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SUMMARY 

Each year in the United States alone, several hundred thousand people suffer 

skeletal fractures that do not heal from the original treatment, resulting in non-union. 

Patients with non-unions are afflicted with prolonged disability and often undergo multiple 

costly surgeries. To improve patient outcomes, there is a clinical need for therapeutic 

strategies that mitigate non-union risk by stimulating bone repair. As the primary load-

bearing tissue, the skeleton dynamically adapts its structure and composition to mechanical 

loads, and controlled loading via rehabilitation represents a non-pharmacologic target with 

the potential to stimulate endogenous bone regeneration mechanisms. Prior research has 

demonstrated that the adaptive response of healing tissue to mechanical cues are magnitude 

dependent, where moderate mechanical loading potently enhances osteogenesis, but 

excessive loading promotes fibrosis and non-union. However, the study of 

mechanobiology in vivo has largely remained qualitative and these thresholds are not well 

defined largely because the temporal progression of mechanical conditions during dynamic 

activities like walking and exercise cannot be measured accurately. This technical 

limitation hinders the ability of researchers to investigate skeletal mechanobiology and 

exploit it for therapeutic purposes.  

The primary objectives of this thesis were to develop technical approaches to 

longitudinally monitor dynamic mechanical cues during bone healing and elucidate how 

specific magnitudes promote repair. Our overall hypothesis was that moderate mechanical 

stimulation exerted via periodic ambulatory activity could enhance bone regeneration. To 

test this hypothesis, we engineered a fully implantable wireless strain sensor platform that 



 xxii 

enabled real-time non-invasive monitoring of mechanical cues in a pre-clinical model of 

skeletal repair. We used the sensor platform and image-based finite element analyses to 

quantify the progression of tissue-level mechanical cues during gait under varying degrees 

of load sharing. We discovered that early-stage strain magnitudes correlated with 

significantly improved healing outcomes, where tissue-level compressive strains of 2-7% 

imparted by moderate stiffness fixation tripled the defect bridging rate and enhanced bone 

formation by 60% relative to traditional higher stiffness fixation. Mechanical load sharing 

enhanced bone repair by promoting a mechanistic shift from primarily intramembranous 

toward endochondral ossification. Furthermore, strain magnitudes at later time points 

correlated with the status of healing, demonstrating feasibility of strain sensing techniques 

as an X-ray-free healing assessment. Remarkably, we also observed that osteogenic 

mechanical loading exerted substantial previously unexplored effects on early stage 

biological processes that precede mineralization, including immune cytokine signaling and 

angiogenesis.  Load-shielded defects exhibited increased VEGF expression and vascular 

volume at intermediate healing time points, while immune cytokines associated with 

cellular recruitment, acute inflammation, and matrix synthesis were elevated by 

mechanical loading. These results suggest the immune response after skeletal injury is 

mechanosensitive and can be modulated by early mechanical loading to coordinate 

enhanced bone repair. 

At the conclusion of the experiments, we attained a deeper understanding of how 

specific mechanical cues regulate bone repair in vivo, and established a novel sensor 

platform to further investigate mechanobiology. The knowledge gained by this thesis aids 

the development of integrative therapeutic strategies that stimulate bone repair via 



 xxiii 

functional rehabilitation. In addition, the technological outcomes of this thesis serve as 

foundational support for the expanded development of implantable medical sensor 

technologies with broad implications to enhance diagnostics, therapeutic development, and 

interventional surveillance. 
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CHAPTER 1. INTRODUCTION 

Among the critical factors that modulate tissue regeneration, physical forces are 

transduced into chemical signals governing essential biological processes in almost all 

cells. In particular, skeletal development and healing processes are highly sensitive to 

mechanical cues imposed by functional load-bearing activity. Elucidating the complex 

regulatory role of mechanical stimuli is critical to understand bone development, 

homeostasis, and pathology, and could aid the development of new treatment strategies for 

pervasive skeletal injuries such as fractures. 

Motivated by the mechanosensitive nature of bone, load-sharing interventions 

intended to augment bone formation have received significant clinical interest, including 

reduced stiffness implants, dynamic compression plating, and external fixator devices with 

actuating capabilities. However, the local biomechanical conditions permitted by such 

systems are rarely quantified. Furthermore, the basic regulatory role of mechanical cues at 

critical early time points in healing prior to the establishment of mineralized bridging or 

non-union is poorly understood. This lack of fundamental understanding of basic 

mechanobiology, along with an absence of technical capabilities to quantify in vivo 

mechanical cues, represent major barriers to the development of safe and efficacious 

mechanical therapies. The overall objective of this thesis was to address these limitations 

by developing a wireless implantable strain sensor platform to acquire local measurements 

of functional mechanical cues throughout bone repair. The hypothesis was that early 

mechanical stimulation regulated bone repair, and that sensor readings would provide a 

quantitative understanding of osteogenic tissue-level mechanical cues.  
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We tested this hypothesis through the following three specific aims: 

1.1 Specific Aim I: Engineer an implantable, wireless sensor to remotely measure 

dynamic mechanical strain across a bone defect in vivo. 

To remotely quantify strain across the healing tissue in real-time, we engineered a 

custom internal fixation plate with an integrated strain sensor for a pre-clinical rodent 

model of bone repair. The objective of this aim was to evaluate the capability of the device 

to interrogate mechanical strain across healing bone defects during functional loading. We 

hypothesized that the device will have sufficient sensitivity to detect functional strains 

during ambulation, enabling the in vivo mechanical environment to be quantified in real-

time.  

1.2 Specific Aim II: Longitudinally evaluate relationships between mechanical 

boundary conditions, tissue-level mechanical cues, and functional bone repair. 

 The generally accepted paradigm is that moderate mechanical loading has the 

potential to augment bone repair, while excessive loading can abrogate mineralization and 

result in fibrotic non-union, but osteogenic early-stage mechanical stimulation are not well 

quantified. The objective of this aim was to perturb the mechanical environment using 

instrumented internal fixators of varying stiffness to investigate relationships between the 

temporal progression of mechanical cues during rehabilitative ambulation and bone defect 

repair. We hypothesized that a moderate increase in ambulatory load sharing conferred by 

reduced stiffness fixation would increase mechanical stimuli initially, and that the elevated 

deformation would eventually decrease due to enhanced bone formation. 
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1.3 Specific Aim III: Evaluate the biological effects of mechanical boundary 

conditions on early stage bone repair.  

 Little is known regarding the early stage biological response to functional 

mechanical loading. In this aim, we investigated differential responses during the early 

stages of bone repair preceding the healing outcome of bridging or non-union. The 

objective of this aim was to characterize early-stage molecular, cellular, and tissue-level 

composition in bone defects under models utilizing protein analysis, histology, and 

microCT imaging of vascular formation. We hypothesized that early-stage mechanical cues 

alter neovascular growth and immune cytokine secretion.  

IMPACT 

This thesis contributed a novel sensor platform enabling non-invasive 

measurements of strain in vivo and enriched fundamental understanding of how 

mechanical cues regulate critical biological aspects of early stage bone repair. 
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CHAPTER 2. BACKGROUND 

2.1 Fracture and Non-Union Epidemiology 

Bone defects as a result of traumatic injury, tumor resection, and congenital or 

degenerative anatomical deformities are among the most common injuries requiring 

surgery faced by the global healthcare system1. In the United States alone, it is estimated  

that 12 million fractures occur each year2. A substantial number of these fractures require 

orthopaedic surgery to stabilize the injury. Of the 3.4 million orthopaedic surgical 

procedures reported in 2005, approximately 615,000 were undertaken to repair fractures 

and dislocations1. Bone tissue possesses remarkable intrinsic regenerative capabilities, and 

the majority of fracture cases are healed by standard surgical techniques, mainly to reduce 

and stabilize the fracture site and allow endogenous healing to restore skeletal function 

within 3-6 months. However, a significant number of fractures do not heal spontaneously 

and result in non-union. A recent epidemiological survey of 309,990 fractures occurring in 

2011 reported a non-union rate of 4.9%3.  Comorbidities and patient-specific risk factors 

play a key role in the development of non-union. The risk factors associated with the 

establishment of non-union are multi-factorial, but multiple concurrent fractures, 

nonsteroidal anti-inflammatory drugs (NSAIDs) plus opioid use, open fracture, 

anticoagulant use, and osteoarthritis with rheumatoid arthritis were all observed to increase 

the risk of non-union development by over 50% for 18 different bones3. High energy injury, 

smoking, and diabetes have also been implicated to hinder bone repair and increase risk of 

non-union, but the mechanistic basis underlying these comorbidities remains poorly 

understood4. 
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Regardless of the specific injury circumstances, the implications once non-union is 

established to the patient,  healthcare system, and society as a whole are debilitating4–7.  

Analyses of clinics in the United States, Canada, and United Kingdom between 1997 and 

2006 have estimated that direct medical costs to treat established non-unions range between 

$11,000 and $36,0007–10. The timeline to restore function after non-union is particularly 

lengthy, often taking many months or even years and typically involving multiple 

surgeries11–13. Furthermore, indirect costs due to prolonged patient disability are actually 

estimated to exceed the direct cost of care. Assessments of productivity loss during 

treatment of established tibial non-unions indicate that indirect costs account for anywhere 

from 67-93% of total costs6. In consideration of the scope and severity of fracture non-

unions, it is critical that new therapeutic and rehabilitative strategies are developed to 

improve outcomes for fracture repair, thereby reducing prolonged healthcare costs and 

improving patient quality of life. 

2.2 Bone Repair Physiology 

Bone possesses an extraordinary capacity for endogenous healing. It is typically 

able to recover biomechanical competence after injury through a coordinated healing 

response. The progression of bone regeneration is a transient and spatially heterogeneous 

process characterized by rapid morphogenesis of numerous tissue phenotypes over days, 

weeks and months after the initial insult. In the case of critically-sized defects or extensive 

comorbidities, the intrinsic regenerative potential of the native tissue is insufficient to 

completely heal the injury. Thus, effectively designed clinical interventions must leverage 

stages of the bone healing process to enhance either bridging of the defect or surface 

integration with the surrogate implant to form a mechanically competent composite 
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structure. This dynamic regenerative process is commonly delineated into four major 

phases (and associated timelines) of tissue formation: (1) inflammation and hematoma 

(hours and days) (2) soft callus (days and weeks) (3) immature bone (weeks and months) 

(4) and bone remodeling (months and years) as depicted in Figure 114. However, it should 

be noted that spatiotemporal variability is common in the healing of large bone defects, 

and different phases occur simultaneously within a fracture zone as dictated by the local 

biophysical and biochemical conditions of the cellular niche. In this section, the 

characteristic physiology of bone regeneration will be reviewed, and the critical regulatory 

role of biomechanics on tissue differentiation, neovascularization and inflammation will 

be reviewed. 

 

Figure 1: Phases of bone repair 

2.2.1 Inflammation and Hematoma 

Whether a defect is created by a controlled surgical technique or due to a traumatic 

injury, the fracture inflicts damage on cells of the bone, periosteum and neighboring 
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tissues, including rupture of surrounding vasculature. Tissue destruction initiates a cascade 

of acute inflammatory signals which mark the beginning of the regenerative process15,16. 

Disruption of nearby blood vessels quickly floods the defect zone with clotting blood and 

results in the formation of a hematoma. Interrupted circulation results in localized hypoxia, 

and the hematoma is characterized by low oxygen tension,  acidic pH and high lactate 

concentration17. The hematoma is also rich with neutrophils, macrophages and other 

immune cells found in the peripheral blood supply as well as the bone marrow of long 

bones16,18. The inflammatory signals facilitate coagulation in response to hypoxia and 

concurrently activate this dense population of immune cells to secrete important molecular 

factors which mediate early stages of necrotic tissue clearance, extracellular matrix (ECM) 

production of granulation tissue, angiogenesis and mesenchymal stromal cell (MSC) 

recruitment17. Critical signaling molecules within the early hematoma include 

inflammatory cytokines like tumor necrosis factor alpha (TNF-α), interleukins 1 and 6 (IL-

1 and IL-6), macrophage colony-stimulating factor (M-CSF), receptor activator of nuclear 

factor κB ligand (RANKL), and the enzyme cyclooxygenase-2 (COX-2)19,20. Expression 

of osteoinductive bone morphogenetic protein (BMP) family members as well as 

proangiogenic factors including hypoxia-inducible factor alpha (HIF-1α) and its 

downstream partner vascular endothelial growth factor (VEGF) are also upregulated in the 

fracture hematoma17,21. Underscoring its vital role as the foundational scaffold for fracture 

healing, removal of the hematoma delays fracture repair, while excision and subcutaneous 

implantation of the hematoma elicits ectopic bone formation22,23. 

While an initial inflammatory response is critical to successful bone regeneration, 

excessive or chronic inflammation counteracts the aforementioned beneficial aspects and 
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can attenuate healing15. In traumatic injuries which result in open fractures or composite 

tissue trauma, associated surges in systemic inflammation are thought to inhibit bone 

formation and increase the risk of reoperation24. Biomechanical conditions are also 

influential on the degree of magnitude and duration of inflammation in the defect zone. 

Relatively large magnitude mechanical strain within the hematoma as a result of poor 

implant stability or flexible fixation increases and prolongs the presence of cytotoxic 

immune cells and ultimately leads to delayed healing or nonunion16,25,26. The threshold 

delineating positive and negative levels of inflammation is multifactorial and thus difficult 

to define15. It is also important to note that the majority of available literature on early 

stages of bone healing is concentrated on simple transverse fractures, and the initial phase 

of large bone defect repair is not well characterized. Future research on the interplay 

between defect type, mechanical stability and patient comorbidities on early inflammation 

will greatly enhance the data available to develop personalized clinical strategies for 

healing more complex bone defect injuries. 

2.2.2 Soft Callus and Neovascularization 

As peripheral cells from the circulation, periosteum, surrounding tissue, and bone 

marrow begin to infiltrate the hematoma, a soft callus of granulation tissue is formed. The 

granulation tissue primarily consists of an immature fibrous matrix.  Neovascularization of 

the granulation tissue is promoted by local diffusion of hypoxic paracrine factors. Nascent 

vessel formation proceeds through vasculogenesis, in which immature angioblasts form de 

novo primitive vessels, and angiogenesis, where the preexisting intact vasculature sprouts, 

branches and remodels to extend the functional vessel network27. Angiogenesis after injury 

is mediated by endothelial cells residing on intact blood vessels that degrade their 
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surrounding ECM and sprout in response to chemotactic gradients of angiogenic cues 

including VEGF, forming a motile tip extending from the vessel28,29. This tip cell migrates 

and extends into the injury site guided by paracrine biochemical and biophysical cues while 

adjacent stalk cells proliferate behind, forming the proximal branch of the nascent vessel30. 

Maturation of an angiogenic sprout into a functional blood vessel occurs by abluminal 

pericyte and vascular smooth muscle cell (VSMC) attachment to stabilize the sprout, lumen 

formation and perfusion, and anastomosis with surrounding tip cells30. Sprouts that do not 

stabilize or perfuse retract or undergo endothelial apoptosis31. Increased arterial blood flow 

also occurs by radial growth of intact vessels, known as arteriogenesis32. Functional 

vascularization within the hematoma is crucial to deliver oxygen and nutrients for MSC 

proliferation and maturation, and for waste removal. HIF-1α induced VEGF expression is 

the most well characterized molecular pathway stimulating angiogenesis into the defect 

space. Inhibition of VEGF reduced callus vascularization and impaired bone healing in the 

mouse, while administration of VEGF enhanced mineralized callus volume in a critically-

sized rabbit defect model33. 

Unsurprisingly, new vessel growth is highly dependent on biomechanical boundary 

conditions imposed on the regenerating tissue in vivo. In a rodent critically-sized segmental 

defect model, uniaxial compressive load transfer at the onset of injury dramatically 

attenuated vessel ingrowth and connectivity within the defect zone, resulting in nonunion. 

Interestingly, compressive loading after initial stabilization of the defect by bridging with 

immature mineralized tissue reduced vascular connectivity but increased vascular 

thickness and bone volume, indicating that mechanical loading may disrupt small vessels 

while stimulating arteriogenesis of large vessels and deposition of new bone34. The specific 
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influences of mechanics on vascular ingrowth will be discussed in greater detail in Section 

2.3. 

2.2.3 Woven Bone Formation 

Increases in local oxygen tension and pH buffering due to capillary infiltration 

within the granulation tissue-filled callus coincide with differentiation of recruited MSC’s 

into osteogenic and chondrogenic phenotypes35–37. As MSC’s mature, mineralization of the 

callus occurs primarily through two mechanisms: intramembranous (primary) or 

endochondral (secondary) ossification. Intramembranous ossification takes place by direct 

deposition and mineralization of osteoid matrix along a front propagating from peripheral 

intact bone. In endochondral ossification, a cartilage intermediary replaces the soft callus 

of granulation tissue before chondrocyte hypertrophy and mineralization occurs. 

Endochondral ossification proceeds over a longer time-scale than intramembranous 

ossification, and leverages the low oxygen demand of native cartilage better suited for 

avascular environments38. Thus, endochondral ossification is prevalent in callus regions 

which are slow to restore sufficient vascularization such as central portions of large bone 

defects39. 

The linkage of angiogenesis with osteogenesis is well demonstrated at the 

molecular scale, and their physiological roles cannot be decoupled21,33. VEGF expression 

and sufficient oxygen tension promotes chemotaxis of MSC’s and subsequent adoption of 

an osteoblastic phenotype40,41. Likewise, BMP’s -2, -4, and -6 promote differentiation of 

MSC’s into osteoblasts, and these newly osteogenic cells simultaneously enhance secretion 

of VEGF in a differentiation-dependent fashion42,43. This osteogenic-angiogenic coupling 
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is hypothesized to promote paracrine signaling to nearby endothelial cells which support 

increased vascular capacity along newly-formed mineralization fronts.  

Newly differentiated osteoblasts maintain sensitivity to local oxygen tension. 

Experimental evidence has demonstrated that Type I collagen (Col I) matrix synthesis, as 

well as osteocalcin (OC) and alkaline phosphatase (ALP) activity is suppressed in hypoxic 

conditions44–46. If deficient vascularization and hypoxia persist within the defect space, 

bone regeneration cannot occur regardless of the healing mechanism and nonunion will be 

established33,47. Stimulation of sufficient vascularization remains a critical obstacle to the 

successful treatment of large bone defects, open fractures and polytraumatic injuries38,48. 

Mechanobiological cues are known to direct the evolution of the fracture callus and 

ultimately the healing outcome of bone regeneration49. Highlighting the role of local 

mechanics on healing, both intramembranous and endochondral mechanisms of 

mineralization can occur simultaneously within a single healing defect as dictated by the 

mechanical conditions of the microenvironment50. In regions of high mechanical stability, 

intramembranous ossification is predominant, while larger magnitude strain typically 

stimulates endochondral ossification. Fibrocartilage, as well as connective and adipose 

tissue, is formed and tends to persist in regions of excessive strain and may lead to chronic 

nonunion.  

2.2.4 Bone Remodeling 

The transition of soft callus to immature, woven bone ensues by rapid deposition 

and mineralization of Type I collagen in a random, isotropic fashion51. This disorganized 

phenotype lacks the robust and spatially optimized mechanical characteristics of mature 



 12 

lamellar bone, but is typically adequate to bear physiological loads due to hypertrophy of 

the woven bone callus. Structural homeostasis is restored by remodeling of the tissue 

micro- and macrostructure, which occurs over months and years after the original insult. 

Mechanically driven remodeling increases the alignment of the collagen matrix with 

principal loading directions and initiates resorption of mechanically superfluous ectopic 

bone51. In the diaphysis of long bones, reestablishment of the intramedullary canal and 

formation of bone marrow occurs over time.  

Conversely, prolonged stress-shielding by supplementary fixation after the defect 

is bridged can slow mechanically driven remodeling52,53. In addition to fixation, the 

mechanical properties of any load-bearing implants (e.g. interbody fusion devices in spinal 

fusion procedures) are an important factor of long-term function even after defect bridging 

is achieved54. Sustained stress-shielding in very stiff implants has long been known to 

cause implant loosening and failure due to bone resorption at the implant-tissue interface. 

This effect is still an important challenge to longevity in load-bearing implants designed to 

remain in vivo for many years55. Thus, it is critical that both short and long-term 

mechanical conditions within the healed tissue are considered when selecting a bone defect 

treatment and rehabilitative approach. 

2.3 Mechanobiological Considerations for Bone Repair 

2.3.1 Cell-Level Mechanobiology of Bone Regeneration 

Physical forces are transduced across length-scales into biochemical signals 

governing essential processes in almost all cells. MSC’s possess a number of 

mechanosensory systems and their differentiation processes are exquisitely sensitive to 
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their micromechanical environment. Some of these critical physical factors include 

substrate stiffness, substrate topography, cell shape, and cell deformation resulting from 

interactions with the tissue matrix and surrounding fluids56–58. Similarly, mechanical strain 

and flow-induced shear is known to regulate growth and maturation of neovascular 

networks formed by endothelial cells59–61. These cellular-level phenomena have been 

demonstrated to correspond to tissue-level healing outcomes, as shown by numerous in 

vivo studies in the large bone defect and fracture healing literature investigating the role of 

specific mechanical signals on bone healing and maturation34,49,62.  

2.3.1.1 Cellular Mechanosensors 

Mechanotransduction is the process by which cells sense and respond to physical 

forces exerted by their surroundings. This process is generally classified to occur in four 

major steps: (1) sensing of the mechanical stimulus, (2) conversion of the mechanical 

stimulus into a biochemical signal, (3) transmission of the biochemical signal, and (4) 

response of the effector cell63. Nearly all cells possess multiple mechanotransduction 

mechanisms known to regulate cell proliferation, differentiation, factor secretion and 

matrix synthesis. The molecular intricacies of each step in these mechanotransduction 

processes are beyond the scope of this text. For the purposes of this chapter, we provide a 

basic outline of (1) how cells sense force and (2) the functional roles of specific biophysical 

cues and substrate properties on cells as it pertains to skeletal repair. 

To date, there are four known major mechanosensitive transmembrane components 

expressed in numerous cell types, including MSC’s, bone cells, and endothelial cells, 

which alter cell function in response to physical interactions with their environment: 
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integrins, cadherins, stretch-activated ion channels and the primary cilia64. Transmembrane 

integrin cell adhesion receptors are the primary receptor linking type I collagen, fibronectin 

and laminin fibers of the local ECM to actin filaments of the cytoskeleton65,66. The 

specialized sites in the cytoskeleton at which integrin receptors form clusters are known as 

focal adhesion complexes. When ECM proteins bind to the integrin dimer, a subunit of the 

integrin within the cytoplasm undergoes a conformational change67. Since integrins do not 

have inherent enzymatic activity, the conformational change in the cytoplasmic domain 

transduces extracellular signals to regulate intracellular biochemical activity via kinases 

docked at the focal adhesion complex68. Mechanical stresses and strains on the ECM are 

also transmitted directly to the actin cytoskeleton of adhered cells via integrin binding sites. 

Conversely, cells exert traction forces and remodel their respective substrate via integrins69.  

In this manner, integrin complexes are the primary mechanism by which deformation and 

force is transferred bidirectionally between a cell and its substrate. 

Cadherin receptors are the primary transmembrane component cells utilize to 

transmit traction forces and deformation to neighboring cells. Cell-cell connections formed 

at cadherin receptors are also anchored to the intracellular cytoskeleton by protein 

complexes including vinculin, α-catenin and β-catenin which regulate important 

downstream cell functions including differentiation, proliferation and apoptosis70. 

Observations of highly localized strain concentration at cadherin-linked adherens junctions 

between endothelial cells subjected to flow-induced shear have led researchers to 

hypothesize that their structure is designed to target and amplify mechanical signals on 

cellular interfaces, increasing communication of mechanical signals between neighboring 

cells71,72. 
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Stretch-activated transmembrane cation channels (SA-CAT’s) are gated by tension 

generated within the cytoskeleton acting along the plane of the cell membrane73. These 

non-selective mechanosensitive channels have been found in numerous cell types including 

endothelial cells and osteoblasts74–76. They respond to the magnitude and frequency of 

membrane deformation induced by changes in hydrostatic pressure by increasing channel 

open probability in response to larger or more frequent mechanical stimuli74,77.  

