
ASYNCHRONOUS VERSIONS OF JACOBI, MULTIGRID, AND CHEBYSHEV
SOLVERS

A Dissertation
Presented to

The Academic Faculty

By

Jordi Wolfson-Pou

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in
Computational Science and Engineering

Georgia Institute of Technology

August 2020

Copyright © Jordi Wolfson-Pou 2020

ASYNCHRONOUS VERSIONS OF JACOBI, MULTIGRID, AND CHEBYSHEV
SOLVERS

Approved by:

Dr. Edmond Chow, Advisor
School of Computational Science
and Engineering
Georgia Institute of Technology

Dr. Richard Vuduc
School of Computational Science
and Engineering
Georgia Institute of Technology

Dr. Tobin Isaac
School of Computational Science
and Engineering
Georgia Institute of Technology

Dr. Felix Herrmann
School of Earth and Atmospheric
Sciences
Georgia Institute of Technology

Dr. Ulrike Meier Yang
Center for Applied Scientific Com-
puting
Lawrence Livermore National
Laboratory

Date Approved: June 2, 2020

ACKNOWLEDGEMENTS

I would first like to express my deepest gratitude to my advisor Edmond Chow for

his wisdom and support through my PhD journey. The completion of my PhD would be

impossible without his expertise, advice, and guidance. I would also like to thank my

committee members Ulrike Meier Yang, Felix Herrmann, Richard Vuduc, and Tobin Isaac

for their insightful feedback on my dissertation.

My sincere thanks goes to all my collaborators and mentors. On the topic of multigrid

methods, the mentoring I received from Ulrike Meier Yang and Stephen McCormick was

invaluable. On the topic of asynchronous methods, Daniel Szyld, Christian Glusa, Faycal

Chaouqui, Erik Boman, Ichitaro Yamazaki, and Sivasankaran Rajamanickam all helped me

in important ways.

I would like to thank all the professors who were instructors for the courses I took at

Georgia Tech. All these professors were excellent instructors and went out of their way

to help me. I am also thankful for the mentorship from Richard Vuduc who helped me

navigate through the first year of my PhD.

I would like to thank Lawrence Livermore National Laboratory for allowing me to use

their state-of-the-art HPC resources and hiring me as an intern for three summers. As an

intern, I was able to work with leading experts in my field on compelling research projects.

I am grateful for my friends and fellow graduate students Fred Hohman, Robert Pienta,

Yacin Nadji, Caleb Robinson, Muyuan Li, Aradhya Biswas Paritosh Ramanan, Amrita

Gupta, Elias Khalil, Patrick Flick, and Casey Battaglino who have all helped me in different

ways. I will always be grateful for their friendship.

Lastly, and most importantly, I will always be grateful for my father David, mother

Jocelyn, brother Jesse, and partner Jamie for their unwavering love, support, and patience.

This material is based upon work supported by the U.S. Department of Energy, Office

of Science, Office of Advanced Scientific Computing Research, Applied Mathematics pro-

v

gram under Award Number DE-SC-0012538. This research used resources of the National

Energy Research Scientific Computing Center (NERSC), a DOE Office of Science User Fa-

cility supported by the Office of Science of the U.S. Department of Energy under Contract

No. DE-AC02-05CH11231.

vi

TABLE OF CONTENTS

Acknowledgments . v

List of Tables . xi

List of Figures . xiii

Chapter 1: Introduction . 1

1.1 Overview and Motivation . 1

1.2 Outline and Contributions . 3

Chapter 2: Modeling the Asynchronous Jacobi Method Without Communica-
tion Delays . 7

2.1 Background . 7

2.1.1 The Jacobi and Gauss-Seidel Methods 7

2.1.2 Asynchronous Iterative Methods . 9

2.2 Related Work . 10

2.3 Asynchronous Iterative Methods Without Communication Delays 12

2.3.1 Mathematical Formulation . 12

2.3.2 Connection of Simplified Asynchronous Jacobi to an Inexact Mul-
tiplicative Block Relaxation Method 13

2.3.3 Simplified Asynchronous Jacobi Can Reduce The Residual When
Some Processes are Delayed in Their Computation 15

vii

2.3.4 Simplified Asynchronous Jacobi Can Converge When Synchronous
Jacobi Does Not . 18

2.4 Implementing Asynchronous Jacobi in Shared Memory 21

2.5 Implementing Asynchronous Jacobi in Distributed Memory 23

2.6 Results . 30

2.6.1 Test Framework . 30

2.6.2 Simplified Asynchronous Jacobi Compared to OpenMP Asyn-
chronous Jacobi . 31

2.6.3 Asynchronous Jacobi in Distributed Memory 40

2.7 Conclusion . 43

Chapter 3: Southwell Methods . 45

3.1 Background . 47

3.1.1 The Sequential Southwell Method . 47

3.2 Related Work . 48

3.3 The Parallel Southwell Method . 50

3.3.1 Mathematical Formulation . 50

3.3.2 Implementation . 53

3.3.3 Experimental Results . 56

3.4 The Distributed Southwell Method . 61

3.4.1 Block Methods on Distributed Memory Computers 61

3.4.2 The Distributed Southwell Method 66

3.4.3 Experimental Results . 72

3.5 The Stochastic Parallel Southwell Method 80

viii

3.6 Conclusion . 84

Chapter 4: Asynchronous Multigrid Methods . 86

4.1 Background . 87

4.1.1 Classical Multiplicative Multigrid Methods 87

4.1.2 Additive Multigrid Methods . 87

4.2 Models of Asynchronous Multigrid Methods 91

4.3 Asynchronous Multigrid for Shared Memory 94

4.3.1 Algorithms for Asynchronous Implementations 94

4.3.2 Experimental Results . 101

4.4 The AFACj Multigrid Method . 108

4.5 Asynchronous Multigrid for Distributed Memory 112

4.5.1 Implementation . 112

4.5.2 Experimental Results . 119

4.6 Conclusion . 126

Chapter 5: Asynchronous Chebyshev Methods . 129

5.1 Background . 131

5.1.1 The Chebyshev Method . 131

5.2 Asynchronous Chebyshev Methods . 133

5.2.1 Models of the Jacobi-preconditioned Asynchronous Chebyshev
Method . 133

5.2.2 Asynchronous EBPX-Chebyshev Method 134

5.2.3 Simulating Models of Asynchronous EBPX-Chebyshev 136

ix

5.3 Experimental Results . 137

5.4 Conclusion . 145

Chapter 6: Conclusion . 147

6.1 Contributions and Future Work . 147

6.1.1 Asynchronous Jacobi . 147

6.1.2 Asynchronous Southwell Methods 148

6.1.3 Asynchronous Multigrid Methods . 150

6.1.4 Asynchronous Chebyshev Methods 151

References . 159

x

LIST OF TABLES

2.1 Benchmark wall-clock times in seconds for sending 100 messages of size
288 doubles. A 3 × 3 processor mesh is used. 28

2.2 Test problems from the SuiteSparse Matrix Collection. All matrices are
symmetric positive definite. 31

3.1 Test problems for parallel experiments in shared memory with OpenMP.
FD and FE are 5-point centered difference and unstructured finite element
discretizations of the Laplace equation, respectively, and the remaining ma-
trices are from the University of Florida sparse matrix collection. 59

3.2 Results for Intel Xeon E5-2650 CPUs using all 20 cores. The subcolumns
denote the methods, specifically, asynchronous and synchronous Parallel
Southwell (APS and SPS, respectively), multicolor Gauss-Seidel (MCGS),
and asynchronous and synchronous Jacobi (AJ and SJ, respectively). 62

3.3 Results for Intel Xeon Phi using 180 threads. The subcolumns denote the
methods, specifically, asynchronous and synchronous Parallel Southwell
(APS and SPS, respectively), multicolor Gauss-Seidel (MCGS), and asyn-
chronous and synchronous Jacobi (AJ and SJ, respectively). 62

3.4 Test problems from the SuiteSparse Matrix Collection. All matrices are
symmetric positive definite. 74

3.5 Comparison of Distributed Southwell (DS) with Parallel Southwell (PS)
and Block Jacobi (BJ) for reducing the residual to ∥r∥2 = 0.1. Linear in-
terpolation on log10 (∥r∥2) was used to extract this data. The † symbol
indicates that a method could not achieve ∥r∥2 ≤ 0.1 in 50 parallel steps.
The wall-clock time was determined by taking the minimum of 50 samples,
i.e., showing each method performing at its best. “Communication cost” is
defined as the total number of messages sent by all processes divided by
the number of processes. “Active processes” is defined as the average frac-
tion of processes carrying out block relaxations of local subdomains at each
parallel step. 75

xi

3.6 Communication cost breakdown for Parallel Southwell (PS) and Dis-
tributed Southwell (DS), where “Solve comm” denotes the communication
cost of sending updates to neighbors after a local subdomain is solved, and
“Res comm” denotes the communication cost of explicit residual updates. . 77

3.7 Per parallel step results of Distributed Southwell (DS) compared with Par-
allel Southwell (PS) and Block Jacobi (BJ) for taking 50 parallel steps using
8192 MPI processes. Mean wall-clock time and communication cost over
the 50 parallel steps are shown. 78

4.1 Timing results for four test matrices, and for each matrix, four smoothers.
272 threads are used. For each smoother, results for all multigrid methods
are shown (see Section 4.3 for explanations of lock-write, atomic-write,
local-res, and global-res). The † marker indicates that a method diverged.
For each smoother, the bolded number indicates the lowest wall-clock time
among all the methods. These results show that asynchronous Multadd is
generally faster than the classical multiplicative multigrid method (Mult) in
terms of wall-clock time, and async GS is the best smoother for all matrices. 107

4.2 Statistics for the SuiteSparse Matrix Collection test matrices. All matrices
are symmetric positive definite. 120

4.3 Wall-clock time and mean number of updates when varying the maximum
number of in-flight messages. The Multadd solver with asynchronous Ja-
cobi smoothing is used. The Queen 4147 problem is being solved. A rel-
ative residual norm tolerance of 10−6 is used with convergence criterion
2. 121

4.4 Effect on wall-clock time and number of iterations for aAFACj when vary-
ing the number of smoothed interpolants. The Queen 4147 problem is be-
ing solved. A relative residual norm tolerance of 10−6 is used with conver-
gence criterion 2. 125

5.1 Statistics for our test matrices. The last three matrices are taken from the
SuiteSparse Matrix Collection. All matrices are symmetric positive definite. 144

xii

LIST OF FIGURES

2.1 Example of four processes carrying out three iterations of an asynchronous
iterative method without communication delays. Relaxations are denoted
by red dots, and information used for relaxations is denoted by blue arrows. 14

2.2 Spectral radius of G̃(t) versus the fraction of rows being relaxed. Max, min,
and mean spectral radius is shown for 200 different choices of G̃(t), where
the rows selected to be relaxed are chosen randomly. The test problem is
the FE matrix. 21

2.3 Sparsity pattern for an unstructured finite element matrix partitioned into
four parts. The red points denote the non-zero values of the diagonal blocks
of the matrix, and the blue points denote the non-zero values of the off-
diagonal blocks. 24

2.4 Wall-clock time as a function of message size for our benchmark. The
benchmark measures how long it takes for communication operations to
complete when using one-sided MPI with passive target completion. Fig-
ure (a) shows the overall wall-clock time, Figure (b) shows the wall-clock
time for locking and unlocking windows, and Figure (c) shows the total
wall-clock time again but without including the time it takes to execute the
lock all() functions. The purpose of (c) is to show only the time it
takes to carry out some number of iterations, where we consider calls to
lock all() functions as part of the setup phase. 32 nodes with 1,024
total MPI processes are used, and each process must send and successfully
receive 100 messages. For each data point, the mean of 50 samples is taken.
Each curve denotes a different configuration of MPI functions used. 29

xiii

2.5 Speedup of simplified and OpenMP asynchronous Jacobi over synchronous
Jacobi for 68 threads (on the KNL platform) as a function of the artificial
delay in computation δ experienced by one thread. For OpenMP, the delay
is varied from zero to 3000 microseconds. For the simplified asynchronous
Jacobi, δ is varied from zero to 100, which is shown on the x-axis. A
relative residual norm tolerance of .001 is used. The test problem is an FD
matrix with 68 rows and 298 non-zeros. The mean of 100 samples is taken
for each data point. We can see that a speedup of over 40 is achieved for
larger delays. 32

2.6 Relative residual 1-norm as a function of number of iterations for simpli-
fied asynchronous Jacobi, shown in (a), and relative residual norm as a
function of OpenMP asynchronous Jacobi, shown in (b). Artificial delays
in computation are added for both simplified and OpenMP asynchronous
Jacobi, where “Async 10” denotes asynchronous with a delay of 10. The
convergence for synchronous Jacobi with artificial delays is also shown. 68
threads on the KNL platform are used for OpenMP asynchronous Jacobi.
The test problem is an FD matrix with 68 rows and 298 non-zeros. 35

2.7 OpenMP asynchronous Jacobi compared with synchronous Jacobi as the
number of threads increases. Figure (a) shows the wall-clock time when
both methods reduce the relative residual 1-norm below .001. Figure (b)
shows how much time is taken to carry out 100 iterations. The test problem
is an FD matrix with 4,624 rows (17 rows per thread in the case of 272
threads) and 22,848 non-zero values. These results show that OpenMP
asynchronous Jacobi is faster than synchronous Jacobi, especially when a
specific reduction in the residual norm is desired. 35

2.8 Relative residual 1-norm as a function of iterations for different numbers
of threads (68, 136, and 272) on the KNL platform. Figure (a) shows that
for a sufficient number of threads, asynchronous Jacobi can converge when
synchronous Jacobi does not. Figure (b) shows that asynchronous Jacobi
truly converges when using 272 threads. The test problem is the FE matrix. 37

2.9 In this experiment, a random number of random rows is selected to not
be relaxed (delayed) at each iteration for simplified asynchronous Jacobi.
The fraction of delayed rows is varied from .02 to .32, where the cyan to
purple gradient of the lines represents an increasing fraction of delayed
rows. Figure (a) shows the relative residual norm as a function of number
of iterations. Figure (b) shows the relative residual norm as a function of
number of iterations only for a fraction of delayed rows of .32. Figure (c)
shows ρ(G̃(t)) as a function of the number of iterations. The test problem
is the FE matrix. These results show that with a large enough fraction of
delayed rows, e.g., .32, simplified asynchronous Jacobi will converge when
synchronous Jacobi does not. 38

xiv

2.10 In this experiment, each row is assigned a delay in computation δi in the
range [0,1, . . . , δmax] (the row is only relaxed when δi divides the iteration
numbers evenly) for simplified asynchronous Jacobi. The maximum delay
δmax is varied from one to four, where the cyan to purple gradient of the lines
represents an increasing δmax. Figures (a), (b) and (c) show the relative
residual 1-norm, the fraction of delayed rows, and ρ(G̃(t)), respectively.
The x-axis for all three figures is the number of iterations. The test problem
is the FE matrix. These results show that if each row is delayed by an
average of just one iteration, simplified asynchronous Jacobi will converge
when synchronous Jacobi does not. 39

2.11 The first row shows the relative residual 1-norm as a function of relaxations/n
for synchronous Jacobi and POS asynchronous Jacobi. For POS asyn-
chronous Jacobi, one to 128 nodes are shown (32 to 4,096 MPI processes),
where the green to blue color gradient of the lines represents an increasing
number of nodes. The second row shows wall-clock time in seconds as
a function of number of MPI processes for reducing the relative residual
norm to 0.1. Results for three different problem sizes are given, where the
size increases from left to right. These results show that POS asynchronous
Jacobi is generally faster than synchronous Jacobi when the number of rows
per process is relatively small. 41

2.12 Relative residual 1-norm as a function of relaxations/n for synchronous
Jacobi using two-sided communication and for POS asynchronous Jacobi.
The Dubcova2 matrix is used as the test problem. For POS asynchronous
Jacobi, results for one to 128 nodes are shown (32 to 4,096 MPI processes),
where the green to blue color gradient of the lines represents an increasing
number of nodes. As in Figure 2.8, increasing the number of processes
improves the convergence rate of asynchronous Jacobi. 42

3.1 An example showing rows selected to relax during a parallel step of Parallel
Southwell. The red mesh points denote the rows selected to be relaxed and
represent an independent set. The green points denote the neighborhood of
one of the red points. 52

3.2 Comparison of Parallel Southwell (PS) with Jacobi (J), multicolor Gauss-
Seidel (MGS), and Gauss-Seidel (GS). The rows denote four different test
problems. The first column shows the residual norm as a function of the
number of relaxations. The second column shows the residual norm as a
function of the parallel step number. The last column shows the number of
rows relaxed in parallel by Parallel Southwell for a given step number. . . . 56

xv

3.3 Comparison of Parallel Southwell (PS), multicolor Gauss-Seidel (MGS),
and Gauss-Seidel (GS) for some matrices in which Jacobi does not con-
verge. The rows denote three different test problems. The first column
shows the residual norm as a function of the number of relaxations. The
second column shows the residual norm as a function of the parallel step
number. The last column shows the number of rows relaxed in parallel by
Parallel Southwell for a given step number. 57

3.4 Comparison between synchronous and asynchronous Parallel Southwell as
the number of threads increases. The test problem is bcsstk36, and both the
Intel Xeon CPUs and Intel Xeon Phi are used. The first column denotes
a balanced partitioning produced by METIS, while the second denotes a
slightly unbalanced partitioning. 63

3.5 Parallel Southwell with multiple equations per process. Top: the subdo-
mains assigned to each process. Bottom: four subdomains selected via the
Parallel Southwell criterion. 64

3.6 Illustration of a parallel step of (a) Parallel Southwell and (b) Distributed
Southwell. In the illustration, a line of four processes P0, . . . , P3, with an
array communication topology, start the parallel step with exact residuals
r0, . . . , r3 (shown in blue above the corresponding P), and their estimates
of the residual norms of their neighbors (shown in black above the inter-
process connections). Additionally, in (b), each Pi also stores the esti-
mate of the residual norm of Pi stored by the neighbors of Pi, denoted
by r̃0, . . . , r̃3. Each line of four processes, three lines in total, denotes a
phase of the parallel step. Red residuals denote an updated residual, and
red arrow connections denote communication. Note that the illustration is
not based on any data taken from any real experiments. 66

3.7 Convergence for a small finite element problem. Distributed Southwell is
compared to other methods (all in scalar form). The markers along the
curves for the parallel methods delineate the parallel steps. 69

3.8 Relative residual norm after 9 V-cycles of multigrid applied to solving the
2D Poisson equation for increasing grid dimensions. Distributed Southwell
as a smoother is compared to Gauss-Seidel (GS) as a smoother. The results
show that convergence is independent of grid size in all cases. In addition,
Distributed Southwell is more efficient as a smoother, per relaxation, than
Gauss-Seidel. 73

xvi

3.9 Comparison of Block Jacobi and Distributed and Parallel Southwell for four
test problems that show different behavior of Block Jacobi. For Geo 1438
and Hook 1498, Block Jacobi is able to reach the target residual norm of
0.1, and is the best method for these problems for this level of accuracy.
However, Block Jacobi diverges for these problems if more steps are taken.
For bone010, Block Jacobi is not able to reach the target residual norm of
0.1. Distributed Southwell is the best method for this problem for this level
of accuracy. Of the 14 test problems shown in Table 3.4, af 5 k101 is the
only case in which Block Jacobi never diverged. 76

3.10 Wall-clock time as a function of the number of MPI processes for reducing
∥r∥2 to 0.1. Missing data for Block Jacobi indicates that Block Jacobi could
not achieve ∥r∥2 ≤.1 in 50 parallel steps, usually due to divergence of the
Block Jacobi method. The Block Jacobi method is fastest when it does
converge. 79

3.11 Residual norm after 50 parallel steps as a function of the number of MPI
processes for different test problems. When the residual norm is above 1,
this indicates that the method has diverged after 50 parallel steps. For larger
numbers of processes, Block Jacobi is more likely to diverge after many steps. 79

3.12 Convergence comparison of Stochastic Parallel Southwell (SPS) with other
smoothers. The test problem is the 5-point centered difference discretiza-
tion of the Poisson equation. Sub-figure (a) shows the relative residual
2-norm versus number of parallel steps (iterations) of Jacobi and SPS. Sub-
figure (b) shows the convergence of classical multiplicative multigrid for
several smoothers as the grid size increases. 81

4.1 Final relative residual 2-norm after 20 V-cycles versus grid length for the
semi-asynchronous multigrid model (Equation 4.4) for AFACx and Mul-
tadd. A maximum delay of zero is used. Results are shown for five min-
imum update probabilities, where blue-to-green corresponds to increasing
minimum update probability. The 27pt test set is used (see Section 4.3.2).
These results show that even with a small minimum update probability,
asynchronous multigrid still exhibits grid-size independent convergence. . 95

xvii

4.2 Final relative residual 2-norm after 20 V-cycles versus grid length for the
full-asynchronous multigrid model. The solution-based (Equation 4.5) and
residual-based versions (Equation 4.8) of AFACx and Multadd are shown.
A minimum update probability of .1 is used and results for five maximum
delay values are shown, where blue-to-green gradient corresponds to de-
creasing maximum delay. The 27pt test set is used (see Section 4.3.2).
These results show that even with large delays, asynchronous multigrid still
exhibits grid-size independent convergence. 96

4.3 Global-res and local-res partitionings for the Multadd example presented
in Section 4.3 for each step of the computation of the updates e0 and e1.
Arrows denote moving to the next step of the computation. Sync() denotes
a synchronization point, where the list of threads passed to Sync() denotes
the threads that synchronize. Blue Sync() denotes a synchronization for
asynchronous multigrid, and red Sync() denotes a synchronization point for
synchronous multigrid. Colored points denote points used in a calculation,
where t0 is assigned the purple points, t1 is assigned the yellow points, t2 is
assigned the blue points, t3 is assigned the orange points, and t4 is assigned
the green points. Gray points denote points not used in a calculation. 99

4.4 Relative residual 2-norm versus grid length for 20 V(1,1)-cycles and 68
threads. Results for the 7pt and 27pt test sets are shown. For each test set,
results for two smoothers are shown. For the asynchronous methods, we
used Criterion 1 as our stopping criterion (see Section 4.3.2), and each data
point is the mean relative residual 2-norm of 20 runs. The figures show that
asynchronous multigrid methods can exhibit grid-size independent conver-
gence. 104

4.5 Relative residual 2-norm versus number of rows for 20 V(1,1)-cycles and
68 threads. The MFEM Laplace matrix is used and results for the ω-Jacobi
and async GS smoothers are shown. The figures show that asynchronous
multigrid can exhibit grid-size independent convergence. 105

4.6 Wall-clock time versus number of threads for the 7pt, 27pt, MFEM
Laplace, and MFEM Elasticity matrices (see Table 4.1) are shown with
ω-Jacobi smoothing. The BoomerAMG options are the same as that of
Table 4.1. The figures show that asynchronous multigrid is faster than syn-
chronous multigrid for a sufficiently large number of threads, and typically
scales better. 108

4.7 Relative residual 2-norm versus number of iterations for Multadd, AFACx(2,2,0),
and AFACj(1,1). All methods are synchronous. The test problem is the
five-point centered-difference discretization of the 2D Laplace equation on
a 1024 × 1024 grid. 112

xviii

4.8 Inter and intra grid communication of process p0 for the example in Sec-
tion 4.5.1. 116

4.9 Relative residual 2-norm versus grid length for the 27pt test set using 16
nodes (64 MPI processes). The local convergence criterion is tmax = 10 for
the asynchronous methods. For Mult, 10 iterations are carried out. The
first column of plots shows Mult, asynchronous Multadd (aMultadd), and
aMultadd with asynchronous Jacobi as the smoother on the finest grid. The
second and third columns of plots show asynchronous AFACj (aAFACj)
and aAFACj with asynchronous Jacobi (async J) as the smoother on the
finest grid, respectively. The blue-to-green gradient denotes an increasing
number of interpolants used in AFACj. Results for both asynchronous con-
vergence criteria are shown. The last row of plots shows the mean number
of updates over all grids when using convergence criterion 2, where the
dashed line denotes the maximum number of updates (i.e., the number of
updates carried out by the fastest grid), and the dotted line denotes the min-
imum number of updates (i.e., the number of updates carried out by the
slowest grid). 122

4.10 Strong scaling results for the test problems from Table 4.2. Wall-clock
time and iterations versus number of nodes is shown. A relative residual
2-norm tolerance of 10−6 is used with convergence criterion 2. For the
asynchronous methods, iterations denotes the mean number of updates over
all grids is shown when using convergence criterion 2, where the dashed
line denotes the maximum number of updates (i.e., the number of updates
carried out by the fastest grid), and the dotted line denotes the minimum
number of updates (i.e., the number of updates carried out by the slowest
grid). 128

5.1 Relative residual 2-norm versus number of relaxations/n for a simulation
of asynchronous EBPX-Chebyshev. The problem being solved is the five-
point centered-difference discretization of the 2D Laplace equation on a
64 × 64 grid. From left to right, the minimum update probability of a row
being relaxed is increased. The blue to green gradient denotes an increasing
bound on the read delay. Note that these plots demonstrate convergence
over a wide range of asynchronous conditions and do not imply that one
case is more rapid than another. 138

5.2 Relative residual 2-norm after 50 asynchronous iterations versus grid length
for the 27pt problem using 36 threads. Jacobi-preconditioned asynchronous
Chebyshev is compared with EBPX-preconditioned asynchronous Cheby-
shev. Jacobi-preconditioned asynchronous Chebyshev diverges for larger
problems where as EBPX-preconditioned asynchronous Chebyshev con-
verges with a rate independent of the grid size. 138

xix

5.3 Relative residual 2-norm versus number of iterations using 36 threads for
four test problems. Synchronous and asynchronous EBPX-Chebyshev are
compared, where we can see asynchronous EBPX-Chebyshev has a faster
convergence rate. 139

5.4 Strong scaling results for four test problems (columns). The residual norm
is computed at each iteration with τ = 10−9. The first row shows the
speedup, defined as the wall-clock time of synchronous Chebyshev divided
by the wall-clock time of asynchronous Chebyshev. The second row shows
the solve wall-clock time. The third row shows the number of relaxations.
In the asynchronous case, each thread finishes having carried out a different
number of relaxations. Therefore, each data point is the mean number of
relaxations and the error bar denotes the minimum and maximum number
of relaxations. 140

5.5 Relative residual 2-norm versus number of iterations using 36 threads
for four test problems. Thread 18 has an artificial delay where it sleeps
for 50000 microseconds every iteration. Synchronous and asynchronous
EBPX-Chebyshev are compared, where we can see that asynchronous
EBPX-Chebyshev has a faster convergence rate. Additionally, the conver-
gence rate of asynchronous EBPX-Chebyshev is significantly faster than in
the un-delayed case. 141

5.6 Results for varying an artificial delay on a single thread using 36 total
threads. The columns denote the test problems. The residual norm is com-
puted at each iteration with τ = 10−9. The first row shows the speedup,
defined as the wall-clock time of synchronous Chebyshev divided by the
wall-clock time of asynchronous Chebyshev. The second row shows the
solve wall-clock time. The third row shows the number of relaxations of
the delayed threads. 142

5.7 Results for varying the fraction of delayed threads using 36 total threads.
The residual norm is computed at each iteration with τ = 10−9. The delayed
threads use a random delay in microseconds taken from the range [10000,
50000]. The columns denote the test problems. The first row shows the
speedup, defined as the wall-clock time of synchronous Chebyshev divided
by the wall-clock time of asynchronous Chebyshev. The second row shows
the solve wall-clock time. The third row shows the minimum number of
relaxations, which is the number of relaxations of the slowest thread. 143

xx

SUMMARY

Iterative methods are commonly used for solving large, sparse systems of linear equa-

tions on parallel computers. Implementations of parallel iterative solvers contain kernels

(e.g., parallel sparse matrix-vector products) in which parallel processes alternate between

phases of computation and communication. Standard software packages use synchronous

implementations where there are one or more synchronization points per iteration. These

synchronization points occur during communication phases where each process sends data

to other processes and idles until all data needed for the next iteration is received. Synchro-

nization points scale poorly on massively parallel machines and may become the primary

bottleneck for future exascale computers. This calls for research and development of asyn-

chronous iterative methods, which is the subject of this dissertation.

In asynchronous iterative methods there are no synchronization points. This means

that, after a phase of computation, processes immediately proceed to the next phase of

computation using whatever data is currently available. Since the late 1960s, research on

asynchronous methods has primarily considered basic fixed-point methods, e.g., Jacobi,

where proving asymptotic convergence bounds has been the focus. However, the practi-

cal behavior of asynchronous methods is not well understood, and asynchronous versions

of certain fast-converging solvers have not been developed. This dissertation focuses on

studying the practical behavior of asynchronous Jacobi, developing new communication-

avoiding asynchronous iterative solvers, and introducing the first asynchronous versions of

multigrid and Chebyshev.

To better understand the practical behavior of asynchronous Jacobi, we examine a

model of asynchronous Jacobi where communication delays are neglected. We call this

model simplified asynchronous Jacobi. Simplified asynchronous Jacobi can be used to

model asynchronous Jacobi implemented in shared memory or distributed memory with

fast communication networks. We analyze simplified asynchronous Jacobi for linear sys-

xxi

tems where the coefficient matrix is symmetric positive-definite and compare our analysis

to experimental results from shared and distributed memory implementations. We present

three important results for asynchronous Jacobi: it can converge when synchronous Ja-

cobi does not, it can reduce the residual norm when some processes are delayed, and its

convergence rate can increase with increasing parallelism.

We develop new asynchronous communication-avoiding methods using the idea of the

sequential Southwell method. In the sequential Southwell method, which converges faster

than Gauss-Seidel, the component of the residual with the largest residual in absolute value

is relaxed during each iteration. We use the idea of choosing large residual values to create

communication-avoiding parallel methods, where residual values of communication neigh-

bors are compared rather than computing a global maximum. We present three methods:

the Parallel Southwell, Distributed Southwell, and Stochastic Parallel Southwell methods.

All our methods converge faster than Jacobi and use less communication.

We introduce the first asynchronous multigrid methods. We use the idea of additive

multigrid where smoothing on all grids is carried out concurrently. We present models of

asynchronous additive multigrid and use these models to study the convergence properties

of asynchronous multigrid. We also introduce algorithms for implementing asynchronous

multigrid in shared and distributed memory. Our experimental results show that asyn-

chronous multigrid can exhibit grid-size independent convergence and can be faster than

classical multigrid in terms of wall-clock time.

Lastly, we present the first asynchronous Chebyshev methods. We present models of

Jacobi-preconditioned asynchronous Chebyshev. We use a little-known version of the BPX

multigrid preconditioner where BPX is written as Jacobi on an extended system, which

makes BPX convenient for asynchronous execution within Chebsyhev. Our experimental

results show that asynchronous Chebyshev is faster than its synchronous counterpart in

terms of both wall-clock time and number of iterations.

CHAPTER 1

INTRODUCTION

1.1 Overview and Motivation

Sparse linear systems of the form Ax = b appear in many scientific computing problems,

e.g., numerical solutions to partial differential equations, where we are solving for the n×1

vector x, A is an n × n sparse matrix, and b is a n × 1 vector. High-performance parallel

computers are typically used to solve Ax = b since n is typically large for most modern

problems. Methods for solving Ax = b fall into two categories: iterative and exact. In exact

methods, a solution is achieved that is accurate up to machine precision. However, exact

methods have high memory costs, and many applications do not require machine precision

accuracy from the solver.

In iterative solvers, an initial guess is used to generate a sequence of improved approx-

imations to x. Iterative solvers have significantly lower memory costs than exact solvers

and can be stopped at any iteration once some desired convergence criterion is met. Itera-

tive solvers can typically be written in terms of parallel sparse matrix-vector products and

parallel dense inner products. A method such as Jacobi only requires one matrix-vector

product per iteration where as a faster method such as preconditioned Conjugate Gradi-

ent requires one or more matrix-vector products and an inner product. Therefore, iterative

methods alternate between phases of computation and communication, where there may be

many computation and communication phases per iteration. In the communication phase,

each parallel process sends data to other processes and then idles until data is received

before proceeding to the next iteration. These communication phases are synchronization

points where all processes must reach these points before moving to the next phase. While

communication and computation can be overlapped to some degree, the overhead of syn-

1

chronization may still be high, especially on massively parallel heterogeneous machines,

where load may not be perfectly balanced. There have been numerous U.S. Department

of Energy reports that suggest that asynchronous methods will be important for exascale

machines [1, 2, 3, 4, 5, 6].

In asynchronous iterative methods, synchronization points are removed. Specifically,

processes simply proceed to the next computation phase using the most recently received

information from other processes. Asynchronous methods can be defined through math-

ematical models. A typical synchronous iterative method is written such that all compo-

nents of x(t) are updated at each iteration using information from the previous iteration. In

classical mathematical models of asynchronous iterative methods, subsets of components

of x(t) are updated at each iteration using information from a mixture of previous itera-

tions. These mathematical models are closely related to randomized methods [7, 8] where

subsets of components are randomly selected at each iteration. Mathematical models of

asynchronous iterative methods have been studied since the late 1960s [9]. This research

has primarily focused on asynchronous versions of basic iterative methods, such as the Ja-

cobi method, where convergence theory has been studied [9, 10, 11, 12, 13, 14, 15] and

implementations have been developed [16, 17].

While many basic iterative methods are highly parallel and easy to execute asyn-

chronously when compared with other iterative methods, they typically converge more

slowly than optimal methods such as Krylov or multigrid methods. It is still unknown

(and may never be possible) how methods that involve orthogonalization, which require

inner products, can be made asynchronous. To be clear, we are not including pipelined

methods [18, 19] in our definition of asynchronous iterative methods since synchronization

from inner products is “hidden” behind the computation of matrix-vector products rather

than removed altogether. More recently, asynchronous optimized Schwarz methods have

been developed in an effort to develop fast-converging linear solvers [20]. Asynchronous

methods have also recently gained attention for solving optimization problems where asyn-

2

chronous versions of stochastic gradient descent have been developed [21, 22]. While we

consider an n × n linear system in this dissertation, asynchronous Kaczmarz methods have

also been studied for solving non-square linear systems [8]. In general, there are still open

questions about the practical behavior of asynchronous methods, and asynchronous ver-

sions of various fast-converging iterative solvers must be developed.

There are two important topics studied in this dissertation: the practical behavior of

asynchronous iterative methods and the development of new asynchronous versions of cer-

tain fast-converging iterative solvers. For studying the practical behavior of asynchronous

methods, we focus on the asynchronous Jacobi method where we show that in practice,

asynchronous execution of Jacobi actually improves the convergence properties of Jacobi.

We also introduce Southwell methods, which can be thought of as communication-avoiding

variants of the block Jacobi method. However, just like the Jacobi method, Southwell

methods converge much more slowly than more commonly used optimal methods such as

multigrid and Chebyshev methods. We therefore introduce asynchronous multigrid and

Chebyshev methods. Multigrid methods are commonly used both as standalone solvers

and as preconditioners. In this dissertation, we consider both cases. As a preconditioner,

we use asynchronous multigrid within asynchronous Chebyshev, where our asynchronous

multigrid preconditioned Chebyshev solver is able to outperform its synchronous counter-

part.

1.2 Outline and Contributions

In Chapter 2, we study a model of the asynchronous Jacobi method where communication

delays are neglected, which we call the simplified asynchronous Jacobi method. While

not completely realistic, this simplified model can be used to approximate asynchronous

Jacobi in shared memory or distributed memory with fast communication networks, where

data transfers are fast compared with computation time. More importantly, simplifying

the model to neglect communication delays allows us to write the update of rows in each

3

iteration of simplified asynchronous Jacobi using a propagation matrix, which is similar in

concept to an iteration matrix. A propagation matrix has properties that give us insight into

the transient behavior of simplified asynchronous Jacobi. The purpose of this chapter is to

show that, in practice, asynchronous Jacobi often has better convergence properties than

synchronous Jacobi, even though classical convergence theory for asynchronous methods

suggests that asynchronous methods have poor convergence properties compared with their

synchronous counterparts. We also outline shared and distributed memory implementations

of Jacobi, where we use OpenMP in the shared memory case and one-sided MPI with

passive target completion in the distributed memory case.

In Chapter 3, we develop Southwell-type methods which can be executed asyn-

chronously and can be thought of as communication-avoiding versions of Jacobi. Our

methods are based on the original Southwell method, which is sequential, where the row

with the largest residual norm is relaxed each iteration. Southwell can converge faster than

the Gauss-Seidel method in terms of the number of relaxations. Since each relaxation is

associated with communication, Southwell also requires less communication. However,

Southwell is sequential by definition and requires global communication after every relax-

ation step to determine the row with the largest residual. We present three new methods that

are based on the idea of using large residuals to decide whether a row should be relaxed:

the Parallel Southwell, Distributed Southwell, and Stochastic Parallel Southwell methods.

In Parallel Southwell, equation i is relaxed if it has the largest residual compared to

the residuals of the equations coupled to variable i. This method allows equations to be

relaxed simultaneously, and does not require global communication to determine the equa-

tion with the largest residual. While Parallel Southwell is suitable for shared memory, in

distributed memory, deadlock can occur if processes use stale values of the residual norms

of their communication neighbors. This deadlock issue motivates the Distributed South-

well and Stochastic Parallel Southwell methods. In Distributed Southwell, each process

stores the estimates to its own residual norm that are held by its neighbors. These estimates

4

are used to avoid deadlock. Additionally, each process locally computes better estimates of

residual norms that belong to its neighbors without any communication. Importantly, Dis-

tributed Southwell also uses new techniques to reduce communication compared to Parallel

Southwell in distributed memory. However, Distributed Southwell still requires extra com-

munication in order to avoid deadlock. In Stochastic Parallel Southwell, each process uses

residual estimates to construct a probability of relaxing its rows. This does not require

additional deadlock-avoiding communication, and Stochastic Parallel Southwell converges

with a similar rate to Parallel and Distributed Southwell.

In Chapter 4, we present the first asynchronous multigrid methods. Since it is unclear

how to execute classical multiplicative multigrid methods asynchronously, we use additive

multigrid methods. We define new models of asynchronous multigrid which serve to define

what asynchronous multigrid is. In classical asynchronous iterative methods subsets, of

rows are relaxed at each time instant whereas in asynchronous multigrid, subsets of grids

update the current approximation to the solution at each time instant. We outline shared and

distributed memory implementations of asynchronous multigrid, where we use two-sided

non-blocking MPI functions in our distributed memory implementation. We also introduce

a new additive multigrid method that can be executed asynchronously, the AFACj method,

which is a variation of the AFACx method.

In Chapter 5, we introduce the first descriptions and implementations of an asyn-

chronous version of the Chebyshev iterative method [23], where we use an asynchronous

multigrid method as a preconditioner within asynchronous Chebyshev. Instead of the asyn-

chronous multigrid methods presented in Chapter 4, we are able to use a much simpler

multigrid method called BPX [24]. The asynchronous multigrid methods proposed in

Chapter 4 had to be based on a method that could converge on its own, i.e., as a stan-

dalone solver. When multigrid is used as a preconditioner, standalone convergence is not

necessary, which allows us to use BPX, the simplest additive multigrid method. To create

an asynchronous version of BPX, we use a formulation of the method based on an extended

5

matrix [25]. The standard formulation contains many types of operations (smoothing, re-

striction, prolongation, coarse grid solves) and it is very complicated to run these operations

asynchronously with each other. In contrast, the extended matrix formulation is similar to

using Jacobi iterations with a special “extended” matrix, which are easy to perform asyn-

chronously.

6

CHAPTER 2

MODELING THE ASYNCHRONOUS JACOBI METHOD WITHOUT

COMMUNICATION DELAYS

The practical and transient behavior of asynchronous Jacobi is not well understood in the

literature. In this chapter, we study a model of the asynchronous Jacobi method with no

communication delays, which we call the simplified asynchronous Jacobi method. While

not completely realistic, this simplified model can be used to approximate asynchronous

Jacobi in shared memory or distributed memory with fast communication networks, where

data transfers are fast compared with computation time. More importantly, simplifying

the model to neglect communication delays allows us to write the update of rows in each

iteration of simplified asynchronous Jacobi using a propagation matrix, which is similar in

concept to an iteration matrix. A propagation matrix has properties that give us insight into

the transient behavior of simplified asynchronous Jacobi. By analyzing these matrices, and

by experimenting with shared and distributed memory implementations, we show some

important convergence results for asynchronous Jacobi.

