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SUMMARY

Statistical experimental analysis is an indispensable tool in engineering, science, bio-

medicine, and technology innovation. There are generally two types of experiments: com-

puter and physical experiments. Computer experiments are simulations using complex

mathematical models and numerical tools, while physical experiments are actual experi-

ments performed in a laboratory or observed in the field. Analyzing these experiments

helps us understand real-world phenomena and motivates interesting statistical questions

and challenges. This thesis presents new methodologies for applications in computer ex-

periments and biomedical studies.

In Chapter 1, we propose a new method based on Gaussian processes (GPs) for ana-

lyzing computer experiments. GP is a popular choice for approximating a deterministic

function in computer experiments. However, the role of transformation in GP modeling is

not well understood. Here, we proposed using transformation in GP modeling to improve

additivity. This involves finding a transformation of the response such that the deterministic

function becomes an approximately additive function, which can then be easily estimated

using an additive GP. We call this GP a Transformed Additive Gaussian (TAG) process.

Furthermore, to capture possible interactions that are unaccounted for in the additive model,

we proposed an extension of the TAG process called Transformed Approximately Additive

Gaussian (TAAG) process. We develop efficient techniques for fitting a TAAG process. In

fact, we show here that TAAG can be fitted to high-dimensional data much more efficiently

than standard GP. Additionally, we show that compared with a standard GP, TAG produces

better estimation, interpretation, visualization, and prediction. The proposed methods are

implemented in the R package TAG.

In Chapter 2, we show that the concept of using transformation for improving the addi-

tivity of a target function is beneficial in big data modeling. After improving the additivity,

the target function is easier to approximate and is expected to be well-approximated us-

xv



ing fewer data points. This implies that we can use a subset of the big data to reduce the

computational burden to approximate the target function well. Thus, using the technique of

including a subset of big data, we proposed a new method to solve the problem of estimat-

ing a target function in large-scaled experiments. Several numerical comparisons show that

our method outperforms proposed methods in recent literature for large-scaled computer

experiments in terms of prediction accuracy and computational time.

In Chapter 3, motivated by a biological experiment, we propose a new method for quan-

tifying uncertainty in biology studies. Uncertainty quantification attempts to appraise and

quantify uncertainty in physical systems. However, in some physical systems, there lacks

a method that can be further developed to quantify uncertainty. We were motivated by

single-molecule experiments in the study of T cell signaling, where no models can be used

for quantifying the features of the single-molecule experiments. To fix this problem, we de-

veloped a novel model, the varying coefficient frailty model, to quantify the uncertainty in

the single-molecule experiments. The fitted varying coefficient model provides a rigorous

quantification of an early and rapid impact on T cell signaling from the accumulation of

bond lifetime, which can shed new light on the fundamental understanding of how T cells

initiate immune responses. Theoretical properties of the estimators, including their unbi-

ased properties near the boundary, are derived along with discussions on the asymptotic

bias-variance trade-off. We can apply the model not only for single-molecule experiments,

but also for survival analysis and reliability to explore time-varying effects from covariates

with random effects.

In Chapter 4, we address the problem of identifying an optimal computer simulator for

the observed physical experiments. In many applications, experimenters have several com-

puter models with different scientific implications for a physical phenomenon. However,

they may not know which computer model is the most optimal to describe the observed

physics. An example from cell biology is that biologists have several biological models

used for understanding cell adhesion between T lymphocytes and other cells, but they do

xvi



not know which biological model is most desirable for real lab data. To find the optimal

model for such lab data, we propose a selection criterion based on leave-one-out cross-

validation. We show that this criterion can be decomposed into a goodness-of-fit measure

and a generalized degrees of freedom, capturing the complexity of the computer simulator.

Asymptotic properties of the selected optimal simulator are discussed. Additionally, we

show that the proposed procedure includes a conventional calibration method as special

case. In the application of cell biology, an optimal simulator is selected, which gives new

insight on the T cell recognition mechanism in the human immune system.

xvii



CHAPTER 1

TRANSFORMATION AND ADDITIVITY IN COMPUTER EXPERIMENTS

In this chapter, we discuss the problem of approximating a deterministic function using

Gaussian Processes (GP). The role of transformation in GP modeling is not well under-

stood. We argue that transformation of the response can be used for making the determin-

istic function approximately additive, which can then be easily estimated using an additive

GP. We call such a GP a Transformed Additive Gaussian (TAG) process. To capture possi-

ble interactions which are unaccounted for in an additive model, we propose an extension

of the TAG process called Transformed Approximately Additive Gaussian (TAAG) pro-

cess. We develop efficient techniques for fitting a TAAG process. In fact, we show that it

can be fitted to high-dimensional data much more efficiently than a standard GP. Further-

more, we show that the use of the TAAG process leads to better estimation, interpretation,

visualization, and prediction. The proposed methods are implemented in the R package

TAG.

1.1 Introduction

Transformation of the response is a common technique used in regression analysis, but not

so much in the modeling of deterministic functions. There are many reasons for this. In

regression analysis, transformations are used as a way to fix the violations in the statistical

modeling assumptions such as constant variance or normality of the errors. Since there are

no errors in a deterministic function, there does not seem to be any need for transforma-

tions! From a function approximation point of view, there also does not seem to be any

advantage in transforming the response, and therefore transformations are rarely studied in

the numerical analysis literature. To see this, suppose we are trying to approximate a func-

tion y = f(x), x ∈ [0, 1]p, using the data y = (y1, . . . , yn)′ observed over an experimental

1



design D = {x1, . . . ,xn}. We can obtain the function approximation f̂(x|D,y) directly

using this data or g−1{ĝ ◦ f(x|D, g(y))} using the transformed data, where g(·) denotes

the transformation function, g(y) = (g(y1), . . . , g(yn))′, and g ◦ f(·) = g{f(·)}. Although

these two approximations can be quite different, they are asymptotically equivalent as long

as the technique used for function approximation converges (see, for example, Theorem

14.5 of [1] for the conditions on point-wise convergence). Since the quality of a function

approximation is assessed using its asymptotic convergence properties, the transformation

does not seem to play any role in the mathematical analysis, and therefore it is ignored. Yet

practitioners have found it useful to transform the response, but its usage seems to be spo-

radic with no proper guidelines. For example, a logarithmic transformation of the response

is used for making the predictions nonnegative in the original scale, but many times at the

cost of accuracy.

Gaussian process (GP) models, also known as kriging, are widely adopted for model-

ing deterministic functions ([2, 3]). Because of its probabilistic formulation, a case can be

made for transforming the output. This approach is known by the name Trans-Gaussian

kriging in spatial statistics ([4, 5]) and warped Gaussian process in machine learning ([6,

7]). However, the GP is used in modeling mainly due to its mathematical convenience and

does not possess a strong justification as in the case of regression analysis. Thus, trans-

forming the response to make its distribution look more Gaussian does seem questionable.

Stationarity is another common assumption for GP modeling. However, since we observe

only a single realization of the Gaussian process, assessing the validity of this assumption

and achieving constancy of variance is not straightforward.

We propose transformation in GP modeling to improve additivity, that is, to find a

transformation of the response so that the deterministic function becomes approximately

additive in the variables. An additive function is easier to approximate, and therefore the

approximation obtained using such a transformation is expected to perform better. To illus-

trate the idea, consider the function f(x) = exp(x2
1 +x2

2). Clearly, by setting g(y) = log y,

2



we can make this function additive. Many of the physical models such as those obtained

using dimensional analysis are based on product rules ([8]), which can be made addi-

tive through a log-transform. But in general this will not work. Consider, for example,

f(x) = 1/(x1 + x2 + 0.01x1x2). There is no simple transformation to make this func-

tion additive. However, by setting g(y) = 1/y, we can make this function approximately

additive. Achieving even approximate additivity through transformation is beneficial be-

cause such a function can be well-approximated using fewer data points than what would

be needed in the original untransformed scale.

Using additive models is not a new concept and has a long history in statistics (see,

for example, [9]). An obvious disadvantage of additive models is that they cannot enter-

tain higher-order interactions among the variables. [10] extended the additive modeling

framework to include linear combinations of the variables, which has the ability to capture

interactions. Different from previous works, we employ a GP model as the nonparametric

smoother in the additive modeling framework. In this sense, our approach is closer to the

additive GP models introduced by [11], but there are major differences. Their objective

was to decompose the function into a sum of low-dimensional functions that include in-

teractions, whereas our objective is to identify a transformation so that the function can be

represented by a first-order low-dimensional function. The idea of transformation is also

not new in additive models. [12] proposed additivity and variance stabilization (AVAS)

algorithm in conjunction with additive models, but variance stabilization is not relevant to

our problem because there is no error in deterministic computer experiments. Our approach

is similar in spirit to the Alternating Conditional Expectation (ACE) method of [13], but

differs in terms of the smoothing method used for the variables. Moreover, as we demon-

strate in this paper, the use of GP models facilitates better uncertainty quantification of

deterministic functions.

An argument against using transformations is that it makes the interpretation of the

results difficult. This is certainly true in linear regression, where the parameter estimates
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have a simple meaning which gets destroyed with transformations. However, this is not the

case with GP modeling. Because of the nonlinear relationships, the results of GP models

can only be interpreted/visualized by plotting the main effects obtained using a functional

ANOVA decomposition. We will show that the interpretation of these main effects becomes

better with transformations, and therefore what is considered a disadvantage in the regres-

sion setting becomes a blessing in GP modeling! One may also be skeptical about using

additive models in deterministic computer experiments as it cannot provide interpolation

unless the function is perfectly additive after transformation, which may be a rare case. We

will argue in the paper that it is sufficient to achieve approximate additivity and that the

additive model can be easily augmented to produce an interpolative model.

The article is organized as follows. In Section 2, we develop the main methodology for

identifying transformations to make the function as additive as possible. Efficient estima-

tion techniques for the unknown parameters in the model are developed in this section. In

Section 3 we introduce approximately additive GP models which can achieve interpolation.

Several advantages of the proposed method are discussed in Section 4. Its performance is

tested using simulated and real examples in Section 5, and we conclude with some remarks

in Section 6.

1.2 Transformed Additive Gaussian (TAG) Process

Our aim is to find a transformation for the response g(y) so that the inverse transformed

additive model

g−1{µ+ z1(x1) + . . .+ zp(xp)}

is a good approximation to y = f(x), where x = (x1, . . . , xp)
′. Let

g(y) = µ+ z(x) + ε(x), (1.1)
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where z(x) = z1(x1) + . . . + zp(xp) and ε(x) is the approximation error. We will use a

Bayesian framework to estimate the function by placing a GP prior on each zk(·):

zk(xk)
ind.∼ GP (0, τ 2

kRk(·)),

for k = 1, . . . , p, where τ 2
k is the variance and Rk(h) = Cor{zk(x), zk(x + h)} is the

stationary correlation function. For the moment, we will assume ε(x)
ind.∼ N(0, σ2), which

will be relaxed in the next section. Let τ 2 =
∑p

k=1 τ
2
k and ωk = τ 2

k/τ
2. Then,

z(x) ∼ GP (0, τ 2R(·)), (1.2)

where

R(h) =

p∑
k=1

ωkRk(hk) (1.3)

with
∑p

k=1 ωk = 1. We call this model the Transformed Additive Gaussian (TAG) process.

Given the data (x1, y1), · · · , (xn, yn), we can obtain the posterior distribution of z(x)

as

z(x)|y ∼ N
(
ẑ(x), τ 2{1 + δ − r(x)′(R+ δI)−1r(x)}

)
, (1.4)

where

ẑ(x) = r(x)′(R+ δI)−1(g(y)− µ1), (1.5)

r(x) is the vector of correlations (R(x−x1), . . . , R(x−xn))′,R is the correlation matrix

with the ijth element R(xi − xj), 1 is a vector of 1’s having length n, and I is the n × n

identity matrix. The variance ratio δ = σ2/τ 2 is called a nugget term in GP models.

We need to specify/estimate the unknown hyper-parameters µ, τ 2, δ, andω = (ω1, . . . , ωp)
′

in order to use the posterior distribution. The correlation function can also have unknown

parameters. A commonly used correlation function in computer experiments is the Gaus-
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sian correlation function given by

Rk(h) = exp(−h2/s2
k),

where sk is an unknown length-scale parameter. Thus, we also need to estimate s =

(s1, . . . , sp)
′. Most importantly, we also need to estimate the unknown transformation func-

tion g(·). Here we use a parametric approach. A commonly used parametric transformation

for nonnegative data (y > 0) is the Box-Cox transformation ([14]) given by

gλ(y) =


yλ−1
λ
, if λ 6= 0

log y, if λ = 0
. (1.6)

This transformation contains an unknown parameter λ. A two-parameter Box-Cox or Yeo-

Johnson transformation ([15]) can be used if the data is not restricted to be nonnegative. In

this paper we will focus on the foregoing one-parameter transformation, but the methods

that we propose below are general and can be applied to more general cases. We now

discuss the empirical Bayes estimation of all these unknown parameters: µ,τ 2, δ, ω, s, and

λ. Denote them by θ.

The marginal distribution of the transformed data is given by

gλ(y)|θ ∼ N
(
µ1, τ 2(R+ δI)

)
,

where gλ(y) = (gλ(y1), . . . , gλ(yn))′. Under a noninformative prior p(θ) ∝ 1, the posterior

distribution of θ is given by

p(θ|y) ∝ 1

τ 2n|R+ δI|1/2
exp{− 1

2τ 2
[gλ(y)− µ1]′(R+ δI)−1[gλ(y)− µ1]}

n∏
i=1

yλ−1
i ,

where the last term is due to the Jacobian of transformations. We can maximize p(θ|y) to
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obtain the posterior mode of θ. Its computation can be simplified as follows:

µ̂ =
1′(R+ δI)−1gλ(y)

1′(R+ δI)−11
, (1.7)

τ̂ 2 =
1

n
(gλ(y)− µ̂1)′(R+ δI)−1(gλ(y)− µ̂1), (1.8)

(δ̂, λ̂, ŝ, ω̂) = arg min
δ,λ,s,ω

n log τ̂ 2 + log |R+ δI| − 2(λ− 1)
n∑
i=1

log yi. (1.9)

The last optimization is performed under the constraints δ > 0, λ ∈ [−2, 2], s > 0, ω ≥ 0,

and
∑p

k=1 ωk = 1. We chose [−2, 2] as the possible range of λ ([16], p. 134), but other

ranges can also be used.

The foregoing nonlinear optimization in (1.9) is the most time-consuming step in fitting

a TAG process. In a traditional GP model with Gaussian product correlation function,

this optimization needs to be performed only in a p-dimensional space of the length-scale

parameters, which is much easier than the (2p + 2)-dimensional optimization of the TAG

process. Fortunately, we can speed up the estimation by taking advantage of the additive

structure of the correlation function.

Let ĉ = (R+ δI)−1(gλ(y)−µ1). Then, (1.5) can also be written as the sum of n basis

functions:

ẑ(x) =
n∑
i=1

ĉiR(x− xi).

Now because of the additive structure of the correlation function, we obtain

ẑ(x) =
n∑
i=1

ĉi

p∑
k=1

ωkRk(xk − xik)

=

p∑
k=1

ωk

n∑
i=1

ĉiRk(xk − xik)

=

p∑
k=1

ẑk(xk). (1.10)

This suggests that we can estimate the parameters by fitting an additive model using the
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Algorithm 1 Estimation of the Transformed Additive Gaussian (TAG) process

1: procedure TAG({xi, yi}ni=1,D) .
2: Obtain initial estimates ω(0), s(0), δ(0), λ(0) using Algorithm 10.
3: Obtain (ω̂, ŝ, δ̂, λ̂) from (1.9) using nonlinear optimization with µ̂ from (1.7) and
τ̂ 2 from (1.8).

4: return (ω̂, ŝ, δ̂, λ̂).
5: end procedure

efficient backfitting algorithm ([13]). The basis functions in the additive model should

be chosen based on the correlation function. In our case, we should use a Gaussian ba-

sis function, which is not typical in additive model fitting where smoothing splines are

commonly used. Therefore, to make use of the available software, we perform this esti-

mation in two steps. First we fit an additive model using the mgcv package ([17]) in R

for each value of λ ∈ {−2,−1.5, . . . , 1.5, 2} and choose the λ to minimize the general-

ized cross-validation error. This gives us λ̂ and z̃k(xk), where z̃k(xk) is an approxima-

tion of ẑk(xk), for k = 1, . . . , p. Now choose m equally spaced points in [0, 1] given by

D = {0, 1/(m− 1), . . . , 1}. Let z̃k be the predictions using z̃k(·) at these m points. Then

ω̂k ≈ v̂ar(z̃k)/
∑p

k=1 v̂ar(z̃k). Furthermore, we can fit p one-dimensional GPs with the

chosen correlation function to the datasets {D, z̃k} for k = 1, . . . , p using standard pack-

ages such as DiceKriging ([18]) in R. This gives estimates of s. The details are described

in the Appendix B. We can use these as initial estimates for the nonlinear optimization in

(1.9). This considerably speeds up the optimization. The traditional GP fitting requires

global optimization or many local optimizations with multiple starting values. Because

in TAG we can quickly obtain good initial estimates, only a single local optimization is

needed to obtain the empirical Bayes estimates, and therefore the fitting can be much faster

than that of the standard GP fitting. The whole procedure is summarized in Algorithm 1.

All of the algorithms in this article are implemented in the R package TAG ([19]) .
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1.3 Transformed Approximately Additive Gaussian (TAAG) Process

Even with the best possible transformation, we may not be able to make the function ad-

ditive and thus the approximation that we obtain using TAG can be unsatisfactory. In this

section, we propose a simple extension of TAG to improve the approximation.

Remember that we took ε(x) in (1.1) to be independent and identically distributed as

N(0, σ2). We only need to make this into a smooth GP to improve the approximation. So

let ε(x) ∼ GP (0, σ2L(·)), where L(·) is a positive definite stationary correlation function.

Thus the GP model becomes

gλ(y) ∼ GP (µ, ν2{(1− η)R(·) + ηL(·)}), (1.11)

where ν2 = τ 2 + σ2, η = σ2/(σ2 + τ 2) ∈ [0, 1] and R(·) is as in (1.3). The resulting

predictor is only approximately additive. Therefore we call this model the Transformed

Approximately Additive Gaussian (TAAG) process. [20] proposed a closely related GP

model, but the motivation behind TAAG process and its estimation techniques are com-

pletely different. TAAG process is also related to some of the other ideas proposed in the

literature such as that of using a convex combination of GPs ([21]) and composite GPs

([22]).

For L(·), we can use the product Gaussian correlation function given by

L(h) =

p∏
k=1

Lk(hk; γk) =

p∏
k=1

exp

(
−h

2
k

γ2
k

)
.

where γk is an unknown length-scale parameter. Thus, the whole set of unknown param-

eters in the TAAG model becomes (µ, ν2, λ,ω, s,γ, η). This is a lot of parameters to

estimate and can be a difficult task. Moreover, there can be identifiability issues with the

correlation parameters in R(·) and L(·). To overcome these issues, we propose to fix the

TAG parameters (λ,ω, s) at the estimates obtained earlier using Algorithm 1 and estimate
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Algorithm 2 Estimation of the Transformed Approximately Additive Gaussian (TAAG)
Process

1: procedure TAAG({xi, yi}ni=1) .
2: Obtain δ̂, λ̂, ω̂, and ŝ using Algorithm 1.
3: Obtain γ̂ by fitting a standard GP model to the data gλ̂(y).
4: Obtain η̂ from (1.12) using a one-dimensional optimization with µ̂ and ν̂2 obtained

from (1.13) and (1.14), respectively.
5: return η̂, γ̂, µ̂, and ν̂2.
6: end procedure

only the remaining parameters.