Primary cilia are immotile organelles formed by microtubules running from the 

centrosome and protruding 4-6 µm above the apical cell membrane surface. The cilia of 

osteoblasts deflect due to fluid flow-induced shear stress, and mice with bone-specific 

primary cilia knockouts exhibit reduced load-induced bone formation78,79.  In human 

MSC’s subjected to oscillatory fluid flow, removing expression of primary cilia with small-

interfering RNA inhibits flow-induced osteogenic gene expression,  confirming their role 

in flow mechanotransduction80. However, the precise signaling mechanisms mediating this 

response are not well characterized. One hypothesis cites that integrin focal adhesion 

complexes are known to localize at the same locations as primary cilium in several cell 

types including chondrocytes81. Thus, the cilia might signal interdependently with integrin 

to alter cell function and phenotype in response to fluid-mediated shear independent of cell 

substrate deformation80.  Interestingly, cilia on endothelial cells are only found in regions 

of low or disturbed flow and they disassemble in response to laminar flow, but their role in 

cell function remains unclear82,83. 

Cells utilize their intrinsic mechanosensitive components to regulate their function 

based on feedback from the local environment, and conversely they also remodel their 

surroundings through these same mechanisms. This two-way mechanical communication 
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is a critical process underlying tissue-level growth and development during healing. 

Through in vitro studies, specific substrate properties and extrinsic mechanical stimuli 

acting at the micro- and nanoscale have been elucidated as controllers of cell migration, 

lineage, proliferation and protein synthesis. Physical mechanisms known to direct cell 

behavior include substrate stiffness, substrate topography and shape, substrate 

deformation, fluid flow-induced shear, and hydrostatic pressure.  

2.3.1.2 Intrinsic Physical Cues 

Cells in vivo inhabit a vast range of tissues, each with different degrees of elasticity 

and stiffnesses. Cells that adhere to an underlying substrate form focal adhesion complexes 

and exert contractile forces, creating tension in the actin cytoskeleton and local deformation 

of the bound substrate84. The mechanical stiffness of this substrate is known to have a direct 

effect on cell behaviors including migration, proliferation, apoptosis and differentiation56. 

Vincent et al. fabricated gels with stiffness gradients encompassing the majority of soft 

tissues (1-12 kPa) and observed that MSC’s preferentially migrated to the region with the 

highest stiffness with a migration rate proportional to the gradient slope85. Increasing the 

stiffness of the underlying cell substrate has also been shown to promote cell proliferation 

and to decrease the rate of apoptosis in fibroblasts and endothelial cells86–89.  

The influence of substrate mechanical properties on stem cell differentiation is of 

particular importance for bone regeneration, where MSC’s serve as the primary source for 

skeletal tissue growth and differentiation. One of the first studies to isolate the role of 

substrate stiffness on MSC lineage showed that cells cultured on polyacrylamide gels 

possessing a modulus similar to un-mineralized osteoid matrix (25-40 kPa) adopted an 
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osteogenic morphology and produced osteogenic gene and protein profiles, while cells 

seeded on more compliant substrates mimicking neurogenic and myogenic environments 

assumed neurogenic and myogenic phenotypes, respectively58. While the preceding 

experiment was conducted in a two-dimensional (2D) culture environment, osteogenic 

commitment has also been replicated by Huebsch and colleagues in three-dimensional (3D) 

culture with mouse MSC’s encapsulated in gels of approximately 11-30 kPa90. However, 

MSC’s in 3D did not exhibit the drastic change in morphology as observed in 2D 

monolayer conditions. Interestingly, cells encapsulated in an even stiffer gel of 

approximately 110 kPa showed a drop-off in the production of osteogenic markers 

compared to cells within the 11-30 kPa gel. They demonstrated that integrin binding and 

the formation of tension-generating traction forces within the actin cytoskeleton are 

directly proportional to the rigidity of the substrate and mediate this process of stiffness-

dependent osteogenesis, as blocking cell contractility with (2,3)-butanedione-monoxime 

prevents lineage commitment90.  

The surface topography of a cell’s substrate controls the spatial distribution of 

internal cytoskeletal stresses by altering the cell shape as well as the density of integrin and 

cadherin mediated traction forces formed with the surroundings. Consequently, 

intracellular mechanical signaling transmitted through the actin cytoskeleton is altered.  

Human  endothelial cells cultured on microstructural features such as square islands and 

asymmetric annuluses (on the order of hundreds of µm’s) created asymmetric stress 

distributions, and cells in regions of high local stress concentrations proliferated faster than 

neighboring cells in low stress regions91. Dalby and colleagues observed that nano-textured 

surfaces with equally-spaced pit features 120 nm in diameter and 100 nm deep inhibits 
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formation of focal adhesions and prevents osteogenic differentiation in human MSC’s92. 

Interestingly, when the identical pit feature was distributed in a random pattern more 

representative of nanoscale disorder seen in native tissue, cells adopted osteoblastic 

morphology and produced early markers of osteogenic differentiation measured at 14 and 

21 days92.  

In 3D microenvironments seen in vivo, there is a complex interplay between 

substrate architecture, cell shape and cytoskeletal stress distribution, making it difficult to 

elucidate their relative importance93. Khetan and colleagues attempted to decouple the role 

of cell shape and cell-mediated tractions by encapsulating human MSC’s in degradable 

hyaluronic acid hydrogels that promoted cell spreading, formation of focal adhesions and 

osteogenic differentiation94. Secondary cross-linkers were added after one week of culture 

which effectively halted further degradation of the hydrogel and inhibited cell-substrate 

tractions while the cells were still in a spread morphology. In response, cells switched from 

osteogenic to adipogenic differentiation without significantly altering their shape, 

indicating that cell adhesion-mediated traction forces with the matrix are more potent 

regulators of stem cell fate than shape alone94. 

2.3.1.3 Extrinsic Physical Cues 

In load-bearing organs like bones, the tissue is subjected to complex spatiotemporal 

patterns of force and deformation. Stress and strain of the tissue by external biomechanical 

loads is transferred to cells and microvasculature primarily in the form of compressive and 

tensile mechanical strains of the underlying matrix, interstitial fluid flow-induced shear 

stress and hydrostatic pressure.  
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Cytoskeletal tensile strain can be transmitted to a cell by stretch of the underlying 

ECM and is known to affect MSC phenotype. However, the role of strain in osteogenesis 

has not been fully elucidated, as independent studies have shown that tension can induce 

upregulation of bone95–97, muscle98 and fibrous99,100 tissue markers in MSC’s. 

Sumanasinghe et al. found that human MSC’s cultured in 3D collagen matrices subjected 

to daily bouts of cyclic 10% uniaxial strain for 7 days or 14 days upregulated BMP-2 

mRNA expression, while unstrained cells did not95. Kearney and colleagues subjected rat 

MSC’s cultured on a type I collagen-coated silicone substrate to 2.5% uniaxial cyclic 

tensile strain for 14 days and observed reduced MSC proliferation and increased expression 

of osteogenic genes including core-biding factor alpha 1 (Cbfa1/Runx2), Col I, OC, and 

BMP-296. Using biochemical inhibitors, they identified that SA-CAT’s were required for 

increased Col I expression and that kinases ERK, p38 and PI3K each contribute to the 

observed increase in BMP-2. These findings indicate that multiple parallel signaling 

mechanisms mediate cellular responses to tension96.  

Tensile strain can also enhance MSC differentiation down other tissue lineages. 

Subramony and colleagues cultured human MSC’s on poly(lactide-co-glycolide) nanofiber 

scaffolds with either aligned or unaligned fiber matrices and applied 1% cyclic tensile 

strain99. Differing from the findings of the previous studies, cells seeded on aligned 

matrices and subjected to tensile loading increased production of fibroblastic or tendon-

related markers including Col I, Type III collagen (Col III) and tenascin-C after 14 and 28 

days with no significant increases in osteogenic markers99. Chen et al. found that tensile 

strain can induce fibrogenesis or osteogenesis in human MSC’s cultured on Col I-coated 

substrates in a strain magnitude-dependent fashion101. Cells exposed to 3% cyclic tensile 
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strain for a period of 8 hours increased expression of osteogenic genes. However, cells 

subjected to higher magnitude strains (10%) for 48 hours showed increased expression of 

tendon-related markers101. Jang and colleagues have also shown magnitude-dependence to 

tensile strain in rabbit MSC’s on fibronectin-coated polydimethylsiloxane (PDMS) 

substrates98. Cells subjected to higher cyclic strains (10%) for 72 hours increased 

production of smooth-muscle markers while cells exposed to identical conditions but 

reduced (3%) strain expressed more osteogenic markers98. These findings support that 

relatively large magnitude, sustained tensile strains tend to promote fibroblastic or 

myogenic differentiation of MSC’s, whereas lower magnitude or shorter duration tension 

supports osteogenic differentiation.  

Compressive deformation of a 3D ECM creates a complex micromechanical 

environment which can result in direct strain of cells, increased hydrostatic pressure, and 

extracellular fluid flow102. The individual contribution of each type of mechanical 

perturbation is difficult to uncouple experimentally in 3D cultures which better replicate 

the in vivo niche. Nonetheless, several studies have found evidence that direct, unconfined 

compression of 3D hydrogels enhances chondrogenic differentiation of MSC’s103. Huang 

and colleagues suspended rabbit MSC’s in 2% agarose, with or without administration of 

the chondrogenic cytokine transforming growth factor-β1 (TGF-β1), and subjected the gels 

to daily sessions of 10% compressive strain104. They observed increased expression of 

chondrogenic markers collagen type II (Col II) and aggrecan in mechanically stimulated 

MSC’s with no significant differences due to the administration of exogenous TGF-β1, 

indicating compressive strain is a chondrogenic stimulus independent of biochemical 

supplements in vitro104. Other studies of encapsulated MSC’s have supported that exposure 
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to TGF-β1 or compressive loading are both chondrogenic, but instead have shown that 

TGF-β1 is a significantly more potent stimulus105,106. To better elucidate the intracellular 

mechanism facilitating compression-induced chondrogenesis, Pelaez et al. cultured human 

MSC’s within a fibrin hydrogel with our without administration of an inhibitor of the ERK 

1/2 pathway, a widely conserved signaling pathway modulated by integrin adhesion with 

the ECM107,108.  Gels were dynamically compressed immediately followed by 

measurement of osteogenic and chondrogenic markers. They found that inhibition of the 

ERK 1/2 pathway abrogated the chondrogenic response observed in cells loaded without 

the inhibitor. Instead, blocking the ERK 1/2 pathway promoted osteogenic marker 

expression. Thus, it appears that dynamic compression-induced chondrogenesis or 

osteogenesis is in part regulated by activation of the ERK 1/2 pathway, thereby promoting 

cartilage formation108. Likewise, Steward and colleagues showed that integrin adhesion of 

MSC’s with the ECM at least in part mediates chondrogenic differentiation in response to 

dynamic compression109. Based on these studies, it is clear that compressive stimuli 

regulate the differentiation profile, and particularly chondrogenesis, of MSC’s.  

Mechanical stretch due to hemodynamic forces have long been to known to regulate 

vascular structure and function110. Increasing evidence has also elucidated that stretch 

mediated by the external matrix or substrate influences the collective behavior of 

endothelial cells, capillaries and microvascular structures. Zheng et al. showed that rat and 

human endothelial cells seeded in 2D on Col I increased production of pro-angiogenic 

receptors in response to cyclic tensile strain111. Thus, mechanical stretch can increase 

endothelial cell sensitivity to paracrine VEGF signaling to promote vascular growth. Joung 

and colleagues cultured vascular endothelial cells in a 3D collagen gels subjected to cyclic 
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tensile stretch and observed that cord-like cellular structures formed perpendicular to the 

stretch direction112.  

To better understand the effect of micromechanical stimuli on multicellular 

structures with a 3D vascular morphology, Krishnan and colleagues cultured microvessel 

fragments within 3D rectangular collagen gels and subjected the constructs to four different 

mechanical boundary conditions: 6% static stretch, 6% cyclic stretch (1 Hz, 12 hours per 

day), unstretched but anchored, and free gel60. Each of the three anchored or stretched 

construct groups had significantly more vessels per construct compared to the free gel, 

indicating tension formed by external stretch and contraction of the gel enhanced 

microvascular growth. Interestingly, they found that the microvessel fragments in these 

same three groups preferentially oriented themselves parallel to the direction of stretch60. 

This seemingly contradictory result to cellular level studies may be due to enhanced contact 

guidance provided by the surrounding collagen matrix with the multicelluar microvessel 

fragments, since the ECM tends to align in the primary direction of stress113. Thus, the role 

of mechanical cues like matrix deformation in more geometrically complex models 

recapitulating in vivo tissue architecture can be drastically different than simpler systems. 

Strikingly little is known about the role of compressive strains on endothelial cells and the 

microvasculature, which is the primary stimulus induced by functional loading of bone 

defects. Future work to understand how compression or shear of the pericellular matrix 

influences neovascular growth is critical to inform novel approaches to improve 

vascularization in regenerative processes like bone repair. 

As mentioned briefly, the application of cyclic external loads also induces 

oscillatory patterns of interstitial fluid flow away from regions of large compressive 
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deformation, like a sponge releasing water when squeezed67. This fluid flow exerts shear 

stress on the apical surface of adhered cells within the tissue, activating membrane 

mechanosensors like the primary cilia which in turn transduce the cytoskeleton80. 

Additionally, perfusion of the cells increases convective transport of nutrients throughout 

the ECM. Fluid-induced shear force on the cell surface is related to the magnitude and the 

velocity of the external load application, and is widely accepted as a principal extracellular 

stimulus regulating the maintenance and adaptation of native bone to biomechanical 

loads63,70. Fluid-flow induced shear is also a critical determinant of the function of MSC’s. 

Meinel et al. showed that fluid flow increased calcium and ALP in human MSC’s on 

collagen scaffolds, and that the degree of osteogenesis is dependent on the flow pattern 

(spinner flask or perfused reactor) and scaffold degradation rate114. Hoey et al. 

demonstrated that OFF-induced osteogenesis in MSC’s is partially facilitated by the 

primary cilia80. Notably, inhibiting primary cilia formation significantly increased 

proliferation in the presence of flow, indicating cilia regulate the extent of cell proliferation 

in the presence of mechanical stimuli80.  

Similarly, external fluid shear stress is also known to effect the proliferation and 

migration of endothelial cells, although most research has focused on steady rather than 

oscillatory flow patterns. Ando and colleagues were the first to show that endothelial cell 

proliferation is significantly enhanced in proportion with the intensity of the applied shear 

stress115. Li et al. demonstrated that endothelial cells subjected to flow migrate in the 

direction of the flow stimulus by successively forming focal adhesions at the front of the 

cell and disassembling focal adhesions at the rear116. For bone tissue engineering, the 

benefits of fluid flow on osteogenic differentiation and endothelial proliferation and 
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migration is one advantage of highly interconnected porous architectures for graft 

substitutes117. OFF-induced osteogenesis has also been leveraged by in vitro scaffold 

preconditioning in perfusion bioreactor culture platforms118. 

Local changes in hydrostatic fluid pressure (HP) due to tissue deformation are also 

known to control MSC phenotype. Numerous in vitro studies of MSC in aggregate, pellet, 

and hydrogel-encapsulated cultures have established that cyclic HP enhances expression 

of chondrogenic genes, proteoglycans and collagen119–121. The mechanosensory 

mechanism mediating this response is unclear, though intracellular and extracellular ion 

transport is known to be responsive to changes in HP, suggesting a role for stretch-activated 

ion channels122–125.  

In vitro models have established that all cells, including MSC’s and endothelial 

cells, are highly sensitive to physical interactions with their surroundings. These 

mechanobiological interactions regulate cellular processes critical to bone defect healing. 

The mechanical environment of a cell is primarily determined by intrinsic properties of the 

underlying substrate, the configuration of cell adhesions, and the external stresses and 

strains transmitted by the underlying substrate and interstitial fluids. During bone 

regeneration, devices like implants, scaffolds, and fixation equipment govern these 

physical factors, indicating that mechanical or architectural alterations could appreciably 

improve or impair healing outcomes. Thus, observations gleaned from these in vitro studies 

of cell mechanobiology motivate further investigation in more spatiotemporally complex, 

clinically relevant in vivo systems. 

2.3.2 Tissue-Level Mechanobiology of Bone Regeneration 
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In vivo models of bone regeneration are critical to establish the relative importance 

of mechanical stimuli on functional healing outcomes. Numerous studies have explored 

the effects of different types of loading on fracture and large bone defect healing. However, 

the ability to experimentally measure local mechanical stresses and strains in vivo is 

challenging. The experimental framework to study mechanical stimulation of bone healing 

is not standardized, making it difficult to compare findings across different studies. 

Generally, researchers transfer mechanical loads through a bone defect by three methods: 

(1) using a defined loading protocol transmitted by an external fixation device (2) using 

fixation devices that allow different ranges of deformation (3) using fixation devices 

possessing different apparent stiffnesses126. The latter two techniques do not allow active 

control of the stress or strain exerted on the defect region, but do permit the use of internal 

fixation devices.   

The vast majority of experimental data investigating mechanical stimulation on 

bone healing is for fracture, whereas the literature on large defect regeneration is more 

limited.  The fracture healing literature has established that certain levels of early 

interfragmentary movement promote formation of an unmineralized callus and enhanced 

endochondral bone healing50,127–130. Increased callus formation can have a beneficial or 

detrimental effect on tissue growth and maturation, with a strong dependence on the 

magnitude, timing, and duration of the loading. Goodship and Kenwright were the first to 

show that controlled cyclic axial compression protocol initiated at day 0 (500 cycles/day, 

33% maximum strain/360 N maximum load) in a sheep 3mm tibial osteotomy model 

enhanced initial callus formation, increased tibia axial stiffness at 8 in 10 weeks in vivo, 

and increased tibia torsional stiffness at 12 weeks ex vivo127.  
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The post-operative timing of load transfer is also critical to the healing outcome. 

Late load transfer has been shown to enhance the rate of bone remodeling and maturation 

after defect bridging has occurred. Gardner observed that non-invasive cyclic compression 

(2 N peak load, 100 cycles per day) in a mouse tibial osteotomy from day 0 inhibited callus 

formation and ultimately prevented healing.  Notably, a four day delay in compressive 

loading enhanced bone healing131. While these findings may appear contradictory to the 

prior reports of Goodship and Kenwright, an intramedullary nail with significantly reduced 

mechanical resistance to axial and torsional loads was used in the mouse model, 

highlighting the importance of fixation strategy. Multiple fracture and large bone defect 

models in the rat and mouse have also supported the functional healing benefit of increased 

load transfer at 3-4 weeks by utilizing a dynamic fixation system whose axial stiffness can 

be reduced at a given time point, permitting larger compressive loads through the 

tissue34,52,62,132.  

To elucidate the role of uniaxial compressive stimuli in a critically-sized 6 mm 

rodent femoral defect model, Boerckel and colleagues showed that load transfer at 4 weeks 

after initial mineral bridging significantly enhances bone volume at 8 weeks and torsional 

stiffness at 12 weeks when treated with a graft substitute consisting of an alginate hydrogel 

delivering 5 µg BMP-2 and a dynamic internal fixator62. Qualitative histological 

observation demonstrated that loaded defects had increased cartilage formation at 5 weeks 

and an isotropic collagen microstructure characteristic of woven bone at 12 weeks, 

demonstrating that the chondral and remodeling phases of healing is prolonged in 

mechanically stimulated large bone defects in a manner analogous to fracture healing.  In 

a separate study, Boerckel et al. studied the effect of delayed mechanical loading on 
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neovascular growth in an 8 mm defect model and observed that compressive load transfer 

at 4 weeks increases the number of large diameter blood vessels exceeding 300 µm in 

diameter and reduces the number of small vessels less than 100 µm in diameter within and 

around the defect region34. From these data it was hypothesized that mechanical stimulation 

may rupture small vessels while concurrently enhancing arteriogenesis of larger vessels in 

and around the newly regenerated bone. Notably, immediate post-surgical load transfer in 

defects treated with 2.5 µg BMP-2, significantly reduced bone formation by 75% and 

vascular volume by 50% in defects. However, the mechanical conditions permitted by the 

fixator throughout the study were unknown. Nevertheless, it appears that an initial phase 

of tissue maturation and vascular infiltration must be achieved before relatively large 

magnitude biomechanical loads can be transferred to the tissue, though a quantitative 

understanding of what constitutes relatively large is yet to be determined.  

Glatt and colleagues treated a 5 mm rodent femoral defect with a collagen sponge 

delivering 11 µg BMP-2 and a dynamic external fixation system133. Interestingly, they 

found that initially affixing a relatively compliant fixator then increasing its stiffness at 2 

weeks enhanced maximum torque to failure of the femur at 8 weeks. The bone and callus 

cross-sectional area of femurs secured with the dynamic fixation scheme was significantly 

lower than femurs secured with either high or low stiffness fixators throughout. Qualitative 

examination of micro-CT images indicated that dynamic fixation produced healed defects 

with thicker cortical bone and less trabecular bone compared to the other fixation systems. 

When comparing the experimental design of the preceding rodent studies, it is important 

to note that Glatt and Schwarz utilized unilateral defects whereas bilateral were studied by 

Boerckel34,62,133,134. This may have affected the ambulatory load-share transferred through 
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the operated limb. Additionally, the transition in the apparent axial stiffness of the “stiff” 

to “compliant” fixation configurations in the two studies utilizing dynamic fixation were 

dissimilar: approximately 25 to 30 N/mm for Glatt, and 8.4 to 349.5 N/mm for 

Boerckel26,135. Therefore, the relative change in the tissue mechanical environment 

introduced by actuation of the fixation system was drastically different between the two 

studies.  Hou et al. studied a critically sized femoral defect in goats secured with either a 

stiff or spring-loaded intramedullary rod treated with demineralized bone matrix seeded 

with goat MSC’s136. The uniaxially compliant fixation system increased callus formation 

and blood flow at early time points and improved torsional stiffness and strength at 8 and 

16 weeks when compared to the static fixation system. These studies have demonstrated 

that a controlled compressive loading regimen can act as an anabolic stimulus to promote 

repair in large bone defects treated with cells or biologics. Analysis of the mechanical 

boundary conditions imposed by the fixation system and scaffold over time is needed to 

elucidate the underlying mechanical cues modulating bone and vascular growth in 

disparate animal models. 

The regulation of bone healing by static tension is well established by the clinical 

practice of distraction osteogenesis, in which incremental tensile strains are introduced into 

an osteotomy gap by an external fixator to promote bone lengthening11,137,138. The 

distraction technique consists of a controlled surgical osteotomy, followed by up to a week 

of static rest. Then, the external fixator is actuated to gradually separate the osteotomy ends 

1 mm per day in four 0.25 mm increments. Distraction proceeds for 1-2 weeks or until the 

desired length is achieved, followed by locking the fixator to permit consolidation of the 

gap over 8-12 weeks139. The application of a small tensile strain appears to promote robust 



 29 

intramembranous ossification and vascularization, while inhibiting cartilage 

formation140,141. Matsubara and colleagues demonstrated that distraction induces bone 

formation through cooperative secretion of angiogenic and osteogenic factors between 

mesenchymal cells in the defect region and vascular tissues in the surrounding muscle141. 

The healing response is highly sensitive to the mechanical environment produced by the 

distraction rate142. Increasing the distraction rate to 2 mm per day can result in fibrous non-

union, bone weakening, soft tissue contracture and nerve lesions143. Conversely, decreasing 

the distraction rate can result in premature bridging of the gap11,137. Evidently, a relatively 

narrow range of small static tensile strains promotes intramembranous bone formation 

during distraction osteogenesis. The addition of short bouts of compression alternating with 

the standard distraction protocol, nicknamed the “accordion technique,” has been 

investigated in an effort to simultaneously promote endochondral and intramembranous 

healing in defects with delayed callus formation139,144. Small clinical reports of the 

accordion maneuver have shown some anecdotal evidence of efficacy, but rigorous studies 

to elucidate any mechanistic changes in healing due to the addition of compression is 

lacking145. 