2.1 Background

2.1.1 The Jacobi and Gauss-Seidel Methods

A general stationary iterative method for solving the sparse linear system Ax = b can be

written as

x(t+1) = Gx(t) + f, (2.1)

where the recurrence is started with an initial approximation x(0). We define the update of

the ith component from x
(t)
i to x(t+1)

i as the relaxation of row i.

7

If the exact solution is x∗, then we can write the error e(t) = x∗ − x(t) at iteration t as

e(t+1) = Ge(t), (2.2)

where G is the error iteration matrix. It is well known that a stationary iterative method

will converge to the exact solution for any x(0) as k → ∞ if the spectral radius ρ(G) < 1.

Analyzing ∥G∥ is also important since the spectral radius only tells us about the asymptotic

behavior of the error. In the case of normal iteration matrices, the error decreases mono-

tonically in the consistent norm if ρ(G) < 1 since ρ(G) ≤ ∥G∥. If G is not normal, ∥G∥ can

be ≥ 1 when ρ(G) < 1. This means that although convergence to the exact solution will be

achieved, the reduction in the norm of the error may not be monotonic.

Stationary iterative methods are sometimes referred to as splitting methods where a

splitting A =M −N is chosen with nonsingular M . Equation 2.1 can be written as

x(t+1) = (I −M−1A)x(t) +M−1b, (2.3)

where G = I −M−1A. Just like in Equation 2.2, we can write

r(t+1) =Hr(t), (2.4)

where the residual is defined as r(t) = b−Ax(t) and H = I −AM−1 is the residual iteration

matrix.

For the Gauss-Seidel method, M = L, where L is the lower triangular part of A, and

for the Jacobi method, M = D, where D is the diagonal part of A. Gauss-Seidel is an

example of a multiplicative relaxation method, and Jacobi is an example of an additive re-

laxation method. In practice, Jacobi is one of the few stationary iterative methods that can

be efficiently implemented in parallel since the inversion of a diagonal matrix is a highly

parallel operation. In particular, for some machine with n processors, all n rows can be

8

relaxed completely in parallel with processes p1, . . . , pn using only information from the

previous iteration. However, Jacobi often does not converge, even for symmetric posi-

tive definite (SPD) matrices, a class of matrices for which Gauss-Seidel always converges.

When Jacobi does converge, it can converge slowly, and usually converges more slowly

than Gauss-Seidel.

2.1.2 Asynchronous Iterative Methods

We now consider a general model of an asynchronous stationary iterative method as pre-

sented in Chapter 5 of [26]. For simplicity, let us consider n processes, i.e., one process per

row of A. The general form of a stationary iterative method as defined in Equation 2.1 can

be thought of as synchronous. In particular, all elements of x(t) must be computed before

iteration t+ 1 starts. Removing this requirement results in an asynchronous method, where

each process relaxes its row using whatever information is available. An asynchronous

stationary iterative method can be written element-wise as

x
(t+1)
i =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

n

∑
j=1

Gijx
(sij(t))
j + fi, if i ∈ Ψ(t),

x
(t)
i , otherwise.

(2.5)

The set Ψ(t) is the set of rows that are relaxed at time instant t. The mapping sij(t)

denotes the components of other rows that process i reads from memory. The following

assumptions are standard for the convergence theory of Equation 2.5:

1. The mapping sij(t) ≤ k. This means no future information is read from memory.

2. As k → +∞, sij(t) → +∞. This means rows will eventually read new information

from other rows.

3. As k → +∞, the number of times i appears in Ψ(t) → +∞. This means that all rows

eventually relax in a finite amount of time.

9

2.2 Related Work

An overview of asynchronous iterative methods can be found in Chapter 5 of [26]. Reviews

of the convergence theory for asynchronous iterative methods can be found in [26, 27, 28,

29]. Asynchronous iterative methods were first introduced as chaotic relaxation methods

by Chazan and Miranker [9]. This pioneering paper provided a definition for a general

asynchronous iterative method with various conditions, and the main result of the paper

is that for a given stationary iterative method with iteration matrix G, if ρ(∣G∣) < 1, then

the asynchronous version of the method will converge. Here, ∣G∣ is the element-wise abso-

lute value of G. Other researchers have expanded on suitable conditions for asynchronous

methods to converge using different asynchronous models [10, 13, 11, 12, 30, 31, 32].

One of these models introduces the idea of propagation matrices, which is what we ana-

lyze [31]. There are also papers that show that asynchronous methods can converge faster

than their synchronous counterparts [33, 34]. In [33], it is shown that for monotone maps,

asynchronous methods are at least as fast as their synchronous counterparts, assuming that

all components eventually update. This was also shown in [34], and was extended to con-

traction maps. The speedup of asynchronous Jacobi was studied in [35] for random 2 × 2

matrices, where the main result is that, most of the time, asynchronous iterations do not

improve the convergence compared with synchronous. This result is specific for 2 × 2 ma-

trices, and we will discuss in Section 2.3.3 why speedup is not often suspected in this case.

In [32], the authors use the idea of a directed acyclic graph (DAG) to show that the conver-

gence rate of asynchronous Jacobi is exponential when the synchronous iteration matrix is

non-negative. While the authors in [32] do not prove anything for the non-negative case,

examples in which asynchronous Jacobi converges when synchronous Jacobi does not are

shown, which we also explore in this chapter. The authors in [32] also provide numerical

experiments that show that asynchronous Jacobi has a higher convergence rate for certain

problems. As in [31], the idea of propagation matrices are used in [32].

10

Experiments using asynchronous methods have given mixed results, and it is not clear

whether this is implementation or algorithm specific. It has been shown that in shared mem-

ory, asynchronous Jacobi can be significantly faster [10, 17]. Jager and Bradley reported re-

sults for several distributed implementations of asynchronous inexact block Jacobi (where

blocks are solved using a single iteration of Gauss-Seidel) implemented using “the MPI-2

asynchronous communication framework” [36], which may refer to one-sided MPI. They

showed that asynchronous “eager” Jacobi can converge in fewer relaxations and less wall-

clock time. Their eager scheme can be thought of as semi-synchronous, where a process

updates its rows only if it has received new information. Bethune et al. reported mixed re-

sults for several different implementations of asynchronous Jacobi [17]. The “racy” scheme

presented in [17] is what we consider in this chapter, but we use one-sided MPI with pas-

sive target completion where as Bethune et al. used SHMEM and two-sided MPI. The

results in [17] show that asynchronous Jacobi implemented with MPI was faster in terms

of wall-clock time, but in some experiments with large core counts, synchronous Jacobi

was significantly faster.

We also note that some research has been dedicated to supporting portable asyn-

chronous communication for MPI, including the JACK and JACK2 APIs [37, 38], and

Casper [39], which provides asynchronous progress control in certain cases. We are not

using any of these tools in our implementations.

11

2.3 Asynchronous Iterative Methods Without Communication Delays

2.3.1 Mathematical Formulation

If there are no communication delays, and processes are only delayed in their computation

(some processes take longer than others to relax their rows), we can write Equation 2.5 as

x
(t+1)
i =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

n

∑
j=1

Gijx
(t)
j + fi, if i ∈ Ψ(t),

x
(t)
i , otherwise.

(2.6)

We define this as the simplified asynchronous iterative method model, and for asynchronous

Jacobi, we define this as the simplified asynchronous Jacobi model [14, 15]. We can now

write an asynchronous iterative method in matrix form as

x(t+1) = (I − M̂ (t)A)x(t) + M̂ (t)b (2.7)

where

M̂ (t)(i, ∶) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

M−1(i, ∶), if i ∈ Ψ(t),

0, otherwise,

(2.8)

where M̂ (t)(i, ∶) is row i of M̂ (t), and M−1(i, ∶) is row i of M−1. Similar to the iteration

matrix, we define the error and residual propagation matrices as

Ĝ(t) = I − M̂ (t)A and Ĥ(t) = I −AM̂ (t), (2.9)

respectively.

For Ĝ(t) and Ĥ(t) in simplified asynchronous Jacobi, M̂ (t) is the diagonal matrix D̂(t)

12

where

D̂
(t)
ii =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1/Aii, if i ∈ Ψ(t),

0, otherwise.

(2.10)

It is important to notice the structure of Ĝ(t) and Ĥ(t) matrices. For row i that is not

relaxed at time instant t, row i of Ĝ(t) is zero except for a one in the diagonal position of

that row. Similarly, column i of Ĥ(t) is zero except for a one in the diagonal position of that

column. We can construct the error propagation matrix by starting with G and “replacing”

rows of G with unit basis vectors if a row is not in Ψ(t). Similarly, we replace columns of

H to get the residual propagation matrix.

An example of a sequence of asynchronous relaxations is shown in Figure 2.1 for the

simplified model. In this example, four processes, p1, . . . , p4, are each responsible for a

single row, and relax just once. The red dots (except at k = 0) denote relaxations and

the blue arrows denote data transfer needed for relaxations. Asynchronous iteration count

moves from left to right. There are three iterations in this example, which means we have

three sets Φ(1) = {4}, Φ(2) = {1,2}, and Φ(3) = {3}. This gives us the three error

propagation matrices for simplified asynchronous Jacobi,

Ĝ(1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 1 0

0 × × 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Ĝ(2) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 × × 0

× 0 0 ×
0 0 1 0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Ĝ(3) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

0 1 0 0

× 0 0 ×
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where the × symbol denotes a non-zero value.

2.3.2 Connection of Simplified Asynchronous Jacobi to an Inexact Multiplicative Block

Relaxation Method

Simplified asynchronous Jacobi can be viewed as an inexact multiplicative block relaxation

method, where the number of blocks and block sizes change at every iteration. A block

13

𝑝1

𝑝2

𝑝3

𝑝4

𝑘 = 0

𝑟𝑒𝑙𝑎𝑥𝑎𝑡𝑖𝑜𝑛

𝑘 = 1 𝑘 = 3𝑘 = 2

Figure 2.1: Example of four processes carrying out three iterations of an asynchronous
iterative method without communication delays. Relaxations are denoted by red dots, and
information used for relaxations is denoted by blue arrows.

corresponds to a coupled set of equations that are relaxed simultaneously. By “inexact” we

mean that Jacobi relaxations are applied to the blocks of equations (rather than an exact

solve, for example). By “multiplicative,” we mean that not all blocks are relaxed at the

same time, i.e., the updates build on each other multiplicatively like in the Gauss-Seidel

method.

If a single row j is relaxed at time instant t, then

D̂
(t)
ii =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1/Aii, if i = j,

0, otherwise.

(2.11)

Relaxing all rows in ascending order of index is precisely Gauss-Seidel with natural order-

ing. For multicolor Gauss-Seidel, where rows belonging to an independent set (no rows in

14

the set are coupled) are relaxed in parallel, D̂(t) can be expressed as

D̂
(t)
ii =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1/Aii, if i ∈ Γ,

0, otherwise.

(2.12)

where Γ is the set of indices belonging to the independent set. Similarly, Γ can represent a

set of independent blocks, which gives the block multicolor Gauss-Seidel method.

2.3.3 Simplified Asynchronous Jacobi Can Reduce The Residual When Some Processes

are Delayed in Their Computation

For this section only, we will assume A is weakly diagonally dominant (W.D.D.), i.e.,

∣Aii∣ ≥ ∑j≠i ∣Aij ∣ for all i = 1, . . . , n and thus ρ(G) ≤ 1. Then the error and residual

for simplified asynchronous Jacobi monotonically decreases in the infinity and L1 norms,

respectively.

In general, the error and residual do not converge monotonically for asynchronous

methods (assuming the error and residual at snapshots in time are available). However,

monotonic convergence is possible in the infinity and L1 norms for the error and residual,

respectively, if the propagation matrices are bounded by one in these norms. This is guar-

anteed when A is W.D.D. A norm of one means that the error or residual does not grow

but may still decrease. Such a monotonic convergence result may be useful to help detect

convergence of the asynchronous method in a distributed memory setting.

The following theorem supplies the norm of the propagation matrices.

Theorem 1. Let A be W.D.D. and at least one process is delayed in its computation at

time instant t. Then ρ(Ĝ(t)) = ∥Ĝ(t)∥∞ = 1 and ρ(Ĥ(t)) = ∥Ĥ(t)∥1 = 1 for simplified

asynchronous Jacobi.

Proof. Let the number of equations be n, and let ξ1, . . . , ξn be the n unit (coordinate) basis

vectors. Without loss of generality, consider a single equation i to be not relaxed at time

15

instant t. The proof of ∥Ĝ(t)∥∞ = 1 is straightforward. Since row i in Ĝ(t) is ξTi , and sinceA

is W.D.D., ∥Ĝ(t)∥∞ = 1. Similarly, for ∥Ĥ(t)∥1, column i is ξi and so ∥Ĥ(t)∥1 = 1. To prove

ρ(Ĝ(t)) = 1, consider the splitting Ĝ(t) = I + Y , where I is the identity matrix. The matrix

Y has the same elements as Ĝ(t) except the diagonal is diag(Ĝ(t))−I and the ith row of Y is

all zeros. Since Y has a row of zeros, it must have nullity ≥ 1. Therefore, an eigenvector of

Ĝ(t) is v = null(Y) with eigenvalue of 1 since (I +Y)v = v. To prove ρ(Ĥ(t)) = 1, it is clear

that ξi is an eigenvector of Ĥ(t) since column i of Ĥ(t) = ξi. Therefore, Ĥ(t)ξi = ξi.

We can say that, asymptotically, asynchronous Jacobi will be faster than synchronous

Jacobi because inexact multiplicative block relaxation methods are generally faster than

additive block relaxation methods. However, it is not clear if the error will continue to

reduce if the same processes are delayed in their computation for a long period of time

(equivalently, if some rows are not relaxed for a long period of time). An important con-

sequence of Theorem 1 is that the error will not increase in the infinity norm no matter

what the error propagation matrix is, which is also is true for the L1 norm of the residual.

A more important consequence is that any residual propagation matrix will decrease the

L1 norm of the residual with high probability (for a large enough matrix). This is due to

the fact that the eigenvectors of Ĥ(t) corresponding to eigenvalues of one are unit basis

vectors. Upon multiplying Ĥ(t) by the residual many times, the residual will converge to a

linear combination of the unit basis vectors, where the number of these unit basis vectors

is equal to the number of rows that are not relaxed. Since the eigenvalues corresponding

to these unit basis vectors are all one, components in the direction of the unit basis vectors

will not change, and all other components of the residual will go to zero. The case in which

the residual will not change is when these components are already zero, which is unlikely

given that the residual propagation matrix is constantly changing.

In the case of 2 × 2 random matrices, which was studied in [35], relaxing the same row

after immediately relaxing that row will not change the current approximation since the

16

error and residual propagation matrices have the form

Ĝ(t) = [
1 0

α 0
] , Ĥ(t) = [

1 α

0 0
] , (2.13)

if the first row is not relaxed, where α = A12/A11.

Since the only information needed by row two comes from row one, row two cannot

continue to change without new information from row one. For larger matrices, iterating

while having a small number of rows are not relaxed will reduce the error and residual.

For larger matrices, how quickly the residual converges depends on the eigenvalues that

do not correspond to unit basis eigenvectors. If these eigenvalues are very small in absolute

value (i.e., close to zero), convergence will be quick, and therefore the error/residual will

not continue to reduce if some rows continue to not relax. To gain some insight into the

reduction of the error and residual, we can use the fact that the components of the current

approximation that are not relaxed do not change with successive applications of the same

propagation matrix.

As an example, consider just the first row to not be relaxed starting at time instant t.

We can write the iteration as

e(t+1) = Ĝ(t)e(t) =

⎡⎢⎢⎢⎢⎢⎢⎣

1 oT

g
(t)
1 G̃(t)

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

e
(t)
1

ẽ(t)

⎤⎥⎥⎥⎥⎥⎥⎦

(2.14)

where o is the (n−1)×1 zero vector, g(t)1 is an (n−1)×1 vector, and G̃(t) is a (n−1)×(n−

1) symmetric principal submatrix of the synchronous iteration matrix G. Since G̃(t) is a

principal submatrix of G, which is symmetric since A is symmetrically scaled to have unit

diagonal values, we can use the interlacing theorem to bound the eigenvalues of G̃(t) with

eigenvalues of G. Specifically, if λ1, . . . , λn are the eigenvalues of G, the ith eigenvalue µi

of G̃(t) can be bounded as λi ≤ µi ≤ λi+1.

For the general case in whichm rows are being relaxed at time instant t, we can consider

17

the system P (t)AP (t)TP (t)x = P (t)b, which has the iteration

P (t)x(t+1) = P (t)Ĝ(t)P (t)TP (t)x(t) + P (t)D̂(t)P (t)TP (t)b. (2.15)

The matrix P (t) is a permutation matrix that is chosen such that all rows that are not being

relaxed are ordered first, resulting in the propagation matrix and error

e(t+1) = Ĝ(t)e(t) =

⎡⎢⎢⎢⎢⎢⎢⎣

I OT

G
(t)
I G̃(t)

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

e
(t)
I

ẽ(t)

⎤⎥⎥⎥⎥⎥⎥⎦

, (2.16)

where I is the (n −m) × (n −m) identity matrix, O is the m × (n −m) zero matrix, G(t)
I

is m × (n −m), and G̃(t) is m ×m. For an eigenvalue µi of G̃(t), λi ≤ µi ≤ λi+n−m for

i = 1, . . . ,m. This means that convergence for the propagation matrix will be slow if the

convergence for synchronous Jacobi is slow. In other words, if eigenvalues of G are spaced

somewhat evenly, or if many eigenvalues are clustered near one, we can expect a similar

spacing of the eigenvalues of G̃(t).

2.3.4 Simplified Asynchronous Jacobi Can Converge When Synchronous Jacobi Does

Not

A well known result, known as early as Chazan and Miranker [9], is that if G is the it-

eration matrix of a synchronous method then ρ(∣G∣) < 1 implies that the corresponding

asynchronous method converges. From the fact that ρ(G) < ρ(∣G∣) for all matrices G, it

appears that convergence of the asynchronous method is harder than convergence of the

synchronous method. However, this is an asymptotic result only, and does not capture any

transient behavior. The following theorem provides a condition on G̃(t) that results in the

decrease of the A-norm of the error at iteration t for the simplified asynchronous Jacobi

method.

Theorem 2. Let A be SPD and symmetrically scaled to have unit diagonal values. For

18

simplified asynchronous Jacobi, if ρ(G̃(t)) < 1, and ẽ(t) ≠ 0, then the A-norm of the error

∥e(t)∥A decreases at time instant t.

Proof. We can write the squared A-norm of the error as

∥e(t+1)∥2
A = e(t+1)TAe(t+1)

= e(t)T Ĝ(t)TAĜ(t)e(t)

= e(t)T (I −AD̂(t))A(I − D̂(t)A)e(t)

= ∥e(t)∥2
A − e(t)

T
A(2D̂(t) − D̂(t)AD̂(t))Ae(t).

(2.17)

Let m be the number of rows being relaxed at time instant t. Without loss of generality, we

can consider the ordering from Equation 2.16, and write

D̂(t) =

⎡⎢⎢⎢⎢⎢⎢⎣

0 OT

O I

⎤⎥⎥⎥⎥⎥⎥⎦

, (2.18)

where I is the m × m identity matrix, O is the (n − m) × m zero matrix, and 0 is the

(n −m) × (n −m) zero matrix. Therefore,

2D̂(t) − D̂(t)AD̂(t) =

⎡⎢⎢⎢⎢⎢⎢⎣

0 OT

O 2I − Ã(t)

⎤⎥⎥⎥⎥⎥⎥⎦

, (2.19)

where Ã(t) is an m ×m principal submatrix of A.

This means ∥e(t)∥2
A is reduced when 2I − Ã(t) is SPD. The eigenvalues of 2I − Ã(t) are

2 − α, where α is an eigenvalue of Ã. Since α > 0, 2I − Ã(t) is SPD when 2 > α > 0. The

eigenvalues of G̃(t) are µ = 1 − α, so 1 > µ > −1, i.e., ∣µ∣ < 1 or ρ(G̃(t)) < 1.

The proof of Theorem 2 can also be used to show that a single Gauss-Seidel relaxation

19

reduces ∥e(t)∥2
A. This is because

2D̂(t) − D̂(t)AD̂(t) =

⎡⎢⎢⎢⎢⎢⎢⎣

0 OT

O I

⎤⎥⎥⎥⎥⎥⎥⎦

, (2.20)

where I is the m×m identity. If we consider Gauss-Seidel with natural ordering, I is 1×1.

When using red-black Gauss-Seidel on a 5-point or 7-point stencil, I is approximately or

exactly of size n/2×n/2. In general, for a method in which an independent set of rows are

relaxed in parallel, e.g., multicolor Gauss-Seidel, ∥e(t+1)∥2
A < ∥e(t)∥2

A.

Returning to the discussion of simplified asynchronous Jacobi, it can happen that

∥e(t+1)∥2
A < ∥e(t)∥2

A since ρ(G̃(t)) ≤ ρ(G) by the interlacing theorem. Matrix G̃(t) de-

creases in size when fewer rows are relaxed in parallel, which happens when the number

of threads or processes is increased. Furthermore, G̃(t) can be block diagonal since re-

moving rows can create blocks that are decoupled. The interlacing theorem can be further

applied to these blocks, resulting in ρ(G̃(t)
i) ≤ ρ(G̃(t)), where G̃(t)

i is block i of G̃(t) with

the largest spectral radius. If many processes are used, it may happen that G̃(t) will have

many blocks, resulting in ρ(G̃(t)
i) ≪ ρ(G̃(t)). This can explain why increasing the con-

currency can result in simplified asynchronous Jacobi converging faster than synchronous

Jacobi, and converging when synchronous Jacobi does not. This is a result we will show

experimentally.

An example of how ρ(G̃(t)) changes as the fraction of rows that are being relaxed

decreases is shown in Figure 2.2. The matrix used is the FE matrix (see Section 2.6.1). For

each fraction of rows being relaxed, the max, min, and mean spectral radius of 200 different

choices of G̃(t) is shown, where rows selected to be relaxed are chosen randomly. When

the fraction of rows being relaxed is ≈ .7 or less, the max of all ρ(G̃(t)) < 1. Additionally,

when the fraction of rows being relaxed is ≈ .9 or less, the mean of all ρ(G̃(t)) < 1. This

suggests that we would likely see a consistent reduction in the error when the fraction of

rows that are relaxed in parallel is ≈ .9 or less.

20

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fraction of Rows Being Relaxed

0.6

0.7

0.8

0.9

1

1.1

S
p
e
c
tr

a
l
R

a
d
iu

s

mean

min

max

Figure 2.2: Spectral radius of G̃(t) versus the fraction of rows being relaxed. Max, min, and
mean spectral radius is shown for 200 different choices of G̃(t), where the rows selected to
be relaxed are chosen randomly. The test problem is the FE matrix.

2.4 Implementing Asynchronous Jacobi in Shared Memory

Our implementations use a sparse matrix-vector multiplication (SpMV) kernel to compute

the residual, which is then used to correct the approximate solution. A single iteration of

both synchronous and asynchronous Jacobi can be written in the following way:

1. For each row i, compute the residual r(t)i = bi −∑nj=1Aijx
(t)
j (this is the SpMV step).

2. For each row i, correct the approximation x(t+1)
i = x(t)

i + r(t)i /Aii.

3. Check for convergence (detailed below and in Section 2.5 for distributed memory).

Since more than one row is assigned to each thread, each thread only computes Ax(t),

r(t) and x(t) for the rows assigned to it. The contiguous set of rows assigned to a thread is

defined as its subdomain, which is determined using a graph partitioner in general.

OpenMP was used for our shared memory implementation. The vectors x(t) and r(t) are

stored in shared arrays. The only difference between the asynchronous and synchronous

implementations is that the synchronous implementation uses a barrier after step 1 and

21

a reduction for step 3. Since each element in either x(t) or r(t) is updated by writing

to memory (not by using a fetch-and-add operation), atomic operations can be avoided.

Writing or reading a double precision word is atomic on modern Intel processors if the

array containing the word is aligned to a 64-bit boundary.

For synchronous Jacobi, the iteration is stopped if the relative norm of the global resid-

ual falls below a specified tolerance (determined using a reduction), or if a specified num-

ber of iterations has been carried out. For asynchronous Jacobi, a shared array is done

is used to determine when the iteration should stop. is done is of size equal to the num-

ber of threads, and is initialized to zero. If thread i satisfies the local stopping criterion,

element i − 1 (zero based indexing) of is done is set to one. Once a thread reads a one

in all elements of is done, that thread stops iterating. For the local stopping criterion, a

thread has either carried out a specified number of iterations, or the residual norm for its

subdomian has dropped below some tolerance.

While we do not implement any sophisticated termination schemes, research in termi-

nating iterations has primarily been concerned with when to terminate without using global

communication. Savari and Bertsekas [40, 34] have proposed several termination detection

schemes, but in practice, these schemes require a variation of a broadcast operation, i.e.,

one process communicates with all others. The body of research is quite small for decen-

tralized termination detection, i.e., termination detection where no global communication

is used. Bahi [41, 42] proposed a method where a minimum spanning tree is constructed

from the graph representing the connectivity of the parallel process topology, and each

process sends a message up the tree to the root once it has converged. This scheme is im-

plemented in JACK [37]. Dijkstra [43] proposed something similar, although, the paper

was not meant to address asynchronous iterative methods but rather the more general case

in which information moving through a graph comes to a stand still.

22

2.5 Implementing Asynchronous Jacobi in Distributed Memory

The program structure for our distributed implementation is the same as that of the shared

memory implementation as described in the first paragraph of Section 2.4. However, there

are no shared arrays. Instead, a process i stores a ghost layer of values received from its

neighbors. A neighbor of i is determined by inspecting the non-zero pattern in the off-

diagonal blocks that belong to i. Process j is a neighbor of i if an off-diagonal block

belonging to row i contains a column index in the subdomain of j. The column indices

in that block are the indices of the ghost layer values that j sends to i. Figure 2.3 shows

an an example of a partitioned matrix when using four processes. The red diagonal blocks

denote the connections among points in a subdomain. The off-diagonal blocks denote the

connections of points in a subdomain to points in other subdomains. We note that multi-

ple rows in a subdomain may require the same information from a different subdomain,

i.e., off-diagonal column indices may be repeated across multiple rows in a subdomain.

Therefore, a subdomain only requires data corresponding to the unique set of off-diagonal

column indices.

We overlapped computation and communication in our SpMV. More specifically, we

can write SpMV in the following steps, which are carried out in parallel on each process:

1. Send values of x⃗(t)
i to neighbors.

2. Compute y⃗i =Aiix⃗
(t)
i .

3. Receive values of x⃗qij from neighbor qij , where j = 1, . . . ,Ni.

4. Compute

x⃗
(t+1)
i = y⃗i +

Ni
∑
j=1

Aiqij x⃗
(t)
qij . (2.21)

The matrix Aii is the diagonal block that belongs to process i (red blocks in Figure 2.3),

and x⃗i is the part of x that belongs to i. Ni is the number of neighbors of i, Aiqij is the off-

diagonal block corresponding to neighbor qij of process i (blue blocks in Figure 2.3), and

23

diag off-diag

1

2

3

4

Figure 2.3: Sparsity pattern for an unstructured finite element matrix partitioned into four
parts. The red points denote the non-zero values of the diagonal blocks of the matrix, and
the blue points denote the non-zero values of the off-diagonal blocks.

x⃗
(t)
qij is the vector of values in the subdomain of process qij (ghost layer values). Remember

that process i only requires values of x⃗qij corresponding to the off-diagonal blocks, so the

entirety of x⃗qij is not sent to process i.

A process terminates once it has carried out a specified number of iterations. For the

synchronous case, all processes will terminate at the same iteration. For the asynchronous

case, some processes can terminate even when other processes are still iterating. This naive

scheme requires no communication. If it is desired that some global criterion is met, e.g.,

the global residual norm has dropped below some specified tolerance, a more sophisticated

scheme must be employed. However, since we are only concerned with convergence rate

rather than termination detection, we leave this topic for future research.

We used MPI for communication in our distributed implementations to communicate

24

ghost layer values. For our synchronous implementation, two-sided communication was

used. Here, both the sending and receiving processes take part in the exchange of data.

We implemented this using MPI Isend(), which carries out a non-blocking send, and

MPI Recv(), which carries out a blocking receive. MPI Waitall() is then used to

complete all outstanding communication calls.

For our asynchronous implementation, remote memory access (RMA) communication

was used [44], specifically, one-sided MPI with passive target completion (passive one-

sided MPI). For RMA, each process must first allocate a region of memory that is acces-

sible by remote processes. This is known as a memory window, and is allocated using the

function MPI Win allocate(). For our implementation, we used a one dimensional

array for the window, where each neighbor of a process writes to a subarray of the window.

The size of each subarray is equal to the number of ghost layer values needed from that

neighbor. The subarrays do not overlap so race conditions do not occur.

The origin process writes to the memory of the target process using MPI Put(). For

passive target completion, MPI Put() is carried out without the involvement of the target.

This is done by initializing an access epoch on a remote memory window using a lock oper-

ation. We used MPI Win lock all(), which allows access to windows of all processes

until MPI Win unlock all() is called. Another option is to use MPI Win lock()

and MPI Win unlock(), which locks and unlocks a specific target process. We found

that MPI Put() operations completed faster when using lock all() functions instead

of using MPI Win lock() and MPI Win unlock(). If using the lock all() com-

mands, completing messages must be done in the following way:

• At the origin, MPI Win flush() or MPI Win flush local() must be called.

The former blocks until the MPI Put() is completed at the target, and the latter

blocks until the send buffer can be reused. The functions MPI Win flush all()

and MPI Win flush local all() can also be used, which complete all out-

standing messages. These flush all() functions are faster, which we will show

25

later.

• In MPI implementations that use a “separate” memory model,

MPI Win sync() must be used at the target in order for data from incoming mes-

sages to be transferred from the network card to the memory window.

It is important to note that MPI Put() does not write an array of data from ori-

gin to target atomically, but is atomic for writing single elements of an array. We do

not need to worry about writing entire messages atomically, which can be done using

MPI Accumulate() with MPI REPLACE as the operation. This is because we are par-

allelizing the relaxation of rows, so blocks of rows do not need to be relaxed all at once,

i.e., information needed for a row is independent of information needed by other rows.

To compare the different options for passive one-sided MPI, we created a benchmark.

The goal of the benchmark is to measure how fast messages complete when using passive

one-sided MPI. Another goal is to see if MPI Put() will complete if we do not flush or

use MPI Win sync(). Our benchmark simulates the communication pattern of a series

of SpMV operations that require only nearest neighbor communication in a 2D mesh. Here,

the 2D mesh is virtual, i.e., a process p is assigned an (x, y) coordinate on the virtual mesh

using the MPI cartesian grid topology routines. Each process has two to four neighbors,

one per cardinal direction.

Processes carry out a fixed number of iterations, and each process sends a single mes-

sage to each neighbor in each iteration. In each iteration, starting with iteration zero, all

processes execute the following steps in parallel:

1. Call MPI Put(sendbuff[i], sendcount,. . ., target rank[i],. . .),

where i ranges from 0 to the number of neighbors minus one. Here, sendcount

is the size of the message being sent, and sendbuff[i] is the data being sent to

neighbor i (array of double precision numbers). sendbuff is a 2D array, which

is why we need to reference the ith row. sendbuff[i] is initialized to zero at

26

iteration zero.

2. Poll the memory window until all information has been received. If a process does

not receive a message after polling for s seconds, then the program exits, indicating

a MPI Put() did not complete. We set s to 60 for the experiments shown below.

3. Update the send buffers: sendbuff[i][j]++, where j = 0, . . . ,

(sendcount − 1).

From the steps above, in each iteration, we can see that each process expects to read the

current iteration number at each element of its memory window. Step 2 means that if a

process does not read the current iteration number after s seconds, the program terminates.

For our first experiment, we used nine Haswell nodes (3 × 3 mesh) of the Cori super-

computer at NERSC (see Section 2.6.1), with one MPI process per node. We found that

some MPI Put() operations did not complete when not using MPI Win sync() and

flush() functions. Table 2.1 shows the total wall-clock time for 100 iterations by each

process with a message size of 288 doubles. We chose 288 because this is the largest mes-

sage size used in our distributed memory experiments with asynchronous Jacobi. The table

shows results for using different passive one-sided MPI functions. The mean of 20 runs was

taken for each entry in the table. With the exception of the lock target and two-sided en-

tries in the table, MPI Win lock all(), MPI Win unlock all(), and MPI Put()

is used. When using any kind of flush() command, MPI Win sync() was also used.

For lock target, MPI Win lock() was used before each MPI Put() and MPI Win -

unlock() is used after. At the target, MPI Win sync() is used. The none entry

denotes the absence of flushing and MPI Win sync(), which is what we used for our

asynchronous Jacobi implementation. The time for two-sided MPI using MPI Isend(),

MPI Recv() and MPI Wait all() is also shown. The results show that locking each

target is over 10 times slower than none, which is the fastest, and two-sided is almost two

times slower than none. Additionally, using either flush all() function is faster than

27

flushing each target, even if there are at most four targets for the 2D mesh used in our bench-

mark. Therefore, if we wanted to write a code where all MPI Put() operations are guar-

anteed to complete, we would use one of the flush all() functions. However, we found

that asynchronous Jacobi converged when not flushing and using MPI Win sync(). This

is because although some information is overwritten before it is sent, information in subse-

quent iterations is still delivered.

Table 2.1: Benchmark wall-clock times in seconds for sending 100 messages of size 288
doubles. A 3 × 3 processor mesh is used.

wall-clock time (seconds)

none 0.00077
flush 0.00134
flush local 0.00133
flush all 0.00084
flush local all 0.00086
lock target 0.00853
two-sided 0.00151

Figure 2.4 (a) shows how the overall wall-clock time of our benchmark is affected by

different message sizes. In this figure, 32 nodes with 1,024 total MPI processes are used,

and each process must send and successfully receive 100 messages. For each data point, the

mean of 50 samples is taken. The legend entries refer to the same set of MPI functions as

described for Table 2.1. We can see that for smaller messages, two-sided is the fastest. For

larger messages, the flush target functions perform the worst due to the time that the unlock

operation takes to complete, as shown in Figure 2.4 (b). Figure 2.4 (b) also shows that,

when using lock all() functions, the time for the lock operations dominates the overall

time except for large message sizes. For the largest message size, the lock all() func-

tions take a similar amount of time as two-sided. The reason the lock all() functions

are more costly for the smaller message size than what is shown in Table 2.1 is because

more MPI processes are used in Figure 2.4. The wall-clock time for lock all() func-

tions increases with increasing number of MPI processes. This suggests that some form of

28

Total Wall-clock Time

10
1

10
2

10
3

Message Size (double precision)

10
-3

10
-2

10
-1

W
a
ll-

c
lo

c
k
 T

im
e
 (

s
e
c
o
n
d
s
)

lock target

flush

flush local

flush all

flush local all

two-sided

(a)
Lock Wall-clock Time Solve Wall-clock Time

10
1

10
2

10
3

Message Size (double precision)

10
-3

10
-2

10
-1

W
a
ll-

c
lo

c
k
 T

im
e
 (

s
e
c
o
n
d
s
)

10
1

10
2

10
3

Message Size (double precision)

10
-3

10
-2

10
-1

W
a
ll-

c
lo

c
k
 T

im
e
 (

s
e
c
o
n
d
s
)

(b) (c)

Figure 2.4: Wall-clock time as a function of message size for our benchmark. The bench-
mark measures how long it takes for communication operations to complete when using
one-sided MPI with passive target completion. Figure (a) shows the overall wall-clock
time, Figure (b) shows the wall-clock time for locking and unlocking windows, and Figure
(c) shows the total wall-clock time again but without including the time it takes to execute
the lock all() functions. The purpose of (c) is to show only the time it takes to carry
out some number of iterations, where we consider calls to lock all() functions as part
of the setup phase. 32 nodes with 1,024 total MPI processes are used, and each process
must send and successfully receive 100 messages. For each data point, the mean of 50
samples is taken. Each curve denotes a different configuration of MPI functions used.

global communication may be happening when using the lock all() functions. How-

ever, since we only need to call MPI Win lock all() and MPI Win unlock all()

once, we consider this to be a cost that impacts only the setup phase of our code. Figure 2.4

(c) shows the timing for only the solve phase, where we do not include the time it takes

to call MPI Win lock all() and MPI Win unlock all(). This figure shows that

29

MPI Put() operations complete most quickly when using the lock all() functions.

As stated earlier, this is why we chose the lock all() functions for our distributed mem-

ory asynchronous Jacobi method instead of locking the target. In our distributed memory

asynchronous Jacobi method, we did not include the time it takes to execute lock all()

functions when recording the overall wall-clock time.

2.6 Results

2.6.1 Test Framework

All experiments were run on NERSC’s Cori supercomputer. Shared memory experiments

were run on an Intel Xeon Phi Knights Landing (KNL) processor with 68 cores and 272

threads (four hyperthreads per core), and distributed memory experiments were run on up to

128 nodes, each node consisting of two 16-core Intel Xeon E5-2698 “Haswell” processors.

In all cases, we used all 32-cores of each Haswell node with one process per core. We used

a random initial approximation x(0) and a random right-hand side b with elements in the

range [-1,1], and the following test matrices:

1. Matrices arising from a five-point centered difference discretization of the Poisson

equation with Dirichlet boundary conditions on a rectangular domain with a uniform

grid. These matrices are irreducibly W.D.D., symmetric positive-definite, and ρ(G) <

1. We refer to these matrices as FD.

2. An unstructured finite element discretization of the Poisson equation with Dirichlet

boundary conditions on a square domain. The matrix has 3,081 rows and 20,971

non-zero values. The matrix is not W.D.D. The matrix is symmetric positive-definite

and ρ(∣G∣) > ρ(G) > 1. We refer to this matrix as FE.

3. Matrices listed in Table 2.2 from the SuiteSparse matrix collection [45].

Matrices are partitioned using METIS [46], including for FD, and are stored in compressed

sparse row (CSR) format.

30

Table 2.2: Test problems from the SuiteSparse Matrix Collection. All matrices are symmetric
positive definite.

Matrix Non-zeros Equations

thermal2 8,579,355 1,227,087
parabolic fem 3,674,625 525,825
thermomech dM 1,423,116 204,316
Dubcova2 1,030,225 65,025

2.6.2 Simplified Asynchronous Jacobi Compared to OpenMP Asynchronous Jacobi

The primary goal of this section is to validate the simplified asynchronous Jacobi model

presented in Section 2.3 by comparing its behavior to OpenMP asynchronous Jacobi.

OpenMP asynchronous Jacobi is our implementation of asynchronous Jacobi in shared

memory using OpenMP. The model is simulated using a sequential implementation.

For our first experiment, we look at how simplified asynchronous Jacobi and OpenMP

asynchronous Jacobi compare to the synchronous case. We consider the scenario where all

threads run at the same speed, except one thread that runs at a slower speed. This could

simulate a system in which one core is slower than others. We assign a computational de-

lay, δ, to thread pi corresponding to row i near the middle of a test matrix. For OpenMP

asynchronous Jacobi, the delay corresponds to having pi sleep for a certain number of mi-

croseconds. Since synchronous Jacobi must use a barrier when using OpenMP, all threads

have to wait for pi to finish sleeping and relaxing its rows before they can continue. For

simplified asynchronous Jacobi, row i is delayed by δ iterations. This means row i only

relaxes at multiples of δ iterations, while all other rows relax at every iteration. In the case

of synchronous Jacobi, all rows relax at iteration numbers that are multiples of δ to simulate

waiting for the slowest process.

We first look at how much faster simplified and OpenMP asynchronous Jacobi can be

compared to synchronous Jacobi when we vary the delay in computation δ. The test ma-

trix is an FD matrix with 68 rows (17 × 4 mesh) and 298 non-zero values, and we use 68

threads (available on the KNL platform), giving one row per thread. A relative residual

31

0 20 40 60 80 100

Delay (iterations)

10

20

30

40

S
p
e
e
d
u
p

OpenMP

Model

Figure 2.5: Speedup of simplified and OpenMP asynchronous Jacobi over synchronous
Jacobi for 68 threads (on the KNL platform) as a function of the artificial delay in com-
putation δ experienced by one thread. For OpenMP, the delay is varied from zero to 3000
microseconds. For the simplified asynchronous Jacobi, δ is varied from zero to 100, which
is shown on the x-axis. A relative residual norm tolerance of .001 is used. The test problem
is an FD matrix with 68 rows and 298 non-zeros. The mean of 100 samples is taken for
each data point. We can see that a speedup of over 40 is achieved for larger delays.