To get further simplification, we estimate the length-scale parameters γ in L(·) by fit-

ting a GP on gλ̂(y). This has the added benefit that the TAAG process can reduce to a

standard GP with no transformations when η = 1 and λ = 1. Thus, the standard GP

becomes a special case of TAAG and therefore, one does not have to make a choice be-

tween TAAG process and a standard GP beforehand. With these simplifications, we only

need to estimate µ, ν2, and η. To encourage additive modeling, we use a beta prior on

η ∼ Beta(δ̂ + 1, 2), where δ̂ is obtained from Algorithm 1. The hyperparameters in the

beta prior are chosen so that the mode of η is δ̂/(1 + δ̂), which would be its estimate if we

were to use a TAG process. Thus, the empirical Bayes estimate of η can be obtained as

η̂ = arg min
η

log |(1− η)R̂+ ηL|+ n log ν̂2 − 2 log{ηδ̂(1− η)}, (1.12)

where

µ̂ =
1′{(1− η)R̂+ ηL}−1gλ̂(y)

1′{(1− η)R̂+ ηL}−11
, (1.13)

ν̂2 =
1

n
(gλ̂(y)− µ̂1)′{(1− η)R̂+ ηL}−1(gλ̂(y)− µ̂1), (1.14)

R̂ is obtained by plugging ω̂ and ŝ from Algorithm 1 in R, and L is the n× n matrix with

ijth element L(xi − xj). The estimation procedure is shown in Algorithm 2.

The prediction and uncertainty quantification can be done as follows. The posterior
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distribution of g(f(x)) for given µ and ν2 is given by

g ◦ f(x)|y, µ, ν2 ∼ N(ĝ ◦ f(x), V (x)), (1.15)

where

ĝ ◦ f(x) = µ+ {(1− η)r(x) + ηl(x)}′{(1− η)R+ ηL}−1(g(y)− µ1),

V (x) = ν2
[
1− {(1− η)r(x) + ηl(x)}′{(1− η)R+ ηL}−1{(1− η)r(x) + ηl(x)}

]
,

where l(x) is an n × 1 vector with jth element L(x − xj). We can either plug-in the

estimates of µ and ν2 or integrate them out ([3]), but for simplicity we will use the plug-in

approach. From (1.15), we can obtain the probability density function of f(x)|y, µ, ν2 as

|ġ(f(x))| 1√
2πV (x)

exp[−{g ◦ f(x)− ĝ ◦ f(x)}2/{2V (x)}],

where ġ(·) is the derivative of g(·). In general, this can be a nonstandard distribution and

computing its mean and variance may require numerical integration. [4] derives an approx-

imate expression for the mean using Taylor series expansion. However, as [6] pointed out,

it is much easier to use the median, which is given by

f̃(x) = g−1
{
ĝ ◦ f(x)

}
.

Similarly, we can obtain a 95% credible interval for the prediction as

[
g−1

{
ĝ ◦ f(x)− 1.96

√
V (x)

}
, g−1

{
ĝ ◦ f(x) + 1.96

√
V (x)

}]
.

Note that when using a Box-Cox transformation (1.6), we need constraints y > 0 and

λgλ(y) + 1 > 0 to make sure that g(·) is one-to-one. Therefore we force the lower bound

to be 0 if λ{ĝ ◦ f(x)− 1.96
√
V (x)}+ 1 < 0.
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Figure 1.1: Marginal plots of the function in (1.16).

1.4 Some Advantages of TAAG

In this section we discuss the many advantages of TAAG using numerical examples.

1.4.1 New correlation function

Although our aim was not to develop a new correlation function, the one that came out of

our modeling

(1− η)

p∑
k=1

ωkRk(hk; sk) + η

p∏
k=1

Lk(hk; γk)

is of independent interest. We will show that its parameters have better interpretability than

those of the existing correlation functions in the literature. Consider a simple function

y = exp {2 sin(0.5πx1) + 0.5 cos(2.5πx2)} (1.16)

where x ∈ [0, 1]2. The marginal plots of the function are shown in Figure 1.1.

Suppose we generate data using a randomized Sobol’ sequence ([23]) of n = 20 points.

For comparison, first we fit a standard GP using the commonly used Gaussian product cor-

relation function exp(−
∑2

k=1 h
2
k/s

2
k). We used the R package mlegp ([24]) for obtaining
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Figure 1.2: Parameter estimates for GP and TAG process for the function in (1.16).

the maximum likelihood estimates of the parameters. The left panel of Figure 1.2 shows

boxplots of s1 and s2 from 100 repetitions of the randomized Sobol’ sequence. Larger val-

ues of s1 seem to suggest that x1 is less important than x2 ([25, 26, 27, 28, 29]; [3], Section

7.6; [30], p. 106). On the contrary, Figure 1.1 seems to imply that x1 is more important

than x2 in terms of the contribution to response variability. This contradiction happened

here because the function wiggles more with respect to x2 resulting in a smaller value of

s2.

Now consider the new correlation function in (1.11). The middle panel of Figure 1.2

shows the boxplots of s1 and s2 in the TAG process estimated from the same 100 ran-

domized Sobol’ sequences. The right panel shows the boxplots of ω1 and ω2. In the new

correlation function, si’s can be used to understand how wiggly the function is, and ωi’s

can be used to understand the importance of the variables. Since s1 is larger than s2, the

function is expected to be less wiggly in x1 than x2, which agrees with Figure 1.1. More-

over, since ω1 is more than ω2, TAG process correctly identifies x1 to be more important

than x2. Note that the interpretation of ωi’s as importance parameters is meaningful only
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when the function is additive, that is, when η ≈ 0. When η is large, the interpretation be-

comes approximate, and one should compute measures such as Sobol’ sensitivity indices

to understand the exact importance of variables.

There are other correlation functions proposed in the literature with more parameters

such as the power exponential and Matérn correlation functions. However, the extra pa-

rameters in them only control the smoothness or roughness of the function. The function

considered in this example is very smooth and infinitely differentiable in both the variables

and therefore, those correlation functions cannot rectify the confounding issues between

scale and importance. One possible approach to introduce importance parameters in a stan-

dard GP model is to add a mean function containing a linear combination of basis functions,

but it is not clear what basis functions should be used ([31, 32]). On the other hand, TAG

process can be viewed as providing these basis functions automatically through the additive

correlation function, thereby avoiding the need to specify them through a mean function.

This viewpoint also clarifies why we do not need to use a mean function in a TAG/TAAG

process.

1.4.2 Prediction performance

TAAG is expected to perform well in the example function in (1.16) because it becomes

perfectly additive under log-transformation. So consider a slightly modified version

exp {2 sin(0.5πx1) + 0.5 cos(2.5πx2)}+ 0.25 sin(πx1) cos(0.5πx2), (1.17)

which cannot be made additive through transformation. We will use this function to assess

the prediction performance of the TAAG process.

As before, we generate data using a randomized Sobol’ sequence of n = 20 points

and fit TAG and TAAG processes. Predictions are made on 1,000 test points in [0, 1]2, and

the root mean squared prediction error (RMSPE) is computed. This is repeated 100 times
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Figure 1.3: Prediction performance of TAG, TAAG, GP, transformed GP, AM, and transformed
AM using the example function in (1.17).

by generating a new randomized Sobol’ sequence each time. The resulting RMSPEs are

shown as boxplots on the left side of Figure 1.3. We also fitted the commonly used GP with

product Gaussian correlation function on the original data as well as the transformed data.

Their RMSPEs are also shown in the same figure denoted as “GP” and “Transformed GP”,

respectively. As a further check, we also fitted an additive model on the original data and

the transformed data (“AM” and “Transformed AM”) using the R package mgcv. We can

see that AM does not perform well, but surprisingly the transformed AM does well, even

better than GP. This clearly shows the benefit of transformations. On the other hand, TAG

improves over the Transformed AM and Transformed GP. TAAG performs better than TAG

and seems to be the best among the six methods.

As mentioned before, uncertainty quantification is one of the main advantages of the

TAG/TAAG processes. To assess their performance, we computed the interval score ([33]),

which is defined as (u−`)+(2/α)(`−x)I{x < `}+(2/α)(x−u)I{x > u}with α = 95%.

A smaller interval score indicates a better prediction interval. The interval scores for the

100 simulation cases are shown as boxplots in Figure 1.4. Clearly, TAAG is again the best

among the six methods.
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Figure 1.4: Interval scores (the smaller the better) of TAG, TAAG, GP, transformed GP, AM, and
transformed AM using the example function in (1.17).

1.4.3 Interpretation and visualization

Another advantage of the TAAG process is that it enables better interpretation and visual-

ization of the effects. As illustrated in Section 4.1, ωi’s can be used to quickly understand

the importance of each variable, which represents the first-order Sobol’ indices when the

transformed response is perfectly additive ([34]). If f(x) is not additive, η will be greater

than 0 and its value can be used to understand the overall interaction effect. Moreover, the

main effects of the variables in the transformed scale can be quickly visualized using

ẑk(xk) = ωk

n∑
i=1

ĉiRk(xk − xik),

which does not require any extra computations (see (1.10)). On the other hand, one needs to

use the computationally intensive functional ANOVA decomposition to get the main effects

if we were to fit a standard GP. Of course, the main effects are meaningful only if there are

no higher-order interactions. Because we use transformation to minimize the interaction

effects, the main effects that we obtain using TAAG process are more trustworthy.
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Table 1.1: The ωi’s and si’s from the TAAG process for the Borehole function and the first-order
Sobol’ indices of the log-borehole function

Input variables rw r Tu Hu Tl Hl L Kw

ω 0.878 0.002 0.002 0.038 0.002 0.038 0.033 0.009
s 1.500 0.918 1.594 2.641 0.969 2.601 2.295 1.861

First-order Sobol’ indices 0.889 0.000 0.000 0.036 0.000 0.035 0.032 0.008

We illustrate the foregoing advantages using the borehole function ([35]):

y =
2πTu(Hu −Hl)

log( r
rw

)
[
1 + 2LTu

log( r
rw

)r2
wKw

+ Tu
Tl

] ,
where the ranges for the eight variables are rw : (0.05, 0.15), r = (100, 50000), Tu =

(63070, 115600), Hu = (990, 1110), Tl = (63.1, 116), Hl = (700, 820), L = (1120, 1680),

and Kw = (9855, 12045). Suppose we generate n = 80 data using the MaxPro design

([36]) and fit the TAAG process. It identified a log-transform for the response (λ̂ = 0).

The ωi’s and si’s from the fit are given in Table 1.1. The first-order Sobol’ indices of the

log-borehole function is also given in the same table. We can see that ωi’s are very close to

the first-order Sobol’ indices.

The centered main effects ẑk(xk)− z̄k,where z̄k is the mean value of ẑk(·), are shown in

the panel (a) of Figure 1.5. The panels (b) and (c) of Figure 1.5 show the main effects com-

puted directly from the borehole function with and without logarithmic transformation. We

can see that the TAAG process approximates the main effects of the transformed response

quite well. Moreover, η̂ = 0.0392 is very small, indicating that the interaction effects are

negligibly small in the transformed scale. We can use the difference of Sobol’s total index

and first-order index to better understand the interaction effects. This is shown in Figure

1.6 for the original and transformed responses. We can see that the log-transformation has

greatly helped in reducing the interaction effects. This clearly shows that the main effects

plots of log y are much more meaningful to look at than those of y.
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Figure 1.5: Borehole function example: (a) The main effects from TAAG with logarithmic trans-
formation of the response, (b) the true main effects with logarithmic transformation of the response,
and (c) the true main effects for the original (untransformed) response.

Note that we have centered the main effects ẑk(xk) − z̄k before plotting, otherwise

they will have different means and will be difficult to visualize. This indicates a possi-

ble identifiability issue present between zk(xk) and µ. [37] chose a particular kernel that

is orthogonal to the mean so that such identifiability issues can be avoided in fitting their

Bayesian smoothing spline ANOVA model. [38] show how any given correlation function

can be made orthogonal to the mean. Thus, using orthogonal GPs for zk(xk)’s can possibly

avoid the identifiability issue that we have observed in TAG. However, this can unnecessar-

ily complicate the modeling and estimation procedure. In our experience, the orthogonality

is not needed if our aim is prediction. It becomes important only when we need to have

a physical interpretation of µ. Thus, we will not use orthogonal GPs in our modeling and

will use the foregoing simple fix of centering for visualizing the main effects.
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Figure 1.6: The difference of Sobol’s total index and first-order index for the original and log-
transformed responses in the borehole example. Large difference indicates large interaction effects.

1.4.4 High-dimensional data

Fitting GP models data with large n and p is always a challenging problem. This is because

the likelihood function requires the inversion of the correlation matrix, whose computa-

tional complexity is O(n3). Moreover, thousands of evaluations of the likelihood function

is needed to optimize it, especially in high dimensions. To understand the computational

complexity with respect to the number of dimensions, first note that O(n2p) computations

are needed to construct the correlation matrix. Consider a gradient-based optimization

with a fixed number of iterations. Once the correlation matrix is inverted, the gradient

of the likelihood can be calculated in O(n2p) ([30], pp.114). So the total computational

cost is still O(n3 + n2p). However, because the likelihood is likely to be multimodal, the

number of initial points for optimization should be at least O(p) to have a fair chance of

finding the global optimum ([39]). Thus the computational complexity of optimizing the

likelihood is at least O(n3p + n2p2). Since n should be increased at least proportional to

p to get a meaningful approximation, the computational complexity with respect to p is at

least O(p4), which can be quite heavy for large p.

Much of the recent research in GP modeling has focused on the large n problem, for

example, using iterative kriging ([40]) and local GPs ([41]). However, we are not aware of
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Algorithm 3 Fitting TAAG with high-dimensional data

1: procedure TAAG({xi, yi}ni=1,D) .
2: Obtain ω̂(0), ŝ(0), and λ̂(0) using Algorithm 10.
3: Obtain (κ̂, δ̂) by optimizing n log τ̂ 2 + log |R + δI| with τ̂ 2 from (1.8), λ = λ(0),
ω = ω(0), and s = κs(0).

4: Obtain (η̂, φ̂) by optimizing (1.12), where γ = φs(0).
5: return ω̂ = ω(0), ŝ = κ̂s(0), λ̂ = λ(0), δ̂, η̂, and γ̂ = φ̂s(0).
6: end procedure

any attempts to extend GP fitting to large p problems. The additive GP model framework

introduced here offers a pathway to fit high-dimensional GP models efficiently. The key

idea is that the additive structure of the model will allow us to fit p one-dimensional GPs

instead of the one p-dimensional GP. These one-dimensional GPs can be fitted efficiently

using only m points, where m << n (see Step 4 of Algorithm 10).

The main time consuming step of Algorithm 1 is the (2p + 2)-dimensional optimiza-

tion in (1.9). However, as we noted earlier, we have good initial estimates of s obtained

by fitting p one-dimensional GPs to the additive functions estimated by the back fitting

algorithm. So we let λ = λ(0),ω = ω(0), and s = κs(0), where κ ∈ (0,∞) is an un-

known parameter and s(0) is obtained from Algorithm 10. Thus, the (2p + 2)-dimensional

optimization reduces to a two-dimensional optimization, which is manageable. This con-

siderably simplifies Algorithm 1. Similarly, in Algorithm 2, instead of obtaining γ̂ from

a standard GP, we can use γ = φs(0), where φ ∈ (0,∞), and then finding their estimates

by optimizing (1.12). Of course, avoiding the optimization over the full s and γ can de-

teriorate the performance, but we found that little is lost by doing this. We summarize the

procedure in Algorithm 3.

To illustrate the idea, consider the function

y =

p∏
i=1

|4xi − 2|+ ai
1 + ai

,

where ai = i/2, i = 1, 2, · · · , p,with p = 10, 20, 30, · · · , 100 and n = 10p. The number of
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Figure 1.7: Computational time and root mean squared prediction errors of the TAAG process and
GP.

testing points is 100p. Both the training and testing designs are generated using randomized

Sobol’ sequence. Besides the simplifications mentioned in the previous paragraph, we use

the R function bam in package mgcv in Algorithm 10, which is similar to gam except that

the numerical methods are designed for large datasets. The left panel of Figure 1.7 shows

the RMSPEs of GP and TAAG process and the right panel shows the total computational

time for estimation and prediction of mean on a 2.6 GHz laptop. For fitting GP, we use

the standard R packages mlegp ([24]) , GPfit ([39]), and DiceKriging ([18]). To make the

comparisons fair, we set the number of initial points for optimization in DiceKriging to be

2p, which is the default in GPfit. The time taken by GPfit for p = 30 is very high (56

hours), so we did not run it for p > 30. We can see that the RMSPEs of TAAG process are

smaller than those from GP for all p = 10, 20, . . . , 100 and the computational time saving

increases with p. For example, in the 100-dimensional case, it takes about 2.7 hours for

mlegp compared to only 20 minutes using the TAAG process.
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1.5 More Examples

In this section, we compare TAAG with GP over a broad class of deterministic computer

simulation examples. We took five functions from [42]: Franke function, OTL circuit

function, piston simulation function, robot arm function, and wing weight function. Our

experiment with these functions consists of 10p runs of simulations using maximum pro-

jection designs ([36]). We then fitted TAAG and a standard GP using DiceKriging ([18]).

The predictions are compared using 1,000 Sobol’ points obtained with scrambling. The

root mean squared prediction errors (RMSPEs) over these 1,000 points are given in Table

1.2. We can see that TAAG uniformly performs better than GP, which is not surprising

because GP is just a special case of TAAG.

Table 1.2 also includes the estimates of λ and η in TAAG. We can see that four out of

five cases used a transformation of the response. Small η̂ values indicate that the function

becomes approximately additive after transformation. In fact, the piston simulation and

wing weight functions become almost exactly additive after a log-transform, which is quite

surprising. Not much improvement is achieved for the Franke and Robot Arm functions,

but nothing is lost either. So in our opinion, there is no need to make a choice between

TAAG and a standard GP, say for example, using cross validation methods. We can always

use TAAG which has the added benefits of better interpretation and visualization.

We also compared TAAG and GP on two heat exchanger simulators (detailed and ap-

proximate) discussed in ([43]). The RMSPE computation over a 14-run validation dataset

given in ([43]) is shown in the last two rows of Table 1.2. We observe that the predic-

tion performance of TAAG is again better than that of GP with more gain observed for the

approximate heat exchanger simulator.
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Table 1.2: Summary of the results of the examples in Section 5.

RMSPE Estimates from TAAG
Examples dimension GP TAAG λ̂ η̂

Franke 2 0.035 0.031 -0.5 .178
OTL Circuit 6 0.046 0.025 0.5 .021

Piston Simulation 7 0.012 0.0002 0 .0000
Robot Arm 8 0.035 0.028 1 0.131

Wing Weight 10 2.892 0.188 0 .0002
HE (Approximate) 4 4.436 2.089 0.5 .001

HE (Detailed) 4 2.217 1.937 1 .012

1.6 Conclusions

In this article, we have shown that using transformation on the response can be highly

beneficial in GP modeling. It can make the deterministic function approximately additive,

which can be efficiently approximated using simpler models such as additive models. By

exploiting the underlying additive structure, we have developed efficient estimation tech-

niques for fitting the transformed additive GP model. In fact, it can be fitted using a few

one or two dimensional optimizations with initializations provided by the well-known back

fitting algorithm. The estimation is so efficient that it can be applied to high-dimensional

problems which otherwise would not have been possible with the standard GP models. The

development has also led to a new correlation function with much more interpretable pa-

rameters than the commonly used correlation functions such as Gaussian or Matérn. The

fitted models can be immediately visualized using main effects plots, which is another ad-

vantage of the proposed method. Moreover, the main effects plots are more meaningful

in TAG/TAAG processes compared to the usual GP because of the minimization of the

interaction effects.

Although we have focused on deterministic functions, the method can be extended

to noisy data. Gaussian noise can be addressed by adding a nugget term in the TAAG

process, but more work is needed for non-Gaussian data, which we leave as a topic for
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future research. Another important direction for future research is regarding the method

of transformation. Here we have used the one-parameter Box-Cox transformation, which

worked well in the examples we have tried so far. However, we anticipate that, in more

complex problems, a nonparametric transformation may perform better. The nonparametric

transformation needs to be monotonic and easily invertible, which makes this extension

nontrivial.
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CHAPTER 2

TRANSFORMATION AND ADDITIVITY FOR MODELING BIG DATA

Although transformations are widely used in statistics, their usage for big data is over-

looked in the literature. For approximating a function in large-scale computer experiments,

we find that using transformations for improving the additivity of the function is beneficial.

