Simulation Results

We simulate three robots collaborating with one human operator. The starting and ending

time instants are k0 = 0 and kf = 120 respectively. The parameters for trust model are

Ai=1, Bi=0.605, Ci=0.6, Di=0 and Fi=0 for all i=1, 2, 3.

114

The initial values of trust level are

[T1(0), T2(0), T3(0)]=[1.93, 1.9, 1.98].

The lower bounds of the trust level are

[T1,min, T2,min, T3,min]=[1.55, 1.65, 1.7].

The upper bounds of the trust level are

[T1,max, T2,max, T3,max]=[2.15, 2.35, 2.1].

The initial values of performance are

[P 0
1 (ni), P

0
2 (ni), P

0
3 (ni)]=[0.7, 0.7, 0.7] for all ni.

The parameters for performance model are

[k1,R, k2,R, k3,R] = [0.25, 0.25, 0.25] and [k1,H , k2,H , k3,H] = [0.1, 0.13, 0.15].

The lower and upper bounds are

[P1,min, P2,min, P3,min] = [0.6, 0.65, 0.65] and [P1,max, P2,max, P3,max] = [0.75, 0.75, 0.75].

The timing parameters are

[C1(ni), C2(ni), C3(ni)] = [6, 6, 6] for all ni and [T1, T2, T3] = [20, 30, 40].

The human attention occupation result is shown in Figure 8.2. The robot performance

is shown in Figure 8.3. Five contentions occur in the time interval [0, 120]. The cost under

115

0 10 20 30 40 50 60 70 80 90 100 110 120

0

0.5

1

Robot 1

0 10 20 30 40 50 60 70 80 90 100 110 120

0

0.5

1

Robot 2

0 10 20 30 40 50 60 70 80 90 100 110 120

0

0.5

1

Robot 3

Figure 8.2: Human attention occupation for collaborating with three robots. The y axis
value 1 means that the robot is collaborating witht he human, 0 means that the robot is not
requesting the collaboration, and 0.5 means that the robot’s collaboration request is delayed
by a contention.

0 10 20 30 40 50 60 70 80 90 100 110 120

0.6

0.7

Robot 1

0 10 20 30 40 50 60 70 80 90 100 110 120

0.6

0.7

Robot 2

0 10 20 30 40 50 60 70 80 90 100 110 120

0.6

0.7

Robot 3

Figure 8.3: Performance values of three robots under the optimal schedule. The magenta
dashed line represents Pi,max and the black dashed line represents Pi,min.

optimal schedule is 31.4262, which is 11.99% less than the HTS scheduling strategy. While

the example is simple, the simulation results show that our method performs better than the

HTS.

116

CHAPTER 9

CONCLUSION AND FUTURE WORK

9.1 Conclusion

While model predictive control has gained popularity in process engineering and networked

control systems, the previously available methods had difficulties coping with the co-design

of optimal controls and priority assignments that occur in coupled control systems with

shared resources. Resolving contentions in coupled control systems with shared resources

is a challenging problem that is of compelling ongoing engineering interest. This thesis

leads to new insights in scheduling and control co-design methods under contentions. The

major contributions of this thesis are:

1. The novel contention-resolving MPC frame work. The contention-resolving MPC is

a unique way to solve the special mixed integer optimization problem when dealing

with the scheduling and control co-design. Enabled by the critical time instants when

contention occurs, the contention-resolving MPC is able to decouple the priority and

control design at the contention time instants and discretize the continuous planning

time horizon into time intervals where the priority assignment remains to be fixed.

The carefully designed decision tree structure and branch costs allow us to convert the

coupled priority and vehicle speed control optimization problem into a path planning

problem. And contention-resolving MPC can be proved to find the global optimal

solution for the formulated scheduling and control co-design optimization problem

under basic requirements and the condition of immediate access (or CIA) in real-time

scheduling theory.

2. Critical time instants derived by the timing states and SMA. In this thesis, we have

shown how to derive the classical Critical-time Instants Analysis through the math-

117

ematical equations instead of logical reasoning in [9], which give us a more sys-

tematical way to find the critical-time instants and analyze the schedulabilty in more

complicated real-time system such as non-preemptive and aperiodic systems.

9.2 Future Work

In this section, we will discuss the future direction of the research presented in this thesis.

9.2.1 Critical time instants for Non-preemptive Systems

In real-world application, non-preemptive scheduling is important for a variety of reasons.

