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SUMMARY

Motivated by the use of high speed circuit switches in large scale data centers, we

consider the problem of circuit switch scheduling. In this problem we are given demands

between pairs of servers and the goal is to schedule at every time step a matching between

the servers while maximizing the total satisfied demand over time. The crux of this schedul-

ing problem is that once one shifts from one matching to a different one a fixed delay δ is

incurred during which no data can be transmitted.

For the offline version of the problem we present a (1− 1/e−ε) approximation ratio (for

any constant ε > 0). Since the natural linear programming relaxation for the problem has

an unbounded integrality gap, we adopt a hybrid approach that combines the combinatorial

greedy with randomized rounding of a different suitable linear program. For the online

version of the problem we present a (bi-criteria) ((e − 1)/(2e − 1) − ε)-competitive ratio

(for any constant ε > 0 ) that exceeds time by an additive factor of O(δ/ε). We note that no

uni-criteria online algorithm is possible. Surprisingly, we obtain the result by reducing the

online version to the offline one.

ix



CHAPTER 1

INTRODUCTION AND OUR CONTRIBUTION

1.1 Motivation

In recent years the vast scaling up of data centers is fueled by applications such as cloud

computing and large-scale data analytic. Such computational tasks, which are performed

in a data center, are distributed in nature and are spread over thousands of servers. Thus,

it is no surprise that designing better and efficient switching algorithms is a key ingredient

in obtaining better use of networking resources. Recently, several works have focused on

high speed optical circuit switches that have moving optical mirrors [1, 2, 3] or wireless

circuits [4, 5, 6].

A common feature of many of these new switching models is that at any time the data

can be transmitted on any matching between the senders and the receivers. However, once

the switching algorithm decides to reconfigure from the current matching to a new different

matching, due to physical limitations such as the time it takes to rotate mirrors, a fixed

delay is incurred before data can be sent along the new reconfigured matching. This has

led to significant study on obtaining good scheduling algorithms that take this delay into

account [7, 8, 9]. The cost in switching between matchings makes the problem different

when compared to the classical literature on scheduling in crossbar switching [10], which

are usually based on Birkhoff von-Neumann decompositions. In this paper we focus on

finding the schedule that sends as much data as possible in a fixed time window. We aim to

design simple and efficient offline and online algorithms, with provable guarantees, for the

scheduling problem that incorporates switching delays.

In the circuit switch scheduling problem, we are given a traffic demand matrix D ∈

R|A|×|B|+ , where A is the set of senders and B is the set of receivers. Dij denotes the amount
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of data that needs to be sent from sender i to receiver j. The Dij’s can also be seen as

weights on the edges of a complete bipartite graph with vertex set A ∪ B. We are also

given a time window W and a switching time δ > 0. At any time, the algorithm must

pick a matching M and duration α for which the data is transmitted along the edges of

the matching M that still require data to be sent. When the algorithm changes to another

matching M ′ for another duration α′, the algorithm must account for δ amount of time for

switching between the two matchings. The total amount of time that data is sent along

matchings as well as switching time between the matchings must total no more than W .

The objective is to maximize the total demand that is satisfied.

1.2 Preliminaries

In this section, we will define the basics of the definitions that we will need throughout this

thesis. We will not provide full details of what these processes are but the facts and theo-

rems that we will use about them. In the next section, we define our problem setting using

these basic definitions. We introduce a greedy algorithm for monotone submodular func-

tion maximization and the ideas behind solving a linear program that has an exponential

number of constraints.

1.2.1 Submodular Functions

In this section, we introduced a very useful class of functions called Submodular functions.

There is a vast amount of literature on these functions for which we refer the reader to [11].

Given a ground set N , A submodular functions is a function f : 2N → R with the property

that for A,B ⊆ N ,

f(A) + f(B) ≥ f(A ∪B) + f(A ∩B) (1.1)
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This property is called the submodular property. This property is equal to the following:

For any A ⊆ B ⊆ [n] and i ∈ N B, we have

f(A ∪ {i})− f(A) ≥ f(B ∪ {i})− f(B) (1.2)

It has been shown that a function is submodular if and only if either Property 1.1 and

Property 1.2 holds. Property 1.2 is also called the property of diminishing returns. Since,

as the set grows bigger the value gained by the growth is decreasing. A submodular function

is monotone if we have f(A) ≤ f(B) for A,B ⊆ N if and only if A ⊆ B. In this thesis we

only consider the monotone submodular functions and we might refrain from specifying

its monotonicity every time. A natural problem regrading the submodular functions is the

following optimization problem.

maximize
S⊆N

f(S)

subject to
∑
s∈S

w(s) ≤ k

Where k ∈ N is called the budget and w is a positive weight function on the ground set. This

problem is called Monotone Submodular Maximization subject to Knapsack Constraint. In

general this problem is NP-Complete. For the exact details of how submodular functions

work and proofs refer to [12].

1.2.2 Linear Programming

Linear programming, as we will use it, is the process of solving a system of linear equa-

tions. Consider the following program

maximize
x

cTx

subject to Ax ≤ b
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In which, x is the vector of variables and c,b are the vectors of coefficients and A is a

matrix. The systems of linear programs with polynomial constraints are always solvable

in polynomial time [13]. However, if the number of constraints are exponential, we need

extra assumptions to solve the linear program. One of the most common assumptions is the

existence of a separation oracle. A separation oracle is a process that given x∗, it can decide

whether x∗ satisfies all constraints or gives at least one inequality such that ax∗ > b. If

such oracle is available, linear programs with exponential number of variables are solvable

using the Ellipsoid Method. For more information on Ellipsoid Method, we refer the reader

to [13].