Bending, torsion and shear deformations generate stress distributions with 

significantly higher spatial complexity, and their effect remains controversial. Augut et al. 

compared pure shear versus compression up to 1.5 mm of a 3 mm tibial osteotomy in sheep. 

Shear significantly attenuated healing compared to axial motion, reducing defect bridging 

by 70%, callus area by 36%, and stiffness by over 60%146. Conversely, Bishop et al. 

reported improved intercortical mineralization in a 2.4 mm ovine osteotomy subjected to 

rotational shear compared to static or axially compressed specimens147. Thus, bone defects 
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appear highly sensitive to shear stimuli, which can dramatically attenuate healing or result 

in tissue failure if excessive loads are applied. To improve our understanding of how local 

mechanical signals regulate tissue compositional changes in vivo, specimen-specific 

experimental measurements of external loads and tissue composition acquired at multiple 

time points (or continuous local measurements) are needed.   

2.4 Implantable Sensors for Orthopaedic and Regenerative Applications 

Sustained technological advancements in microelectromechanical systems 

(MEMS) and short-range wireless communication systems have rapidly refined biomedical 

sensor technologies, motivating research to explore implantable sensor based approaches 

to investigate an array of clinical diseases148–153. A large body of research has demonstrated 

various biomedical applications of sensors, but most efforts have focused on clinical 

monitoring rather than preclinical applications154,155.  Implantable sensors vary widely in 

their designs and fabrication techniques, but the endpoint sensing modalities include 

biopotential156, electrical impedance157, pressure158,159, flow160,161, strain162, oxygen163, 

pH157 and glucose164,165. Clinical diagnostics have greatly benefited from implantable 

sensors, as they enable in situ monitoring of physiological metrics to track the progression 

of or recovery from a disease. Sensing mechanisms for implantable MEMS sensors include 

mechanical158, optical159, magnetic166, and electrochemical detection methods163, as well 

as combinations thereof, which underscore the appeal of MEMS technology; implantable 

MEMS can transduce a physiological input into an electrical output, oftentimes requiring 

only a small sample or stimulus.  
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Indeed, a number of sensor modalities could provide valuable insight into healing 

processes including pressure for intraocular, intracranial, and intravascular pathologies, pH 

and temperature for infections, glucose for diabetes, and even specific relevant biomarkers 

for inflammation, matrix production, or vascularization. Implanted  as well as externally-

mounted probes and sensors have been implemented in the past, but have typically been 

limited to large animals due to the size constraints imposed by cheaper and higher-

throughput pre-clinical rodent and mouse models50,149,167–169. However, miniaturization 

coupled with novel passive and active sensor designs have now progressed to the point that 

sensing platforms can be readily fabricated at feasible size scales for small animal model 

applications.  

Once deployed, microfabricated sensors can wirelessly transmit quantitative 

measurements in real-time, eliminating the need to anesthetize the animal or disrupt normal 

ambulatory activities. Thus, the frequency and duration of data acquisition is primarily 

limited by the power consumption of the sensor and wireless telemetry relative to the 

capacity of the power source (implanted battery, if active circuity is utilized). The data 

acquired from implanted sensors quantify the temporal profile of the parameter of interest, 

but there are limitations to the scale and resolution that spatially heterogeneous 

environmental factors can be measured due to the size of the probe since a locally 

positioned sensor or even a sensor array can only provide a discrete number of spatial 

measurement(s). To better describe spatial variations throughout a tissue, sensor 

measurements could also be applied as a validated time-varying boundary condition at their 

respective position(s) for image-based computational models of healing tissues, better 

capturing spatial heterogeneity.  The potential of implantable sensors to longitudinally 
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monitor important environmental cues during regenerative processes in pre-clinical models 

could aid in the rational design and evaluation of novel therapeutics and advance 

understanding of the fundamental principles of mechanobiology170.  Identifying the utility 

of biomedical sensor modalities, we concluded that the development of a wireless, 

implantable strain sensor would help to improve our understanding of how 

mechanobiological processes are regulated in vivo, and how they may be exploited to 

enhance bone repair.  
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CHAPTER 3. WIRELESS IMPLANTABLE SENSOR FOR NON-

INVASIVE, LONGITUDINAL QUANTIFICATION OF AXIAL 

STRAIN ACROSS RODENT LONG BONE DEFECTS 

3.1 Introduction 

Fracture healing is a dynamic physiological process requiring rapid and highly-

coordinated morphogenesis of numerous cell populations to restore functional bone tissue. 

While the majority of the 12 million annual fractures in the United States heal without 

complications, 5-10% of fractures do not heal in a timely fashion and require lengthy 

clinical interventions involving multiple surgeries before function is restored2,3,11,171. To 

address this unmet clinical need, much research has been devoted to understanding 

mechanisms of fracture non-union and to developing novel therapeutic strategies to 

stimulate bone repair. As the primary load bearing tissue in the human body, bone 

development, maintenance, and regeneration are remarkably sensitive to mechanical 

cues172–174. Numerous studies have identified the critical role of local mechanical cues in 

tissue differentiation, formation, and functional restoration of bone 

defects34,49,50,62,126,127,130,175,176. Due to these findings, mechanical stimulation has long been 

sought after as a putative target to stimulate endogenous bone healing mechanisms.  

Before moving to costly and resource intensive studies in large animals, the rodent 

femoral defect model has emerged as a primary pre-clinical test bed to evaluate novel 

therapeutics—including drugs, biologics, and scaffolds—for  the treatment of load-bearing 

bone defects177,178. In this model, various fixation systems have been utilized with varying 
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levels of load-sharing across the defect region. Ultimately, the mechanical environment 

experienced locally by cells in the defect milieu regulates the healing response179. Given 

the transient nature of bone repair, these tissue-level mechanical cues evolve rapidly with 

time after injury and are highly dependent on the specific injury model and treatment under 

investigation. However, the biomechanical environment in these models has rarely been 

analyzed and the multi-scale role of mechanical stimuli in the observed healing response 

remains poorly understood.  

 To elucidate the role of mechanical stimuli in skeletal healing, there is a need to 

quantify the mechanical environment experienced by the healing tissue during routine in 

vivo activities. However, standard techniques for quantitatively assessing the mechanical 

environment in pre-clinical animal models are limited to external fixation systems 

periodically affixed to mechanical loading instruments which impart a prescribed load 

stimulus to the defect49,134,180, or computational image-based finite element (FE) 

simulations based on estimated mechanical boundary conditions62. The boundary 

conditions applied to such models are typically based on broad assumptions because they 

are challenging to measure non-invasively and change throughout the progression of 

healing. Consequently, neither technique directly captures loading patterns due to 

functional activities such as walking.  Recognizing these limitations, we reasoned that the 

ability to directly and longitudinally measure the mechanical environment during fracture 

healing would enable quantification of the mechanical cues produced in specific bone 

defect models, and provide a more detailed understanding of mechanical stimuli that can 

promote or impair functional healing of skeletal injuries. 
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Sustained technological advancements in microelectronics and short-range wireless 

communication systems have rapidly refined biomedical sensor technologies, thus 

motivating research to explore implantable sensor based approaches to monitor an array of 

clinical diseases148–151. In particular, the introduction of small and inexpensive passive and 

active telemetry systems show promise for rapid deployment into pre-clinical models. The 

potential of implantable sensors to longitudinally monitor important environmental cues 

during regenerative processes in pre-clinical models could aid in the rational design and 

evaluation of novel therapeutics and advance understanding of the fundamental principles 

of mechanobiology170. To achieve this, we set out to engineer an implantable strain 

sensor—with a sufficiently small footprint to be utilized in the rodent femoral defect 

model—that can wirelessly transmit real time measurements of mechanical strain across a 

bone defect to a computer.  

To obtain accurate measurements, an implantable sensing device should possess 

key functional characteristics including sufficient sensitivity and signal resolution to detect 

relevant changes in the parameter of interest (e.g. mechanical strain), limits of detection 

well outside the physiological dynamic range, and stable electromechanical characteristics 

throughout implantation under repeated functional loading and submersion in bodily fluids. 

In addition, telemetry must possess sufficient signal strength for wireless transmission 

through bodily tissues and an adequate power source for long-term data acquisition. The 

packaged device must be biocompatible, and preferably be compatible with longitudinal 

imaging techniques (e.g. radiography). Furthermore, the implant must have an adequate 

envelope for implantation in pre-clinical rodent models while maintaining mechanical 

durability to withstand surgical deployment and animal activity. Finally, a data acquisition 
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system requiring minimal external hardware for logging wireless measurements to a PC is 

desirable. These characteristics informed our approach to the design of the device and the 

test methods used to characterize and validate its capabilities. 

The objective of this chapter was to develop and characterize an implantable strain 

sensor for non-invasive, real-time monitoring of axial strain across a rodent femoral defect 

due to functional activity. Extensive ex vivo and in vivo validations were conducted to 

evaluate the device to meet the aforementioned functional criteria. Herein, we present the 

design, characterization, and in vivo evaluation of the device’s capabilities for 

quantitatively interrogating functional biomechanics post-fracture.  

3.2 Methods 

3.2.1 Strain Sensor Device Design 

The implantable device consisted primarily of two components: (1) an internal 

fixation plate instrumented with a strain sensor and (2) a stacked board processing unit 

enabling sensor functionality and wireless data transmission. The modular fixation plate 

used to stabilize the rat femoral defect, as reported in previous studies, consists of a 

polysulfone segment which acts as the fixator and two stainless steel plates which interface 

the polysulfone segment with each end of the femur (Figure 2) 181,182. The radiolucent 

polysulfone segment was modified to accommodate a single-element 350 Ω micro strain 

gage (Vishay PG EA-06-125BZ-350/E, Raleigh, NC) adhered into a recessed pocket on 

the back side by a two-component epoxy (Vishay PG M-Bond AE-10) while permitting in 

vivo radiographic imaging of the healing defect. Insulated lead wires running to the 

processing unit were soldered to the strain gage pads, cannulated through medical grade 
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silicone tubing, and routed into a recessed channel on the side of the plate. To protect the 

sensor from fluid infiltration and mechanical impingement during surgery, the wire channel 

and pocket containing the strain gage was potted with a biocompatible (ISO 10993) light-

curing sealant (Dymax 1072-M, Torrington, CT) and shielded by thin (380µm thick) laser-

cut Teflon covers. 

 

Figure 2: Implantable strain sensor (A) Exploded view schematic of instrumented 

internal femoral fixation plate with sensor adhered in recessed pocket on plate and lead 

wires routed through machined slot to the transceiver pack mounted in the abdominal 

cavity. Note: plate and transceiver schematics are not to same scale. (B) Photograph of 

instrumented plate before surgical implantation. 

The stacked chip processing unit consisted of an active wireless network system 

(Texas Instruments EZ430-RF2500, Dallas, TX) featuring an ultra-low power 

microcontroller and 2.4 GHz RF transceiver. The network chip was interfaced with a 

custom signal conditioning circuit including a Wheatstone bridge, low pass filter, two-

stage amplifier, voltage regulator, and 240 mAh lithium coin cell battery (Energizer CR-



 38 

2032, St. Louis, MO) permitting approximately 33 total hours of active data transmission 

at 7-8 Hz. After connecting the circuit to the sensor lead wires, the entire stacked chip was 

housed in a custom 3D printed pack (Stratsys RGD720, Eden Prairie, MN) and 

encapsulated with the same biocompatible sealant used for the strain sensor. Wireless 

sensor data were acquired in real-time via a paired transceiver and USB plug-in mounted 

to a remote computer using a custom MATLAB graphical user interface (Mathworks, 

Natick, MA). 

3.2.2 Electromechanical Characterization 

The electromechanical characteristics of three instrumented fixation plates were 

evaluated ex vivo to assess the sensor’s sensitivity to detect strains due to physiological 

ambulatory loads and robustness to sustain long-term measurements in the in vivo 

environment. In order to simulate the eccentric bending loads placed on the internal 

fixation plates during functional loading, each end of the plates were attached to pre-drilled 

and tapped aluminum blocks approximating the length and cross-sectional area of the distal 

and proximal ends of the femur post-osteotomy using the same screws used to anchor the 

plate to the femur during surgery (Figure 3A). After assembly, a mechanical testing 

instrument (Electroforce 3220, TA Instruments, New Castle, DE) was used to apply 

cyclical compressive axial loads to the aluminum block-fixation plate construct. The 

constructs were pre-loaded to -2.5 N and tested for 25 cycles by a 0.5 Hz sinusoidal 

waveform to various magnitudes under displacement control, creating tensile local strains 

on the back surface of the fixation plate to which the strain sensor was adhered. Each test 

condition was repeated in triplicate for all three devices. The maximum displacement 

magnitude for each test was selected to achieve resultant axial load magnitudes of 16-20 
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N, which was the estimated peak axial force on the femur of a 250 g rat based on kinetic 

analysis of rodent gait183. In addition to testing the sensor with an empty gap between the 

two aluminum blocks, cylindrical defect surrogate materials of 40A polyurethane rubber 

and Teflon (McMaster-Carr, Douglasville, GA) were placed to fill the gap between the 

blocks to mimic the stiffness of  the bone defect region during different stages of healing, 

including the proliferating soft tissue callus stage and the eventual mineralization stage 

(Figure 3B; Rubber: elastic modulus = 4.766 ± 0.1153 MPa, axial stiffness = 19.26 ± 

0.3646 N/mm; Teflon: elastic modulus = 319.3 ± 2.100 MPa, axial stiffness = 681.3±39.11 

N/mm). Throughout testing, the local axial strain along the sensor region of the fixation 

plate was measured by laser extensometer (LX-500, resolution = 1µm, MTS, Eden Prairie, 

MN) while simultaneously recording the differential voltage output of the strain sensor to 

validate the measurements (Figure 3C). 

 

Figure 3: Eccentric cyclical compression testing (A) Experimental set-up for eccentric 

cyclical compression testing of instrumented fixation plates. (B) Elastic moduli of 

surrogate defect materials, which are placed in the gap between the loading blocks to 

simulate the progression of mechanical properties during bone defect repair. (C) Example 

output during a cyclic test, where local strain in the sensor region as measured by laser 

extensometer is plotted alongside the corresponding voltage signal from the sensor. 
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3.2.3 Fatigue Testing 

In order to assess the durability of the sensor to endure repeated flexural strains due 

to ambulatory loading, three plates were cyclically loaded in three-point bending to achieve 

the maximum anticipated local axial strain on the sensor in vivo (6800 µε). Loads were 

applied for 10,000 cycles at 1 Hz while recording the output from the sensor.  

3.2.4 Biostability 

To ensure the electromechanical characteristics of the sensor were stable under 

prolonged exposure to bodily fluids, instrumented fixation plates (n=2) were submerged in 

phosphate buffered saline (PBS) and placed in an oven at 37 °C for 4 weeks184. Prior to 

submersion and at weekly intervals thereafter, the sensitivity of the strain sensor was 

quantified by loading the fixation plate in three-point bending over a range of physiological 

strain magnitudes on the sensor from 300 to 6800 µε. 

3.2.5 Surgical Procedures 

All procedures were approved by the Georgia Institute of Technology Institutional 

Animal Care and Use Committee (IACUC protocol A14040). After arrival, rats were single 

housed for 1–2 weeks after procurement for acclimatization before experimental use, with 

unlimited access to food and water under a 12:12 hour light:dark cycle throughout the 

study. Unilateral 6 mm segmental defects were surgically created in the femurs of 8 month 

old male retired breeder Sprague Dawley rats weighing approximately 550-650 grams 

(n=2, CD, Charles River Labs, Wilmington, MA) under isofluorane anesthesia (1.5-2.5%) 

using a modification of previously established procedures to implant the transceiver pack 
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in the abdominal cavity185. Briefly, the left femur was exposed from an anterior approach 

using blunt dissection. Next, the abdominal cavity was exposed by a 2 cm midline skin 

incision initiating 1 cm below the sternum (xiphoid) followed by an incision of the 

abdominal musculature (on the linea alba) and peritoneum, avoiding the sub-diaphragmatic 

organs. A keyhole incision was made through the abdominal wall superior to the left 

inguinal ligament and the fixation plate and associated wire were passed through the 

keyhole into the hindlimb compartment before positioning the transceiver pack into the 

abdominal cavity. The peritoneum and abdominal musculature were then sutured and the 

skin was closed with wound clips. The keyhole incision was carefully sutured with a loose 

loop around the traversing wire to prevent herniation while permitting translation of the 

wire during joint movement. The fixation plate was mounted to the anterolateral aspect of 

the femur using 4 screws and a critically sized 6 mm defect was created in the mid-

diaphysis using an oscillating saw and left untreated. A subcutaneous injection of 

sustained-release buprenorphine was administered for analgesia prior to surgery.  

3.2.6 Wireless Data Acquisition during Treadmill Walking and High-Speed Radiography 

One week prior to surgery, animals were trained to walk on a rat treadmill 

(Metabolic Modular Treadmill, Columbus Instruments, Columbus, OH) at slow 

ambulatory speeds ranging from 0.08-0.16 m/sec. A custom radiographic imaging system 

consisting of bi-plane X-ray generators and X-ray image intensifiers (Imaging Systems & 

Service, Inc., Painesville, OH) modified with the addition of high-speed digital video 

cameras (Xcitex XC-2M, Woburn, MA) was utilized to obtain high-speed images of the 

animal’s skeleton during walking periods. Three days after surgery, animals were imaged 

(100 frames/s; Camera 1 – 42 kV, 80 mA, 5 ms exposure; Camera 2 – 40 kV, 80 mA, 5 ms 
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exposure) while walking on the treadmill at 0.1 m/sec. Throughout all treadmill activities, 

strain sensor readings were recorded wirelessly at 7-8 Hz.  

3.2.7 Statistical Analysis 

All data are presented as mean ± standard deviation unless otherwise stated. 

Multiple group comparisons were assessed by analysis of variance (ANOVA), with 

pairwise comparisons analyzed using Tukey’s post-hoc test (Graphpad Prism 7, San Diego, 

CA). A one-sample two-tailed Student’s t-test was utilized to evaluate fatigue testing 

results. A p-value < 0.05 was defined as a statistically measurable difference. 

3.3 Results 

3.3.1 Electromechanical Characterization 

The results of off-axis electromechanical characterization are summarized in Figure 

3 and Table 1. Sensors exhibited high linearity (Table 1; r2=0.993 ± 0.017, p<0.0001 all 

tests) and distinct sensor outputs for each test condition, (Figure 4; p<0.001 all 

comparisons), demonstrating the sensor had sufficient sensitivity to detect changes in axial 

strain on the fixation plate under loading at different healing stages (with different stiffness 

surrogate defect materials). Taking into account op-amp gain and excitation voltage used 

for empty and rubber surrogate mechanical testing, the overall sensitivity of the device was 

0.287±0.035 µV/V/µε. Sensitivity under Teflon surrogate test conditions could not be 

computed as local plate strains were at or below the resolution of the laser extensometer 

and could not be reliably measured.  
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Table 1: Eccentric cyclical compression output summary. Sensor output and linear 

regression results for electromechanical characterization testing. 

Sensor Surrogate Defect Material Sensor Output (mV/N) r
2 p-value 

1 Empty 28.2 0.999 5.16E-32 
2 Empty 28.1 0.999 6.02E-34 
3 Empty 30.0 0.999 4.47E-38 
1 Rubber 21.3 0.998 1.64E-18 
2 Rubber 18.8 0.999 3.32E-26 
3 Rubber 19.7 0.999 4.07E-23 
1 Teflon 2.62 0.998 7.55E-15 
2 Teflon 0.94 0.947 1.06E-07 
3 Teflon 2.74 0.999 6.84E-17 

 

Figure 4: Strain sensor output is highly linear and sensitive to defect stiffness (A) 

Sensor output plots for a range of physiological load magnitudes. The color of the dot 

represents a different sensor and the color of the line represents a different defect surrogate 

material. Cyclical tests were repeated in triplicate for each loading case, and error bars 

depicting standard deviation are included on all data points. (B) Normalizing the voltage 

output of the sensor by applied force demonstrates the sensor is able to discern changes in 

the stiffness of the defect region, and therefore appears promising to detect progression of 

bone repair under physiological load conditions, *** p<0.001, ANOVA, all comparisons. 
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 To quantify the lower limit of detection of the device, we computed the signal-to-

noise ratio (SNR) of the mechanical testing output and performed linear regression as a 

function of axial strain on the fixation plate (Figure 5, Table 2). A limit of detection cut-

off criteria of 20 dB (corresponding to a signal amplitude-to-noise ratio of 10-1) was 

applied and linear regression computed that 300 µε was the minimum detectable strain 

amplitude on the fixation plate that would be utilized in analysis of in vivo testing. Strains 

of this magnitude were only observed in Teflon surrogate defect testing, suggesting the 

sensor possessed sufficient resolution to accurately characterize the strain due to functional 

loading until and potentially after complete and robust bridging of the entire bone defect 

occurred. 

 

Figure 5: Limit of detection analysis Regression of signal to noise ratio (SNR) of sensor 

output versus the local axial strain of the sensor region as measured by laser extensometer. 

Employing a limit of detection cut-off criteria of 20 dB (corresponding to a signal 

amplitude-to-noise ratio of 10-1) demonstrates the sensor can reliably detect plate strains 
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as low as 300 µε. These data indicated the sensor possessed sufficient resolution to obtain 

measurements until and potentially after robust bridging of the bone defect occurred. 

Table 2: Limit of detection analysis summary  

Linear Regression 95% Confidence Intervals  
Slope (dB/µε) 3.8x10

-3
 to 5.1x10

-3 
y-intercept (dB) 18.37 to 21.55 
r² 0.6618 

3.3.2 Fatigue Testing 

The normalized output of sensors (n=3) throughout 10,000 cycles was analyzed to 

determine if repeated deformation at the maximum anticipated strain in vivo would alter 

its sensitivity (Figure 6A). Throughout testing, the response of the sensors was stable 

within ± 4%. The slope of the regression lines (Table 3; -2.32×10-7 ± 2.32 ×10-6) was not 

significantly different from 0 (p=0.877), demonstrating the sensor was sufficiently durable 

to maintain a constant sensitivity under high cycle peak physiological loads. 

 

Figure 6: Fatigue and submersion testing results (A) Fatigue testing of the devices (n=3) 

for 10,000 cycles at maximum anticipated physiological strain. The normalized raw outputs 

for each device is shown, and their respective regression lines are depicted by the bright 

dotted lines. Throughout 10,000 cycles the outputs were stable within +/-4 percent and the 

resultant slope was not significantly different than zero (p=0.877). (B) Instrumented 

fixation plates were submerged in saline maintained at body temperature for 4 weeks and 

sensitivity was evaluated by mechanical testing at weekly intervals. The output was stable 



 46 

within 7% throughout the test and sensitivity plots for all time-points remained highly 

linear (r2 range = 0.9938-0.9988). 

Table 3: Fatigue testing linear regression results  

Sensor Slope (cycle
-1

) y-intercept 

1 -7.32E-07 1.003 

2 2.30E-06 0.989 

3 -2.27E-06 1.011 

3.3.3 Biostability 

Throughout submersion in PBS at body temperature, the sensitivity of the sensor 

was stable within 7% of the value measured prior to submersion (Figure 6B). High linearity 

was maintained throughout testing trials (r2 range = 0.9938-0.9988). These data indicate 

that the sensor can sustainably provide precise measurements under long term 

physiological conditions. 

3.3.4 Wireless Strain Data Acquisition and Radiographic Imaging of Rodent Gait after 

Surgical Implantation and Creation of Femoral Defect 

After implantation of two devices in untreated 6 mm femoral defects, strain data 

were recorded wirelessly by a nearby laptop. Stable wireless acquisition was maintained 

up to a distance of approximately 20 feet, with further increasing distance resulting in lost 

data packets and thereby reducing sampling frequency. The presence of metal tables or 

objects in the transmitter line-of-sight was determined to reduce the transmission range to 

as low as 5 feet, depending on the spatial configuration. Three days after surgery, the rats 

were walked on a treadmill at a slow speed of 0.1 m/sec. The belt speed was selected to 
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produce a gait cycle of about 1-1.3 Hz, which was sufficiently slow to mitigate the risk of  

severe aliasing the gait cycle while recording strain data at 7-8 Hz. The logged sensor data 

were synchronized to 6 second videos of the animal recorded by high-speed radiographic 

videos from two different angles. The synchronized videos demonstrated the sensor signal 

coincides with the phase and frequency of the operated limb gait cycle, with lower strains 

being measured when the leg is lifted and rapid increases in strain observed when the leg 

is planted.  