For example, in many practical real-time scheduling problems such as I/O scheduling,

properties of device hardware and software either make preemption impossible or pro-

hibitively expensive. And the overhead of preemptive algorithms is more difficult to charac-

terize and predict than that of non-preemptive algorithms. Since scheduling overhead is of-

ten ignored in scheduling models (including ours), an implementation of a non-preemptive

scheduler will be closer to the formal model than an implementation of a preemptive sched-

uler.

Also, a recent trend in scheduling and control field is to use event-triggered system.

Tasks in event-driven systems are aporadic because of random user inputs or non-periodic

device interrupts. Events occur repeatedly, but the time interval between consecutive occur-

rences varies and can be arbitrarily large. Most existing research works describe sufficient

conditions for scheduling non-preemptive and aperiodic tasks. The work in [110] gives

necessary and sufficient conditions only for discrete-time system. For general aperiodic

and non-preemptive tasks, when the worst case scenario will occurs and how to find the

worst case condition is still an open question.

The timing states and siginificant moment analysis shows the potential to find the crit-

ical time and the worst-case conditions in general aperiodic and non-preemptive system.

Once the worst case scenario can be found, the schedulability condition can also be devel-

118

oped.

9.2.2 Multiple-lane and Multiple-intersection Scheduling

In real-world intersections, more than two roads may intersect each other. In addition, each

road can contain multiple lanes, each lane can host multiple vehicles, and each vehicle can

perform multiple moves, e.g., a right turn, left turn, or lane shift. The intersection can

be occupied by multiple vehicles at once, if the trajectories of the vehicles do not overlap.

Therefore, the intersection area needs to be modeled as a shared resource that allows access

by multiple customers. The work presented in this thesis has not addressed a complex con-

tention relationship like this, which offers opportunity to advance the contention-resolving

MPC.

Besides, we will investigate coordinated scheduling of multiple intersections. Locally

optimal strategies for one intersection usually do not lead to an optimal strategy for multiple

intersections. The challenge for scheduling multiple intersections is that the computational

power for solving mixed integer programming problems will be extremely high due to the

large number of decision variables, so we will pursue a distributed optimization approach.

What information is shared among neighboring intersections by the distributed algorithms

must be designed. Most existing work on distributed optimization does not apply to dis-

tributed mixed integer programming [114, 115, 116]. This may trigger a new research

direction for distributed optimization.

119

REFERENCES

[1] J. Hespanha, P. Naghshtabrizi, and Y. Xu, “A survey of recent results in networked
control systems,” Proceedings of the IEEE, vol. 95, no. 1, pp. 138–162, 2007.

[2] G. C. Walsh, Y. Hong, and L. G. Bushnell, “Stability analysis of networked con-
trol systems,” IEEE Transactions on Control Systems Technology, vol. 10, no. 3,
pp. 438–446, 2002.

[3] Z. Shi, N. Yao, and F. Zhang, “Scheduling feasibility of energy management in
micro-grids based on significant moment analysis,” pp. 431–449, 2017.

[4] J. Rios-Torres and A. A. Malikopoulos, “A survey on the coordination of connected
and automated vehicles at intersections and merging at highway on-ramps,” IEEE
Transactions on Intelligent Transportation Systems, vol. 18, no. 5, pp. 1066–1077,
2017.

[5] X. Wang, Z. Shi, F. Zhang, and Y. Wang, “Mutual trust based scheduling for (semi)autonomous
multi-agent systems,” in Proceedings of the 2015 American Control Conference
(Chicago, IL, 1-3 July 2015), pp. 459–464.

[6] L. Sha, T. Abdelzaher, K.-E. Årzén, A. Cervin, T. Baker, A. Burns, G. Buttazzo, M.
Caccamo, J. Lehoczky, and A. K. Mok, “Real time scheduling theory: A historical
perspective,” Real-Time Systems, vol. 28, no. 2-3, pp. 101–155, 2004.

[7] F. Zhang, K. Szwaykowska, W. Wolf, and V. Mooney, “Task scheduling for control
oriented requirements for cyber-physical systems,” in Real-Time Systems Sympo-
sium, 2008, IEEE, 2008, pp. 47–56.

[8] X. Wang, Z. Shi, F. Zhang, and Y. Wang, “Dynamic real-time scheduling for human-
agent collaboration systems based on mutual trust,” Cyber-Physical Systems, vol. 1,
no. 2-4, pp. 76–90, 2015.

[9] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogramming in a
hard-real-time environment,” Journal of the ACM, vol. 20, no. 1, pp. 46–61, 1973.