1.3 Circuit Switch Problem Setting

In this section, we describe the problem formally. We are given a complete bipartite graph

G = (A,B,E) where A and B are the sets of sending and receiving servers, A constant

δ ≥ 0 and a time windowW ≥ 0. We are also given the traffic demand matrix of the graph,

D ∈ R|A|×|B|+ , where Dij denotes the amount of data that needs to be sent from sender i to

receiver j. TheDij’s can be seen as weights on the edges of the bipartite graph. To simplify

the notation, for an edge e = (i, j) we abbreviate Dij to De. LetM be the collection of all

matchings in G.

Definition 1. The pair (M,α) is called a configuration if M ∈M and α ∈ R+.

The term scheduling a configuration (M,α) means sending data via the matching M

for a duration of times that equals α. For simplicity of presentation, we also interpret a

matching M as a {0, 1}|A|×|B| matrix where e ∈ M if and only if the entry of edge e in M

is 1. Note that for any edge e ∈ M the total data sent through e would be min(De, α)

and the total amount of data sent by the configuration would be ||min (D,αM) ||1 =∑
e∈M min (De, α) (Note that the minimum is taken element-wise). For simplicity of pre-

sentation we may use ||.||1 and ||.|| interchangeably.
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Switching from a configuration (M,α) to another (M ′, α′) incurs a given constant delay

δ, during which no transmission can be made. Let C denote the collection of all possible

configurations.

Definition 2. A schedule S of size k is a subset S ⊆ C such that |S| = k. We say that S

requires a total time of
∑

(M,α)∈S (α + δ) to be scheduled.

The total time of the schedule includes both the time for sending data with each con-

figuration and the delay in switching between them. This brings us to the definition of a

feasible schedule.

Definition 3. A schedule S is feasible if
∑

α:(M,α)∈S(α + δ) ≤ W .

In the offline setting, the goal is to find a feasible schedule S that maximizes the data

sent over the given time window of W . This problem can be formulated as follows:

max
{∣∣∣∣∣∣min

(
D,
∑

(M,α)∈SαM
)∣∣∣∣∣∣

1
: S ⊆ C,

∑
α:(M,α)∈S (α + δ) ≤ W

}
(1.3)

We note that C might be of infinite size. However, we use standard discretization techniques

to limit the set of possible values for α in our algorithms. We will discuss this with more

detail in the later relevant sections. For now, assume C is finite. To facilitate the notation and

the analysis of our problem, we turn to a well-known class of functions called submodular

functions.

Definition 4. Given a ground set N = {1, 2, 3, ..., n}, a set function f : 2N → R+ is a

submodular function if for every A,B ⊆ N : f(A) + f(B) ≥ f(A ∪B) + f(A ∩B).

For our problem, define f : 2C → R+ as:

f (S) =
∣∣∣∣∣∣min

(
D,
∑

(M,α)∈SαM
)∣∣∣∣∣∣

1
.

Moreover, we denote by fS ((M,α)) = f (S ∪ (M,α)) − f (S) the marginal gain of the
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schedule S if the configuration (M,α) was added to it. It has been shown that f is sub-

modular (refer to Theorem 1 in [9]). For the sake of completeness, we state the theorem.

Note that f is monotone if for every A ⊆ B ⊆ N : f(A) ≤ f(B).

Theorem 1 (Theorem 1 in [9]). The function f is a monotone submodular function.

For the online version of the problem, we use a discrete time model. Unlike the offline

version, in the online setting we do not know the entire traffic matrix of the graph in the

beginning. We start with D0 as the demand matrix already present in the initial graph.

At time t an additional traffic matrix Dt is revealed to the algorithm that includes new

demands for data that need to be transmitted. In the online version of the problem sending

configuration (M,α) means that for the next α ∈ Z+ time steps our algorithm is busy

sending the matching M . Switching a configuration to a different one incurs an additional

delay of δ ∈ N steps, during which no data can be sent. The incoming traffic matrices, at

every step starting with the sending of (M,α) and ending with the switching cost (a total

of α + δ time steps), will accumulate and be added to the remaining traffic matrix of the

graph.

1.4 Our Contributions

Our main contribution in this paper are simple and efficient algorithms for the offline and

online variants of the circuit switch scheduling problem. The following theorem summa-

rizes our result for the offline setting.

Theorem 2. Given any constant ε > 0, there is an algorithm that returns a (1 − 1/e − ε)-

approximation for the circuit switch scheduling problem.

We note that two natural linear programming relaxations, to the problem both have an

unbounded integrality gap. The first assigns a distribution over matchings for every time,

and the second picks configurations with the additional knapsack constraint. Thus, a differ-

ent approach must be used. We adopt a hybrid approach that combines greedy and rounding
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of a special linear program to prove the above theorem. The former approach is employed

when the switching delay δ is significantly smaller than the time window W , while the lat-

ter approach is employed otherwise. It was already noted [9] that the offline variant of the

circuit switch scheduling problem is a special case of maximizing a monotone submodular

function given a knapsack constraint. Unfortunately, the above reduction requires a ground

set of infinite size where each element in the ground set corresponds to a matching M and

a duration α. We note that even if the duration are discretized we are still left with a ground

set of exponential size that contains all matchings of the bipartite graph. Thus, the standard

tight (1− 1/e)-approximation [12] for maximizing a monotone submodular function given

a knapsack constraint cannot be applied. Our main technical ingredient is to show that

despite the above difficulties, the hybrid approach we propose in the paper allows one to

obtain the nearly optimal (1− 1/e)-approximation for the problem.