Absolute strains on each plate were computed from the in vivo voltage signal based 

on the calibrated sensitivity determined by electromechanical characterization of each 

device prior to implantation. To account for changes in the zero strain set-point which occur 

while surgically anchoring the fixation plate to the femur, the voltage corresponding to 

zero static strain was estimated by the median voltage signal while the animal sat in its 

cage prior to the treadmill walking period, which was nearly constant due to the minimal 

motion of the animal. During the videos, peak strains of up to 3290 µε were observed 

during loading phases, whereas strain reversal relaxed the static flexural strain on the plate 

up to -3140 µε while the leg was lifted (Figure 7). 
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Figure 7: Real-time data collection synchronized with high-speed X-ray (A) 

Representative in vivo strain versus time measurement recorded wirelessly during 

ambulation on a treadmill three days after the creation of a 6 mm segmental femoral defect. 

Actual data points are depicted as circles with a spline curve-fit illustrated by the black 

line. (B) During data acquisition, high-speed radiographic videos were acquired by two x-

ray cameras mounted at different angles. The videos were synchronized with the recorded 

sensor output to validate the ability of the sensor to non-invasively quantify functional 

strains in real-time. Radiopaque objects including the stainless steel components which 

anchor the femoral fixation plate, the abdominally implanted transceiver circuit pack, and 

the incision wound clips are labelled. 

3.3.5 Fixation Plate Strain Analysis 

The distribution of dynamic strain cycles experienced by the fixation plate during 

the entire treadmill walking period for both animals were quantified using a peak analysis 

to compute strain amplitudes between adjacent local minima and maxima in the recorded 

sensor signals (MATLAB). The load history revealed a number of similarities between the 

two animals. Histograms of the strain amplitudes indicate a skewed distribution with 

approximately 35% of the total strain cycles falling in relatively low strains between 300 

to 1000 µε (Figure 8). The incidence of strain cycles between 1000 to 5000 µε were 

observed to be nearly constant for both implants. The median and 95th percentile strain 
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amplitude were computed to be 1929 µε and 5543 µε, and 1889 µε and 6041 µε for each 

implant respectively. 

 

Figure 8: Strain amplitude distributions during ambulation. Median and 95th percentile 

strain amplitude were computed 1929 µε and 5543 µε, and 1889 µε and 6041 µε for each 

implant respectively. 

3.4 Discussion 

The mechanical environment within healing tissue evolves rapidly with time and is 

challenging to quantify longitudinally in a non-invasive fashion. The aim of this study was 

to develop, characterize and evaluate the ability of an internal fixation plate with an 

integrated wireless strain sensor to non-invasively quantify dynamic axial strains across a 

rodent bone defect during functional activity. Key technical criteria were defined and 

evaluated through ex vivo and in vivo experiments. In summary, the data indicate the 

sensor possesses sufficient sensitivity to detect progressive changes in physiological strain 
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as healing occurs. Additionally, the lower limit of detection was sufficient to obtain strain 

measurements until robust bridging of the entire defect occurs. The sensor was proven to 

withstand 10,000 cycles at the maximum in vivo strain with no change in sensitivity, 

indicating the dynamic range of the sensor encompasses the relevant physiological range. 

Submersion testing demonstrated the sensor is packaged and sealed in a manner which 

maintains electromechanical stability for sustained physiological measurements. In vivo 

implantation demonstrated the device could be surgically implanted into a rat femoral 

segmental defect model and successfully transmit data wirelessly to a nearby computer. 

Animals tolerated the abdominal implant well throughout the study. Strain measurements 

were acquired in real-time while animals walked on a treadmill and the data were validated 

by synchronizing to high-speed radiographic videos recorded simultaneously. High-speed 

x-ray imaging was a desirable validation technique for the sensor because it allowed for 

direct and accurate visualization of the position of the long bones during the gait cycle, 

overcoming movement artifacts caused by the large amount of soft tissue mass surrounding 

the hindlimb which limits the accuracy of standard optical imaging techniques186.  

 The primary contribution of the reported device is the capability to longitudinally 

acquire quantitative measurements describing the in vivo evolution of the mechanical 

environment during bone healing. Perren et al. were the first to develop a predictive theory 

of mechanical boundary conditions that determine the differentiation of skeletal tissues 

after fracture130. Since then, many studies have utilized a variety of experimental and 

computational techniques to elucidate tissue-level mechanical conditions that enhance or 

impair bone repair34,49,50,62,126,127,175,176. While these studies have refined our understanding 

of the mechanobiological regulation of fracture healing, the majority of the studies rely on 
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non-physiological mechanical stimuli49,134,176,180 or assumed boundary conditions for 

computational analysis that are not determined from the specific model under 

investigation62. A key limitation in the field is the technical challenge of longitudinally and 

non-invasively measuring mechanical conditions in in vivo models of skeletal 

healing168,187. By incorporating a wireless sensor, the mechanical boundary conditions of 

the defect can be quantified during physiological activities without disrupting the normal 

activity of the animal to obtain the measurement. The non-destructive measurement 

approach maximizes the amount of data acquired from a single animal, thereby reducing 

the number of animals needed to fully characterize the healing process and enabling 

specimen-specific analyses over multiple time points. Here we report a wireless device that 

has the capability to facilitate flexible, long-term data acquisition at discrete time points. 

The fully digital telemetry approach with an integrated ultra-low-power (50 μA) sleep 

mode permits the 33 hours of total power budget for active data transmission to be allocated 

over extended periods of time by programming the microcontroller for intermittent 

transmission. In our initial validation study, we selected a measurement protocol to obtain 

the majority of in vivo data within the first 72 hours post-surgery. In future studies, the 

measurement periods can be reprogrammed to extend the device over weeks and months.  

 The device also has some limitations. First, the single-element strain sensor is only 

capable of quantifying mechanical strain in one direction; in the configuration reported 

here it was along the axis of the femur. Wehner and colleagues performed kinetic analysis 

of rodent gait to demonstrate this direction is the primary load trajectory during 

ambulation183. In their analysis, bending moments in the mid-diaphysis were also observed 

in all anatomical planes. Based on this analysis and our own observations in the eccentric 
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loading tests, the sensor was positioned in the optimal region to detect the primary mode 

of deformation. In the segmental defect model, the addition of the fixation plate naturally 

produces an eccentric axial load on the plate and out-of-plane bending, resulting in peak 

local tensile strains on the sensor while the defect zone undergoes compression. The plate 

cross-section is designed so the bending moment of inertia is threefold higher to in-plane 

bending that cannot be detected by the sensor, so its contribution to the overall mechanical 

environment is less significant. Second, the single-element design is sensitive to 

temperature differences between the hindlimb and abdomen. However, the in vivo 

conditions are essentially isothermal between the two regions as confirmed experimentally 

by the negligible drift in the baseline voltage of the sensor throughout implantation. Future 

improvements to address the aforementioned limitations could include a sensor digital 

rheostat to provide remote control of baseline voltage. For the purposes of this study, a 

circuit sampling frequency of 7-8 Hz was selected as a compromise between battery life 

and sufficient sampling to avoid drastic aliasing of the gait cycle, which was approximately 

1-1.3 Hz. Ideally, a higher sampling frequency (in the range of 25-30 Hz) for in vivo gait 

analysis would be desirable to ensure that peaks in strain are not aliased. In the following 

chapters, refinements to the transceiver design will be implemented to address these 

limitations. 

To conclude, we report the characterization and initial in vivo data obtained by a 

novel implantable wireless strain sensor in a pre-clinical model of bone repair. The device 

is capable of measuring axial mechanical strain during physiological activities and met key 

technical criteria outlined in the introduction. The technological underpinnings are broadly 

applicable to the mechanical characterization of therapeutics in diaphyseal fracture or 
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defect models. This sensor platform is a promising approach to longitudinally characterize 

tissue mechanics in a specimen specific manner, enabling more detailed investigations into 

the role of the mechanical environment in bone repair. 
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CHAPTER 4. REAL-TIME MONITORING OF MECHANICAL 

CUES IN THE REGENERATIVE NICHE REVEALS DYNAMIC 

STRAIN MAGNITUDES THAT ENHANCE BONE REPAIR 

4.1 Introduction 

In CHAPTER 3, the implantable strain sensor system was validated through ex vivo 

and in vivo design validation testing. In this chapter, the strain sensor platform was 

implemented in a longitudinal study to characterize the temporal progression of mechanical 

signals in a regenerating orthotopic site, and to quantitatively evaluate the biomechanical 

and therapeutic effects of a load sharing-inspired approach on bone regeneration. 

Tissue regeneration requires dynamic and spatially coordinated cellular activity 

involving bidirectional interactions between the healing niche and surrounding 

environment. Characterizing the progression of early-stage environmental cues in the 

regenerative niche and their contribution to divergent healing outcomes is a critical and 

active area of research. An improved understanding of  biochemical and biophysical cues 

may inform the development of therapies that modulate the microenvironment to more 

effectively resolve challenging injuries188.  Mechanical signals are among the most potent 

and dynamic environmental regulators of tissue repair58,189. In particular, forces exerted on 

musculoskeletal tissues during locomotion strongly influence regenerative processes173. 

The sensitivity of bone to extrinsic mechanical cues is well documented, where a moderate 

magnitude of mechanical loading accelerates osteoprogenitor differentiation, matrix 

mineralization, and restoration of biomechanical function50,62,179.  
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Strategies for controlled transfer of mechanical loads in vivo are a promising 

therapeutic target to promote osteogenesis after fracture, segmental bone loss, spinal 

fusion, and joint arthroplasty. Indeed, there is substantial clinical need to enhance bone 

regeneration for the millions of patients undergoing these procedures each year, as a 

significant sub-set are afflicted with prolonged disability or multiple revision surgeries due 

to non-union or poor osseointegration3. Mechanical stimulation strategies have spanned a 

range of approaches and garnered significant scientific and clinical interest including 

external or percutaneous fixators and actuators11, and stabilization hardware or scaffolds 

with reduced stiffness to permit load sharing54,190,191. Additionally, more functionally 

relevant, non-invasive methods such as physical rehabilitation and exercise may be 

implemented to enhance load transfer while simultaneously inhibiting adjacent tissue 

atrophy and accelerating functional recovery of daily activities192–194. Conversely, 

excessive loading can impair healing resulting in fibrosis, hypertrophic non-union, or 

construct failure34,50. A critical challenge limiting these techniques has been the ability to 

monitor the dynamic mechanical environment at the regenerative niche during repair—this 

mechanical environment has rarely been quantified, resulting in incomplete understanding 

of biomechanical conditions and limited means with which to reliably investigate the safety 

and efficacy of mechanical based interventions.  

A promising approach to quantitatively evaluate mechanical cues during tissue 

repair is the integration of electromechanical sensors with devices already typically 

installed at the site of healing, such as fixation plates, implants, or scaffolds170. 

Advancements in microfabrication and wireless data transfer have attained a level of 

maturity and a sufficiently small size for biomedical applications. Recent reports of a broad 
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range of transient and permanent implantable sensors have facilitated new physiological 

insights in pre-clinical in vivo models as well as digital health monitoring in 

humans152,153,195.  

Using a pre-clinical rat model of long bone repair, we observed that varying load 

transfer modulates vascular and skeletal tissue formation after injury34,62. Motivated to 

better understand the temporal progression of tissue-level mechanical cues that could 

enhance skeletal repair, we recently developed a fully implantable strain sensor platform 

enabling real-time monitoring of mechanical boundary conditions across the defect during 

functional rehabilitative activities like walking196. The device possesses sufficient 

sensitivity and size for implementation in rats--animals which are used commonly used as 

a key pre-clinical test bed to screen therapeutic approaches before scaling up to more costly 

large animal models.  

Here, we deployed this strain sensor platform with the objective to examine the 

evolution of biomechanical cues in the regenerative niche after injury and assess the effects 

of differing magnitudes of functional mechanical loading on bone defect repair and 

revascularization. We hypothesized that a moderate increase in ambulatory load sharing 

conferred by reduced stiffness fixation would increase mechanical stimuli initially, and that 

the elevated deformation would eventually decrease due to enhanced bone formation. We 

found that rehabilitative load sharing permitted by reduced stiffness of fixation 

substantially accelerated and enhanced bone repair. Furthermore, we observed that real-

time monitoring of strain magnitude during gait correlated with the status of bone repair 

and that osteogenic ambulatory loading differentially regulated neovascular growth after 

injury. These results demonstrate the potential of advancements in biomedical sensors to 
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optimize mechanobiological therapies by remotely monitoring dynamic biophysical cues 

in vivo. 

4.2 Methods 

4.2.1 Device fabrication 

A new digital transceiver unit was developed to provide a number of key functional 

improvements over the unit reportedly previously196, mainly: (i) increased power budget 

and (ii) sampling frequency, (iii) improved connectivity via Bluetooth Low-Energy (BLE) 

wireless network, and (iv) remote-controlled circuit calibration. The unit used a BLE 

microcontroller (MCU) (Silicon Labs BLE113) to receive commands and transmit data at 

an increased frequency of 30 Hz through a PC-mounted USB receiver. A 620 mAh battery 

(Panasonic CR2450) was used to provide an 8 week power budget. Furthermore, a low-

power receiving “sleep” mode was implemented, allowing the PC user to remotely activate 

to the unit to acquire and transmit measurements as needed, permitting flexible 

measurement time points and durations. A wirelessly-controlled digital rheostat was also 

implemented to allow remote calibration of the baseline voltage signal while implanted. 

The transceiver was encapsulated in a custom 3-d printed housing (Form 2, Formlabs) fully 

encapsulated in an ISO 10993 compliant UV-curing urethane (Dymax). 

As previously described196, the transceiver was connected via two 36 AWG braided 

stainless steel wires encapsulated in biocompatible silicon tubing (AM systems) to a single-

element 350 Ω strain sensor (PGEA-06-125BZ-350/E, Vishay) integrated into a custom 

internal fixator used to stabilize the femoral defect. To modulate fixator stiffness and load 

sharing across the defect, the radiolucent, polymeric bridging element was either 
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polysulfone (PSU, McMaster-Carr) or ultra-high molecular weight polyethylene 

(UHMWPE, Quadrant), creating “stiff” and “compliant” fixator groups, respectively. Prior 

to implantation, each device was calibrated in three-point bending (TA Electroforce 3220) 

to strains encompassing physiological magnitudes.  

4.2.2 Surgical procedure 

Identical procedures were used in both bone repair and angiography studies. As 

previously described196, a unilateral critically-sized 6 mm segmental defect was created in 

the left femur of 15-wk-old female CD (Sprague-Dawley) rats (Charles River Labs). 

Femurs were stabilized by either stiff (PSU) or compliant (UHMWPE) fixators with 

integrated strains sensors. Transceiver packs were mounted in the abdominal cavity and 

connected via a tunneled lead passing through a keyhole incision in the abdominal wall 

superior to the left inguinal ligament into the hindlimb compartment. Defects were either 

treated with 2 µg recombinant human bone morphogenetic protein 2 (BMP-2, Pfizer), 

delivered via a hybrid biomaterial scaffold described below consisting of 120 µL BMP-2-

laden alginate hydrogel injected inside an electrospun polycaprolactone (PCL) tube, or left 

empty. Empty defects form negligible mineralized or soft tissue and served as non-healing 

negative controls. Animals were randomly allocated to experimental groups. Animals were 

anesthetized and then euthanized by CO2 asphyxiation at either 3 or 8 weeks.  All 

procedures were approved by the Georgia Institute of Technology IACUC (Protocol 

A17034). 

4.2.3 Hybrid RGD-alginate/PCL scaffold production 
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Detailed scaffold production methods are described elsewhere182,197. Briefly, RGD-

functionalized alginate (FMC BioPolymer) was reconstituted in α-MEM (Thermo Fisher 

Scientific) at 2% w/v. Recombinant human BMP-2 (Pfizer) was reconstituted in a 0.1% 

solution of rat serum albumin (Sigma-Aldrich) and 4 mM HCl and mixed with alginate, 

yielding 2 µg BMP-2 per 120 µL.  The solution was ionically cross-linked with a 0.21 w/v 

CaSO4 slurry mixed at a 1:25 volume ratio. Sheets of PCL nanofiber mesh were generated 

by electrospinning a 12% w/v solution of PCL in 90:10 (v/v) of hexafluoro-2-

propanol:dimethylformamide from a syringe at a flow rate of 0.75 mL/h and a 15-20 kV 

potential onto a grounded collector plate 20-23 cm away. PCL sheets were laser cut into 

rectangles with a chessboard grid of 23 x 1 mm circular perforations, rolled and glued into 

5 mm cylinders using ISO 10993 UV-curing adhesive (Dymax). 

4.2.4 Gait analysis 

Gait capture was performed longitudinally to assess hindlimb utilization for each 

rat using a Catwalk 7.1 system (Noldus). Rats were placed on an illuminated runway and 

allowed to walk freely between either ends. Illuminated paw prints were recorded by a 

digital camera and runs where the rat traversed the entire length of the runway were 

analyzed (2-3 runs per animal, 10 second max) before surgery for baseline, and 1, 2, 3, 4, 

6, and 8 weeks after surgery. Automated footprint classifications were verified and 

corrected manually for each run. Paw print area and duty cycle (ratio of stance duration to 

the sum of stance and swing duration) were computed. 

4.2.5 Treadmill walking 
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Before surgery, rats were acclimated to walk consistently on a treadmill 

(NordicTrack) at speeds ranging from 5-9 m/min over a period of 10-15 min. Beginning 1 

week after surgery, and twice weekly thereafter, each animal was walked for 10 min at a 

consistent speed of 6.5 m/min, creating a gait cycle of approximately 1-2 Hz. The total 

distance travelled loosely approximated the distance traversed during one day of in-cage 

activity198. 

4.2.6 Strain measurement and analysis 

During treadmill walking sessions, strain measurements were transmitted in real-

time via Bluetooth to a nearby laptop and plotted on a custom Visual Studio C# (Microsoft) 

graphical user interface (GUI). Data was collected for 3 minutes of the treadmill session. 

After 4 weeks, strain was measured during the first treadmill period of the week. A custom 

MATLAB (Mathworks) script was developed to identify local maxima and minima pairs 

in the signal corresponding to individual step cycles, and strain amplitudes were computed. 

4.2.7 X-ray video collection 

One month after surgery, high-frame rate images of an empty defect control 

animal’s skeleton were obtained to demonstrate sensor functionality during treadmill data 

collection. A custom radiographic imaging system comprised of bi-plane X-ray generators, 

image intensifiers (Imaging Systems & Service, Inc.), and high-speed digital video cameras 

(Xcitex XC-2M, Woburn, MA) was used to collect 6 second videos (100 frames/s; 43 kV, 

100 mA, 5 ms exposure). 

4.2.8 In vivo radiographs and microCT 
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In the bone repair study, in vivo radiographs and microcomputed tomography 

(microCT) scans were acquired at 2, 4, and 8 weeks to assess bone formation and bridging 

across the defect. Digital radiographs were acquired at 25 kV with a 15 sec exposure 

(Faxitron MX-20). MicroCT scans (VivaCT 40, Scanco Medical) were performed using 

26.3 µm voxels, 55 kVp, 145 µA, and 300 ms integration time. Scans were manually 

aligned along the femoral axis prior to analysis. Mineral formation was evaluated inside a 

cylindrical volume of interest (VOI) of 5 mm in diameter and 4 mm long centered between 

the intact bone ends and encompassing the defect and PCL electrospun tube. Polar moment 

of inertia was assessed with a VOI encompassing all mineralized tissue throughout the 

entire defect and 1 mm of each bone end to include periosteal mineralization at the defect 

boundaries. Bone was segmented by applying a Gaussian filter (sigma=1.2, support=1) and 

a global threshold of 388 mg hydroxyapatite/cm3, corresponding to half the density of 

intact cortical bone. 

4.2.9 Biomechanical testing 

After eight weeks, animals were euthanized by CO2 asphyxiation, hindlimbs were 

cleaned of soft tissue, fixators were carefully removed, and femora were wrapped in PBS-

soaked gauze and stored at -20° C until testing was performed 3 days later. Each femur 

was thawed before potting the ends in Wood’s metal (Alfa Aesar). Specimens were tested 

to failure in torsion at 3°/sec using a load frame (TA Electroforce 3220). Failure strength 

was defined as the peak torque over the first 40° of rotation, and stiffness was assessed as 

the slope of the linear region of the torque-rotation curve. 

4.2.10 Histology 
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One representative femur from both UHMWPE and PSU groups was selected for 

histology based on 8 week MicroCT bone volume. Samples were fixed in 10% NBF for 48 

h at 4° C, then switched to PBS and shipped to HistoTox Labs for decalcification, paraffin 

processing, and staining. Midsagittal 5 µm thick sections were stained with H&E, Safranin-

O/Fast Green, or Picro Sirius Red. 

4.2.11 Finite element analyses 

Finite element simulations of the femur-fixator system at 2 weeks were generated 

for representative UHMWPE and PSU samples. Images processing was performed in 

MIMICS (Materialise) to create models from animal- and time-specific in vivo microCT 

images. Image noise was suppressed using a Gaussian filter (sigma=1.2, support=1). The 

calcified tissue mask was cropped to only include the defect region and a sequence of 

erosion (radius =2) and dilation (radius=1) steps were applied to remove small volumes. 

Representative microCT-based geometries of the proximal and distal femur segments were 

manually aligned to the animal-specific bone segments visible in the microCT images. 

Unmineralized portions of the defect region were assumed to be a homogeneous cylinder 

of soft tissue (consisting of soft callus tissue and alginate) with a diameter of 5 mm (the 

diameter of the PCL tube), span the length of the defect, and centered about intact distal 

and proximal femoral segments. Mineralized bone was subtracted from the soft tissue mask 

to ensure continuity between mineralized bone and soft tissue. The PCL tube mask was 

aligned with and enveloped the soft tissue mask. Fixator and steel riser plate models were 

manually aligned with the fixator plate visible in microCT images. All masks were defined 

separately for each material (soft tissue callus, mineralized tissue, proximal and distal bone 

segments, fixator risers and plate, PCL mesh) and were combined to establish one unified 
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surface model. The unified surface mesh was then cleaned in 3Matic (Materialise) and 

converted to a volumetric mesh of quadratic tetrahedral elements. To determine mesh 

resolution, a convergence analysis was conducted. The 3rd principal strain within the defect 

soft tissue converging within 6% was designated as the criteria for sufficient mesh 

resolution (Figure 9A).  

 

Figure 9:  Finite element simulation development. (A) Femur-fixator finite element 

models were meshed using quadratic tetrahedral elements at increasingly refined 

resolutions until soft tissue 3rd principal strain converged. The red data point denotes the 

mesh resolution used here, where meshes consisted of approimately1.5M equations. 

Fixator mechanical properties were validated to match experimental three-point bending 

tests for both (B) PSU and (C) UHWMPE. Similarly, defect soft tissue and mineralized 

tissue mechanical properties were validated to match ex vivo experimental compression 

testing of (D) unbridged and (E) bridged defects. 
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 A summary of material properties applied to the femur-fixator model is listed in 

Table 4. When available, material properties were assigned based on known properties 

(e.g., steel, cortical bone). The elastic moduli for the UHMWPE and PSU materials in the 

fixator were iteratively determined by matching model calculated reaction forces to those 

calculated during a three-point bending experiment (Figure 9B-C). Similarly, elastic 

moduli for soft tissue callus (Figure 9D) and mineralized tissue (Figure 9E) were also 

matched to experimentally determined displacements. Briefly, femora with an unbridged 

defect (Figure 9D) or a bridged defect (Figure 9E) were excised, potted in Wood’s metal 

and tested in uniaxial compression with a ramp to 0.2 mm and 5.3 N, respectively. All 

materials were modeled as homogeneous neo-hookean materials with a single elastic 

coefficient (E) and poisson’s ratio (ν). Mineralized tissue elastic coefficients within the 

defect were assumed to be related to the density of independent voxels to a power of 1.49. 