1-norm tolerance of .001 is used. For OpenMP, we varied the delay from zero to 3000

microseconds, and recorded the mean wall-clock time for 100 samples for each delay. For

the simplified asynchronous Jacobi, we varied δ from zero to 100. Figure 2.5 shows the

speedup for simplified and OpenMP asynchronous Jacobi as a function of the delay pa-

rameter. The speedup for OpenMP is defined as the total wall-clock time for synchronous

Jacobi divided by the total wall-clock time for asynchronous Jacobi. Similarly, for sim-

plified asynchronous Jacobi, the speedup is defined as the total number of iterations for

synchronous Jacobi divided by the total number of iterations for simplified asynchronous

Jacobi.

Figure 2.5 shows a qualitative and quantitative agreement between simplified and

OpenMP asynchronous Jacobi. As the delay is increased, both achieve a speedup above

40 before reaching a plateau. In general, this maximum speedup depends on the problem,

32

the number of threads, and which threads are delayed. In the case of the FD problem for

Figure 2.5, for simplified asynchronous Jacobi, the speedup is based on how fast the com-

ponents of the residual corresponding to non-delayed rows tend to zero. If one row is never

relaxed, the residual propagation matrix Ĥ(t) is fixed and thus, from Equation 2.14,

r(t+1) = Ĥ(t)r(t) =

⎡⎢⎢⎢⎢⎢⎢⎣

1 h
(t)
1

o H̃(t)

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

r
(t)
1

r̃(t)

⎤⎥⎥⎥⎥⎥⎥⎦

. (2.22)

In this equation, Ĥ(t) has just one eigenvalue equal to one corresponding to the eigenvector

ξ1 (first unit basis vector). The remaining eigenvalues are the eigenvalues of H̃(t). From

the proof of Theorem 1, r(t) converges to [γ oT]
T

when applying Ĥ(t) to r(t) many

times, where γ is some scalar. The remaining n − 1 eigenvectors of Ĥ(t) corresponding

to the eigenvalues of H̃(t) are exactly [0 vTj], where vj is an eigenvector of H̃(t) with

j = 1, . . . , n − 1. Therefore, for this FD matrix, with a starting residual of r̃(t), the speedup

of simplified asynchronous Jacobi will always increase until the iteration governed by the

residual iteration matrix H̃(t) converges, at which point the speedup will stay constant.

Since any FD matrix is W.D.D., the reason the speedup will always increase is due to

Theorem 1. Another way of thinking about this is that rows 2 to n eventually need the

information of the first row in order for the iteration to not stall, but the iteration can still

progress for many iterations using old information from the first row.

Note that without artificially slowing down a thread, OpenMP asynchronous Jacobi is

still slightly faster than synchronous Jacobi, as shown by values corresponding to a delay of

zero. This is due to the fact that natural delays in computation occur that make some threads

faster than others. For example, some rows have fewer non-zeros (load imbalance), which

means some threads finish relaxing their rows more quickly. Another example is operating

system jitter, where some cores are also responsible for background events related to the

operating system.

Figure 2.6 (a) and (b) show the relative residual 1-norm as a function of number of

33

iterations for simplified and OpenMP asynchronous Jacobi, respectively. The test matrix is

again an FD matrix with 68 rows and 298 non-zero values, and we use 68 threads (available

on the KNL platform), giving one row per thread. For each “Async” curve in (b) (“Async”

in the legend refers to OpenMP asynchronous Jacobi), we recorded the mean wall-clock

time of 100 runs for each number of iterations 1,2, . . . ,100. To create a residual 1-norm

history (residual norm versus wall-clock time), at each number of iterations, after the itera-

tion stops, the global residual norm is calculated and the total wall-clock time is recorded.

Since this is done 100 times, we take the mean of 100 relative residual norm values and

wall-clock times. To be clear, when computing the residual norm and wall-clock time for

some number iterations, e.g., 50 iterations, we restart from iteration zero instead of using

the approximate solution from iteration 49.

Figure 2.6 shows that simplified asynchronous Jacobi approximates the behavior of

OpenMP asynchronous Jacobi quite well. A major similarity is the convergence curves

for the two largest delays. For both the simplified and OpenMP asynchronous Jacobi, we

can see that even when a single row is delayed until convergence (this corresponds to the

largest delay shown, which is 100 for the model, and 10000 microseconds for OpenMP),

the residual norm can still be reduced by simplified and OpenMP asynchronous Jacobi.

As explained in the analysis of the results shown in Figure 2.5, the stall in convergence

for a delay of 100 is due to the convergence of the iteration corresponding to using H̃(t)

as the residual iteration matrix. However, it takes ≈ 50 iterations to reach a stall, which

is large compared to the size of the matrix. For other delays, we see a “saw tooth”-like

pattern corresponding to the delayed row being relaxed. The existence of this pattern for

both simplified and OpenMP asynchronous Jacobi further confirms the suitability of the

model. Additionally, we see that with no delay, OpenMP asynchronous Jacobi converges

faster than synchronous Jacobi.

Figure 2.7 shows how OpenMP asynchronous Jacobi scales when increasing the num-

ber of threads from one to 272, and without adding any artificial delays in computation. For

34

Model OpenMP

0 20 40 60 80 100

Iterations

10
-4

10
-2

10
0

R
e

l.
 R

e
s
id

u
a

l
1

-N
o

rm

Sync and Async 0

Sync 10

Async 10

Sync 20

Async 20

Sync 50

Async 50

Sync 100

Async 100

0 2 4 6 8

Wall-Clock Time (seconds) ×10
-3

10
-10

10
-5

10
0

R
e
l.
 R

e
s
id

u
a
l
1
-N

o
rm

Sync 0

Async 0

Sync 500

Async 500

Sync 1000

Async 1000

Sync 5000

Async 5000

Sync 10000

Async 10000

(a) (b)

Figure 2.6: Relative residual 1-norm as a function of number of iterations for simplified
asynchronous Jacobi, shown in (a), and relative residual norm as a function of OpenMP
asynchronous Jacobi, shown in (b). Artificial delays in computation are added for both
simplified and OpenMP asynchronous Jacobi, where “Async 10” denotes asynchronous
with a delay of 10. The convergence for synchronous Jacobi with artificial delays is also
shown. 68 threads on the KNL platform are used for OpenMP asynchronous Jacobi. The
test problem is an FD matrix with 68 rows and 298 non-zeros.

Rel. Res. 1-Norm < .001 100 Iterations

1 2 4 8 16 32 68 136 272

Threads

10
-1

10
0

W
a
ll-

c
lo

c
k
 T

im
e

Sync

Async

1 2 4 8 16 32 68 136 272

Threads

0.01

0.015

0.02

0.025

0.03

W
a

ll
-c

lo
c
k
 T

im
e

(a) (b)

Figure 2.7: OpenMP asynchronous Jacobi compared with synchronous Jacobi as the num-
ber of threads increases. Figure (a) shows the wall-clock time when both methods reduce
the relative residual 1-norm below .001. Figure (b) shows how much time is taken to carry
out 100 iterations. The test problem is an FD matrix with 4,624 rows (17 rows per thread
in the case of 272 threads) and 22,848 non-zero values. These results show that OpenMP
asynchronous Jacobi is faster than synchronous Jacobi, especially when a specific reduction
in the residual norm is desired.

35

these results, we used an FD matrix with 4,624 rows (17 × 16 mesh) and 22,848 non-zero

values. When the number of threads does not divide 4,624 evenly, METIS is used. As in

the previous set of results, we averaged the wall-clock time of 100 samples for each data

point. Figure 2.7 (a) shows the wall-clock time for achieving a relative residual norm below

.001. Figure 2.7 (b) shows the wall-clock time for carrying out 100 iterations regardless of

what relative residual norm is achieved. Synchronous Jacobi is also shown.

Figure 2.7 (b) shows that, for OpenMP asynchronous Jacobi, using 136 threads is faster

than using 272 threads when doing a fixed number of iterations. However, OpenMP asyn-

chronous Jacobi is faster than synchronous Jacobi for 272 threads, even though OpenMP

asynchronous Jacobi does more work since a thread only terminates once all threads have

completed 100 iterations (see Section 2.6.1). This indicates that synchronization points

have a higher cost than the extra computation done by OpenMP aynchronous Jacobi.

When comparing (a) and (b), we see another important result for OpenMP asyn-

chronous Jacobi: the convergence rate increases as the concurrency increases. In particular,

when reducing the residual norm to .001, using 272 threads for OpenMP asynchronous Ja-

cobi gives the lowest wall-clock time compared to using a smaller number of threads (it

takes 874.56 iterations on 272 threads and 937.79 iterations on 136 threads for OpenMP

asynchronous Jacobi, and 2635 iterations for synchronous Jacobi). This can be explained

by the fact that multiplicative relaxation methods often converge faster than additive meth-

ods, and increasing the number of threads results in OpenMP asynchronous Jacobi behav-

ing more like a multiplicative relaxation scheme. When increasing the number of threads,

the likelihood of coupled rows being relaxed in parallel is lower since the subdomains are

smaller. This is because coupled rows within a subdomain will always be relaxed in par-

allel, but coupled rows that do not belong to the same subdomain may not be relaxed in

parallel since threads are updating at different times. When the subdomains are smaller, a

higher fraction of coupled rows do not belong to the same subdomain, so a higher fraction

of the relaxations may be carried out in a multiplicative fashion.

36

0 50 100 150 200 250 300

Iterations

10
-2

10
-1

10
0

R
e
l.
 R

e
s
.
1

-N
o

rm

Sync

Async, 68

Async, 136

Async, 272

0 5000 10000 15000

Iterations

10
-15

10
-10

10
-5

10
0

R
e
l.
 R

e
s
.
1

-N
o

rm

(a) (b)

Figure 2.8: Relative residual 1-norm as a function of iterations for different numbers of
threads (68, 136, and 272) on the KNL platform. Figure (a) shows that for a sufficient
number of threads, asynchronous Jacobi can converge when synchronous Jacobi does not.
Figure (b) shows that asynchronous Jacobi truly converges when using 272 threads. The
test problem is the FE matrix.

We now look at a case in which OpenMP asynchronous Jacobi converges when syn-

chronous Jacobi does not. Our test problem is the FE matrix. Figure 2.8 shows the residual

norm as a function of the number of iterations. For OpenMP asynchronous Jacobi, the pro-

cess of producing the residual norm history is the same as that of Figure 2.6 (b), but we only

do one run per number of iterations (we are not taking the average of multiple runs), and

we show the number of iterations instead of wall-clock time on the x-axis. Furthermore,

the number of iterations shown on the x-axis is the average number of the local iterations

carried out by all the threads (see Section 2.4 for details on how threads decide to stop

iterating). In Figure 2.8 (a), we can see that as we increase the number of threads to 272,

OpenMP asynchronous Jacobi starts to converge. This shows that the convergence rate

of OpenMP asynchronous Jacobi can be dramatically improved by increasing the amount

of concurrency, even to the point where OpenMP asynchronous Jacobi will converge when

synchronous Jacobi does not. Figure 2.8 (b) shows that OpenMP asynchronous Jacobi truly

converges, and does not diverge at some later time.

We can also show this result for simplified asynchronous Jacobi. Figures 2.9 and 2.10

show the convergence for simplified asynchronous Jacobi using the FE matrix. Figure 2.9

37

20 40 60 80 100

Iterations

10
-3

10
-2

10
-1

10
0

R
e
l.
 R

e
s
.

1
-N

o
rm

Sync

Async, 0.02

Async, 0.32

(a)

2000 4000 6000 8000 10000

Iterations

10
-5

10
0

R
e

l.
 R

e
s
.

1
-N

o
rm

20 40 60 80 100

Iterations

0.85

0.9

0.95

1

1.05

1.1

S
p

e
c
tr

a
l
R

a
d

iu
s

(b) (c)

Figure 2.9: In this experiment, a random number of random rows is selected to not be
relaxed (delayed) at each iteration for simplified asynchronous Jacobi. The fraction of
delayed rows is varied from .02 to .32, where the cyan to purple gradient of the lines
represents an increasing fraction of delayed rows. Figure (a) shows the relative residual
norm as a function of number of iterations. Figure (b) shows the relative residual norm as
a function of number of iterations only for a fraction of delayed rows of .32. Figure (c)
shows ρ(G̃(t)) as a function of the number of iterations. The test problem is the FE matrix.
These results show that with a large enough fraction of delayed rows, e.g., .32, simplified
asynchronous Jacobi will converge when synchronous Jacobi does not.

shows results for an experiment in which a random set of random rows are selected to be

relaxed at each iteration. In Figure 2.9 (a), the relative residual 1-norm as a function of the

number of iterations is shown. The fraction of rows selected to not be relaxed (delayed) is

varied from .02 to .32. We can see that with a high enough fraction of delayed rows, simpli-

fied asynchronous Jacobi converges, as observed in Figure 2.8 for OpenMP asynchronous

Jacobi. Just as in Figure 2.8 (b), Figure 2.9 (b) shows that the simplified asynchronous

Jacobi truly converges. As discussed in Section 2.3.4, this convergence can be explained

38

20 40 60 80 100

Iterations

10
-4

10
-2

10
0

R
e
l.
 R

e
s
.

1
-N

o
rm

Sync

Async, 1

Async, 4

(a)

20 40 60 80 100

Iterations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

F
ra

c
ti
o

n
 o

f
D

e
la

y
e
d

 R
o
w

s

20 40 60 80 100

Iterations

0.7

0.8

0.9

1

1.1

S
p
e
c
tr

a
l
R

a
d

iu
s

(b) (c)

Figure 2.10: In this experiment, each row is assigned a delay in computation δi in the range
[0,1, . . . , δmax] (the row is only relaxed when δi divides the iteration numbers evenly) for
simplified asynchronous Jacobi. The maximum delay δmax is varied from one to four, where
the cyan to purple gradient of the lines represents an increasing δmax. Figures (a), (b) and (c)
show the relative residual 1-norm, the fraction of delayed rows, and ρ(G̃(t)), respectively.
The x-axis for all three figures is the number of iterations. The test problem is the FE
matrix. These results show that if each row is delayed by an average of just one iteration,
simplified asynchronous Jacobi will converge when synchronous Jacobi does not.

by examining ρ(G̃(t)). Figure 2.9 (c) shows ρ(G̃(t)) as the number of iterations increases.

For a fraction of delayed rows of .32, ρ(G̃(t)) is often less than one.

Figure 2.10 is a slightly different experiment with simplified asynchronous Jacobi.

Again, the FE matrix is used. In this experiment, instead of selecting a specific number

of rows to be delayed, each row i is assigned a random delay δi in the range [0,1, . . . , δmax]

sampled from a uniform random distribution, and δi changes after row i is relaxed. In other

words, row i is relaxed after waiting δi iterations from the last iteration in which it was re-

39

laxed, and then δi is reset by again sampling a random integer from a uniform distribution

in the range [0,1, . . . , δmax]. For this experiment, we vary the the maximum delay δmax from

one to four. Figure 2.9 (a) shows the relative residual 1-norm as a function of iterations as

the delay is varied. The figure shows that with just a delay of one, simplified asynchronous

Jacobi converges. This can be explained by looking at the fraction of delayed rows at each

iteration (Figure 2.9 (b)), and the resulting ρ(G̃(t)) corresponding to that fraction (Fig-

ure 2.9 (c)). With a delay of one, the fraction of delayed rows is between .3 and .4, and

ρ(G̃(t)) is often less than one. For larger delays, ρ(G̃(t)) is always less than one.

2.6.3 Asynchronous Jacobi in Distributed Memory

In this section, we show some similar results to that of the previous section, but for a

distributed memory implementation. We ask if asynchronous Jacobi can be faster than syn-

chronous Jacobi, and can it converge when synchronous Jacobi does not when a distributed

memory implementation is used. We define POS asynchronous Jacobi as asynchronous

Jacobi implemented using one-sided MPI with passive target completion (here, POS stands

for “passive one-sided”). We look at how POS asynchronous Jacobi compares with syn-

chronous Jacobi for the problems in Table 2.2.

For each matrix and number of MPI processes, we recorded the mean wall-clock time

of 200 runs for each number of iterations 1,2, . . . ,100. To create a residual 1-norm history

(residual norm versus number of iterations), at each number of iterations, after the iteration

stops, the global residual norm is calculated. Since this is done 200 times, we take the mean

of 200 relative residual norm values. To be clear, when computing the residual norm for

some number iterations, e.g., 50 iterations, we restart from iteration zero instead of using

the approximate solution from iteration 49. We used linear interpolation on the log10 of the

residual norm history in order to extract the wall-clock time for a specific residual norm

value.

The first row of figures in Figure 2.11 show the relative residual 1-norm as a function

40

of number of relaxations for three problems (Dubcova2 is not included). The plots are

organized such that the problem size increases from left to right. Since the amount of

concurrency affects the convergence of POS asynchronous Jacobi, several curves are shown

for different numbers of nodes ranging from one to 128 nodes (32 to 4,096 MPI processes).

This is expressed in a green-to-blue color gradient, where green is one node and blue is 128

nodes. We can see that in general, POS asynchronous Jacobi tends to converge in fewer

relaxations. More importantly, as the number of nodes increases, the convergence of POS

asynchronous Jacobi is improved.

thermomech dM parabolic fem thermal2

0 20 40 60 80 100

Relaxations/n

10
-3

10
-2

10
-1

10
0

R
e

l.
 R

e
s
.

1
-N

o
rm

Sync

Async, 1 Node

Async, 128 Node

0 20 40 60 80 100

Relaxations/n

10
-1

10
0

R
e

l.
 R

e
s
.

1
-N

o
rm

0 20 40 60 80 100

Relaxations/n

10
-1

10
0

R
e

l.
 R

e
s
.

1
-N

o
rm

32 64 128 256 512 1024 2048 4096

MPI Processes

0.5

1

1.5

2

W
a

ll-
c
lo

c
k
 T

im
e

 (
s
e

c
o

n
d

s
)

×10
-3

sync

async

32 64 128 256 512 1024 2048 4096

MPI Processes

2

4

6

8

W
a

ll-
c
lo

c
k
 T

im
e

 (
s
e

c
o

n
d

s
)

×10
-3

32 64 128 256 512 1024 2048 4096

MPI Processes

0.005

0.01

0.015

0.02

W
a

ll-
c
lo

c
k
 T

im
e

 (
s
e

c
o

n
d

s
)

Figure 2.11: The first row shows the relative residual 1-norm as a function of relaxations/n
for synchronous Jacobi and POS asynchronous Jacobi. For POS asynchronous Jacobi, one
to 128 nodes are shown (32 to 4,096 MPI processes), where the green to blue color gradient
of the lines represents an increasing number of nodes. The second row shows wall-clock
time in seconds as a function of number of MPI processes for reducing the relative residual
norm to 0.1. Results for three different problem sizes are given, where the size increases
from left to right. These results show that POS asynchronous Jacobi is generally faster than
synchronous Jacobi when the number of rows per process is relatively small.

The second row of figures in Figure 2.11 shows the wall-clock time in seconds for re-

ducing the residual norm by a factor of 10 as the number of MPI processes increases. For

POS asynchronous Jacobi, in the case of thermomech dM, we can see that at 512 MPI

processes, the time starts to increase, which is likely due to communication time outweigh-

41

ing computation time. However, since increasing the number of MPI processes improves

convergence, wall-clock times for 2,048 and 4,096 MPI processes are lower than for 1,024

processes. This result is similar to that of Figure 2.7. In particular, the communication cost

eventually outweighs the computation cost as the number of processes increases, resulting

in the wall-clock time increasing if we fix the number of iterations. However, if we wish

to reduce the residual norm by a fixed amount, the increase in convergence rate results in a

lower total wall-clock time. We suspect that we would see the same effect in the cases of

parabolic fem if more processes were used. In general, we can see that POS asynchronous

Jacobi is faster than synchronous Jacobi.

Dubcova2

0 20 40 60 80 100

Relaxations/n

10
-1

10
0

R
e
l.
 R

e
s
.
1
-N

o
rm

Sync

Async, 1 Node

Async, 128 Node

Figure 2.12: Relative residual 1-norm as a function of relaxations/n for synchronous Jacobi
using two-sided communication and for POS asynchronous Jacobi. The Dubcova2 matrix
is used as the test problem. For POS asynchronous Jacobi, results for one to 128 nodes
are shown (32 to 4,096 MPI processes), where the green to blue color gradient of the lines
represents an increasing number of nodes. As in Figure 2.8, increasing the number of
processes improves the convergence rate of asynchronous Jacobi.

Improving the convergence with added concurrency is more dramatic in Figure 2.12,

where the relative residual 1-norm as a function of number of relaxations is shown for Dub-

cova2. This behavior is similar to the behavior shown in Figure 2.8, where increasing the

number of threads resulted OpenMP asynchronous Jacobi converging when synchronous

42

Jacobi did not.

Lastly, while we do not show results from weak scaling experiments, we would like

to comment on the weak scaling case. Since the problem size increases as the number

of processes increases, the convergence rate of Jacobi degrades. Therefore, the wall-clock

time will increase as the number of processes increases. In the case of asynchronous Jacobi,

since we have seen that increasing concurrency results in a higher convergence rate, the

degradation in convergence rate will be smaller.

2.7 Conclusion

The transient convergence behavior of asynchronous iterative methods has not been well-

understood. In this chapter, we study the transient behavior by analyzing the simplified

asynchronous Jacobi method, where simplified refers to assuming no communication de-

lays. For simplified asynchronous Jacobi, we are able to write an asynchronous iteration

using propagation matrices, which are similar in concept to iteration matrices. By an-

alyzing these propagation matrices, we showed that when the system matrix is weakly

diagonally dominant, simplified asynchronous Jacobi can continue to reduce the residual

even when some processes are slower than others (delayed in their computation). We also

showed this result for asynchronous Jacobi implemented in OpenMP.

When the system matrix is symmetric positive definite, we showed the following prop-

erties: (a) simplified asynchronous Jacobi can converge when synchronous Jacobi does not,

and (b) simplified asynchronous Jacobi will always converge if synchronous Jacobi con-

verges. We observed property (a) in our shared and distributed memory experiments as

well. This contrasts with the classical convergence theory for asynchronous iterative meth-

ods, which gives an overly negative picture. The classical theory predicts that in the worst

case, asynchronous iterative methods diverge even if their synchronous counterparts con-

verge. We note that although our explanations in this chapter used a simplified model for

asynchronous iterations assuming no communication delays, we have also observed prop-

43

erty (a) when experimenting with nonsymmetric matrices and the general model (Equa-

tion 2.5) of asynchronous iterative methods.

44

CHAPTER 3

SOUTHWELL METHODS

For distributed computing, one of the most commonly used multigrid smoothers is Block

Jacobi (as well as standard Jacobi), where the blocks come from an appropriate partitioning

of the problem. This method is highly parallel, but has two main disadvantages: it does

not converge for all symmetric positive definite matrices, and convergence degrades when

parallelism is increased by using more blocks and thus smaller blocks. Additionally, all

rows must be updated at every iteration, which can result in high communication costs

for certain problems. On the other hand, Gauss-Seidel converges more rapidly than Block

Jacobi and converges for all symmetric positive definite matrices. The disadvantage of

Gauss-Seidel is that it is inherently a sequential method. Gauss-Seidel can be parallelized

by using block multicoloring [47, 48], but a large number of colors may be needed for

irregular problems.

In this chapter, our starting point is a related but little-known algorithm called the South-

well method [49, 50]. While Gauss-Seidel can be interpreted as relaxing a set of equations

in a specific order, Southwell can be interpreted as relaxing equations one at a time in a

dynamic and greedy fashion depending on which equation has the largest residual. In this

way, Southwell can converge faster than Gauss-Seidel. However, Southwell is sequential

by definition, since the choice made for which equation to relax depends on the previous

relaxation. We call this method the Sequential Southwell method.

We first introduce the Parallel Southwell method, which can naturally be executed asyn-

chronously. At each parallel step, Parallel Southwell simultaneously relaxes an “indepedent

set” of equations, corresponding to residuals that are larger in magnitude than those of its

neighboring equations (a neighboring equation will be defined precisely in this chapter). It

has similarities to multicolor Gauss-Seidel, where each parallel step relaxes a set of equa-

45

tions of the same “color” which also constitute an independent set. The key advantage of

Parallel Southwell appears to be utilizing residual information, focusing on computation

where needed, on some equations and not others (equations can be relaxed multiple times

before others are relaxed even once). The independent sets used by Parallel Southwell are

not maximal, nor are they desired to be maximal. Thus the total work performed by each

compute thread may be reduced, as some of the equations assigned to that thread may not

need to be relaxed in a given parallel step. Associated with each relaxation is the update

of residual information, which implies data movement. Therefore, Southwell not only re-

duces computation, but communication to shared memory regions, and concomitant energy

costs [51].

In the distributed memory setting, Parallel Southwell can deadlock unless additional

messages are sent to communication neighbors. We present the Distributed Southwell

method in this chapter, which addresses this deadlock issue. In Distributed Southwell, each

process stores the estimates to its own residual norm that are held by its neighbors. These

estimates are used to avoid deadlock. Additionally, each process locally computes better

estimates of residual norms that belong to its neighbors without any communication. Im-

portantly, Distributed Southwell also uses new techniques to reduce communication com-

pared to Parallel Southwell in distributed memory. However, Distributed Southwell still

requires communication in order to avoid deadlock.

The last method introduced in this chapter is the Stochastic Parallel Southwell method,

where the residual estimates stored by some process i are used to determine the probability

that i relaxes its rows. This scheme requires no additional communication in order to avoid

deadlock since even with a small probability, a process will eventually relax its rows and

therefore communicate with other processes.

46

3.1 Background

3.1.1 The Sequential Southwell Method

We first introduce some notation necessary for explaining the Sequential Southwell method

and its parallel variants. For row i, row indices ηj ≠ i are neighbors of i if aηji ≠ 0. We

define the neighborhood of row i as the set Ni = {η1, η2, . . . , ηqi} of cardinality qi, where

each index in the set is a neighbor, i.e., the neighborhood of row i is the set of rows coupled

with row i. We also define Γi = {∣rη1 ∣, ∣rη2 ∣, . . . , ∣rηqi ∣} where rηj is the residual of equation

ηj .

Instead of relaxing rows in some prescribed order as in the Gauss-Seidel method, each

step of Sequential Southwell relaxes the row i with the largest component of the residual

vector. Then the residual vector is updated, but notice that only components corresponding

to neighbors of row i need to be updated. Formally,

x
(t+1)
i =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x
(t)
i +

r
(t)
i

aii
, if ∣ri∣ is the maximum for all i,

x
(t)
i , otherwise,

(3.1)

r
(t+1)
ηj = r(t)ηj − r

(t)
i

aηji

aii
, for all ηj ∈ Ni, j = 1, . . . , qi. (3.2)

We also have that the updated residual r(t+1)
i = 0 for the row i that was chosen to be

relaxed. Note that we are technically using the Gauss-Southwell method, which is more

natural to analyze, and which was actually first proposed by Gauss. In this method, we

relax the row i with the largest ∣ri/aii∣. The method is identical to what we are calling the

Sequential Southwell method when we scale the systems, as we do in this chapter, such

that the matrices have unit diagonals.

Sequential Southwell can converge faster than Gauss-Seidel in terms of the number

of relaxations. However, the method never caught on for automatic computers due to the

relatively high cost of determining the row with the largest residual, compared to simply

47

cycling through all equations as in the Gauss-Seidel method. Nevertheless, it has recently

found application as an adaptive multigrid smoother [52, 53], as a greedy multiplicative

Schwarz method (where the subdomain with the largest residual norm is chosen to be

solved next) [25], as a way of accelerating coordinate descent optimization methods for

big data problems [54], and as a scheme for choosing basis vectors when finding sparse

solutions to underdetermined inverse problems, e.g., [55, 56].

Our motivation to study and develop Southwell-like methods is due to today’s high cost

of interprocessor communication compared to computation. Assume for the moment that

each parallel process is responsible for a single row of the matrix equation Ax = b. When a

row is relaxed, that process must send data to the processes corresponding to neighboring

rows in order for these processes to update their residuals (see formula (3.2)). Therefore,

each relaxation is associated with communication. If Southwell-like methods reduce the

number of relaxations required to solve a problem compared to that of stationary iterative

methods, then they also can reduce the amount of communication.

3.2 Related Work

Several variants of Southwell’s original method have been reported in the literature that are

designed to reduce the cost of choosing the next row to relax and/or allow more than one

equation to be relaxed at the same time. In general, these methods require parameters for

calculating thresholds, but it is not clear how to tune such parameters in the case of sparse

linear systems.

In the sequential adaptive relaxation method [52, 53], a small active set of rows is

initially chosen. A row from this active set is chosen based on its residual and a preliminary

relaxation is performed. If the updated value is not a significant change from the previous

value, then the update is discarded and the row is removed from the active set. Otherwise,

the updated value is kept, and the neighbors of the row are added to the active set. The

number of rows to consider in each step is thus kept small in this strategy.

48

Alternatively, in the simultaneous adaptive relaxation method [53], a threshold θ is cho-

sen. Rows with residual components larger than θ in magnitude are relaxed simultaneously.

We note that such methods, like Jacobi, are not guaranteed to converge for all symmetric

positive definite matrices, whereas such convergence is guaranteed for Multicolor Gauss-

Seidel and Parallel Southwell, where an independent set of equations is relaxed simulta-

neously. Stagewise orthogonal matching pursuit methods also are accelerated by using the

idea of a threshold to select multiple basis vectors simultaneously [55, 56].

In the context of large-scale optimization, greedy coordinate descent has been paral-

lelized by partitioning the problem into subdomains. Each subdomain is solved using the

greedy method corresponding to Sequential Southwell [57].

To reduce the number of messages sent and to improve the efficiency of an asyn-

chronous iterative method, an asynchronous variable threshold method has been designed

[36]. Here, thresholds are applied to the change in the solution after a block of equations

corresponding to a subdomain or process has been relaxed (like in the sequential adaptive

relaxation method mentioned above). If the change is too small, the update is not per-

formed, and thus no messages need to be sent in this case. This method is not related to

Distributed Southwell, but presents a possibility for further reducing communication cost.

Southwell-based techniques have been used by Rüde [52, 53] as adaptive smoothers

for problems with irregular geometries or jumps in coefficients where there may be locally

large residuals in the multigrid method. Sequential adaptive relaxation and simultaneous

adaptive relaxation, mentioned above, were applied to augment a standard smoothing step.

Some parallelizable variants of the sequential Southwell can be found in the context

of signal processing, specifically finding sparse solutions to underdetermined inverse prob-

lems. These methods are known as greedy pursuit methods[58, 59]. In [60], rows are

grouped based on absolute value residual components, and the rows that reside in the bin

with the largest collective magnitude is selected.

Randomized Kaczmarz and Gauss-Seidel [7] methods have similarities to our Stochas-

49

tic Parallel Southwell method, described in Section 3.5. In these methods, rows are relaxed

based on probabilities that are different for each row. These probabilities are based on

row or column norms, which is different than our method where probabilities are based on

residual norms.

3.3 The Parallel Southwell Method

3.3.1 Mathematical Formulation

Before we introduce Parallel Southwell [61], we introduce some useful notation. For row i,

row indices ηj ≠ i are neighbors of i if aηji ≠ 0. We define the neighborhood of row i as the

set Ni = {η1, η2, . . . , ηqi} of cardinality qi, where each index in the set satisfies the neighbor

requirement. We also define Γi = {∣r1∣, ∣r2∣, . . . , ∣rqi ∣} as the set of corresponding absolute

value residual components. An example of a neighborhood is shown in Figure 3.1, where

the green points are neighbors of one of the red mesh points.

In Parallel Southwell, instead of computing a global maximum and relaxing a single

row, at each parallel step, a row only relaxes if it calculates itself as having the maximum

absolute value residual component in its neighborhood, i.e., row i relaxes if ∣ri∣ is maximum

in {Γ, ∣ri∣}. This addresses the parallel shortcomings of the sequential Southwell method by

(1) determining locally maximum absolute value residual components, and, as a result, (2)

relaxing multiple rows per parallel step. More importantly, Parallel Southwell only requires

rows to use neighbor information, which makes it a good candidate for an asynchronous

implementation. This is because communication is limited to between neighbors, which

means no global synchronization steps are required.

50

In element-wise form, Parallel Southwell is expressed as

x
(t+1)
i =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x
(t)
i +

r
(t)
i

aii
, if ∣ri∣ is maximum in {Γ, ∣ri∣}

x
(t)
i , otherwise,

(3.3)

r
(t+1)
ηj = r(t)ηj − r

(t)
i

aji
aii
, for all ηj ∈ Ni, j = 1, . . . , qi. (3.4)

Expressed in vector form,

x(t+1) = (I − D̃A)x(t) + D̃b, (3.5)

where D̃ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1

aii
, if ∣ri∣ is maximum in {Γ, ∣ri∣},

0, otherwise.

(3.6)

An important aspect of this method is that rows only determine if they, themselves,

should relax, and do not instruct other rows to relax. Therefore, at each parallel step, an

independent set of rows relax. Just like sequential Southwell, Parallel Southwell is a special

case of what we will define as an independent set iterative method, which means that at any

given parallel step, only a subset of rows are relaxed that form an independent set of points

in the underlying geometry. Multicolor Gauss-Seidel is also an example of such a method.

An example of selecting an independent set of rows to relax is shown in Figure 3.1.

Choosing an independent set of rows to relax on a given parallel step results in the

following theorem.

Theorem 3. If the iteration matrix G for a given parallel step is from an independent set

iterative method, then G is a projector. Therefore, the spectral radius ρ(G) = 1.

Proof. If we choose to not relax a particular row i, then the i-th diagonal of D̃ is zero, and

the i-th diagonal of I − D̃A is one, i.e., row i of I − D̃A equals eTi . Therefore, G has zeros

and ones on the diagonal. More importantly, because only an independent set of rows are

to be relaxed, if row i relaxes, then all rows Ni of G are equal to eTηj for j = 1, . . . , qi. We

51

Figure 3.1: An example showing rows selected to relax during a parallel step of Parallel
Southwell. The red mesh points denote the rows selected to be relaxed and represent an
independent set. The green points denote the neighborhood of one of the red points.

show we can always reorder G to be either upper or lower triangular, which will maintain

zeros and ones on the diagonal, resulting in zeros and ones as eigenvalues.

Since it does not matter if we reorder to upper or lower triangular, let us consider

reorderingG to lower triangular. To do this reordering, consider permuting row and column

i of G. First, we find the right-most non-zero in row i at column j. We then swap row and

column i and j, giving us the desired result. Because row j will always be equal to eTj ,

when permuting row and column i, the only other rows and columns that will be affected

will be unit basis vectors, i.e., no other rows and columns that have non-zeros on the off-

diagonal will be affected. With this process, we can always reorder G to upper or lower

triangular, revealing eigenvalues of zero and one.

The unit eigenvalues are benign in the sense that they do not alter the error in the

components that are not relaxed. What this theorem shows is that there is a possibility that

the Parallel Southwell method may converge even if the corresponding Jacobi method has

spectral radius ρ(G) > 1 and diverges. We note that the multicolor Gauss-Seidel method

also has ρ(G) = 1 for the iteration matrix G for each parallel step. However, since the

52

sequence of iteration matrices corresponding to a sweep of multicolor Gauss-Seidel is fixed,

convergence in this case is more readily proved, in contrast to the Parallel Southwell case.

3.3.2 Implementation

It is natural to express Parallel Southwell as an asynchronous algorithm that can be imple-

mented asynchronously on a shared memory machine with ` threads, shown in Algorithm 1,

with variables defined in the following way:

• Each thread with ID τ (ranging from 0 to ` − 1) is responsible for mτ rows of the n

total rows, where the partitioning {m0,m1, . . . ,m`−1} is determined beforehand (this

is discussed in later in section).

• The values {δ0, δ1, . . . , δ`} are the `+ 1 row index offsets, i.e., the prefix sum of

{m0,m1, . . . ,m`−1}.

• Each thread stores γτ , corresponding to the δτ ∶ (δτ+1 − 1) (Matlab array notation)

portion of the global residual array r.

• the value κ is the global index of a row, i.e., for i running from 0 to mτ−1 on thread

τ , κ = δτ + i.

The Jacobi method can be expressed similarly, as shown in Algorithm 2.

To decrease the amount of accesses to shared memory, the only global array used was a

single global residual array. Although it is not necessary for Jacobi and multicolor Gauss-

Seidel to compute the residual, the residual must still be computed to check the convergence

criteria. For Jacobi and Parallel Southwell, each thread stores a local copy of its portion

of the matrix, and its portion of the residual and solution vectors. We define a subdomain

as the set of unknowns that a thread is responsible for updating, and we define boundary

points as points in a threads subdomain that have neighbor’s on other threads. Given these

definitions, a heuristic is that writing to the global array need only occur at the boundary

53

Algorithm 1: Parallel Southwell Method
1 Set r = b −A ⋅ x
2 while not converged on thread τ do
3 for i = 0,1, . . . ,mτ do
4 if ∣rκ∣ is maximum in {Γ, ∣rκ∣} then
5 xi = xi + γτ,i/aii
6 for j = κ, η1, η2, . . . , ηqi do
7 rj = rj − ri ⋅ aji/aii
8 end
9 end

10 end
11 Set γτ = rδτ ∶(δτ+1−1)
12 end

Algorithm 2: Jacobi Method
1 Set r = b −A ⋅ x
2 while not converged on thread τ do
3 for i = 0,1, . . . ,mτ do
4 xi = xi + γτ,i/aii
5 for j = κ, η1, η2, . . . , ηqi do
6 rj = rj − ri ⋅ aji/aii
7 end
8 end
9 Set γτ = rδτ ∶(δτ+1−1)

10 end

54

points on a particular thread, so if a non-boundary point is encountered, a thread writes to

its local residual array. When writing to the global array, atomic operations must be used to

address race conditions. Race conditions can occur at boundary points, or when multiple

threads contain points that share a neighbor.

We note that multiple boundary points on a thread may share neighbors on an adjacent

thread. This means that some rows in the global array may be visited more than once during

a parallel step, which is unnecessary. Eliminating this redundancy both reduces the amount

of writes to the global array, and allows for vectorization, which is important when running

code on the Intel Xeon Phi. To address this, each thread stores a local array that accumulates

updates as rows are relaxed. The size of this array is the number of distinct boundary points.

We also store a map that maps the global array elements to the this local array. We will

refer to this as the residual map. The vectorization works as follows. When a row relaxes,

the neighboring residuals are updated as shown in Algorithm 1, line 7. This involves a

column of A multiplied with two scalars, and requires atomic operations if the global array

is updated right away. Instead of eagerly updating the global array, we can accumulate

updates in the local array, which can be vectorized using a gather operation. Doing this for

each row accumulates all updates into the local array, and when the global array needs to

be updated, the global array gathers values in the local array using the residual map. This

second gather operation is not vectorizeable because it requires atomic operations, but the

number of write operations to the global array is reduced.

Having control over this level of the implementation means that OpenMP parallel for

loops cannot be used, because each thread needs to know beforehand which rows it is re-

sponsible for in order to construct the maps. Therefore, we used METIS[46] to reorder our

problems into approximately balanced partitions. For multicolor Gauss-Seidel, the colors

and partitions were determined by visiting the unknowns in breadth-first order. When im-

plementing multicolor Gauss-Seidel, we used a simple OpenMP parallel for with guided

scheduling, which we found to be the fastest, since it is difficult to construct balanced

55

multicolor sets.

3.3.3 Experimental Results
th

er
m

al
2

ec
ol

og
y2

G
3

ci
rc

ui
t

ap
ac

he
2

Figure 3.2: Comparison of Parallel Southwell (PS) with Jacobi (J), multicolor Gauss-Seidel
(MGS), and Gauss-Seidel (GS). The rows denote four different test problems. The first
column shows the residual norm as a function of the number of relaxations. The second
column shows the residual norm as a function of the parallel step number. The last column
shows the number of rows relaxed in parallel by Parallel Southwell for a given step number.