We also consider the online variant of the problem where the data matrix is not known

in advance but is revealed over time. We consider a discrete time process where at each time

step, we receive a new additional data matrix that needs to be transmitted. Moreover, we

can choose a matching to transmit data at any time step with the constraint that whenever

we change the matching from the previous step, no data is transmitted for δ steps. Our main

contribution is a reduction from the online variant to the offline variant. This results in a

bi-criteria algorithm since the online algorithm is allowed a slightly larger time window

than the optimum.

Theorem 3. Given a β-approximation for the offline circuit switch scheduling problem

and an integer k ≥ 1, there exists an algorithm achieving a competitive ratio of (1−2/k)β
1+(1−2/k)β

for the online circuit switch scheduling problem which uses a time window of W + kδ as

compared to a time window of W for the optimum.

Combining Theorem 2 and Theorem 3, we have the following corollary.

Corollary 3.1. For any constant ε > 0, there exists an algorithm achieving a competitive
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ratio of
(
e−1
2e−1 − ε

)
for the online circuit switch scheduling problem which uses a time

window of W +O (δ/ε) as compared to a time window of W for the optimum.

1.5 Related Works

Venkatakrishnan et. al. [9] were the first to formally introduce the offline variant of the

circuit switch scheduling problem. They focused on the special case that all entries of the

data matrix are significantly small, and analyzed the greedy algorithm. Though it is known

that the greedy algorithm does not provide any worst-case approximation guarantee for the

general case of maximizing a monotone submodular function given a knapsack constraint,

[9] proved that in the special case of small demand values they obtain an (almost) tight ap-

proximation guarantee. To the best of our knowledge, our algorithm gives the best provable

bound for the offline variant of the circuit switch scheduling problem. A different related

variant of the problem is when data does not have to reach its destination in one step, i.e.,

data can go through several different servers until it reaches its destination [7, 8, 9].

A dual approach is given by Liu et. al. [14], who aim to minimize the total needed time

to transmit the entire demand matrix. Since our algorithm aims to maximize the transmitted

data in a time window of W , one can use our algorithm as a black box while optimizing

over W . It was proven in [15] that the problem of minimizing the time needed to send

all of the data is NP-Complete. Hence, we can conclude that the circuit switch scheduling

problem is also NP-Complete.

The problem of decomposing a demand matrix into matchings, i.e., the decomposition

of a matrix into permutation matrices, was considered by [16, 17, 18, 19]. The special

cases of zero delay [20] and infinite delay [21] have also been considered. Several related,

but slightly different, settings include [22, 23, 24].

Regarding the theoretical problem of maximizing a monotone submodular function

given a knapsack constraint, Sviridenko [12] (building upon the work of Khuller et. al.

[25]) presented a tight (1 − 1/e)-approximation algorithm. This tight algorithm enumer-
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ates over all subsets of elements of size at most three, and greedily extends each subset

of size three, and returns the best solution found. Deviating from the above combinatorial

approach of [25, 12], Badanidiyuru and Vondrák [26] and Ene and Nguy˜ên [27] present

algorithms that are based on an approach that extrapolates between continuous and discrete

techniques. Unfortunately, as previously mentioned, none of the above algorithms can be

directly applied to the circuit switch problem due to the size of the ground set.

The online version of the Circuit Switch Scheduling has been considered from a queu-

ing theory prospective. In both with delay[28] and without [29]. In which expectation

guarantees are proven under the assumption that the incoming traffic is from a previously

known distribution or i.i.d. random variables. To the best of our knowledge, the online

version has not been studied from a theoretical prospective.
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CHAPTER 2

OFFLINE CIRCUIT SWITCH ALGORITHM

In this section, we prove Theorem 2 by giving an approximation algorithm for the circuit

switch scheduling problem. Our algorithm is a combination of the greedy algorithm as well

as a linear programming approach. We first show that the greedy algorithm gives close to

a (1 − 1
e
)-approximation if δ, the switching delay, is much smaller than the time window

W . Notice that this is the case where we have a large number of configurations. The

other case, where δ is close to W , we are limited in the number of configurations we can

use. In Section 2.2, we give a randomized rounding algorithm for a linear programming

relaxation that gives a (1 − 1
e
)-approximation but runs in time exponential in number of

matchings used in the optimal solution. While the natural linear program for the problem

has unbounded gap, we show how to bypass this when the schedule has a constant number

of matchings. Our joint method uses both algorithms and picks the best approximation as

the answer for the problem.

2.1 Greedy Algorithm

The greedy algorithm is as follows: at each step choose the configuration that maximizes

the amount of data it sends per unit of time it uses. Formally, if Ri is the remaining data

demand in the graph after i configurations were already chosen, the greedy algorithm will

choose the following configuration to be used next:

(Mi+1, αi+1) = argmaxM∈M,α∈R+

||min (Ri, αM) ||1
α + δ

. (2.1)

The greedy algorithm continues to pick configurations until the first time the time con-

straint is violated or met. Algorithm 1 demonstrates this process. Let r denote this number

10



Algorithm 1 Greedy Algorithm

1: Input: G = (A,B,E) , D, δ,W
2: Output: {(M1, α1) , . . . , (Mr, αr)}
3: S ← ∅. i← 0, R1 ← D.
4: while

∑
α:(M,α)∈S (α + δ) ≤ W do

5: i← i+ 1.
6: (Mi, αi)← arg maxM∈M,α∈R+

||min(Ri,αM)||
α+δ

.
7: S ← S ∪ {(Mi, αi)}.
8: Ri+1 ← Ri −min (Ri, αiMi).
9: end while

10: r ← i.
11: if

∑
(M,α)∈S (α + δ) > W then

12: βr ← W − δ −
∑r−1

j=1(αj + δ)
13: if βr ≥ 0 then
14: S ← (S \ {(Mr, αr)}) ∪ {(Mr, β)}
15: else
16: S ← (S \ {(Mr, αr)})
17: end if
18: end if
19: return S

of steps and Sr the schedule created after r steps of this algorithm. The last chosen config-

uration may violate the time window budget and a natural strategy is to reduce its duration

to the time window W as is done in Step (11)-(12) of the algorithm. Indeed [9] analyzes

this algorithm and shows that it performs well if each entry in data matrix is small. They

also show that the above optimization problem can be solved using the maximum weight

matching problem. We give a different analysis of the algorithm and show that it gives us

a
(
1− 1

e
− ε
)
-approximation if δ < ( e

2(e−1)ε) ·W .