[10] N. Yao, M. Malisoff, and F. Zhang, “Contention resolving optimal priority assign-
ment for event-triggered model predictive controllers,” in Proceedings of the 2017
American Control Conference, IEEE, 2017, pp. 2357–2362.

120

[11] J. Lee and B. Park, “Development and evaluation of a cooperative vehicle intersec-
tion control algorithm under the connected vehicles environment,” IEEE Transac-
tions on Intelligent Transportation Systems, vol. 13, no. 1, pp. 81–90, 2012.

[12] A. A. Malikopoulos, C. G. Cassandras, and Y. J. Zhang, “A decentralized energy-
optimal control framework for connected automated vehicles at signal-free inter-
sections,” Automatica, vol. 93, pp. 244–256, 2018.

[13] Y. J. Zhang, A. A. Malikopoulos, and C. G. Cassandras, “Optimal control and co-
ordination of connected and automated vehicles at urban traffic intersections,” in
Proceedings of the American Control Conference, IEEE, 2016, pp. 6227–6232.

[14] S. Engell and I. Harjunkoski, “Optimal operation: Scheduling, advanced control
and their integration,” Computers & Chemical Engineering, vol. 47, pp. 121–133,
2012.

[15] W. Chen, J. Yao, and L. Qiu, “Networked stabilization of multi-input systems over
shared channels with scheduling/control co-design,” Automatica, vol. 99, pp. 188–
194, 2019.

[16] A. Farnam and R. M. Esfanjani, “Improved stabilization method for networked
control systems with variable transmission delays and packet dropout,” ISA trans-
actions, vol. 53, no. 6, pp. 1746–1753, 2014.

[17] H. Gao, T. Chen, and J. Lam, “A new delay system approach to network-based
control,” Automatica, vol. 44, no. 1, pp. 39–52, 2008.

[18] C. Peng and T. C. Yang, “Event-triggered communication and H∞ control co-
design for networked control systems,” Automatica, vol. 49, no. 5, pp. 1326–1332,
2013.

[19] Z. Shi and F. Zhang, “Model predictive control under timing constraints induced
by controller area networks,” Real-Time Systems, pp. 1–32, 2015.

[20] C. Zhou, M. Du, and Q. Chen, “Co-design of dynamic scheduling and h-infinity
control for networked control systems,” Applied Mathematics and Computation,
vol. 218, no. 21, pp. 10 767–10 775, 2012.

[21] M. M. B. Gaid, A. Cela, and Y. Hamam, “Optimal integrated control and scheduling
of networked control systems with communication constraints: Application to a car
suspension system,” IEEE Transactions on Control Systems Technology, vol. 14,
no. 4, pp. 776–787, 2006.

121

[22] M. E. M. B. Gaid, A. S. Cela, and Y. Hamam, “Optimal real-time scheduling of
control tasks with state feedback resource allocation,” IEEE Transactions on Con-
trol Systems Technology, vol. 17, no. 2, pp. 309–326, 2009.

[23] S. K. Mazumder, K. Acharya, and M. Tahir, “Joint optimization of control perfor-
mance and network resource utilization in homogeneous power networks,” IEEE
Transactions on Industrial Electronics, vol. 56, no. 5, pp. 1736–1745, 2009.

[24] L. Yao, W.-C. Chang, and R.-L. Yen, “An iterative deepening genetic algorithm for
scheduling of direct load control,” IEEE Transactions on Power Systems, vol. 20,
no. 3, pp. 1414–1421, 2005.

[25] D. Roy, L. Zhang, W. Chang, D. Goswami, and S. Chakraborty, “Multi-objective
co-optimization of flexray-based distributed control systems,” in 2016 IEEE Real-
Time and Embedded Technology and Applications Symposium (RTAS), IEEE, 2016,
pp. 1–12.

[26] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. Scokaert, “Constrained model
predictive control: Stability and optimality,” Automatica, vol. 36, no. 6, pp. 789–
814, 2000.

[27] J. B. Rawlings and D. Q. Mayne, Model predictive control: Theory and design.
Nob Hill Pub., 2009.

[28] L. Baskar, B. De Schutter, and H. Hellendoorn, “Model-based predictive traffic
control for intelligent vehicles: Dynamic speed limits and dynamic lane allocation,”
in Proceedings of the IEEE Intelligent Vehicles Symposium (Eindhoven, Nether-
lands, 4-6 June 2008), 2008, pp. 174–179.

[29] T. Bellemans, B. De Schutter, and B. De Moor, “Model predictive control for ramp
metering of motorway traffic: A case study,” Control Engineering Practice, vol. 14,
no. 7, pp. 757–767, 2006.