We first compare the convergence of Parallel Southwell (PS) to Jacobi (J), multicolor

Gauss-Seidel (MCGS), and Gauss-Seidel (GS) implemented sequentially. The problems

were taken from the University of Florida sparse matrix collection (Table 3.1). For these

56

af
sh

el
l3

St
oc

F-
14

65
bc

ss
tk

36

Figure 3.3: Comparison of Parallel Southwell (PS), multicolor Gauss-Seidel (MGS), and
Gauss-Seidel (GS) for some matrices in which Jacobi does not converge. The rows denote
three different test problems. The first column shows the residual norm as a function of
the number of relaxations. The second column shows the residual norm as a function of
the parallel step number. The last column shows the number of rows relaxed in parallel by
Parallel Southwell for a given step number.

preliminary tests, we used about half of the problems from Table 3.1. For all the problems,

we used a uniformly random initial guess, scaled such that the residual was of order unity,

and a right-hand side of zeros. Because we are interested in early convergence behavior,

i.e., the potential for Parallel Southwell as an efficient multigrid smoother and precondi-

tioner, we ran each method for just 40 parallel steps.

The results are shown in Figures 3.2 and 3.3. Figure 3.3 shows results for some matrices

in which Jacobi does not converge. For both figures, the first column shows the residual

norm as a function of the number of relaxations, the second column shows the residual

norm as a function of the number of parallel steps, and the third column shows the number

57

of rows relaxed by Parallel Southwell at each parallel step.

A general result when looking at the number of relaxations is that Parallel Southwell

usually outperforms all other methods for short term convergence. In the case of red-black

Gauss-Seidel, i.e., ecology2, Parallel Southwell still outperforms red-black Gauss-Seidel

in the short term. If we consider multigrid smoothing, this shows that Parallel Southwell

can be a better smoother than red-black Gauss-Seidel. However, in G3 circuit, we can see

that multicolor Gauss-Seidel can also outperform Parallel Southwell in the short term.

A more interesting result can be seen when looking at the number of parallel steps Par-

allel Southwell takes to reach convergence. In ecology2 we can see that, although Jacobi

initially performs better than Parallel Southwell in the first parallel step, Parallel Southwell

ends up converging much faster than Jacobi even when doing less work per parallel step

(Parallel Southwell relaxes only about .35 of the total rows per parallel step, shown in the

last column of Figure 3.2). Parallel Southwell can also outperform multicolor Gauss-Seidel

For example, in G3 circuit, we can see that although in the first few steps Jacobi and multi-

color Gauss-Seidel outperform Parallel Southwell, Parallel Southwell eventually converges

quicker. In this case, on average, Parallel Southwell does more work per parallel step than

multicolor Gauss-Seidel. Notice the divot pattern in the parallel step behavior of multicolor

Gauss-Seidel. This is due to the difficulty in load balancing the coloring, i.e., some parallel

steps relax fewer rows than others. For af shell3, we can see that Parallel Southwell out-

performs multicolor Gauss-Seidel, but in this case, the two methods do approximately the

same work per parallel step. This demonstrates the effectiveness of greedily choosing rows

to relax, i.e., choosing rows with high absolute value residual norms.

For the remaining test problems, Parallel Southwell performs at its best. Specifically,

Parallel Southwell can do less work than multicolor Gauss-Seidel and still converge quicker

per parallel step. For example, in StocF-1465, Parallel Southwell, on average, relaxes about

.04 of the total rows, where as multicolor Gauss-Seidel relaxes about .09 of its rows. For

apache2, we can see that multicolor Gauss-Seidel outperforms Parallel Southwell initially,

58

but eventually Parallel Southwell overtakes multicolor Gauss-Seidel. Additionally, when

Parallel Southwell overtakes multicolor Gauss-Seidel, the convergence rate is faster. This

is surpising because Parallel Southwell only relaxes about .15 the number of equations in

parallel and multicolor Gauss-Seidel relaxes approximately .2 of the total equations.

All these properties can be seen for bcsstk36. We see that Parallel Southwell converges

in fewer relaxations. We see that Parallel Southwell converges faster per parallel step, and

with a higher convergence rate. Even with this parallel step behavior, we see that it does

less work per parallel step, i.e., it relaxes about .013 rows on average, where as multicolor

Gauss-Seidel relaxes about .24.

Table 3.1: Test problems for parallel experiments in shared memory with OpenMP. FD
and FE are 5-point centered difference and unstructured finite element discretizations of
the Laplace equation, respectively, and the remaining matrices are from the University of
Florida sparse matrix collection.

matrix name num nonzeros num equations num colors

bcsstk36 1143140 23052 41
FE 1407811 203841 5
2cubes sphere 1647264 101492 12
cfd2 3085406 123440 15
parabolic fem 3674625 525825 4
offshore 4242673 259789 13
apache2 4817870 715176 5
ecology2 4995991 999999 2
FD 4996000 1000000 2
G3 circuit 7660826 1585478 5
thermal2 8579355 1227087 6
af shell3 17562051 504855 25
StocF-1465 20976285 1436033 11

We now show timings on two different shared memory platforms. We used two different

processing platforms:

1. 2x Intel Xeon E5-2650 CPUs v3 with a 2.3GHz clock speed and 10 cores.

2. Intel Xeon Phi co-processor with a 1.05GHz clock speed and 60 physical cores and

4 threads per core.

59

For these experiments, we ran on all the matrices shown in Table 3.1, making sure to reduce

the residual norm below 10−1. The convergence criteria for the synchronous methods is to

stop when the global residual norm falls below some threshold. For the asynchronous

methods, a convergence criteria similar to that in [62] is used, where each thread only

checks its local part of the residual. Once the local criteria is met, a shared counter is

incremented atomically. Once the shared counter is equal to the number of threads, the

iteration terminates. Unlike in [62], we do not continue if, upon termination, the master

thread calculates a residual norm that is above the tolerance. We found that the residual

norm was usually very close with the tolerance. We chose a uniformly random initial guess

and a zero right-hand side, with the initial guess scaled such that the residual was of order

unity. Because iterative solves generally do not stop with the exact same residual norm,

and, in the case of the asynchronous methods, a number of parallel steps cannot be reached

exactly, we used interpolation on the residual norm to extract the number of parallel steps

and relaxations required for each method to reach convergence.

The results are shown in Tables 3.2 and 3.3 for the Intel Xeon CPUs and Intel Xeon

Phi, respectively. We used the maximum number of threads that gave us the best times,

which was 20 for the Intel Xeon CPUs, and 180 for the Intel Xeon Phi. For about half

the matrices, Jacobi did not converge, which is why some timings are missing. We can

see that multicolor Gauss-Seidel is much faster than Parallel Southwell, even when Parallel

Southwell converges quicker. This is due to Parallel Southwell having to compute a max at

each parallel step. However, for thermal2, i.e., the one case in which Jacobi can compete

with multicolor Gauss-Seidel, both Jacobi and asynchronous Jacobi converge with a shorter

wall clock time on the Intel Xeon Phi, despite doing more relaxations. This demonstrates

the two issues discussed in the implementation (lack of vectorization and abundance of

write operations to shared memory), issues of which are amplified on the the Intel Xeon

Phi. When looking at the Intel Xeon CPUs results, we can see that this is less of an issue,

where asynchronous Jacobi only outperforms multicolor Gauss-Seidel.

60

When comparing synchronous and asynchronous Parallel Southwell, we can see that

the asynchronous methods often take additional relaxations to converge. This could be

happening for a couple reasons. First, as discussed in the section on asynchronous iterative

methods, asynchronous methods may continue even when information is not up to date.

This means that some rows may perform additional relaxations with stale information,

i.e., information that was used in an earlier relaxation. Second, the convergence criteria

requires that all threads reach the criteria in order for all threads to terminate. Therefore,

some threads may do additional relaxations while waiting for other threads to catch up.

However, given these reasons, even when doing some more relaxations to converge, the

asynchronous methods often take less wall clock time.

In figure 3.4, we look at how a slight load imbalance can effect the wall clock time

when using a high number of threads. In this figure, we did a weak scaling experiment on

both the Intel Xeon CPUs and Intel Xeon Phi, ranging from 1 to 20 and 1 to 180 threads,

respectively. As in the previous experiments, we used interpolation to extract an exact

residual norm value of 10−1. In the first column, we look at the difference in wall clock

time when we have the desired load balancing resulting from METIS. For both platforms, as

we increase the number of threads, asynchronous requires less wall clock time to converge.

Additionally, as the number of cores increases, the difference is more noticeable. This can

be scene when comparing the timings at the maximum thread count for each platform, and

noticing that the difference in timings between asynchronous and synchronous is larger for

180 threads on the Intel Xeon Phi than at 20 threads on the Intel Xeon CPUs.

3.4 The Distributed Southwell Method

3.4.1 Block Methods on Distributed Memory Computers

For the Jacobi and Parallel Southwell methods on a distributed memory machine, it is

natural to partition a problem into non-overlapping subdomains, with one subdomain for

each process. To approximately solve the local subdomain problems, Gauss-Seidel may

61

Table 3.2: Results for Intel Xeon E5-2650 CPUs using all 20 cores. The subcolumns de-
note the methods, specifically, asynchronous and synchronous Parallel Southwell (APS and
SPS, respectively), multicolor Gauss-Seidel (MCGS), and asynchronous and synchronous
Jacobi (AJ and SJ, respectively).

Time Relaxations/(num equations) Parallel Step

matrix APS SPS MCGS AJ SJ APS SPS MCGS AJ SJ SPS MCGS SJ

FD 0.053 0.062 0.010 0.536 0.979 2.295 2.240 2.767 284.951 318.694 10 6 319
parabolic fem 0.106 0.149 0.017 2.779 8.184 5.073 4.956 5.560 2762.495 5175.324 37 22 5175
apache2 0.144 0.186 0.047 4.948 10.893 5.276 5.203 11.957 3316.831 4404.425 34 60 4404
ecology2 0.052 0.062 0.010 0.593 1.044 2.237 2.202 2.740 307.517 342.704 10 5 343
G3 circuit 0.086 0.092 0.013 0.991 1.276 2.025 1.851 1.991 279.696 269.793 9 10 270
thermal2 0.112 0.139 0.023 0.020 0.026 1.773 1.743 2.341 6.087 5.702 13 14 6
bcsstk36 0.048 0.068 0.019 1.375 1.355 5.376 114 214
FE 0.036 0.043 0.009 6.416 5.849 6.423 40 32
2cubes sphere 0.026 0.034 0.006 0.414 0.411 1.914 34 20
cfd2 0.081 0.118 0.026 2.051 1.995 4.878 61 68
offshore 0.123 0.162 0.025 0.398 0.375 3.646 50 44
af shell3 0.614 0.886 0.063 1.887 1.839 3.117 77 77
StocF-1465 0.180 0.230 0.041 0.365 0.343 1.876 13 17

Table 3.3: Results for Intel Xeon Phi using 180 threads. The subcolumns denote the meth-
ods, specifically, asynchronous and synchronous Parallel Southwell (APS and SPS, respec-
tively), multicolor Gauss-Seidel (MCGS), and asynchronous and synchronous Jacobi (AJ
and SJ, respectively).

Time Relaxations/(num equations) Parallel Step

matrix APS SPS MCGS AJ SJ APS SPS MCGS AJ SJ SPS MCGS SJ

FD 0.129 0.072 0.023 0.793 1.663 6.107 2.243 2.766 207.117 335.327 10 6 335
parabolic fem 0.049 0.144 0.018 0.264 0.619 1.612 1.586 1.991 113.566 208.427 12 8 208
apache2 0.177 0.225 0.100 5.179 29.464 5.188 5.181 11.917 1696.096 7447.935 34 60 7448
ecology2 0.088 0.071 0.023 0.824 1.824 3.786 2.205 2.739 215.168 364.546 10 5 365
G3 circuit 0.101 0.119 0.032 1.368 2.020 2.274 2.029 1.994 223.710 257.619 10 10 258
thermal2 0.158 0.202 0.060 0.033 0.042 2.037 2.020 2.680 6.378 6.258 15 16 6
bcsstk36 0.107 0.132 0.047 1.367 1.324 5.397 111 214
FE 0.061 0.074 0.034 5.952 5.858 6.454 40 32
2cubes sphere 0.062 0.080 0.016 0.395 0.390 1.917 39 20
cfd2 0.181 0.224 0.053 2.031 2.007 4.984 62 69
offshore 0.236 0.274 0.061 0.387 0.377 3.667 51 44
af shell3 1.247 1.453 0.124 1.837 1.833 3.121 76 77
StocF-1465 0.280 0.357 0.067 0.367 0.350 1.645 13 15

be used. In the case of Jacobi, this is often referred to as Hybrid Gauss-Seidel[63, 64], or

Processor Block Gauss-Seidel[47, 48].

We use the following notation:

• Each parallel process with rank p (ranging from 0 toP−1, whereP is the total number

of processes) is responsible for mp rows of the n total rows, where the partitioning is

determined, e.g., with METIS [46].

• The values {δ0, δ1, . . . , δP} are the P +1 row index offsets, i.e., the prefix sum of

62

balanced unbalanced

In
te

lX
eo

n
C

PU
s

In
te

lX
eo

n
Ph

i

Figure 3.4: Comparison between synchronous and asynchronous Parallel Southwell as the
number of threads increases. The test problem is bcsstk36, and both the Intel Xeon CPUs
and Intel Xeon Phi are used. The first column denotes a balanced partitioning produced by
METIS, while the second denotes a slightly unbalanced partitioning.

{0,m0,m1, . . . ,mP−1}.

• Each process stores rp and xp corresponding to the δ⃗p = δp ∶ (δp+1 − 1) (Matlab array

notation) portion of the global residual and solution arrays, respectively.

• We use the one-sided memory model, where p has a region of memory that remote

processes can directly write to without the involvement of p. We define this region

of memory as the memory windowWp of p.

In this notation, the Block Jacobi algorithm is shown in Algorithm 3.

For the block form of Parallel Southwell, instead of comparing the magnitude of in-

dividual residual vector components, we now compare the residual norm for the rows of

process p to the residual norms for the rows that belong to the neighbors of p, i.e., we

63

Algorithm 3: Block Jacobi
1 Set r = b −Ax
2 for each process with rank p do
3 Set rp = r(δ⃗p)
4 Set xp = x(δ⃗p)
5 end
6 for k = 1, . . . , kmax on process with rank p do
7 Update xp and rp by relaxing the equations belonging to p
8 Write updates to {W1, . . . ,Wqp}
9 Wait for neighbors to finish writing toWp

10 Read fromWp to update rp
11 end

redefine Γp = {∥r1∥2, ∥r2∥2, . . . , ∥rqp∥2} where we assume the neighboring processes have

indices 1,2, . . . , qp. If process p satisfies the Parallel Southwell criterion, it relaxes the equa-

tions in its subdomain and sends updates to its neighbors. Upon receiving these updates,

the neighbors of p use this new information to update their boundary points. Additionally,

at each parallel step, an extra communication step is needed in order for p to know the

residual norms that belong to its neighbors. We call this an explicit residual update, where

a process sends its updated residual norm to its neighbors.

A geometric interpretation of the block version of Parallel Southwell is shown in Fig-

ure 3.5, where the top mesh shows the partitioning, and the bottom mesh shows the subdo-

mains that are selected to be updated via the Parallel Southwell criterion.

Figure 3.5: Parallel Southwell with multiple equations per process. Top: the subdomains
assigned to each process. Bottom: four subdomains selected via the Parallel Southwell
criterion.

64

An illustration of the key phases of a parallel step of Parallel Southwell is shown in Fig-

ure 3.6(a). The illustration shows four processes, where the edges connecting them indicate

a neighbor relationship. In phase 1 of the figure, p3 is the only process that determines that

it must update. In phase 2, p3 updates, and writes to the memory of p2, which counts as a

single message. This changes the residual of p2, and updates the copy of the residual of p3

held by p2. In phase 3, p2 detects that its own residual has changed, so it updates the copies

of its residual that p1 and p3 hold, which requires two additional messages to be sent.

Algorithm 4 shows the block form of Parallel Southwell implemented in distributed

memory. To be clear, this algorithm is mathematically identical to Parallel Southwell im-

plemented in shared memory. Note that this algorithm is different than that introduced

in [61], which can possibly deadlock. To observe how that algorithm might deadlock, con-

sider again Figure 3.6(a) but now assume that p2 does not communicate its updates, i.e., if

we remove the explicit residual norm update from the last phase of the diagram. Deadlock

will now occur. This can be seen at phase 2, where the true residual norm of each process

(ri in blue shown above each node) is less than its copies of the residual norm of its neigh-

bors (ri in black on the right and left of each node, above the connection edge), resulting in

all processes failing to satisfy the Parallel Southwell criterion.

There are a few communication-reducing optimizations shown in Algorithm 4. First,

if process p does not relax its rows, and none of its neighbors relax their rows, there is no

need for p to send its residual to its neighbors because its residual has not changed. This

is shown in the If statement on line 19. Second, if p does satisfy the Parallel Southwell

criterion, it can append its new residual norm to all outgoing messages, which eliminates

the need to communicate its new residual to its neighbors in a separate message. This is

shown in line 10.

65

𝑃0 𝑃1 𝑃2 𝑃3

𝑟0 = .1 𝑟1 = .2 𝑟2 = .3 𝑟3 = .4
𝑟1 = .2 𝑟0 = .1 𝑟2 = .3 𝑟1 = .2 𝑟3 = .4 𝑟2 = .3

𝑃0 𝑃1 𝑃2 𝑃3

𝑟0 = .1 𝑟1 = .2 𝑟2 = .1 𝑟3 = 0
𝑟1 = .2 𝑟0 = .1 𝑟2 = .3 𝑟1 = .2 𝑟3 = 0 𝑟2 = .3

𝑃0 𝑃1 𝑃2 𝑃3

𝑟0 = .1 𝑟1 = .2 𝑟2 = .1 𝑟3 = 0
𝑟1 = .2 𝑟0 = .1 𝑟2 = .1 𝑟1 = .2 𝑟3 = 0 𝑟2 = .1

relax and
communicate
updates

communicate
new
residuals

initial
residuals

p
h

a
se

 1
p

h
a

se
 2

p
h

a
se

 3

(a) Parallel Southwell parallel step

𝑃0 𝑃1 𝑃2 𝑃3

𝑟0 = .1 𝑟1 = .2 𝑟2 = .3 𝑟3 = .4
𝑟1 = .2 𝑟0 = .1 𝑟2 = .3 𝑟1 = .2 𝑟3 = .4 𝑟2 = .3

𝑃0 𝑃1 𝑃2 𝑃3

𝑟0 = .1 𝑟1 = .2 𝑟2 = .1 𝑟3 = 0
𝑟1 = .2 𝑟0 = .1 𝑟2 = .3 𝑟1 = .2 𝑟3 = 0 𝑟2 = .1

𝑃0 𝑃1 𝑃2 𝑃3

𝑟0 = .1 𝑟1 = .2 𝑟2 = .1 𝑟3 = 0
𝑟1 = .2 𝑟0 = .1 𝑟2 = .1 𝑟1 = .2 𝑟3 = 0 𝑟2 = .1

relax and
communicate
updates

explicit
residual
update to
avoid
deadlock

initial
residuals ǁ𝑟1 = .1 ǁ𝑟0 = .2 ǁ𝑟2 = .2 ǁ𝑟1 = .3 ǁ𝑟3 = .3 ǁ𝑟2 = .4

ǁ𝑟1 = .1 ǁ𝑟0 = .2 ǁ𝑟2 = .2 ǁ𝑟1 = .3 ǁ𝑟3 = .1 ǁ𝑟2 = 0

ǁ𝑟1 = .1 ǁ𝑟0 = .2 ǁ𝑟2 = .2 ǁ𝑟1 = .1 ǁ𝑟3 = .1 ǁ𝑟2 = 0

p
h

a
se

 1
p

h
a

se
 2

p
h

a
se

 3

(b) Distributed Southwell parallel step

Figure 3.6: Illustration of a parallel step of (a) Parallel Southwell and (b) Distributed South-
well. In the illustration, a line of four processes P0, . . . , P3, with an array communication
topology, start the parallel step with exact residuals r0, . . . , r3 (shown in blue above the cor-
responding P), and their estimates of the residual norms of their neighbors (shown in black
above the inter-process connections). Additionally, in (b), each Pi also stores the estimate
of the residual norm of Pi stored by the neighbors of Pi, denoted by r̃0, . . . , r̃3. Each line
of four processes, three lines in total, denotes a phase of the parallel step. Red residuals
denote an updated residual, and red arrow connections denote communication. Note that
the illustration is not based on any data taken from any real experiments.

3.4.2 The Distributed Southwell Method

The premise of the Distributed Southwell method is that the residuals for the equations

on neighboring processes do not need to be known exactly [65]. These residuals are only

needed for processes to determine if they should relax their own equations. That this step

66

Algorithm 4: Parallel Southwell (block version)
1 Set r = b −Ax
2 for each process with rank p do
3 Set rp = r(δ⃗p)
4 Set xp = x(δ⃗p)
5 Set Γp = {∥r1∥2, . . . , ∥rqp∥2}
6 end
7 for k = 1, . . . , kmax on process with rank p do
8 if ∥rp∥2 is maximum in {Γ, ∥rp∥2} then
9 Update xp and rp by relaxing the equations belonging to p

10 Write updates and ∥rp∥2 to {W1, . . . ,Wqp}
11 else
12 Wait for neighbors to finish writing toWp

13 for j = 1, . . . , qp do
14 if Neighbor qj has written new information toWp then
15 Read fromWp to update rp
16 Update ∥rqj∥2 in Γ

17 end
18 end
19 if ∥rp∥2 has changed then
20 Write ∥rp∥2 to {W1, . . . ,Wqp}
21 end
22 end
23 Wait for neighbors to finish writing toWp

24 for j = 1, . . . , qp do
25 if Neighbor qj has written new information toWp then
26 Update ∥rqj∥2 in Γ
27 end
28 end
29 end

is done precisely following the Parallel Southwell criterion is not essential.

This premise allows many possibilities for reducing communication. In particular, pro-

cesses do not need to carry out explicit residual updates every time their residual norm

changes. Instead, a process p can maintain estimates of the residuals for the equations on

neighboring processes. When a process p relaxes its own equations, it knows how these

relaxations affect the residual on its neighbor q, without any communication. Referring to

Equation 3.2, the update

−r(t)i
aηji

aii

67

to the neighbor residual r(t)ηj only depends on local information, in particular r(t)i , while

aηji and aii are matrix data that can be stored locally (i.e., the process responsible for row

i stores column i of A).

Consider now a neighbor s of q, so that the matrix dependencies are p ⇐⇒ q ⇐⇒ s.

If a neighbor s of process q relaxes its equations, then the effect on the residual of q will

not be known to process p. This is how the estimate that process p has of the residual norm

of process q loses accuracy. Again referring to Equation 3.2, the size of the discrepancy

is related to the size of the residual component, i.e., it decreases in size as the iterations

progress.

As explained in Section 3.4.1, there is a major drawback of using inaccurate residuals.

If the residual norm estimates on all processes is such that no process thinks it has the

largest residual norm, then deadlock occurs. This means that there is a risk of deadlock

if the residual norm estimates are larger than the actual residual norms. Fortunately, this

situation can be detected by a process q maintaining a copy of the estimate that p has of the

residual norm of q. This copy can be maintained, like above, without communication. Thus

q can detect if the estimates of its residual norm are larger than its actual residual norm. In

this case, q sends p an explicit message to update its estimate. Deadlock is thus avoided.

Figure 3.7 shows the convergence of Distributed Southwell compared with other meth-

ods. The matrix is from a finite element discretization of the Poisson equation on a square

domain. Irregularly structured linear triangular elements are used. The discrete right-hand

side has elements sampled from a uniform random distribution with mean zero and is scaled

such that its 2-norm is 1. The example problem has 3081 rows and the convergence for three

sweeps of each method is shown. The convergence curves for Sequential Southwell, Paral-

lel Southwell, and Multicolor Gauss-Seidel are shown. All methods in this figure use their

scalar forms (i.e., subdomain size of 1). We observe that the behavior of Distributed South-

well closely matches that of Parallel Southwell (which uses the exact Parallel Southwell

criterion for choosing which equations to relax) for low levels of accuracy (e.g., residual

68

Num. relaxations

0 3081 6162 9243

R
e
s
id

u
a
l
n
o
rm

0.2

0.4

0.6

0.8

1
SW

Par SW

MC GS

Dist SW

Figure 3.7: Convergence for a small finite element problem. Distributed Southwell is com-
pared to other methods (all in scalar form). The markers along the curves for the parallel
methods delineate the parallel steps.

norm 0.6), which is the “sweet spot” for using Southwell-like methods compared to using

Gauss-Seidel. We also observe that with inexact residual estimates, Distributed Southwell

relaxes more equations per parallel step, as shown by the markers along the curves in the

figure. This may account for the degraded convergence of Distributed Southwell compared

to Parallel Southwell as more parallel steps are taken.

The Distributed Southwell idea can be easily extended to use subdomains in a practical

distributed code. Here, process p stores a ghost layer of residuals corresponding to all off-

processor connections to the boundary points of p, where zqj denotes the residual ghost

layer for the points βqj of neighbor qj . When process p relaxes its equations, it also updates

all points in the ghost layer, and uses this to update all the residual norms in Γ. These

updates denote the contribution of p to the residual norm of its neighbors. This allows p to

store more accurate copies of the residual norms of its neighbors, in the case that p updates

often without receiving updates from neighbors. When p receives updates from neighbors,

the values in the ghost layer and Γ are corrected.

In addition to p storing Γ, p also stores Γ̃, which are the residual norms of p stored

69

by the neighbors of p. When neighbor q1 of p updates and writes to the memory of p, it

includes its new estimate of the residual of p in the message. In the memory of p, this is the

value ∥r̃q1∥2. This value is always exactly known by p, since only p and q1 alter the estimate

of the residual norm of p stored by q1. If p determines that ∥r̃q1∥2 > ∥rp∥2, then there is a

possibility of deadlock, and p communicates its residual norm and boundary points to q1,

which brings the estimate of the residual norm of p stored by q1 up to date.

The algorithm for Distributed Southwell (in block or subdomain form) is shown in

Algorithm 5. An illustration of the key phases of a parallel step of Distributed Southwell is

shown in Figure 3.6(b). As in (a), p3 updates, but also updates its estimate of the residual

norm of p2, obtaining the new residual norm of p2 exactly. If p1 were to also update the

residual norm of p2 in this phase, p3 would not have an exact estimate of the residual

norm of p2, but it would be a better estimate than if p3 did nothing at all. In phase 3, p2

detects possible deadlock on p1, and sends a single message that updates the estimate of

the residual norm of p2 stored by p1.

Our distributed implementations (for all algorithms including Distributed Southwell)

use the one-sided semantics provided in MPI-3, also known as remote memory access

(RMA)[44]. For one-sided, an origin process writes directly to the memory of a target

process without the target being involved in the transfer of data, avoiding the communi-

cation required by the receiving side. Another reason we use one-sided functions is that

in Parallel and Distributed Southwell, it is not always clear when, or if, a process should

expect a message from a neighbor. Each process initially makes an MPI group consisting

of its neighbors, and calls MPI_Win_allocate() to create a memory window, i.e., al-

locates a region of memory that is accessible by remote processes. During communication

phases, assuming all processes have information to send, processes enter access epochs by

calling MPI_Win_post() followed by MPI_Win_start(). Messages are then sent

using MPI_Put(), and the epochs are ended using MPI Win complete() followed by

MPI_Win_wait(). A process and all its neighbors must collectively call all commands

70

Algorithm 5: Distributed Southwell (block version)
1 Set r = b −Ax
2 for each process with rank p do
3 Set rp = r(δ⃗p)
4 Set xp = x(δ⃗p)
5 Set Γp = {∥r1∥2, . . . , ∥rqp∥2}
6 Set Γ̃p = {∥r̃1∥2, . . . , ∥r̃qp∥2}
7 for j = 1, . . . , qp do
8 Set zqj = r(βqj)
9 end

10 end
11 for k = 1, . . . , kmax on process with rank p do
12 if ∥rp∥2 is maximum in {Γp, ∥rp∥2} then
13 Update xp and rp by relaxing the equations belonging to p
14 for j = 1, . . . , qp do
15 Update zqj and compute ∥rqj∥2

16 Set ∥r̃qj∥2 = ∥rp∥2

17 Write updates, zp, ∥rp∥2, and ∥rqj∥2 toWqj

18 end
19 end
20 Wait for neighbors to finish writing toWp

21 for j = 1, . . . , qp do
22 if Neighbor qj has written new information toWp then
23 Update rp
24 Overwrite zqj
25 Overwrite ∥rqj∥2 in Γ and ∥r̃qj∥2 in Γ̃

26 end
27 if ∥rp∥2 < ∥r̃qj∥2 then
28 Set ∥r̃qj∥2 = ∥rp∥2

29 Write zqj , ∥rp∥2 and ∥rqj∥2 toWqj

30 end
31 end
32 Wait for neighbors to finish writing toWp

33 for j = 1, . . . , qp do
34 if Neighbor qj has written new information toWp then
35 Overwrite zqj
36 Overwrite ∥rqj∥2 in Γ and ∥r̃qj∥2 in Γ̃

37 end
38 end
39 end

for starting and ending the access epochs.

71

3.4.3 Experimental Results

Multigrid Smoothing

We first test the use of Distributed Southwell as a smoother for the multigrid method.

Here, we use a scalar rather than block version of Distributed Southwell. The test problem

is the 2D Poisson equation on a square discretized on a regular mesh by centered finite

differences. The discrete right-hand side is chosen to be a vector with random entries

uniformly distributed between -1 and 1. To test multigrid convergence, the grid dimensions

are increased from 15 × 15 to 255 × 255. Each V-cycle uses multiple levels such that the

coarsest level corresponds to a 3 × 3 grid, at which an exact solve is used.

Each V-cycle uses one step of pre-smoothing and one step of post-smoothing. As a

baseline for comparison, we use Gauss-Seidel as a smoother. For Distributed Southwell

as a smoother, we use a number of relaxations corresponding to exactly the number of re-

laxations as Gauss-Seidel (i.e., the number of unknowns in the grid at a given level, called

“1 sweep”). We also test Distributed Southwell using half of the number of relaxations of

Gauss-Seidel (called “1/2 sweep”). Distributed Southwell selects many rows to be relaxed

simultaneously in a single parallel step. In order to achieve an exact total number of relax-

ations (for our comparison purposes), in the final parallel step of Distributed Southwell, a

random subset of the rows selected to be relaxed are actually relaxed.

Figure 3.8 shows the residual norm relative to the initial residual norm after 9 V-cycles.

The most important result is that Distributed Southwell as a smoother shows grid-size

independent convergence, even though some rows may never have been relaxed in the

smoother, which is particularly true in the case of “1/2 sweep.” We also observe that Dis-

tributed Southwell is a more efficient smoother than Gauss-Seidel, resulting in better multi-

grid convergence even when Distributed Southwell uses the same number of relaxations as

Gauss-Seidel.

72

15 31 63 127 255

Grid dimension

10
-10

10
-9

10
-8

10
-7

10
-6

R
e
l.
 r
e
s
id

u
a
l
n
o
rm

GS, 1 sweep

Dist SW, 1/2 sweep

Dist SW, 1 sweep

Figure 3.8: Relative residual norm after 9 V-cycles of multigrid applied to solving the
2D Poisson equation for increasing grid dimensions. Distributed Southwell as a smoother
is compared to Gauss-Seidel (GS) as a smoother. The results show that convergence is
independent of grid size in all cases. In addition, Distributed Southwell is more efficient as
a smoother, per relaxation, than Gauss-Seidel.

Test Framework

In the following experiments, we compare Distributed Southwell, Parallel Southwell, and

Block Jacobi implemented in distributed memory. Here, we used a random initial guess and

a right-hand side b = 0. We scaled all initial guesses such that ∥r(0)∥2 = 1. All test matrices

are shown in Table 3.4, which were taken from the SuiteSparse Matrix Collection[45], and

symmetrically scaled to have unit diagonal values. We used up to 256 32-core nodes on the

NERSC Cori (Phase I) supercomputer. We varied the number of parallel steps from zero to

50, and took 50 samples at each parallel step. Out of 50 samples, we used the run that gave

us the lowest wall-clock time, i.e., we considered the best time a method could obtain at a

given parallel step.

For all methods, when a process updates, a single Gauss-Seidel sweep is carried out on

the subdomain that the process is responsible for. We note that a single process per node

could be used, with a multi-threaded local solver, e.g., Multicolor Gauss-Seidel. Another

73

Table 3.4: Test problems from the SuiteSparse Matrix Collection. All matrices are sym-
metric positive definite.

Number of Number of
Matrix Non-zeros Equations

Flan 1565 114,165,372 1,564,794
audikw 1 77,651,847 943,695
Serena 64,122,743 1,382,121
Geo 1438 60,169,842 1,371,480
Hook 1498 59,344,451 1,468,023
bone010 47,851,783 986,703
ldoor 42,451,151 909,537
boneS10 40,878,708 914,898
Emilia 923 40,359,114 908,712
inline 1 36,816,170 503,712
Fault 639 27,224,065 616,923
StocF-1465 20,976,285 1,436,033
msdoor 19,162,085 404,785
af 5 k101 17,550,675 503,625

important note is that we are using the Parallel Southwell method as defined in Algorithm 4,

and not as defined in Section 3.3. This is because Parallel Southwell as defined in [61]

deadlocks for all our test problems.

Reducing ∥r∥2 to 0.1 Using 8192 Processes

Table 3.5 shows results for reducing ∥r∥2 to 0.1 with 8192 MPI processes (256 nodes). The

table shows the wall-clock time, communication cost, number of parallel steps, number of

relaxations, and the number of active processes. “Communication cost” is defined as the

total number of messages sent by all processes, divided by the total number of processes.

“Active processes” is defined as the average fraction of processes carrying out block relax-

ations of local subdomains at each parallel step.

The table shows that Block Jacobi can achieve ∥r∥2 = 0.1 for only three of the test

matrices. Figure 3.9 plots the convergence with respect to different axes for four problems.

In the case of bone010, Block Jacobi initially reduces the residual norm, but eventually

74

Table 3.5: Comparison of Distributed Southwell (DS) with Parallel Southwell (PS) and
Block Jacobi (BJ) for reducing the residual to ∥r∥2 = 0.1. Linear interpolation on
log10 (∥r∥2) was used to extract this data. The † symbol indicates that a method could
not achieve ∥r∥2 ≤ 0.1 in 50 parallel steps. The wall-clock time was determined by taking
the minimum of 50 samples, i.e., showing each method performing at its best. “Commu-
nication cost” is defined as the total number of messages sent by all processes divided by
the number of processes. “Active processes” is defined as the average fraction of processes
carrying out block relaxations of local subdomains at each parallel step.

Wall-clock time Communication cost Parallel steps Relaxations/n Active processes

Matrix BJ PS DS BJ PS DS BJ PS DS BJ PS DS BJ PS DS

Flan 1565 † 0.547 0.234 † 336.185 114.797 † 46.073 35.000 † 2.249 2.330 † 0.049 0.066
audikw 1 † 1.100 0.434 † 483.379 157.566 † 44.907 33.699 † 1.613 1.737 † 0.036 0.049
Serena † 0.731 0.301 † 394.546 125.139 † 44.193 31.764 † 1.818 1.839 † 0.041 0.057
Geo 1438 0.068 0.577 0.224 53.835 352.331 113.986 3.805 44.381 30.896 3.805 1.872 1.916 1.000 0.042 0.061
Hook 1498 0.064 0.523 0.234 41.335 308.938 103.964 3.040 37.368 29.495 3.040 1.809 1.939 1.000 0.048 0.064
bone010 † 0.700 0.266 † 383.214 123.943 † 41.750 31.119 † 1.956 2.000 † 0.047 0.064
ldoor † 0.106 0.055 † 81.043 32.788 † 18.467 15.515 † 1.889 2.012 † 0.101 0.126
boneS10 † 0.363 0.180 † 175.872 65.295 † 27.220 22.737 † 2.138 2.257 † 0.078 0.099
Emilia 923 † † 0.309 † † 134.476 † † 38.669 † † 2.085 † † 0.054
inline 1 † 0.673 0.263 † 322.954 104.816 † 34.164 26.351 † 1.804 2.045 † 0.052 0.077
Fault 639 † † 0.315 † † 125.997 † † 37.617 † † 1.773 † † 0.045
StocF-1465 † 0.607 0.227 † 332.244 110.737 † 41.615 28.841 † 1.661 1.731 † 0.039 0.059
msdoor † 0.128 0.066 † 88.255 36.339 † 18.708 14.662 † 1.618 1.776 † 0.086 0.121
af 5 k101 0.021 0.082 0.040 16.148 68.694 27.598 2.624 13.885 12.210 2.624 1.733 1.788 1.000 0.123 0.146

diverges. This can also be seen for Geo 1438 and Hook 1498, which are two cases where

Block Jacobi can reach the target residual norm. This divergence underscores the unre-

liability of Block Jacobi, especially when a large number of processes is used. Matrix

af 5 k101 is the only case in which Block Jacobi never diverged.

Table 3.5 also shows the superiority of Distributed Southwell over Parallel Southwell.

Distributed Southwell is approximately twice as fast, requires close to a third of the com-

munication, and converges in fewer parallel steps. Parallel Southwell requires fewer relax-

ations, but needs to communicate more per relaxation.

The fact that Parallel Southwell requires fewer relaxations but requires almost three

times the communication shows how costly the explicit residual updates of Parallel South-

well are. This cost is shown in Table 3.6, where the explicit residual updates by Parallel

Southwell dominate the overall communication cost.

We also observe that in Distributed Southwell, more processes are active compared to

Parallel Southwell. This is a result of using inexact residual norms. We note that if adjacent

75

G
eo

14
38

0 0.2 0.4 0.6 0.8

Wall-clock Time (seconds)

10
-2

10
-1

10
0

R
e

s
id

u
a

l
N

o
rm

Block Jacobi

Parallel Southwell

Distributed Southwell

0 200 400 600

Communication Cost

10
-2

10
-1

10
0

R
e

s
id

u
a

l
N

o
rm

0 10 20 30 40 50

Parallel Step

10
-2

10
-1

10
0

R
e

s
id

u
a

l
N

o
rm

H
oo

k
14

98

0 0.2 0.4 0.6 0.8 1

Wall-clock Time (seconds)

10
-2

10
-1

10
0

10
1

10
2

R
e

s
id

u
a

l
N

o
rm

0 100 200 300 400 500 600

Communication Cost

10
-2

10
-1

10
0

10
1

10
2

R
e

s
id

u
a

l
N

o
rm

0 10 20 30 40 50

Parallel Step

10
-2

10
-1

10
0

10
1

10
2

R
e

s
id

u
a

l
N

o
rm

bo
ne

01
0

0 0.2 0.4 0.6 0.8 1

Wall-clock Time (seconds)

10
-1

10
0

10
1

R
e

s
id

u
a

l
N

o
rm

0 200 400 600

Communication Cost

10
-1

10
0

10
1

R
e

s
id

u
a

l
N

o
rm

0 10 20 30 40 50

Parallel Step

10
-1

10
0

10
1

R
e

s
id

u
a

l
N

o
rm

af
5

k1
01

0 0.1 0.2 0.3

Wall-clock Time (seconds)

10
-3

10
-2

10
-1

10
0

R
e

s
id

u
a

l
N

o
rm

0 50 100 150 200 250 300

Communication Cost

10
-3

10
-2

10
-1

10
0

R
e
s
id

u
a
l
N

o
rm

0 10 20 30 40 50

Parallel Step

10
-3

10
-2

10
-1

10
0

R
e

s
id

u
a

l
N

o
rm

Figure 3.9: Comparison of Block Jacobi and Distributed and Parallel Southwell for four
test problems that show different behavior of Block Jacobi. For Geo 1438 and Hook 1498,
Block Jacobi is able to reach the target residual norm of 0.1, and is the best method for these
problems for this level of accuracy. However, Block Jacobi diverges for these problems if
more steps are taken. For bone010, Block Jacobi is not able to reach the target residual
norm of 0.1. Distributed Southwell is the best method for this problem for this level of
accuracy. Of the 14 test problems shown in Table 3.4, af 5 k101 is the only case in which
Block Jacobi never diverged.

subdomains relax at the same time (rather than an independent set of subdomains), then

convergence is at risk.

Since multigrid smoothing and preconditioning only requires a small number of

sweeps, it is useful to look at the costs per parallel step. This is shown in Table 3.7, where

76

Distributed Southwell is faster than the other methods.