Theorem 4. Let Sr denote the schedule as returned by the greedy algorithm and O denote

the optimal schedule. Then

f(Sr) ≥
(

1− 2δ

W

)(
1− 1

e

)
f(O).

Proof. To analyze the algorithm, we first show that the objective of the optimal schedule of

a slightly smaller time window W − δ is not much smaller than the optimum value of the
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optimum schedule for time window W in Lemma 1. Indeed, the lemma states that given

any schedule for time windowW , for example the optimal schedule, there exists a schedule

with time window W − δ of a comparable objective.

Lemma 1. For any schedule S for a time window of W , there is a schedule S̃ on a window

of W − δ time such that f(S̃) ≥
(
1− 2δ

W

)
f (S).

Proof. Let Tdata be the total time spent sending data and Tswitch be the total time spent

switching between configurations. Thus, W = Tdata + Tswitch. We prove that we can

remove δ time from some configuration or we can remove an entire configuration from S

while reducing the objective by no more than 2δ
W

fraction of the objective. Consider the two

following cases for the given S. If Tdata ≥ W
2

. So we have f(S)
Tdata

≤ 2
W
f (S). This means,

there exists a configuration that we can deduct δ time from and at most lose 2δ
W
f (S). If

Tswitch ≥ W
2

. This means the number of configurations is at least W
2δ

. Each configuration on

average sends 2δ
W
f (S) data. Therefore, there is a configuration we can completely remove

from our schedule such that total amount of lost data is at most 2δ
W
f (S). In both cases we

can reduce the time taken by the schedule by at least δ and have a new schedule S̃ such that

f
(
S̃
)
≥
(
1− 2δ

W

)
f (S).

Let O′ denote the optimal solution with time window W − δ. From Lemma 1, we

have f(O′) ≥
(
1− 2δ

W

)
f(O). In the following lemma, we show that the output of the

greedy algorithm is at least a
(
1− 1

e

)
-approximation of f(O′). The proof of the lemma

follows standard analysis for greedy algorithms for coverage functions, or more generally

submodular functions, except for the being careful at the last step.

Lemma 2. If O′ is the optimum schedule on time window W − δ, then

f(Sr) ≥ (1− 1

e
)f(O′).

Proof. Let S ′r = {(M1, α1) , . . . , (Mr, αr)} be the set of configurations picked by the

12



greedy algorithm before the update steps (11)-(12) in which αr is reduced to βr := W −

δ−
∑r−1

j=1(αj + δ) to obtain schedule Sr. Note that βr could be negative, however, for now

assume βr ≥ 0. For ease of notation we also define βi = αi for each 1 ≤ i ≤ r − 1. Thus

Sr = {(M1, β1) , . . . , (Mr, βr)}. We also let Si to be the scheduled formed by picking the

first i configurations in Sr. We now show the following claim.

Claim 1. For any configuration (Mi, βi) picked by the greedy algorithm in schedule Sr at

any 1 ≤ i ≤ r, we have

fSi−1
((Mi, βi)) ≥

βi + δ

W − δ
(f (O′)− f (Si−1)) .

Proof. First let us concentrate on the case when i < r. Then βi = αi. Note that since Mi

is a matching that maximizes ||min(Ri,αiMi)||
αi+δ

, for any other M ∈M\Si−1 and any α ∈ R+

we can write
fSi−1

((M,α))

α + δ
≤
fSi−1

((Mi, αi))

αi + δ

or equivalently, for each 1 ≤ i ≤ r and configuration (M,α), we have

fSi−1
((M,α)) ≤ α + δ

αi + δ
fSi−1

((Mi, αi)) . (2.2)

For any 1 ≤ i ≤ r, consider the following

f (O′)− f (Si−1) ≤ f (O′ ∪ Si−1)− f (Si−1) = fSi−1
(O′) ≤

∑
(M,α)∈O′\Si−1

fSi−1
((M,α))

(2.3)

The last inequality comes from the submodularity of the function. Summing Inequal-

ity (2.2) over all configurations in O′ \ Si−1 and using that the O′ has a time window

W − δ, we obtain that

∑
(M,α)∈O′\Si−1

fSi−1
((M,α)) ≤ W − δ

αi + δ
fSi−1

((Mi, αi)) .
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Combining the above inequality with Inequality (2.3), we obtain

fSi−1
((Mi, αi)) ≥

αi + δ

W − δ
(f (O′)− f (Si−1)) . (2.4)

Thus if i < r, the claim follows since we have βi = αi. When i = r, first observe that

since the data sent along a single matching is a concave function of the time it is used in a

configuration, we have that

fSr−1 ((Mr, βr)) ≥
βr + δ

αr + δ
fSr−1 ((Mr, αr))

≥ βr + δ

αr + δ

αr + δ

W − δ
(f (O′)− f (Sr−1)) ≥

βr + δ

W − δ
(f (O′)− f (Sr−1))

This completes the proof of the claim.