After improving the additivity, the target function is easier to approximate by an additive

function and is expected to be well-approximated using few data points. Thus, we propose

approximating the function by fitting a transformed additive model (TAM) to the subset

of large-scale experiments. To capture interactions that are unaccounted for in an additive

model, we propose another new method, namely, transformed approximately additive mod-

eling (TAAM) technique. TAAM further improves the prediction performance of TAM

without significantly increasing the computational cost. Several numerical comparisons

show that TAAM outperforms proposed methods in recent studies for large-scale computer

experiments in terms of prediction accuracy and computational time. Furthermore, the

method is applied to the modeling problem in nonparametric multivariate regressions with

big data.

2.1 Introduction

In science, engineering, and bio-medicine, computer experiments are becoming increas-

ingly important in studying an extremely complex system. These systems are usually de-

scribed by a complex mathematical model or a computer model implemented in large com-

puter codes. To discover and understand the system, researchers may require a large-scale

computer experiment obtained by evaluating at many input sites of the computer model.

The experimental data are further used for constructing a statistical model called an emula-

tor for the prediction and optimization of the complex system. However, most methods for
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building emulators, such as Gaussian processes (GPs), suffer from computational problems

as the number of data points becomes larger. To fix these problems, a new methodology

for constructing emulators in large-scale computer experiments is proposed in this paper.

We propose using transformations for improving the additivity of the target function in

large-scale experiments, that is, to find a transformation of the response so that the target

function becomes approximately additive in its input variables. The concept of using trans-

formations for improving additivity in approximating a deterministic function in computer

experiments was proposed by [44] but not for large-scale experiments. In this paper, we

further argue that the concept is beneficial for building emulators in large-scale computer

experiments. This is because after improving the additivity, the target function is easier to

approximate and is expected to be well-approximated using few data points. Thus, we can

use a subset of big data to reduce the computational burden and build an emulator based on

the subset to approximate the function well.

As the GP model is a popular method in constructing emulators, many subset-based

techniques for Gaussian process, such as local GP ([45]), fixed-rank kriging ([46]), and

sparse GP ([47, 48]), can be used for constructing emulators in large scale computer ex-

periments. In these studies, the reason for using a subset only focuses on reducing the

computational burden. For example, for the problem of fitting a GP to a sub-dataset with

n data points instead of to a dataset with size N , the computational cost is reduced from

O(N3) to O(n3). However, our method of using transformation for improving the addi-

tivity not only provides a statistical reason for applying the subset technique in modeling

but also helps achieve a better approximation because an additive function can be approx-

imated easily. A better approximation is important because one of the major goal of using

emulators is to predict at input sites where no data points are evaluated.

A clear disadvantage of additive models is that they cannot entertain higher-order inter-

actions among variables, leading to an unsatisfied prediction performance even with using

big data. Such a disadvantage has been identified in the literature and is solved by extending
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the additive modeling framework to include linear combinations of the variables ([10, 9]).

Different from the previous literature, we employ a nonparametric smoother in the additive

modeling framework to capture higher-order interactions. To further improve the predic-

tion performance, a sequential procedure is proposed for identifying a data point whose

estimated predicted performance is the worst and adding the data point into the sub-dataset

for updating the model. This process can be performed in a sequential manner without

expensive computational time.

The remainder of this article is organized as follows. Section 2 introduces the proposed

models and the sequential updating technique. Section 3 discusses a method for construct-

ing prediction confidence intervals of the proposed models. Section 4 provides several

advantages of using the proposed method. Section 5 presents examples showcasing the

capabilities of the method. Finally, Section 6 concludes the paper with a brief discussion.

2.2 Transformation and Additivity with Subset Techniques

Our aim is to use a sub-dataset Dsub ⊂ D to construct an inverse Transformed Additive

Model (TAM)

y(x) = g−1{µ+ z1(x1) + . . .+ zp(xp)}, (2.1)

for approximating f(x) well, where x = (x1, · · · , xp). This implies that the sub-dataset

Dsub must adequately represent and faithfully characterize the massive dataset D, and such

sub-dataset Dsub can be constructed by support points in [49]. Using Dsub to fit model

(2.1), we need to estimate each component function zk(·) and the transformation function

g(·). If the transformation function g(·) is given, then the estimator of zk(·) can be obtained

through a penalized regression using g(y(x)) as the responses and basis expansions on

zk(·) as inputs for k = 1, · · · , p. This step can be conveniently implemented by using mgcv

package [50]), so we focus on estimating g(·).

The goal of using transformations is to improve the additivity of f(x). A convenient

27



way is to parametrize the unknown transformation function g(·) through the popular Box-

Cox transformation (Box and Cox 1964) for nonnegative data (y ¿ 0):

gλ(y) =


yλ−1
λ
, if λ 6= 0

log y, if λ = 0
, (2.2)

whose transformation is controlled by an unknown parameter λ ∈ R. Then, we estimate λ

by finding

λ̂ = arg min
λ

∑
{x,y(x)}∈Dsub

[
y(x)− g−1

λ {µ̂(λ) + ẑ1(x1;λ) + . . .+ ẑp(xp;λ)}
]2
, (2.3)

where the estimated mean µ̂(λ) and component function ẑ1(·;λ) in (2.3) are dependent on

λ and obtained from Dsub. The forgoing algorithm is summarized as Algorithm 4.

Algorithm 4 Transformed Additive Model (TAM)
1: procedure TAM(D) .
2: Obtain λ̂ from (2.3). The ẑk(xk;λ) in (2.3) are obtained from the penalized least

square method using gλ(y(x)) as the responses, where (x, y(x)) ∈ Dsub, and Dsub is
the support point of D.

3: return λ̂, µ̂, ẑk(xk; λ̂), and Dsub.
4: end procedure

Even with the best possible transformation, we cannot expect that the function becomes

exactly additive in the transformed scale; thus, the prediction that we obtained using TAM

can be unsatisfactory. To improve the prediction performance of TAM, we extend it to

capture not only the main effects but also higher-order interaction effects in the transformed

space. This step can be done by combing the additive function in (2.1) with a nonparametric

function z(x1, · · · , xp), expressed as

y(x) = g−1
λ

{
µ+ (1− η)

p∑
k=1

zk(xk) + ηz(x1, · · · , xp)

}
, (2.4)

where η ∈ [0, 1]. We call the extended model (2.4) as the transformed approximately ad-
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ditive model (TAAM). To obtain an estimator of TAAM, because we expect that most of

the variation is captured by the additive part in (2.4), a convenient way is to keep using

λ̂ µ̂, and ẑk(xk) obtained from Algorithm 1 as the estimators of λ, µ, and zk(xk) in (2.4),

where k = 1, · · · , p. To estimate the function z(x1, · · · , xp) for capturing the interac-

tion terms in the transformed scale, we suggest fitting a thin plate spline ([51]) to the data

gλ(y) ≡ (gλ̂(y1), · · · , gλ̂(yn))′, a general method for estimating a smooth function of multi-

ple variables. Thus, the remaining unknown parameter in TAAM is only a one-dimensional

parameter η. Its estimator can be obtained similar with obtaining λ̂ in (2.3); that is,

η̂ = arg min
η∈[0,1]

∑
x∈Dsub

(
y(x)− g−1

λ

{
µ̂+ (1− η)

p∑
k=1

ẑk(xk) + ηẑ(x1, · · · , xp)

})2

. (2.5)

The prediction performance |y(x)− ŷTAAM(x)|2 for (x, y(x)) ∈ D\Dsub helps identify

the data point that can be used to further improve the TAAM (2.4), where ŷTAAM(x) is the

estimated prediction of function (2.4). Denote the data point whose value of the prediction

performance (y(x)− ŷTAAM(x))2 is the largest by (x?, y(x?)). We suggest adding the data

point (x?, y(x?)) to Dsub :

D?
sub = Dsub ∪ {(x?, y(x?))} with (x?, y(x?)) = arg max

(x,y(x))∈D\Dsub

|gλ̂(y(x))− ĝλ̂,η̂(y)|2,

(2.6)

and use D?
sub to refit the TAAM. This step can be repeated until the average prediction

performance (y(x)− ŷTAAM(x))2 over (x, y(x)) ∈ D\D?
sub is small enough. Further dis-

cussion about the stopping criterion is given in Section 4.4. We summarize the foregoing

method for constructing TAAM as Algorithm 5.

2.3 Uncertainty Quantification

This section develops and discusses a method for quantifying prediction uncertainty from

models TAM (2.1) and TAAM (2.4). The key idea is to connect the predictions from TAM
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Algorithm 5 Transformed Approximately Additive Model (TAAM)
1: procedure TAAM(D, ε > 0) .
2: Set t = 1.
3: Obtain λ̂(t), µ̂(t), ẑ(t)

k (xk), and D
(t)
sub from Algorithm 1.

4: Obtain the estimator of η from (2.5), denoted by η̂(t).
5: Obtain ẑ(x1, · · · , xp) by fitting a thin plate spline to the data gλ̂(y)
6: Update D(t) by using (2.6) and set t = t+ 1.
7: Repeat steps 3 to 6 until the average prediction performance (y(x)− ŷTAAM(x))2

over (x, y(x)) ∈ D\D((t))
sub is smaller than ε.

8: end procedure

and TAAM as the mean of a posterior distribution through a Bayesian interpretation. Thus,

the posterior variance of the distribution can be used to construct a credible interval for

quantifying the prediction uncertainty.

Suppose we want to quantify the prediction uncertainty at x0, and our goal is to con-

struct a credible interval for y(x0) from the posterior distribution g(y(x0))|y, where y

is a vector including responses from Dsub. We use the TAM model in (2.1) to illustrate

the method first. Recall that when fitting the TAM model, we apply a penalized least

square method to g(y(x)) with respect to µ +
∑p

i=1 zi(xi), and zk(·) is represented using

a basis expansion. Specifically, let zk(·) =
∑b

j=1 hkj(·)βkj, where {βkj}bj=1 are unknown

coefficients, and {hkj(·)}bj=1 are basis functions defined using a sequence of b knots for

k = 1, · · · , p. This implies that the TAAM in (2.1) becomes

y(x) = g−1
λ

{
µ+

p∑
k=1

b∑
j=1

βkjhkj(xk)

}
. (2.7)

Additionally, when using the penalized least square, we need to specify the penalized pa-

rameter λk and smoothing matrix Sk for each component function for k = 1, · · · , p. Then,

the Bayesian interpretation given in the Appendix I gives the posterior distribution for
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β =
(
β11, · · · , β1b1 , · · · , βp1, · · · , βpbp

)
, which is

β|y ∼ N

(HTH +

p∑
k=1

λkSk

)−1

HT {gλ(y(x))− µ1} , σ̂2

(
HTH +

p∑
k=1

λkSk

)−1
 ,

(2.8)

where σ̂2 is the residual sum of squares for the fitted model divided by (n−tr(
∑p

k=1 λkSk)),

tr(·) is the trace function, 1 is a vector of 1’s having length n, H = (H1 · · · Hp), and the

ij-th element of Hk is hkj(xki) for k = 1, · · · , p. From (2.8), the posterior distribution

gλ(y(x0))|y = µ+ hT (x0)β|y is

gλ(y(x0))|y, µ, η, λ ∼ N(ĝλ ◦ y(x), V (x)), (2.9)

where

ĝλ ◦ y(x) = µ+ hT (x0)S−1HT
(
I + HS−1HT

)−1 {gλ(y)− µ1} , (2.10)

V (x) = hT (x0)S−1h(x0) + hT (x0)S−1H(I + HS−1HT )−1HS−1h(x0),(2.11)

gλ(y) is the transformed response vector, and S =
∑p

k=1 λkSk. From (2.9), we can ob-

tain the probability density function of f(x)|y, and the median of the density is f̃(x) =

g−1
λ

{
ĝ ◦ f(x)

}
as [6] pointed out. This implies that a (1− α)100% credible interval (CI)

for the prediction is

[
g−1
λ

{
ĝλ ◦ f(x)− φα/2

√
V (x)

}
, g−1
λ

{
ĝλ ◦ f(x) + φα/2

√
V (x)

}]
, (2.12)

where φα/2 is the critical value for the CI. Obtaining a CI from TAAM can be done straight-

forward by replacing the response gλ(y) in ĝλ ◦ f(x) of (2.12) with gλ(y)−⊕pk=1ẑk,where

⊕ is the element-wise summation and zk is a vector containing the function values of ẑk(·)

from evaluating the TAM model in the inputs of the sub-dataset Dsub. We summarize the

method for quantifying prediction uncertainty as Algorithm 6.
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Algorithm 6 UQ for TAM and TAAM
1: procedure UQTAM(D,x0, α) .
2: Calculate (2.10) and (2.11).
3: Obtain the (1− α)100% CI for the prediction from TAM by using (2.12).
4: Obtain the C.I. for the prediction from TAAM by replacing the response gλ(y) in
ĝλ ◦ y(x0) of (2.12) with gλ(y)−⊕pk=1ẑk.

5: end procedure

Note that when using Algorithm 3 with a one-parameter Box-Cox transformation (2.2),

the lower bound needs to be set at 0 if λ{ĝ ◦ f(x) − 1.96
√
V (x)} + 1 < 0 to guarantee

that gλ(·) is one-to-one. Moreover, although we demonstrate Algorithms 1 to 3 by using a

one-parameter transformation, the algorithms can be applied to more general transforma-

tions, such as the Yeo-Johnson transformation (Yeo and Johnson 2000), relaxing the y > 0

constraint in the Box-Cox transformation.

2.4 Advantages

In this section, we discuss the advantages of using TAAM methods.

2.4.1 Prediction Performance, Computational Time, and Uncertainty Quantification

This subsection provides a numerical example to demonstrate the prediction performance,

computational time, and the ability of uncertainty quantification using the proposed method.

The example is a three-dimensional function considered in the classic beam bending prob-

lem ([52]). The detailed function form of the bending function is given in Table B.2.

We also compare TAAM with the local Gaussian process (LaGP) and Multi-Resolution

Functional ANOVA (MRFA), which are recently proposed methods for modeling large

scale computer experiments proposed by [41] and [53]. The methods can be implemented

through R packages LaGP ([45]) and MRFA ([54]). All the numerical results were obtained

using R ([55]) on a 2.6 GHz laptop.

The experimental designs are generated from Sobol’ sequences with scrambling inde-

pendently ([34]). The sample sizes for training the models are 10k for k = 3, 4, 5, · · · , 9.,
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and the testing dataset has a sample size of 10,000. Then, we fit models TAAM (Algo-

rithm 2), LaGP, and MRFA to the training data and compare their prediction performance

in terms of root-mean-squared-prediction-error (MSPE) and their computational time. The

computational time of laGP and MRFA for the cases n = 10k and k > 6 is too high com-

pared with the time of running TAAM, so we do not run them. The results are summarized

in Table 2.1. From the table, we observe that the TAAM substantially outperforms the other

two methods in terms of the computational time, emulator accuracy, and scalability.

MSPE(×10−11) Time (Sec)
Sample Size (N) TAAM MRFA LaGP TAAM MRFA LaGP

1,000 1.4 280 3300 3.84 13.41 102.52
10,000 1.8 140 2300 10.38 71.31 106.47

100,000 1.3 14 4200 26.33 2385.67 141.93
1,000,000 1.1 X X 54.04 X X

10,000,000 1.0 X X 233.92 X X
100,000,000 1.7 X X 643.36 X X

Table 2.1: Prediction performance and computational time from TAAM, MRFA, and LaGP in the
bending function examples.

We further compare the ability for quantifying prediction uncertainty using the methods

TAAM and LaGP. (However, We do not compare using MRFA because its R package

does not provide an option for obtaining prediction variance). To assess their abilities, we

computed the prediction interval score ([33]), which is defined as (u − `) + (2/α)(` −

x)I{x < `}+ (2/α)(x− u)I{x > u} with α = 95%. A smaller interval score indicates a

better prediction interval. The interval scores are summarized in Table 2.2. From the table,

we observe that TAAG is better than LaGP.

Interval Scores (×10−4)
Sample Size (N) TAAM LaGP

1,000 4.227 89.042
10,000 4.086 9.025

100,000 4.127 4.316

Table 2.2: Interval scores (smaller is better) from TAAM and LaGP in the bending function exam-
ples.
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2.4.2 Computational Complexity

We discuss the computational complexity of using TAM and TAAM methods and compare

them with other methods in this subsection. The complexity of TAM is O(b3), where b is

the number of knots in (2.7). The number b can be as large as the size of the sub-dataset

used in TAM. In this case, if the size the sub-dataset is n, then the computational com-

plexity of TAM is O(n3). This complexity is the same as that of many GP-based methods

incorporated with a subset-based method used for fixing the computational problem of fit-

ting a GP model, which needs O(N3) and is quite expensive when the sample size N is

large ([56]). Thus, TAM can reduce much computational time compared with a standard

GP. For obtaining the complexity of the TAAM method, because the sub-dataset used in

TAAM is expanded from size n to n + m, the computational complexity is O((n + m)3).

Although TAAM increases the computational complexity of TAM, its prediction accuracy

is higher because it uses more data points to construct the model. We will provide some

methods for further reducing the computational time of TAAM in the next subsection. We

summarize the forgoing discussion in Figure 2.1.

TAM& TAAM 

other Subset Methods 

Time Cost 

Prediction
Accuracy 

Standard GP-based 

methods 

Figure 2.1: Comparison of Complexity of TAM and TAAM
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2.4.3 Parallel Computing

In this subsection, we propose a method to increase the speed of running TAM and TAAM.

When we examine the details of the forgoing algorithms, we found that the most time-

consuming part is the sequential updating step in Algorithm 2. This step can be sped up

by a method based on utilizing the space-filling property ([57]) of the data points in the

sub-dataset, inherited from the support points. The data points can be used to partition

the domain of the data into multiple sub-regions by assigning the lines that are equidis-

tant to any two of the support points as the boundary lines of the sub-regions. Figure 2.2

demonstrates an example with 20 sub-regions partitioned by 20 data points.

Algorithm 7 Parallel Computing in Fitting TAAM
1: procedure TAAM(D, ε > 0) .
2: Set t = 1.
3: Obtain λ̂(t), µ̂(t), ẑ(t)

k (xk), and D
(t)
sub from Algorithm 1.

4: Obtain the estimator of η from (2.5), denoted by η̂(t).
5: Obtain ẑ(x1, · · · , xp) by fitting a thin plate spline to the data gλ̂(y)
6: Use D(1) to split the input domain into multiple sub-regions, and, for each sub-

region, pick one data point in D\D(t) whose prediction error is the worse.
7: Update D(t) by adding the picked data points in step 6 to D(t) and set t = t+ 1.
8: Repeat steps 3 to 6 until the average prediction performance (y(x)− ŷTAAM(x))2

over (x, y(x)) ∈ D\D(t)
sub is smaller than ε.

9: end procedure

In each sub-region, we pick one data point ∈ D\Dsub whose prediction error is the

worse. These data points can be added into the sub-dataset, and then the extended sub-

dataset is used for updating the TAAM. Thus, instead of updating the TAAM one point at

a time, we can update the TAAM parallelly through data points from multiple sub-regions

of the domain. The foregoing method can be repeated until the prediction performance

of TAAM is satisfied, is summarized in Algorithm 7. The parallel procedure can even be

sped-up by running on a computer processor designed for distributed optimizations ([58]).

For illustration, we implement the parallel computing method on fitting a TAAM to the

bending function example in Section 4.1 with a sample size N = 2000, a sub-sample size
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n = 100, and the size of the extra points m = 500. The extra points are selected sequen-

tially (Algorithm 5) and parallelly (Algorithm 7). The computational time and MSPEs are

summarized in Table 2.3. From the table, we observe that the parallel method greatly im-

proves the computational time a lot and possess competitive predictability compared with

the sequential method.
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Figure 2.2: Domain partition of the data
into different sub-region for applying paral-
lel computing to the sequential updating step
in Algorithm 2.

m Computational
Time

MSPE

Sequential 500 135.42 4.862× 10−12

Parallel 500 2.13 5.572× 10−11

Table 2.3: Computational time and the MSPEs se-
quential computing (Algorithm 5) and parallel com-
puting (Algorithm 7).

2.4.4 Stopping Criterion

Although many subset-based methods for fixing the modeling problem on a large scale

dataset have been proposed, how to determine the subset size is still unclear in the literature.