Table 3.6: Communication cost breakdown for Parallel Southwell (PS) and Distributed
Southwell (DS), where “Solve comm” denotes the communication cost of sending updates
to neighbors after a local subdomain is solved, and “Res comm” denotes the communica-
tion cost of explicit residual updates.

Solve comm Res comm

Matrix PS DS PS DS

Flan 1565 27.945 28.961 308.240 85.836
audikw 1 28.630 30.634 454.749 126.932
Serena 27.399 27.748 367.147 97.391
Geo 1438 26.485 27.076 325.846 86.910
Hook 1498 24.076 25.744 284.861 78.220
bone010 27.965 28.617 355.249 95.326
ldoor 11.980 12.745 69.063 20.043
boneS10 18.462 19.433 157.410 45.862
Emilia 923 † 32.101 † 102.375
inline 1 24.352 27.311 298.601 77.505
Fault 639 † 27.785 † 98.213
StocF-1465 24.188 25.208 308.056 85.529
msdoor 11.560 12.669 76.695 23.670
af 5 k101 10.603 10.947 58.091 16.651

Strong Scaling

We first look at a target residual norm of ∥r∥2 = 0.1 and varying the number of MPI pro-

cesses. Six examples are shown in Figure 3.10, where wall-clock time is shown as a func-

tion of the number of MPI processes. In most cases, and for all methods, the wall-clock

time initially decreases as we increase the number of MPI processes, and then starts to

increase. This is due to the local subdomain solves, where a single Gauss-Seidel sweep

is used. This operation has the complexity of a sparse matrix-vector product, and as the

number of MPI processes increases (i.e., local subdomain sizes decrease), the time spent on

communication increasingly outweighs the time spent on computation. It can be observed

that the poor scalability is worse for the smaller problems.

We can see that Distributed Southwell is always faster than Parallel Southwell, except

77

Table 3.7: Per parallel step results of Distributed Southwell (DS) compared with Paral-
lel Southwell (PS) and Block Jacobi (BJ) for taking 50 parallel steps using 8192 MPI
processes. Mean wall-clock time and communication cost over the 50 parallel steps are
shown.

Wall-clock time Communication cost

Matrix BJ PS DS BJ PS DS

Flan 1565 0.017 0.012 0.006 12.537 7.307 3.056
audikw 1 0.031 0.025 0.013 18.092 10.634 5.204
Serena 0.023 0.017 0.009 15.234 8.899 3.607
Geo 1438 0.018 0.013 0.007 14.149 7.854 3.337
Hook 1498 0.021 0.014 0.008 13.599 8.102 3.705
bone010 0.022 0.017 0.007 14.596 9.024 3.406
ldoor 0.008 0.006 0.004 6.319 4.243 2.688
boneS10 0.018 0.014 0.006 9.226 6.026 2.562
Emilia 923 0.023 0.014 0.008 15.370 7.574 3.473
inline 1 0.025 0.019 0.010 13.877 9.191 5.075
Fault 639 0.021 0.015 0.008 15.735 7.317 3.411
StocF-1465 0.021 0.014 0.009 14.616 7.798 4.455
msdoor 0.009 0.007 0.005 7.101 4.467 2.955
af 5 k101 0.008 0.006 0.004 6.155 4.728 3.248

for Flan 1565 on 64 processes, where the two wall-clock times are quite close. Addition-

ally, when Block Jacobi achieves ∥r∥2 = 0.1, it is faster than Parallel and Distributed South-

well, e.g., for Hook 1498. However, it is often the case that Block Jacobi cannot achieve

∥r∥2 = 0.1, even for a small number of processes. For example, for Flan 1565, ldoor, and

StocF-1465, Block Jacobi cannot achieve ∥r∥2 = 0.1 for more than 128 processes. This

demonstrates that Block Jacobi can be an unreliable method even for a small number of

processes.

We now look at the residual norm after 50 parallel steps of each method as we vary the

number of MPI processes from 32 to 8192 (from 1 to 256 nodes). Six examples are shown

in Figure 3.11. It is clear that for larger numbers of MPI processes, the convergence of

Block Jacobi severely degrades or Block Jacobi may even diverge after 50 parallel steps.

The degradation is much more mild for Parallel Southwell and Distributed Southwell. The

fact that the residual norm of Distributed Southwell does not significantly degrade is why it

78

32 64 128 256 512 1024 2048 4096 8192

MPI Processes

10
-1

W
a

ll
-c

lo
c
k
 T

im
e

Flan_1565

Block Jacobi

Parallel Southwell

Distributed Southwell

32 64 128 256 512 1024 2048 4096 8192

MPI Processes

10
-1

W
a

ll
-c

lo
c
k
 T

im
e

ldoor

32 64 128 256 512 1024 2048 4096 8192

MPI Processes

10
-1

W
a

ll
-c

lo
c
k
 T

im
e

StocF-1465

32 64 128 256 512 1024 2048 4096 8192

MPI Processes

10
-2

10
-1

W
a

ll
-c

lo
c
k
 T

im
e

inline_1

32 64 128 256 512 1024 2048 4096 8192

MPI Processes

10
-1

W
a

ll
-c

lo
c
k
 T

im
e

bone010

32 64 128 256 512 1024 2048 4096 8192

MPI Processes

10
-2

10
-1

W
a

ll
-c

lo
c
k
 T

im
e

Hook_1498

Figure 3.10: Wall-clock time as a function of the number of MPI processes for reducing
∥r∥2 to 0.1. Missing data for Block Jacobi indicates that Block Jacobi could not achieve
∥r∥2 ≤.1 in 50 parallel steps, usually due to divergence of the Block Jacobi method. The
Block Jacobi method is fastest when it does converge.

32 64 128 256 512 1024 2048 4096 8192

MPI Processes

10
-4

10
-2

10
0

10
2

10
4

10
6

R
e

s
id

u
a

l
N

o
rm

Flan_1565

Block Jacobi

Parallel Southwell

Distributed Southwell

32 64 128 256 512 1024 2048 4096 8192

MPI Processes

10
-2

10
0

10
2

10
4

10
6

10
8

10
10

10
12

10
14

R
e

s
id

u
a

l
N

o
rm

ldoor

32 64 128 256 512 1024 2048 4096 8192

MPI Processes

10
-2

10
-1

10
0

10
1

10
2

10
3

R
e

s
id

u
a

l
N

o
rm

StocF-1465

32 64 128 256 512 1024 2048 4096 8192

MPI Processes

10
-2

10
0

10
2

10
4

10
6

R
e

s
id

u
a

l
N

o
rm

inline_1

32 64 128 256 512 1024 2048 4096 8192

MPI Processes

10
-4

10
-3

10
-2

10
-1

10
0

10
1

R
e

s
id

u
a

l
N

o
rm

bone010

32 64 128 256 512 1024 2048 4096 8192

MPI Processes

10
-4

10
-3

10
-2

10
-1

10
0

10
1

R
e

s
id

u
a

l
N

o
rm

Hook_1498

Figure 3.11: Residual norm after 50 parallel steps as a function of the number of MPI
processes for different test problems. When the residual norm is above 1, this indicates that
the method has diverged after 50 parallel steps. For larger numbers of processes, Block
Jacobi is more likely to diverge after many steps.

79

can be considered a competitor to Block Jacobi for massively parallel multigrid smoothing

and preconditioning.

3.5 The Stochastic Parallel Southwell Method

In the Stochastic Parallel Southwell Method, the magnitude of a residual determines the

likelihood that that row will be relaxed. If a residual is large compared with the neigh-

boring residual, that row will have a high probably of being relaxed, and vice versa. The

probability that a row is relaxed is determined by the score zi of the residual. The score

of a row i is the number of neighboring residuals that are larger than ∣ri∣. We then use this

score to construct an update probability, e.g., ρi = exp(−πzi) or ρi = 1/(πzi+1), where π is

a parameter that controls how the probability changes as the score increases. For example,

we may want all processes that do not hold the maximum residual in there neighborhood

to have a very low probability, so we could set π = 2. Alternatively, we could set π = .5 if

we want more processes to have a high probability. Similar to Parallel Southwell, we can

write Stochastic Parallel Southwell as

D̂
(t)
ii =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ω/Aii, if ξ ≤ ρi,

0, otherwise,

(3.7)

where ξ is a uniform random number in the range [0,1]. The scalar ω is an optional weight,

similar to weighted Jacobi. This weight can be used to guarantee convergence for the SPD

case, since by Theorem 2 in [15], SPS will converge when weighted Jacobi converges.

Therefore, by taking an ω value such that weighted Jacobi converges, e.g., the optimal

value ω = 2/(λmax(D−1A) + λmin(D−1A)) where D is the Jacobi smoothing matrix, SPS

will converge.

Figure 3.12 compares several smoothers with SPS for the 5-point centered difference

discretization of the Poisson equation. We used exp(−zi) for the SPS update probability.

80

0 5 10 15 20

Parallel Steps

10
-1

10
0

R
e

l.
 R

e
s
id

u
a
l
2

-N
o

rm

Jacobi

Stoch. Par. Southwell

15 31 63 127 255

Grid Size

10
-15

10
-10

10
-5

10
0

R
e

l.
 R

e
s
id

u
a
l
2

-N
o

rm

Jacobi

Gauss-Seidel

SPS

SPS, n relaxations

(a) (b)

Figure 3.12: Convergence comparison of Stochastic Parallel Southwell (SPS) with other
smoothers. The test problem is the 5-point centered difference discretization of the Poisson
equation. Sub-figure (a) shows the relative residual 2-norm versus number of parallel steps
(iterations) of Jacobi and SPS. Sub-figure (b) shows the convergence of classical multi-
plicative multigrid for several smoothers as the grid size increases.

Sub-figure (a) shows the relative residual 2-norm versus the number of parallel steps (it-

erations) for SPS and Jacobi. A 255 × 255 grid is used for this experiment. For SPS, less

than half the rows update per parallel step, showing that even with less work per parallel

step, SPS still converges faster than Jacobi. This indicates that not only can communication

be avoided, but the convergence rate can also be accelerated. Sub-figure (b) shows SPS,

Jacobi, Gauss-Seidel as smoothers for classical multiplicative multigrid using one pre- and

and one post-smoothing sweep. For SPS, we show the convergence when only one parallel

step is used, and for when n relaxations are used (this takes 2-3 parallel steps on average).

The n relaxations is included to show convergence for when SPS does the same amount

of work as Jacobi and Gauss-Seidel. We can see that grid-size independent convergence

is achieved, even when only one parallel step is taken, indicating that not all rows need to

be relaxed for a smoother to be effective. Additionally, we can see that when SPS with n

relaxations is the fastest method.

Algorithm 6 shows asynchronous SPS for the general case in which a process owns

a sub-domain. The p superscript denotes a sub-domain vector, where xp and rp are sub-

vectors of x and r, respectively. Let Ap be the diagonal block of A denoting connections

81

in the underlying discretization stencil between points in the sub-domain belonging to p.

Let Aoffpi be the off-diagonal block of A denoting connections between points in the sub-

domain belonging to p to points belonging to i.

If a process determines that it must update, it solves the equations Apep = rp (lines

5). This could be an exact solve or single smoothing sweep. For our implementation, we

use a single weighted Jacobi sweep. The residual is then updated (line 7), and the data is

sent to intra grid neighbors (lines 8-14). Lastly, the receive phase occurs where if there

is new data, rp and Φp are updated (lines 16-24). Note that we can also add in inter grid

communication as well where ep is sent to inter grid neighbors. This is exactly what we do,

allowing asynchronous SPS to be used as a smoother for grid zero.

82

Algorithm 6: Block Asynchronous Stochastic Parallel Southwell for Distributed

Memory

1 while not converged on process p do

2 z = Score(∥rp∥,Φp) ▷ compute the score for p

3 ξ = RandNum(0,1) ▷ generate random number in the range [0,1]

4 if ξ ≤ UpdateProbability(z) then ▷ compute update probability and update if necessary

5 ep = Solve(Ap, r
p)

6 xp = xp + ep

7 rp = rp −Ade
p

8 for each intra grid neighbor i of process p do

9 [inflight flag, j] = CheckInflight(send requests[i])

10 if inflight flag then

11 send buff[i][j][:] = [epoffdi , ∥r
p∥] ▷ copy boundary updates and new

residual norm into send buffer

12 MPI Isend(send buff[i][j],..., send requests[i]) ▷

non-blocking send

13 end

14 end

15 end

16 for each intra grid neighbor i of process p do

17 MPI Test(recv requests[i], &flag,...) ▷ check completion of receive

18 if flag then

19 ep = 0

20 [epoffdi , Φp[i]] = recv buff[i][:] ▷ copy received boundary updates into ep

and residual norm into Φp

21 MPI Irecv(recv buff[i],..., recv requests[i]) ▷ non-blocking

receive

22 rp = rp −Aoffdie
p ▷ update rp

23 end

24 end

25 end

83

3.6 Conclusion

In Section 3.3, we presented the Parallel Southwell method. The method is based on the

sequential Southwell method, where the row with the maximum absolute value residual is

relaxed on each parallel step. We parallelized this method by, per parallel step, relaxing

all rows that calculate themselves as maximum in their neighborhood of mesh points in

the underlying geometry. This eliminates the need to calculating a global maximum, i.e.,

global synchronization, and allowed for multiple rows to be updated in parallel.

This idea of greedily selecting rows can actually speed up convergence. We showed this

experimentally using matrices from the University of Florida sparse matrix collection. The

first result from these experiments is that Parallel Southwell consistently requires fewer

relaxations to converge than Jacobi, Gauss-Seidel, and multicolor Gauss-Seidel. A more

important result is that Parallel Southwell can converge quicker per parallel step than both

Jacobi and multicolor Gauss-Seidel, even though it does less work. Additionally, parallel

Southwell can also have a higher convergence rate.

By definition, Parallel Southwell does not require global synchronization, which makes

it a good candidate for an asynchronous implementation. We showed this using a shared

memory implementation, and ran experiments on Intel Xeon CPUs, and an Intel Xeon Phi.

We showed that although our asynchronous implementation required more relaxations to

converge, the overall wall clock time was lower than its synchronous counterpart. Addi-

tionally, we showed that a minor load imbalance can greatly slow a synchronous algorithm,

while an asynchronous method handles the imbalance quite well.

The Parallel Southwell method demonstrates an important concept in high performance

computing, namely that doing less work can result in a faster algorithm. This has ap-

plications to distributed computing, where reducing communication and execution wall

time may become equally important on future exascale machines. Similarly, for many-

core shared memory architectures, as in the Intel Xeon Phi, it is desired to reduce expen-

84

sive shared memory write operations. We can see that parallel Southwell competes quite

well with elementary stationary iterative methods, which are commonly used as multigrid

smoothers and preconditioners. Future work would involve experimenting with Parallel

Southwell as a multigrid smoother or preconditioner.

In Section 3.4, we presented the Distributed Southwell method. Parallel Southwell is

a natural way to parallelize the Sequential Southwell method. However, in a distributed

setting, Parallel Southwell has a high communication cost that stems from the requirement

for neighboring processes to exchange the residual norms of their local subproblems. In

Distributed Southwell, the main idea is that these residual norms do not need to be known

exactly. Instead, estimates of the residual norms of neighbors can be computed locally

without communication. However, deadlock may occur if the estimates are such that no

process thinks it has the largest residual norm. We presented a novel scheme to avoid

deadlock by sending explicit residual norm update messages only when necessary. The

result is that Distributed Southwell uses much less communication than Parallel Southwell.

Distributed Southwell is also a potential improvement over Block Jacobi when a large

number of processes is used. This is an important issue when considering future exascale

machines, where the number of cores will be massive. In this case, block sizes will be

small, possibly leading to slow or no convergence for Block Jacobi.

In Section 3.5, we introduced the Stochastic Parallel Southwell method. In this method,

each process uses its residual norm estimates to construct a probability. This is the prob-

ability that the process will relax its rows. Unlike Distributed Southwell, Stochastic Par-

allel Southwell method does not require explicit residual updates since even if a process

computes a low probability, the rows belonging to that process will eventually be relaxed.

We showed that Stochastic Parallel Southwell can converge with a similar rate to Parallel

Southwell, and multigrid exhibits grid-size independent convergence when using Stochas-

tic Parallel Southwell as a smoother.

85

CHAPTER 4

ASYNCHRONOUS MULTIGRID METHODS

Multigrid methods are a way of accelerating a basic iterative method (referred to as a

smoother in the context of multigrid). The simplest multigrid method is the two-grid

method, where a smoother is combined with a coarse grid correction. The smoother and

the coarse grid correction synergize excellently; the smoother eliminates components of

the error corresponding to rough eigenmodes of A, and the coarse grid correction elimi-

nates smooth components. For large problems, additional coarser grids must be used since

the first coarse grid might be too large to make an exact solve feasible, where a smoother

is used on all grids except the coarsest grid. Multigrid methods are widely used due to

their scalability. They are optimal in the sense that their convergence rate is independent

of the problem size, and modern implementations are efficient on parallel computers since

the core kernel is a matrix-vector product [66]. However, per iteration, classical multigrid

methods have many points where communication neighbors must synchronize, which can

be costly especially on the coarser grids.

In this chapter, we introduce the first asynchronous multigrid methods as standalone

solvers, not as preconditioners. These methods are asynchronous versions of additive

multigrid methods. In additive multigrid methods, smoothing and exact solves on different

grids are computed concurrently and added to the current approximation to the solution on

the finest grid. Additive multigrid methods are more parallel than classical multiplicative

multigrid methods, which allow us to execute additive multigrid methods asynchronously.

We introduce models and implementations of asynchronous multigrid and provide exper-

imental results that show that asynchronous mutligrid can exhibit grid-size independent

convergence and can converge faster than classical multigrid. We also introduce a new

additive multigrid method, the AFACj method, that can be executed asynchronously.

86

4.1 Background

4.1.1 Classical Multiplicative Multigrid Methods

To define the classical multigrid V(1,1)-cycle, we first start with some definitions. For grid

numbers k = 0, . . . , ` − 1, where ` is the coarsest grid, we define:

• the two-level interpolant P k
k+1 that transfers a vector from grid k + 1 to k. For sim-

plicity, we will choose (P k
k+1)T as the restriction matrix that transfers a vector from

grid k to k + 1.

• the coarse grid operator Ak+1 = (P k
k+1)TAkP k

k+1 at grid k + 1.

• the smoothing iteration matrix Gk = I −M−1
k Ak, where the smoothing matrix Mk is

typically easy to invert.

We can now define the classical V(1,1)-cycle, as shown in Algorithm 7.

Algorithm 7: Multiplicative V(1,1)-Multigrid
1 Initialize r0 = b
2 for t = 1,2, . . . , tmax do
3 Sequential for k = 0, . . . , ` − 1 do
4 ek =M−1

k rk ▷ pre-smoothing
5 rk+1 = (P k

k+1)T (rk −Akek) ▷ restriction
6 end
7 e` = A−1

` r` ▷ exact solve on coarsest grid
8 Sequential for k = ` − 1 . . . ,0 do
9 ek = ek + P k

k+1ek+1 ▷ coarse grid correction
10 ek = ek +M−1

k (rk −Akek) ▷ post-smoothing
11 end
12 x = x + e0 ▷ correct solution on finest grid
13 r0 = b −Ax ▷ compute new residual
14 end

4.1.2 Additive Multigrid Methods

We define the multi-level interpolant P 0
k for k = 0,1, . . . ` − 1 that transfers a vector from

grid k to the finest grid. Additionally, we define (P 0
k)T as the corresponding restriction

87

matrix. For k = 0, P 0
0 = I . We consider P 0

k = P 0
1P

1
2⋯P k−1

k and is not explicitly formed, i.e.,

each P j−1
j for j = 1, . . . , k is applied to the vector that is being interpolated.

In additive multigrid methods, smoothing on each grid can be done concurrently. This

allows the updates from each grid to be added together on the fine grid. We can write an

additive multigrid method as

x(t+1) = x(t) +
`−1

∑
k=0

e
(t)
k . (4.1)

where e(t)k is the update for grid k. The classical additive multigrid method is known as the

BPX method [24]. One V-cycle of BPX can be written as

x = x +
`−1

∑
k=0

P 0
kΛk(P 0

k)T r, (4.2)

where Λk is the inverse of the smoothing matrix for k = 0, . . . , ` − 1 and Λ` = A−1
` .

BPX is typically used as a preconditioner because adding the updates “over-corrects”

x, resulting in a divergent solver. This over-correction occurs because the right-hand sides

on the coarse grids are approximately equal, resulting in redundant updates. In [67], BPX

is modified using multicoloring to create a convergent solver. The authors suggest that this

new solver could be asynchronous, but do not precisely define what asynchronous multigrid

means in this context.

Additive Variants of Multiplicative Multigrid (Multadd)

Multadd [68, 69] is derived by re-writing the multiplicative method as

x = x +
`−1

∑
k=0

P
0

kΛk(P
0

k)T r. (4.3)

This method looks like BPX, but with the multi-level smoothed interpolants P
0

k =

P
0

1⋯P
k−1

k , where the two-level smoothed interpolants are P
k

k+1 = GkP k
k+1 for k = 0, . . . , ` −

88

1.

If Λk is chosen to be the symmetrized smoothing matrix M
−1

k = M−T
k (Mk + MT

k −

Ak)M−1
k , then Multadd is mathematically equivalent to a symmetric multiplicative V(1,1)-

cycle (where GT
k is chosen as the post-smoothing iteration matrix). If it is not a require-

ment for Multadd to be mathematically equivalent to the classical multiplicative multigrid

method, an approximation Λk to Λk can also be used as the symmetrized smoother, e.g.,

Λk =Dk. We consider this case for a hybrid smoother (see Section 4.3.2).

Expressing the multiplicative method in this additive form may seem too good to be

true since now each grid can be processed concurrently without sacrificing multiplicative

convergence properties. However, the additive form introduces redundant computation,

since grid k + 1 must carry out the same set of prolongation and restriction steps as grid

k. This suggests that Multadd would likely be slower than the multiplicative method, but

if we were to make the method asynchronous, the increased computational cost might be

outweighed by the gain in speed from not having to synchronize.

The Asynchronous Fast Adaptive Composite Grid Method (AFACx)

The asynchronous fast adaptive composite grid method (AFACx) [70, 71, 72, 73, 74] is

an additive multigrid method for solving PDEs on composite grids. These composite grids

typically arise from adaptive mesh refinement processes. A composite grid can be decom-

posed into a hierarchy of grids with different resolutions and different domain sizes. We

can use AFACx as a multigrid method by thinking of the multigrid hierarchy as a hierarchy

from a fully refined composite grid. There are three key steps in AFACx when computing

the update for grid k:

1. The quantity ek+1 is computed by smoothing on the equationsAk+1ek+1 = rk+1, where

an initial guess of zero is used and rk+1 is the fine grid residual restricted to grid k+1.

2. The quantity ek is then computed by smoothing on the equations Akek = rk using an

initial guess of P k
k+1ek+1.

89

3. x is corrected: x = x + P 0
k (ek − P k

k+1ek+1).

The subtraction of P 0
kP

k
k+1ek+1 from x in the third step is what prevents an over-correction

of x. This is because grids k and k + 1 may produce approximately the same updates, so

subtracting P k
k+1ek+1 from P k

k ek serves to remove the portion of P k
k ek that is close in value

to the update from grid k + 1.

Algorithm 8 shows AFACx, where V(1,1)-cycles are used in the inner loop. Here, the

V(1,1) notation refers to using one smoothing sweep to compute ek+1 and one smoothing

sweep to compute ek, (not to be confused with a V(1,1)-cycle of classical multiplicative

multigrid). A V(s1, s2)-cycle can also be defined, where s1 smoothing sweeps are used to

compute ek+1 and s2 smoothing sweeps are used to compute ek. The redundant computation

of P 0
k ek and P 0

k+1ek+1 can be avoided by modifying how ek is computed: we use an initial

guess of zero and a modified right-hand side of rk −AkP k
k+1ek+1, as shown in lines 8 and 9

of Algorithm 8.

Algorithm 8: V(1,1)-AFACx
1 Initialize r = b
2 for t = 1,2, . . . , tmax do
3 for k = 0, . . . , ` − 1 do
4 rk = (P 0

k)T r ▷ restriction
5 if k == ` − 1 then
6 ek = A−1

k rk ▷ exact solve on coarsest grid
7 else
8 ek+1 =M−1

k+1(P k
k+1)T rk

9 ek =M−1
k (rk −AkP

k
k+1ek+1) ▷ smooth

10 end
11 x = x + P 0

k ek ▷ correct solution on finest grid
12 end
13 r = b −Ax ▷ compute new residual
14 end

Other Additive Multigrid Methods

The first additive multigrid method was proposed in [75]. To address the over-correction

issue, the updates are done sequentially, where each update is made to be orthogonal to the

90

new residual (the residual after the approximation is corrected) on the next finer grid. This

sequential aspect, however, is not ideal for devising an asynchronous method.

Residual splitting methods [76] split the residual into a rough and smooth part using an

appropriate filter. The smoother then uses the rough part of the residual, and the coarse grid

correction uses the smooth part. These two updates can then be added together without

over-correcting. In [77], all grids carry out this process simultaneously. These methods

converge slower than multiplicative methods, and the added cost of filtering increases the

solve time.

4.2 Models of Asynchronous Multigrid Methods

In this section, we present new models of asynchronous additive multigrid methods [78].

We emphasize that our definitions of asynchronous multigrid are different than that of

asynchronous task-based processing of grids, as in [79]. The purpose of this section is

not to analyze these models, but to define what asynchronous multigrid actually is, which

has not been done before. In other words, the models presented in this section give us a

clear picture of what is meant by asynchronous multigrid: at some time instant t, some set

of grids update without any of the grids synchronizing, i.e., each grid has no information

about the progress made by other grids. In the case that some update is delayed, this means

that multiple updates from other grids have been performed before the delayed grid has

corrected once.

There has been previous work on making multigrid methods asynchronous. In [80], the

authors asynchronously execute a saw-tooth cycle (classical multiplicative multigrid with

no pre-smoothing) by using un-smoothed aggregation. Un-smoothed aggregation allows

the prolongation and restriction to be carried out without communication, making the up-

cycle completely asynchronous. However, synchronization is still used on the finest grid,

and the method is limited to only using interpolation matrices that require no communica-

tion.

91

The first model is the semi-asynchronous model (semi-async),

x(t+1) = x(t) + ∑
k∈Ψ(t)

Bk(x(zk(t))), (4.4)

and the second is the fully asynchronous model (full-async),

x(t+1) = x(t) + ∑
k∈Ψ(t)

Bk(x(zk1(t))
1 , . . . , x

(zkn(t))
n). (4.5)

We refer to these two models as the solution-based versions of semi-async and full-async

since x(t) is written to and read from by all grids. If k > 0, Bk is a function that outputs

the update for grid k. If k = 0, the output of Bk corresponds to one smoothing sweep

applied to the error equations. For example, for grid k in the semi-async model of Multadd,

Bk(x) = P
0

kΛk(P
0

k)T (b −Ax(zk(t))). In these models, the computation of Bk(x) is carried

out synchronously by the threads belonging to grid k. However, an asynchronous smoother

could also be used, i.e., we could apply Λk asynchronously.

There are similarities between Equations 4.4 and 4.5, and Equation 2.5. First, the set

Ψ(t) is now the set of grids correcting the solution at time instant t. Second, we now

have the mappings zk(t) and zki(t) for i = 1, . . . , n. These two mappings are what make

semi-async and full-async different from each other. For full-async, x can be corrected

by one grid while a different grid is simultaneously reading x from memory. The result is

that the copy of x read from memory contains elements from different time instants. For

semi-async, all components of x read from memory come from the same time instant.

Alternatively, with the observation that any fixed-point iteration can be expressed as

x = x +M−1r

r = r −AM−1r

(4.6)

92

we can also express the semi-async and full-async models in terms of the residual:

r(t+1) = r(t) −A ∑
k∈Ψ(t)

Ck(r(zk(t))), (4.7)

and,

r(t+1) = r(t) −A ∑
k∈Ψ(t)

Ck(r(zk1(t))1 , . . . , r
(zkn(t))
n), (4.8)

where Ck is defined similarly to Bk. We refer to these two models as the residual-based

versions of semi-async and full-async, respectively. In the case of semi-async, there is

no difference between the residual-based and solution-based versions, given that, for all

k and t, zk(t) is the same in both cases. However, for full-async, the solution-based

and residual-based versions are different since the vectors (r(zk1(t))1 , . . . , r
(zkn(t))
n)T and

b −A(x(zk1(t))
1 , . . . , x

(zkn(t))
n)T can be different, even when zk1(t), . . . , zkn(t) are the same

for all k and t.

To demonstrate the difference in convergence among our four models (solution-based

and residual-based versions of semi-async and full-async), we simulated asynchronous

multigrid by implementing Equations 4.4, 4.5, and 4.8 as solvers to be executed sequen-

tially. In the simulation, grid k has an update probability pk, i.e., grid k has the probability

pk of being in Ψ(t) at time instant t. In our experiments, pk is determined in advance (be-

fore we start solving Ax = b) by sampling from a uniform random integer distribution in

the range [α,1], where α is the minimum update probability and 1 > α > 0. As α decreases,

the grids will become more “out of sync”, i.e., the values of pk will have a higher variation

resulting in some grids updating more often than others.

If k ∈ Ψ(t), the value of zk(t) (zki(t) in the case of full-async) is chosen randomly by

sampling from a uniform random integer distribution in the range (min(zk(τk), t − δ), t].

The time instant τk denotes the last time instant that grid k read from. The maximum read

delay δ is defined as the maximum value of t − zk(t) and denotes the minimum past time

instant that grid k can read from. In other words, we are assuming two things: 1) a grid

93

cannot read older information than what has already been read (zk(τk) term), and 2) even if

the updates for a grid are computed very slowly compared to other grids, there is still some

bound on how old the information can be that is read from memory (t − δ term).

A minimum of 20 updates are computed for each grid, and the iteration is terminated

after 20 updates have been computed for all grids. We compare this to 20 V(1,1)-cycles of

synchronous multigrid. For our test framework, we used the 27pt test set (see Section 4.3.2

for matrix descriptions) with mesh sizes ranging from 40×40×40 to 80×80×80. Weighted

Jacobi was used as a smoother with a weight of .9. We used the BoomerAMG package [81]

to generate the interpolation and coarse grid matrices. For our BoomerAMG options, we

chose HMIS coarsening with one aggressive level, and classical modified interpolation.

Figure 4.1 demonstrates the effect of α on the convergence of semi-async when δ =

0. The figure shows the relative residual 2-norm versus the grid length for Multadd and

AFACx. Each data point is the mean relative residual 2-norm of 20 runs. Each figure

shows synchronous multigrid and simulations of semi-async with different values of α.

The figures show that with small values of α, convergence is slower, but the convergence

is still independent of the grid length.

Figure 4.2 demonstrates the effect of δ on the convergence of full-async with α = .1.

Each figure shows synchronous multigrid and simulations of either the solution-based or

residual-based versions of full-async. These results show that with larger values of δ, con-

vergence is slower, but the convergence is still independent of the grid length. Additionally,

the residual-based versions converge faster than the solution-based versions for large values

of δ.

4.3 Asynchronous Multigrid for Shared Memory

4.3.1 Algorithms for Asynchronous Implementations

This section presents asynchronous additive multigrid methods for shared memory parallel

computers. The main issue to address is the computation of the residual on the fine grid.

94

Semi-async AFACx Simulation Semi-async Multadd Simulation

40 50 60 70 80

Grid Length

10
-3

10
-2

R
e
l.
 R

e
s
.
2
-n

o
rm

async, probability .1

async, probability .9

sync

40 50 60 70 80

Grid Length

10
-5

10
-4

10
-3

R
e
l.
 R

e
s
.
2
-n

o
rm

Figure 4.1: Final relative residual 2-norm after 20 V-cycles versus grid length for the semi-
asynchronous multigrid model (Equation 4.4) for AFACx and Multadd. A maximum delay
of zero is used. Results are shown for five minimum update probabilities, where blue-to-
green corresponds to increasing minimum update probability. The 27pt test set is used (see
Section 4.3.2). These results show that even with a small minimum update probability,
asynchronous multigrid still exhibits grid-size independent convergence.

We first describe two implementations for synchronous two-grid Multadd, and then extend

these to the asynchronous case. The implementations are mathematically the same when

executed synchronously. We proceed with an example. We have five threads, t0, t1, t2, t3

and t4. The fine grid has seven points, and the coarse grid has three points. Recall that one

V(1,1)-cycle of Multadd is

r = b −Ax

x = x +Λ0r + P
0

1A
−1
1 (P 0

1)T r.
(4.9)

Threads t0 and t1 are responsible for computing Λ0r, and threads t2, t3 and t4 are respon-

sible for computing P
0

1A
−1
1 (P 0

1)T r. We say that t0 and t1 are assigned to grid 0, and t2, t3

and t4 are assigned to grid 1. In the general case, threads are distributed among the grids to

balance the amount of “work”, where the work for a grid is approximately the number of

flops required to compute the update for that grid.

We present two algorithms for parallel synchronous Multadd which differ only in how

r is computed:

95

Full-async AFACx Simulation
Solution-based Residual-based

40 50 60 70 80

Grid Length

10
-4

10
-2

10
0

R
e
l.
 R

e
s
.
2
-n

o
rm

async, delay 20

async, delay 1

sync

40 50 60 70 80

Grid Length

10
-4

10
-2

10
0

R
e
l.
 R

e
s
.
2
-n

o
rm

Full-async Multadd Simulation
Solution-based Residual-based

40 50 60 70 80

Grid Length

10
-4

10
-2

10
0

R
e
l.
 R

e
s
.
2
-n

o
rm

40 50 60 70 80

Grid Length

10
-4

10
-2

10
0

R
e
l.
 R

e
s
.
2
-n

o
rm

Figure 4.2: Final relative residual 2-norm after 20 V-cycles versus grid length for the full-
asynchronous multigrid model. The solution-based (Equation 4.5) and residual-based ver-
sions (Equation 4.8) of AFACx and Multadd are shown. A minimum update probability
of .1 is used and results for five maximum delay values are shown, where blue-to-green
gradient corresponds to decreasing maximum delay. The 27pt test set is used (see Sec-
tion 4.3.2). These results show that even with large delays, asynchronous multigrid still
exhibits grid-size independent convergence.

1. global-res: Just like in classical multigrid, each thread would be responsible for com-

puting some number of elements of the fine grid residual r, and r would be computed

using a parallel SpMV operation using all five threads. We call this the global-res

algorithm since, in addition to x, r is a “global” variable. Here, “global” refers to

memory that can be read by all threads, while memory that is “local” to a grid refers

to memory that can be read only by threads assigned to that grid. Algorithm 9 and

96

Figure 4.3 show global-res for this example, where Sync() denotes the synchroniza-

tion of the threads listed. In line 1 of Algorithm 9, all threads take part in computing

r using a parallel SpMV operation. If we are using OpenMP, the computation of r

would be parallelized using a parallel for loop with a static scheduling.

In the if statements, only the threads assigned to a grid take part in each operation,

which are also carried out with parallel loops. For example, in the case of grid 0,

if we are using OpenMP, Λ0r would be computed using a parallel for loop but only

with the threads t0 and t1. In the case of grid 1, the application of P
0

1, A−1
1 , and

(P 0

1)T to a vector are carried out by threads t2, t3 and t4 (SpMV and triangular solve

operations), where the three threads synchronize after each application.

Note that the updates for both grid are added to x concurrently in lines 6 and 11,

which creates a race condition. We will discuss later in this section how these race

conditions are handled.

2. local-res: Only x is a global variable. Threads assigned to a grid would read x from

memory and then compute a local residual, e.g., threads t0 and t1 would compute the

local residual r0 using a parallel for loop. We call this the local-res algorithm, which

is shown in Algorithm 10 and in Figure 4.3. The two threads first read x in line 1,

and then in lines 4 and 9, threads t0 and t1 compute r0 and r1, respectively, which

are the local residuals. The rest of the algorithm is the same as that of global-res.

In Algorithms 9 and 10, to make these algorithms asynchronous, we simply replace

all Sync(t0, t1, t2, t3, t4) operations with Sync(t0, t1) and Sync(t2, t3, t4), i.e., we replace all

global synchronizations with synchronizations of subsets of threads, where each subset is

the set of threads assigned to a grid, and the union of all the subsets is the set of all threads.

This means that there is some synchronization, but only among threads assigned to the

same grid.

97

Algorithm 9: global-res for two-

grid synchronous Multadd with five

threads

1 r = b −Ax

2 Sync(t0, t1, t2, t3, t4)

3 if threads t0, t1 then

4 Sync(t0, t1)

5 e0 = Λ0r

6 Sync(t0, t1)

7 x = x + e0

8 end

9 if threads t2, t3, t4 then

10 c = (P 0

1)T r

11 Sync(t2, t3, t4)

12 d = A−1
1 c

13 Sync(t2, t3, t4)

14 e1 = P 0

1d

15 Sync(t2, t3, t4)

16 x = x + e1

17 end

18 Sync(t0, t1, t2, t3, t4)

Algorithm 10: local-res for two-

grid synchronous Multadd with five

threads

1 x0 = x1 = x

2 Sync(t0, t1, t2, t3, t4)

3 if threads t0, t1 then

4 r0 = b −Ax0

5 Sync(t0, t1)

6 e0 = Λ0r
0

7 Sync(t0, t1)

8 x = x + e0

9 end

10 if threads t2, t3, t4 then

11 r1 = b −Ax1

12 Sync(t2, t3, t4)

13 c = (P 0

1)T r1

14 Sync(t2, t3, t4)

15 d = A−1
1 c

16 Sync(t2, t3, t4)

17 e1 = P 0

1d

18 Sync(t2, t3, t4)

19 x = x + e1

20 end

21 Sync(t0, t1, t2, t3, t4)

A problem with the global-res algorithm comes from how the residual is computed. As

stated earlier, if the computation of an update for some grid is severely delayed, the faster

grids may do many updates with a residual that has some components that are up-to-date,

and other components that are very out-of-date. We will see in Section 4.3.2 that this can

result in asynchronous multigrid diverging or converging more slowly than synchronous

multigrid. The local-res algorithm does not suffer from this problem, but requires more

98

Global-res
𝑒0 = 𝛬0𝑟

0 𝑥 = 𝑥 + 𝑒0

𝑧 = 𝑃1
0 𝑇

𝑟 𝑒1 = 𝑃1
0
𝐴1
−1𝑧 𝑥 = 𝑥 + 𝑒1

g
ri

d
 1

g
ri

d
 0

𝑟 = 𝑏 − 𝐴𝑥
𝐒𝐲𝐧𝐜 𝒕𝟎, 𝒕𝟏, 𝒕𝟐, 𝒕𝟑, 𝒕𝟒

𝐒𝐲𝐧𝐜 𝒕𝟐, 𝒕𝟑, 𝒕𝟒 𝐒𝐲𝐧𝐜 𝒕𝟐, 𝒕𝟑, 𝒕𝟒

𝐒𝐲𝐧𝐜 𝒕𝟎, 𝒕𝟏

𝐒𝐲𝐧𝐜 𝒕𝟐, 𝒕𝟑, 𝒕𝟒

𝐒𝐲𝐧𝐜 𝒕𝟐, 𝒕𝟑, 𝒕𝟒

𝐒𝐲𝐧𝐜 𝒕𝟎, 𝒕𝟏

𝐒𝐲𝐧𝐜 𝒕𝟐, 𝒕𝟑, 𝒕𝟒

𝐒𝐲𝐧𝐜 𝒕𝟎, 𝒕𝟏

𝐒𝐲𝐧𝐜 𝒕𝟎, 𝒕𝟏

𝐒𝐲𝐧𝐜 𝒕𝟎, 𝒕𝟏, 𝒕𝟐, 𝒕𝟑, 𝒕𝟒

𝐒𝐲𝐧𝐜 𝒕𝟐, 𝒕𝟑, 𝒕𝟒

Local-res
𝑟0 = 𝑏 − 𝐴𝑥0 𝑒0 = 𝛬0𝑟

0 𝑥 = 𝑥 + 𝑒0

𝑟1 = 𝑏 − 𝐴𝑥1 𝑧 = 𝑃1
0 𝑇

𝑟1 𝑒1 = 𝑃1
0
𝐴1
−1𝑧 𝑥 = 𝑥 + 𝑒1

g
ri

d
 1

g
ri

d
 0

𝐒𝐲𝐧𝐜 𝒕𝟐, 𝒕𝟑, 𝒕𝟒 𝐒𝐲𝐧𝐜 𝒕𝟐, 𝒕𝟑, 𝒕𝟒 𝐒𝐲𝐧𝐜 𝒕𝟐, 𝒕𝟑, 𝒕𝟒

𝐒𝐲𝐧𝐜 𝒕𝟎, 𝒕𝟏𝐒𝐲𝐧𝐜 𝒕𝟎, 𝒕𝟏
𝐒𝐲𝐧𝐜 𝒕𝟎, 𝒕𝟏

𝐒𝐲𝐧𝐜 𝒕𝟎, 𝒕𝟏, 𝒕𝟐, 𝒕𝟑, 𝒕𝟒
𝐒𝐲𝐧𝐜 𝒕𝟐, 𝒕𝟑, 𝒕𝟒 𝐒𝐲𝐧𝐜 𝒕𝟐, 𝒕𝟑, 𝒕𝟒 𝐒𝐲𝐧𝐜 𝒕𝟐, 𝒕𝟑, 𝒕𝟒

𝐒𝐲𝐧𝐜 𝒕𝟎, 𝒕𝟏 𝐒𝐲𝐧𝐜 𝒕𝟎, 𝒕𝟏

𝐒𝐲𝐧𝐜 𝒕𝟐, 𝒕𝟑, 𝒕𝟒

Figure 4.3: Global-res and local-res partitionings for the Multadd example presented in
Section 4.3 for each step of the computation of the updates e0 and e1. Arrows denote mov-
ing to the next step of the computation. Sync() denotes a synchronization point, where the
list of threads passed to Sync() denotes the threads that synchronize. Blue Sync() denotes
a synchronization for asynchronous multigrid, and red Sync() denotes a synchronization
point for synchronous multigrid. Colored points denote points used in a calculation, where
t0 is assigned the purple points, t1 is assigned the yellow points, t2 is assigned the blue
points, t3 is assigned the orange points, and t4 is assigned the green points. Gray points
denote points not used in a calculation.

computation per thread.