First note we can write the following equality:

f (O)− f (Sr) = f (O)− f (Sr−1)− fSr−1 ((Mr, βr))

We will now derive the approximation factor.

f (O)− f (Sr−1)− fSr−1 ((Mr, βr)) ≥ f (O)− f (Sr−1)−
βr + δ

W − δ
(f (O)− f (Sr−1))

This will result in the following inequality.

f (O)− f (Sr) ≥ (f (O)− f (Sr−1))
(

1− βr + δ

W − δ

)

Continuing for the remaining r − 1 steps we will have:

f (O)− f (Sr) ≥ (f (O)− f (S0)) Πr
i=1

(
1− βi + δ

W − δ

)
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Now using 1− x ≤ e−x, we can write:

f (O)− f (Sr) ≥ f (O) e−
∑r
i=1(

βi+δ

W−δ )

Since
∑r

i=1(βi + δ) ≥ W − δ,

f (Sr) ≥
(

1− 1

e

)
f (O)

Thus concluding the theorem for βr ≥ 0. Note that if βr < 0, the whole argument of

this section still holds without considering βr and the last configuration. This is because∑r−1
i=1 (βi + δ) ≥ W − δ holds without the last configuration if βr < 0. Notice that in this

case the algorithm will drop the last configuration.

The proof of Theorem 4 now follows.

Here we take a brief moment to analyze the time of this algorithm. The main time of the

Algorithm 1 is in how many times the loop will repeat and in each iteration how long line 6

will take. It is clear that the maximum number of configurations that we can schedule is W
δ

.

Since, every configuration, regradless of α, will take at least δ units of time. This means the

loop will repeat at most W
δ

times. Now, solving the maximum in line 6 relies on a simple

fact. The α that maximizes arg maxM∈M,α∈R+

||min(Ri,αM)||
α+δ

is an element of the remaining

traffic matrix, Ri. This simplifies the search for α into a binary search on the non-zero

elements remaining on the traffic matrix. For a proof of this fact we refer the reader to

appendix of [9]. For every α in the process of the binary search we find the maximum

weighted matching in the bipartite graph to determine ||min(Ri,αM)||
α+δ

. In conclusion, we will

have an algorithm of order O(d2(n
5

2
)W
δ

), where d is the density of the graph. For an exact

break down of this refer to [9].
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2.2 LP Approach for Constant Number of Configurations

In this section, we assume that we want to schedule at most a given constant k number of

configurations and prove the following theorem.

Theorem 5. If δ < ( e
2(e−1)ε) · W , there exists a randomized polynomial time algorithm

that given an integer k and an instance of the circuit switch scheduling problem returns a

feasible schedule whose objective, in expectation, is at least (1 − 1
e
− ε) of the optimum

solution that uses at most k matchings.

Let us denote optimum schedule by O = {(M∗
1 , α

∗
1), . . . , (M

∗
k , α

∗
k)} and let Dmax =

maxe∈E De where De is the data on edge e. let’s scale W and all traffic matrix to numbers

between 0 and 1. This can be done since if Dmax > W , we know no edge can send data

more than W in the entire schedule, so we can cut the extra data to have Dmax = W . We

can assume that we know what the α∗i ’s are. This can be done by a standard discretization

of the possible values. Consider a λ < 1, We can estimate α∗i ’s to be {λ, 2λ, . . . , 1}, we

now briefly show that this estimation is polynomial and loses at most εf(O) for the correct

λ. Consider α∗i = jλ where jλ is the closest multiply of λ such that jλ ≤ α∗i < (j + 1)λ.

In this case f({(M∗
1 , jλ)}) ≥ f({(M∗

1 , α
∗
i )}) − f({(M∗

1 , λ)}) ≥ f({(M∗
1 , α

∗
i )}) − λn.

This is because the data that M1 can send in a unit of time is bounded by λn. Consider

O
′

= {(M∗
1 , λ

∗
1), . . . , (M

∗
k , λ

∗
k)}, where λ∗i is the appropriate λ’s we picked above. Note

that
∑k

1 λ
∗
i ≤ 1. For the total data we have, f(O

′
) ≥ f(O) − nkλ. Now we want nkλ ≤

εf(O) ≤ εn. Meaning λ = ε
k
. The total number of different λ’s that we need to try is at

most 1
λ

for every configuration and 1
λk

total.

The total data sent by a schedule S is f(S) = ||min(D,
∑

(M,α)∈S αM)||1. However,

in this section, it is more beneficial to consider the total data as the sum of total data

sent over each edge. We model the total data by Z =
∑

e∈E ze, where ze is the amount

of data that was sent through edge e in our graph. In the case of the optimum, z∗e =

min(De,
∑

α∗:(M∗,α∗)∈O:e∈M∗ α
∗) and Z∗ =

∑
e∈E z

∗
e . We can formulate the following
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integer program for this problem.

(P) max
∑
e∈E

ze (2.5)

s.t.
∑
M∈M

xM,i ≤ 1 ∀i = 1, . . . , k (2.6)

ze ≤ De ∀e ∈ E (2.7)

ze ≤
k∑
i=1

∑
M∈M:e∈M

α∗i · xM,i ∀e ∈ E (2.8)

xM,i ∈ {0, 1} ∀e ∈ E,∀M ∈M, ∀i = 1, . . . , k

In (P), ze is a variable for edge e which shows the amount of data sent through the

edge e using the entire schedule. Since we only need k configurations in this setting, xM,i

is a variable showing partial participation of matching M in configuration i (Note that

due to the nature of linear programming we have partial configurations here, where they

include more than one matching). Constraints (2.6) is to ensure that only one matching is

considered in every time interval. Constraint (2.7) and (2.8) are to model the total data sent.

We can relax this integer program to an LP by changing the xM,i ∈ {0, 1} to 0 ≤ xM,i ≤ 1.