A scalar factor was then multiplied to this relationship and adjusted to match the model-

derived with the experiment-derived displacements.  

Table 4: Chapter 4 finite element model mechanical properties 

Material E (MPa) ν 
Intact cortical bone 18000 0.33 
Intact trabecular bone 500 0.33 
Soft defect tissue* 0.022 0.4 
Mineralized defect tissue* 0.000246*(arbitrary density units)

1.49 

approximately 160-1700 
0.33 

PCL tube 1.44 0.37 
PSU fixator* 844 0.37 
UHMWPE fixator* 525 0.4 
Steel anchor plate 200000 0.3 
*Denotes properties validated by FE simulation to match experimental data 
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The boundary conditions assigned to the femur-fixator model were implemented to 

best reflect in vivo loading as determined by Wehner and colleagues183. The distal femoral 

surface was fixed in all directions. Compressive and bending pressures, below, were 

applied to the cortical bone of the proximal surface (assumed to be 0.45 mm thick). 

Elemental pressures were formulated as a function of the medial-lateral and anterior-

posterior position of each proximal surface element and a single scalar factor. The scalar 

factor A was then iteratively modified until the average axial Lagrangian strain in the sensor 

region of the fixator matched the in vivo strain amplitude for the respective animal at 2 

weeks. All finite element analyses were completed using FEBio (version 2.8.5) and 

analyzed in PostView199. 

4.2.12 Statistical analysis 

Sample sizes for treated groups were chosen based on a priori power analysis of 

prior mechanical loading model experiments. All statistical analyses were performed using 

Prism 7 (GraphPad), except multivariate linear regression, which was performed using 

SPSS 24 (IBM). Normality of data was tested using Shapiro-Wilk test. Fixation plate 

stiffness and sensor sensitivity were assessed by Student’s t-test and Pearson’s linear 

regression, respectively. Two-way ANOVA with Tukey’s or Sidak’s pairwise comparisons 

were used to compare groups for longitudinal strain, microCT, and gait analyses. 

Bonferroni comparisons were used to assess pairwise differences in vascular thickness 

distribution. Proportions of bridged defects were evaluated by chi-square test for trend, 

with pairwise comparisons assessed by individual chi-square tests. Non-parametric Mann-
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Whitney U or Kruskal-Wallis tests were used to evaluate non-normally distributed data 

torsion and vascular morphometric data. Spearman’s rank-order correlations were used to 

assess relationships between early strains and longer-term bone volume and strength.  Data 

are displayed as mean ± s.e.m. or as box plots showing 25th and 75th percentiles, with 

whiskers extending to minimum and maximum values, unless otherwise noted in the figure 

heading. 

4.3 Results 

4.3.1 Real-time and on-demand ambulatory monitoring of in vivo mechanical boundary 

conditions across bone defects using an integrated strain sensor 

To assess the relative effects of mechanical loading on bone repair, we used an 

established rat femoral bone defect model with well-characterized healing kinetics200. The 

critically-sized 6 mm defects received one of two treatments: 2 µg bone morphogenetic 

protein-2 (BMP-2), a minimal osteogenic dose that typically results in defects at the 

threshold of mineralized bridging at 8 weeks, or left empty as non-healing negative 

controls. The mechanical environment under ambulatory loads was perturbed by 

stabilizing defects with either stiff or moderately compliant internal fixation plates 

(fixators) which possessed a modular bridging segment fabricated from polysulfone (PSU) 

or ultra-high molecular weight polyethylene (UHMWPE), respectively. Our previous work 

in this model demonstrated that early ambulatory loading in a highly axially compliant 

fixator which was 80% more compliant than stiff PSU fixators drastically inhibited bone 

and vascular repair due to excessive deformation34. In this study, we sought to explore a 

more moderate mechanical environment that could enhance bone regeneration. Therefore, 
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compliant UHMWPE fixators featured a flexural stiffness about 40% lower than stiff PSU 

counterparts of identical geometry (Figure 10A; UHMWPE = 145.2 ± 10.6 N/mm & 525 

MPa, PSU= 232.4 ± 20.1 N/mm & 844 MPa). The full study timeline is outlined in Table 

5. 

 

Figure 10: Real-time and on-demand ambulatory monitoring of in vivo mechanical 

boundary conditions across segmental bone defects using an integrated strain sensor. 

(A) UHMWPE fixation plates possessed a flexural stiffness 40% lower than PSU. n = 12. 

***p < 0.001 via t-test. (B) Functional block diagram depicting fixator-mounted strain 

sensor interfaced with intra-abdominal transceiver unit consisting of analog front-end, 

MCU, GPIO, and BLE interface providing transmit and receive functionality with a host 

computer. (C) Representative electromechanical calibrations for UHMWPE and PSU 

fixators, strain sensors exhibited high linearity and precision. n = 20 cycles per strain. r2 > 

0.99, ***p < 0.001 via Pearson’s. (D) Rats walked on a treadmill twice weekly 7 days after 

surgical creation of a unilateral segmental femoral defect and strain measurements were 

acquired in real-time. (E) Experimental sensor output during a 3 minute recording of rodent 

gait (F) Inset of sensor output depicting individual strain cycles corresponding to discrete 

steps and corresponding amplitudes. (G) Experimental cumulative distribution of strain 

cycles recorded during a treadmill session, indicating the 90th percentile amplitude. 
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In vivo strain measurements were facilitated via the integration of a strain sensor 

into the polymeric bridging segments of each fixator. The sensor transmitted real-time 

uniaxial strain measurements to a remote laptop with a USB receiver up to five meters 

away via a Bluetooth Low Energy (BLE) enabled digital transceiver (Figure 10B). The 

transceiver was remotely controlled to either transmit data or enter a low-power receiving 

mode by commands from the computer, enabling on-demand user control of data collection 

and power allocation. All devices exhibited linear responses and sufficient sensitivity to 

detect applied strain throughout the physiological dynamic range (Figure 10C).  

Table 5: Bone repair in vivo study timeline. Experimental measurements and associated 

time points. 

Timeline (weeks) -1 0 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 

Treadmill 
                 

Strain Acquisition 
                 

Gait Analysis 
                 

Radiographs 
                 

MicroCT 
                 

Torsion testing 
                 

Histology 
                 

 

Ambulatory loading is a promising and straightforward approach to administer 

dynamic biophysical stimuli to the regenerative niche and enhance tissue repair194. 

Therefore, we sought to assess the temporal progression of mechanical cues imparted 

during slow walking by measuring strain during treadmill sessions starting one week after 

surgery and continuing twice weekly thereafter. Strain acquisition proceeded biweekly 

through 5 weeks and once weekly thereafter (Figure 10D). Dynamic strain cycle 
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amplitudes corresponding to individual steps were computed and ranked by magnitude 

(Figure 10E-G). The 90th percentile strain magnitude was tracked longitudinally as it 

represented a threshold of the 50-60 highest magnitude strain cycles, a sufficient number 

of cycles to provoke an adaptive cellular response134,179,201. Rehab collection periods 

represented the most significant mechanical stimulus exerted on the femur in terms of both 

magnitude and frequency content; treadmill walking produced a significant 60% increase 

in strain magnitude relative to nocturnal in-cage activity (Figure 11). To demonstrate real-

time strain measurements during ambulatory activity with high temporal resolution, high-

speed x-ray video of an animal walking on a treadmill during simultaneous strain 

acquisition was recorded one month after surgery (Figure 12). Video analysis demonstrated 

variations in strain signal were synchronized with stance and swing phases of walking, 

where stance phases produced a transient flexural strain on the fixator, conferring a 

compressive environment on the healing tissue. These data demonstrate the utility of 

implantable sensor technologies to remotely quantify mechanobiological cues within 

regenerating in vivo environments at meaningfully protracted time points after 

implantation. 
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Figure 11: Treadmill walking is greater mechanical stimulus than in-cage activity in 

terms of both magnitude and frequency. Representative experimental strain 

measurements from the same animal acquired during (A) treadmill walking (B) and ad 

libitum nocturnal in-cage activity the same night. (C) 90th percentile strain magnitudes 

during treadmill activities were 60% higher than corresponding nocturnal in-cage 

activities. n = 3. *p < 0.05 via paired t-test. 

 

Figure 12: Annotated still image of high-speed X-ray video. Dotted boxes delineate 

the femoral defect, corresponding hindlimb paw, and transceiver pack. 
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4.3.2 Rehabilitative load sharing increased mechanical stimulation and accelerated 

bridging of segmental bone defects 

Sensor measurements of longitudinal in vivo strains confirmed that compliant 

UHMWPE fixators permitted higher magnitude mechanical stimulation in vivo. Initial 

strain magnitudes were increased by approximately two-fold compared to stiff PSU 

fixators (Figure 13A; UHMWPE = 4760 ± 566 µε, PSU = 2134 ± 277 µε). Strain 

magnitudes did not change appreciably throughout the 8 week study in empty defect non-

healing controls, regardless of fixator stiffness. Strain magnitudes on defects treated with 

a low dose of BMP-2 and stabilized by compliant UHMWPE fixators diverged from 

corresponding UHMWPE empty controls beginning at 2 weeks and continued to decline 

gradually until converging with levels observed in stiff PSU fixators. A similar decline was 

not observed in BMP-2 treated defects stabilized by PSU fixators, which showed no 

significant changes throughout the duration of the study. Serial radiographs corroborated 

our hypothesis that the progressive strain decline observed in UHMWPE fixators was due 

to bridging of mineralized tissue across the segmental defect, consequently reducing load 

share carried by the fixator (Figure 13B & C). Between weeks 2 and 4, the average strain 

magnitude in the UHMWPE group was halved from 5408 ± 704 µε to 2698 ± 567 µε, 

coinciding with a marked 64% increase in the percentage of bridged defects.  
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Figure 13: Rehabilitative load sharing initially increased mechanical stimulation and 

accelerated bridging of segmental bone defects. (A) Longitudinal strain amplitude 

measurements verified UHMWPE fixation permit increased mechanical stimulation of 

bone defects. n=1-9. 2 µg BMP-2: *p < 0.05 UHMWPE vs. PSU. UHMWPE: $p < 0.05 

Empty vs 2 µg BMP-2 via Two-way ANOVA with Tukey’s test. (B) Longitudinal analysis 

of bone bridging via in vivo microCT segmented at 50% intact cortical bone mineral 

density. n = 10-11. *p < 0.05 differences between groups via chi-square test. $p < 0.05 

significance of trend via chi-square test for trend. (C) Representative longitudinal x-ray 

images for each group, demonstrating substantially increased mineralization with 

compliant UHMWPE fixators in the presence of BMP-2. 

A fundamental motivation for developing the strain sensor platform was to 

elucidate dynamic mechanical boundary conditions in a healing skeletal defect and to 

identify specific ranges that could enhance repair. Radiographic comparisons between 

groups demonstrated that rehabilitative load sharing permitted by UHMWPE fixators 

significantly accelerated bridging and enhanced total mineralization in the presence of 

BMP-2. Bridging ratios were nearly tripled in UHMWPE stabilized defects compared to 
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PSU at 4 weeks. Empty non-healing controls confirmed that negligible mineralized tissue 

developed without intervention in this critically-sized defect model irrespective of fixation 

stiffness, which correlates with a similar lack of temporal variation in strain magnitude. 

Facilitated by the implantable strain sensor, these data support the potential for controlled 

biophysical signals imparted by normal movement activities to accelerate tissue 

regeneration in challenging injuries. 

4.3.3 Bone regeneration was enhanced by ambulatory mechanical loading and initial 

strain magnitudes correlated with improved healing outcomes 

We performed serial in vivo microcomputed tomography (microCT) scans to 

quantitatively assess the effect of the mechanical environment on bone formation. In 

agreement with the radiographic data, we observed a beneficial effect of mechanical 

loading on bone regeneration (Figure 14A). Compliant UHMWPE fixation had significant 

overall effects on bone volume, trabecular thickness, trabecular number, and trabecular 

separation (Figure 14B; D-F); at the 8 week time point bone volume and trabecular 

thickness in the UHMWPE group were significantly increased by 63% and 47%, 

respectively, compared to stiff PSU fixators. Mineral density and polar moment of inertia 

were not affected by load sharing (Figure 14C & Figure 15), suggesting that the early stage 

effects of mechanical stimulation are mediated primarily by accumulation of  relatively 

centralized woven bone volume rather than acceleration of bone remodeling and mineral 

densification, processes whose kinetics may act over longer time spans. Picro Sirius Red 

histological analysis of 8 week tissue samples supported that UHMWPE fixation supported 

a mixture of woven and lamellar extracellular matrix (ECM), whereas PSU fixation 

exhibited primarily lamellar ECM (Figure 16). Ex vivo torsion testing to failure yielded no 
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significant effects on failure strength, though a single high-performing statistical outlier 

stabilized by PSU may have obscured the results, albeit this sample had no experimental 

observations to warrant exclusion (Figure 14G).  

 

Figure 14: Bone regeneration was enhanced by ambulatory mechanical loading and 

initial strain amplitudes correlated positively with improved healing outcomes. (A) 
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Bone defect microCT reconstructions representing median samples, showing increased 

mineralization with compliant UHMWPE fixation. Scale bar, 1 mm. Longitudinal 

microCT quantifications of (B) bone volume, (C) mean bone mineral density, (D) 

trabecular thickness, (E) trabecular number, (F) trabecular spacing demonstrating 

increased architectural parameters and no effects on mineral density with compliant 

UHMWPE fixators. n = 10-11. Vertically oriented bar ** p < 0.01 overall main effect 

UHMWPE vs. PSU via Two-way ANOVA. Overhead asterisks * p < 0.05, ** p < 0.01 via 

Sidak’s multiple comparisons test. (G) Failure torque of explanted femoral defects 8 weeks 

after surgery. n = 10-11. p = 0.068 via Mann-Whitney U test. (H-I) Week 8 H&E-stained 

histological sections showing intact femoral ends (black dotted lines) and increased 

mineralized tissue formation under compliant UHMWPE fixation. (J-K) Week 8 Safranin-

O/Fast green sections demonstrate extensive regions of hypertrophic chondrocytes and 

endochondral bone formation under compliant UHMWPE fixation. Scale bars, 500 µm for 

full defect and 50 µm for insets. Specimen-specific strain amplitudes during the first 

treadmill activity period at 1 week, before appreciable mineralization had occurred, 

exhibited significant positive correlations with (L) 4 week bone volume, (M) 8 week bone 

volume (N) and 8 week failure torque. n = 17. *p < 0.05 via rank-order correlation. 

 

Figure 15: Longitudinal microCT quantification of additional morphometric 

parameters. (A) Mean polar moment of inertia was not significantly affected by fixator 

stiffness. n = 10-11. Vertically oriented bar **p < 0.01 overall main effect UHMWPE vs. 

PSU via Two-way ANOVA. 

Histological analysis of the 8 week samples revealed direct contact between the 

regenerating tissue and biomaterial irrespective of fixation stiffnesses, with regions of 

mineralized tissue surrounding remnants of alginate hydrogel (Figure 14H-I). Safranin-

O/Fast green staining indicated that compliant UHMWPE fixation exhibited extensive 
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regions of hypertrophic chondrocytes and endochondral ossification throughout the bone 

defect, while chondrocytes were observed to a qualitatively lesser extent with PSU (Figure 

14J-K). These data are supported by prior reports that moderate mechanical loading 

primarily mediates osteogenesis via endochondral bone formation, the primary mechanism 

for long bone formation and fracture repair under load-bearing conditions34,50,130,179. 

 

Figure 16: Extracellular matrix organization. Histological images of Picro Sirius Red 

stained sections at 8 weeks viewed under polarized light. (A-B) Defects stabilized by 

stiff PSU fixators exhibited primarily lamellar ECM possessing a mix of green and 

yellow/orange collagen fibers, indicative of a mixture of both smaller and larger fibers, 

respectively. (C-D) Defects stabilized by compliant UHMWPE fixators possessed a range 

of ECM organizations. (C)  Large and intense yellow/orange collagen fibers were visible, 

indicative of newly formed woven bone and pronounced matrix remodeling. (D) In 

addition, regions with more organized green and yellow/orange fibers analogous to PSU 

samples were also apparent. Scale bar, 50 µm. 
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 The significant enhancement of bone regeneration stabilized by UHMWPE fixation 

supported further inquiry into the therapeutic potential of early, moderate mechanical 

stimulation. To evaluate this effect more carefully, we examined the relation between 

initial strain amplitudes and longer-term healing outcomes on a per animal basis to 

investigate if slight inter-animal variations in strain correlated with differential healing 

outcomes at disparate time points. Rank-order correlation revealed a significant positive 

relationship between strain cycle amplitude at week 1 and bone volume at weeks 4 and 8 

and failure torque (Figure 14L-N). This correlation with tissue strain was no longer 

significant at 2 weeks (Figure 17A-C); radiographic shadowing and mineralization had 

already begun by 2 weeks (Figure 13B & C, Figure 14A), potentially stiffening those 

defects which were on a favorable progression toward regeneration.  

 

Figure 17: Later time point strain amplitudes and initial gait analysis metrics do not 

correlate with healing outcomes. Strain amplitudes acquired at 2 weeks no longer 
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correlated significantly with (A) 4 week bone volume, (B) 8 week bone volume (C) and 8 

week failure torque, as mineralization had initiated thereby stiffening defects with a 

favorable prognosis. n = 16. n/s via rank-order correlation. Gait analysis metrics at 1 week 

including mean paw print area of injured hindlimb and injured to contralateral ratios of 

mean paw print area and duty cycle also did not correlate with 4 week (D-F) or 8 week (G-

I) bone volume, respectively, indicating that animals with increased gait deficits were not 

predisposed toward poor healing outcomes. n = 21-22. n/s via rank-order correlation. 

An alternative but plausible interpretation of the data was that animals that were 

not recovering well from surgery were consequently not loading their operated hindlimb, 

and their poor prognosis for recovery was instigating lower strain amplitudes. However, 

this hypothesis was not supported, as initial gait analysis metrics representing operated 

hindlimb recruitment during walking revealed no relationships with bone volume or failure 

torque (Figure 17D-I). Additionally, all animals recovered well from surgery with no 

visible signs of post-operative distress. These results suggest that early stage dynamic 

mechanical stimuli may play a persistent role in the healing progression and have the 

potential to influence tissue repair at later-stage time points.  

4.3.4 Strain magnitudes correlated with gait function and healing status 

Another potential beneficial application for the sensor platform is to provide a non-

invasive readout of the progression of healing. We hypothesized that the magnitude of 

fixation plate deformation would primarily be dictated by three factors: the force input on 

the operated femur during each step cycle, and the apparent stiffness of both the fixator 

and the adjacent bone defect, which share load as parallel deformable bodies.  To obtain 

an indirect estimate of the hind limb force, we assessed the degree of operated hind limb 

utilization via weekly quantitative gait analysis immediately after treadmill rehabilitation 

periods. We observed significant deficiencies in mean paw print area and duty cycle of the 
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operated hindlimb relative to the naïve contralateral initially after surgery, with no relative 

effects of fixator stiffness (Figure 18A & B). These deficits were gradually restored to pre-

operative levels within 6 weeks. 

 

Figure 18: Strain magnitudes correlated with gait function and healing status. 

Longitudinal gait analysis quantifications for ratio of operated hindlimb over naïve 

contralateral for mean (A) paw print area (B) and duty cycle demonstrating substantial gait 

deficits are present 1 week after surgery and are progressively resolved by 6 weeks. n = 

10-11. Differing letters denote significant differences p < 0.05 via Two-way ANOVA with 

Tukey’s test. (C) Regression model of pooled ambulatory strain measurements across all 

imaging time points demonstrate strain magnitude is predicted by a linear combination of 

bone volume, fixator stiffness, and mean paw print area. n = 44. Adjusted r2 = 0.54, ***p 

< 0.0001 via multiple regression. 

To evaluate the accuracy of our simplified working model for fixator strain 

magnitude, we performed forward selection and backward elimination multivariate linear 

regression on a response variable data set consisting of all strain measurements acquired at 

time points with corresponding microCT scans (ranging from 2-8 weeks). The predictor 
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variable pool consisted of the fixator stiffness of each device, bone volume, and gait 

analysis metrics. The optimal predictive model was identical for both directions and highly 

significant. Lending support to the working model, experimental inputs predictive of 

fixator strain magnitude consisted of negative correlations with bone volume and fixator 

stiffness, and a positive correlation with average paw print area of the operated hind limb 

(Figure 18C). The three predictor variables exhibited low collinearity (VIF ≤ 1.38) and a 

maximal adjusted coefficient of determination overall, signifying parsimony. Together, 

these data help to describe the key biomechanical relationships within the long bone 

healing environment and demonstrate the potential for strain-based readouts to provide 

real-time assessment of mineralization progress during controlled functional activities 

without the use of X-rays. 

4.3.5 Tissue-level compressive strains at 2 weeks were significantly elevated with 

compliant fixation 

While the strain sensor provides a quantitative readout of axial strain on the fixator 

stabilizing the defect, the effects of mechanical stimulation are ultimately mediated by the 

tissue-level biophysical environment within the regenerative niche. To investigate this, we 

used the experimental data to inform image-based computational models of the early-stage 

bone defect mechanical environment. In this experimental system, the deformation 

measured on the fixation plate during gait provided an experimentally validated in vivo 

boundary condition for the fixator-femur system at 2 weeks (Figure 19A-B). Using sample-

specific boundary conditions and microCT geometry of the defect tissue, we observed a 

dramatic increase in the magnitude of the 3rd principal strain, the maximum compressive 

local strain, within the defect soft tissue under compliant UHMWPE fixation (Figure 19C-
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D). The defect tissue was largely load-shielded by PSU fixation, with 85% of the tissue 

undergoing less than 0.5% compressive strain (Figure 19E). Conversely, load sharing 

permitted by UHMWPE fixation produced a much wider distribution of local tissue strain 

encompassing larger compressive magnitudes up to 6.7%. The average strain magnitude 

under UHMWPE was substantially elevated compared to PSU, and the interquartile ranges 

scarcely overlapped (Figure 19F; UHMWPE: -0.3% to -3.0% vs. PSU: -0.1% to -0.4%). 

These data further demonstrate the utility of the implantable strain sensor platform to 

identify general tissue-level dynamic strain magnitudes that promote bone formation 

before appreciable mineralized bridging has occurred. 

 

Figure 19: Tissue-level compressive strains at 2 weeks were significantly elevated with 

compliant fixation. (A) To assess the early-stage tissue-level mechanical environment 

produced by the differing fixators, microCT-based finite element models of representative 
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samples stabilized by UHMWPE and PSU at 2 weeks were developed. Specimen-specific 

boundary conditions were validated using in vivo strain sensor measurements. (B) Cross-

sectional view of finite element model, brightly colored elements in the defect zone 

represent immature woven bone. Local strain map of defects stabilized by (C) PSU (D) 

UHMWPE fixators reveal substantially elevated compressive strains throughout 

unmineralized tissue in the defect. (E) Histogram and (F) box plot further demonstrate 

significant increase in compressive local tissue strains permitted by compliant UHMWPE 

fixation. n > 16,000 elements with whiskers extending from the 2.5 to the 97.5 percentile 

values. ***p<0.001 via Mann-Whitney U test. 