As mentioned earlier, when multiple updates are added to the global variable x (x and r

in the case of global-res), we must handle race conditions since threads assigned to different

grids update x concurrently. One option is to use a mutex lock. For this option, all grids

have a master thread. All threads assigned to grid k block until the master thread for grid

k acquires a mutex lock. Once the lock is acquired, the variable is updated by all threads

assigned to grid k using a parallel for loop. We call this option the lock-write option. The

second option is to use an atomic fetch-and-add operation inside the parfor loop. We call

this option the atomic-write option.

We can now write asynchronous multigrid, as shown in Algorithm 11. In the algorithm:

• The k superscript denotes a variable stored in the local memory of grid k.

• For grid k, the operations Smooth(), Prolong(), Restrict(), Read(), Axk, and x + ek

are carried using blocking parallel for loops (threads synchronize after completing

99

the loop), where only the threads assigned to k carry out the loops.

• x and r are global, i.e., can be accessed by any grid.

• The flag rescomp type (local or global) specifies whether global-res or local-res is

used.

• The Write() operation handles race conditions (explained above) when writing to a

global variable.

• The GlobalParFor loop is executed by all threads, which is the global computation

of the residual for global-res. The No Wait denotes a non-blocking parallel for loop,

which is conceptually the same as adding a “no wait” clause to an OpenMP parfor

loop.

• In lines 19-26, the residual can instead be computed as r = r−Ae instead of r = b−Ax

as outlined in Section 4.2.

Algorithm 11: Asynchronous multigrid for grid k
1 Initialize rk0 = r = b ▷ initialize local residuals
2 while grid k has not converged do ▷ procedure for grid k
3 rkk = Restrict(rk0)
4 if k == ` then
5 ekk = Smooth(Ak, r

k
k)

6 else
7 ekk = ExactSolve(Ak, r

k
k)

8 end
9 ek0 = Prolong(ekk)

10 x = Write(x + ek0) ▷ add to x
11 xk = Read(x) ▷ store x to local memory
12 if rescomp type == local then
13 rk0 = b −Axk ▷ recompute local residual
14 else
15 No Wait GlobalParfor i = 1, . . . , n do
16 ri = Write(bi −∑n

j=1 aijxj) ▷ compute global residual
17 end
18 rk0 = Read(r) ▷ store r to local memory
19 end
20 end

100

In terms of the models presented in Section 4.2, only local-res with the lock-write

option can be modeled by semi-async (Equation 4.4). All other variations of Algorithm 11

can be modeled by full-async (Equations 4.5 and 4.8).

4.3.2 Experimental Results

Test Framework

For our numerical results, we used an Intel Xeon Phi Knights Landing (KNL) proces-

sor with 68 cores and 272 threads. We implemented synchronous multigrid (Mult) using

OpenMP parallel for loops with static scheduling. For synchronous Multadd and AFACx,

each grid was assigned threads in the same way as the asynchronous local-res implementa-

tion. This thread partitioning is used only to compute updates concurrently. At the end of a

single cycle, all threads synchronize and carry out an SpMV to compute the residual using

an OpenMP parallel for loop. This is the same way the residual is computed in Mult.

We experimented with four different smoothers: weighted Jacobi (ω-Jacobi), `1-

Jacobi [63], hybrid Jacobi Gauss-Seidel (hybrid JGS) [63], and asynchronous Gauss-Seidel

(async GS). As in ω-Jacobi, `1-Jacobi uses a diagonal smoothing matrix, where the diag-

onal entries are the L1 norms of the rows of A, i.e., Mii = ∑nj=1 ∣aij ∣. It can be shown that

if A is symmetric and positive-definite, the error monotonically decreases in the A-norm

when `1-Jacobi is used as a smoother.

The hybrid Jacobi Gauss-Seidel smoother can be thought of as an inexact block Ja-

cobi method where the blocks are solved inexactly using a small number of Gauss-Seidel

sweeps. In our experiments, we only consider using one sweep. For parallel smoothers, the

number of subdomains is equal to the number of processes or threads, making the method

highly parallel. However, without proper weighting [82] or using an `1 variation of the

method [63], the method can diverge if many subdomains are used. Asynchronous Gauss-

Seidel is an asynchronous version of hybrid JGS. For a shared memory implementation, a

thread relaxes a subset of rows (approximately n/p rows), and immediately writes the new

101

information to memory after each relaxation. This means that information that is read from

memory could be a mix of new and old information, which is modeled in Equation 2.5.

We used BoomerAMG [81] to generate the prolongation and coarse grid matrices for

all our multigrid methods. For Multadd, if `1-Jacobi was used as a smoother, we used the

`1-Jacobi iteration matrix to construct the smoothed interpolants. For all other smoothers,

we used the ω-Jacobi iteration matrix. We did this for performance reasons, i.e., we wanted

to keep the smoothed interpolants sparse, even though the convergence may be slower

than when using a hybrid or asynchronous smoother. For example, for a V(1,1)-cycle of

Multadd with hybrid JGS, P
k

k+1 = (I −ωD−1
k P

k
k+1) and Λk is the block diagonal matrix with

blocks L−1
k1, . . . , L

−1
kp, where Lki is the lower triangular part of block i of Ak, for i = 1, . . . , p.

In our results, we only consider using one smoothing sweep since it is not clear how to do

multiple sweeps with Multadd while keeping the smoothed interpolants fixed.

We used four sets of test matrices with different problem sizes within each set. Two of

these sets were generated using the MFEM software package [83]:

• The three-dimensional Laplace matrices in a cube discretized using the 7-point and

27-point centered difference methods. We will refer to these two sets as 7pt and 27pt.

• The three-dimensional Laplace matrices in a sphere discretized using a NURBS

mesh [84] and H1 nodal finite elements. These matrices were generated using the

MFEM package [83]. We will refer to these matrices as MFEM Laplace.

• Three-dimensional linear elasticity matrices modeling a multi-material cantilever

beam using a tetrahedral mesh and H1 nodal finite elements. These matrices were

generated using the MFEM package [83]. We will refer to these matrices as MFEM

Elasticity.

We used random right-hand sides with values in [−1,1].

Convergence detection for asynchronous methods is not a trivial task (see Chapter 2).

In our implementations, we do not try to detect when the global relative residual norm

102

∥r∥2/∥b∥2 falls below some specified tolerance τ . This would require a subset of grids

to compute a norm, which is an extra delay on that grid, and the relative residual norm

generally does not monotonically decrease. There are two convergence criteria we use to

detect when tmax V-cycles have been carried out:

• Criterion 1: A grid immediately breaks from the main loop when it has computed

tmax updates. This means that grids can finish iterating before other grids have fin-

ished. This is the same criterion used in the simulations in Section 4.2.

• Criterion 2: A single master thread is in charge of making sure all grids have com-

puted at least tmax updates. This thread then sets a flag indicating that the iteration

must terminate. For a thread that is not the master, it reads this flag after finish-

ing computing an update. If the flag is not set, the thread computes another update.

Otherwise, it exits the main solve loop.

To find the wall-clock time required to reduce ∥r∥2/∥b∥2 below some tolerance, we plot

∥r∥2/∥b∥2 versus wall-clock time, saving time stamps of ∥r∥2/∥b∥2 for doing a small to large

number of cycles, e.g., we do 5,10, . . . ,100 V-cycles, saving ∥r∥2/∥b∥2 and the wall-clock

time for each number of V(1,1)-cycles. When saving the wall-clock times, we do multiple

runs for each number of cycles and take the mean of the wall-clock times for those runs

(for asynchronous methods, we also take the mean of the relative residual 2-norms). We

then find the wall-clock time corresponding to the first occurrence of ∥r∥2/∥b∥2 < τ . For all

our experiments, we took the average of 20 runs and set τ = 10−9.

Grid-size Independent Convergence

We first show that asynchronous multigrid methods can exhibit grid-size independent con-

vergence. Figure 4.4 shows ∥r∥2/∥b∥2 after 20 V(1,1)-cycles (see Section 4.3.2 for how a

V-cycle is defined in the asynchronous case) versus the grid length for the 7pt and 27pt test

sets (a grid length of 40 denotes a 40 × 40 × 40 mesh) using 68 threads. Each data point

103

7pt
ω-Jacobi async GS

40 50 60 70 80

Grid Length

10
-10

10
-8

10
-6

10
-4

10
-2

R
el

.
R

es
.
2
-n

o
rm

sync mult

sync afacx

afacx, lock-write

multadd, lock-write, global-res

multadd, lock-write, local-res

multadd, atomic-write, local-res

40 50 60 70 80

Grid Length

10
-10

10
-8

10
-6

10
-4

10
-2

R
el

.
R

es
.
2
-n

o
rm

27pt
ω-Jacobi async GS

40 50 60 70 80

Grid Length

10
-10

10
-8

10
-6

10
-4

10
-2

R
el

.
R

es
.
2
-n

o
rm

40 50 60 70 80

Grid Length

10
-10

10
-8

10
-6

10
-4

10
-2

R
el

.
R

es
.
2
-n

o
rm

Figure 4.4: Relative residual 2-norm versus grid length for 20 V(1,1)-cycles and 68 threads.
Results for the 7pt and 27pt test sets are shown. For each test set, results for two smoothers
are shown. For the asynchronous methods, we used Criterion 1 as our stopping criterion
(see Section 4.3.2), and each data point is the mean relative residual 2-norm of 20 runs.
The figures show that asynchronous multigrid methods can exhibit grid-size independent
convergence.

is the mean ∥r∥2/∥b∥2 of 20 runs. For the asynchronous methods, we used Criterion 1 for

convergence detection (see Section 4.3). Results for ω-Jacobi and async GS smoothing are

shown. For our BoomerAMG options, we chose HMIS coarsening with one aggressive

level, and classical modified interpolation. If “sync” is written next to a legend entry, the

method is synchronous. Otherwise, the method is asynchronous.

Figure 4.4 shows that all the asynchronous methods approximately achieve grid-size

independent convergence, even when using async GS as the smoother. We can also see that

104

ω-Jacobi async GS

10
3

10
4

10
5

Num Rows

10
-15

10
-10

10
-5

R
el

.
R

es
.

2
-n

o
rm

sync mult

multadd, atomic-write, local-res

multadd, lock-write, local-res

10
3

10
4

10
5

Num Rows

10
-15

10
-10

10
-5

R
e
l.

 R
e
s
.

2
-n

o
rm

Figure 4.5: Relative residual 2-norm versus number of rows for 20 V(1,1)-cycles and 68
threads. The MFEM Laplace matrix is used and results for the ω-Jacobi and async GS
smoothers are shown. The figures show that asynchronous multigrid can exhibit grid-size
independent convergence.

in most cases, global-res results in a solver that converges more slowly than when using

local-res. This is due to grids using fine grid residual values that are delayed. In other

words, since the threads assigned to grid k compute an update using values of r0 that are

computed exclusively by other grids, grid k could be using very old values if another update

is delayed. Figure 4.5 shows the same experiment but with the MFEM Laplace test set

and no aggressive coarsening. Multadd local-res lock-write exhibits grid-size independent

convergence. AFACx (synchronous and asynchronous) and Multadd global-res did not

exhibit grid-size independent convergence for this test set.

Wall-clock Time for Reducing ∥r∥2/∥b∥2 < 10−9

Table 4.1 shows results for four test matrices, one from each test set, and 272 threads. For

the asynchronous methods, we used Criterion 2 for convergence detection (see Section 4.3).

Updates is the average number of updates over all grids. For each test matrix, results for

four smoothers are shown. For our BoomerAMG options, we chose HMIS coarsening with

two aggressive levels, and classical modified interpolation. The r- prefix in r-Multadd

denotes that Multadd was implemented using the residual-based implementation (in Sec-

105

tion 4.3, see the last bullet of the explanation of Algorithm 11). These results show that,

with the exception of async GS for the MFEM Elasticity matrix, asynchronous Multadd

requires the lowest wall-clock time, even if it requires more computation than Mult (higher

number in the updates column). Additionally, using atomic operations is slower than using

locks, with the exception of r-Multadd for the MFEM Laplace matrix with the async GS

smoother. In some cases (MFEM Laplace with ω-Jacobi smoothing, and 7pt with hybrid

JGS smoothing), global-res is the best solver. In most cases, local-res is the best solver

since it requires significantly fewer V-cycles to converge. Finally, using async GS smooth-

ing always requires the lowest number of V(1,1)-cycles and least wall-clock time compared

to the other smoothers.

Strong Scaling

Figure 4.6 shows the wall-clock time versus the number of threads for the same four ma-

trices from Table 4.1. The BoomerAMG options are the same options used in Table 4.1

and w-Jacobi smoothing is used. Each subfigure shows three methods: sync Mult, sync

Multadd lock-write, and Multadd lock-write local-res. In all subfigures, we can see that

with a low number of threads, Mult is typically the fastest since synchronization is not a

large cost compared to the cost of computation. However, asynchronous Multadd is the

fastest for a sufficiently large number of threads, and scales better, i.e., as the number of

threads increases, the wall-clock time of asynchronous Multadd does not increase as much

as that of Mult. This provides a good outlook for distributed memory, where the number

of parallel processes is orders of magnitude higher, and in the case of exascale machines,

the problem size per process may be quite small. We also see that synchronous Multadd

scales better than Mult, demonstrating that computing updates concurrently can be benefi-

cial. This is because there is only global communication on the fine grid for synchronous

Multadd, whereas for Mult, there is global synchronization on every grid.

106

Table 4.1: Timing results for four test matrices, and for each matrix, four smoothers. 272
threads are used. For each smoother, results for all multigrid methods are shown (see
Section 4.3 for explanations of lock-write, atomic-write, local-res, and global-res). The †
marker indicates that a method diverged. For each smoother, the bolded number indicates
the lowest wall-clock time among all the methods. These results show that asynchronous
Multadd is generally faster than the classical multiplicative multigrid method (Mult) in
terms of wall-clock time, and async GS is the best smoother for all matrices.

7pt: 27,000 rows and 183,600 non-zero values
ω-Jacobi, ω = .9 `1-Jacobi hybrid JGS async GS

method time updates V-cycles time updates V-cycles time updates V-cycles time updates V-cycles

sync Mult 0.1164 75 75 0.1927 120 120 0.1009 65 65 0.0828 55 55
sync Multadd, lock-write 0.0305 75 75 0.0490 120 120 0.0405 100 100 0.0323 80 80
sync Multadd, atomic-write 0.0299 75 75 0.0465 120 120 0.0393 100 100 0.0322 80 80
sync AFACx, lock-write 0.0489 135 135 † † † 0.0420 115 115 0.0339 95 95
sync AFACx, atomic-write 0.0481 135 135 † † † 0.0418 115 115 0.0337 95 95
AFACx, lock-write 0.0429 154 110 † † † 0.0430 142 110 0.0349 115 90
AFACx, atomic-write 0.0575 160 120 † † † 0.0533 138 110 0.0466 121 95
Multadd, lock-write, global-res 0.0249 89 70 † † † 0.0267 97 75 0.0591 192 155
Multadd, lock-write, local-res 0.0200 73 45 0.0326 123 75 0.0269 97 60 0.0203 74 45
Multadd, atomic-write, global-res 0.0286 78 70 † † † 0.0351 97 85 0.0293 80 70
Multadd, atomic-write, local-res 0.0259 71 50 0.0441 123 85 0.0360 98 70 0.0310 86 60
r-Multadd, atomic-write, local-res 0.0257 69 50 0.0452 122 90 0.0359 94 70 0.0281 76 55

27pt: 27,000 rows and 681,472 non-zero values
ω-Jacobi, ω = .9 `1-Jacobi hybrid JGS async GS

method time updates V-cycles time updates V-cycles time updates V-cycles time updates V-cycles

sync Mult 0.0939 65 65 0.1553 105 105 0.0795 55 55 0.0581 40 40
sync Multadd, lock-write 0.0259 65 65 0.0414 105 105 0.0349 90 90 0.0281 70 70
sync Multadd, atomic-write 0.0250 65 65 0.0400 105 105 0.0355 90 90 0.0254 65 65
sync AFACx, lock-write 0.0451 120 120 † † † 0.0383 100 100 0.0282 75 75
sync AFACx, atomic-write 0.0429 120 120 † † † 0.0380 100 100 0.0274 75 75
AFACx, lock-write 0.0420 120 85 † † † 0.0418 110 85 0.0324 85 65
AFACx, atomic-write 0.0465 112 85 † † † 0.0464 108 85 0.0385 90 70
Multadd, lock-write, global-res 0.0254 79 65 † † † 0.0321 119 95 0.0481 150 125
Multadd, lock-write, local-res 0.0206 58 40 0.0304 93 60 0.0280 85 55 0.0231 65 45
Multadd, atomic-write, global-res 0.0339 98 95 † † † 0.0357 105 100 0.0342 99 95
Multadd, atomic-write, local-res 0.0223 56 40 0.0336 89 60 0.0308 81 55 0.0253 65 45
r-Multadd, atomic-write, local-res 0.0254 62 45 0.0362 89 65 0.0391 92 70 0.0282 69 50

MFEM Laplace: 29,521 rows and 781,297 non-zero values
ω-Jacobi, ω = .5 `1-Jacobi hybrid JGS async GS

method time updates V-cycles time updates V-cycles time updates V-cycles time updates V-cycles

sync Mult 0.2404 150 150 0.2473 155 155 † † † 0.0924 60 60
sync Multadd, lock-write 0.0924 150 150 0.0964 155 155 0.0847 140 140 0.0588 95 95
sync Multadd, atomic-write 0.0909 150 150 0.0949 155 155 0.0845 140 140 0.0586 95 95
sync AFACx, lock-write 0.1316 295 295 † † † † † † 0.0572 100 100
sync AFACx, atomic-write 0.1314 295 295 † † † † † † 0.0563 100 100
AFACx, lock-write 0.1442 300 235 † † † † † † 0.0730 135 120
AFACx, atomic-write 0.1532 296 230 † † † † † † 0.0751 127 115
Multadd, lock-write, global-res 0.0737 189 160 † † † 0.0677 177 145 0.0652 166 140
Multadd, lock-write, local-res 0.0782 148 110 0.0818 154 115 0.0636 127 90 0.0513 94 70
Multadd, atomic-write, global-res 0.0788 172 160 † † † 0.0721 159 145 0.0691 147 140
Multadd, atomic-write, local-res 0.0836 149 115 0.0899 158 120 0.0732 135 100 0.0564 97 75
r-Multadd, atomic-write, local-res 0.0790 145 110 0.0845 153 115 0.0644 122 90 0.0512 93 70

MFEM Elasticity: 37,281 rows and 251,617 non-zero values
ω-Jacobi, ω = .5 `1-Jacobi hybrid JGS async GS

method time updates V-cycles time updates V-cycles time updates V-cycles time updates V-cycles

sync Mult 0.3425 190 190 0.3352 190 190 0.1736 100 100 0.1465 85 85
sync Multadd, lock-write 0.1367 190 190 0.1361 190 190 0.1134 165 165 0.0902 125 125
sync Multadd, atomic-write 0.1337 190 190 0.1346 190 190 0.1119 165 165 0.0888 125 125
sync AFACx, lock-write 0.2301 385 385 † † † 0.1150 195 195 0.1109 170 170
sync AFACx, atomic-write 0.2269 385 385 † † † 0.1134 195 195 0.1107 170 170
AFACx, lock-write 0.2103 404 310 † † † † † † 0.1603 268 235
AFACx, atomic-write 0.2378 405 315 † † † † † † 0.2006 301 260
Multadd, lock-write, global-res † † † † † † † † † † † †
Multadd, lock-write, local-res 0.1098 192 145 0.1099 195 145 0.0934 171 125 0.0904 152 115
Multadd, atomic-write, global-res † † † † † † † † † † † †
Multadd, atomic-write, local-res 0.1266 201 160 0.1268 202 160 0.1174 192 150 0.1008 156 125
r-Multadd, atomic-write, local-res 0.1177 193 155 0.1185 195 155 0.1014 169 135 0.0927 150 120

107

7pt 27pt

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

Number of Threads

2
-5

2
-4

2
-3

2
-2

2
-1

W
a
ll

-c
lo

c
k

 T
im

e

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

Number of Threads

2
-5

2
-4

2
-3

2
-2

2
-1

W
al

l-
cl

o
ck

 T
im

e

sync mult

sync multadd

multadd, lock-write, local-res

MFEM Laplace MFEM Elasticity

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

Number of Threads

2
-3.5

2
-3

2
-2.5

2
-2

2
-1.5

2
-1

2
-0.5

2
0

2
0.5

W
a
ll

-c
lo

c
k

 T
im

e

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

Number of Threads

2
-3

2
-2

2
-1

2
0

2
1

W
a
ll

-c
lo

c
k

 T
im

e

Figure 4.6: Wall-clock time versus number of threads for the 7pt, 27pt, MFEM Laplace,
and MFEM Elasticity matrices (see Table 4.1) are shown with ω-Jacobi smoothing. The
BoomerAMG options are the same as that of Table 4.1. The figures show that asynchronous
multigrid is faster than synchronous multigrid for a sufficiently large number of threads,
and typically scales better.

4.4 The AFACj Multigrid Method

We start by returning to the AFACx method, where the steps are carried out by the processes

assigned to grid k after the residual is restricted down to grid k:

1. Compute ek+1 by smoothing on the equations Ak+1ek+1 = rk+1 with an initial guess

of zero.

2. Compute ek by smoothing on the equations Akek = rk with an initial guess of

P k
k+1ek+1.

108

3. On the finest grid, add ek to and subtract ek+1 from x to prevent an over-correction:

x = x + P 0
k (ek − P k

k+1ek+1).

Note that we can avoid redundant prolongation operations by modifying the last two steps

in the following way:

2. Compute ek by smoothing on the equations Akek = rk − AkP k
k+1ek+1 with an initial

guess of zero.

3. On the finest grid, add ek to x: x = x + P 0
k ek.

We can now write AFACx(1,1) in a similar way to BPX (Equation 4.2). Unlike the clas-

sical multiplicative V(1,1)-cycle, the (1,1) notation for AFACx refers to using one smooth-

ing sweep to compute ek+1 and one smoothing sweep to compute ek. This gives us

x(t+1) = x(t) +
`−1

∑
k=0

P 0
kΛk(P 0

k)T r(t), (4.10)

where Λk =M−1
k (Ik −AkP k

k+1M
−1
k+1(P k

k+1)T) if k < `−1 and Λk = A−1
k otherwise. We could

also write the more general AFACx(s1, s2) method, where we use s1 sweeps for computing

ek+1 and s2 sweeps for ek, but for the derivation of AFACj we only consider the (1,1) case.

AFACx(1,1) can be written in terms of smoothed interpolants, which we will call

AFACy, where AFACx(1,1) and AFACy are mathematically equivalent. This done by hav-

ing the computation of ek+1 be done by grid k + 1 instead of grid k. We can write AFACy

as

x(t+1) = x(t) +
`−1

∑
k=0

P 0
1⋯P k−2

k−1P
k−1

k Λk(P 0
k)T r(t), (4.11)

where Λk =M−1
k if k < ` − 1 and Λk = A−1

k otherwise. This is equivalent to BPX but with a

single smoothed interpolant for each grid.

Modifying AFACy to introduce additional smoothed interpolants results in the AFACj(s1, s2)

method. As in the case of AFACy, to derive this method we start with AFACx. When

109

computing ek for grid k, the important variation on AFACx that leads to AFACj is to in-

clude pre-smoothing, i.e., smoothing on Aek = rk before smoothing Aek+1 = rk. Here,

pre-smoothing is different than in the case of classical multiplicative multigrid. With this

variation, we can again write AFACx in terms of smoothed interpolants, as in the case of

AFACy. We will write AFACx as AFACx(s1, s2, s3), where for grid k, s1 is the number

of pre-smoothing sweeps on Akek = rk, s2 is the number of post-smoothing sweeps on

Akek = rk, and s3 is the number smoothing sweeps on Ak+1ek+1 = rk+1. In the original

AFACx method as presented in [73], s1 = 0 since pre-smoothing is not considered.

To incorporate pre-smoothing, first consider the following steps for AFACx(1,1,2),

where bk = (P 0
k)T r0:

1. Pre-smooth on Akxk = bk with zero initial guess: xk =M−T
k bk.

2. Compute residual: rk = bk −Axk.

3. Smooth on Ak+1ek+1 = (P k
k+1)T rk with zero initial guess: ek+1 = Λk+1(P k

k+1)T rk.

4. correct: xk = xk + P k
k+1ek+1.

5. post-smooth on Akxk = bk: xk = xk +M−1
k (bk −Akxk).

6. subtract to prevent over-correction: xk = xk − P k
k+1M

−1
k+1(P k

k+1)T bk.

7. Interpolate xk to the finest grid and add to the current approximation to the solution.

Note that steps 3-7 are the same as in AFACx(0,1,1), i.e., the classical AFACx that we

have been considering up until now, but (P 0
k+1)T r0 is used as the right-hand side when

computing ek+1 and Λk+1 =M−1
k+1. Let C = P k

k+1Λk+1(P k
k+1)T . Writing out xk in terms of bk

110

and collecting terms:

xk = [(M−1
k +M−T

k −M−1
k AkM

−T
k)−

CAkM
−T
k −M−1

k AkC +M−1
k AkCAkM

−T
k]bk

xk = [Λk −CAkM−T
k −M−1

k AkC +M−1
k AkCAkM

−T
k] bk,

(4.12)

where Λk =M−1
k +M−T

k −M−1
k AkM−T

k . This shows that the symmetrized smoothing matrix

plus a perturbation is multiplied by bk. If we set Λk+1 to also be the symmetrized smoothing

matrix, two smoothing sweeps are used to compute ek+1, which is why s3 = 2 in this case.

To derive AFACy(1,1,2), we move the perturbation down a grid. For grid k + 1 this gives

us

xk+1 = [P k
k+1Λk+1(P k

k+1)T −CAkM−T
k −M−1

k AkC +M−1
k AkCAkM

−T
k] bk

= (Ik −M−1
k Ak)C(Ik −AkM−T

k)bk

= P k

k+1Λk+1(P
k

k+1)T bk,

(4.13)

This gives us the AFACy(1,1,2) method.

If we generalize this idea to include more smoothed interpolants, we have the AFACj

method. Specifically, s1 smoothed prolongation matrices and s2 smoothed restriction ma-

trices., which gives us the AFACj(s1, s2) method. For example, AFACj(2,2) can be written

as

x(t+1) = x(t) +
`−1

∑
k=0

P 0
1⋯P k−3

k−2P
k−2

k−1P
k−1

k Λk(P
k−1

k)T (P k−2

k−1)T (P k−3
k−2)T⋯(P 0

1)T r(t), (4.14)

where Λk =M−T
k +M−1

k −M−T
k AkM−1

k if k < ` − 1 and Λk = A−1
k otherwise.

While we do not present any analytical convergence results for AFACj, we have

found that in practice AFACj converges faster than AFACx in terms of number of it-

erations. Figure 4.7 shows the relative residual 2-norm versus number of cycles for

111

0 5 10 15 20

Number of Iterations

10
-10

10
-5

10
0

R
e
la

ti
v
e
 R

e
s
id

u
a
l
2
-n

o
rm

Multadd

AFACx(2,2,0)

AFACj(1,1)

Figure 4.7: Relative residual 2-norm versus number of iterations for Multadd,
AFACx(2,2,0), and AFACj(1,1). All methods are synchronous. The test problem is the
five-point centered-difference discretization of the 2D Laplace equation on a 1024 × 1024
grid.

Multadd, AFACx(2,2,0), and AFACj(1,1). For this experiment, all methods are syn-

chronous. We include AFACx(2,2,0) since the same amount of computation is car-

ried out in AFACx(2,2,0) and AFACj(1,1). The test problem is the five-point centered-

difference discretization of the 2D Laplace equation on a 1024 × 1024 grid. Weighted

Jacobi smoothing is used with a weight of 4/5, which is optimal for Multadd. The results

show that AFACj(1,1) converges significantly faster than AFACx(2,2,0). Additionally,

while AFACj(1,1) converges more slowly than Multadd, AFACj(1,1) and Multadd have

approximately the same convergence rate.

4.5 Asynchronous Multigrid for Distributed Memory

4.5.1 Implementation

Our implementation of asynchronous multigrid is a distributed memory implementation of

the local-res algorithm presented in [65]. In [65], the local-res algorithm was implemented

in shared memory. In the local-res algorithm, each grid k is assigned a set of threads and

those threads synchronously compute the update for grid k. Each thread is assigned to

112

one grid so that threads from different grids do not synchronize. This assignment is static,

i.e., this assignment does not change during the solve phase. Threads are assigned to grids

such that the computational cost per process is approximately balanced. The current ap-

proximation to the solution x is a shared variable, where the threads assigned to grid k

atomically read x from shared memory in order to compute the update for grid k. After an

update is computed, it is atomically added to x. For our distributed memory implementa-

tion, two important things are considered that make our implementation different from the

shared memory implementation in [65]: how information is communicated such that the

our implementation is asynchronous, and where x is stored.

An example of a process assignment to grids is as follows, where we consider a total of

seven processes and three grids (this is an artificial example and does not come from any

real problem):

x(t+1) = x(t) + Λ0r
(t)

²
p0,p1

+P 0

1Λ1(P
0

1)T r(t)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

p2,p3

+P 0

2A
−1
2 (P 0

2)T r(t)
´¹¹¸¹¹¶

p4,p5,p6

. (4.15)

In this example, processes p0 and p1 compute the update for grid 0 (this is just a smooth-

ing step), processes p2 and p3 compute the update for grid 1, and processes p4, p5, and p6

compute the update for grid 2. All of these updates are computed concurrently. Addition-

ally, with the exception of grid 0, each update is computed synchronously, e.g., processes

p2 and p3 must synchronize after each step. These steps are the multiplication of P
0

1, Λ1,

and (P 0

1)T r(t) with a vector, the computation of the residual, and the computation of the

residual norm for checking convergence.

Unlike the shared memory implementation in [65] where x is shared with all threads, in

our implementation the processes assigned to grid k store a version of x that is distributed

among these processes. This means that there are ` versions of x, each version distributed

among the processes assigned to each grid. After a grid k computes an update, it sends the

update to all processes not assigned to grid k (inter grid communication, explained below).

113

A process assigned to grid j ≠ k then adds the update from k to its version of x. If we

instead only had one version stored by all the processes (or a subset of all the processes),

processes would need to wait to receive new values of x, making the implementation syn-

chronous. If the processes assigned to grid k did not wait and simply used the same values

of x to compute the next update, an over-correction could occur and the method could di-

verge. We will refer to the version of x on grid k as the local vector x(tk,k). Here, the

superscript (tk, k) refers to a vector local to grid k with local iteration number tk. The

processes assigned to grid k also store a local residual vector r(tk,k). In the synchronous

case, all tk values are the same for all k.

Our implementation consists of two types of communications: intra grid communica-

tion and inter grid communication. Before explaining these two types of communication,

the following steps are the most important in our implementation. These steps occur on

some grid k:

1. Compute the update Bk(x(tk,k)) (intra grid communication).

2. Send the update to all other grids. Receive updates from other grids and add them to

x(tk,k) (inter grid communication).

3. Compute the residual r(tk,k) = b −Ax(tk,k) (intra grid communication).

Intra grid communication is the communication between processes assigned to the same

grid. It is used in matrix-vector products (communication of elements in the vector corre-

sponding to off-diagonal values in the matrix) and inner products (reduction operations).

Matrix-vector products are used for computing the update and residual, and inner products

are used for computing the residual norm which is needed for checking the stopping cri-

terion. This is similar to communication in a typical synchronous multiplicative multigrid

implementation. Intra grid communication is also used for asynchronous smoothing. For

the Jacobi smoother, our implementation only allows for asynchronous smoothing on grid

zero since there is no benefit to using additional smoothing sweeps on coarser grids unless

114

there are also additional applications of the smoothing iteration matrix to the smoothed

interpolants, which is due to how Multadd is derived.

The primary part of our implementation is the inter grid communication, which is the

communication of updates. Inter grid communication occurs between processes assigned

to different grids. Since each grid stores a copy of x(t), an update on one grid needs to

be sent to all other grids in order for all copies of x(t) to be equal when the iteration has

converged. We say that process q is an inter grid neighbor of process p if p needs to send

data to q. We define Ωp,q as the set of indices from the partition belonging to p that p needs

to send to q. Similarly, we define Γp,q as the set of indices from the partition of p that p

needs to receive from q.

Returning to our example, Figure 4.8 shows the intra and inter grid communication of

p0 (p0 is rank 0 in the figure). The hierarchy of grids needed for the updates of grids 0 to

2 are shown from left to right, where the processes assigned to grid 0 only smooth on the

finest grid and the processes assigned to grid 2 restrict the residual down two grids where an

exact solve is carried out. The colored blocks denote the partitionings of x(tk,k) (and r(tk,k))

for the processes assigned to each grid. These partitionings are used in the matrix-vector

products when computing updates. The blue arrows denote inter grid communication and

the brown arrow denotes intra grid communication. For the inter grid communication, we

can see that p0 must send its sub-vector to p2 and p3 on grid one and p5 and p6 on grid

two. For the intra grid communication, p0 just needs to send boundary points to p1 which is

needed for matrix-vector products. Note that for grids one and two, there is also intra grid

communication on coarser grids.

We used non-blocking two-sided MPI functions for the inter grid communication. Us-

ing one-sided MPI is also an option, but, as shown in [61], messages sometimes do not

complete, and the performance of one-sided MPI can vary widely from system to system.

Future work would be to integrate one-sided communication into implementation for sys-

tems where one-sided performs well. We used the BoomerAMG package to construct the

115

Inter grid communication

from rank 0 to ranks 2, 3, 5 and 6

}

Intra grid communication

from rank 0 to rank 1

Ω0,2, Ω0,5 Ω0,3, Ω0,6 Γ2,0 Γ3,0 Γ5,0 Γ6,0

Figure 4.8: Inter and intra grid communication of process p0 for the example in Sec-
tion 4.5.1.

restriction, prolongation, and coarse grid matrices. Since intra grid communication is built

into BoomerAMG, we did not need to implement our own intra grid communication except

in the case of the fine grid asynchronous smoother.

For each inter grid neighbor an MPI Isend() and MPI Irecv() is always posted.

MPI Test() is used to check for the completion of MPI Isend() and MPI Irecv().

Since the send buffer used in MPI Isend() cannot be overwritten until the MPI Isend()

completes, the user can specify the maximum number of in-flight messages, a concept in-

troduced in [17]. This specifies how many MPI Isend() calls can be simultaneously

outstanding, where each MPI Isend() has a separate send buffer that is allocated.

Algorithm 12 shows asynchronous multigrid implemented with non-blocking two-sided

MPI. First, the update for grid k is computed (line 2). For grid zero, asynchronous smooth-

ing can be used to compute the update. After the update is computed, inter grid com-

munication is carried out (lines 4-19). For each inter grid neighbor of each process as-

signed to grid (Pk is the set of processes assigned to grid k), the number of in-flight

messages is checked inside CheckInflight() based on the rules outlined in the pre-

vious paragraph. Note that MPI Test() is used inside CheckInflight(). If the

check fails, i.e., it is determined that no new message should be sent, e(tk,k)Ωi
is saved

in accum buff[i]. The notation [:] denotes an array or vector operation where

116

all elements of an array are acted upon. For the operation accum buff[i][:] +=

e
(tk,k)
Ωi

[:], each element of accum buff[i] is accumulated by the corresponding ele-

ment of e(tk,k)Ωi
, where accum buff[i] and e(tk,k)Ωi

are the same length. If the in-flight

check passes, accum buff[i] is copied into send buff[i][j], an MPI Isend()

is posted, and accum buff[i] is reset to zero. After the send phase is complete, out-

standing MPI Irecv() calls are checked for completion. If an MPI Irecv() has com-

pleted, x(tk,k) is updated and a new MPI Irecv() is posted. Finally, the residual r(tk,k)

117

is computed.
Algorithm 12: Asynchronous multigrid using non-blocking two-sided MPI func-

tions

1 while not converged on grid k do

2 e(tk,k) = Bk(x(tk,k)) ▷ compute update (intra grid communication)

3 x(tk,k) = x(tk,k) + e(tk,k) ▷ correction of local x with local update

4 for all p ∈ Pk do ▷ do inter grid communication for each process assigned to grid k

5 for each inter grid neighbor i of process p do

6 accum buff[i][:] += e(tk,k)Ωi
[:] ▷ save send data

7 [inflight flag, j] = CheckInflight(send requests[i])

8 if inflight flag then

9 accum buff[i][:] = send buff[i][j][:] ▷ copy saved data to send buffer

10 MPI Isend(send buff[i][j],..., send requests[i]) ▷

non-blocking send

11 accum buff[i][:] = 0 ▷ reset buffer to save future send data

12 end

13 MPI Test(recv requests[i], &flag,...) ▷ check completion of receive

14 if flag then

15 x
(tk,k)
Γi

[:] += recv buff[i][:] ▷ update local x

16 MPI Irecv(recv buff[i],..., recv requests[i]) ▷ non-blocking

receive

17 end

18 end

19 end

20 r(tk,k) = b −Ax(tk,k) ▷ compute new local residual (intra grid communication)

21 tk = tk + 1

22 end

For determining convergence, we have two criteria that we consider. For convergence

criterion 1, a process p does not stop until it has met some local convergence criterion. For

convergence criterion 2, a process p does not stop until it and all its inter grid neighbors have

met some local convergence criterion. Unlike convergence criterion 1, this prevents process

118

p from prematurely stopping when the neighbors of process p still have many updates to

perform. Stopping too early when other grids have many more updates to perform can result

in slow convergence, which we will see in Section 4.5.2. For convergence criterion 2, the

following steps are completed by process p before stopping, where process p is assigned to

grid k:

1. Check the local convergence criterion. This occurs when either ∥r(tk,k)∥ < τ or

tk < tmax, where τ is some prescribed threshold and tmax is the maximum number

of updates. This is done using MPI Allreduce() with all processes in Pk.

2. A flag is then appended to all outgoing inter grid messages indicating that process p

has met the local convergence criterion.

3. Once process p has received the same flags from all inter grid neighbors, process p

communicates this to all processes in Pk using MPI Allreduce(). In the case that

the inter grid neighbors of process p have all met their local convergence criterion be-

fore process p, the MPI Allreduce() call can be combined with the residual norm

computation. If all processes in Pk have reached this step, process p has completed

and exits the outer solve loop.