[30] J. R. D. Frejo and E. F. Camacho, “Global versus local MPC algorithms in freeway
traffic control with ramp metering and variable speed limits,” IEEE Transactions
on Intelligent Transportation Systems, vol. 13, no. 4, pp. 1556–1565, 2012.

[31] M. Lješnjanin, D. E. Quevedo, and D. Nešić, “Packetized mpc with dynamic schedul-
ing constraints and bounded packet dropouts,” Automatica, vol. 50, no. 3, pp. 784–
797, 2014.

[32] R. Negenborn, B. De Schutter, and J. Hellendoorn, “Multi-agent model predictive
control for transportation networks: Serial versus parallel schemes,” Engineering
Applications of Artificial Intelligence, vol. 21, no. 3, pp. 353–366, 2008.

122

[33] L. Shi, S. Bart De, X. Yugeng, and H. Hans, “Fast model predictive control for
urban road networks via MILP,” IEEE Transactions on Intelligent Transportation
Systems, vol. 12, no. 3, pp. 846–856, 2011.

[34] A. Afram and F. Janabi-Sharifi, “Theory and applications of HVAC control systems–
a review of model predictive control (MPC),” Building and Environment, vol. 72,
pp. 343–355, 2014.

[35] C. R. Touretzky and M. Baldea, “Integrating scheduling and control for economic
mpc of buildings with energy storage,” Journal of Process Control, vol. 24, no. 8,
pp. 1292–1300, 2014.

[36] Y. Zhao, Y. Lu, C. Yan, and S. Wang, “Mpc-based optimal scheduling of grid-
connected low energy buildings with thermal energy storages,” Energy and Build-
ings, vol. 86, pp. 415–426, 2015.

[37] Y. Chu and F. You, “Moving horizon approach of integrating scheduling and control
for sequential batch processes,” AIChE Journal, vol. 60, no. 5, pp. 1654–1671,
2014.

[38] G. Liu, J. Sun, and Y. Zhao, “Design, analysis and real-time implementation of
networked predictive control systems,” Acta Automatica Sinica, vol. 39, no. 11,
pp. 1769–1777, 2013.

[39] G. Liu, Y. Xia, J. Chen, D. Rees, and W. Hu, “Networked predictive control of
systems with random network delays in both forward and feedback channels,” IEEE
Transactions on Industrial Electronics, vol. 54, no. 3, pp. 1282–1297, 2007.

[40] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic de-
termination of minimum cost paths,” IEEE Transactions on Systems Science and
Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[41] S. A. Fayazi and A. Vahidi, “Vehicle-in-the-loop (VIL) verification of a smart city
intersection control scheme for autonomous vehicles,” in Proceedings of the IEEE
Conference on Control Technology and Applications, IEEE, 2017, pp. 1575–1580.

[42] F. Yan, M. Dridi, and A. El Moudni, “An autonomous vehicle sequencing problem
at intersections: A genetic algorithm approach,” International Journal of Applied
Mathematics and Computer Science, vol. 23, no. 1, pp. 183–200, 2013.

[43] N. Yao and F. Zhang, “Resolving contentions for intelligent traffic intersections
using optimal priority assignment and model predictive control,” in 2018 IEEE
Conference on Control Technology and Applications (CCTA), IEEE, 2018, pp. 632–
637.

123

[44] N. Yao, M. Malisoff, and F. Zhang, “Contention-resolving model predictive control
for coordinating automated vehicles at a traffic intersection,” in 2019 IEEE 58th
Conference on Decision and Control (CDC), IEEE, 2019, pp. 2233–2238.

[45] ——, “Contention-resolving model predictive control for coupled control systems
with a shared resource,” Automatica, Submitted,

[46] N. Yao and F. Zhang, “Optimal real-time scheduling of human attention for a hu-
man and multi-robot collaboration system,” in Proceedings of the 2020 American
Control Conference, IEEE, 2020, Accepted.

[47] J. Xu and D. L. Parnas, “Scheduling processes with release times, deadlines, prece-
dence and exclusion relations,” IEEE Transactions on software engineering, vol. 16,
no. 3, pp. 360–369, 1990.

[48] R. W. Conway, W. L. Maxwell, and L. W. Miller, Theory of scheduling. Courier
Corporation, 2003.

[49] J. Goossens, S. Funk, and S. Baruah, “Priority-driven scheduling of periodic task
systems on multiprocessors,” Real-time systems, vol. 25, no. 2-3, pp. 187–205,
2003.