The subset method we used can be used for determining the (sub-)sample size of building

TAM and the sequential step in TAAM. Because the sub-dataset is composed of data points

from the original dataset D, we propose viewing the data points in the sub-dataset as a

training dataset and the data points not in the sub-dataset but in D as a testing dataset.

Thus, the testing dataset can be further used to access the information of the prediction

performance from TAM and TAAM, such as calculating the MSPEs over the testing dataset.

The MSPE values can be used to further decide the sample sizes used in TAM and TAAM.

To demonstrate the idea, we record the prediction errors of the bending function exam-
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Figure 2.3: Accessing the prediction errors of various sample sizes when fitting a TAAM.

ple with sample size 10, 000 in Section 4.1 when the size in the sequential step of Algorithm

5 increases from 0 to 500. From Figure 2.3, we observe that implementing the sequential

step in TAAM with a size from 0 to 25 may cause the overfitting problem and a size from

400 to 500 may have an overfitting problem. Thus, a size of 40 is a better choice in this

example.

2.5 Numerical Comparisons

This section demonstrates the prediction performance of the proposed method with more

numerical examples. These examples include several deterministic datasets from four com-

mon computer models and three real datasets as summarized in Table B.2. The software

and computer are the same as we described in Section 4.1, and in the following section, we

also compare the proposed with LaGP and MRFA methods.

2.5.1 More Examples from Computer Experiments

In this subsection, we present three more example functions for the TAAM method in com-

parison with MRFA and laGP: Ackley function, Schwefel function, and borehole function.

Their function forms and input ranges are given in Table B.2, and further details can be
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found in [42] The training data sizes are 1,000 and 10,000, and the testing data size is

10,000. All of these data are generated from the Sobol’ sequences with scrambling inde-

pendently ([59]).

The comparison results are shown in Tables 2.4 and 2.5. Compared with LaGP, al-

though the computational time of TAAM may be larger in some cases, the prediction per-

formance of TAAM is much better. Taking the Ackley function with N = 10,000 as an

example, the computational time for TAAM is 124.35, higher than 13.6 from laGP with 20

neighborhood points, but the prediction error for TAAM is 0.341, around 10 times smaller

than that for laGP with 20 neighborhood points. For MRFA, the computational time of

TAAM is smaller, and the prediction performance of TAAM is competitive.

Time (Sec)
Functions Sample Size (N) TAAM MRFA LaGP (10d) LaGP (25d)

Ackley (d = 2) 1,000 26.67 47.03 12.17 46.55
10,000 124.35 140.8 13.6 56.55

Schwefel 1,000 32.77 44.27 11.33 54.72
10,00 47.98 158.48 14.15 54.8

Borehole 1,000 34.38 118.88 113.43 499.67
10,000 156.14 586.68 118.2 631.5

Power Plant 9568 158.54 9309.02 7.77 32.53
NASA 1503 68.4 >> 158.54 1.48 6.05
CASP 40730 1003.63 2546.45 87.5 451.38

Table 2.4: Recorded computational time of the examples in Section 5.2

MSPE
Datasets Sample Size (N) TAAM MRFA LaGP (10d) LaGP (25d)
Ackley 1,000 4.49× 10−1 6.58× 10−1 1.07× 101 1.65× 100

10,000 3.41× 10−1 3.22× 10−1 3.02× 100 2.81× 100

Schwefel 1,000 8.39× 10−8 5.87× 10−7 1.52× 10−1 1.25× 10−1

10,00 4.70× 10−8 2.95× 10−7 1.40× 10−1 1.17× 10−1

Borehole 1,000 5.33× 10−2 3.02× 10−1 1.67× 101 3.47× 100

10,000 6.20× 10−3 7.30× 10−3 2.45× 10−1 4.20× 100

CCPP 9568 4.438 20.836 6.095 5.1124
NASA 1503 4.523 6.636 6.514 6.342
PTS 40730 5.045799 9.517 6.586 5.977

Table 2.5: Recorded MSPE of the examples in Sections 4.2 and 4.3.
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2.5.2 Applications on Noisy Data

Although the motivations of the proposed method are commonly derived for deterministic

data in computer experiments and spatial statistics, the method can be extended to fit noise

data by adding a nugget term ([60]) in the covariance function in (2.8). Data with noise are

more common in real-world applications. In this subsection, we demonstrate the prediction

performance of the proposed method using three large-scale noisy datasets. These noisy

datasets are from the UCI Machine Learning Repository ([61]). The first example contains

9,568 data points collected from a combined-cycle Power Plant (CCPP) ([62]). The input

variables consist of hourly average ambient variables, such as temperature, ambient Pres-

sure, relative humidity, and exhaust vacuum, and these input variables are used to predict

the net hourly electrical energy output of the plant. The second example is a NASA dataset,

including 1,503 data points obtained from a series of aerodynamic and acoustic tests of two-

and three-dimensional airfoil blade sections conducted in an anechoic wind tunnel ([63]).

The input variables include frequency, angle of attack, chord length, free-stream velocity,

and suction-side displacement thickness, which are used to predict scaled sound pressure.

The third example is from materials science about measuring the physicochemical proper-

ties of protein tertiary structure (PTS). This dataset contains 40,730 data points and include

nine input variables. More information is provided in Appendix II.

Because MRFA and LaGP also can be extended to fit noisy data, we also compare

TAAM with the two methods. For the comparison of their predictability, as these datasets

do not provide any testing dataset, we randomly select 500 data points from NASA, 2,000

points from the CCPP datasets, and 5,000 pints from the PTS datasets as the testing datasets.

The prediction accuracy in terms of RMSPEs and execution time obtained from the three

methods are given in the last two rows of Tables 2.4 and 2.5. The prediction accuracy of

the TAAM is better than that of MRFA. The reason is that MRFA usually performs better

when the important input variables are sparse when some group structures exist among the

input variables ([64]). However, such structures do not exist in the three datasets. In addi-
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tion, the computational time of TAAM is expected to outperform MRFA because TAAM is

based on a subset technique, but MRFA is based on the whole dataset. Thus, considering

the results presented in the two previous sections, the TAAM substantially outperforms the

other methods in terms of computational time, emulator accuracy, and scalability in the

deterministic data and noisy data.

2.6 Conclusions

This article shows that using transformations on the response of a p-dimensional target

function can be highly beneficial in big data modeling. Two modeling techniques are pro-

posed here. Their advantages include reducing the computational time for estimating the

target function and providing satisfying prediction performance. Several numerical com-

parisons show that the methods outperform many recently proposed methods for big data in

the fields of computer experiments and nonparametric regression. As many challenges in

statistical modeling are arising in the era of big data, the proposed methods may shed light

on modeling more generally statistical problems, such as classification problems and on-

line learning problems. These problems will be challenging but interesting future research

topics.
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CHAPTER 3

VARYING COEFFICIENT FRAILTY MODELS WITH APPLICATIONS IN

SINGLE MOLECULAR EXPERIMENTS

Motivated by an analysis of single molecular experiments in the study of T cell signaling, a

new model called local linear varying coefficient frailty model is proposed in this chpater.

Frailty models have been extensively studied but extensions to non-constant coefficients are

limited to spline-based methods which tend to produce estimation bias near the boundary.

To address this problem, we introduce a local polynomial kernel smoothing technique with

a modified EM algorithm to estimate the unknown parameters. Theoretical properties of

the estimators, including their unbiased property near the boundary, are derived along with

discussions on the asymptotic bias-variance trade-off. The finite sample performance is

examined by simulation studies, and comparisons with existing spline-based approaches

are conducted to show the potential advantages of the proposed approach. The proposed

method is implemented for the analysis of T cell signaling. The fitted varying coefficient

model provides a rigorous quantification of an early and rapid impact on T cell signaling

from the accumulation of bond lifetime, which can shed new light on the fundamental

understanding of how T cells initiate immune responses.

3.1 Introduction

This paper is motivated by an analysis of single molecular experiments with the goal of

understanding how the interactions between T cells and antigen-presenting cells initiate

immune responses. T cell uses the T cell receptor (TCR) to recognize antigen in the form

of peptide-major histocompatibility complex (pMHC) on antigen-presenting cells. Recog-

nition is signified by a cascade of intracellular signaling events, including a transient rise

of intracellular calcium (Ca2+), and ultimately resulting in developmental decisions or ef-
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fector functions [65]. Therefore, an important step to understand the recognition process is

to study how the TCR-pMHC interactions trigger the rise of intracellular calcium.

By conducting a series of single molecular experiments called force-clamp assay [66],

[67] showed that the T cell signaling is induced by the accumulation of TCR-pHMC bond

lifetimes in repeated cell adhesion. This discovery provides a critical initial understand-

ing of the immune system, but a sophisticated model that can quantify the underlying

mechanism is absent. Development of such a model is not straightforward because of

two features, which are associated with this study and commonly shared by many other

applications. First, the experiments are performed by multiple replicates to account for the

heterogeneity across cells. Therefore, a model that can borrow strength across different

replicates and take into account the cell-to-cell variability is needed. Second, according to

[67], it is observed that an early and rapid accumulation of bond lifetimes appears to be

more likely to trigger T cell signaling. This indicates a time-varying effect from the bond

lifetime accumulation and the effects near the left boundary which associated with the early

accumulation are of main interest.

To the best of our knowledge, a modeling framework that takes into account the afore-

mentioned features has not yet been systematically developed in the literature. A Cox

model with random effects, often called a frailty model, is widely used in survival analysis

with repeated measurements [68, 69, 70, 71, 72, 73, 74, 75]. We can predict the triggering

probability and take into account the heterogeneity among cells using the frailty model, but

most of the existing works on frailty models rely on the assumption of constant regression

coefficients, which is not valid according to the second feature. Although some discussions

on the extensions of varying coefficient models are available [76, 77, 78, 79], there are

no theoretical justifications for estimation and inference, and they are mostly spline-based

approaches which tend to produce estimation bias near the boundary [80]. On the other

hand, there are extensive discussions on Cox models with varying coefficients [81, 82, 83],

which can capture the dynamic impact of the bond lifetime accumulation over time but fail
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to account for the cell-cell variability. Therefore, a new type of frailty model that can quan-

tify the time-varying effects from covariates, especially with an accurate estimation on the

boundary, and also account for the heterogeneity among experimental units is called for.

A local linear varying coefficient frailty model is proposed in this paper which allows

the regression coefficients in the frailty model to change over time. The generalization to

varying coefficients provides flexibility in model fitting but also posts some challenges in

estimation and inference. A local linear smoothing technique [84] is introduced with a

modified EM algorithm to estimate the unknown parameters, including the varying coef-

ficients and the variance components. Asymptotic properties of the estimators, especially

near the boundary, are developed and discussions on the bias-variance trade-off are pro-

vided. These results are particularly useful to support the estimated effect from the early

accumulation of bond lifetime.

Beyond the current application, the proposed varying coefficient frailty models can be

broadly applied in survival analysis and reliability analysis to model time-varying effects

from covariates. For example, the proposed method can be implemented in [85] to estimate

the time-varying impact from the smoking status to the risk of lung cancer. The proposed

method can also be applied to the Framingham heart study [68] to explore dynamic impacts

from risk factors on cardiovascular disease over time.

The remainder of the paper is organized as follows. The detailed experimental set-

tings and the varying coefficient frailty models are introduced in Section 2. The modified

EM approach and the local kernel smoothing algorithm are proposed in Section 3. Theo-

retical properties of the proposed varying coefficient estimators, including the asymptotic

behavior of the estimators in the interior and near the boundary, are discussed in Section

4. Numerical comparisons and the finite sample performance of the proposed method are

demonstrated by simulation studies in Section 5. The force-clamp assay is revisited and

analyzed by the proposed model in Section 6. A summary and concluding remarks are

given in Section 7. The additional regular conditions used in the proof of the theoretical
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properties are given in Appendix A.

3.2 Statistical Analysis of T Cell Signaling

We first introduce the experimental settings of T cell signaling experiments in Section 2.1.

Some preliminary analysis of the data is demonstrated. Then the varying coefficient frailty

model is introduced in Section 2.2.

3.2.1 Experimental settings and the Data

The TCR−pMHC bond lifetimes are measured by a single molecular experiment called

force−clamp assay [86, 66]. The force-clamp assay is illustrated by Figure 3.1 (A and B)

and can be described as follows. On the left-hand side of Figure 3.1A, a biomembrane

force probe (BFP) uses a micropipette-aspirated human red blood cell (RBC) with a probe

bead attached to its apex as a force transducer. The probe bead was coated with pMHC to

serve as a surrogate antigen-presenting cell (Figure 3.1B, left). A micropipette-aspirated T

cell (Figure 3.1A, right) obtained from transgenic mice was driven to briefly (0.1s) contact

the probe bead to prompt bond formation. Via T cell retraction, a tensile force on the

TCR-pMHC bond was ramped (at 1000 pNs) to and clamped at a preset level until bond

dissociation. A force-clamp cycle is demonstrated in Fig 3.1C and the bond lifetime is

measured as the force-clamp period indicated in red in Fig 3.1C. To evaluate how the TCR-

pMHC interaction relates to T cell signaling, a fluorescence optical path is added to BFP

to simultaneously measure bond lifetime and calcium flux. For each T cell, the force-

clamp cycle (i.e., Fig 3.1C) is repeated for 10 minutes; concurrently, intracellular Ca2+ is

observed using fura-2 ratiometric imaging [67].

Calcium signals are generally classified into two types: type α and type β [67]. Exam-

ples for the two types of signals, with colored images of the molecules, are given in Figure

3.2. The calcium level is measured based on a ratiometric indicator. Red color indicates

higher calcium levels while blue color indicates lower calcium levels. Type α signals are
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Figure 3.1: A and B: Illustration of a force-clamp assay. C: The bond lifetime is measured in one
force-clamp cycle.

also called triggered events because there exists a rapid increase of the Ca2+ level, such

as the increase from 70th second to 78th second shown in Figure 3.2A. Based on [67], the

calcium signals are defined as type α if the Ca2+ curve contains a rapid increase of Ca2+

levels to more than 150% of the initial baseline. The time to a triggered event is defined

as the time duration required for the calcium level to reach the 150% increase. In contrast,

type β signals are called non-triggered events because the calcium levels are not triggered

within the experimental period, which is known as right censored in statistical jargon, and

therefore the colors remain almost unchanged over time as shown in Figure 3.2B.

For each T cell in repeated force-clamp assays, it produces a pair of curves over time as

shown in the two examples in Figure 3.3. In each example, the calcium levels are plotted

as red dots over time with their values referred to the axis on the left-hand side, while the

corresponding cumulative bond lifetimes are plotted as black dashed line with their values
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Figure 3.2: Illustration of the two types of calcium signals

referred to the axis on the right-hand side. According to [67], it appears that an early and

rapid accumulation of bond lifetime is more likely to trigger the calcium level and lead

to a type α signal. For example, compared with the non-triggered event in Figure 3.3B,

the triggered event in Figure 3.3A shows a much faster accumulation of the bond lifetime,

especially in the first fifty seconds.
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Figure 3.3: A and B show examples for the triggering and non-triggering event, respectively. The
calcium signals (left axis) are plotted in red points and the cumulative bond lifetime (right axis) are
plotted in solid lines.

Due to the inherently stochastic nature of single molecular interactions, repeated force-

clamp cycles are conducted for multiple T cells as replicates to account for the heterogene-
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Figure 3.4: Five randomly selected examples of triggered events. The vertical lines are the trigger-
ing time points for each of the events.

ity in the cells. Figure 3.4 demonstrates five examples of the triggered events with their

triggered points marked by vertical dashed lines and the time to triggered event is the time

duration from zero to the corresponding dashed lines. These examples show that, although

monoclonal TCR is used to reduce population heterogeneity, individual T cells still behave

differently because of the cell-to-cell variability.

3.2.2 Varying coefficient frailty models

Understanding the mechanism of calcium triggering and the cause for different triggering

time is crucial to the fundamental understanding of the immune system. Apart from cell-

to-cell variability, [67] believe that a key driving force is the accumulation of bond lifetime

in repeated adhesion contacts. Therefore, the goal here is to relate the time passes, before

a triggering event, to the cumulative bond lifetime.

To address this problem, we first consider a frailty model, an extension of the Cox

proportional hazard model to account for unobserved heterogeneity [69, 71, 72, 74, 75].

Define a hazard function by

λ(t;Xi(t)) = lim
∆t→0

P (t ≤ T ≤ t+ ∆t|T ≥ t,X(t)),

where T is the time to a triggered event and X(t) is the cumulative bond lifetime at time
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point t. This hazard function describes the conditional probability of the calcium signal

being triggered at time t, given no triggering before time t. Suppose the repeated force

clamp assays are conducted for n replicates of T cells, denote Ti as the time to a triggered

event for the i-th replicate, a frailty model can be written as

λi(t;Xi(t), ai) = λ0(t) exp{βXi(t) + ai}, (3.1)

where ai is a random effect taking into account the heterogeneity among n replicates of T

cells, λi(t) is the hazard function for the i-th T cell replicate, and λ0(t) is an unspecified

baseline function representing the triggering probability when the cumulative bond lifetime

is 0 at time t. The frailty model in equation (3.1) can account for the cell-to-cell variability

while modeling the effect from the cumulative bond lifetime on the triggering probability.

However, the effect is assumed to be an unknown constant β and therefore cannot distin-

guish the difference between an early bond lifetime accumulation and a late one. Such an

effect appears to be non-constant and capturing the varying effect on the left boundary is

particularly important because it is observed that an early accumulation of bond lifetime

seems to be more effective in triggering the calcium.

To address the aforementioned problems and rigorously quantify the time-varying effect

from the bond lifetime accumulation, we propose a new model called local linear varying

coefficient frailty (LLVCF) model which can be written as follows:

λi(t; Xi(t),Zi, ai) = λ0(t) exp{XT
i (t)β(t) + ZT

i ai}, (3.2)

where λi(t) = lim∆t→0 P (t ≤ Ti ≤ t + ∆t|Ti ≥ t,Xi(t),Zi, ai) is the hazard function

of the i-th replicate, ai is a vector of q random effects associated with covariates ZT
i , and

XT
i (t) is a p-dimensional covariates available at time t with the unknown time-varying co-

efficients β(t) = (β1(t), . . . , βp(t)). The random effects ai are assumed to be independent

multivariate normalN(0,Σa). In the current study, only one random effect, ai ∼ N(0, σ2
a),

48



is incorporated to account for the cell-to-cell variability and to facilitate borrowing strength

across different replicates of T cells. Furthermore, there is one covariate involved in the

study, thus p = 1 and model (3.2) can be simplified as

λi(t;Xi(t), ai) = λ0(t) exp{β1(t)Xi(t) + ai}. (3.3)

The main interest lies in estimating the time-varying coefficient β1(t) which quantifies the

dynamic impact from the cumulative bond lifetime.

For the estimation of the varying coefficient β(t), we consider a kernel smoothing tech-

nique called local linear regression. Compared with the spline-based methods, local linear

regression has the boundary bias correction property [87, 80]. This is desirable for the

current analysis because the earlier impact (i.e., left boundary effect) from bond lifetime

accumulation is of significant interest. Local linear regression is widely used for nonpara-

metric estimation [84, 81, 82, 83, 88]. The idea is to approximate β(t) by a first-order

Taylor expansion. Denote the approximation of the j-th varying coefficient at time point t0

by

βj(t) = γ1j(t0) + γ2j(t0)(t− t0), (3.4)

where j = 1, . . . , p, and t0 ∈ (0, τ), and τ the maximum of the experimental time. There-

fore, the estimator of γ1j(t0) is a local linear estimator for the varying coefficient function

β(·) at time t0. Similarly, the estimator of the local slope γ2j(t0) is an estimator of β′j(·) at

time t0.

Note that the proposed LLVCF model in (3.2) has two popular models as its special

cases. If β(t) = β and Σa = 0 in (3.2), the LLVCF model is equivalent to the well-known

Cox model [89]. On the other hand, without the random effect ai in (3.2), the LLVCF

model can be written as the varying coefficient Cox model [81, 82, 83].
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3.3 Estimation

Although estimation procedures have been developed for the frailty model [68, 71, 73,

74], they are mainly designed for constant coefficients and therefore cannot be directly

applied to estimate the varying coefficients in LLVCF. We propose a new estimation pro-

cedure based on a local polynomial kernel smoothing technique [90, 84] and a modified

expectation-maximization (EM) algorithm [91, 92].