4.4 Discussion 

Physical forces critically regulate collective cell behavior during transient healing 

processes189. However, dynamic forces are challenging to characterize in vivo, precluding 

a clear understanding of how external mechanical cues may be exploited therapeutically to 

enhance repair. Here, we sought to investigate the temporal progression of mechanical 

signals in a regenerating orthotopic site and to evaluate the biomechanical and therapeutic 

effects of a load sharing-inspired approach on bone regeneration. To this end, we integrated 

an implantable sensor platform into internal fixators of differing stiffness, creating an in 

vivo bone repair model in which we could perturb and remotely quantify mechanical 

boundary conditions in real-time during ambulation. We hypothesized that moderately 

compliant UHMWPE internal fixators would permit increased strain across the defect 

during gait relative to stiffer PSU and consequently enhance bone repair in a challenging 

critically-sized long bone defect small animal model. The results showed that load-sharing 

permitted by UHMWPE fixators initially delivered a two-fold increase in deformation 

magnitude, subsequently increased mineralized bridging by nearly three-fold, and 

increased bone formation by over 60% (Figure 13A-C & Figure 14A & B). Furthermore, 

by coupling in vivo imaging with strain sensor data as experimentally validated in vivo 

boundary conditions, we quantified differences in the early stage tissue-level mechanical 
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environment mediated by reduced fixator stiffness (Figure 19). Together, these results 

establish the utility of in vivo telemetric sensing approaches to aid in the measurement of 

tissue healing and outcomes after regenerative therapeutics. Additionally, the present study 

demonstrates that early stage physical stimuli exert potent effects on these healing 

outcomes and that the judicious use of rehabilitative loading activities informed by real-

time biomechanical measurements may have the potential to resolve skeletal injuries more 

effectively. 

At the tissue level, the benefits of mechanical stimulation to skeletal repair have 

been largely established using percutaneous and bulky external fixator frames; with these 

systems loads are applied via manual adjustment, actuators, or spring systems, but the 

invasiveness of such approaches substantially limits their utilization50,137. At the cellular 

level, mechanical stimulation is known to differentially regulate a wide array of 

mechanisms critical to tissue regeneration including mesenchymal stromal cell 

differentiation and migration58,85 and vascular formation and remodeling34,60. Together, 

data from large and small animal models implicate certain mechanical cues may enhance 

bone repair in a strain magnitude and healing stage dependent manner179. Invasive external 

loading systems applying non-physiological loading patterns have indicated that relatively 

small early compressive strains (3-7%) support early callus precursor formation and woven 

bone formation50,176. Early-stage deformation exceeding 10-15% has been implicated to 

inhibit vascularization and cause fibrotic  non-union or fracture the newly formed bone 

bridge, though in vivo strains were not actually measured26,34. The defect stiffens by several 

orders of magnitude as mineralization and bridging occurs allowing larger magnitude loads 

to be exerted while resultant tissue strains decrease; osteogenic strain magnitudes on newly 
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formed woven are well established to be approximately 0.1-0.4% and can accelerate 

mineralization and vascular maturation after the interfragmentary gap has already bridged 

with calcified tissue34,62,201–203. Taken together, the mechanobiological regulation of bone 

(re)modeling after bridging is well established. However, the magnitude of and functional 

effects of  physiological mechanical cues imparted by rehabilitative activity like walking 

during early phases, prior to the establishment of bridging or non-union, remains poorly 

understood. Clinically, it would be beneficial to leverage the potential of local mechanical 

therapies via early loading, since later stage interventions offer limited benefit to vulnerable 

cases at risk of non-union. Due to the lack of understanding of early loading and 

technologies to quantify it in vivo, current rehabilitation protocols for fractures treated with 

open reduction and internal fixation are typically non-weight bearing for 6-12 weeks204. 

An alternative mechanobiological strategy is to introduce mechanical cues into the 

regenerative niche non-invasively via ambulatory activities. In addition to direct 

biophysical stimulation of the skeletal defect, rehabilitative exercise may exert second-

order benefits to peripheral tissues injured during trauma or surgery including surrounding 

muscles and nerves193,194. Randomized clinical trial evidence has shown that supervised 

progressive resistance exercise after proximal hip fracture enhances physical function and 

quality of life compared to low-intensity exercise targeting flexibility for elderly 

patients192. However, the actual mechanical environment imparted by rehabilitative 

activity, such as resistance training, within a bone defect has not been quantified 

longitudinally, impeding a generalized understanding of tissue-level mechanical stimuli 

with the potential to augment regeneration. The in vivo experimental system that we 

developed and used in the studies herein allowed us to longitudinally measure dynamic 
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axial strain during gait. Concurrently, we observed a substantial enhancement in bone 

repair via increased load sharing. These data implicate a critical role for  early mechanical 

cues on the long term healing response as strain cycle magnitude at 1 week (before 

appreciable healing occurred) had a significant positive correlation with the long-term bone 

regeneration outcomes (Figure 14L-N).   

While fixator strain measurements were useful to assess differences between 

groups and temporal trends reflective of healing, mechanical cues transmitted to cells 

within the healing tissue ultimately regulate mechanobiological responses. Given the 

potent longer-term osteogenic effects of early-stage loading under compliant UHMWPE 

fixation, we reasoned that quantifying the tissue-level deformation provided a more 

generalizable understanding of dynamic mechanical cues that accelerate early-stage bone 

repair, irrespective of the fixator. Subject-specific, image-based finite element analysis 

revealed that tissue-level compressive strain within the bone defect at 2 weeks ranged from 

0.1-6.7% under UHMWPE fixation, whereas stiffer PSU fixation shielded the entire defect, 

permitting only 0.1-0.9% strain. These data are consistent with the results of Miller et al., 

who reported that local maximum compressive strains of about 3% resulted in peak 

probability of subsequent mineralization between days 7 and 14 using an invasive 

percutaneous loading system in a rat osteotomy model176. Miller and colleagues further 

showed that the probability of fibrous tissue formation surpasses mineralization when 

compressive strains exceed 8%. The results from this study corroborate the osteogenic 

nature of early-stage tissue strains below 7% using a completely implantable telemetric 

system and leveraging ambulatory activity to non-invasively deliver mechanical cues. 

Together, the data reported here support the hypothesis that mechanobiological responses 
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to ambulatory loading can be therapeutically exploited to accelerate bone repair, and 

further research is warranted to investigate how controlled rehabilitation regimens may be 

safely enacted relatively early after surgical intervention. 

In addition to the mechanobiological findings facilitated by the strain sensor 

platform, the data support that future iterations of strain sensing approaches may have 

promising applications in clinically relevant contexts such as diagnostics and rehabilitative 

monitoring. While not the primary impetus for the sensor platform developed in this model, 

the results provide proof of principle as strain amplitudes during gait gradually declined 

over time in healing defects. The magnitude of a given strain measurement was a function 

of the volume of mineralized tissue in the defect, the degree of hindlimb usage, and the 

fixator stiffness (Figure 18C). Therefore, this study provides pre-clinical in vivo evidence 

that it may be feasible to infer the status of bone healing via measurements acquired under 

a repetitive controlled task without the need for X-rays. Such an approach is pertinent to 

pediatric patients after procedures that would typically entail CT imaging, as radiation 

exposure should be curtailed to minimize risk of radiation-induced cancers205. This idea 

has been explored of late in percutaneous devices to measure strain and tissue 

impedance168,206, but emerging developments in passive and active devices could offer 

fully implantable, wireless embodiments207. In addition, we obtained measurements in real-

time while animals walked on a treadmill. Such an approach could provide real-time 

feedback to guide rehabilitative specialists while patients perform functional activities, 

enabling patients to maximize recovery of function after surgery while ensuring hardware 

safety thresholds are not exceeded.  
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The sensor platform does have limitations that warrant further research. Though 

sufficient for implantation in a relatively small rat model, the size of the fully-packaged 

transceiver (38 mm x 23 x 12 mm) would benefit from miniaturization. The primary 

contributor to the size was the coin-cell battery, which was selected for its relatively high 

power density and sufficient theoretical power budget for an 8 week study. Nonetheless, 

transceiver attrition was unexpectedly high in the initial bone repair study, reaching 33% 

and 83% by 3 and 8 weeks, respectively. Explant testing indicated this was due to 

variability in voltage regulator performance. Improvements to the transceiver voltage 

regulator in the follow-up angiography study substantially increased device reliability. 

Attrition was reduced to a single failed device (6% failure rate) at 3 weeks, where the root 

cause was due to fixator loosening and not electrical malfunction. Additional work toward 

circuit board layout and power consumption optimization would substantially reduce 

device size and improve power budget fidelity. Passive approaches for power input and 

data transfer are a promising avenue for sensor miniaturization in certain contexts, but 

require externally mounted inductive coil elements, have reduced transmission range, and 

are sensitive to variation in coil-pair orientations. Together, these are significant limitations 

to monitoring during dynamic movements. For these reasons, we employed an active BLE 

telemetry approach that permitted straightforward sleep-wake control and parallel data 

acquisition from multiple animals walking at once. Despite the size of the transceiver, it is 

worth noting that the current footprint is than sufficient for large animal and human scale 

hardware research.  

The specific objective of this study was to assess the role of the tissue-level 

mechanical environment on regeneration. Treadmill walking at a constant speed was 
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employed as a relatively controlled ambulatory activity with which to impart mechanical 

stimulation for all groups. Therefore, the net contribution to tissue repair of periodic 

walking relative to cage restriction was not targeted, but warrants further investigation. 

Forced walking may cause stress and confounding systemic effects in small animals194. 

The findings of this study motivate the development of experimental rehabilitative 

protocols that better mimic clinical regimens in both small and large animal models to 

improve translation of insights obtained by in vivo strain sensing platforms to humans, 

similar to the methods of Dalise and colleagues studying aerobic exercise in rats208.  

Here, we implemented an implantable sensor platform to monitor how mechanical 

stimulation of the regenerative niche permitted by reduced stiffness fixation promotes bone 

repair. In this study, in vivo strain monitoring enabled observations that: 1) early strain 

amplitudes correlated with healing outcomes before radiographic indications of healing 

were apparent, and that 2) local strain magnitudes within the regenerative nice between 1-

7% significantly enhanced bone regeneration. By facilitating real-time longitudinal 

characterization of in vivo mechanical cues, the data represent a notable advancement in 

regenerative mechanobiology. The capacity of integrated biomedical sensors to remotely 

quantify dynamic mechanical signals throughout musculoskeletal regeneration offer new 

opportunities to investigate mechanisms by which biophysical cues augment tissue repair. 

With continued research, similar sensor approaches have the potential to provide 

instantaneous clinical feedback for physicians and physical therapists to aid 

implementation of safe and effective rehabilitation regimens optimized for restoration of 

tissue structure and function. 
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CHAPTER 5. EFFECTS OF MECHANICAL LOADING ON 

EARLY STAGE NEOVASCULARIZATION AND CYTOKINE 

SIGNALING 

5.1 Introduction 

In CHAPTER 4, we deployed the strain sensor platform developed in CHAPTER 

3 to investigate the longitudinal progression of mechanical cues and bone regeneration 

within segmental defects undergoing differing degrees of load sharing. We observed that 

early stage load sharing imparting tissue levels strains between 2-7% significantly 

enhanced bone regeneration in a magnitude dependent manner. Interestingly, we observed 

that strain magnitude 1 week after injury positively correlated with long term bone repair, 

suggesting that the progression of bone defect repair is altered by mechanical loading at 

early stages in the healing cascade. These early stages can be defined as the acute interval 

of bone repair prior to substantial mineralized bridging and bone remodeling. Therefore, 

the early stage encompasses immune signaling, angiogenesis, soft callus formation and 

early mineralization (CHAPTER 2.2). In this chapter we investigated the effects of 

mechanical loading on critical biological processes that coordinate early stage bone 

regeneration.  

Bone is a dynamic tissue whose development and maintenance are heavily 

influenced by biomechanical stimuli exerted by load-bearing activities. After fracture, bone 

possesses a significant intrinsic capacity for tissue regeneration and restoration of critical 

biomechanical functions. However, approximately 5% of the millions of fractured bones 
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each year result in nonunions, where the bone defect does not heal effectively from the 

initial treatment and remains mechanically unstable3. The prolonged disability and multiple 

surgeries endured by such patients therefore represent a substantial global health burden209. 

New therapeutic options to stimulate bone regeneration after injury are needed to address 

this issue. In particular, regenerative therapies are needed for individuals suffering from 

segmental bone loss due to tumor resection or severe traumatic injuries, as intrinsic repair 

mechanisms cannot restore large volumetric defects without the introduction of osteogenic 

or osteoinductive biomechanical or biochemical cues210. 

Given the potent mechanosensitive regulatory mechanisms present in bone172,211, 

the integration of rehabilitative exercise and natural load-bearing activity into treatment 

regimens represents a promising cost-effective, non-pharmacologic approach to stimulate 

bone repair after injury126,130,179,194. We previously developed a novel implantable strain 

sensor platform to quantify mechanical cues in rat femoral segmental defects during 

rehabilitation and observed that controlled delivery of mechanical stimulation via early 

ambulatory loading can significantly enhance bone regeneration outcomes (CHAPTER 4). 

Furthermore, we observed a significant positive correlation between strain magnitudes at 

1 week with long term healing outcomes, suggesting potent magnitude-dependent effects 

of mechanical stimulation on early stages of bone repair. However, the underlying early-

stage biological effects of this mechanical environment are not yet understood.  

Early stages of effective bone repair are facilitated by the coordinated action of 

diverse cell types over rapid time scales after injury or surgery. Several processes preceding 

defect mineralization are vital to osteogenesis, including immune cell recruitment, cytokine 

signaling, and angiogenesis. As the defect size increases, early stages of repair may be 
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temporally protracted as cells migrate over longer distances to fill the defect.  Initially, a 

diverse population of myeloid and lymphoid lineage immune cells including neutrophils, 

monocytes, macrophages, and T cells infiltrate the defect site to clear pathogens and 

necrotic debris, remodel the extracellular matrix (ECM), and secrete cytokines to recruit 

mesenchymal and endothelial progenitors into the defect15,212. Neutrophils have a short life 

span and typically undergo apoptosis within the first several hours, while monocytes 

rapidly differentiate into macrophages in response to environmental cues within the healing 

niche212,213.  

Macrophages are perhaps the most established immune cell phenotype involved in 

the coordination of multiple phases of bone repair213–215. Macrophages and macrophage-

lineage cells are a functionally diverse population known to mediate phagocytosis, 

granulation tissue formation, vascular anastomosis, and production of a range of 

inflammatory, osteogenic and angiogenic cytokines including interleukin-1β (IL-1β), bone 

morphogenetic protein-2 (BMP-2), LIX (CXCL5), and vascular endothelial growth factor 

(VEGF)213,215–219. Macrophages function on a continuum, but are classically segmented 

into M1 and M2 polarization phenotypes; where M1 are associated with phagocytosis and 

acute inflammatory paracrine signaling over the first several days after injury, and M2 are 

implicated in later stages of immune response including fibroblast stimulation, protease 

expression, and suppression of inflammation213. Depletion studies indicate that 

macrophages are indispensable to fracture healing, as both transgenic and clodronate 

liposome-induced macrophage depletion abrogates endochondral and intramembranous 

bone repair in mice, though the specific contributions of M1 or M2 phenotypes remains 

unclear214,215,220.  
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As immune cells resolve acute inflammatory signals, angiogenic and osteogenic 

paracrine cues mediate the next phase of bone repair typically during the first several weeks 

after injury. Effective bone regeneration is reliant on sufficient revascularization of the 

defect region via angiogenesis of nearby vasculature221. Vascularization, must reach a 

sufficient threshold to provide oxygen and nutrients to support metabolic demands of bone 

formation and (re)modeling or non-union will occur33. Angiogenesis after injury in vivo 

occurs as an underdamped adaptive response, where exuberant revascularization of injured 

tissue initially exceeds physiological demands31,222. However, vessel number and volume 

are tightly regulated and excess vessels are pruned during later stages of tissue repair as 

superfluous vessel formation can actually compromise efficient tissue perfusion222,223. 

It is well known that bone repair outcomes are heavily regulated by mechanical 

loading. However, data are scarce describing how vital biological mechanisms of bone 

repair prior to mineralization, including immune modulation and vascularization, are 

affected by extrinsic forces present in orthotopic healing environments. Macrophage 

polarization has been modulated by altering cytoskeletal interactions with the surrounding 

matrix in two-dimensional cultures224. Further, monocytes respond to fluid shear and 

compressive stresses by increasing production of pro-inflammatory cytokines in agarose 

gel cultures225. Additionally, vascular networks have been shown to be mechanosensitive 

where growth and alignment of microvessels in three-dimensional cultures were modulated 

significantly by tensile strain60. Overall, in vitro results provide preliminary evidence that 

both immune mediators and angiogenesis are mechanosensitive; however, in vitro systems 

do not recapitulate the cellular and molecular complexity of the regenerative niche in vivo. 

Several animal studies have demonstrated that severe rotational or axial instability lead to 
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delayed bone repair or non-union and also increase the presence of cytotoxic T cells, inhibit 

angiogenic gene expression, and abrogate defect revascularization. In contrast, the effect 

of more clinically relevant and osteogenic mechanical loading protocols remain 

unclear16,200,226. We recently used a wireless implantable strain sensor to demonstrate that 

bone repair was significantly enhanced due to dynamic strain imparted by ambulatory load 

sharing initiating 1 week after injury (CHAPTER 4). Consistent with prior literature, we 

observed elevated endochondral ossification at 8 weeks in response to load sharing 

(CHAPTER 4)50, however the underlying biological response to loading at earlier stages 

are unknown. Overall, little has been investigated regarding the fundamental effects of 

potentially therapeutic mechanical cues on the coordination of early stage bone repair.  

To address this, here we evaluated the effects of mechanical loading on early stage 

cytokine signaling, angiogenesis, and tissue structure in vivo. Our overarching objective 

was to investigate how key aspects of the regenerative response were modulated by 

osteogenic mechanical strain in vivo. Prior studies in the rat femoral segmental defect 

model used in this study demonstrated that vascular volume under stiff fixation peaks at 2 

weeks and appreciable mineralization begins to occur at 3 weeks200,227. Thereafter, excess 

vessels are progressively pruned while remaining vessels mature via dilation and 

arteriogenesis34,227. Therefore in this study, we examined cytokine expression during peak 

vascularization (2 weeks), and the status of vascularization at the onset of mineralization 

(3 weeks). Given prior research has demonstrated that excessive loading dramatically 

increases inflammatory signaling16, we hypothesized that osteogenic mechanical 

stimulation would elevate inflammatory cytokine expression to a more moderate degree 

while supporting sufficient vascularization to promote endochondral bone repair. 
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5.2 Methods 

5.2.1 Surgical procedure 

All animal procedures were approved by the Georgia Institute of Technology 

IACUC (Protocol A17034). Two animal studies were conducted using identical injury, 

treatment, and rehabilitation procedures described below. The experimental designs for the 

studies lasting 2 and 3 weeks post-surgery, respectively, are outlined in Table 6 and Table 

7. The 3 week study concluded with terminal microCT angiography. The second study 

concluded 2 weeks post-surgery with multiplex cytokine analysis of the newly formed 

tissue in the bone defect. Histological and immunohistochemical (IHC) analyses were 

conducted using samples from both time points. 

Table 6: Bone angiography in vivo study timeline.  

Timeline (weeks) -1 0 1 1.5 2 2.5 3 

Treadmill        

Strain Acquisition        

Gait Analysis        

MicroCT Angiography        

Table 7: Experimental timeline for defect tissue cytokine expression study. 

Timeline (weeks) -1 0 1 1.5 2 

Treadmill      

Gait Analysis      

Defect Tissue Cytokine Analysis      
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Similar to previously described procedures, a unilateral 6 mm segmental defect was 

surgically created in the left femur of 15 week old female CD Sprague-Dawley rats (n=24, 

Charles River Labs)181. Anesthesia was maintained by isoflurane inhalation and analgesia 

was provided by a pre-operative subcutaneous injection of sustained-release 

buprenorphine. Before creating the defect with an oscillating saw, femurs were stabilized 

by affixing a radiolucent internal fixator plate comprised of either polysulfone (PSU, 

McMaster-Carr), or ultra-high molecular weight polyethylene (UHMWPE, Quadrant) 

using four stainless steel screws. UHMWPE fixators were 40% more compliant than PSU 

(flexural stiffness: PSU = 232 ± 20 N/mm; UHMWPE = 145 ± 11 N/mm). Fixators in the 

3 week vascularization study contained integrated wireless strain sensors that provided 

real-time non-invasive measurements of mechanical strain across the bone defect during 

ambulatory activity, as previously described (CHAPTER 4.2.1). Fixators in the 2 week 

defect tissue cytokine analysis study were stabilized by fixators without strain sensors. In 

both animal studies, defects were acutely treated with a minimal healing dose of 

recombinant human bone morphogenetic protein 2 (BMP-2) delivered via a hybrid RGD-

alginate/PCL biomaterial platform described in detail elsewhere182,197. Briefly, treatment 

consisted of installing an electrospun polycaprolactone (PCL, Sigma-Aldrich) tube across 

the defect gap, then injecting 120 µL alginate hydrogel laden with 2 µg BMP-2 (Pfizer) 

inside the tube. Fixators were allocated randomly. After either 2 or 3 weeks, animals were 

anesthetized then euthanized via CO2 asphyxiation.  

5.2.2 Treadmill walking 

To exert a semi-controlled ambulatory mechanical load on the femur, animals were 

walked on a treadmill. Animals were trained to walk at a slow, consistent speed of 6.5 
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m/min 1 week prior to surgery. After surgery, animals were allowed to recover in cages for 

1 week, then 10 minute walking periods were initiated at day 7 and continued twice weekly 

thereafter. During the 3 week angiography study, axial strain across the bone defect was 

measured non-invasively for 3 minutes during each treadmill rehabilitation period by 

recording measurements via each wireless strain sensor implant. The distance traversed 

during this period roughly approximates the best available estimate of the total distance 

covered during one day of in-cage activity198. 

5.2.3 Gait analysis 

 To measure how animals were using their operated hindlimb under voluntary 

walking conditions, gait was analyzed longitudinally. Gait capture and analyses were 

conducted 1 week prior to surgery (baseline) and 1 and 2 weeks after surgery using a 

Catwalk 7.1 system (Noldus). Briefly, rats walked freely across an illuminated walkway 

and individual illuminated paw prints were captured by a digital camera. Passes where the 

animal traversed the entire length of the runway in less than 10 seconds were analyzed (2-

3 runs per animal). Individual paw prints were automatically categorized then verified and 

corrected manually, when necessary. The ratio of the operated hindlimb to naïve 

contralateral paw print area and duty cycle were quantified.  

5.2.4 MicroCT angiography 

Vascular perfusions were performed after 3 weeks in the angiography study 

according to previously described protocols228. Animal vasculature were sequentially 

perfused through the ascending aorta with 0.9% saline, 0.4% papaverine hydrochloride 

vasodilator, 0.9% saline, 10% neutral buffered formalin (NBF), 0.9% saline, and 
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radiopaque lead chromate contrast agent (2:1; Microfil MV-22, FlowTech Inc.). Samples 

were stored overnight at 4° C to ensure polymerization, and both operated and naïve femora 

were dissected with surrounding musculature left intact. Samples were submerged in a 

formic acid/citrate decalcifying solution (Newcomers Supply) for 10 days on a rocker plate 

with daily solution changes. 

 MicroCT scans were performed using 15 µm voxels, 55 kVp, 145 µA, and 300 ms 

integration time. Vascular formation and morphology was assessed inside two different 

4.14 mm long cylindrical VOI: a 5 mm diameter “Defect VOI” encompassing the interior 

of the PCL tube in operated femora or the approximate central axis of the femur in naïve 

contralateral samples, and a 7 mm diameter “Total VOI” encompassing the bone defect 

and immediate surrounding tissue. Vasculature was segmented using a Gaussian low-pass 

filter and a global threshold.  

5.2.5 Analyses of defect tissue cytokines 

Animals were euthanized 24 hours after the final week 2 treadmill period.  

Defect tissue inside and adhered to the outside of the PCL tube was immediately and 

carefully harvested. Upon dissection, two samples were excluded from analysis due to 

evidence of tissue abscess near the fixator indicative of infection. Individual tissue samples 

were flash frozen in liquid nitrogen and then stored at -80⁰ C for subsequent Luminex 

multiplexed immunoassays. Samples were thawed and homogenized in RIPA lysis buffer 

(Thermo Fisher) supplemented with 1X Halt protease inhibitor cocktail (Thermo Fisher). 