[50] M. Bertogna and M. Cirinei, “Response-time analysis for globally scheduled sym-
metric multiprocessor platforms,” in Real-Time Systems Symposium, 2007. RTSS
2007. 28th IEEE International, IEEE, 2007, pp. 149–160.

[51] S. K. Baruah and S. Chakraborty, “Schedulability analysis of non-preemptive re-
curring real-time tasks,” in Parallel and Distributed Processing Symposium, 2006.
IPDPS 2006. 20th International, IEEE, 2006, 8–pp.

[52] V. Van Peteghem and M. Vanhoucke, “A genetic algorithm for the preemptive and
non-preemptive multi-mode resource-constrained project scheduling problem,” Eu-
ropean Journal of Operational Research, vol. 201, no. 2, pp. 409–418, 2010.

[53] M. Bertogna, G. Buttazzo, and G. Yao, “Improving feasibility of fixed priority tasks
using non-preemptive regions,” in Real-Time Systems Symposium (RTSS), 2011
IEEE 32nd, IEEE, 2011, pp. 251–260.

[54] R. B. Gmbh, “CAN specification (version 2.0),” 1991.

[55] G. C. Walsh and H. Ye, “Scheduling of networked control systems,” IEEE control
systems magazine, vol. 21, no. 1, pp. 57–65, 2001.

124

[56] E. Bini, G. C. Buttazzo, and G. M. Buttazzo, “Rate monotonic analysis: The hy-
perbolic bound,” IEEE Transactions on Computers, vol. 52, no. 7, pp. 933–942,
2003.

[57] J. Lehoczky, L. Sha, and Y. Ding, “The rate monotonic scheduling algorithm: Exact
characterization and average case behavior,” in RTSS, vol. 89, 1989, pp. 166–171.

[58] T. F. Abdelzaher, V. Sharma, and C. Lu, “A utilization bound for aperiodic tasks
and priority driven scheduling,” IEEE Transactions on Computers, vol. 53, no. 3,
pp. 334–350, 2004.

[59] S. K. Baruah, “The non-preemptive scheduling of periodic tasks upon multiproces-
sors,” Real-Time Systems, vol. 32, no. 1-2, pp. 9–20, 2006.

[60] M. Marouf, L. George, and Y. Sorel, “Schedulability analysis for a combination of
non-preemptive strict periodic tasks and preemptive sporadic tasks,” in Proceedings
of 2012 IEEE 17th International Conference on Emerging Technologies & Factory
Automation (ETFA 2012), IEEE, 2012, pp. 1–8.

[61] Z. Shi and F. Zhang, “Predicting time-delays under real-time scheduling for linear
model predictive control,” in Proceedings of the 2013 International Conference on
Computing, Networking and Communications, IEEE, 2013, pp. 205–209.

[62] X. Wang, Z. Shi, F. Zhang, and Y. Wang, “Dynamic real-time scheduling for human-
agent collaboration systems based on mutual trust,” Cyber-Physical Systems, vol. 1,
no. 2-4, pp. 76–90, 2015.

[63] K.-E. Arzén, A. Cervin, J. Eker, and L. Sha, “An introduction to control and schedul-
ing co-design,” in Proceedings of the 39th IEEE Conference on Decision and Con-
trol (Cat. No. 00CH37187), IEEE, vol. 5, 2000, pp. 4865–4870.

[64] J. P. Hespanha, P. Naghshtabrizi, and Y. Xu, “A survey of recent results in net-
worked control systems,” Proceedings of the IEEE, vol. 95, no. 1, pp. 138–162,
2007.

[65] S. Longo, T. Su, G. Herrmann, and P. Barber, Optimal and Robust Scheduling for
Networked Control Systems. Boca Raton, FL: CRC Press, 2013.

[66] M. Miskowicz, Event-Based Control and Signal Processing. Boca Raton, FL: CRC
Press, 2015.

[67] K.-E. Årzén, A. Cervin, J. Eker, and L. Sha, “An introduction to control and schedul-
ing co-design,” in Proceedings of the 39th IEEE Conference on Decision and Con-
trol (CDC 2000), 2000, pp. 4865–4870.

125

[68] D. Antunes, W. Heemels, and P. Tabuada, “Dynamic programming formulation of
periodic event-triggered control: Performance guarantees and co-design,” in Pro-
ceedings of the 51st IEEE Conference on Decision and Control (CDC 2012), IEEE,
2012, pp. 7212–7217.