We start with some notation. For the i-th replicate, denote the censoring time of the ex-

periment by Ci and define Yi = min(Ti, Ci). An indicator variable, di, is defined by di = 1

if a triggered event is observed before the end of the experiment (i.e., Yi = Ti) and di = 0

if it is right-censored (i.e., Yi = Ci). Note that Cis are chosen to be larger than the potential

event triggering time, and they are assumed to be independent of Tis [67]. For the ith repli-

cate, the data are denoted by (Yi,Xi(t),Zi, di), where i = 1, . . . , n and t = 1, 2, · · · , τ .

For simplicity, derivations herein assume that no tie is observed, i.e., that no multiple trig-

gering events occur at the same time. Extensions to address issues with ties are discussed

in Section 7. Based on the standard derivations in survival analysis with right censored

data, the log-likelihood function can be written as
∑n

i=1 {di log λi(Yi) + logSi(Yi)} ,where

Si(Yi) ≡ P (Ti ≥ Yi) = exp(−
∫ Yi

0
λi(t)dt). Up to a constant difference, the log-likelihood

given ai, for i = 1, · · · , and n, can be written as

`? ≡
n∑
i=1

di
[
log(λ0(Yi)) + XT

i (Yi)β(Yi)
]
−
∫ Yi

0

λ(s) exp(XT
i (s)β(s) + ZT

i ai)ds. (3.5)

Denote the data by D = {(Yi,Xi(t),Zi, di)}ni=1 and the unknown functions and parameters

by θ = (λ0,β,Σa). The parameters θ can be estimated by performing the following two

steps iteratively.

E-step: Let θ̂
(m)

= (λ̂
(m)
0 , β̂

(m)
, Σ̂

(m)

a ) be the estimated functions and parameters in
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the m-th iteration. The conditional expectation of (3.5) can be written as:

E[`?|D, θ̂
(m)

] = Q1(β(t), λ0(t)) +Q2(Σa),

where

Q1(β(t), λ0(t)) =
n∑
i=1

{
di
(
log(λ0(Yi)) + XT

i (Yi)β(Yi)
)
−
∫ Yi

0

λ0(s) exp(XT
i (s)β(s) +

logE[exp(ZT
i ai)|D, θ̂

(m)
])ds

}
(3.6)

and

Q2(Σa) = −1

2

n∑
i=1

{
log |Σa|+ E

[
aTi Σ−1

a ai|D, θ̂
(m)
]}

. (3.7)

Note that the E-step involves the conditional expectations for functions of the random ef-

fects, which is not observable. To compute these expectations, Gauss-Legendre quadrature

approximation [70] and MCMC methods with a log-concave prior on the random effects

[72] can be used. Detailed formulas and algorithms are given in the supplemental material.

The estimation procedure can be easily extended to other distributional assumptions for the

random effects.

M-step: The estimation of θ̂
(m+1)

in the (m+1)-th iteration consists of three elements,

λ̂
(m+1)
0 (·), β̂

(m+1)
(·), and Σ̂

(m+1)

a . First, the baseline hazard λ0(t) is estimated by the non-

parametric maximum likelihood estimator (NPMLE) [93]. Assuming that R(t) = {j :

Yj ≥ t}, the NPMLE for λ0(t) is

λ̂
(m+1)
0 (t) =

 ∑
j∈R(t)

exp(XT
j (t)β(t) + logE[exp(ZT

i ai)|D, θ̂
(m)

])

−1

(3.8)

if t = Yi for all i such that di = 1; otherwise, λ̂(m+1)
0 (t) = 0.

Define γ(t) = (γ1(t),γ2(t)), where γ1(t) = (γ11(t), · · · , γ1p(t)) and γ2(t) = (γ21(t), · · · , γ2p(t)).
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Plugging in the first-order approximation (3.4) of β(t) at time t to the profile likelihood

n∑
i=1

di

XT
i (Yi)β(Yi)− log

 ∑
j∈R(Yi)

exp(XT
j (Yi)β(Yi) + logE[exp(ZT

i ai)|D, θ̂])


,

which is obtained by substituting λ̂(m+1)
0 (t) into (3.6), we can estimate γ(t) by a kernel

smoothing method. That is, to maximize the local partial likelihood constructed by kernel

smoothing techniques as follows [94, 84]:

γ̂(m+1)(t) = arg max
γ(t)

n∑
i=1

diKh(Yi − t)

X̃T
i (Yi, Yi − t)γ(t)−

log

 ∑
j∈R(Yi)

exp(X̃T
j (Yi, Yi − t)γ(t) + ∆i)


, (3.9)

where X̃j(Yi, Yi − t) = (XT
j (Yi),X

T
j (Yi) · (Yi − t))T ,∆j = logE[exp(ZT

j aj)|D, λ̂(m+1),

γ̂(m),Σ(m)
a ], Kh(s) = (1/h)K(s/h), K(·) is a kernel function, and h is the bandwidth

representing the size of the local neighborhood. In this paper, we use the Epanechnikov

kernel, K(s) = (3/4)(1−s2) for s ∈ [−1, 1], which is a common choice in kernel methods

because of its optimal properties given in [90] and [84]. From a practical point of view,

many of the common kernels, such as Epanechnikov and Gaussian, tend to produce similar

estimators, so the choice of kernel is not usually critical in practice [95]. Note that the

local linear smoothing technique (3.4) and (3.9) for estimating β(t) can be easily applied

for other basis function approaches, such as penalized splines [96].

The last element in the M-step is to estimate the variance components Σa by maximiz-

ing (3.7), and the estimator can be written as

Σ̂
(m+1)

a =
1

n

n∑
i=1

E[aia
T
i |D, λ̂(m+1), γ̂(m+1), Σ̂

(m)

a ].
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The iterative procedure is terminated if the log-likelihood increment is smaller than a

predetermined value. Denote the estimates by λ̂0(t), γ̂(t) and Σ̂a. Due to the parametric

formulation of NPMLE and local linear approximation, the convergence of the proposed

EM procedure is guaranteed according to existing results in the EM literature [91, 92]. In

practice, the initial settings of the EM algorithm can be a = 0 and β(t) estimated from a

Cox varying coefficient model, such as [81] and [82]. The procedure is summarized by the

following algorithm.

Algorithm 8 An extedned EM algorithm for the varying coefficient frailty model
1: procedure

2: Given data {(Yi,Xi(tj),Zi, di) : i = 1, · · · , n and j = 1, · · · , N} and initial

estimates β̂
(m)

(t) for β(t) and Σ̂
(m)

a for Σa, with m = 0.

3: [E-step]: Derive Q1(β(t), λ0(t)) from (3.6) and Q2(Σa) from (3.7) based on data

D and

current estimators.

4: [M-step]: β̂
(m+1)

(t) ← γ̂1(t), where γ̂1(t) is from (3.9) and Σ̂
(m+1)

a ←

arg maxΣQ2(Σ).

Then, set m as m+ 1.

5: Repeat the E-step and M-step until convergence.

6: return β̂
(m)

and Σ̂
(m)

a .

7: end procedure

3.4 Asymptotic Theorem

Theoretical properties of the proposed varying coefficient estimators are developed in this

section and the bias-and-variance trade-off in bandwidth selection is discussed. Based on

these results, the bias correction property near the boundary is derived from [87, 84]. The

additional regularity conditions are given in Appendix A, and detailed proofs of the results
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are provided in the supplemental material.

We first derive theoretical properties, including asymptotic normality and an explicit

expression for the asymptotic bias and variance, for the local linear estimator γ̂1(t). The

result is summarized in the following theorem.

Theorem 3.4.1. Under the Conditions A1 - A6 in Appendix A, when t ∈ [h, τ − h], we

have:

√
nh

{
(γ̂1(t)− γ01(t)− h2

2
γ ′′01(t)

∫ 1

−1

s2K2(s)ds

}
D−→ Np(0, I

−1(t)

∫ 1

−1

K2(s)ds),

as n→∞, where I(t) is the Fisher information matrix of γ̂1(t) which can be written as

I(t) = E
{
λ1(t)P (Y1 ≥ t)X(t)X(t)T

}
−E {λ1(t)P (Y1 ≥ t)X(t)}E {λ1(t)P (Y1 ≥ t)X(t)}T

E {λ1(t)P (Y1 ≥ t)}
.

(3.10)

Based on Theorem 3.4.1, it appears that the leading bias term for γ̂1(t) is in the order of

h2, while the asymptotic variance is in the order of (nh)−1 because V(t) = (nh)−1I−1(t)
∫ 1

−1
K2(s)ds.

These two orders indicate a bias-and-variance trade-off in the selection of h. For example,

a larger bandwidth leads to an estimator with smaller variance but larger bias. Determin-

ing the optimal bandwidth is important in practice. Some discussions regarding bandwidth

selection are given in Section 6.

Confidence intervals can be constructed based on the results of Theorem 3.4.1 as fol-

lows. First, a consistent estimator of the variance of γ̂1(t), denoted as V̂(t), can be obtained

by the upper left p × p matrix of (nh)−1[−Q′′n(γ̂(t))/n]−1
∫ 1

−1
K2(s)ds, where Q′′n(γ̂(t))

is the second derivative of (3.9). Then, we can construct the 100(1 − α)% confidence in-

terval for the j-th component of γ1(t) by {γ̂1j(t) ± zα/2V̂jj(t)}, where V̂jj(t) is the j-th

diagonal element of V̂(t) and zα/2 is the 100(1 − α/2) percentile of the standard Normal

distribution.

The asymptotic results in Theorem 1 are developed for the interior points t ∈ [h, τ−h].
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In the next theorem, asymptotic estimation performance near the boundary is discussed.

Without loss of generality, we consider the left boundary t = ch, 0 < c ≤ 1 and a similar

result can be obtained for the right boundary point t = τ − ch. When t goes to 0 from the

right side of 0, it is denoted by t→ 0+.

Theorem 3.4.2. 2 Assume that limt→0+ λ0(t) > 0, limt→0+ P (Y ≥ t|X(u)) > 0, Z(u) >

0, and β′′(t) is right continuous at time 0. Then, under conditions A1 - A6, we have

√
nh

{
γ̂1(ch)− γ01(ch)− h2

2
γ ′′(0+)

∫ 1

−c
s2K(s)ds

}
→ N(0, I−1(0+)

∫ 1

−c
K2(s)ds).

The theorem shows that the asymptotic estimation bias and variance are in the order

of h2 and (nh)−1 near the boundary, which are the same as the estimator in the interior

point. This implies that the proposed local linear varying coefficient estimators enjoy the

bias correction property near boundaries [87, 84].

For the variance components Σ̂a of the random effects in model (3.2), we have the

following asymptotic properties.

Theorem 3.4.3. 3 Given the conditions A1 - A7 in the Appendix A, if nh4 → 0 as n→∞,

we have

(a) Σ̂a
P−→ Σa.

(b)
√
n(vec(Σ̂a)− vec(Σa))

D−→ N(0, U(Σa)), where vec(Σa) converts Σa into a col-

umn vector and U(Σa) = E(a⊗ aT ⊗ a⊗ aT )− vec(Σa)vec(Σa)
T .

Theorem 3 implies that if the order of bandwidth h can be written as n−α with 1/4 < α < 1,

then the
√
n-rate of convergence and asymptotic normality of Σ̂a hold.
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3.5 Simulation Study

3.5.1 Comparison with spline-based varying coefficients frailty models

The existing varying coefficient frailty models are mainly developed by using spline-based

approaches [76, 77, 78, 79]. Therefore we need to compare the proposed method with

the spline-based methods in terms of their estimation accuracy, especially the performance

near the boundary. The data is generated according to the hazard function in (3.3) with

the varying coefficient specified by β(t) = (t − 1)2/4 and X(t) = |W |(1 + (t + 1)2/2),

where W ∼ N(3, 1). The baseline function is specified by λ0(t) = 0.5 and the variance

component for the random effect a is σ2
a = 0.5. The censoring times C are randomly

generated from Uniform(1.5, 2) leading to a 20% censoring rate. Two sample sizes n = 100

and 200 are considered. For each sample size, numerical comparisons are evaluated based

on 200 replications.

The spline-based estimators are obtained by modifying the M-step using the cubic B-

spline basis and the nature cubic spline basis ([79]). The result of cubic B-spline is demon-

strated by the red dashed line and the nature cubic B-spline is demonstrated by the brown

long-dashed line in Figure 3.5 with 9 knots selected at (0, 0.25, 0.5, 0.75, 1, 1.25, 1.5,

1.75, 2). The true function is indicated by the dotted line. Further comparisons with the

spline-based methods with 5, 7, and 11 knots are summarized in the supplemental material.

Based on these results, it appears that the local linear estimator, denoted by the blue curve,

outperforms the spline-based estimators especially near the boundary.

3.5.2 Finite sample performance

Based on the same simulation setting in Section 5.1, we further examine the finite sample

performance of the proposed estimators. Figure 3.6 demonstrates the average performance

of γ̂11(t) and their 95% confidence intervals with bandwidth = 0.25, 0.5, and 0.75. The

average performance of γ̂11(t) is denoted by the red dotted lines with crosses for n =
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Figure 3.5: Comparison of the varying coefficient estimator from the local linear method (blue
solid line) with bandwidth 0.5 and the spline-based methods using the cubic spline (red dashed line)
and the nature cubic splines (brown long-dashed line) with knots at (0, 0.25, 0.5, 0.75, 1, 1.25, 1.5,
1.75, 2). The true curve is the black dotted line.

100 and denoted by blue dashed lines with circles for n = 200. The 95% confidence

interval of γ̂11(t) is marked by red dashed lines for n = 100 and blue dotted lines for

n = 200. The black lines are the true β(t). For a fixed bandwidth, it is clear that the

estimation bias and uncertainty are reduced with the increase of sample size. It also appears

in both sample sizes that, with the increase of bandwidth, the confidence interval becomes

narrower while the estimation bias increases. This observation is consistent with the bias-

and-variance trade-off in bandwidth selection shown in Theorems 1 and 2. The estimation

uncertainty is larger in the boundary, especially for small bandwidth, which is common in

kernel smoothing methods.

The estimated variance of the random effect, denoted by σ̂2
a, are reported in Table

3.1. In general, the variance components tend to be underestimated, especially for smaller

sample size. This is commonly observed in conventional random effect estimation due

to the underestimation of the uncertainty in estimating (γ̂11(t), λ̂0(t), σ̂2
a) [72]. For both

sample sizes, the smallest bandwidth h = 0.25 appears to have the best estimation of
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Figure 3.6: Estimated varying coefficients in Example 1 with h = 0.25, h = 0.5, and h = 0.75.
The black lines are the true β(t). The average performance of γ̂11(t), which is equivalent to β̂(·)
evaluated at t, is denoted by the red dotted lines with crosses for n = 100 and blue dashed lines
with circles for n = 200. The 95% confidence interval of γ̂11(t) is marked by red dotted lines for
n = 100 and blue dashed lines for n = 200.

σ2
a. This observation is consistent with the theoretical results in Theorem 3(a) because,

given a finite sample, a smaller bandwidth leads to a faster convergence of nh4 → 0

and therefore a better estimation consistency of σ2. The estimation of baseline hazard

is evaluated by the root mean square error (RMSE) of the estimated cumulative hazard

functions, {
∑
{i:di=1}(Λ̂0(ti) − Λ0(ti))

2}1/2, where Λ̂0(ti) =
∑

t≤ti λ̂0(t) from (3.8) with

β(t) = γ̂11(t), and Λ0(ti) =
∫ t

0
λ0(t)dt = 0.5t in this example. Their average perfor-

mance with standard deviations are summarized in Table 3.1. The results indicate that the

estimation accuracy for baseline hazard is improved as the sample size increases.

3.5.3 An example with two varying coefficients

In this example, we focus on a more challenging setting with two varying coefficients and

a non-constant baseline hazard function. The data are generated from equation (3.2) with

p = 2, q = 1, the random effect following a ∼ N(0, 0.25), the varying coefficient specified
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Table 3.1: The average performance of the estimated variance components and the root mean
squared error of the estimated cumulative hazard functions in Example 1. Their standard devia-
tions are given in the parenthesis .

h = 0.25 h = 0.5 h = 0.75

n=100 σ̂2
a 0.469 (0.164) 0.450 (0.156) 0.429 (0.132)

RMSE Λ̂0 0.183 (0.201) 0.151 (0.146) 0.140 (0.145)

n=200 σ̂2
a 0.480 (0.106) 0.469 (0.098) 0.447 (0.075)

RMSE Λ̂0 0.143 (0.110) 0.119 (0.067) 0.123 (0.063)

as

β(t) = (exp(−(t− 0.5)2)/2, 1/2 + (t− 1)2/2)T ,

and X(t) = (U1(3/2 + (t+ 1)2/2), (U2/4)I{t≤1}(t) + (U3/2)I{t>1}(t))
T , where U1, U2, U3

are independent variables following Uniform(0,1). The baseline hazard function is assumed

to be λ0(t) = (1/2)t2, which is a function of time. The censoring times C are randomly

generated from Uniform(1.5,2) leading to a 16.8% censoring rate. Similar to the previous

example, we also consider two sample sizes n = 250 and n = 500. For each sample size,

numerical performance is evaluated based on 100 replications.

Based on the proposed estimation procedure, the varying coefficients are estimated and

the average performance of γ̂11(t) and γ̂12(t) are plotted in red dotted lines with crosses

for n = 250 and blue dashed lines with circles for n = 500 in Figure 3.7. Their 95%

confidence intervals are given in dotted lines for n=250 and dashed lines for n = 500. In

Figure 3.7, a similar bias-and-variance trade-off in bandwidth selection is observed for both

sample sizes. The estimated variance components are reported in Table 3.2 and the RMSEs

of the estimated cumulative hazard functions are summarized, where the true cumulative

hazard function is (1/6t3). The smallest bandwidth again provides the best estimation of

σ2
a and a similar improvement on the baseline hazard estimation is observed by the increase

of sample size.
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Figure 3.7: Estimated varying coefficients in Example 2 with h = 0.25, h = 0.5, and h = 0.75.
The black lines are the true varying coefficient functions. The average performance of γ̂11(t) and
γ̂12(t), which are equivalent to β̂1(t) and β̂2(t), are denoted by the red dotted lines with crosses for
n = 250 and blue dashed lines with circles for n = 500. The 95% confidence interval of γ̂11(t) is
marked by red dotted lines for n = 250 and blue dashed lines for n = 500.

3.6 Revisiting the T Cell Signaling Experiment

We return to analyze the T cell signaling experiment in Section 2 by using the varying-

coefficient frailty model. In this experiment, the cumulative bond lifetime is assumed to be

X(t). The experiments are performed based on 51 replicates, and there are 22 triggering

events observed. Each replicates are observed over 600 seconds, i.e., t = 0, 1, · · · , 599.

Therefore, the fitted model can be described by equation (3.3) with p = 1, n = 51, and

τ = 599.

Before fitting model (3.3), an important practical issue is the selection of an optimal

bandwidth. We implement a selection procedure based on cross-validation, which is widely

used in nonparametric regression. First, randomly split the data into M subsets, denoted

by D1, · · · , DM . Leaving out Dm as the testing data, we can estimate parameters based on
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Table 3.2: The average performance of the estimated variance components and the root mean
squared error of the estimated cumulative hazard functions in Example 2. Their standard devia-
tions are given in the parenthesis.

h = 0.25 h = 0.5 h = 0.75

n=250 σ̂2
a 0.234 (0.107) 0.223 (0.102) 0.218 (0.098)

RMSE Λ̂0 0.124 (0.113) 0.112 (0.96) 0.105 (0.88)

n=500 σ̂2
a 0.245 (0.093) 0.231 (0.085) 0.222 (0.072)

RMSE Λ̂0 0.097 (0.85) 0.073 (0.061) 0.065 (0.057)

M − 1 subsets and calculate the prediction error (PE) by the negative partial log-likelihood

[82] denoted by

PEm(h) = −
∑
i∈Dm

di

XT
i γ̂1(Yi) + E[ZT

j aj]− log

 ∑
j∈R(Yi)

exp(XT
j γ̂1(Yi) + logE[exp(ZT

j aj]))

 ,

(3.11)

where m = 1, · · · ,M . Note that the expectation is a conditional expectation conditioned

on the M − 1 subsets, and the estimator derived from the M − 1 subsets. Therefore, the

average prediction error is calculated by PE(h) = (1/M)
∑M

m=1 PEm(h) and the optimal

bandwidth can be selected by minimizing PE(h) among all candidates of h.