The following lemma states that the relaxed linear program is a relaxation of our problem

for the constant number of configurations.

Lemma 3. Let ZLP be the value of an optimum solution to the LP, then ZLP ≥ Z∗

Proof. If O = {(M∗
1 , α

∗
1), . . . , (M

∗
k , α

∗
k)} is our optimum answer, based on O we will

create a feasible answer to the LP. For every (M∗
i , α

∗
i ) ∈ O, we set xM∗,i = 1. Clearly,

the constraint 2.6 is satisfied since we picked exactly one matching for every interval. The

constraints 2.7 and 2.8 is by definition satisfied since f(O) = ||min(D,
∑

(M,α)∈O αM)||

and the constraints are modeling this minimum. This argument shows that the optimum

answer is feasible in the LP and since the LP is a maximization problem we can conclude

that ZLP ≥ f(O).
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The LP contains an exponential number of variables, since the number of matchings

in a graph could be exponential. To be able to solve this program we need to introduce a

separation oracle for the dual of this LP. Existence of the separation oracle proves the linear

program can be solved using the ellipsoid method. Using the ellipsoid on the dual will

provide a polynomial set of violated dual variables that the separation oracle determines.

We can replace the constraints of the original LP with only the set of the violated dual

variables. This will create a polynomial size LP that is solvable in polynomial time. Thus

using ellipsoid method on the dual will provide a way to find the primal variables. For the

exact details of this process see Lemma 3 of [30]. The following program is the dual:

(D) min
k∑
i=1

yi +
∑
e∈E

Deae (2.9)

s.t. yi ≥ α∗i
∑
e∈M

be ∀M ∈M,∀i = 1, . . . , k (2.10)

ae + be ≥ 1 ∀e ∈ E (2.11)

ae ≥ 0, be ≥ 0, yi ≥ 0 ∀e ∈ E,∀i = 1, . . . , k

The Lemma 4 states the existence of a separation oracle.

Lemma 4. The dual program D admits a polynomial time separation oracle.

Proof. Given a solution ({yi}ki=1, {aE}e∈E, {be}e∈E) we are required to determine whether

it is feasible and if not provide a constraint that is violated. We can easily determine whether

all constraints of type (2.11) are satisfied, and if not provide one that is violated, by a simple

enumeration over all edges e ∈ E. The same can be done for constraints of type (2.10) by

enumerating over i = 1, . . . , k and for each i compute a maximum weight matching in G

equipped with {be}e∈E as edge weights and check whether the maximum weight matching

has value at most yi/α∗i . If the maximum weight matching exceeds the target value return

the constraint that corresponds to i and the maximum weight matching.

Solving the linear program will provide us with a fractional solution {xM,i}M∈M,i=1,...,k.
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Algorithm 2 Randomized Rounding

1: Input: (k, {α∗i }ki=1, {xM,i}M∈M,i=1,...,k)
2: Output: {(Mi, α

∗
i )}ki=1

3: for i← 1, . . . , k do
4: choose Mi to be a random matching w.p. xM,i for the interval i
5: end for
6: return {(Mi, α

∗
i )}ki=1

For any i we have
∑

M∈M xM,i ≤ 1. This constraint of the LP creates a distribution over

the matchings in time interval i. We create a solution to the program P from the fractional

solution by a randomized rounding technique. We pick M ∈ M for the time interval i

with probability xM,i. Note that with probability 1 −
∑

M∈M xM,i no matching will be

chosen for this time interval. A formal description of this rounding method is provided

in Algorithm 2. Let XM,i denote the indicator random variable if matching M is selected

for the ith slot. Moreover, let Ye,i denote the random variable that edge e is present in the

matching chosen in the ith slot. We have Ye,i =
∑

M∈M:e∈M XM,i for each e ∈ E and i

and E[Ye,i] =
∑

M∈M:e∈M xM,i. Moreover, let Ze denote the random variable that denotes

the data sent along edge e. Then we have Ze = min(De,
∑k

i=1 α
∗
iYe,i). Observe that the

random variables {Ye,i}ki=1 are independent.

The following Lemma 5 is implicit in Theorem 4 of Andelman and Mansour [31].

Lemma 5. Let Y1, . . . , Yn be independent Bernoulli random variables and let

Z = min(B,
n∑
i=1

biYi)

for some non-negative reals B, b1, . . . , bn. Then

E[Z] ≥
(

1− 1

e

)
min

(
B,E

[
n∑
i=1

biYi

])
.

Applying the above lemma for each e and random variables {Ye,i}ki=1, we obtain that
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E[Ze] ≥
(

1− 1

e

)
min

(
De,E

[
k∑
i=1

α∗iYe,i

])

=

(
1− 1

e

)
min

(
De,

k∑
i=1

∑
M∈M:e∈M

α∗ixe,i

)

≥
(

1− 1

e

)
ze

Now summing over all edges, we have E[Z] ≥ (1 − 1
e
)Z ≥ (1 − 1

e
− ε)f(O) and

Theorem 5 follows. We are now ready to conclude our discussion of the offline variant of

the circuit switch scheduling problem and prove Theorem 2.

Proof of Theorem 2. Given ε > 0, if δ ≤ ( e
2(e−1)ε)W then Theorem 4 gives us a (1− 1

e
−ε).