[69] W. Zhang, M. S. Branicky, and S. M. Phillips, “Stability of networked control sys-
tems,” IEEE control systems magazine, vol. 21, no. 1, pp. 84–99, 2001.

[70] D. Goswami, A. Masrur, R. Schneider, C. J. Xue, and S. Chakraborty, “Multirate
controller design for resource-and schedule-constrained automotive ecus,” in 2013
Design, Automation & Test in Europe Conference & Exhibition (DATE), IEEE,
2013, pp. 1123–1126.

[71] P. Marti, J. M. Fuertes, G. Fohler, and K. Ramamritham, “Jitter compensation for
real-time control systems,” in Proceedings 22nd IEEE Real-Time Systems Sympo-
sium (RTSS 2001)(Cat. No. 01PR1420), IEEE, 2001, pp. 39–48.

[72] E. L. Lawler and D. E. Wood, “Branch-and-bound methods: A survey,” Operations
research, vol. 14, no. 4, pp. 699–719, 1966.

[73] L. Davis, “Handbook of genetic algorithms,” 1991.

[74] R. Hult, M. Zanon, S. Gras, and P. Falcone, “An miqp-based heuristic for optimal
coordination of vehicles at intersections,” in 2018 IEEE Conference on Decision
and Control (CDC), IEEE, 2018, pp. 2783–2790.

[75] R. Tachet, P. Santi, S. Sobolevsky, L. Reyes-Castro, E. Frazzoli, D. Helbing, and C.
Ratti, “Revisiting street intersections using slot-based systems,” PloS One, vol. 11,
no. 3, e0149607, 2016.

[76] K. Zhang, D. Zhang, A. de La Fortelle, X. Wu, and J. Gregoire, “State-driven prior-
ity scheduling mechanisms for driverless vehicles approaching intersections,” IEEE
Transactions on Intelligent Transportation Systems, vol. 16, no. 5, pp. 2487–2500,
2015.

[77] K. Zhang, A. Yang, H. Su, A. de La Fortelle, K. Miao, and Y. Yao, “Service-
oriented cooperation models and mechanisms for heterogeneous driverless vehicles
at continuous static critical sections,” IEEE Transactions on Intelligent Transporta-
tion Systems, vol. 18, no. 7, pp. 1867–1881, 2017.

[78] Y. Meng, L. Li, F.-Y. Wang, K. Li, and Z. Li, “Analysis of cooperative driving strate-
gies for nonsignalized intersections,” IEEE Transactions on Vehicular Technology,
vol. 67, no. 4, pp. 2900–2911, 2018.

126

[79] P. Jiao, H. Wang, and T. Sun, “Real-time arterial coordination control based on
dynamic intersection turning fractions estimation using genetic algorithm,” Mathe-
matical Problems in Engineering, vol. 2014, 2014.

[80] Q. Lu and K.-D. Kim, “A genetic algorithm approach for expedited crossing of
emergency vehicles in connected and autonomous intersection traffic,” Journal of
Advanced Transportation, vol. 2017, 2017.

[81] S. A. Fayazi and A. Vahidi, “Mixed-integer linear programming for optimal schedul-
ing of autonomous vehicle intersection crossing,” IEEE Transactions on Intelligent
Vehicles, vol. 3, no. 3, pp. 287–299, 2018.

[82] M. L. Cummings, J. P. How, A. Whitten, and O. Toupet, “The impact of human–
automation collaboration in decentralized multiple unmanned vehicle control,” Pro-
ceedings of the IEEE, vol. 100, no. 3, pp. 660–671, 2011.

[83] A. Kolling, P. Walker, N. Chakraborty, K. Sycara, and M. Lewis, “Human inter-
action with robot swarms: A survey,” IEEE Transactions on Human-Machine Sys-
tems, vol. 46, no. 1, pp. 9–26, 2015.

[84] G. A. Miller, “The magical number seven, plus or minus two: Some limits on our
capacity for processing information.,” Psychological review, vol. 63, no. 2, p. 81,
1956.

[85] N. Cowan, “The magical mystery four: How is working memory capacity limited,
and why?” Current directions in psychological science, vol. 19, no. 1, pp. 51–57,
2010.

[86] N. Carr, The shallows: What the Internet is doing to our brains. WW Norton &
Company, 2011.

[87] J. W. Crandall, M. L. Cummings, M. Della Penna, and P. M. De Jong, “Computing
the effects of operator attention allocation in human control of multiple robots,”
IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Hu-
mans, vol. 41, no. 3, pp. 385–397, 2010.