In the current example, a 10-fold cross-validation with PE defined by (3.11) is used

to identify the optimal bandwidth h from the range between 40 to 100 seconds. The PE

values for different bandwidth are given in Figure 3.8. By minimizing PE, the optimal

bandwidth is selected to be 60 seconds, and the resulting estimation of varying coefficient

is given in Figure 3.9. The red line represents the estimated varying coefficient γ̂11 and

the dashed line represents its 95% confidence interval. It appears that the cumulative bond

lifetime has a significantly positive impact on T cell signaling in the first 60 seconds, which

agrees with the observations in Liu et al. (2014) and supports the conjecture made by biolo-

gists. Furthermore, the proposed method provides a mathematical quantification of the dy-

namic impact over time. More specifically, the estimation result shows a rapidly increasing

impact from bond lifetime accumulation in the first 17 seconds, the impact reaches the peak
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with estimated coefficient γ̂11(17) = 0.2. Then, the impact slowly decreases and remains

relatively stable after 100 seconds. The estimated variance component is σ̂2
a = 0.353. Its

95% confidence interval (0.171,0.536) provides clear evidence of the heterogeneity among

experimental subjects. According to (3.8), the estimated maximum baseline hazard func-

tion is 0.013, which implies the maximum of lim∆t→0 P (t ≤ T ≤ t + ∆t|X(t) = 0) is

0.002. This result indicates that without any impact from bond lifetime accumulation, the

probability of T cell signaling is small.
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Figure 3.8: Optimal bandwidth selection based on the cross validation prediction errors in T cell
signaling experiments

We further use a graphical tool based on the Cox-Snell residuals to assess the goodness-

of-fit of the proposed LLVCF model. The residuals are defined by {Λ̂(ti)}ni=1,where Λ̂(·) is

the fitted cumulative hazard function. According to [97], if the model assumption is valid,

then the residuals should have the same cumulative hazard rate as exp(1), which is the red

dashed line passing through the origin with slope one in Figure 3.10. As shown in Figure

3.10, the cumulative hazard rate of the residuals (the black solid line) appears to be close to

the red dashed line and the 95% confidence interval (the black dotted line) covers the red

line. This provides a graphical support for the fitted model.
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Figure 3.10: The Cox-Snell residual plot for the LLVCF model

3.7 Conclusions

Motivated by the analysis of T cell signaling, we introduce a new model called local linear

varying coefficient frailty model. Estimation procedures and the asymptotic properties of

the estimators including the bias correction property near the boundary are developed for
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statistical inference. The bias-and-variance trade-off in bandwidth selection is discussed.

Our numerical studies show that the local linear method outperforms the spline-based meth-

ods, especially near the boundary, and confirm the theoretical properties in finite-sample

performance. The application of the proposed method to real data in T cell signaling ex-

periments reveals important insights to the understanding of the immune system.

The proposed work lays a foundation for the generalization of conventional frailty mod-

els to incorporate varying coefficients. It can be extended to situations in which ties occur.

It can be addressed by modifying the partial likelihood in (3.9) with approximation tech-

niques introduced by [89], [98], [99], and [100]. Developments on estimation procedures

and theoretical properties along this direction deserve further attention. Additionally, based

on the connections between the Cox model and a Cured model ([101]), another research

topic may be the extension of using the LLVCF model to estimate cured rates in clinical

trials.
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CHAPTER 4

OPTIMAL SIMULATOR SELECTION

Computer simulators are widely used for the study of complex systems. They serve as

efficient alternatives to physical experiments and can provide scientific insights that may

not be obtainable in physical experiments. In many applications, there are multiple simu-

lators available with different scientific implications, and the goal is to identify an optimal

simulator that better captures the underlying mechanism of the observed physical experi-

ments. This issue is of significant scientific interest in different fields but there is no such

procedure in the computer experiment literature. To address the problem, we propose a

selection criterion based on leave-one-out cross-validation. It is shown that this criterion

can be decomposed into a goodness-of-fit measure and a generalized degrees of freedom

capturing the complexity of the simulator. Asymptotic properties of the selected optimal

simulator are discussed. Additionally, it is shown that the proposed procedure includes a

conventional calibration method as a special case. The finite sample performance of the

proposed procedure is demonstrated through numerical examples. In the application of cell

biology, an optimal simulator is selected which can shed light on the T cell recognition

mechanism in the human immune system.

4.1 Introduction

There are generally two types of experiments for the studies of complex systems: physical

and computer experiments. Physical experiments refer to actual experiments performed in

a laboratory or observed in the field. They are often time-consuming, expensive, and/or in-

feasible to conduct. Therefore, an efficient alternative is to conduct computer experiments

that refer to simulations using complex mathematical models and numerical tools. A con-

ventional assumption in computer experiments is that there is only one simulator available,
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and the goal is to build a model by incorporating the information from the simulator and

the physical experiments. Detailed discussions can be found in [102].

There has been a growing interest in optimal simulator selection in many scientific ap-

plications where multiple simulators are available to explain the underlying phenomenon.

These simulators often have different scientific implications, and scientists are interested

in identifying an optimal simulator that better captures the underlying mechanism in the

observed physical experiments. For example, among different queuing models, it is impor-

tant to identify the best simulator for a particular medical service in a hospital [103, 104].

Geologists want to know which global weather model can be best used for predicting the

weather of a local region [105]. Biologists need to select some differential equations to

represent the growth (or decline) of a biological population [106]. However, the issue of

optimal simulator selection has been overlooked in the statistical literature, and there is no

systematic procedure for obtaining an optimal simulator.

The goal in optimal simulator selection is different from the variable selection problems

in computer experiments [107, 108], where the focus is to identify significant variables by

using one computer simulator. It is also different from studies of multi-fidelity simulations

where multiple simulations are developed based on the same physical law but with different

approximation accuracy, and the objective is to incorporate information efficiently from all

the computer simulators [109, 110].

To identify an optimal simulator, we propose a new criterion based on leave-one-out

cross-validation. It is shown that this criterion can be decomposed into a measure of

goodness-of-fit for physical experiments and a generalized degrees of freedom capturing

the complexity of the simulator due to calibration. Asymptotic properties of the selected

optimal simulator are discussed. It is also shown that the proposed criterion includes the

conventional L2-norm calibration criterion [111] as a special case when there is only one

simulator available.
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4.2 Cross Validation for Optimal Simulator Selection

Assume that there are n observations available from physical experiments denoted by D ≡

{(xi, yi)}ni=1, where xi is a p-dimensional input. For notational simplicity, we first assume

the outputs yi’s are continuous, and

yi = ξ(xi) + εi, (4.1)

where ξ(xi) is known as the true process in computer experiment literature, and εi are

identically distributed random variables with zero mean and finite variance [111]. The true

process ξ can be estimated by nonparametric regression methods, such as kernel ridge re-

gression [112] and Gaussian process [102], and the estimator is denoted by ξ̂(·). Apart

from physical experiments, there are K candidate computer simulators fk(x,θk), where

k = 1, · · · , K, and θk is a set of unknown parameters called calibration parameters, asso-

ciated with the kth simulator (Section 8 of [102]). The calibration parameters in each θk

can be different. For studies of complex systems, it is often infeasible to perform simula-

tions for all experimental settings of interest due to the computational cost or complexity.

Instead, the computer simulator is replaced by a statistical model called emulator. There-

fore, given the computer experiment data Ds
k for a given k, it is assumed that an emulator

denoted by f̂k(x;θk) is constructed as a surrogate for prediction, inference, and uncer-

tainty quantification. Various methods in surrogate modeling are applicable here, including

Gaussian process models [102] and spline-based models [113]. By incorporating the infor-

mation from the physical experiments data D, the estimated calibration parameter θ̂k(D)

is obtained by minimizing the discrepancy between the simulator and the data D [111].

Given the outputs from the K simulators and the observations from physical experi-

ments, our goal is to identify the true simulator f0(x;θ0), which is defined by

f0 = min{fk : ||fk(x;θk)− ξ(x)||L2}, (4.2)
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where θ0 is the true calibration parameter, and || · ||L2 is the L2 norm. Because solving

(4.2) is computationally complicated and demanding, we propose a leave-one-out cross-

validation (LOOCV) criterion to select an optimal simulator, f̂T , as follows. Define a

LOOCV error by

Êrrk =
1

n

n∑
i=1

Êrrk,(i), (4.3)

where D(−i) = D\{(xi, yi)}, Êrrk,(i) ≡ Q
{
ξ̂(xi), f̂k(xi; θ̂k(D(−i)))

}
, θ̂k(D(−i)) is the

estimated calibration parameters, and i = 1, · · · , n. The function Q(ξ̂(xi), f̂k(xi; θ̂k(D)))

is used to quantify the prediction error at xi. It can be written as

Q(ξ̂(xi), f̂k(xi; θ̂k(D))) = q(f̂k(xi; θ̂k(D))) + q̇(f̂k(xi; θ̂k(D)))(ξ̂(xi)− f̂k(xi; θ̂k(D))),

(4.4)

where q(·) is a convex function, and q̇(·) is its derivative. A common choice for q(·) is

q(x) = fk(x)(1− fk(x)), which leads to the squared error loss. Other proper scoring rules

can also be applied to q(·) [33].

Based on (4.3), the optimal simulator f̂T can be obtained by

T ≡ arg min
k=1,··· ,K

Êrrk. (4.5)

The procedure is summarized in Algorithm 1. This procedure can also be generalized to

non-Gaussian outputs. Take the binary output as an example, the same procedure follows

by replacing the true process by ξ(x) = P (y(x) = 1). A demonstration for applying

Algorithm 1 to binary output is given in Section 5.

4.3 Theoretical Properties

In the following lemma, we show that (4.3) can be decomposed into the goodness-of-fit

of the emulator and a quantity GDk measuring the complexity of the emulator due to cal-

ibration. Therefore, minimizing (4.3) implies a minimization of not only the discrepancy
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Algorithm 9 The algorithm for simulator selection

1: procedure LOOCV(D ≡ {(xi, yi}ni=1), {Ds
k : k = 1, · · · , K})

2: Estimate the true process ξ̂(xi)
3: for each k in 1, 2, · · · , K do
4: for each i in 1, 2, · · · , n do
5: Use Ds

k to build an emulator f̂k(x;θk) where θk is the calibration parame-
ter.

6: Obtain the estimated calibration parameter θ̂k(D(−i)).

7: Calculate Êrrk,(i) = Q(ξ̂(xi), f̂k(xi; θ̂k(D(−i))))
8: end for
9: Obtain T ≡ arg mink=1,··· ,K Êrrk, where Êrrk = 1

n

∑n
i=1 Êrrk,(i).

10: end forreturn The optimal simulator f̂T .
11: end procedure

between physical and computer experiments but also the simulator complexity. The de-

tailed proofs can be found in the Appendix.

Lemma 4.3.1.

E[Êrrk] = ¯errk +GDk, (4.6)

where

¯errk =
1

n

n∑
i=1

Q(yi, f̂k(xi; θ̂k(D(−i))))) (4.7)

and

GDk =
1

n

n∑
i=1

E[
{
q̇
[
f̂k(xi; θ̂k(D(−i)))

]
(yi − ξ̂(xi))

}
. (4.8)

The quantity in (4.7) determines how well the emulator fits the physical observations

and GDk in (4.8) captures the complexity of the emulator due to calibration. The quan-

tity GDk is referred as the generalized degrees of freedom for the kth emulator which is

analogous to optimism in [114] and the generalized degrees of freedom for linear model

in [115]. Based on Lemma 4.3.1, GDk can be estimated by ĜDk = Êrrk − ¯errk. In the

special case where the kth emulator is not associated with any calibration parameter, we

have GDk = 1
n

∑n
i=1 q̇

[
f̂k(xi)

]
E[
{

(yi − ξ̂(xi))
}

= 0 and ĜDk = 0.

For the selected optimal simulator, the estimated prediction error and complexity are
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denoted by ÊrrT and ĜDT = ÊrrT − ¯errT . Given the true simulator f0(x,θ0) in (4.2),

we denote its prediction error by Err0 = 1
n

∑n
i=1 E {Q(Yi, f0(xi;θ0))} and complexity

by GD0 = 1
n

∑n
i=1E[

{
q̇ [f0(xi;θ0)] (yi − ξ̂(xi))

}
. In the following theorem, it is shown

that the estimated prediction error ÊrrT and the estimated model complexity ĜDT are

asymptotically equivalent to those calculated based on the true simulator.

Theorem 4.3.2. Suppose θ̂T and f̂T as consistent estimators of θ0 and f̂0. Then as n→∞,

we have

(i) ÊrrT − Err0 → 0 in probability, and

(ii) ĜDT −GD0 → 0 in probability.

The proposed selection procedure can also be applied to the conventional calibration

problem with K = 1. The following result shows that the estimated calibration parameters

and the resulting discrepancy based on the proposed leave-one-out procedure converge

asymptotically to those obtained by the conventional L2 calibration [111].

Theorem 4.3.3. Assume that K = 1, Q(·) is the squared loss, and x follows a uniform

distribution on [0, 1]p. Denote Err1,(i)(θ1) = Q
{
ξ̂(xi), f̂1(xi;θ1(D(−i)))

}
. As n → ∞,

we have

arg min
θ1

1

n

n∑
i=1

Err1,(i)(θ1)→ arg min
θ1

||ξ̂(x)− f̂1(x;θ1))||L2 (4.9)

in probability, where || · ||L2 is the L2 discrepancy between ξ̂(x) and f̂1(x;θ1), and Êrr1

converges in probability to the minimum L2 discrepancy.

4.4 Numerical Studies

In this section, the true process ξ(x) is estimated by the kernel ridge regression; that is, the

estimator is the minimizer of the following loss function

1

n

n∑
i=1

(yi − ξ(xi))
2 + λ||f ||2NΦ

, (4.10)
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where λ > 0 is a penalized parameter, || · ||NΦ
is the norm of the reproducing kernel

Hilbert space NΦ generated by a kernel function Φ(·). We consider a Matèrn kernel Φ(·)

with roughness coefficient 2.5, i.e., Φ(h) = (1/[Γ(ν)2ν−1])(2
√
νh2)νKν(2

√
νφh2) with

ν = 2.5, where Γ(·) is the gamma function, Kν(·) is the Bessel function, and φ is the range

parameter. The penalized parameter λ in (4.10) and the range parameter φ are chosen by

10-fold cross-validation. Emulators are constructed by the Gaussian process (GP) models

f(x) ∼ GP (µ,Rφ((x′,θ′), (x,θ))), (4.11)

where µ is the unknown mean and Rφ((x′,θ′), (x,θ)) = exp [−φ{(x′ − x) + (θ′ − θ)}] .

The calibration parameters are estimated by the Bayesian calibration procedure [116, 117].

4.4.1 Example 1: the Branin function

Two simulators are constructed by the Branin function with two different sets of calibration

parameters:

f1(x1, x2) =
(
x2 − bx2

1 + 5.3x1 − r
)2

+ 10

(
1− 1

8π

)
cos(x1) + 10,

f2(x1, x2) =
(
x2 − bx2

1 + cx1 − 6
)2

+ 10

(
1− 1

8π

)
cos(x1) + 10,

where simulator f1(x1, x2) contains the calibration parameters (b, r), simulator f2(x1, x2)

contains the calibration parameters (b, c), b ∈ [0, 2], r ∈ [5, 7], and c ∈ [4, 6]. For both

simulators, computer experiments are conducted by using a 60-run maximum projection

design [36]. Simulator f2(x1, x2) is also used as the true process to generate physical

experiments by y = f2(x1, x2) + ε, where ε ∼ N(0, 4), with a 30-run design constructed

by a Sobol sequence.

The true process is estimated by minimizing loss function (4.10) with the tuning pa-

rameter 105 and the range parameter 0.4, selected by 10-fold cross-validation. Based on
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(4.3) and Lemma 4.3.1, the leave-one-out cross-validation scores for the two simulators are

reported in Table 4.1 with the estimated generalized degrees of freedom. By using the pro-

posed criterion, the selected optimal simulator is T = 2, which agrees with the numerical

settings. Furthermore, the estimated generalized degrees of freedom for the two simulators

are similar, which implies a similar complexity for the two simulators. This observation

also agrees with the numerical settings in which equal number of calibration parameters

are associated with the simulators.

Table 4.1: The leave-one-out cross-validation scores and the estimated generalized degrees of free-
dom for the two simulators in Example 1.

k Êrrk ĜDk

1 13.715 3.423

2 9.072 3.429

4.4.2 Example 2: multi-fidelity simulators

The proposed procedure is demonstrated by using two simulators introduced by [118] for

the study of multi-fidelity simulations. Define the low-fidelity and high-fidelity simulators,

f1 and f2, by

f1(x1, x2; ts, t`) =

(
1− exp

(
1

−2x2

))
1000tsx

3
1 + 1900x2

1 + 2092x1 + 60

1000t`x3
1 + 500x2

1 + 4x1 + 20
,

f2(x1, x2; ts, th) = f1(x1, x2; ts, t` = 0.1) + 5 exp(−ts)
xth1

100x2+th
2 + 1

,

where there are three calibration parameters: t` for the low-fidelity simulator, th for the

high-fidelity simulator, and a shared calibration parameter ts for both simulators, whose

values are set to be t` = 0.1, th = 0.3, and ts = 0.2. The physical experiments are

generated by

y(x1, x2) = f2(x1, x2; ts = 0.2, th = 0.3) +
10x2

1 + 4x2
2

50x1x2 + 10
+ ε
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with ε ∼ N(0, 0.25). These functions are shown in Figure 4.2. The goal here is to iden-

tify an optimal simulator based on the observed physical data. This is different from the

conventional goal in the study of multi-fidelity simulations.

A 40-run maximum projection design is used for the two simulators, and the physical

experiments are performed based on a 30-run Sobol’ points. The true process is estimated

by minimizing (4.10) with the range parameter φ in the Matèrn correlation function set

to be 0.7. For the two simulators, the estimated leave-one-out cross-validation error and

generalized degrees of freedom are reported in Table 4.2. The high-fidelity simulator f2

has a much smaller cross-validation error and therefore is chosen as the optimal simulator.

It provides a slightly higher model complexity as compared with the low-fidelity simulator

according to the values of ĜDk.

Figure 4.1: The response surfaces for the three
functions in Example 2.

Table 4.2: The leave-one-out cross-validation
scores and the estimated generalized degrees of
freedom for the two simulators in Example 2.

k Êrrk ĜDk

1 3.149 5.03

2 0.283 5.21

4.4.3 Example 3: the study of simulator complexity

To demonstrate the performance of the generalized degrees of freedom with respect to

different complexity in simulators, we consider two simulators with different numbers of

calibration parameters: f1(x) = β1x + β2x
2 + β3x

3 and f2(x) = γ1x, where β1, β2, β3,

and γ1 are the calibration parameters. Physical experiments are generated from y(x) =
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x+ 2x2 + 3x3 + 0.1 sin(20x) + ε, where ε ∼ N(0, 0.25). These functions are illustrated in

Figure 4.2(a). A 100-run maximin design [119] is used to generate computer experiments

based on the two simulators, and a 61-run maximin design is implemented for physical

experiments.

Based on 100 replicates, the average of ĜD1 is 2.737 with standard deviation 0.661,

and the average of ĜD2 is 1.371 with standard deviation 0.120. These results are sum-

marized by a boxplot in Figure 4.2(b). The estimated generalized degrees of freedom for

the first simulator almost doubles the size of the second one, which reflects the complexity

associated with the first simulator due to a larger number of calibration parameters and a

higher-order polynomial.
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Figure 4.2: (a) The physical model and two simulators. (b) The estimates of the generalized degree
of freedoms for the two simulators.