Otherwise, 2(e−1)
e

1
ε
> W

δ
implying that at most 2(e−1)

e
1
ε

configurations can be scheduled. In

this case, Theorem 5 will give a (1− 1
e
− ε) approximation.
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CHAPTER 3

ONLINE CIRCUIT SWITCHING ALGORITHM

In this section, we prove Theorem 3. Recall that in the online setting, we consider a discrete

time model where an additional traffic matrix is revealed at every time t = 1, 2, . . . , T . At

every time step t, a new set of traffic demands arrives and adds to the remaining traffic that

has not been sent so far. We assume that the data matrix arriving at each step is integral

and thus can be modeled as a multigraph. We denote the incoming traffic matrices as

multigraphs {E1, E2, . . . , ET} (instead of Di’s to simplify and familiarize the notation)

and thus union of any two such graphs is defined by adding the number of copies of edges

in the two constituents. Before proving the general theorem, we first consider the case

when there is no delay while switching matchings, i.e., δ = 0. Observe that in this case,

the offline problem can be solved exactly and we show a 1
2
-competitive algorithm for the

online problem. The general reduction builds on this simple case along with the offline

algorithm.

3.1 Without Configuration Delay

Observe that an online algorithm, in this case, will pick a set of matchings {M1,M2, . . . ,

MT}, instead of a schedule, that covers the maximum number of edges. At each step t,

the algorithm picks the maximum matching from the graph formed by the new edges that

arrive, Et, and the remaining edges in the graph from previous steps which we denote by

Rt−1. The algorithm is formally given in Algorithm 3. HereM denotes the set of all match-

ings on the complete bipartite graph with parts A and B. The objective of Algorithm 3 is∑T
t=1 |Mt|, where |Mt| denotes the number of edges in the matching Mt. We denote the

optimum solution by O = {O1, . . . , OT}, We have the Theorem 6 for our approximation

guarantee.
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Algorithm 3 Online Greedy Algorithm without Delay
1: Input: Bipartite multigraphs on E1, E2, . . . , ET on A ∪ B where Et is disclosed at

beginning of step t.
2: Output: {M1,M2, . . . ,MT}
3: R0, S ← ∅, t← 1.
4: for t← 1, 2, . . . , T do
5: R′t ← Rt−1 ∪ Et.
6: Mt ← argmaxM∈M,M⊆R′t |M |.
7: S ← S ∪ {Mt}, Rt ← R′t \ {Mt}, t← t+ 1.
8: end for
9: return S

Theorem 6. Algorithm 3 is 1
2
-competitive for the online circuit switch scheduling problem

without delays.

Proof. Let Γ = {E1, . . . , ET} denote the incoming edges for the first T steps. We call this

the input sequence for the first T steps. We use induction on T to prove the theorem. Specif-

ically, we prove that for any input sequence of edges for T steps, Γ = {E1, E2, . . . , ET},

we have
T∑
t=1

|Mt| ≥
1

2

T∑
t=1

|Ot|

For T = 1, we know that the maximum matching has the biggest size of any matching in

the graph. So, we have |M1| ≥ |O1| and thus the base case holds.

By the induction hypothesis, we have that for any input sequence of T−1 steps, we have∑T−1
t=1 |Mt| ≥ 1

2

∑T−1
t=1 |Ot| where {Mt}T−1t=1 and {Ot}T−1t=1 are the output of the algorithm

and the optimal solution, respectively.

Now, consider any input sequence E1, . . . , ET . Recall, R1 is the residual graph formed

after first step of the algorithm, i.e. R1 = E1 \M1. At the next step, the algorithm will find

the maximum matching in R′2 = R1∪E2 as its edge set. We build a new sequence of T −1

inputs and apply induction to it.

Let Γ′ = {R′2, E3, . . . , ET}. Consider the optimum solution on this new input se-

quence. Let {M ′
t}Tt=2 be the matchings that our algorithm picks given this new input se-

quence and {O′t}Tt=2 the optimum matchings. Using the induction hypothesis we can write
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∑T
t=2 |M ′

t| ≥ 1
2

∑T
t=2 |O′t|.

First note that for 2 ≤ i ≤ n,Mi = M ′
i . This is true since Mi and M ′

i are the maximum

matchings of the same graph as can be seen inductively. We now show the following lemma

that relates the optimum solution of the new instance to the original instance.

Lemma 6.
∑T

t=2 |O′t| ≥
∑T

t=2 |Ot| − |M1|.

Proof. The matchings {O2\M1, O3\M1, . . . , OT \M1} is a feasible output for the optimum

solution on the Γ′ sequence. Therefore, we have
∑T

t=2 |O′t| ≥
∑T

t=2 |Ot|−|M1| as required.

Using the induction hypothesis and the lemma we can write

T∑
t=2

|Mt| ≥
1

2

(
T∑
t=2

|Ot| − |M1|

)

Adding the inequality |M1| ≥ |O1| to both sides, we obtain

T∑
t=1

|Mt| ≥
1

2

(
T∑
t=2

|Ot|

)
+

1

2
|M1| ≥

1

2

(
T∑
t=2

|Ot|

)
+

1

2
|O1| =

1

2

(
T∑
t=1

|Ot|

)

and the induction step follows.

3.2 With Configuration Delay

In this section, we assume switching between the configurations causes a delay of δ ∈ N

steps during which no data is sent. We also assume that we have access to a β-approximation

for the offline version of the problem. Note that we view the offline algorithm as a black-

box. More formally, we assume we have an algorithm of the form Algorithm 4. To reiterate,

G is the given complete bipartite graph, D is the traffic demand matrix, δ is the switching

delay and W is the size of the time window. Recall, that sending the configuration (M,α)

means that for the next α steps we will only send data using matching M .
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Algorithm 4 Offline Algorithm for Circuit Switch Scheduling

1: Input: G = (A,B,E) , D, δ,W
2: Output: S = {(M1, α1), . . . , (Mj, αj)}

Given a constant k ≥ 1, the first step of the algorithm is to wait kδ steps for data to

accumulate and then run the offline algorithm on the accumulated data for time window

W = kδ. Let S1 be the output of the offline algorithm. We run this schedule from time

t = kδ + 1 to t = 2kδ. Meanwhile, we collect the incoming data matrices in these

times. Figure 3.1 shows one step of the algorithm. At the next step, we consider the

total remaining data that includes data that has not been scheduled so far from previous

schedule(s) and newly arrived data in previous kδ steps. We then run the offline algorithm

on this data matrix to obtain a schedule for the next kδ steps. More generally, we continue

this process for every block of kδ time steps. Algorithm 5 is the formal description of the

algorithm. Note that this description is written as an enumeration over blocks of size kδ.