[88] S.-Y. Chien, Y.-L. Lin, P.-J. Lee, S. Han, M. Lewis, and K. Sycara, “Attention
allocation for human multi-robot control: Cognitive analysis based on behavior data
and hidden states,” International Journal of Human-Computer Studies, vol. 117,
pp. 30–44, 2018.

[89] J. W. Crandall, M. A. Goodrich, C. W. Nielsen, and D. R. Olsen Jr, “Validating
human–robot interaction schemes in multitasking environments,” 2005.

127

[90] C. C. Murray and W. Park, “Incorporating human factor considerations in un-
manned aerial vehicle routing,” IEEE Transactions on Systems, Man, and Cyber-
netics: Systems, vol. 43, no. 4, pp. 860–874, 2012.

[91] D. W. Clarke, C. Mohtadi, and P. Tuffs, “Generalized predictive control—part ii
extensions and interpretations,” Automatica, vol. 23, no. 2, pp. 149–160, 1987.

[92] ——, “Generalized predictive control—part ii extensions and interpretations,” Au-
tomatica, vol. 23, no. 2, pp. 149–160, 1987.

[93] K.-D. Kim and P. R. Kumar, “An mpc-based approach to provable system-wide
safety and liveness of autonomous ground traffic,” IEEE Transactions on Automatic
Control, vol. 59, no. 12, pp. 3341–3356, 2014.

[94] X. Qian, J. Gregoire, A. De La Fortelle, and F. Moutarde, “Decentralized model
predictive control for smooth coordination of automated vehicles at intersection,”
in 2015 European Control Conference (ECC), IEEE, 2015, pp. 3452–3458.

[95] Y. Nie, L. T. Biegler, and J. M. Wassick, “Integrated scheduling and dynamic op-
timization of batch processes using state equipment networks,” AIChE Journal,
vol. 58, no. 11, pp. 3416–3432, 2012.

[96] G. Folland, Real Analysis. New York, NY: Wiley and Sons, 1984, https://trid.trb.org/view/365890.

[97] M. Hirsch, S. Smale, and R. Devaney, Differential Equations, Dynamical Systems,
and an Introduction to Chaos. San Deigo, CA: Academic Press, 2004.

[98] Z.-P. Jiang and T.-F. Liu, “A survey of recent results in quantized and event-based
nonlinear control,” International Journal of Automation and Computing, vol. 12,
no. 5, pp. 455–466, 2015.

[99] H. Yu and P. J. Antsaklis, “Event-triggered output feedback control for networked
control systems using passivity: Achieving l2 stability in the presence of communi-
cation delays and signal quantization,” Automatica, vol. 49, no. 1, pp. 30–38, 2013.

[100] W. H. Heemels, M. Donkers, and A. R. Teel, “Periodic event-triggered control for
linear systems,” IEEE Transactions on Automatic Control, vol. 58, no. 4, pp. 847–
861, 2012.

[101] T. Liu and Z.-P. Jiang, “Event-based control of nonlinear systems with partial state
and output feedback,” Automatica, vol. 53, pp. 10–22, 2015.

[102] N. Marchand, S. Durand, and J. F. G. Castellanos, “A general formula for event-
based stabilization of nonlinear systems,” IEEE Transactions on Automatic Con-
trol, vol. 58, no. 5, pp. 1332–1337, 2012.

128

[103] T. Pop, P. Pop, P. Eles, Z. Peng, and A. Andrei, “Timing analysis of the flexray
communication protocol,” Real-time systems, vol. 39, no. 1-3, pp. 205–235, 2008.

[104] J. K. Karlof, Integer Programming: Theory and Practice. CRC Press, 2006, ISBN:
978-0849319143.

[105] C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms and
Complexity. Dover, 1998, ISBN: 978-0486402581.

[106] K. J. Astrom and B. M. Bernhardsson, “Comparison of Riemann and Lebesgue
sampling for first order stochastic systems,” in Proceedings of the 41th IEEE Con-
ference on Decision and Control, 2002, pp. 2011–2016.

[107] D. Nesic, A. Teel, and D. Carnevale, “Explicit computation of the sampling period
in emulation of controllers for nonlinear sampled-data systems,” IEEE Transactions
on Automatic Control, vol. 54, no. 3, pp. 619–624, 2009.

[108] L. George, N. Rivierre, and M. Spuri, “Preemptive and non-preemptive real-time
uniprocessor scheduling,” HAL Preprints INRIA-00073732, 2016.