Lysates were centrifuged at 13,000 g for 15 minutes and supernatants were transferred to 

new tubes and stored at -80⁰ C. A panel of 27 cytokine were quantified using a Milliplex 
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MAP Rat Cyotkine/Chemokine Magnetic Bead Panel according to the manufacturer’s 

instructions and then read using a MAGPIX instrument (Luminex). Cytokine concentration 

was normalized to total protein content quantified using a bicinchoninic acid assay (BCA 

assay, Thermo Fisher). The sample sizes for each group were: UHMWPE = 9 and PSU = 

11. 

5.2.6 Histology and immunohistochemistry 

At the endpoint of each study (weeks 2 and 3, respectively), representative femur 

samples were reserved for histological analysis based on digital radiographs acquired 

immediately before euthanasia. Femora were fixed in 10% neutral-buffered formalin for 

48 hrs at 4⁰ C, and switched to PBS after. HistoTox Labs completed decalcification, 

paraffin processing, and staining. Midsagittal 5 µm thick sections were stained with 

Hematoxylin & Eosin (H&E), Safranin-O/Fast Green, or Picro Sirius Red.  

 IHC was performed on tissue sections to assess the presence of macrophages in the 

defect. M1-like macrophages were defined as CD11b+/CD68+/CD163-, while M2-like 

macrophages were defined as triple positive CD11b+/CD68+/CD163+213,229–231. The 

following antibodies were used: CD11b (1:50; Thermo Fisher #12-0110-82), CD163 (1:50; 

Bio-Rad #MCA342F), and DAPI (1:1000; Invitrogen #D3571).  

5.2.7 Finite element analyses 

Sample-specific finite element (FE) models of the femur-fixator construct were 

constructed at 1 and 3 weeks using similar methods described previously (CHAPTER 

4.2.11). Briefly, microCT images were processed in MIMICS (Materialise) to create a 
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representative model of proximal and distal femur segments with the fixator attached. At 

1 week, defects were assumed to be a homogeneous 5 mm diameter cylinder comprised of 

soft tissue. For 3 week models, pre-decalcification microCT geometry of mineralized 

woven bone (threshold = 388 mg HA/ccm) were included within the soft tissue cylinder of 

each femur sample. Volumetric meshes of quadratic tetrahedral elements were constructed. 

Mesh resolution convergence was previously demonstrated at approximately 1.5x106 

equations. All materials were constitutively modelled as neo-hookean solids and 

previously reported experimentally validated mechanical properties were assigned (Table 

8, CHAPTER 4.2.11)232.  

Table 8: Chapter 5 finite element model mechanical properties. 

Material E (MPa) ν 
Intact cortical bone 18x10

3 0.33 
Intact trabecular bone 500 0.33 

Soft defect tissue
1 0.022 0.4 

Mineralized defect tissue
2 36.2 0.33 

PCL tube
1 1.44 0.37 

PSU fixator
1 844 0.37 

UHMWPE fixator
1 525 0.4 

Steel anchor plate 200x10
3 0.3 

1
CHAPTER 4.2.11 

2
Leong & Morgan, 2009. 

In each model, animal-specific boundary conditions were defined based on axial 

strain measurements by the wireless strain sensor at the corresponding 1 or 3 week 

treadmill period. Similar to previously reported simulations, boundary conditions were 

applied to replicate in vivo loading183; the distal end of the femur was fixed in all directions 

and combined axial compression and bending pressures were applied to the proximal 

surface. All FE simulations were conducted in FEBio (version 2.8.5) and results were 
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evaluated in PostView199. To capture inter-animal variability of the complete data set while 

maintaining computational efficiency, a sub-set of animals (n=5 from each fixator group) 

were evaluated by longitudinal FE analyses at both 1 and 3 weeks, creating 20 FE 

simulations in total. The distribution of strain magnitude and woven bone volume were 

identical between the sub-set of animals and the complete experimental group (Figure 20). 

 

Figure 20: Finite element analyses were conducted on a sub-set of experimental 

samples representative of the complete data set. Longitudinal element analyses were 

conducted on 5 experimental samples from each experimental group. The magnitudes of 

strain at 1 and 3 weeks, as well as the thresholded tissue volume at 3 weeks of this were 

not different from the complete data set for each group. 

5.2.8 Statistical analyses 

Data are displayed as mean ± s.e.m. or as box plots showing 25th and 75th 

percentiles, with whiskers extending to minimum and maximum values, unless otherwise 

noted in the figure heading. Differences were assessed using t-test. Welch’s t-test or Mann-

Whitney U test was used in cases of unequal variances or non-normal distributions, 

respectively. Significance was determined using p < 0.05. Statistical tests were performed 

by GraphPad Prism 8.   

Univariate and multivariate analysis of cytokine expression profiles within the 

defect were conducted to evaluate differences between fixator stiffness groups, as 
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described previously233. Univariate t-tests were performed comparing the normalized 

median fluorescence intensity values of individual cytokines. Discriminant partial least 

squares regression (D-PLSR) was performed using the PLS MATLAB (Mathworks) 

algorithm developed by Cleiton Nunes. Individual cytokine measurements were used as 

independent variables, and fixator stiffness was used as the discrete regression variable. 

Multi-dimensional latent variables (LV’s) were defined in three dimensions, and an 

orthogonal rotation was implemented to assess separation by fixator stiffness in the LV1-

LV2 plane. Standard deviation of individual cytokines along LV1 were computed using 

leave-one-out cross validation without replacement. 

5.3 Results  

5.3.1 Gait deficits after surgery were similar regardless of fixation stiffness 

Quantitative longitudinal gait analysis revealed that animals’ utilization of their 

operated hindlimb relative to the naïve contralateral hindlimb was significantly reduced 

after surgery (Figure 21). There was no effect of fixation plate stiffness on the gait deficits. 

No animals exhibited severe gait deficits in which the operated hindlimb was not used and 

thus none warranted exclusion.  
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Figure 21: Gait analysis demonstrated moderate functional deficits in the defect 

hindlimb after surgery. Longitudinal gait analysis quantifications for ratio of operated 

hindlimb over naïve contralateral for mean (A) paw print area (B) and duty cycle 

demonstrating substantial gait deficits are present 1 week after surgery. n = 11-12. * p < 

0.05 via Two-way ANOVA with Tukey’s test. 

5.3.2 Defect revascularization at 3 weeks was elevated by load-shielding stiff fixation 

MicroCT angiography revealed that vascular volume within the defect volume was 

significantly increased under stiff PSU fixation at 3 weeks relative to compliant UHMWPE 

fixation or unoperated contralateral femora (Figure 22A). The vascular volume in defects 

stabilized by UHMWPE was similar to the contralateral. Changes in vascular volume 

mediated by fixation plate stiffness were only present within the defect volume, there were 

no differences between PSU and UHMWPE fixators in the total analysed volume or in the 

surrounding tissue alone (Figure 22B & C). Regardless of fixator stiffness, vascular volume 

surrounding the bone defects was significantly increased relative to unoperated femora, 

demonstrating excess angiogenesis after injury (Figure 22C). 
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Figure 22: Vascular volume within the defect was increased at 3 weeks with stiff PSU 

fixation. MicroCT angiography quantification of vascular volume at 3 weeks in and 

surrounding bone defects. (A) Vascular volume within the central 5 mm of the defect is 

increased under stiff fixation, though compliant fixation remained similar to the intact 

femora. n=6-10. *p<0.05 via Kruskal-Wallis test with Dunn’s pairwise comparisons (B) 

Vascular volume throughout the entire defect and surrounding tissue was elevated in 

injured femora relative to naïve, irrespective of fixation stiffness. n=6-10. *p<0.05 via 

ANOVA with Tukey’s test. (C) In the surrounding tissue alone, vascular volume was 

similarly elevated in injured hindlimbs regardless of fixator. n=6-10. *p<0.05 via ANOVA 

with Tukey’s test.  

Representative microCT reconstructions of vascular perfusions qualitatively 

supported volume quantifications (Figure 23A-C). In vivo strain sensor measurements 

during gait replicated similar amplitudes and temporal trends as the preceding bone repair 

study (Figure 23J & Figure 13A), indicating the mechanical environment produced by 

rehabilitative walking was repeatable across studies. Regardless of fixator stiffness, we 

observed a significant increase in the amount of relatively small blood vessels (30-120 µm 

diameter) and the connectivity of the vascular network throughout the defect and 

surrounding tissue, demonstrating a potent angiogenic sprouting response to the injury and 

treatment with BMP-2 (Figure 23D & H). Neovessel orientation was significantly more 

isotropic compared to naïve vasculature, which was primarily aligned along the limb axis 

(Figure 23A-C, I). 
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Figure 23: Defect revascularization at 3 weeks was elevated by load-shielding stiff 

fixation. Representative microCT reconstructions of blood vessels in the bone defect 

region at 3 weeks illustrate robust vascularization in operated hindlimbs stabilized by (A) 

UHMWPE and (B) PSU fixators relative to (C) naïve contralateral femora. Violet dashed 

circles delineate the location of the PCL tube, the interior of which is the Defect VOI. (D) 

Vascular thickness histograms demonstrate a significant increase in the presence of 45-90 
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µm thick blood vessels throughout the defect and surrounding tissue in operated femora, 

regardless of fixator stiffness, demonstrating pronounced angiogenesis in peripheral tissues 

in response to injury. (E) 60-120 µm thick blood vessels were significantly higher within 

defects stabilized by PSU fixators relative to the more compliant UHMWPE fixators. n=6-

10. *p<0.05: PSU vs. UHMWPE, #p<0.05: PSU vs. naïve contralateral, $p<0.05: PSU & 

UHMWPE vs. naïve contralateral via Two-way ANOVA with Bonferroni pairwise 

comparisons. Vascular number in the (F) defect and (G) total VOIs, and (H) connectivity 

and (I) degree of anisotropy in the total VOI. n=6-10. *p<0.05 via Kruskal-Wallis with 

Dunn’s test. (J) Longitudinal in vivo strain amplitudes replicated the preceding 8 week 

study, with an initial two-fold increase in deformation on UHMWPE fixators which 

steadily declined, converging with PSU strain amplitudes. n=7-10. Two-way ANOVA 

*p<0.05 UHMWPE vs. PSU with Tukey’s test, $p<0.05 UHMWPE: week 1 vs 3 with 

Sidak’s test. 

Interestingly, when we localized the analysis within the confines of the defect we 

observed a significant increase in the number of relatively small vessels (60-120 µm 

diameter) within defects stabilized by PSU fixators relative to more compliant UHMWPE 

fixators (Figure 23E). The vessel size distribution of defects stabilized by UHMWPE more 

closely matched naïve vasculature. Furthermore, the number of distinct vascular structures 

within defects stabilized by PSU fixators was elevated (Figure 23F & G).   

5.3.3 Increased strain magnitude altered cytokine expression profile within bone defects 

at 2 weeks 

Defect tissue lysate was analyzed for an array of inflammatory cytokines. To 

distinguish multivariate cytokine expression profiles differentially regulated by defect 

tissue strain, discriminant partial least squares regression (D-PLSR) was performed. D-

PLSR revealed that fixation plate stiffness groups primarily separated along the LV1 axis 

(Figure 24A). Defect samples stabilized by stiff PSU fixators scored significantly higher 

along LV1 relative to samples stabilized by compliant UHMWPE fixators (Figure 24B). 

“The LV1 axis represents a combination of cytokines that have been reduced in 
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dimensionality in order to maximally separate the data based on fixator stiffness. Based on 

the LV1 loading plot, we can determine which cytokines most contributed to positive and 

negative LV1 scores, which are associated with stiff and compliant fixation, respectively 

(Figure 24C). Cytokines most associated with stiff fixation were VEGF and IL-4 were, 

whereas expression of LIX (CXCL5), IL-1β, and RANTES (CCL5) were most associated 

with compliant fixation (Figure 25). Univariate pairwise comparisons demonstrated that 

LIX (CXCL5) levels were significantly elevated by compliant fixation. Conversely, VEGF 

expression was elevated by stiff fixation (p=0.052).  

 

Figure 24: Increased strain magnitude altered cytokine expression profile in bone 

defect at 2 weeks. Discriminant partial least squares regression (D-PLSR) analysis of the 

expression of 16 cytokines in the defect tissue at 2 weeks. (A) Latent variable 1 (LV1) 

defines a multivariate cytokine expression profile depicted along the x-axis that separates 

defects stabilized by stiff PSU fixators to the right and compliant UHMWPE fixators to the 

left. (B) Mean LV1 score was significantly upregulated by stiff PSU fixation. n=9-11. 

***p<0.001 via t-test. (C) Values along LV1 describe individual cytokines with elevated 

expression for UHMWPE fixation (negative values) or PSU (positive values). Error bars 

were computed using leave-one-out cross validation (mean ± SD).  
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Figure 25: Univariate comparisons of individual cytokine expression in defect tissue 

at 2 weeks. LIX (CXCL5) expression was significantly increased by increased load sharing 

with compliant UHMWPE fixation. Conversely, VEGF expression was elevated with by 

load shielding with stiff PSU fixation. Significant pairwise differences were not observed 

in the remaining cytokines. n=9-11. **p<0.01 via t-test.  

Non-supervised principal component analysis was also conducted on the cytokine 

expression profiles to test if samples still separated by fixation stiffness without providing 

experimental groups as discrimination inputs. Samples still significantly separated along 

principal component (PC) axis 2 (Figure 26A & B), and individual cytokine profiles up-

regulated were similar to D-PLSR, where negative scores along PC2 were upregulated in 

stiff PSU fixation while positive scores were upregulated by UHMWPE fixation.  VEGF 

and IL-4 were similarly elevated by stiff fixation, while RANTES (CCL5), LIX (CXCL5), 

and IL-1β were likewise elevated under compliant fixation (Figure 26C). These 

unsupervised results corroborate the significant separation of cytokine expression profiles 

regulated by defect tissue strain revealed by D-PLSR. 
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Figure 26: Unsupervised principal component analysis (PCA) corroborated findings 

of D-PLSR. (A) Moderate separation along principal component 2 (PC2) indicated 

divergent cytokine expression profiles under unsupervised analyses. (B) Mean PC2 score 

was significantly upregulated by stiff UHMWPE fixation. n=9-11 (C) Key differentially 

expressed cytokines along PC2 were similar to LV1, where positive values correspond to 

increased expression under compliant fixation and negative values represent increased 

expression under stiff fixation. ***p<0.001 via t- test.  

5.3.4 Mechanical loading supported endochondral woven bone formation at 3 weeks 

Qualitative histological analysis of defect tissue samples at 2 and 3 weeks revealed 

that marked changes in tissue composition occurred during this relatively brief interval 

(Figure 27). At 2 weeks, the defect was predominantly comprised of alginate hydrogel from 

the BMP-2 delivery vehicle. Irrespective of fixation stiffness, the presence of alginate 

declined between weeks 2 and 3, while qualitative increases in mineralized tissue were 

simultaneously apparent. Hypertrophic chondrocytes were evident at 3 weeks throughout 

defects stabilized by compliant fixators, suggesting the initiation of endochondral 

ossification. Vessels perfused with contrast agent were visible in 3 week samples. 

Qualitatively supporting microCT angiography results, more vessels were apparent in stiff 

PSU stabilized defects. Picro Sirius red staining viewed under polarized light revealed large 

red collagen fibers adjacent to regions of hypertrophic chondrocytes with UHMWPE, 
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indicative of woven bone formation. Collagen in PSU-stabilized samples appeared 

primarily orange-yellow in color and qualitatively smaller in size. Lamellar collagen 

architecture was not observed in either group at these early time points.  

 

Figure 27: Mechanical loading supported endochondral woven bone formation at 3 

weeks. Bone defect at histology at 2 and 3 weeks, including Hematoxylin & Eosin (left 

column for PSU and UHMWPE, except for bottom image), Safranin-O/Fast Green (right 

columns), and Picro Sirius red (bottom image in left columns). Alginate hydrogel remnants 

are denoted as “Al”, bone is denoted as “B”, chondrocytes are denoted as “Ch”, and blood 

vessels are indicated with arrows extending from “V”. Insets are registered to full defects 

by color-coded dotted rectangles. Black scale bar = 500 µm. White scale bar = 50 µm. 

5.3.5 M2-like macrophages were present in defect under compliant fixation at 2 weeks 
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Qualitative IHC analysis revealed regions of numerous CD11b+/CD163+ M2-like 

macrophages present within defect tissue stabilized by compliant UHMWPE fixators 

(Figure 28). These regions were primarily observed near the transition from soft tissue and 

alginate to immature woven bone. Qualitatively, regions containing numerous M2-like 

macrophages were not observed under stiff PSU fixation. CD11b+/CD163- M1-like 

macrophages were not observed in the defect, regardless of fixator stiffness. 

 

Figure 28: M2-like macrophages were present in defect tissue under compliant 

fixation at 2 weeks. IHC of bone defect at week 2 suggests M2-like macrophages are 

present under compliant UHMWPE fixation; red = CD11b+, green = CD163+, blue = 

DAPI; white arrows denote regions containing CD11b+/CD163+ M2-like macrophages; 

White scale bar = 50 µm. 

5.3.6 Mechanical analyses of bone defect mechanical environment throughout early 

stage repair 

Specimen-specific longitudinal FE analyses revealed elevated 3rd principal strain 

magnitude (the maximum local compressive strain) during gait within defects stabilized by 

compliant UHMWPE fixation at 1 week (Figure 29 & Figure 30A & B; UHMWPE: -1.54 
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± 0.17%; PSU: -0.76 ± 0.06%, p = 0.077). Between 1 and 3 weeks, woven bone extending 

from the intact bone ends was formed within the defects. The deposition of relatively stiff 

woven bone reduced the proportion of soft tissue within the defect. Consequently, the 

magnitude of 3rd principal strain within soft tissue increased between weeks 1 and 3 (Figure 

30A & C; Wk 3: UHMWPE: -1.89 ± 0.35%; PSU: -1.38 ± 0.35%, *p = 0.04 Wk 1 vs. 3). 

As indicated by representative FE model cross-sections, the magnitude of strain was 

relatively heterogeneous throughout the defect, reaching 3-6% in some regions under 

compliant fixation and 5-10% under either fixation at 1 and 3 weeks respectively (Figure 

29 & Figure 30B & C). In newly formed woven bone, mean 3rd principal strain magnitude 

was similar regardless of fixator stiffness (Figure 30D & E; UHMWPE: -0.47 ± 0.08%; 

PSU: -0.55 ± 0.12%, n/s).  

The resultant axial load at the proximal femur during gait averaged 3.78 ± 0.35 

bodyweight (BW) overall (Figure 30F). Axial load did not change between 1 and 3 weeks 

and was not affected by fixation stiffness. Actual loads varied widely from animal to animal 

(Min: 0.87 BW; Max: 7.2 BW), and there was a significant effect of matching animals (p 

< 0.05), suggesting heterogeneity in hindlimb utilization on a per animal basis as each 

recovered from surgery. 
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Figure 29: Mechanical analyses of bone defect mechanical environment throughout 

early stage repair. Representative image-based finite element model cross-sections 

demonstrate elevated compressive strain magnitude within UHMWPE-stabilized defects. 

 

Figure 30: Tissue strain is elevated by compliant fixation and localizes to soft tissue 

as woven bone forms. (A) Mean 3rd principal strain of non-mineralized soft tissue within 
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the defect increased between 1 and 3 weeks due to the increased proportion of much stiffer 

woven bone as healing progressed. n=5. *p<0.05 Wk 1 vs. 3, #p=0.077 UHMWPE vs. PSU 

via Two-way RM ANOVA. Tissue strain distribution within each sample was spatially 

heterogeneous throughout the defect soft tissue at (B) 1 and (C) 3 weeks. In all box plots, 

the mean is denoted by a dot and whiskers are defined using the Tukey method. (D) Mean 

3rd principal strain magnitude within immature woven bone at 3 weeks averaged 

approximately 0.5% regardless of fixator stiffness. n=5. n/s via t-test. (E) Woven bone 

tissue strain was similarly heterogeneous throughout the defect in each sample. (F) Peak 

femoral loads were variable between animals, averaging approximately four-fold body 

weight (BW) regardless of fixator stiffness or time point. n=5. n/s via Two-way RM 

ANOVA. 

5.4 Discussion 

Controlled mechanical loading of bone defects represents a promising therapeutic 

approach to stimulate endogenous bone repair with the goal of reducing the risk of 

nonunion. Osteogenesis stimluated by mechanical loading after bone defects have been 

bridged with mineralized tissue are well described. However, there is very little data 

characterizing how potentially beneficial biophysical stimuli modulate the early stages of 

tissue repair after skeletal injury. Increasing evidence has demonstrated the fundamental 

role of the immune response in coordinating cell recruitment and angiogenesis preceding 

mineralization, and preliminary in vitro studies support that immune mediators are 

sensitive to mechanical stimuli. Elucidating the interplay between biophysical stimulation 

and early stage bone repair is critical to gain a mechanistic understanding of how best to 

employ mechanical therapies to benefit patients at elevated risk of non-union.  

In this study, we observed that mechanical load sharing previously shown to 

significantly enhance bone repair in the presence of a minimal healing dose of BMP-2 

exerted substantial effects on the early stage molecular, cellular, and structural progression 

of bone defects. Vascular infiltration into the defect at 3 weeks was significantly altered by 
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dynamic strain magnitude, where reduced strain permitted by stiff PSU fixators led to 

elevated vascular volume in the defect at 3 weeks. However, the relatively larger magnitude 

deformation with UHMWPE fixation still supported similar vascular volume to intact 

femora. Furthermore, load shielding under PSU fixation permitted an increase in the 

number of relatively small vessels in the defect at 3 weeks, whereas the vascular number 

under UHMWPE fixation was similar to the naïve contralateral femur. Supporting the 

variation in vascularization observed at 3 weeks, VEGF levels in the defect tissue lysate 

were upregulated by stiff fixation at 2 weeks. One of our previous studies in this segmental 

defect model used similar BMP-2 dosing and a compliant fixator possessing a stiffness 

about 50% lower than the UHMWPE fixators; the former fixators with lower stiffness 

dramatically impaired both vascular ingrowth and bone regeneration after injury34. 

Conversely, in CHAPTER 4 we observed a potent osteogenic effect from the deformation 

permitted by UHMWPE fixation possessing a more moderate compliance. Given the single 

3 week measurement of vascularization in this study, it cannot be explicitly determined if 

increased strain magnitude permitted by compliant UHMWPE fixation reduced or delayed 

angiogenic sprouting, or accelerated pruning. Regardless, vascular volume, number, and 

size distribution with compliant fixation was similar to intact bone, suggesting that a 

threshold of sufficient vascularization had been achieved.  

Together with our previous work, these data indicate a potential minimum threshold 

of vascularization is necessary to support osteogenesis, above which there may not be 

further benefit to the regenerative capacity of the tissue. These results contrast the generally 

accepted paradigm directly linking the enhancement of angiogenesis with improved 

osteogenesis. Instead, there appear to be distinct magnitude-dependent mechanobiological 
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thresholds that differentially impair either bone or neovascular growth when exceeded. As 

a result, increased strain magnitude can slightly modulate the progression of angiogenesis 

but still support sufficient tissue revascularization to significantly enhance bone repair.  

Peak compressive strain magnitude in unmineralized defect tissue under 

UHMWPE fixation averaged -1.54 ± 0.17% at 1 week and -1.89 ± 0.35% at 3 weeks.  

Strains were reduced under stiffer PSU fixation, averaging -0.76 ± 0.06% and -1.38 ± 

0.35% at 1 and 3 weeks, respectively. As deposition of comparatively stiff woven bone 

initiated, the strain magnitude within non-mineralized defect tissue increased between 1 

and 3 weeks and deformation localized to remaining soft tissue regions. Spatial 

heterogeneity in deformation was apparent at both 1 and 3 weeks, though soft tissue regions 

with locally elevated strain magnitudes remained below 10-15% strain, a biomechanical 

threshold implicated to promote fibrosis and hypertrophic non-union throughout50,175,176. 

FE simulations also revealed that animals exerted an axial load at the proximal femur of 

approximately 4-fold bodyweight during rehabilitative treadmill walking sessions which 

was unaffected by fixation stiffness or time. Considering the bone injury and iatrogenic 

effects of the surgery, these results are comparable with an inverse dynamics analysis by 

Wehner and colleagues which estimated that the peak axial load through the proximal 

femur in an uninjured rat was 6-fold bodyweight183.  