4.5 Optimal Simulator for T-cell Signaling

It has long been known that the adaptive immune system defends the organism against

diseases by recognition of pathogens by the T cell. T cell receptor (TCR) is the primary

molecule on the T cell in detecting foreign antigens which are present in major histocom-

patibility complex (pMHC) molecule expressed by infected cells. However, much is still
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unknown regarding the underlying antigen recognition mechanism.

To understand the recognition mechanism through the TCR-pMHC interactions, biolo-

gists develop micropipette adhesion frequency assays which are physical experiments per-

formed in a laboratory. Although micropipette assays allow accurate measurements, they

are time-consuming and often involve complicated experimental manipulation. Further-

more, some variables of interest cannot be studied in the lab due to technical complexity in

experimental settings. As a result, a cost-effective approach is to illuminate the unknown

recognition mechanism through computer simulations. Based on the idea of the kinetic

proofreading model, two simulators are developed under two different recognition mecha-

nisms: one is the conformation-change mechanism (denoted by CC in Figure 4.3(A)), and

the other is the receptor-pulling mechanism (denoted by RP in 4.3(B)). The two mecha-

nisms associate with two different ways of TCR-pMHC interactions, either the molecules

have conformational change due to the binding or involve force due to the pulling of the

TCR-pMHC bond [120]. Biologists are interested in understanding which mechanism is

behind the recognition process, but it cannot be directly detected by physical experiments.

Therefore, the goal of this study is to identify the optimal mechanism based on the observed

experimental data from the laboratory.
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Figure 4.3: Two simulators capturing two biological mechanisms

Two control variables, the contact time xct and waiting time xwt, are involved both in

the lab experiments as well as the two simulators. Denote x = (xwt, xct). Four calibration

parameters, denoted by xKf , xKr, xKr,p, and xKc, are involved in CC mechanism, while

only the first three of them are involved in RP mechanism. The descriptions for the vari-

ables are given in Table 4.3, and further detail can be found in [121]. The two mechanisms

are simulated by the Gillespie algorithm [122], which is a stochastic simulation algorithm.

The experimental outputs are binary, indicating a TCR-pHMC binding or not. A 60-run

OA-based Latin hypercube design (Tang, 1993) is implemented for the two simulators,

and each design consists of 20 replicates to capture the cell-cell variability. Therefore, the

sample size of the computer experiment is 1200 for each mechanism. For the physical ex-

periments, the sample size is n = 272 and the settings of xct and xwt are randomly chosen

from the sample space [0.25, 5]× [1, 6].

Given the binary binding outcomes y(x) observed in the laboratory, the true process is

76



Table 4.3: The range and description of Input variables in the T cell adhesion frequency assay
experiments. (Note: s represents second)

Type of
variables

Physical
Experiments

Simulators Description Range
CC RP

Control
variables

xwt 3 3 3 waiting time in between contacts (s) [1, 6]
xct 3 3 3 cell-cell contact time (s) [0.25, 5]

Calibration
Parameters

xKc 3 kinetic proofreading rate for activation of cluster (1/s) [0.1, 100]
xKf 3 3 on-rate enhancement of inactive TCRs (µm2/s) [10−8, 10−10]
xKr 3 3 off-rate enhancement of inactive TCRs (1/s) [0.1, 10]
xr,p 3 3 off-rate enhancement of activated TCRs (1/s) [0.01, 100]

defined as the binding probability, ξ(x) = P (y(x) = 1), and estimated by a kernel logistic

regression

logit{ξ̂(x)} = β̂0 +
n∑
i=1

β̂iΦ(xi,x), (4.12)

where logit{·} is the logistic link function, {β̂i}ni=1 are the estimated coefficients, and

Φ(x′,x) is the Matérn kernel. Define p(x;θ) = P (f(x;θ) = 1), and its emulators are

constructed by the generalized Gaussian Process models [123]

logit{p(x;θ)} ∼ GP (µ,Rφ((x′,θ′), (x,θ))). (4.13)

The calibration parameters are estimated by minimizing the L2 discrepancy proposed by

[121].

The leave-one-out cross-validation errors for the two simulators are summarized in Ta-

ble 4.4 along with the estimated generalized degrees of freedom. The optimal simulator is

the CC mechanism because its LOOCV is smaller, while its complexity is slightly higher

than that for the RP mechanism. From a biological perspective, the selection of the CC

mechanism indicates that the molecules have conformational changes due to the TCR-

pMHC binding. Analyzing the CC mechanism using all the data, we have µ̂ = −1.112,

φ̂ = 0.311 , and θ̂ = (1.559, 8.560 × 10−7, 1.443, 1.594). By plugging in the estimated

calibration parameters, the simulated binding probability according to the CC mechanism

(red dashed lines) in Figure 4.4 as a function of the two control variables, waiting time and

contact time. It appears that the selected optimal emulator, CC mechanism, can reasonably
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Table 4.4: The leave-one-out cross-validation error and the estimated degrees of freedom for the
two simulators.

Simulator LOOCV Generalized degree of freedom
CC mechanism 0.097 5.376
RP mechanism 0.130 4.973

capture the trend observed in the lab experiments.
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Figure 4.4: The fitted adhesion models from the phsical experiment and from the computer experi-
ment of the CC model for two control variables: waiting time and contacting time.

4.6 Conclusions

In many applications, identifying an optimal simulator for the observed physical experi-

ments can provide scientific insights that are not available from lab experiments. There is,

however, no systematic statistical method to tackle this problem. We propose a new crite-

rion based on the idea of leave-one-out cross-validation. Theoretical properties of the se-

lection method based on the criterion and the estimated optimal simulator are discussed. It

is also shown that asymptotically the proposed approach includes the L2 calibration method

as a special case. Simulation studies are conducted to demonstrate the performance of the

proposed method. By applying the proposed method, the selected optimal T-cell signaling

simulator reveals conformational changes in molecules due to the binding, which may shed
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new light on the antigen recognition mechanism in human immune system.
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APPENDIX A

SUPPLEMENTAL MATERIAL FOR CHAPTER 1

A.1 The Initial Algorithm for the TAG Process Model

This subsection provides the details of obtaining initial estimates of the unknown parame-

ters in the TAG process in Chapter 1. We use the gam or bam function in mgcv ([17]) to fit

the additive model and use DiceKriging ([18]) to fit the one-dimensional GPs.

Algorithm 10 Initialization

procedure INITIAL({xi, yi}ni=1,D) .
Fit an additive model on gλ(y) for each λ ∈ {−2,−1.5, . . . , 1.5, 2} and then choose

the λ to minimize the generalized cross-validation error. This gives λ̂(0), the fitted addi-
tive model gλ̂(0)(y), and z̃k(xk) for k = 1, . . . , p.

δ(0) = 1/R2 − 1, where R2 is the fraction of the response variance explained by
gλ̂(0)(y).

Obtain predictions of each component z̃i(xi) at D = {0, 1/(m − 1), . . . , 1} with
m = 31. Denote it as z̃i(D).

ω
(0)
i = var {z̃i(D)} /

∑p
i=1 var {z̃i(D)} .

for i from 1 to p do
Obtain s(0)

i by fitting a GP on {D, z̃i(D)}.
end for
return ω(0), s(0), λ(0), and δ(0).

end procedure

A.2 The Details of the Computer Experiments Functions

In this subsection, we provide more details of the example functions and datasets used in

section 1.5. The first 5 example functions can be found in [42] and the last two datasets are

from [43].
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1. The robot arm function describes the end position of a robot arm with 4 segements:

y = (u2 + v2)1/2, u =
4∑
i=1

Li cos(
i∑

j=1

θj), and v =
4∑
i=1

Li sin(
i∑

j=1

θj),

where the eight inputs are the segements Li ∈ [0, 1] and angles θi ∈ [0, 2π] for

i = 1, 2, 3, and 4.

2. The OTL circuit function models an output transformerless push-pull circuit:

y =
(Vb1 + 0.74)β(Rc2 + 9)

β(Rc2 + 9) +Rf

+
11.35Rf

β(Rc2 + 9) +Rf

+
0.74Rfβ(Rc2 + 9)

{β(Rc2 + 9) +Rf}Rc1

and Vb1 =
12Rb2

Rb1 +Rb2

,

where the six inputs with their ranges are Rb1 ∈ [50, 150], Rb2 ∈ [25, 70], Rf ∈

[0.5, 3], Rc1 ∈ [1.2, 2.5], Rc2 ∈ [0.25, 1.2], and β ∈ [50, 300].

3. The piston simulation function describes a piston moving within a cylinder:

y = 2π

√
M

k + S2 P0V0

T0

Ta
V 2

, V =
S

2k

(√
A2 + 4k

P0V0

V0

Ta − A

)
, andA = P0S+19.62M−kV0

S
,

where the ranges of the seven variables are M ∈ [30, 60], S ∈ [0.005, 0.02], V0 ∈

[0.002, 0.01], k ∈ [1000, 5000], P0 ∈ [90000, 110000], Ta ∈ [290, 296], and T0 ∈

[340, 360].

4. Wing weight function models a light aircraft wing:

y = 0.036S0.758
w W 0.0035

fw

(
A

cos2(Λ)

)0.6

q0.006λ0.04

(
100tc

cos(Λ)

)−0.3

(NzWdg)
0.49+SwWp,

where the ten input variables and their usual input ranges are Sw ∈ [150, 200],Wfw ∈

[220, 300], A ∈ [6, 10],Λ ∈ [−10, 10], q ∈ [16, 45], λ ∈ [0.5, 1], tc ∈ [0.08, 0.18], Nz ∈

[2.5, 6],Wdg ∈ [1700, 2500], and Wp ∈ [0.025, 0.08].

5. The franke function describes a surface with two peaks of different heights and a
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smaller dip:

y =
3

4
exp(−(9x1 − 2)2

4
− (9x2 − 2)2

4
) +

3

4
exp(−(9x1 + 1)2

49
− (9x2 + 1)2

10
) +

1

2
exp(−(9x1 − 7)2

4
− (9x2 − 3)2

4
)− 1

5
exp(−(9x1 − 4)2 − (9x2 − 7)2),

where the two inputs x1 and x2 are in [0, 1].

6. The approximated HE dataset is used to design a heat exchanger to maximize the

total rate of a steady state heat transfer. The dataset contains 64 simulations with

4 input variables including the mass flow rate of entry air ṁ ∈ (.00055, .001), the

temperature of entry air Tin ∈ (270, 303.15), the temperature of the heat source

Twall ∈ (202.4, 360) and the solid material thermal conductivity k ∈ (330, 400).

This dataset also includes 14 runs of simulations as a testing dataset. These datasets

are from [43].

7. The detailed HE dataset is generated with the same goal as the approximated HE

dataset but by a more expensive simulation dataset. The dataset contains 22 runs of

simulations with the same 4 input variables as the approximated HE dataset.
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APPENDIX B

SUPPLEMENTAL MATERIAL FOR CHAPTER 2

This supplemental material provides the details for obtaining the posterior distribution (2.8)

and (2.9) used in Chapter 2. Given the sub-dataset Dsub = {(xi, yi)}ni=1, the coefficient

estimates of all the unknown coefficients (µ, β11, · · · , βpbp) ≡ β in model (2.1) can be

obtained by the penalized least square method (reference) if smoothing matrices Sk with

smoothing parameters λk for k = 1, · · · , p are given. That is, by minimizing

[
g(y)− µ1−

p∑
k=1

Xkβk

]T [
g(y)− µ1−

p∑
k=1

Xkβk

]
+

p∑
k=1

λkβ
T
kSkβk, (B.1)

where g(y) = [g(y1) · · · g(yn)]T , the ij-th element of Xk is hkj(xki), and the j-th element

of βk is βkj. We have

β̂ =

[
XTX +

p∑
k=1

λkSk

]−1

XT (g(y)− µ1) , (B.2)

where X = (1 X1 · · ·Xp), 1 is a vector of 1’s having length n. The estimator β̂ in (B.2) is

equivalent to the posterior mean of a Bayesian model, which can be expressed as g(y)|β ∼

N(Xβ, σ2) and β is an exponential prior proportional to exp(−
∑p

k=1 λkβ
T
kSkβk/σ

2).

Thus, the posterior distribution of β is

β|y ∼ N

(HTH +

p∑
k=1

λkSk

)−1

HT {gλ(y(x))− µ1} , σ̂2

(
HTH +

p∑
k=1

λkSk

)−1
 ,

which is (1.15).
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B.1 The Details of the Computer Experiments Functions

In this subsection, we provide more details of the example functions and datasets used in

section 2.5.

Name p Information Input Ranges

Bending Function 2
A computer model with function form

4
109

L3

bh3

L ∈ [10, 20]

h ∈ [0.1, 0.2]

b ∈ [1, 2]

Ackley Function 2
A computer model with function form

−20e
(
− 2

10

√
1
2

∑2
i=1 x

2
i

)
− e(

1
2

∑2
i=1 cos 2πxi) + 20 + e

xi ∈ [−32/768, 32.768]

for i = 1, 2

Schwefel Function 2
A computer model with function form

837.9658−
∑2
i=1 xi sin

(√
|x|i
) xi ∈ [−500, 500]

for i = 1, 2

Borehole Function 8
A computer model with function form

2πTu(Hu−H`)

ln( r
rw

)

(
1+ 2LTu

ln( r
rw

r2wKw
+Tu

Tl

)

rw ∈ [0.05, 0.15]

r ∈ [100, 50000]

Tu ∈ [63070, 115600]

Hu ∈ [990, 1110]

Tl ∈ [63.1, 116]

Hl ∈ [700, 820]

L ∈ [1120, 1680]

Kw ∈ [9855, 12045]

Table B.1: The numerical examples used in Section 1.5
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Name p Information Input Ranges

CCPP 4

The dataset contains 9568 data points

collected from a Combined Cycle Power

Plant. Features consist of hourly average

ambient variables Temperature (T), Ambient

Pressure (AP), Relative Humidity (RH), and

Exhaust Vacuum (V) to predict the net hourly

electrical energy output (EP) of the plant.

T ∈ [1.81, 37.11]

AP ∈ [992.89, 1033.30]

RH ∈ [25.56, 81.56]

EP ∈ [420.26, 495.76]

NASA 5

The NASA data set comprises different size

of airfoils at various wind tunnel speeds

and angles of attack. Features consist of

Frequency (F), Angle of attack (AA), Chord

length (CL), Free-stream velocity (FSV),

and Suction side displacement thickness (DT).

F ∈ [200, 20000]

AA ∈ [0, 22.2]

CL ∈ [0.0254, 0.3048]

FSV ∈ [31.7, 71.3]

DT ∈ [0.0004, 0.0584]

PTS 9

This is a data set of Physicochemical

Properties of Protein Tertiary Structure,

whose 9 material properties are recorded and

denoted by F1, · · · , F9.

F1 ∈ [2392.05, 40034.90]

F2 ∈ [403.5, 15312.0]

F3 ∈ [0.093, 0.578]

F4 ∈ [10.310, 369.317]

F5 ∈ [319490.2, 5472011.4]

F6 ∈ [31.9704, 598.4080]

F7 ∈ [0, 105948.2]

F8 ∈ [0, 350]

F9 ∈ [15.229, 55.309]

Table B.2: The numerical examples used in Section 2.5
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APPENDIX C

SUPPLEMENTAL MATERIAL FOR CHAPTER 3

This supplemental material for Chapter 3 includes the conditions assumed in the theorems,

the detailed proofs of the theoretical results, some technical details on implementing the

E-step of the proposed algorithm, and more simulations about the comparison of the local

linear varying coefficient frailty (LLVCF) method and a spline-based method.

C.1 Conditions for the Theorems

A1. The kernel functionK(s) is a bounded and symmetric density function with compact

support s ∈ [−1, 1].

A2. The function β(·) has continuous and bounded second-order derivatives for t ∈

(0, τ).

A3. The sequence h→ 0 and nh→∞ as n→∞, and nh5 is bounded.

A4. The hazard function λ(t|X(t),Z(u)) <∞ for t ∈ (0, τ) is continuous,
∫ τ

0
λ0(u)du <

∞, and P (Y ≥ u|X(u),Z(u)) > 0

A5. |X(u)| is bounded.

A6. I(t) from (11) is nonsingular t ∈ [0, τ ].

A7. For any ε > 0,
∑n

i=1E(||gi||22[I(gi) > ε])→ 0, where gi = vec(E[aia
T
i |D, θ̂]) for i

in 1, · · · , n.

Conditions A1 to A6 are used for proving the asymptotical normality of γ1. To prove

the consistency and asymptotic normality of Σ̂a, we need an extra condition A7.
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C.2 Proofs of the Theorems

We first introduce the general notations used in the following content of this section.

Notation

Let B be a block diagonal matrix diag{Ip, hIp}, where Ip is a p × p identity matrix, α =

B(γ̂(t) − γ0(t)), where γ0(t) is the true values , Ũi(u, u − t) = B−1X̃i(u, u − t), and

p(u|X(u)) = P (Y ≥ t|X(t)). Let

Sn,j(α, u) = n−1

n∑
i=1

Yi(u) exp(X̃T
i (u, u− t)γ0(t) + ŨT

i (u, u− t)α+ ∆i)Ũ
⊗j(u, u− t)

(C.1)

for j = 0, 1, 2, where ∆i = logE[exp(ZT
i a)|D, λ̂(·), γ̂1(·), Σ̂a] and for a vector v, v⊗0 =

1,v⊗1 = v, and v⊗2 = vvT , and

S?n,j(u) = n−1

n∑
i=1

Yi(u) exp(X̃T
i (u, u− t)γ0(t) + ∆i)Ũ

⊗j
i (u, u− t). (C.2)

We also define the asymptotic version of (C.1) and (C.2); that is, for j = 0, 1, and 2, we

have

Sj(α, u) = E[p(u|X(u)) exp(X̃T (u, u− t)γ0(t) + ŨT (u, u− t)α+ZTa)Ũ⊗j(u, u− t)],

and

S?j (u) = E[p(u|X(u)) exp(X̃T (u, u− t)γ0(t) + ZTa)Ũ⊗j(u, u− t)].

Note that Sn,0, S?n,0, and S0 are scalars, Sn,1 and S?n,1 are 2p-dimensional vectors, and Sn,2

and S?n,2 are 2p× 2p matrices.

Before presenting the proofs, we need the following lemma [83].

Theorem C.2.1. LetWn be n−1
∑n

i=1 Yi(t)g(ti, (ti−t0)/h, Zi(t))Kh(ti−t0),where g(·, ·, ·)

is a continuous function and E(g(T, u, Z(t))|T = t0) is continuous at the point t0 in the
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interior point. If h→ 0 such that nh/ log(n)→∞, then

sup
0≤t≤τ

|Wn(t)−W (t)| P−→ 0, (C.3)

where W (t) =
∫ 1

−1
Y (t)E(g(t0, u, Z(t))|t = t0)K(u)duf(t0) and f(·) is the density func-

tion of T .

C.2.1 Proof of Theorem 3.4.1

We first rewrite the likelihood function (9) in the main paper by using counting process as

follows:

n∑
i=1

∫ τ

0

Kh(u− t)

[
X̃T
i (u, u− t)γ(t)−

log

{
n∑
i=1

Yi(s) exp(X̃T
j (u, u− t)γ(t) + ∆i)

}]
dNi(u), (C.4)

where Ni(t) = I(Yi ≤ t, di = 1), Yi(t) = I(Yi ≥ t), and ∆i = logE[exp(ZT
i ai)|D, γ̂(t)].

To further facilitate technical arguments, we reparameterize the local likelihood function

expressed in (C.4) via α = B(γ(t) − γ0(t)), where B = diag(Ip×p, hIp×p) and γ0(t) is

the true values. For simplicity, we use γ0 instead of γ0(t) in the following content. Then,

(C.4) is re-expressed as

ln(α, τ) =

∫ τ

0

Kh(u− t)n−1

n∑
i=1

[
X̃T
i (u, u− t)γ + ŨT

i (u, u− t)α
]
dNi(u)

−
∫ τ

0

Kh(u− t) log{nSn,0(α, u)}dN̄(u),
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where N̄(u) = n−1
∑n

i=1 Ni(u). Through direct calculations, we observe

ln(α, τ)−ln(0, τ) =

∫ τ

0

Kh(u−t)n−1

n∑
i=1

ŨT
i (u, u−t)αdNi(u)−

∫ τ

0

Kh(u−t) log{Sn,0(α, u)

Sn,0(0, u)
}dN̄(u).