If process p is assigned to grid zero and asynchronous smoothing is being used, process p

does not check any local convergence criterion and computes updates until all other grids

have stopped, i.e., process p only needs to complete step two. For convergence criterion 1,

process p simply exits the solve loop after step 2 above. Note that a termination message

still needs to be sent to inter grid neighbors in order for all messages to be completed. This

is because inter grid neighbors need to know when to stop checking for messages.

4.5.2 Experimental Results

We used the Lassen computer housed at Lawrence Livermore National Laboratory. Each

node contains two 22-core IBM Power9 processors and four NVIDIA Tesla V100 GPUs.

119

The nodes are connected using an EDR InfiniBand interconnect. For our test problems,

we used matrices coming from a 27-point centered difference discretization of the Poisson

equation, and four matrices from the SuiteSparse matrix collection, as shown in Table 4.2.

All of our test problems are SPD. We compared our asynchronous multigrid solvers with

the classical multiplicative V(1,1)-cycle implemented in the BoomerAMG package. We

also used BoomerAMG to construct the interpolants and coarse grid operators and used

PMIS as the coarsening scheme. We used Jacobi and asynchronous Jacobi using the weight

ω = 1/λmax(D−1A), which is often a good choice for smoothing in algebraic multigrid [82].

For each experiment, ten separate runs are carried out.

In all our experiments, we use four MPI processes per node with one thread per MPI

process where each MPI processes uses a single GPU for all its computation. This compu-

tation includes sparse matrix-vector products and SAXPY operations. We used the single

GPU kernels included in Hypre [85], which call cuSPARSE kernels for sparse matrix-

vector products and Thrust kernels for SAXPY operations.

Table 4.2: Statistics for the SuiteSparse Matrix Collection test matrices. All matrices are
symmetric positive definite.

Matrix Equations Non-zeros Number of Grids

Queen 4147 4,147,110 316,548,962 11
Flan 1565 1,564,794 114,165,372 9
Serena 1,391,349 64,131,971 9
Geo 1438 1,437,960 60,236,322 10

We used a maximum of one in-flight message for our asynchronous solvers in all our

experiments, which gave us the best performance. The performance degradation when

using more than one maximum number of in-flight messages is due to the cost of packing

and unpacking buffers. Table 4.3 shows the wall-clock time and mean number of updates

over all grids when increasing the maximum number of in-flight messages for Queen 4147

when using asynchronous Multadd with asynchronous Jacobi. A relative residual norm

tolerance of 10−6 is used with convergence criterion 2. We can see that as the maximum

120

number of in-flight messages increases, the number of iterations initially decreases and then

increases, indicating that throughput of the communication network is fully utilized when

a maximum number of two in-flight messages is used. However, we can also see that as

the maximum number of in-flight messages increases, the wall-clock time also increases,

where the increase in wall-clock time from packing and unpacking buffers is greater than

the performance gain from converging in overall fewer updates. In other words, the time per

update increases dramatically as we increase the maximum number of in-flight messages.

This result has also been documented in [17] for asynchronous Jacobi.

Table 4.3: Wall-clock time and mean number of updates when varying the maximum num-
ber of in-flight messages. The Multadd solver with asynchronous Jacobi smoothing is
used. The Queen 4147 problem is being solved. A relative residual norm tolerance of 10−6

is used with convergence criterion 2.

Max In-flight Mean Wall-clock Time Mean Number of Updates

1 6.48385 193.90
2 6.66103 143.83
3 7.63114 148.47
5 8.29311 167.83
10 11.3593 217.69

Figure 4.9 shows the relative residual 2-norm versus grid length for the 27pt test us-

ing 16 nodes (64 MPI processes). Results for both asynchronous convergence criteria are

shown. For the asynchronous methods, tmax = 10, i.e., the local convergence criterion is

met when 10 updates are completed. For Mult, 10 iterations are carried out. Grid length

denotes the number of grid points of each side of the three dimensional grid, so the ma-

trix has a number of rows equal to the cubed grid length. The first column of plots shows

Mult, asynchronous Multadd (aMultadd), and aMultadd with asynchronous Jacobi (async

J) as the smoother on the finest grid. We can see that in the case of convergence criterion 1,

where aMultadd does the same amount of computation as in the synchronous Multadd case,

we see approximate grid-size independent convergence when synchronous Jacobi is used as

the smoother. This means that even if some grids stop updating before others have finished,

121

Convergence Criterion 1
aAFACj, Jacobi aAFACj, async J

60 90 120 150 180

Grid Length

10
-6

10
-4

10
-2

R
e
la

ti
v
e
 R

e
s
id

u
a
l
2
-n

o
rm

mult

aMultadd

aMultadd, async J

60 90 120 150 180

Grid Length

10
-6

10
-4

10
-2

R
e
la

ti
v
e
 R

e
s
id

u
a
l
2
-n

o
rm

AFACj(2,2)

AFACj(3,3)

AFACj(4,4)

AFACj(5,5)

AFACj(6,6)

AFACj(7,7)

60 90 120 150 180

Grid Length

10
-6

10
-4

10
-2

R
e
la

ti
v
e
 R

e
s
id

u
a
l
2
-n

o
rm

Convergence Criterion 2

60 90 120 150 180

Grid Length

10
-6

10
-5

10
-4

10
-3

10
-2

R
e
la

ti
v
e
 R

e
s
id

u
a
l
2
-n

o
rm

60 90 120 150 180

Grid Length

10
-6

10
-5

10
-4

10
-3

10
-2

R
e
la

ti
v
e
 R

e
s
id

u
a
l
2
-n

o
rm

60 90 120 150 180

Grid Length

10
-6

10
-5

10
-4

10
-3

10
-2

R
e
la

ti
v
e
 R

e
s
id

u
a
l
2
-n

o
rm

60 90 120 150 180

Grid Length

10
1

10
2

N
u
m

b
e
r

o
f
It
e
ra

ti
o
n
s

60 90 120 150 180

Grid Length

10
2

N
u
m

b
e
r

o
f
It
e
ra

ti
o
n
s

60 90 120 150 180

Grid Length

10
2

10
3

N
u
m

b
e
r

o
f
It
e
ra

ti
o
n
s

Figure 4.9: Relative residual 2-norm versus grid length for the 27pt test set using 16
nodes (64 MPI processes). The local convergence criterion is tmax = 10 for the asyn-
chronous methods. For Mult, 10 iterations are carried out. The first column of plots shows
Mult, asynchronous Multadd (aMultadd), and aMultadd with asynchronous Jacobi as the
smoother on the finest grid. The second and third columns of plots show asynchronous
AFACj (aAFACj) and aAFACj with asynchronous Jacobi (async J) as the smoother on the
finest grid, respectively. The blue-to-green gradient denotes an increasing number of in-
terpolants used in AFACj. Results for both asynchronous convergence criteria are shown.
The last row of plots shows the mean number of updates over all grids when using conver-
gence criterion 2, where the dashed line denotes the maximum number of updates (i.e., the
number of updates carried out by the fastest grid), and the dotted line denotes the minimum
number of updates (i.e., the number of updates carried out by the slowest grid).

we can still observe grid-size independent convergence. However, using convergence cri-

terion 1 results in a method that converges more slowly than in the case of convergence

criterion 2 since the faster grids do not carry out additional updates.

In the case of asynchronous Jacobi, the convergence rate actually improves as the grid

122

length increases. This increase in convergence rate is due to the fact that 16 nodes are used

for all grid lengths. Since the number of grids increases as the grid length increases, the

number of processes assigned to grid 0 (the only grid in which asynchronous smoothing

is carried out) decreases, which changes the behavior of the asynchronous smoother. In

other words, the asynchronous smoother becomes more synchronous as the grid length

increases since fewer processes are smoothing asynchronously. This indicates that using a

synchronous smoother within asynchronous multigrid is the best choice, i.e., synchronous

Jacobi has better smoothing properties than asynchronous Jacobi in this case.

In the case of convergence criterion 2, we can see that the convergence rate of asyn-

chronous multigrid increases with increasing grid length. The reason for this is shown in

the last row of plots, where the mean (solid line), maximum (dashed line) and minimum

(dotted line) number of updates for the asynchronous methods is shown. In other words,

the mean is the average number of updates over all grids, the maximum is the number of

updates of the fastest grid and the minimum is the number of updates of the slowest grid.

We can see that as we increase the grid length, the mean and maximum number of updates

decreases. This is because the number of grids is increasing allowing for more updates to

be overlapped with the updates of the slowest grid. For example, consider just two grids,

where grid 0 updates faster than grid 1. Even if grid 0 updates far more than grid 1, grid 0

eventually will need information from grid 1 in order for the overall iteration to converge

quickly. This is because the smoothing sweeps from grid 0 will eventually have little ef-

fect on reducing the error. If we now consider 10 grids where grid 9 is the slowest, grid

0 may update faster than other grids, but will receive information from grid 1-8 before re-

ceiving information from grid 9. This results in a faster solver than in the two-grid case

since neglecting grid 9 still results in a multilevel solver with 9 grids. This indicates that

asynchronous multigrid is useful when many grids are used.

The second and third columns of plots show asynchronous AFACj (aAFACj) and

aAFACj async J, respectively. The blue-to-green gradient denotes an increasing number

123

of interpolants used in AFACj. We can see that in all cases, aAFACj converges with a rate

independent of the grid size. Additionally, AFACj(1,1) converges with a rate similar to

that of AFACj(6,6) which indicates that using fewer smoothed interpolants does not sig-

nificantly degrade the convergence rate. Lastly, we can see that asynchronous smoothing

is beneficial in this case. Specifically, all asynchronous multigrid methods require a fewer

number of updates on average when using asynchronous Jacobi as a smoother.

Figure 4.10 shows strong scaling for the matrices from Table 4.2. A relative residual

2-norm tolerance of 10−6 is used with convergence criterion 2. For the asynchronous meth-

ods, we again we show the mean, maximum and minimum number of updates. Unlike in

the case of our 27pt problem, we can see that Multadd with asynchronous smoothing is

the slowest method in terms of wall-clock time in all cases since it generally requires more

updates on average to converge. In terms of wall-clock time, we can see that aAFACj is the

best asynchronous multigrid method . We can also see that in general, the asynchronous

multigrid methods scale better than Mult. More precisely, the majority of the time, we

see that the wall-clock time for asynchronous multigrid monotonically decreases with in-

creasing numbers of nodes, where as in the case of Mult, the wall-clock time generally

increases. However, since asynchronous multigrid has a higher computational cost, Mult is

significantly faster than all the asynchronous multigrid methods when the number of nodes

is low. As the number of nodes increases, communication costs tend to outweigh compu-

tational costs, which is why asynchronous multigrid scales so well. This is also why we

see the maximum and minimum number of updates increase and decrease, respectively,

with increasing concurrency. In other words, as concurrency increases, the problem size

per process decreases, allowing for the faster grids to update more frequently.

In the case of Serena and Geo 1438, while aAFACj is more scalable, aAFACj does not

outperform Mult when comparing the best timings (Mult at 8 nodes compared with aFACj

at 128 nodes). More precisely, aAFACj is ≈ .99 as fast as Mult for Geo 1438 and ≈ .98

as fast as as Mult for Serena. However, for Queen 4147 and Flan 1565, aAFACj is ≈ 1.18

124

faster than Mult for Flan 1565 and ≈ 2.75 faster than Mult for Queen 4147. One reason

we see a higher speedup for Queen 4147 compared with other problems is because of the

convergence rate of aAFACj. We can see that unlike the other problems, aAFACj requires

fewer iterations on average than Mult. In other words, the average number of updates by

aAFACj is less than the number of iterations by Mult. This indicates that many updates

by faster grids can actually accelerate the convergence rate of asynchronous multigrid for

certain problems. This is especially important for a higher level of parallelism than what is

considered here, where some grids may be much faster than others.

Note that we only show aAFACj(1,1) since we found it to be the best method for all

four matrices from Table 4.2. Table 4.4 shows the wall-clock time and mean number

of updates for Queen 4147 using 128 nodes. The table shows results for aAFACj(1,1)

up to aAFACj(6,6) and Multadd. Jacobi smoothing and a relative residual 2-norm toler-

ance of 10−6 are used. We can see that even though aAFACj(1,1) requires more updates

on average to converge than aAFACj(6,6), aAFACj(1,1) still converges faster in terms of

wall-clock time. This indicates that the reduction in computation of aAFACj(1,1) over

aAFACj(6,6) and Multadd more than makes up for the higher number of updates required

for aAFACj(1,1) to converge.

Table 4.4: Effect on wall-clock time and number of iterations for aAFACj when varying
the number of smoothed interpolants. The Queen 4147 problem is being solved. A relative
residual norm tolerance of 10−6 is used with convergence criterion 2.

Wall-clock Time Mean Number of Updates

aAFACj(1,1) 4.37 224.55
aAFACj(2,2) 4.52 215.46
aAFACj(3,3) 4.82 191.64
aAFACj(4,4) 5.02 181.00
aAFACj(5,5) 5.31 183.36
aAFACj(6,6) 5.41 180.82
aMultadd 5.95 185.00

125

4.6 Conclusion

In this chapter, we introduced asynchronous multigrid methods. These methods are asyn-

chronous versions of additive multigrid methods. Although we have used the familiar term

“V-cycle” in these methods to mean one set of corrections from every grid in the multi-

grid hierarchy, there is no concept of a cycle in asynchronous additive multigrid methods:

updates from all grids are computedsimultaneously and do not wait for each other. Our

models and experiments show that grid-independent convergence can be retained in this

asynchronous setting. However, in our simulations and experimental tests, the number of

corrections from each grid is approximately balanced. It is possible to show that if the num-

ber of corrections is not balanced (e.g., far more corrections from some grids compared to

others), then grid-independent convergence is lost.

We presented the AFACj additive multigrid method which is an improvement over ad-

ditive variants of classical multiplicative multigrid methods (Multadd). In Multadd, one of

the primary computational costs comes from the fact that smoothed interpolants (smooth-

ing iteration matrix applied to a standard interpolant) are used. In AFACj, we use fewer

smoothed interpolants to reduce computation costs without significantly the degrading the

convergence rate, giving us an overall faster method in terms of wall-clock time.

In the shared memory case, we showed that asynchronous Multadd can be faster (in

terms of wall-clock time) than the classical synchronous multiplicative method when the

problem size per thread is sufficiently small. Additionally, we showed that an asynchronous

smoother is the best choice in smoother, even when using just one smoothing sweep. In the

distributed memory case, non-blocking two-sided MPI functions are used to communicate

updates between processes assigned to different grids. We test our asynchronous multigrid

solvers on up to 128 nodes of a GPU cluster (512 total GPUs). We show that asynchronous

multigrid exhibits convergence independent of the grid size. We also provide strong scaling

results that show that asynchronous multigrid often scales better than synchronous multi-

126

grid. For the Queen 4147 test problem, when comparing asynchronous AFACj to classical

multigrid, we observed a peak speedup of ≈ 2.75.

127

Q
ue

en
41

47

8 16 32 64 128

Number of Nodes

8

16

32

64

1.3e+02

2.6e+02

W
a

ll-
c
lo

c
k
 T

im
e

 (
S

e
c
o

n
d

s
)

mult

aMultadd

aAFACj(2,2)

aMultadd, async J

8 16 32 64 128

Number of Nodes

10
2

10
3

N
u

m
b

e
r

o
f

It
e

ra
ti
o

n
s

Fl
an

15
65

8 16 32 64 128

Number of Nodes

4

5.7

8

11

16

23

32

45

W
a

ll-
c
lo

c
k
 T

im
e

 (
S

e
c
o

n
d

s
)

8 16 32 64 128

Number of Nodes

10
2

10
3

N
u

m
b

e
r

o
f

It
e

ra
ti
o

n
s

Se
re

na

8 16 32 64 128

Number of Nodes

2.8

4

5.7

8

11

16

W
a

ll-
c
lo

c
k
 T

im
e

 (
S

e
c
o

n
d

s
)

8 16 32 64 128

Number of Nodes

10
2

10
3

N
u

m
b

e
r

o
f

It
e

ra
ti
o

n
s

G
eo

14
38

8 16 32 64 128

Number of Nodes

4

5.7

8

11

16

23

32

W
a

ll-
c
lo

c
k
 T

im
e

 (
S

e
c
o

n
d

s
)

8 16 32 64 128

Number of Nodes

10
2

10
3

N
u

m
b

e
r

o
f

It
e

ra
ti
o

n
s

Figure 4.10: Strong scaling results for the test problems from Table 4.2. Wall-clock time
and iterations versus number of nodes is shown. A relative residual 2-norm tolerance of
10−6 is used with convergence criterion 2. For the asynchronous methods, iterations denotes
the mean number of updates over all grids is shown when using convergence criterion 2,
where the dashed line denotes the maximum number of updates (i.e., the number of updates
carried out by the fastest grid), and the dotted line denotes the minimum number of updates
(i.e., the number of updates carried out by the slowest grid).

128

CHAPTER 5

ASYNCHRONOUS CHEBYSHEV METHODS

In this chapter, we introduce the first descriptions and implementations of an asynchronous

version of the Chebyshev iterative method [23]. The Chebyshev iterative method for sym-

metric systems of equations has a convergence rate similar to that of the celebrated con-

jugate gradient (CG) method. Indeed, the nonsymmetric Chebyshev iterative method was

actively promoted into the 1980s [86] and was only displaced by the development of GM-

RES [87] and other iterative solvers for nonsymmetric systems (we will only consider the

Chebyshev method for symmetric positive definite (SPD) systems in this paper). The main

disadvantage of the Chebyshev iterative method is that estimates of the extremal eigenval-

ues of the system matrix are required. This issue can be easily alleviated but does make the

Chebyshev method more complicated to use than CG and GMRES.

The Chebyshev iterative method, however, has a key advantage that makes it relevant

to high-performance computing: unlike CG and GMRES, the Chebyshev iterative method

does not require any inner products. Inner products, which depend on global communi-

cation, scale poorly on parallel machines. Scaling is poor not only because all processes

are involved in communication, but any system noise or load imbalance can dramatically

increase the synchronization cost [88].

The inner products in CG and GMRES cannot be performed asynchronously, otherwise

the orthogonality and other mathematical properties on which these methods depend are

no longer satisfied. Thus it is unlikely that there will ever be asynchronous versions of CG

and GMRES (in the sense of processes proceeding with the latest available data, as used

in this paper). The Chebyshev iterative method, like the Jacobi iterative method, performs

communication but does not require any global communication, and thus is a candidate

for the development of an asynchronous version to relieve synchronization pressure in the

129

communication phases.

The mathematical theory for asynchronous iterative methods only applies to fixed-point

iterations like the Jacobi method. The Chebyshev iterative method, like CG, uses differ-

ent parameters at each iteration and thus is not a fixed-point iteration. Although there is

presently no mathematical theory for an asynchronous version of the Chebyshev iterative

method, one may be optimistic because theory does exist for the “inexact” Chebyshev it-

erative method [23] where certain operations such as residual computations, are performed

inexactly. This inexact method has some analogy to the asynchronous Chebyshev method

proposed here in the sense that residual vectors computed using stale values could be con-

sidered inexact computations.

The Chebyshev iterative method, like CG and GMRES, can be preconditioned using an

approximation of the system matrix called a preconditioner. This is significant because an

asynchronous Chebyshev method allows other asynchronous iterative methods, like asyn-

chronous Jacobi, to be used as a preconditioner for the first time. Previously, it would be

pointless to use asynchronous Jacobi as a preconditioner for CG or GMRES, since these

methods have multiple synchronization points at each iteration. As an example, multi-

grid and domain decomposition methods are often used as preconditioners inside a CG or

GMRES method. The recently developed asynchronous versions of domain decomposi-

tion solvers [20] can now be used as preconditioners inside our proposed asynchronous

Chebyshev method.

In this chapter, we demonstrate asynchronous Chebyshev with a new asynchronous

multigrid preconditioner. Instead of the asynchronous multigrid method proposed in Chap-

ter 4, we are able to use a much simpler multigrid method called BPX [24] (named after

the initials of its three authors). The asynchronous multigrid method proposed earlier had

to be based on a method that could converge on its own, i.e., as a standalone solver. When

multigrid is used as a preconditioner, standalone convergence is not necessary, which al-

lows us to use BPX, the simplest additive multigrid method. To create an asynchronous

130

version of BPX, we use a formulation of the method based on an extended matrix [89], to

be described later in this paper. The standard formulation contains many types of opera-

tions (smoothing, restriction, prolongation, coarse grid solves) and it is very complicated

to run these operations asynchronously with each other. In contrast, the extended matrix

formulation is similar to using Jacobi iterations with a special “extended” matrix, which

are easy to perform asynchronously.

It should be noted that we have found the performance of the asynchronous Chebyshev

method to be sensitive to the preconditioner. If the preconditioner is poor, the asynchronous

computations can cause the overall iterative method to diverge. We do not observe this

when the preconditioner is good, i.e., a good approximation to the system matrix, and this

concept is supported by the theory of the inexact Chebyshev method. In particular, the

Jacobi preconditioner for discretizations of partial differential equations becomes poorer

as the discretization becomes finer and the problem size increases. We have observed

that asynchronous Chebyshev with this preconditioner fails to converge for large problem

sizes. On the other hand, the BPX preconditioner, by design, is a good approximation

to the system matrix for all problem sizes. In this case, we observe that asynchronous

Chebyshev with this preconditioner converges for all problem sizes in our test examples.

We therefore propose asynchronous Chebyshev combined with asynchronous BPX as a

solver in contexts where asynchronous computations are important for performance.

5.1 Background

5.1.1 The Chebyshev Method

Consider again an iterative method with an iteration matrix of the form I−M−1A, whereM

is some preconditioner, e.g., the Jacobi or BPX preconditioner. The Chebyshev method [23,

87, 90] is derived by finding the degree t polynomial of I −M−1A with minimum spectral

radius over the interval [α,β], where α and β are the smallest and largest eigenvalues of

131

M−1A, respectively. More precisely, we seek the degree t polynomial p such that

min
p∈Pt,p(γ)=1

max
λ∈[α,β]

∣p(λ)∣, (5.1)

where Pt is the space of polynomials of degree ≤ t. The degree t Chebyshev polynomial

of the first kind satisfies this requirement. Using the recursive definition of the Chebyshev

polynomials, we can write the Chebyshev method as

x(1) = x(0) + δM−1r(t),

x(t+1) = x(t−1) + ω(t)(δM−1r(t) + x(t) − x(t−1)),

ω(t+1) = 1/(1 − ω(t)/4µ2),

(5.2)

where ω(1) = 2, δ = 2
β+α , and µ = β+α

β−α .

It can be shown that the classical upper bound on theA-norm of the error for Chebyshev

is the same as that of the Conjugate Gradient method [90]. Additionally, Chebyshev can

be used on non-symmetric problems [86], and unlike GMRES, no restarting is needed.

The advantage of Chebyshev over Krylov subspace methods is that no inner products are

required. Inner products are expensive at scale, but more importantly, we need an inner

product-free method in order to develop an asynchronous method. This is because it is

unclear how to compute inner products asynchronously without ruining the orthogonality

properties in Krylov subspace methods. However, Chebyshev does require the estimates

of the largest and smallest eigenvalues of M−1A, which can be done while also carrying

out an iterative solver. In other words, we can start by carrying out a few iterations of

preconditioned Conjugate Gradient and then switch to asynchronous Chebyshev once we

have good eigenvalue estimates. In [86], an adaptive Chebyshev method is introduced

where eigenvalue estimates are continually improved while Chebyshev iterates.

132

5.2 Asynchronous Chebyshev Methods

5.2.1 Models of the Jacobi-preconditioned Asynchronous Chebyshev Method

We start by defining Jacobi-preconditioned Asynchronous Chebyshev through a mathemat-

ical model similar to Equation 2.5. For simplicity, let the number of processes equal the

number of rows. First, note that Equation 5.2 can be written as the iteration

⎡⎢⎢⎢⎢⎢⎢⎣

x(t+1)

y(t+1)

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎣

ω(t)(I − δM−1A) (1 − ω(t))I

O I

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

x(t)

y(t)

⎤⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎣

ω(t)δM−1b

0

⎤⎥⎥⎥⎥⎥⎥⎦

. (5.3)

We can model a special case of running this iteration asynchronously using the Jacobi

preconditioner:

If i ∈ Ψ(t):

ω
(t+1)
i = 1/(1 − ω(t)

i /4µ2),

x
(t+1)
i = y(t)i + ω(t+1)

i

⎛
⎝
fi − δ ∑

j∈S(Ai)
Aijx

(zij(t))
j /Aii + x(t)

i − y(t)i
⎞
⎠
,

y
(t+1)
i = x(t)

i ,

Else:

x
(t+1)
i = x(t)

i ,

y
(t+1)
i = y(t)i ,

ω
(t+1)
i = ω(t)

i ,

(5.4)

where fi = δbi/Aii. As in Equation 2.5, we have the mappings zij(t) and the set Ψ(t). We

say that this is a special case since Equation 5.3 tells us that we have two vectors that are

asynchronously propagated: x(t) and y(t). In other words, if we had, for example, n addi-

tional processes, these processes could be used to update y(t). However, when simulating

this, we found that using n processes and having process i update both x(t)
i and y(t)i resulted

133

in a convergent method. We also see that each ω(t)
i is different in general on each process

which means there are actually three variables that are propagated asynchronously. While

we could have a single thread that updates all ω(t)
i values, we found that the best conver-

gence behavior is achieved when process i updates ω(t)
i (as in the case of y(t)i), which is

what is modeled in Equation 5.4.

We can also think of asynchronous preconditioned Chebyshev as inexactly applying

the preconditioner each iteration [23]. Let the equation for applying the preconditioner

be Mz = r(t), where we are solving for z. From [23], if the relative residual norm in

the inexact solve is reduced to one or less, then Chebyshev converges. In other words, if

∥Mz−r(t)∥/∥r(t)∥ ≤ γ, where γ ∈ (0,1), then Chebyshev converges. While we do not prove

convergence for our models of asynchronous Chebyshev, the analysis from [23] gives us

some intuition as to why asynchronous Chebyshev could converge in the first place.

5.2.2 Asynchronous EBPX-Chebyshev Method

Our goal is to develop a fast-converging asynchronous Chebyshev method. When we ex-

perimented with Jacobi-preconditioned asynchronous Chebyshev, we observed divergence

as the problem size increased (see Section 5.3). Therefore, we looked to multigrid methods,

which converge independent of the problem size, but are less straightforward than Jacobi

to execute asynchronously.

Algorithm 13 shows the algorithm for Jacobi-preconditioned asynchronous Chebyshev

on a shared memory machine. Again, for simplicity, let the number of threads equal the

number of rows. In the general case, each thread owns multiple rows, so ∑j∈S(Ai)Aijxj

in line 5 would be replaced with a matrix-vector product. In the algorithm, thread i reads

data from memory (xj values that are needed for the relaxation of xi), updates all variables

needed for the relaxation of xj , and writes xi to shared memory. Note that xj could also be

read inside the summation∑j∈S(Ai) instead of reading all xj values beforehand, which may

increase the convergence rate since newer information will be used. However, if process

134

i owns multiple rows that have the same column indices, the amount of data re-use will

decrease.

Algorithm 13: Jacobi-preconditioned Asynchronous Chebyshev
1 while not converged on thread i do
2 Read xj for j ∈ S(Ai) from shared memory
3 ω = 1/(1 − ω/4µ2)
4 z = xi

5 xi = y + ω
⎛
⎝
fi − δ ∑

j∈S(Ai)
Aijxj/Aii + x(t)i − y

⎞
⎠

6 y = z
7 Write xi to shared memory
8 end

If we can express multigrid in relaxation form without a substantial increase in setup

costs, we can then naturally precondition Chebyshev using multigrid. First consider the

extended block system Au = g, as discussed in [89], where A is symmetric positive semi-

definite. The diagonal blocks of A are the Ak matrices, and the off-diagonal blocks denote

the connections between grids via the prolongation and restriction matrices. For example,

if we consider just two grids, the block system has the form

⎡⎢⎢⎢⎢⎢⎢⎣

A0 A0P 0
1

(P 0
1)TA0 A1

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

u0

u1

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎣

b

(P 0
1)T b

⎤⎥⎥⎥⎥⎥⎥⎦

. (5.5)

In the general case where we have ` grids, we have

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A0 A0P 0
1 ⋯ A0P 0

`−1

⋮ A1 ⋯ A1P 1
`−1

⋮ ⋱ ⋱ ⋮

⋯ ⋯ ⋯ A`−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u0

u1

⋮

u`−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b

(P 0
1)T b

⋮

(P 0
`−1)T b

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.6)

In [89], the authors show that carrying out Gauss-Seidel on this block system is equiv-

alent to classical multiplicative multigrid on the original system Ax = b, where the solution

135

is recovered as u0+P 0
1 u1+⋯+P 0

`−1u`−1. Similarly, carrying out Jacobi on this block system

is equivalent to BPX. We will call Jacobi on this extended system EBPX. For the experi-

mental results in this chapter, the extended system is explicitly constructed. We then simply

run Algorithm 13 on the system. The down side of this method is that the extended system

needs to be explicitly formed, which requires additional products of interpolants during the

setup phase. If the interpolants are not sparse enough, this cost could be high, especially at

scale. In a distributed memory environment, we could consider an implicit method where

the off-diagonal row blocks are not explicit constructed. These blocks would be applied to

vectors via multiple matrix-vector products. However, this would require synchronization

between subsets of processes, so the scheme would not be fully asynchronous.

5.2.3 Simulating Models of Asynchronous EBPX-Chebyshev

While there are not yet any results on convergence for our models of asynchronous Cheby-

shev, we have simulated asynchronous EBPX-Chebyshev to understand its general behav-

ior. In these simulations, we consider the highly-concurrent case where we have a single

process per row. There are two parameters that must be chosen for each row i: the update

probability pi and the read delay bound di. The update probability denotes the probability

that i ∈ Ψ(t), i.e., pi is a random number in the range [pmin,1), where 1 > pmin > 0 is

the minimum update probability. The purpose of this parameter selection is to simulate

the case where some processes update more often than others. As we decrease pmin, the

simulation becomes more asynchronous in the sense that some processes update a lot more

often than others. The read delay bound denotes the number of previous time instants that

i is allowed to read from, i.e., di limits how far back in time i can read. As in the case

of the update probability, di is chosen randomly, but from the range of integers [0, dmax].

For example, if di is 10, i cannot read farther back than t − 10, where t is the current time

instant. Additionally, if ti is that last time instant from which i read data from, i cannot

later read from a time instant that is < ti. The read delay parameter is meant to simulate

136

communication delays.

While we do not show this in our results, we also simulated the scenario where y is also

asynchronously propagated, as discussed in Section 5.2.1. This could correspond to adding

up to n additional processes that update y. In these simulations, the method diverged in

general. This scenario is also not practical since it is inexpensive for the threads that update

x to also update y and ω, as in Equation 5.4..

Figure 5.1 shows some results for our simulations, where we simulated the iteration in

Equation 5.4. Each figure denotes a different minimum update probability. Our conver-

gence detection is outlined in Section 5.3 and is not different here. In short, the simulation

does not stop until all rows have been relaxed at least 50 times. This means that some rows

may be relaxed many more times than others The problem being solved is the five-point

centered-difference discretization of the 2D Laplace equation on a 64 × 64 grid.

The important result in Figure 5.1 is that asynchronous EBPX-Chebyshev converges,

even in the most asynchronous case of pmin = .1 and dmin = 1000. We also see that in

the best case scenario where pmin = .8 and dmin = 0, which could simulate a shared mem-

ory environment with fast communication, asynchronous EBPX-Chebyshev converges in

fewer relaxations. In general, we see that asynchronous EBPX-Chebyshev converges in

fewer relaxations. We also see that in some cases asynchronous EBPX-Chebyshev achieves

the lowest relative residual 2-norm, indicating that asynchronous EBPX-Chebyshev would

converge faster in terms of wall-clock time in these situations. This is because the slowest

process carries out only 50 relaxations, so the additional relaxations carried out by other

processes are overlapped with the time it takes for the slow process to finish.

5.3 Experimental Results

For our experimental results, we used a node with two Intel Xeon E5-2695 v4 18-core

CPUs. We implemented both our synchronous and asynchronous methods using parallel

137

pmin = .1 pmin = .5 pmin = .8

0 20 40 60

Relaxations/n

10
-10

10
-5

10
0

R
e

la
ti
v
e

 R
e

s
id

u
a

l
2

-n
o

rm

sync

delay 0

delay 2

delay 5

delay 10

delay 100

delay 1000

0 10 20 30 40 50 60

Relaxations/n

10
-10

10
-5

10
0

R
e

la
ti
v
e

 R
e

s
id

u
a

l
2

-n
o

rm

sync

delay 0

delay 2

delay 5

delay 10

delay 100

delay 1000

0 10 20 30 40 50 60

Relaxations/n

10
-10

10
0

R
e

la
ti
v
e

 R
e

s
id

u
a

l
2

-n
o

rm

sync

delay 0

delay 2

delay 5

delay 10

delay 100

delay 1000

Figure 5.1: Relative residual 2-norm versus number of relaxations/n for a simulation of
asynchronous EBPX-Chebyshev. The problem being solved is the five-point centered-
difference discretization of the 2D Laplace equation on a 64 × 64 grid. From left to right,
the minimum update probability of a row being relaxed is increased. The blue to green
gradient denotes an increasing bound on the read delay. Note that these plots demonstrate
convergence over a wide range of asynchronous conditions and do not imply that one case
is more rapid than another.

60 70 80 90 100

Grid Length

10
-10

10
-5

10
0

R
e

la
ti
v
e

 R
e

s
id

u
a

l
2

-n
o

rm

async Jacobi-Cheby

async EBPX-Cheby

Figure 5.2: Relative residual 2-norm after 50 asynchronous iterations versus grid length
for the 27pt problem using 36 threads. Jacobi-preconditioned asynchronous Chebyshev
is compared with EBPX-preconditioned asynchronous Chebyshev. Jacobi-preconditioned
asynchronous Chebyshev diverges for larger problems where as EBPX-preconditioned
asynchronous Chebyshev converges with a rate independent of the grid size.

for loops, where a nowait clause is used in the asynchronous case. We used a compact

thread affinity, which gave us the best performance. We generated the Galerkin coarse

grids and interpolants using the BoomerAMG package [85].

138

27pt StocF-1465

0 50 100 150 200 250 300

Iterations

10
-10

10
-5

10
0

R
e
la

ti
v
e
 R

e
s
id

u
a
l
2
-n

o
rm sync

async

0 50 100 150 200 250 300

Iterations

10
-10

10
-5

10
0

R
e
la

ti
v
e
 R

e
s
id

u
a
l
2
-n

o
rm

thermal2 parabolic fem

0 50 100 150 200 250 300

Iterations

10
-10

10
-5

10
0

R
e
la

ti
v
e
 R

e
s
id

u
a
l
2
-n

o
rm

0 50 100 150 200 250 300

Iterations

10
-10

10
-5

10
0

R
e
la

ti
v
e
 R

e
s
id

u
a
l
2
-n

o
rm

Figure 5.3: Relative residual 2-norm versus number of iterations using 36 threads for four
test problems. Synchronous and asynchronous EBPX-Chebyshev are compared, where we
can see asynchronous EBPX-Chebyshev has a faster convergence rate.

In the asynchronous case, for convergence testing, a thread i computes the residual

norm of the rows that i relaxes. This partial residual norm is computed every iteration. That

partial residual norm is then written to shared memory along with the number of relaxations

that i has carried out. A master thread, in this case thread 0, checks the following two

things:

1. Periodically sum up all the partial residual norms to see if the global residual norm

has dropped below some prescribed tolerance τ . Note that this global residual norm

is an approximation since there is no global iteration counter.

2. Check to see if the minimum number of relaxations over all rows is above some

threshold σ. In other words, all threads update until the slowest thread has completed

139

27pt StocF-1465 thermal2 parabolic fem

5 10 15 20 25 30

Delay (microseconds)

1

1.05

1.1

1.15

1.2

1.25

1.3

S
p
e
e
d
u
p

5 10 15 20 25 30

Delay (microseconds)

1

1.1

1.2

1.3

1.4

S
p

e
e

d
u

p

5 10 15 20 25 30

Delay (microseconds)

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

S
p
e
e
d
u
p

5 10 15 20 25 30

Delay (microseconds)

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

S
p
e
e
d
u
p

5 10 15 20 25 30

Number of Threads

4

6

8

10

12

14

W
a
ll-

c
lo

c
k
 T

im
e
 (

s
e
c
o
n
d
s
)

sync

async

5 10 15 20 25 30

Number of Threads

40

60

80

100

120

140

160

W
a
ll-

c
lo

c
k
 T

im
e
 (

s
e
c
o
n
d
s
)

5 10 15 20 25 30

Number of Threads

10

15

20

25

30

35

40
45

W
a
ll-

c
lo

c
k
 T

im
e
 (

s
e
c
o
n
d
s
)

5 10 15 20 25 30

Number of Threads

4

6

8

10

12

14

W
a
ll-

c
lo

c
k
 T

im
e
 (

s
e
c
o
n
d
s
)

5 10 15 20 25 30

Number of Threads

50

60

70

80

90

100

N
u
m

b
e
r

o
f
R

e
la

x
a
ti
o
n
s

5 10 15 20 25 30

Number of Threads

150

200

250

300

350

N
u
m

b
e
r

o
f
R

e
la

x
a
ti
o
n
s

5 10 15 20 25 30

Number of Threads

100

150

200

250

300

N
u
m

b
e
r

o
f
R

e
la

x
a
ti
o
n
s

5 10 15 20 25 30

Number of Threads

60

80

100

120

140

160

N
u
m

b
e
r

o
f
R

e
la

x
a
ti
o
n
s

Figure 5.4: Strong scaling results for four test problems (columns). The residual norm is
computed at each iteration with τ = 10−9. The first row shows the speedup, defined as the
wall-clock time of synchronous Chebyshev divided by the wall-clock time of asynchronous
Chebyshev. The second row shows the solve wall-clock time. The third row shows the
number of relaxations. In the asynchronous case, each thread finishes having carried out a
different number of relaxations. Therefore, each data point is the mean number of relax-
ations and the error bar denotes the minimum and maximum number of relaxations.

σ relaxations.

If either of these conditions are met, the master thread sets a flag. All threads will peri-

odically read this flag and terminate once it has been set. We say that we have done σ

asynchronous iterations if the second criterion is met. It is important to note that σ is not

the same in general as a time instant (Equations 2.5 and 5.4). In the synchronous case,

the residual norm is also computed after each iteration. Just like in the asynchronous case,

each thread computes a partial residual norm. A parallel for loop with a reduction clause is

then used to sum all the partial residual norms. For a fair comparison between synchronous

and asynchronous, if the asynchronous iteration stops due to condition 1) above, we made

sure that the final relative residual norm for asynchronous was always ≤ the final relative

residual norm for synchronous.

140

Delay of 50000 microseconds on one thread
27pt StocF-1465

0 50 100 150 200 250 300

Iterations

10
-10

10
-5

10
0

R
e
la

ti
v
e
 R

e
s
id

u
a
l
2
-n

o
rm sync

async

0 50 100 150 200 250 300

Iterations

10
-10

10
-5

10
0

R
e
la

ti
v
e
 R

e
s
id

u
a
l
2
-n

o
rm

thermal2 parabolic fem

0 50 100 150 200 250 300

Iterations

10
-10

10
-5

10
0

R
e
la

ti
v
e
 R

e
s
id

u
a
l
2
-n

o
rm

0 50 100 150 200 250 300

Iterations

10
-10

10
-5

10
0

R
e
la

ti
v
e
 R

e
s
id

u
a
l
2
-n

o
rm

Figure 5.5: Relative residual 2-norm versus number of iterations using 36 threads for four
test problems. Thread 18 has an artificial delay where it sleeps for 50000 microseconds
every iteration. Synchronous and asynchronous EBPX-Chebyshev are compared, where we
can see that asynchronous EBPX-Chebyshev has a faster convergence rate. Additionally,
the convergence rate of asynchronous EBPX-Chebyshev is significantly faster than in the
un-delayed case.

Jacobi converges poorly when compared to multigrid, which converges with a rate in-

dependent of the problem size. When integrating this into asynchronous Chebyshev, we

have observed asynchronous Jacobi-Chebyshev to diverge as we increase the problem size.