[109] F. Zhang, Z. Shi, and S. Mukhopadhyay, “Robustness analysis for battery-supported
cyber-physical systems,” ACM Transactions on Embedded Computing Systems (TECS),
vol. 12, no. 3, p. 69, 2013.

[110] K. Jeffay, D. F. Stanat, and C. U. Martel, “On non-preemptive scheduling of period
and sporadic tasks,” in Real-Time Systems Symposium, 1991. Proceedings., Twelfth,
IEEE, 1991, pp. 129–139.

[111] L. Wang, Model Predictive Control System Design and Implementation using MATLAB R©.
London, UK: Springer-Verlag London Limited, 2009.

[112] S. M. LaValle, Planning Algorithms. Cambridge University Press, 2006.

[113] S. Sethi P. and G. L. Thompson, Optimal Control Theory, Applications to Eco-
nomics and Management Science, Second Edition. Norwell, MA: Kluwer Aca-
demic Publishers, 2000.

[114] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-agent op-
timization,” IEEE Transactions on Automatic Control, vol. 54, no. 1, pp. 48–61,
2009.

[115] D. Jakovetić, J. Xavier, and J. M. Moura, “Fast distributed gradient methods,” IEEE
Transactions on Automatic Control, vol. 59, no. 5, pp. 1131–1146, 2014.

129

[116] S. Gong and L. Du, “Optimal location of advance warning for mandatory lane
change near a two-lane highway off-ramp,” Transportation research part B: method-
ological, vol. 84, pp. 1–30, 2016.

130

VITA

Ningshi Yao was born and spent her early life in Chengdu, Sichuan Province, China. She

attended Zhejiang University for her undergraduate study in Hangzhou, Zhejiang Province,

China. She graduated with a B.S. in Control Science and Engineering. Following the

graduation, she joined Georgia Tech to pursue her PhD in Electrical and Computer Engi-

neering.

131

	Title Page
	Acknowledgments
	Table of Contents
	List of Figures
	Introduction
	Background
	Scheduling of Real-time Systems
	Real-time Systems
	Priority-based Scheduling Methods
	Schedulablility Test for Real-time System

	Scheduling and Control Co-design
	Networked Control Systems
	Traffic Intersection
	Human and Multi-robot Collaboration System

	Model Predictive Control

	Problem Formulation
	Problem Setup
	System Dynamics
	Task Characteristics

	Priority-based Scheduling
	Formulation of Model Predictive Control

	Significant Moment Analysis and Schedulability Test
	Timing States
	Delay Prediction Using Timing Model
	Timing Model for Preemptive Network
	Summary of Constraints
	Schedulability Test Using Worst-case Condition
	Worst-case Scenario Analysis
	Least Upper Bound of Utilization

	Contention-Resolving MPC Algorithm
	Contention Detection
	Construction of Decision Tree
	Schedulability (Feasibility) Test
	Finite-time Window Schedulability Test
	Infinite-time Window Schedulability Test

	Branch Cost
	Costs for Search Algorithm
	Contention-resolving MPC Algorithm
	Proof of Optimality

	Application 1: Networked Control System
	NCS Models
	Problem Formulation

	Timing Model for Non-preemptive Network
	Simulation Results
	Preemptive Scheduling
	Non-preemptive Scheduling
	Control Performance

	Application 2: Scheduling and Controlling Vehicles at a Traffic Intersection
	Intersection and Vehicle Model
	Intersection Scheduling
	Timing Model for Intersection Scheduling
	Contention-resolving Model Predictive Control
	Formulation of MPC
	Contention-Resolving MPC Algorithm
	Analytical Solution of the Optimal Vehicle Control

	Optimality of Contention-resolving MPC
	Case Studies
	Contention-resolving MPC VS FCFS
	Contention-resolving MPC VS HSF
	Numerical Results Without the CIA Assumption

	Application 3: Human and Multi-robot Collaboration System
	Robot Performance and Human-to-robot Trust Models
	Human Attention Scheduling
	Formulation of Model Predictive Control
	Optimal Solution Without Considering Contention

	Analytical Timing Model for Human-and-robot Collaboration System
	Timing Model for Human Attention Scheduling

	Contention-Resolving MPC Algorithm
	Construction of Decision Tree
	Branch Cost
	Search Algorithm

	Simulation Results

	Conclusion and Future Work
	Conclusion
	Future Work
	Critical time instants for Non-preemptive Systems
	Multiple-lane and Multiple-intersection Scheduling

	References
	Vita