For the sake of simplicity, let f(S) be amount of data sent by any schedule S.

Algorithm 5 Online Greedy with Delay
1: Input:δ, k and data matrices D1, D2, . . . , DW on A×B where Di revealed at begin-

ning of step i. Let l = d T
kδ
e.

2: Output:S = S1 ∪ S2 ∪ . . . ∪ Sl.
3: S ← ∅, R0 ← ∅.
4: for r ← 0, . . . , l do
5: R′r ← Rr +

∑
rkδ+1≤j≤(r+1)kδDj .

6: Sr ← OfflineAlgorithm (G,R′r, δ, kδ).
7: Rr+1 ← R′r −min

(
R′r,
∑

(α,M)∈Sr αM
)

, S ← S ∪ Sr.
8: end for
9: return S

Proof of Theorem 3. We use a coefficient γ ≤ β and optimize γ in the end. We prove the

theorem by induction on the number of the blocks, i.e., l and will follow along the lines

of proof of Theorem 6. As we did in the proof of Theorem 6, we consider the incoming

traffic as sequences. But in this case we define a sequence Γ = {I1, I2, . . . , Il}, where

Ii =
⋃i(kδ)
j=(i−1)(kδ)+1Dj is the input of block i. For l = 1, Let the optimum schedule be O
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and the algorithm’s schedule be S. Figure 3.1 shows this setting. Using Lemma 1, there

Figure 3.1: Basis of the induction. The crossed out block is the waiting period of our
algorithm

exists a schedule Õ with the property that f
(
Õ
)
≥
(
1− 2

k

)
f (O). Since S is the output of

our offline algorithm we can write f (S) ≥ βf (O′) ≥
(
1− 2

k

)
βf (O) ≥

(
1− 2

k

)
γf (O)

and the basis of the induction is proven.

For l = t, again let O be the optimum schedule and S = S1 ∪ S2 · · · ∪ St be the

output of our algorithm where each Si is the schedule on ith kδ block. Let O1 be the

optimum schedule for the first block and S1 our algorithm’s schedule on that block. Refer

to Figure 3.2 for an illustration of this setting. Consider the new input sequence Γ′ =

Figure 3.2: Step of the induction.

{R′1 ∪ I2, I3, . . . , It}. Let the optimum schedule on the new input sequence be O′ and the

algorithm’s schedule be S ′ = S ′1 ∪ · · · ∪ S ′l . From the induction hypothesis, we have

f (S ′) ≥
(

1− 2

k

)
γf (O′) .

Note that Si = S ′i−1 for i ≥ 2 and thus

f (S ′) = f (S \ S1) = f (S)− f (S1) .

As in the proof of Lemma 6, a candidate schedule for the new instance is to consider

O \ O1 and ignore the data sent by the algorithm in the schedule S1 if it appears in any of

25



the optimal matchings. Thus we obtain that

f (O′) ≥ f (O \O1)− f (S1) = f (O)− f (O1)− f (S1) .

For O1 based on our basis argument we can find S1 such that f (S1) ≥
(
1− 2

k

)
βf (O1).

To sum up we have the two following inequalities

f (S)− f (S1) ≥
(

1− 2

k

)
γ ((f (O)− f (O1))− f (S1))

and

f (S1) ≥
(

1− 2

k

)
βf (O1) .

Rewriting the first inequality we have

f (S)−
(

1−
(

1− 2

k

)
γ

)
f (S1) ≥

(
1− 2

k

)
γ (f (O)− f (O1))

Adding the
(
1−

(
1− 2

k

)
γ
)

times the second inequality

f (S) ≥
(

1− 2

k

)
γf (O)−

(
1− 2

k

)(
γ − β

(
1−

(
1− 2

k

)
γ

))
f(O1)

Optimizing the γ we get γ = β

(1+(1− 2
k)β)

and thus proving the theorem.

The running time of this algorithm is depended on the running time of the offline algo-

rithm. Using the greedy algorithm the running time would be O(d2(n
5

2
)W
δ

) for each step

of the online algorithm. However, the better approximation will increase the time of the

algorithm to include the Ellipsoid Method.
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CHAPTER 4

CONCLUSION

In this thesis, we considered the problem of circuit switching. We considered this problem

in two setting. The offline setting, where we know all the data in advance and have a

limited amount of time to schedule as many configurations as we can and the online version

in which the extra demand comes in at every step and accumulates to every data that we

were not able to send before. We provided two algorithms for the Circuit Switch problems.

Chapter 2 is a hybrid between greedy and a linear programming algorithm that will provide

a (1−1/e−ε) approximation ratio (for any constant ε > 0). This is an improvement over the

previous result in this area. Whether or not the same approximation can be achieved faster is

the subject of future work. We defined a novel online setting that is more practical in nature

and provided a approximation algorithm with competitive ratio of ((e− 1)/(2e− 1)− ε).

Our algorithm is depended on the approximation algorithm of the offline setting. Therefore,

any improvement on the algorithm in the offline setting will provide a better algorithm in

the online version. The possibility of an algorithm that works only in the online setting

regardless of the offline version was out of our scope and could be the topic of a future

paper.
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