Figure 5.2 demonstrates this behavior, where we compare asynchronous Jacobi-Chebyshev

(Chebyshev with the Jacobi preconditioner) to asynchronous EBPX-Chebyshev. The prob-

lem being solved is the 27-point discretization of the 3D Laplace equation (we will refer to

this as 27pt). The figure shows the relative residual 2-norm versus grid length (the global

problem size is the grid length cubed) after 50 asynchronous iterations using 36 threads.

141

The figure shows that asynchronous Jacobi-Chebyshev starts to diverge for larger prob-

lem sizes where as asynchronous EBPX-Chebyshev exhibits grid-size independent conver-

gence. We can see this for grid lengths 90 and 100 where asynchronous Jacobi-Chebyshev

diverges.

27pt StocF-1465 thermal2 parabolic fem

0 2 4 6 8 10

Delay (microseconds) 10
4

1

1.5

2

2.5

3

3.5

4

S
p

e
e

d
u

p

0 2 4 6 8 10

Delay (microseconds) 10
4

1

1.5

2

2.5

3

3.5

4

S
p

e
e

d
u

p

0 2 4 6 8 10

Delay (microseconds) 10
4

1

1.5

2

2.5

3

3.5

4

S
p

e
e

d
u

p

0 2 4 6 8 10

Delay (microseconds) 10
4

1

1.5

2

2.5

3

3.5

4

S
p

e
e

d
u

p

0 2 4 6 8 10

Delay (microseconds) 10
4

4

6

8

10

12

W
a

ll-
c
lo

c
k
 T

im
e

 (
s
e

c
o

n
d

s
)

sync

async

0 2 4 6 8 10

Delay (microseconds) 10
4

30

35

40

45

50

55

W
a

ll-
c
lo

c
k
 T

im
e

 (
s
e

c
o

n
d

s
)

0 2 4 6 8 10

Delay (microseconds) 10
4

10

15

20

25

30

W
a

ll-
c
lo

c
k
 T

im
e

 (
s
e

c
o

n
d

s
)

0 2 4 6 8 10

Delay (microseconds) 10
4

4

6

8

10

12

14
16

W
a

ll-
c
lo

c
k
 T

im
e

 (
s
e

c
o

n
d

s
)

0 2 4 6 8 10

Delay (microseconds) 10
4

50

55

60

65

70

75

80

85

N
u

m
.

R
e

la
x
.

o
f

D
e

la
y
e

d
 T

h
re

a
d

0 2 4 6 8 10

Delay (microseconds) 10
4

120

140

160

180

200

220

240

N
u

m
.

R
e

la
x
.

o
f

D
e

la
y
e

d
 T

h
re

a
d

0 2 4 6 8 10

Delay (microseconds) 10
4

100

150

200

N
u

m
.

R
e

la
x
.

o
f

D
e

la
y
e

d
 T

h
re

a
d

0 2 4 6 8 10

Delay (microseconds) 10
4

60

80

100

120

N
u

m
.

R
e

la
x
.

o
f

D
e

la
y
e

d
 T

h
re

a
d

Figure 5.6: Results for varying an artificial delay on a single thread using 36 total threads.
The columns denote the test problems. The residual norm is computed at each iteration with
τ = 10−9. The first row shows the speedup, defined as the wall-clock time of synchronous
Chebyshev divided by the wall-clock time of asynchronous Chebyshev. The second row
shows the solve wall-clock time. The third row shows the number of relaxations of the
delayed threads.

For the remaining experiments, we will be solving systems with the SPD matrices

shown in Table 5.1, three of which are taken from the SuiteSparse matrix collection. Fig-

ure 5.3 shows the relative residual 2-norm versus number of iterations. In the asynchronous

case, we are showing asynchronous iterations on the x-axis (explained earlier in this sec-

tion). Since we cannot precisely track the residual norm versus number of asynchronous

iterations while the asynchronous method is iterating, each data point represents a separate

run. In other words, we first run the code for 30 asynchronous iterations, then reset and

run for 60 asynchronous iterations, and repeat this process all the way up to 300 asyn-

142

27pt StocF-1465 thermal2 parabolic fem

0.1 0.2 0.3 0.4 0.5

Fraction of Delayed Threads

0

0.5

1

1.5

2

2.5

3

S
p

e
e

d
u

p

0.1 0.2 0.3 0.4 0.5

Fraction of Delayed Threads

0

0.5

1

1.5

2

2.5

3

S
p

e
e

d
u

p

0.1 0.2 0.3 0.4 0.5

Fraction of Delayed Threads

0

0.5

1

1.5

2

2.5

3

S
p

e
e

d
u

p

0.1 0.2 0.3 0.4 0.5

Fraction of Delayed Threads

0

0.5

1

1.5

2

2.5

3

S
p

e
e

d
u

p

0.1 0.2 0.3 0.4 0.5

Fraction of Delayed Threads

5.5

6

6.5

7

7.5

8

8.5

W
a

ll-
c
lo

c
k
 T

im
e

 (
s
e

c
o

n
d

s
)

sync

async

0.1 0.2 0.3 0.4 0.5

Fraction of Delayed Threads

30

35

40

45

50

W
a

ll-
c
lo

c
k
 T

im
e

 (
s
e

c
o

n
d

s
)

0.1 0.2 0.3 0.4 0.5

Fraction of Delayed Threads

10

12

14

16

18

20

22

W
a

ll-
c
lo

c
k
 T

im
e

 (
s
e

c
o

n
d

s
)

0.1 0.2 0.3 0.4 0.5

Fraction of Delayed Threads

5

6

7

8

9

10

W
a

ll-
c
lo

c
k
 T

im
e

 (
s
e

c
o

n
d

s
)

0.1 0.2 0.3 0.4 0.5

Fraction of Delayed Threads

50

55

60

65

70

75

80

85

M
in

im
u

m
 N

u
m

b
e

r
o

f
R

e
la

x
a

ti
o

n
s

0.1 0.2 0.3 0.4 0.5

Fraction of Delayed Threads

120

140

160

180

200

220

240

M
in

im
u

m
 N

u
m

b
e

r
o

f
R

e
la

x
a

ti
o

n
s

0.1 0.2 0.3 0.4 0.5

Fraction of Delayed Threads

80

100

120

140

160

180

200

220

M
in

im
u

m
 N

u
m

b
e

r
o

f
R

e
la

x
a

ti
o

n
s

0.1 0.2 0.3 0.4 0.5

Fraction of Delayed Threads

60

70

80

90

100

110

120

130

M
in

im
u

m
 N

u
m

b
e

r
o

f
R

e
la

x
a

ti
o

n
s

Figure 5.7: Results for varying the fraction of delayed threads using 36 total threads. The
residual norm is computed at each iteration with τ = 10−9. The delayed threads use a
random delay in microseconds taken from the range [10000, 50000]. The columns denote
the test problems. The first row shows the speedup, defined as the wall-clock time of
synchronous Chebyshev divided by the wall-clock time of asynchronous Chebyshev. The
second row shows the solve wall-clock time. The third row shows the minimum number of
relaxations, which is the number of relaxations of the slowest thread.

chronous iterations. In this experiment, we do not compute the relative residual norm

until the iteration has completed since it is not needed to generate this plot. We used 36

threads in this experiment. We can see that in all cases, asynchronous EBPX-Chebyshev

has a higher convergence rate than synchronous EBPX-Chebyshev. This agrees with the

conclusions from our simulations in Section 5.2.3, where we showed that in a scenario

with fast communication, asynchronous EBPX-Chebyshev could converge faster than syn-

chronous EBPX-Chebyshev. This means that the difference in wall-clock time between

asynchronous EBPX-Chebyshev and synchronous EBPX-Chebyshev (discussed in the next

paragraph) is not only due to the removal of synchronization points, but also due to asyn-

chronous EBPX-Chebyshev having a faster convergence rate.

Figure 5.4 shows strong scaling experiments where the residual norm is computed at

143

Table 5.1: Statistics for our test matrices. The last three matrices are taken from the SuiteS-
parse Matrix Collection. All matrices are symmetric positive definite.

Matrix Equations Non-zeros

27pt 1,000,000 26,463,592
StocF-1465 1,465,137 21,005,389
thermal2 1,228,045 8,580,313
parabolic fem 525,825 3,674,625

each iteration with τ = 10−9. The first row of plots shows the speedup, defined as the solve

wall-clock time of synchronous EBPX-Chebyshev divided by the solve wall-clock time of

asynchronous EBPX-Chebyshev. In general, asynchronous EBPX-Chebyshev scales better

than synchronous EBPX-Chebyshev with a peak speedup of 1.7. This speedup spikes when

the CPU in the second socket is introduced. Once more cores from the second CPU are

used, the speedup falls back down, but a speedup above one is still observed. The number of

iterations is shown in the third row of plots, where the error bar denotes the maximum and

minimum numbers of relaxations. We can see that as the number of threads increases, the

convergence rate of asynchronous EBPX-Chebyshev improves since the mean number of

relaxations decreases. This indicates that when the faster threads do many more relaxations,

progress is made towards the solution, even if information used from the slower threads

comes from time instants that are far in the past.

Figures 5.5 and 5.6 show results for an experiment in which we add a delay to a single

thread (the 18th thread in this case). The residual norm is computed at each iteration with

τ = 10−9. These experiments simulate a scenario in which there is hardware failure and

the threads corresponding to the working cores continue to iterate. Figure 5.5 shows the

relative residual 2-norm versus number of iterations for a delay of 50000. When comparing

Figure 5.5 to Figure 5.3, we can see that when a thread is delayed, the extra relaxations

carried out by the un-delayed threads actually increases the convergence rate. Figure 5.6

shows the delay in seconds on the x-axis and speedup, solve wall-clock time, and number

of relaxations of the delayed thread are shown on the y-axes. We can see that even for very

144

large delays, speedup is still achieved, with a speedup of over three for StocF-1465. We

can also see that in the case of 27pt and parabolic fem, the minimum number of relaxations

plateaus, which correlates with a plateau in speedup. This is because the delay approaches

the total time it takes for the method to converge in the un-delayed case resulting in the un-

delayed rows carrying out extra relaxations that do not make progress. In the case of StocF-

1465 and thermal2, a higher speedup is achieved. This indicates that for problems that

are slower to converge, the additional relaxations from the un-delayed threads make more

progress towards convergence. In general, these results show that our method is resilient,

i.e., even if some processes stall for a long period of time, progress towards convergence

can still be made by other threads.

In our last experiment, we add delays to a fraction of the 36 total threads. This simulates

a heterogeneous environment in which some processes are slower in computation than

others. Figure 5.7 shows our results where the fraction of delayed threads is shown on

the x-axis and speedup, solve wall-clock time, and minimum number of relaxations are

shown on the y-axes. The residual norm is computed at each iteration with τ = 10−9.

The delayed threads use a random delay in microseconds taken from the range [10000,

50000]. In general, as the fraction of delayed threads increases, the speedup decreases.

This is expected since the amount of old data that the fast threads use will increase as the

fraction increases, resulting in a slower convergence rate in terms of number of relaxations.

However, we still see a positive speedup for the largest fraction of .5. This underscores

the importance of our method when running on a heterogenous system. Although a large

number of processes might be slower than others, the fast processes can still make progress,

even with large portions of out-of-date data.

5.4 Conclusion

Asynchronous versions of fast-converging state-of-the-art solvers have yet to be developed.

This chapter introduces the first asynchronous Chebyshev method. We use a variant of the

145

BPX multigrid method as a preconditioner since methods using multigrid preconditioners

converge with a rate independent of the problem size. This variant, which we call EBPX-

Chebyshev, is based on expressing multigrid as a basic iterative method on an extended

system.

We define models of asynchronous Chebyshev. While we do not provide any ana-

lytical results for these models, we show through simulations that asynchronous EBPX-

Chebyshev converges even in extreme cases. For example, when data read from memory

is very old or when some processes are slower than others. We also show that in the

case of fast communication, e.g., in a shared memory environment, asynchronous EBPX-

Chebyshev actually converged faster then synchronous EBPX-Chebyshev.

We present numerical results using a shared memory implementation on up to 36 cores.

We present strong scaling results which show that asynchronous EBPX-Chebyshev scales

better than synchronous EBPX-Chebyshev. We simulate the resilience of asynchronous

EBPX-Chebyshev by adding an artificial delay to a thread. We show that as we increase the

delay, the speedup of asynchronous EBPX-Chebyshev over synchronous EBPX-Chebyshev

also increases. Lastly, we simulate a heterogeneous environment, where some fraction of

the total threads are delayed. While speedup decreases as the fraction of delayed threads

increases, which is expected, we are still able to observe speedup even when half the threads

are delayed.

146

CHAPTER 6

CONCLUSION

One of the primary challenges of scaling iterative solvers to massively parallel computers is

reducing synchronization costs. Asynchronous execution of iterative solvers addresses this

challenge. While research on asynchronous methods has been on going since the late 1960s

and has recently grown in popularity, there is still important research that must be done.

This includes gaining a better understanding of the current set of asynchronous methods

and developing new fast-converging asynchronous iterative solvers that can outperform

state-of-the-art synchronous solvers. In this dissertation, we make important steps towards

this goal. Here, we summarize the main contributions of this dissertation and future work.

6.1 Contributions and Future Work

6.1.1 Asynchronous Jacobi

• Contributions: Since asymptotic convergence bounds for asynchronous fixed-point

methods have been studied in the literature, our goal was to better understand the

practical behavior of asynchronous Jacobi. We introduced a simplified model of

asynchronous Jacobi which was easier to analyze than more general models and com-

pared our analytical results to experimental results from our shared and distributed

memory implementations. In the simplified model, asynchronous Jacobi can be writ-

ten in matrix form, which allowed us to analyze the transient convergence behavior

of asynchronous Jacobi. We observed that, in practice, asynchronous Jacobi has

“better” convergence properties than synchronous Jacobi, which is the main contri-

bution of this research. More precisely, we observed three important results in our

experimental tests:

147

1. Asynchronous Jacobi can converge when synchronous Jacobi does not. This

aligned with our analysis of the simplified model where we showed that even if

the A-norm of the error increases at each iteration in the synchronous case, the

A-norm of the error could still be reduced in the asynchronous case.

2. The convergence rate of asynchronous Jacobi increases as the number of pro-

cesses increases. This is because asynchronous Jacobi becomes more multi-

plicative as the concurrency increases. In other words, asynchronous Jacobi

becomes more like block Gauss-Seidel (which converges faster than Jacobi) in

terms of the order in which rows are relaxed.

3. If a process is delayed in its computation, the residual and error norm can still

be reduced at each time instant. This is because, while the delayed row is idle,

the rows that are being relaxed make significant progress towards convergence.

• Future work:

– We only considered a simplified model in which communication delays are

neglected. A future direction would be to extend our analysis to a more general

model.

– Only asynchronous Jacobi was considered in this research. Other parallel fixed-

point methods, such as weighted and block Jacobi, could also be studied.

– This research only considered linear systems with SPD matrices which allowed

us to examine the A-norm of the error. An analysis of non-symmetric matrices

could also be carried out where a different error or residual norm is considered.

6.1.2 Asynchronous Southwell Methods

• Contributions: We developed communication-avoiding methods based on an idea

from the original Southwell method, which is sequential. In the original Southwell

method, the row with the maximum absolute value residual component is relaxed

148

at each iteration. We used this idea to develop three new methods, which is the

main contribution: Parallel Southwell, Distributed Southwell, and Stochastic Paral-

lel Southwell. In all three methods, the general idea is that a process p compares its

local residual norm (residual norm of the rows in the partition assigned to p) to the

residual norms of the communication neighbors of p. Based on this comparison, p

relaxes the rows in its partition using some criterion that is different for each method.

Parallel Southwell was the first method we developed, which was suitable for shared

memory. For distributed memory, Parallel Southwell was prone to deadlock, which

is why we developed Distributed Southwell, which is deadlock-free. However, addi-

tional communication is still required within Distributed Southwell in order to avoid

deadlock. In Stochastic Parallel Southwell, no additional communication is required,

making it the method with the lowest communication cost. When used as standalone

solvers, our experimental tests showed that all three methods converged faster than

Jacobi both in number of relaxations and number of iterations, and required less com-

munication. Additionally, all three methods worked as multigrid smoothers, i.e., we

observed grid-size independent convergence of multigrid when using our methods as

smoothers.

• Future work:

– Our methods can be used as multigrid smoothers and we observed that for the

five-point discretization of the Laplace equation (which is considered an easy

problem to solve), multigrid converged faster in terms of number of relaxations

when using Distributed or Stochastic Parallel Southwell versus Gauss-Seidel as

smoothers. However, for other problems such as those in Chapter 4.5.2 multi-

grid converges more slowly (in terms of number of iterations and wall-clock

time) when using our methods than when using other more standard multigrid

smoothers such as weighted or block Jacobi. Future work would be to develop

149

a row selection scheme that results in fast convergence for multigrid.

– We do not provide analytical results as to why our methods work as multigrid

smoothers. Future work would be to perform Fourier analysis (or other classical

analytical methods) on our current methods.

6.1.3 Asynchronous Multigrid Methods

• Contributions: Our main contribution is that we introduced the first asynchronous

multigrid methods, which are asynchronous versions of additive multigrid methods.

We introduced models that served to define asynchronous multigrid, where subsets

of grids update the current approximation to the solution at each time instant, unlike

classical models in which subsets of rows are relaxed at each time instant. Through

simulations of these models, and through experimental tests with shared and dis-

tributed memory implementations, we showed that synchronous multigrid can ex-

hibit grid-size independent convergence. We also introduced a new additive multi-

grid method that can be executed asynchronously, which is based on the AFACx

method [73]. We also showed that our shared and distributed memory implemen-

tations can be faster than the classical synchronous multiplicative multigrid solver

implemented in the Hypre package. In the distributed memory case, asynchronous

AFACj was the fastest method in terms of wall-clock time.

• Future work: Synchronous multigrid methods converge with a rate independent of

the problem size. While we have shown this fact for asynchronous multigrid through

experiments, we do not provide analytical results which we regard as future work.

This is a challenge since it is unclear how to use classical analytical techniques, such

as Fourier analysis, for asynchronous additive multigrid. This is because, in general,

these classical techniques rely on the assumption that the smoother and the coarse

grid correction (in the simple case of two grids) are both applied at every iteration.

In the asynchronous case this is not true in general, e.g., many updates could be

150

computed for the coarse grid before the first grid computes its first update.

6.1.4 Asynchronous Chebyshev Methods

• Contributions: Our main contribution is that we introduced the first known asyn-

chronous Chebyshev method. We introduced a model of Jacobi-preconditioned asyn-

chronous Chebyshev and showed experimentally that for the standard Jacobi pre-

conditioner, asynchronous Chebyshev diverges for sufficiently large problem sizes.

Therefore, we used a little-known variant of the BPX multigrid method as a precon-

ditioner within asynchronous Chebyshev, where BPX can be written as Jacobi on

an extended system. We provided experimental results that showed that our asyn-

chronous Chebyshev method can converge faster than its synchronous counter-part,

both in wall-clock time and number of relaxations.

• Future work:

– As in the case of asynchronous multigrid, future work would be to provide ana-

lytical convergence results. This would involve proving under what conditions

on the Chebyshev parameters asynchronous Chebyshev would converge and

under what conditions asynchronous BPX can exhibit grid-size independent

convergence within Chebyshev.

– In our current shared memory implementation, the extended system is explicitly

constructed and stored, which results in redundant computation. Future work

would be to develop an efficient distributed memory implementation where the

extended system is implicitly stored.

151

REFERENCES

[1] U.S. D.O.E. Workshop Report: Applied Mathematics Research for Exascale Com-
puting, 2014.

[2] U.S. D.O.E. Workshop Report: Scientific Grand Challenges: Architectures and Tech-
nology for Extreme Scale Computing, 2009.

[3] U.S. D.O.E. Workshop Report: Scientific Grand Challenges: Crosscutting Technolo-
gies for Computing at the Exascale, 2010.

[4] U.S. D.O.E. Workshop Report: Exascale and Beyond: Configuring, Reasoning, Scal-
ing, 2011.

[5] U.S. D.O.E. Workshop Report: Exascale Programming Challenges, 2011.

[6] Summary Report: The Opportunites and Challenges of Exascale Computing, 2010.

[7] A. Hefny, D. Needell, and A. Ramdas, “Rows vs. columns: Randomized Kacz-
marz or Gauss-Seidel for ridge regression,” SIAM Journal on Scientific Computing,
vol. 39, Jul. 2015.

[8] J. Liu, S. J. Wright, and S. Sridhar, An asynchronous parallel randomized Kaczmarz
algorithm, 2014. arXiv: 1401.4780 [math.NA].

[9] D. Chazan and W. Miranker, “Chaotic relaxation,” Linear Algebra and its Applica-
tions, vol. 2, no. 2, pp. 199 –222, 1969.

[10] G. Baudet, “Asynchronous iterative methods for multiprocessors,” J. ACM, vol. 25,
no. 2, pp. 226–244, Apr. 1978.

[11] Z. Peng, Y. Xu, M. Yan, and W. Yin, “On the convergence of asynchronous parallel
iteration with arbitrary delays,” U.C. Los Angeles, Tech. Rep., 2016.

[12] Z. Peng, Y. Xu, M. Yan, and W. Yin, “ARock: An algorithmic framework for
asynchronous parallel coordinate updates,” SIAM Journal on Scientific Computing,
vol. 38, no. 5, A2851–A2879, 2016.

[13] D. Bertsekas, “Distributed asynchronous computation of fixed points,” Mathemati-
cal Programming, vol. 27, no. 1, pp. 107–120, 1983.

152

https://arxiv.org/abs/1401.4780

[14] J. Wolfson-Pou and E. Chow, “Convergence models and surprising results for the
asynchronous Jacobi method,” IEEE International Parallel and Distributed Process-
ing Symposium (IPDPS), pp. 940–949, 2018.

[15] ——, “Modeling the asynchronous Jacobi method without communication delays,”
Journal of Parallel and Distributed Computing, vol. 128, pp. 84 –98, 2019.

[16] J. Bull and T. Freeman, “Numerical performance of an asynchronous Jacobi iter-
ation,” in Parallel Processing: CONPAR 92—VAPP V: Second Joint International
Conference on Vector and Parallel Processing Lyon, France, September 1–4, 1992
Proceedings, L. Bougé, M. Cosnard, Y. Robert, and D. Trystram, Eds., Berlin, Hei-
delberg: Springer Berlin Heidelberg, 1992, pp. 361–366.

[17] I. Bethune, J. M. Bull, N. J. Dingle, and N. J. Higham, “Performance analysis of
asynchronous Jacobi’s method implemented in MPI, SHMEM and OpenMP,” In-
ternational Journal on High Performance Computing Applications, vol. 28, no. 1,
pp. 97–111, 2014.

[18] P. Sanan, S. Schnepp, and D. May, “Pipelined, flexible Krylov subspace methods,”
SIAM Journal on Scientific Computing, vol. 38, no. 5, pp. C441–C470, 2016.

[19] M. Hoemmen, “Communication-avoiding Krylov subspace methods,” AAI3413388,
Ph.D. dissertation, USA, 2010, ISBN: 9781124140834.

[20] I. Yamazaki, E. Chow, A. Bouteiller, and J. Dongarra, “Performance of asyn-
chronous optimized schwarz with one-sided communication,” Parallel Computing,
vol. 86, pp. 66 –81, 2019.

[21] X. Lian, W. Zhang, C. Zhang, and J. Liu, Asynchronous decentralized parallel
stochastic gradient descent, 2017. arXiv: 1710.06952 [math.OC].

[22] F. Niu, B. Recht, C. Ré, and S. Wright, “Hogwild!: A lock-free approach to par-
allelizing stochastic gradient descent,” Advances in Neural Information Processing
Systems, vol. 24, Jun. 2011.

[23] G. Golub and M. Overton, “The convergence of inexact Chebyshev and Richardson
iterative methods for solving linear systems,” Numerische Mathematik, vol. 53, no. 5,
pp. 571–594, 1988.

[24] J. H. Bramble, J. E. Pasciak, and J. Xu, “Parallel multilevel preconditioners,” Math-
ematics of Computation, vol. 55, no. 191, pp. 131–144, 1990.

[25] M. Griebel and P. Oswald, “Greedy and randomized versions of the multiplicative
Schwarz method,” Linear Algebra and its Applications, vol. 437, no. 7, pp. 1596
–1610, 2012.

153

https://arxiv.org/abs/1710.06952

[26] J. M. Bahi, S. Contassot-Vivier, and R. Couturier, Parallel Iterative Algorithms:
From Sequential to Grid Computing. Chapman & Hall/CRC, 2007.

[27] A. Frommer and D. Szyld, “On asynchronous iterations,” Journal of Computational
and Applied Mathematics, vol. 123, no. 1–2, pp. 201 –216, 2000.

[28] D. Bertsekas and J. N. Tsitsiklis, “Some aspects of parallel and distributed iterative
algorithms: A survey,” Automatica, vol. 27, no. 1, pp. 3 –21, 1991.

[29] ——, Parallel and Distributed Computation: Numerical Methods. Upper Saddle
River, NJ, USA: Prentice-Hall, Inc., 1989, ISBN: 0-13-648700-9.

[30] B. F. Beidas and G. P. Papavassilopoulos, “Convergence analysis of asynchronous
linear iterations with stochastic delays,” Parallel Computing, vol. 19, no. 3, pp. 281
–302, 1993.

[31] F. Robert, M. Charnay, and F. Musy, “Itérations chaotiques série-parallèle pour des
équations non-linéaires de point fixe,” Aplikace Matematiky, vol. 20, no. 1, pp. 1 –
38, 1975.

[32] J. Hook and N. Dingle, “Performance analysis of asynchronous parallel Jacobi,”
Advances in Engineering Software, vol. 77, no. 3, pp. 831–866, 2018.

[33] J. Hu, T. Nakamura, and L. Li, “Convergence, complexity and simulation of mono-
tone asynchronous iterative method for computing fixed point on a distributed com-
puter,” Parallel Algorithms and Applications, vol. 11, no. 1-2, pp. 1–11, 1997.

[34] D. Bertsekas and J. N. Tsitsiklis, “Convergence rate and termination of asynchronous
iterative algorithms,” in Proceedings of the 3rd International Conference on Super-
computing, ser. ICS ’89, Crete, Greece: ACM, 1989, pp. 461–470.

[35] A. C. Moga and M. Dubois, “Performance of asynchronous linear iterations with
random delays,” in Proceedings of International Conference on Parallel Processing,
1996, pp. 625–629.

[36] D. de Jager and J. Bradley, “Extracting State-Based Performance Metrics us-
ing Asynchronous Iterative Techniques,” Performance Evaluation, vol. 67, no. 12,
pp. 1353–1372, 2010.

[37] F. Magoulès and G. Gbikpi-Benissan, “JACK: An asynchronous communication ker-
nel library for iterative algorithms,” The Journal of Supercomputing, vol. 73, no. 8,
pp. 3468–3487, 2017.

154

[38] ——, “JACK2: An MPI-based communication library with non-blocking synchro-
nization for asynchronous iterations,” Advances in Engineering Software, vol. 119,
pp. 116 –133, 2018.

[39] M. Si, A. J. Peña, J. Hammond, P. Balaji, M. Takagi, and Y. Ishikawa, “Casper: An
asynchronous progress model for mpi rma on many-core architectures,” in Proceed-
ings of the 2015 IEEE International Parallel and Distributed Processing Symposium,
ser. IPDPS ’15, Washington, DC, USA: IEEE Computer Society, 2015, pp. 665–676.

[40] S. Savari and D. Bertsekas, “Finite termination of asynchronous iterative algo-
rithms,” Parallel Computing, vol. 22, no. 1, pp. 39–56, 1996.

[41] J. M. Bahi, S. Contassot-Vivier, and R. Couturier, “An efficient and robust decen-
tralized algorithm for detecting the global convergence in asynchronous iterative
algorithms,” in High Performance Computing for Computational Science - VECPAR
2008: 8th International Conference, Toulouse, France, June 24-27, 2008. Revised
Selected Papers. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 240–254.

[42] J. M. Bahi, S. Contassot-Vivier, R. Couturier, and F. Vernier, “A decentralized con-
vergence detection algorithm for asynchronous parallel iterative algorithms,” IEEE
Transactions on Parallel and Distributed Systems, vol. 16, no. 1, pp. 4–13, 2005.

[43] E. W. Dijkstra and C. Scholten, “Termination detection for diffusing computations,”
Information Processing Letters, vol. 11, no. 1, pp. 1 –4, 1980.

[44] MPI: Message passing interface standard, version 3.0, High-Performance Comput-
ing Center Stuttgart, 2012.

[45] T. Davis and Y. Hu, “The University of Florida sparse matrix collection,” ACM
Transactions on Mathematical Software, vol. 38, no. 1, 1:1–1:25, Dec. 2011.

[46] G. Karypis and V. Kumar, “A fast and high quality multilevel scheme for partitioning
irregular graphs,” SIAM J. Sci. Comput., vol. 20, no. 1, pp. 359–392, Dec. 1998.

[47] M. F. Adams, “A distributed memory unstructured Gauss-Seidel algorithm for multi-
grid smoothers,” in Proceedings of the 2001 ACM/IEEE Conference on Supercom-
puting, 2001.

[48] M. Adams, M. Brezina, J. Hu, and R. S. Tuminaro, “Parallel multigrid smoothing:
Polynomial versus Gauss-Seidel,” Journal of Computational Physics, vol. 188, no. 2,
pp. 593–610, 2003.

[49] R. Southwell, Relaxation Methods in Engineering Science - A Treatise on Approxi-
mate Computation. Oxford University Press, 1940.

155

[50] ——, Relaxation Methods in Theoretical Physics, a continuation of the treatise, Re-
laxation methods in engineering science. Oxford University Press, 1946.

[51] T. Moreshet, R. I. Bahar, and M. Herlihy, “Energy reduction in multiprocessor sys-
tems using transactional memory,” in Proceedings of the 2005 International Sympo-
sium on Low Power Electronics and Design, ser. ISLPED ’05, 2005.

[52] U. Rüde, “Fully adaptive multigrid methods,” SIAM Journal on Numerical Analysis,
vol. 30, no. 1, pp. 230–248, 1993.

[53] U. Rüde, Mathematical and Computational Techniques for Multilevel Adaptive
Methods. Philadelphia, PA, USA: SIAM, 1993.

[54] J. Nutini, M. Schmidt, I. Laradji, M. Friedlander, and H. Koepke, “Coordinate de-
scent converges faster with the Gauss-Southwell rule than random selection,” in
ICML-15 Proceedings of the 32nd International Conference on Machine Learning,
2015, pp. 1632–1641.

[55] T. Blumensath and M. E. Davies, “Stagewise weak gradient pursuits,” IEEE Trans-
actions on Signal Processing, vol. 57, no. 11, pp. 4333–4346, 2009.

[56] D. L. Donoho, Y. Tsaig, I. Drori, and J.-L. Starck, “Sparse solution of underdeter-
mined systems of linear equations by stagewise orthogonal matching pursuit,” IEEE
Transactions on Information Theory, vol. 58, no. 2, pp. 1094–1121, 2012.

[57] Y. You, X. Lian, J. Liu, H. Yu, I. S. Dhillon, J. Demmel, and C. Hsieh, “Asyn-
chronous parallel greedy coordinate descent,” in Advances in Neural Information
Processing Systems 29, D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R.
Garnett, Eds., Curran Associates, Inc., 2016, pp. 4682–4690.

[58] S. G. Mallat and Z. Zhang, “Matching pursuits with time-frequency dictionaries,”
IEEE Transactions on Signal Processing, vol. 41, no. 12, pp. 3397–3415, 1993.

[59] Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad, “Orthogonal matching pursuit: Re-
cursive function approximation with applications to wavelet decomposition,” in Pro-
ceedings of the 27 th Annual Asilomar Conference on Signals, Systems, and Com-
puters, 1993, pp. 40–44.

[60] D. Needell and R. Vershynin, “Uniform uncertainty principle and signal recovery
via regularized orthogonal matching pursuit,” Foundations of Computational Math-
ematics, vol. 9, no. 3, pp. 317–334, 2009.

[61] J. Wolfson-Pou and E. Chow, “Reducing communication in distributed asyn-
chronous iterative methods,” in ICCS Workshop on Mathematical Methods and Al-

156

gorithms for Extreme Scale (Procedia Computer Science), vol. 80, 2016, pp. 1906–
1916.

[62] K. Blathras, D. Szyld, and Y. Shi, “Timing models and local stopping criteria for
asynchronous iterative algorithms,” Journal of Parallel and Distributed Computing,
vol. 58, no. 3, pp. 446 –465, 1999.

[63] A. H. Baker, R. D. Falgout, T. V. Kolev, and U. M. Yang, “Multigrid smoothers
for ultraparallel computing,” SIAM Journal on Scientific Computing, vol. 33, no. 5,
pp. 2864–2887, 2011.

[64] E. Chow, R. D. Falgout, J. J. Hu, R. S. Tuminaro, and U. M. Yang, “A survey of
parallelization techniques for multigrid solvers,” Frontiers of Parallel Processing
for Scientific Computing, 2005.

[65] J. Wolfson-Pou and E. Chow, “Distributed Southwell: An iterative method with low
communication costs,” in International Conference for High Performance Comput-
ing, Networking, Storage, and Analysis (SC17), Nov. 2017, pp. 1–13.

[66] A. H. Baker, R. D. Falgout, T. V. Kolev, and U. M. Yang, “Scaling hypre’s multigrid
solvers to 100,000 cores,” High-Performance Scientific Computing: Algorithms and
Applications, pp. 261–279, 2012.

[67] X. C. Tai and P. Tseng, “Convergence rate analysis of an asynchronous space decom-
position method for convex minimization,” Mathematics of Computation, vol. 71,
no. 239, pp. 1105–1135, 2002.

[68] P. S. Vassilevski and U. M. Yang, “Reducing communication in algebraic multigrid
using additive variants,” Numerical Linear Algebra with Applications, vol. 21, no. 2,
pp. 275–296, 2014.

[69] P. S. Vassilevski, Multilevel Block Factorization Preconditioners. Springer-Verlag
New York, 2008.

[70] L Hart and S McCormick, “Asynchronous multilevel adaptive methods for solving
partial differential equations on multiprocessors: Basic ideas,” Parallel Computing,
vol. 12, no. 2, pp. 131–144, 1989.

[71] B. Lee, S. McCormick, B. Philip, and D. Quinlan, “Asynchronous fast adaptive
composite-grid methods for elliptic problems: Theoretical foundations,” SIAM Jour-
nal on Numerical Analysis, vol. 42, no. 1, pp. 130–152, 2004.

[72] ——, “Asynchronous fast adaptive composite-grid methods: Numerical results,”
SIAM Journal on Scientific Computing, vol. 25, no. 2, pp. 682–700, 2003.

157

[73] D. Quinlan, “Adaptive mesh refinement for distributed parallel architectures,” Ph.D.
dissertation, University of Colorado Denver, 1993.

[74] S. McCormick, Multilevel Adaptive Methods for Partial Differential Equations. So-
ciety for Industrial and Applied Mathematics, 1989.

[75] A. Greenbaum, “A multigrid method for multiprocessors,” Applied Mathematics and
Computation, vol. 19, no. 1-4, pp. 75–88, 1986.

[76] T. F. Chan and R. S. Tuminaro, “Design and implementation of parallel multigrid
algorithms,” Proceedings of the Fourth Copper Mountain Conference on Multigrid
Methods, pp. 101–115, 1987.

[77] D. Gannon and J. V. Rosendale, “On the structure of parallelism in a highly con-
current PDE solver,” Journal of Parallel and Distributed Computing, vol. 3, no. 1,
pp. 106–135, 1986.

[78] J. Wolfson-Pou and E. Chow, “Asynchronous multigrid methods,” 2019 IEEE In-
ternational Parallel and Distributed Processing Symposium (IPDPS), pp. 101–110,
2019.

[79] A. AlOnazi, G. S. Markomanolis, and D. Keyes, “Asynchronous task-based paral-
lelization of algebraic multigrid,” Proceedings of the Platform for Advanced Scien-
tific Computing Conference, no. 5, pp. 1–11, 2017.

[80] J. Hawkes, G. Vaz, A. Phillips, C. Klaij, S. Cox, and S. Turnock, “Chaotic multigrid
methods for the solution of elliptic equations,” Computer Physics Communications,
vol. 237, pp. 26–36, 2019.

[81] V. E. Henson and U. M. Yang, “BoomerAMG: A parallel algebraic multigrid solver
and preconditioner,” Applied Numerical Mathematics, vol. 41, no. 1, pp. 155–177,
2002.

[82] U. M. Yang, “On the use of relaxation parameters in hybrid smoothers,” Numerical
Linear Algebra with Applications, vol. 11, no. 23, pp. 155–172, 2004.

[83] MFEM: Modular finite element methods library, mfem.org.

[84] R. Sevilla, “NURBS: Enhanced finite element method (NEFEM),” Ph.D. disserta-
tion, Polytechnic University of Catalonia, 2009.

[85] R. Falgout and U. M. Yang, “Hypre: A library of high performance preconditioners,”
vol. 2331, Apr. 2002, pp. 632–641.

158

mfem.org

[86] T. A. Manteuffel, “An iterative method for solving nonsymmetric linear systems with
dynamic estimation of parameters,” Department of Computer Science, University of
Illinois Urbana-Champaign, 1975.

[87] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd. Philadelphia, PA, USA:
SIAM, 2003.

[88] T. Hoefler, T. Schneider, and A. Lumsdaine, “Characterizing the influence of sys-
tem noise on large-scale applications by simulation,” In Proceedings of the 2010
ACM/IEEE International Conference for High Performance Computing, Network-
ing, Storage and Analysis, SC10, pp. 1–11, Nov. 2010.

[89] M. Griebel, “Multilevel algorithms considered as iterative methods on semidefinite
systems,” SIAM Journal on Scientific Computing, vol. 15, no. 3, pp. 547–565, 1994.

[90] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R.
Pozo, C. Romine, and H. V. der Vorst, Templates for the Solution of Linear Systems:
Building Blocks for Iterative Methods, 2nd Edition. Philadelphia, PA: SIAM, 1994.

159

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Overview and Motivation
	Outline and Contributions

	Modeling the Asynchronous Jacobi Method Without Communication Delays
	Background
	The Jacobi and Gauss-Seidel Methods
	Asynchronous Iterative Methods

	Related Work
	Asynchronous Iterative Methods Without Communication Delays
	Mathematical Formulation
	Connection of Simplified Asynchronous Jacobi to an Inexact Multiplicative Block Relaxation Method
	Simplified Asynchronous Jacobi Can Reduce The Residual When Some Processes are Delayed in Their Computation
	Simplified Asynchronous Jacobi Can Converge When Synchronous Jacobi Does Not

	Implementing Asynchronous Jacobi in Shared Memory
	Implementing Asynchronous Jacobi in Distributed Memory
	Results
	Test Framework
	Simplified Asynchronous Jacobi Compared to OpenMP Asynchronous Jacobi
	Asynchronous Jacobi in Distributed Memory

	Conclusion

	Southwell Methods
	Background
	The Sequential Southwell Method

	Related Work
	The Parallel Southwell Method
	Mathematical Formulation
	Implementation
	Experimental Results

	The Distributed Southwell Method
	Block Methods on Distributed Memory Computers
	The Distributed Southwell Method
	Experimental Results

	The Stochastic Parallel Southwell Method
	Conclusion

	Asynchronous Multigrid Methods
	Background
	Classical Multiplicative Multigrid Methods
	Additive Multigrid Methods

	Models of Asynchronous Multigrid Methods
	Asynchronous Multigrid for Shared Memory
	Algorithms for Asynchronous Implementations
	Experimental Results

	The AFACj Multigrid Method
	Asynchronous Multigrid for Distributed Memory
	Implementation
	Experimental Results

	Conclusion

	Asynchronous Chebyshev Methods
	Background
	The Chebyshev Method

	Asynchronous Chebyshev Methods
	Models of the Jacobi-preconditioned Asynchronous Chebyshev Method
	Asynchronous EBPX-Chebyshev Method
	Simulating Models of Asynchronous EBPX-Chebyshev

	Experimental Results
	Conclusion

	Conclusion
	Contributions and Future Work
	Asynchronous Jacobi
	Asynchronous Southwell Methods
	Asynchronous Multigrid Methods
	Asynchronous Chebyshev Methods

	References