(C.5)

To apply the martingale theory, the process needs to be associated with the statistical infor-

mation accruing during the time [0,τ ], namely, the filtrationFnτ = σ{Xi(u), Ni(u), Yi(u), i =

1, · · · , n, 0 ≤ u ≤ τ}. Thus, under the independent censoring scheme,

Mi(t) ≡ Ni(t)−
∫ t

0

Yi(u)λ(u|Xi)du (C.6)

is an Fnτ -martingale. Substituting (C.6) into (C.5) gives

ln(α, τ)− ln(0, τ) = Gn(α) + Jn(α, τ), (C.7)

where

Gn(α, τ) =

∫ τ

0

Kh(u− t)
[
S?n,1(u)Tα− log

{
Sn,0(α, u)

Sn,0(0, u)

}
S?n,0(u)

]
λ0(u)du (C.8)

and

Jn(α, τ) = n−1

n∑
i=1

∫ τ

0

Kh(u− t)
[
ŨT
i (u, u− t)α− log

{
Sn,0(α, u)

Sn,0(0, u)

}]
λ0(u)dMi(u)

(C.9)

For proving the asymptotic normality of γ̂1(t), we consider α = (nh)−1/2B(γ(t) −

γ0(t)). Then, from (C.7), we have

ln((nh)−1/2α, τ)− ln(0, τ) = Gn((nh)−1/2α, τ) + Jn((nh)−1/2α, τ), (C.10)

where Gn(·, τ) and Jn(·, τ) are defined in (C.8) and (C.9), respectively.

We first reexpress (C.10) to have a quadratic form in α. Through using second order
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Taylor’s expansion on log{Sn,0((nh)−1/2α, u)/Sn,0(0, u)}, the common term inGn((nh)−1/2α, τ)

and Jn((nh)−1/2α, τ) at α = 0, we have

log

{
Sn,0((nh)−1/2α, u)

Sn,0(0, u)

}
=

Sn,1(0, u)

(nh)1/2Sn,0(0, u)
α+

1

2
(nh)−1αT

[
Sn,2(0, u)

Sn,0(0, u)
− Sn,1(0, u)⊗2

S2
n,0(0, u)

]
α+ op((nh)−1).

(C.11)

By Lemma 1 on, (C.11) becomes

log

{
Sn,0((nh)−1/2α, u)

Sn,0(0, u)

}
=

S1(0, u)T

(nh)1/2S0(0, u)
α+

1

2
(nh)−1αT

[
S2(0, u)

S0(0, u)
− S1(0, u)⊗2

S2
0(0, u)

]
α+ op((nh)−1).

(C.12)

After subsbstituting (C.12) into (C.8) with applying Lemma 1 again to S?n,0(u) and S?n,1(u)

in (C.8), Gn(·, τ) becomes

Gn((nh)−1/2α, τ) = (nh)−1/2Gn,1(τ)Tα− 1

2
(nh)−1αTFn,1(τ)α+ op((nh)−1),

where Gn,1(τ) =
∫ τ

0
Kh(u− t) [S?1(u)− (S1(0, u)/S0(0, u))S?0(u)]λ0(u)du and

Fn,1(τ) =

∫ τ

0

Kh(u− t)
[
S2(0, u)

S0(0, u)
− S1(0, u)⊗2

S2
0(0, u)

]
S?0(u)λ0(u)du. (C.13)

Applying Lemma 1 to (C.13), we derive

Fn,1(τ) = I(t)⊗Ω + op(1), (C.14)

where I(t) is the the Fisher information matrix of γ̂1(t) defined in Theorem 4.1, and

Ω is a 2 × 2 matrix with its (i, j)-th elements being
∫
ui+j−2K(u)du. Using (C.14),
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Gn((nh)−1/2α, τ) can be written as

Gn((nh)−1/2α, τ) = (nh)−1/2Gn,1(τ)Tα−1

2
(nh)−1αT (I(t)⊗Ω)α+op((nh)−1). (C.15)

Similarly, for Jn((nh)−1/2α, τ), we also substitute (C.12) into (C.9) and derive

Jn((nh)−1/2α, τ) = (nh)−1/2Jn,1(τ)Tα− 1

2
(nh)−1αTFn,2(τ)α+ op((nh)−1),

where

Jn,1(τ) = n−1

n∑
i=1

∫ τ

0

Kh(u− t)
[
Ũi(u, u− t)−

Sn,1(0, u)

Sn,0(0, u)

]
dMi(u)

and

Fn,2(τ) =

∫ τ

0

Kh(u− t)
[
S2(0, u)

S0(0, u)
− S1(0, u)⊗2

S2
0(0, u)

]
dM̄(u)

with M̄(u) = 1
n

∑n
i=1Mi(u). Through some direct calculation, we have Fn,2(τ) = Op(γn)

and derive

Jn((nh)−1/2α, τ) = (nh)−1/2Jn,1(τ)Tα+ op((nh)−1). (C.16)

By combing the results in (C.16) and (C.15), we obtain

ln((nh)−1/2α, τ)−ln(0, τ) = [Gn(·, τ)+Jn(·, τ)]T (nh)−1/2α−1

2
(nh)−1αTI(t)⊗Ωα+op((nh)−1).

(C.17)

Now, let α̂ be the maximizer of ln((nh)−1/2α, τ) with respect to α. By the quadratic

approximation Lemma [84, p.210] on (C.17), we obtain

α̂ = (nh)−1/2αT (I(t)⊗ Ω)−1 [Gn,1(τ) + Jn,1(τ)] + op(1). (C.18)
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Since (Σ(t)⊗ Ω)−1 = (Σ−1(t)⊗ Ω−1), the first p component of (C.18) yields

(nh)−1/2(γ̂1 − γ01) = (nh)−1/2Σ−1(t)[G?(n, 1)(τ) + J?n,1(τ)] + op(1), (C.19)

where

G?
n,1(τ) = n−1

n∑
i=1

∫ τ

0

Kh(u− t)
[
A(u)− S̃1(0, u)λ0(u)

S?0(u)

S0(0, u)

]
du (C.20)

with S̃1(u) = E
{
p(u|X(u)) exp(X̃(u, u− t)Tγ + ∆i)X(u)

}
, A(u) = E {p(u|X(u))λ(u)X(t)} ,

and λ(u) is the hazard function, and

J?n,1(τ) =

∫ τ

0

Kh(u− t)n−1

n∑
i=1

[
Xi(u)− S̃n,1(u)

Sn,0(0, u)

]
dMi(u) (C.21)

with S̃n,1(u) = n−1
∑n

i=1 Yi(u) exp(X̃(u, u− t)Tβ + ∆i)X(u).

The bias of γ̂1 can be derived from (C.20). That is, by applying Taylor’s expansion on

A(u)− S̃1(u)λ0(u)
S?0 (u)

S0(0,u)
in (C.20) around t and some direct calculations, we have

A(u)− S̃1(u)λ0(u)
S?0(u)

S0(0, u)
=

1

2
(u− t)2I(u)γ̂1

′′(τ) + op(h
2). (C.22)

Then, plug (C.22) into of (C.19), (C.19) can be rewritten as

√
nh

[
γ̂1 − γ01 −

h2

2
µ2γ01

′′(t)

]
= I−1(t)(nh)−1/2J?n,1(τ) + op(1). (C.23)

The process J̃n(u) ≡ (nh)1/2J?n,1(u) is a (local) square integrable martingale with its pre-

dictable variation process expressed as

〈J̃n(u), J̃n(u)〉(τ) =
h

n

n∑
i=1

∫ τ

0

K2(u−t)

[
Xi(u)− S̃n,1(u)

Sn,0(0, u)

]⊗2

Yi(u) exp(XT
i β+∆i)λ0(u)du.

(C.24)
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By applying Lemma 1 to (C.24), we derive

〈J̃n(u), J̃n(u)〉(τ) =

∫
K2(u)duI(t) + op(1). (C.25)

With (C.25) and a proof similar to that of [124], the Linderberg condition for the process

J̃n(u) holds. So, by the martingale central limit theorem, we establish

(nh)1/2J?n,1(u)
D−→ N(0,

∫ 1

−1

K2(s)dsI(t)), (C.26)

in distribution for t ∈ [0, τ ]. Therefore, with (C.26), (C.23) implies

√
nh

[
γ̂1 − γ01 −

h2

2
µ2γ

′′
01(t)

]
D−→ N(0, I−1(t)

∫ 1

−1

K2(s)ds),

which completes the proof of Theorem 4.1.

C.2.2 Proof of Theorem 3.4.2

To prove the asymptotic behavior of the estimator near the boundary points, we need some

modifications on the proof of the asymptotic behavior of the estimator in the interior points

(Theorem 4.1). These modifications are similar to those for the ordinary regression setting

[87, 84]. We first need to modify the Lemma 1 for the left boundary point t = ch, where

c ∈ (0, 1]:

Theorem C.2.2. 2 Let Wn be n−1
∑n

i=1 Yi(t)g(ti, (ti − t0)/h, Zi(t))Kh(ti − t0), where

g(·, ·, ·) is a continuous function and E(g(T, u, Z(t))|T = 0) is right continuous at the

point 0. If h→ 0 such that nh/ log(n)→∞, then

sup
0≤t≤τ

|Wn(t)−W (t)| P−→ 0, (C.27)
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whereW (t) =
∫ 1

−c Y (t)E(g(0, u, Z(t))|t = 0)K(u)duf(0) and f(·) is the density function

of T .

Using Lemma 2 and following the procedure to derive (C.23) in Theorem 4.1, we have

√
nh

[
γ̂1 − γ01 −

h2

2
γ01
′′(0+)

∫ 1

−c
s2K(s)ds

]
= I−1(0+)(nh)−1/2J?n,1(τ) + op(1),(C.28)

where J?n,1(τ) =
∫ τ

0
Kh(u − 0)n−1

∑n
i=1

[
Xi(u)− S̃n,1(u)

Sn,0(0,u)

]
dMi(u). Then, by applying

lemma 2 to the process J̃n(u) ≡ (nh)1/2J?n,1(u) in (C.28), we derive

〈J̃n(u), J̃n(u)〉(τ) =

∫ 1

−c
K2(s)dsI(0+) + op(1). (C.29)

With (C.29), by the martingale central limit theorem, we establish

(nh)1/2J?n,1(u)
D−→ N(0,

∫ 1

−c
K2(s)dsI(t)), (C.30)

in distribution . Therefore, (C.30) with (C.28) implies

√
nh

[
γ̂1 − γ01 −

h2

2
γ ′′01(0+)

∫ 1

−c
s2K(s)ds

]
D−→ N(0, I−1(0+)

∫ 1

−c
K2(s)ds),

which completes the proof of Theorem 4.2.

C.2.3 Proof of Theorem 3.4.3

We first consider the case when β(·) is known. Then, Q2(Σa) is a likelihood function of a

multivariate normal likelihood with unknown covariance matrix Σa, and Σ̂a is a maximum

likelihood estimator from the likelihood; thus, Σ̂a in this case possesses the consistency

and asymptotically normality as maximum likelihood estimators. To express the details

conveniently, we rearrange Σ̂a as a column vector vec(Σ̂a) and Σa as vec(Σa). Then,
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through the law of large number, we have the consistency property of Σ̂; that is,

vec(Σ̂)
P−→ vec(Σ) (C.31)

as n → ∞. To prove the aymptotical normality of Σ̂, note that for i = 1, · · · , n E[aia
T ]

conditioned on a censored event or a triggered event may follow a different distribution, so

E[aia
T ] are independent variables but not following an identical distribution. In this case,

under condition A.7, we can apply the multivariate Lindeberg central limit theorem [125]

and establish
√
n{vec(Σ̂a)− vec(Σa)}

D−→ N(0, U(Σa)), (C.32)

where U(Σa) = E(aaT ⊗ aaT ) − (vec(Σa))(vecΣa)
T . Now, we consider the case of un-

known β(t). The estimator of Σa is denoted by Σ̂a(β) when β(·) is known and denoted

by Σ̂a(β̂) when β is estimated by β̂. Based on Theorem 4.1, β̂ has a bias of order h2, and

therefore we have Σ̂(β̂) − Σ̂(β) = op(h
2). This implies

√
n{vec(Σ̂a(β̂)) − vec(Σa)} =

√
n{vec(Σ̂a(β))−vec(Σa)+op(h

2)} =
√
n{vec(Σ̂a(β))−vec(Σa)}+op(

√
nh2). Under

the condition nh4 → 0, op(
√
nh2) goes to 0. Thus, when β(t) is estimated, the asymp-

totic normality (C.32) remains valid. The asymptotic normality implies vec(Σ̂a(β̂)) −

vec(Σa) = Op(1/
√
n), which goes to 0 as n→∞. Therefore, the consistency of Σ̂(β̂) is

established.

C.3 Details for Computing the E-Step of the Extended EM Algorithm

This section provides some computation details of the E-step of the proposed algorithm in

the main paper. In general, the computation of the conditional expectation can be expressed

as E[h(ai)] =
∫
h(ai)p(ai|D, θ̂), where p(ai|D, θ̂) is the conditional density of ai given

data D and θ̂ = (λ̂0, β̂, Σ̂a). For example, h(ai) = exp(ZT
i ai) in (9) of the main paper. To

derive these conditional expectations for our application, we may use numerical integration

for the formula given below to derive these conditional expectations. This formula can be
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considered in two cases: di = 1 and di = 0, for i = 1, · · · , n. For clarity, we denote

p(ai|D, θ̂) as p(ai|di). When the observed data is censored (di = 0),

p(ai|di = 0) =
P (ai, Ti > Yi)

P (Ti > Yi)
=
P (Ti > Yi|ai)P (ai)

P (Ti > Yi)
=

S(ti|ai)P (ai)∫
S(Yi|ai)P (ai)dai

,

where S(Yi|ai) is exp(−
∫ Yi

0
λ(t|ai)dt), and λ(t|ai) is λ(t) from equation (3) in the main

paper with giving Xi and ai. When the observed data is a triggered time (di = 1),

p(ai|di = 1) =
P (ai, Ti = Yi)

P (Ti = Yi)
=

P (Ti = Yi|ai)P (ai)∫
P (Ti = Yi|ai)P (ai)dai

=
f(ti|ai)P (ai)∫
f(ti|ai)P (ai)dai

=
S(ti|ai) exp(ai)P (ai)∫
S(ti|ai) exp(ai)P (ai)dai

The extension of the two formulas to higher dimensions is straightforward.

C.4 More Comparisons Between the Proposed Method with a Spline Based Method

In this section, we provide more simulations for comparing the estimation accuracy of the

local linear varying coefficient frailty method and that of spline-based varying coefficient

frailty methods using the cubic spline basis and the nature cubic spline basis. The way to

simulate data is the same setting described in Section 5.1 of the paper. After deriving the

data, we implement the spline-based method with three selected knots: (a) (0, 0.5, 1, 1.5,

2), (b) (0, 0.5, 0.75, 1, 1.25, 1.5, 2), and (c) (0, 0.1, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75,

1.9, 2), and the local linear based method with bandwidth 0.5. The resulting plots are in

Figure C.1. From the figure, we observed that the local linear estimator (blue solid curve)

outperforms the spline-based estimators using the cubic spline (red dashed line) and the

nature cubic splines (brown long-dashed line estimators, especially near the boundary, as

we conclude in Section 5.1 of the main paper.
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Figure C.1: More comparisons of the varying coefficient estimator from the proposed local linear
method (blue solid line) with bandwidth 0.5 and the Spline based method (red dashed line) with
knots at (a) (0, 0.5, 1, 1.5, 2), (b) (0, 0.5, 0.75, 1, 1.25, 1.5, 2), and (c) (0, 0.1, 0.25, 0.5, 0.75, 1,
1.25, 1.5, 1.75, 1.9, 2). The true curve is the black dotted line.
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APPENDIX D

SUPPLEMENTAL MATERIAL FOR CHAPTER 4

The appendix provides the detailed proof of the lemma and theorems given in Section 4.3.

D.1 Proofs of the Main Theorems

D.1.1 Proof of Lemma 4.3.1

By the definition of Êrrk in (4.3) and ¯errk in (4.7), we have

E[Êrrk− ¯errk] =
1

n

n∑
i=1

E
[
Q
{
ξ̂(xi), f̂k(xi; θ̂k(D(−i)))

}
−Q

{
yi, f̂k(xi; θ̂k(D(−i)))

}]
,

(D.1)

and from (4.4), we haveQ(ξ̂(xi), f̂k(xi; θ̂k(D))) = q(f̂k(xi; θ̂k(D)))+q̇(f̂k(xi; θ̂k(D)))(ξ̂(xi)−

f̂k(xi; θ̂k(D))). Based on (3.11) of Theorem 1 in [114], it implies

Q
{
ξ̂(xi), f̂k(xi; θ̂k(D(−i)))

}
−Q

{
yi, f̂k(xi; θ̂k(D(−i)))

}
= q̇(f̂k(xi; θ̂k(D(−i))))(yi−ξ̂(xi)).

(D.2)

Combining (D.1) and (D.2), we have

E[Êrrk − ¯errk] =
1

n

n∑
i=1

E
[
q̇(f̂k(xi; θ̂k(D(−i))))(yi − ξ̂(xi))

]
,

which is the generalized degree of freedom GDk in (4.8).

D.1.2 Proof of Theorem 4.4.2

For any consistent estimator θ̂T (Theorem 1 of [111] and Theorem 3.1 of [121]), we have

f0(xi; θ̂T (D(−i)))− f0(xi;θ)→ 0 (D.3)
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in probability. For any consistent estimator f̂T (Theorem 2.1 in [126] and Corollary 1.3 in

[127]), it follows that

f̂T (xi; θ̂T (D(−i)))− f0(xi; θ̂T (D(−i)))→ 0 (D.4)

in probability. Under (D.3) and (D.4),

f̂T (xi; θ̂T (D(−i)))− f0(xi;θ) = f̂T (xi; θ̂T (D(−i)))− f0(xi; θ̂T (D(−i))) +

f0(xi; θ̂T (D(−i)))− f0(xi;θ)

→ 0

in probability. This implies

ÊrrT − Err0 =
1

n

n∑
i=1

[
Q
{
ξ̂(xi), f̂T (xi; θ̂T )

}
−Q

{
ξ̂(xi), f0(xi;θ)

}]
→ 0 (D.5)

in probability. This proves part (i) of Theorem 3.2. From (D.5), we have ĜDT − GD0 =

ÊrrT − Err0 → 0 in probability, which proves part (ii) of Theorem 3.2.

D.1.3 Proof of Theorems 4.4.3

Suppose x1, · · · ,xn are realizations of a random variable X whose probability density

function is denoted by pX(x). Then, we have

1

n

n∑
i=1

Q
{
ξ̂(xi), f̂1(xi;θ)

}
→ E

[
Q
{
ξ̂(X), f̂1(X;θ)

}
)
]

=

∫
Q
{
ξ̂(x), f̂1(x;θ)

}
pX(x)dx,

(D.6)

in probability by the law of large numbers. Following (D.3), we have

1

n

n∑
i=1

Q
{
ξ̂(xi), f̂1(xi;θ(D(−i)))

}
− 1

n

n∑
i=1

Q
{
ξ̂(xi), f̂1(xi;θ)

}
→ 0 (D.7)
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in probability. From (D.6) and (D.7),

1

n

n∑
i=1

Q
{
ξ̂(xi), f̂1(xi;θ(D(−i)))

}
→
∫
Q
{
ξ̂(x), f̂1(x;θ)

}
pX(x)dx (D.8)

in probability. When pX(x) follows a p-dimensional uniform distribution on [0, 1]p and Q

is chosen as square loss Q(h1, h2) = (h2 − h1)2,

arg min
θ

∫
X

Q
{
ξ̂(x), f̂1(x;θ)

}
pX(x)dx = ||ξ̂(x)− f̂1(x;θ1)||L2 , (D.9)

which is the criterion used for the L2-norm calibration [111]. Combining (D.8) and (D.9),

we have Êrr1 → ||ξ̂(x)− f̂1(x;θ1)||L2 in probability.
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