Consistent with prior reports, larger magnitude strain permitted by UHMWPE 

fixation supported endochondral ossification at 3 weeks, whereas intramembranous 

ossification was predominant with PSU50,62,126,234,235. We previously observed the presence 

of hypertrophic chondrocytes in this mechanical loading model at 8 weeks, at which point 

there was a significant 60% increase in bone formation over stiff fixation. Together, these 
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findings support that skeletal repair in the presence of BMP-2 can proceed via either 

intramembranous or endochondral ossification, and that the biomechanical conditions can 

dictate this switch. Overall, the data indicate there is a strain magnitude threshold where 

vascularization begins to be reduced or delayed slightly while bone repair is simultaneously 

improved, primarily via endochondral repair. Prior work using significantly more 

compliant fixation systems have demonstrated that further increases in local tissue strain 

exceeding 10-15% dramatically inhibits both angiogenesis and osteogenesis34,50. 

Therefore, the biomechanical environment produced by rehabilitative or mechanical 

therapies must be carefully monitored to be safe and efficacious.  

In addition to VEGF, expression profiles of immune cytokines and chemokines 

were also differentially regulated by strain magnitude. Multivariate expression profile 

analysis indicated levels of LIX (CXCL5), IL-1β, and RANTES (CCL5), cytokines 

classically categorized as pro-inflammatory and angiogenic, were elevated by mechanical 

loading. Even after the resolution of acute inflammation, IL-1β signaling has also been 

shown to play subtle roles stimulating various phases of tissue regeneration, including 

VEGF production, endochondral ossification, and bone remodeling174,236–239. In addition, 

LIX (CXCL5) expression has been shown to enhance angiogenesis, inhibit 

osteoclastogenesis, and is secreted by mesenchymal progenitors via non-canonical WNT 

signaling as well as by macrophages240–243. Similarly, RANTES (CCL5) promotes VEGF 

productions and angiogenesis243–245. These data are consistent with in vitro experiments in 

monocytes and sheep osteotomy studies indicating mechanical loads elevate immune cell 

expression of paracrine signals canonically associated with acute inflammation16,225. 

Further supporting elevated immune activity in response to loading, we observed clusters 
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of CD163+ M2-like macrophages near the transition between woven bone and soft tissue 

in defects stabilized by compliant UHMWPE fixation at 2 weeks. More specifically, the 

CD163 surface receptor is associated with M2c macrophages, a phenotype associated with 

IL-1β expression and the promotion of ECM remodeling and angiogenesis via secretion of 

MMP9213,246,247. Qualitatively, myeloid lineage cells were not observed to the same extent 

under stiff fixation. Taking the protein, cellular, and vascular analyses conducted in this 

study together, the data suggest that the early stage immune response is mechanosenstive 

and that the therapeutic effects of mechanical loading may initially be manifested by 

altering early stage immunological aspects of bone repair prior to cartilaginous callus or 

osteoid formation. We speculate that slight elevations in chemokine and cytokine signaling 

due to loading may facilitate sustained progenitor recruitment into the defect, but further 

research is warranted to determine the downstream effects of mechanosensitive 

perturbations in immune paracrine signaling on specific progenitor cell sub-populations 

that mediate osteogenesis. 

When considering the immunological findings of this segmental defect study 

alongside transverse fracture models common in the literature, it is worth noting that each 

model produces differing degrees of trauma. The model used in this study better represents 

segmental defects created surgically after the resection of tumors, debridement of heavily 

comminuted traumatic fractures, or spinal fusions and corpectomies. The data are 

particularly applicable to such defects treated with BMP-2. Alterations in the immune 

response due to the injury mechanism would be expected to be play a more significant role 

at very acute stages, but appreciable differences could still be present at 2 and 3 weeks. 
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The acute inflammatory response is critical to coordinate skeletal repair after injury. 

The data presented here suggest that key immune cytokines coordinating bone repair are 

mechanosenstive and are stimulated by osteogenic mechanical loading produced by 

rehabilitative activity. Additionally, these data demonstrate that increased levels of 

vascularization at intermediate time points do not necessarily portend enhanced bone 

regeneration. The findings of this study motivate continued research to examine the 

proximate effects of mechanically sensitive immune signaling on endochondral bone 

repair. 
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CHAPTER 6. CONCLUSIONS AND FUTURE DIRECTIONS 

6.1 Primary Conclusions & Contributions to the Field 

Together, the work conducted in this thesis supported 4 principal contributions: 

1) Established a new sensor platform that can non-invasively quantify strain across 

skeletal defects in vivo 

2) Validated that the aforementioned platform can be used to measure dynamic 

strains imparted by rehabilitation and assess both the temporal progression of 

the healing process, including bridging 

3) Challenged the paradigm that targeting enhanced angiogenesis will necessitate 

improved bone repair 

4) Demonstrated mechanosensitivity of the immune response after injury 

. While prior studies have demonstrated the substantial osteogenic potential of 

mechanical stimulation to enhance fracture healing, the tissue-level mechanical 

environment within the regenerative niche was either not quantified or stimulated via 

invasive loading systems that exert non-physiological loading patterns not representative 

of locomotion126. Therefore, a major challenge facing researchers seeking to develop novel 

regenerative strategies that integrate therapeutics and rehabilitation is defining and 

controlling the mechanical environment in vivo. Due to this lack of understanding, 

fractures requiring open surgical reduction and internal fixation are typically handled very 

conservatively and are primarily non-weight bearing for 6-12 weeks after stabilization204.  

Motivated to address this challenge, the studies described in this thesis were envisioned to 
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engineer technical platforms that enable longitudinal quantification of in vivo mechanical 

cues, and to elucidate how perturbing the magnitude of these mechanical cues modulates 

the progression of bone repair. The findings and conclusions represent both technical and 

scientific advances, where a novel technological platform was developed and exploited to 

investigate previously unexplored mechanobiological phenomena.   

Biomedical Sensors 

In Aim I, we developed a first-of-its-kind wireless implantable strain sensor 

platform with which to measure dynamic mechanical strain across a bone defect during 

functional movements196. Through rigorous in vitro testing, we demonstrated the sensor 

platform possessed promising sensitivity and signal resolution to monitor physiological 

strain magnitudes and to detect the progression of bone repair. Preliminary in vivo 

implantation studies further validated the potential of the sensor to non-invasively quantify 

mechanical strain across bone defects in real-time during gait.  

In Aim II, we integrated the strain sensor platform into stiff and compliant internal 

fixators, allowing us to both perturb and quantify the in vivo mechanical environment.  We 

deployed the sensor platform to longitudinally measure strain over 8 weeks after creation 

of a segmental bone defect. Notably, strain magnitude measurements exhibited significant 

positive correlations with the bone volume present in the defect. These results are 

consistent with previous reports suggesting the potential utility of strain sensing modalities 

as an X-ray free diagnostic to assess fracture or spinal fusion healing149,249. Such 

radiographic-free approaches are particularly beneficial for pediatric populations whose 

exposure to X-rays warrants significant restraint205,250. The diagnostic potential of both 



 121 

wearable and implantable sensors has been established for decades in cardiology and 

cardiac electrophysiology251,252. Future work incorporating sensors into implants used in 

the treatment of complex orthopaedic or spine procedures is warranted and has the potential 

to provide important post-surgical feedback to clinicians. Furthermore, the incorporation 

of sensors into actuating implants, such as recently introduced growing spinal rods used to 

treat scoliosis, has significant potential to confer feedback control for clinicians to optimize 

healing based on real-time diagnostic information253. 

Together, Aims I and II demonstrated that microfabrication and low power 

telemetric systems have reached sufficiently small size and low cost to be effectively 

leveraged in pre-clinical models, including small animals. The novel findings enabled by 

the strain sensor platform motivate the expansion of development efforts for sensor and 

telemetry systems with the ability to study pre-clinical models of tissue degeneration or 

repair. Expanded usage of sensors explicitly developed for biomedical applications offers 

significant potential to quantify dynamic biophysical or biochemical signals present in the 

regenerative niche and to inform the rational design of new therapeutics and biologics170.  

Mechanical Loading 

In Aim II, periodic walking on a treadmill was employed to mimic dynamic 

functional loading conferred by rehabilitation. In vivo strain amplitudes acquired while 

animals walked were used as boundary conditions for finite element models of the 

regenerating femur to determine the tissue-level mechanical environment created by 

rehabilitation. The findings of Aim II corroborate prior reports in the literature that 

dynamic compressive strain magnitudes in the range of 1-7% are potently osteogenic 
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compared to load-shielding and promote a mechanistic shift from intramembranous toward 

endochondral ossification50,176. Furthermore, the magnitude of strain at 1 week held 

significant positive correlations with long term healing outcomes, suggesting early stage 

mechanical stimuli have significant potential to augment bone repair.  

The segmental defect model was employed to create a repeatable mechanical 

environment throughout this thesis. This is an important limitation to note because this 

model represents a simplified mid-diaphyseal injury that does not recapitulate the 

architectural complexities of severe traumatic injuries or congenital deformities sometimes 

encountered clinically. Nonetheless, the studies conducted in this thesis demonstrate that 

simple functional movements have the potential to create therapeutic biophysical stimuli 

in a cost-effective manner. To address more complex scenarios, validated clinical 

orthopaedic classification systems could be used to segment prevalent injury patterns, and 

similar biomechanical environment evaluations during rehabilitative activities could be 

performed on representative injury sub-classes of interest254. 

Mechanobiology of Early Stage Bone Repair 

Given the observations of improved bone repair due to early loading and the 

significant correlation of strains at 1 week with long term repair in Aim II, we hypothesized 

that early stage mechanical loading differentially regulates early stage biological processes 

such as immune cytokine signaling and angiogenesis that coordinate bone repair before 

mineralization. Preliminary in vitro work reports suggest that cells mediating these 

processes are mechanosensitive, but the early stage biological effects of mechanical 

stimulation in well-defined biomechanical environments have not been studied60,224,225. In 
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Aim III, we investigated effects of osteogenic mechanical loading on early stage repair and 

observed significant changes in defect revascularization and cytokine signaling. 

Angiography analysis revealed that vascular volume was actually increased at 3 

weeks within load-shielded bone defects relative to defects stimulated with osteogenic 

mechanical loading. Mechanically loaded defects maintained similar vascular volume to 

naïve contralateral femurs, suggesting that there may be threshold of sufficient 

vascularization above which there are negligible benefits to bone repair.  Consistent with 

the 3 week angiography data, we observed elevated VEGF levels in load-shielded defects 

at 2 weeks. Conversely, mechanically loaded defects were associated with increased LIX 

(CXCL5), IL-1β, and RANTES (CCL5) levels, cytokines implicated in inflammation, cell 

recruitment and survival, and matrix synthesis. We speculate moderate elevations in these 

cytokine signals may exert beneficial effects by promoting sustained cell 

recruitment15,16,20,255, but this hypothesis requires further research to be tested. While 

elucidating the specific mechanism by which immune signals enhance load-induced bone 

repair will require additional investigation, this thesis is among the first in vivo studies 

demonstrating that the immune response is sensitive to relatively small magnitude changes 

in the mechanical environment. 

Overall, these data break with the widely held paradigm that therapeutically 

targeting increased vascularization will assure improved healing outcomes, as increased 

vascularization at 3 weeks in this study did not lead to improved bone repair. Placing the 

findings of this thesis alongside the literature suggests the following simplified working 

model describing how osteogenesis and angiogenesis are regulated by the initial magnitude 

of dynamic compression after skeletal injury (Figure 31). Here, slight elevations in strain 



 124 

magnitude in the range 2-7% enhance osteogenesis and gradually shift the healing 

mechanism from primarily intramembranous ossification toward endochondral 

repair50,126,176. Concurrently, angiogenesis at intermediate time points in healing is slightly 

modulated as strain increases without negatively impacting osteogenesis and bone repair. 

As strains approach 10%, angiogenesis is substantially impaired and osteogenic potential 

begins to diminish34,176. Deformation up to 15% may yield successful bone repair via 

considerably prolonged endochondral ossification, but there is evidence of significant risk 

for fibrosis and non-union beyond 10% strain34,50,126. Thus, therapeutic strategies 

incorporating mechanical stimulation must be developed and implemented carefully, 

ensuring the resultant mechanical environment produced by a loading device or 

rehabilitation activity is in the maximal osteogenic range. Incorporating real-time sensing 

capabilities demonstrated in this thesis into orthopaedic devices may ease the development 

of safe and effective loading therapies that exploit early stage skeletal mechanobiology to 

improve patient outcomes.   
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Figure 31: Simplified working model describing effects of early dynamic compressive 

strain magnitude on osteogenesis and angiogenesis. 

6.2 Future Directions 

The findings of this thesis motivate the future exploration of several interesting 

questions and research initiatives. The potential research initiatives outlined below focus 

on three thrusts: (1) using this relatively well characterized in vivo model to obtain a more 

mechanistic understanding of early stage mechanobiology, (2) establishing biological and 

biomechanical congruence between pre-clinical models and clinical protocols of 

rehabilitation, (3) improving the technical versatility of biomedical sensors for a wider 

range of clinical and scientific applications. 

Mechanobiology 

While Figure 31 outlined a simplified working model describing the effects of early 

loading on angiogenesis and osteogenesis, a number of experiments could greatly improve 

the fidelity of this model. First, a more detailed temporal characterization of defect 
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revascularization kinetics would help to answer the question if early mechanical loading 

slightly reduces, delays, or actually accelerates remodeling of newly formed vessels. This 

could be achieved by completing microCT angiography at multiple time points. 

Furthermore, while microCT angiography facilitates quantification of perfused arteriole-

level blood vessels, it does not have sufficient resolution to capture capillaries or immature 

angiogenic sprouts. Efforts to quantify microvasculature within tissue samples using serial 

sectioning and digital reconstruction could aid our understanding of how the seminal stages 

of angiogenesis are regulated by biophysical stimuli. Quantification and imaging of 

microvasculature structures within and surrounding actual bone defects could also inform 

image-based finite element simulations to investigate underlying mechanobiological 

mechanisms regulating vessel growth in vivo. The Weiss group have developed an open-

source angiogenesis simulation plug-in for FEBio called AngioFE and has substantial 

expertise creating such models based on in vitro systems256. Simulations of the mechanical 

environment could be complimented by detailed biological characterization of gene and 

protein expression of in vivo samples, analogous to in vitro PCR microarray analyses 

conducted by Ruehle on dynamically loaded 3D microvessel cultures in their recently 

submitted doctoral thesis. 

This thesis targeted two mechanical environments by modulating internal fixator 

stiffness: a stiff load-shielding plate permitting very low strains, and a moderately 

compliant plate allowing osteogenic strains. The development of an excessively compliant 

fixator platform with an integrated strain sensor would help to define the threshold where 

mechanical loading results in fibrosis and hypertrophic non-union. In light of the findings 

of this thesis, a more nuanced question that could be answered using a more compliant 
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fixator is what is the threshold of minimum revascularization to achieve bone repair? Given 

we observed a reduction in vascularization at 3 weeks due to loading while bone repair was 

enhanced, it would be beneficial to determine when further deformation disrupts 

vascularization so severely that non-union occurs.  The best estimate of this threshold is 

likely 10% based on previous work from our lab, though this is a rough estimate because 

the sensor platform had not been developed and thus actual mechanical environment was 

not quantified34. 

Differences in the expression of immune modulatory cytokines at 2 weeks due to 

loading indicate that previously unexplored critical inflammatory processes during tissue 

repair are mechanosensitive. Critical questions warranting further research include: What 

cell types are differentially secreting VEGF, IL-1β, and CXCL5 in response to 

deformation? What cells are these cytokine and chemokine signals acting on? Preliminary 

evidence in the literature indicate that macrophages may play a pivotal role in this process, 

but we speculate that multiple cell types including neutrophils, mesenchymal and 

endothelial progenitors, and T cells may also be involved. We performed a pilot flow 

cytometry analysis of macrophages within the defect tissue at 10 days, but total cell 

numbers were too low to robustly classify cell sub-populations. Using a smaller defect 2-3 

mm defect could perhaps enable more rapid cell recruitment and permit quantitative 

cytometric analysis of the defect tissue. However, decreasing the defect size would also 

alter the tissue-level mechanical environment. Alternatively, temporal characterization of 

cell subtypes with relatively low numbers present could be achieved using IHC. 

Nonetheless, the overarching objective of all the aforementioned methods is to define the 

underlying biological targets altered by early mechanical loading long before osteogenesis 
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actually occurs, and to investigate how these targets propagate downstream signaling as 

mineralization ensues. 

Rehabilitation 

A potential path forward to clinically translate the mechanobiological findings of 

this thesis will rely on studying rehabilitation protocols that safely deliver mechanical 

stimulation. We selected treadmill walking for 10 minutes at a slow controlled speed 

because: (1) it produced repeatable cyclic strain cycles, (2) the step frequency was 

sufficiently slow (1-1.5 Hz) that is would not be aliased by the digital transceiver (30 Hz 

sampling frequency), and (3) because it approximated our best estimate of a total distance 

covered in a full day of in-cage activity. To better optimize rehabilitation, there is a strong 

need to develop more representative pre-clinical small and large animal models that better 

simulate actual physical therapy or clinical rehabilitation activities.  The recent work of 

Dalise and colleagues represents a systematic approach to recapitulate dose-dependent 

effects of aerobic exercise commonly prescribed in physical therapy in small animal 

models208. Similar approaches could be undertaken using the pre-clinical segmental defect 

model developed in this thesis by investigating activity type, frequency, and duration as 

experimental variables and studying the resultant mechanical environment along with the 

bone healing outcomes. 

Biomedical Sensors 

The key technical challenges facing widespread adoption of biomedical sensors for 

both research and clinical applications lie in a few areas. First, the footprint of fully 

integrated devices remains a barrier to entry for relatively small microenvironments of 
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interest, such as, cartilage lesions, arterioles, or the eye. While most electrical components 

can readily be miniaturized to extremely small sizes given sufficient design resources, the 

key component limiting miniaturization of the overall size envelope remains the battery. 

Therefore, continued research is needed to further maximize power density of battery 

systems, minimize power consumption of implantable circuitry, or to improve the range 

and reliability of passive powering systems that eliminate the need for large power sources.  

Recent demonstrations of passive power transfer to deep-tissue devices  implanted up to 4-

5 cm beneath the skin are extremely encouraging257,258. Future research to passively power 

implantable devices will significantly expand the breadth of feasible use cases.  

Finally, besides bone, the vast majority of biological tissues are far too compliant 

to interface with the traditional suite of MEMS materials used in this study. Recently, 

technical feasibility has been demonstrated in a number compliant biomedical sensor 

systems for wearable and implantable soft tissue applications152,259,260. Continued 

fundamental research in materials and fabrication techniques to construct highly flexible 

and stretchable sensors, circuit components, and power sources, as well as durable and 

biocompatible adhesives could spread applicability of biomedical sensors throughout the 

body. The ability to continuously and quantitatively assess physiological properties of 

interest in situ represents a disruptive change to the current clinical treatment paradigm for 

the vast majority of diseases, and future research toward engineered systems that can 

accomplish this task is warranted170,261.   
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APPENDIX A. STRAIN SENSOR FIXATOR PREP PROTOCOL 

Materials 

1. PSU or UHMWPE fixator (see Appendix B) 

2. Strain sensor (Micro-measurements # MMF001747 EA-06-125BZ-350/E) 

3. 220 grit sandpaper 

4. VWR lab tape 

5. Razor blade 

6. Isopropyl alcohol 

7. Surgical instrument cleaner 

8. Conditioner & neutralizer solutions (from Omega #TT300 adhesive kit) 

9. Cotton swabs 

10. M-Bond AE-10 epoxy (Micro-measurements) 

11. Rubber blocks (cut from McMaster-Carr neoprene strip, 1/8" Thick) 

12. Pinstripe brush 

13. Dymax 3401 UV-curing adhesive 

14. Dymax 1072-M UV-curing adhesive 

15. Dymax UV spotlamp 

16. SS-braided wire (AM systems #793200 Nominal AWG: 41 bare, 36 coated) 

17. Silicon rubber tubing (AM systems #806100 Inside diamter 0.012 in.) 

18. Wire crimpers 

19. Soldering iron 

20. Solder (Kester 32117 24-6040-0027 60/40 Stand, 0.031" Diameter,"44", 1.5) 

21. Easy-clean “blue” flux (McMaster-Carr 7755A1) 

22. Stainless steel “black bottle” soldering flux (McMaster-Carr 7695A1) 

23. Teflon covers (laser-cut from McMaster-Carr #8711K91, 0.015” thick) 

24. Music wire (McMaster-Carr 302/304 SS Wire, 0.010" Diameter, 1' Long) 

25. Omnetics copper connectors (D4354-701 female nano contact) 

Set-up 

26. Set oven temperature to ~60°C for PSU or ~37°C for UHMWPE 

27. Tape white plastic adhesion fixture to clear area on bench 

Plate surface preparation 

1. Dry abrade pocket of fixation plate where strain gage will be adhered with 

220 grit sandpaper 

2. Sonicate fixation plates for 15 minutes in DI water with a few drops of 

surgical instrument cleaner  
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3. Throughout steps 2 and 4, trim strain gage matrix to size using razor blade 

while sensors sit on a glass slide. Trim each side of the sensor up to the 

triangular alignment marks 

4. Sonicate fixation plates for 15 minutes in Isopropyl alcohol (IPA) 

5. Dry plates and place them in adhesion fixture 

6. Using cotton swabs, wipe sensor pocket of each plate with Conditioner 

solution 

7. Wet abrade the sensor pocket of each plate 

8. Using cotton swabs, wipe sensor pock again with Conditioner (water with 

trace phosphoric acid to etch the plate), then immediately dry with another 

swab 

9. Using cotton swabs, wipe sensor pock again with Neutralizer (water with trace 

ammonia to rebalance pH), then immediately dry with another swab 

10. Using blue low-tack tape, position each sensor on a fixation plate so that it can 

be mounted into sensor pocket, orient sensor so that solder pads are offset to 

one end of plate with wire routing slot on side of plate to the left. The bottom 

edge of the solder pads should be about even with the top edge of the wire 

slot. 

Sensor adhesion 

1. Mix M-Bond AE10  

a. Use dropper to withdraw curing solution to marking on side of dropper 

b. Dispense curing solution into epoxy container 

c. Mix vigorously with stir rod for 3-4 minutes 

2. Using fine tip paint brush, apply very thin layer of epoxy to underside of gage 

and into sensor pocket on fixation plate 

3. Lightly press each gage into the sensor pocket  

4. Position rubber block on top of gage so that it will compress into the pocket 

when pressure is applied 

5. Carefully set the 2 steel plates on top of the rubber blocks, ensuring that no 

sideways motion moves the blocks from their position on the fixation plates 

6. Cut tape holding adhesion fixture to table, apply new tape to secure steel 

plates to the adhesion fixture 

28. Carefully move the entire adhesion fixture with steel blocks into oven,  

29. For PSU: cure at 60°C for 1 hour / For UHMWPE: cure at 37°C for 3 hours 

30. After 1 hour, remove steel blocks from adhesion fixture and increase oven 

temperature to: 

a. For PSU: 70°C (USE AUTOCLAVE GLOVES) 

b. For UHMWPE: 45°C 

31. After 2 hours remove from oven (USE AUTOCLAVE GLOVES) 

32. Set on bench and let everything cool. 

Wire prep 
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1. Cut 2 wires to ss-braided wires to equal length (~6 inches) 

2. Cut silicone tubing to a slightly shorter length (about 0.5 inch shorter) 

3. Wearing gloves, apply UV-curing glue (e.g. Dymax 1072-M) to fingers and 

run fingers along wires to glue them together. Leave about 3 mm unglued on 

the end that will be soldered to the strain sensor 

4. Slide copper connector tubes over one end of each wire 

5. Strip about 1 mm of each wire with razor blade 

6. Slide copper connector tube up wire over top of the stripped region and crimp 

with wire stripper 

7. Cut excess copper tubing, leaving 2-3 mm of crimped tube remaining 

8. On opposite end of wire, strip wires, flux (with black flux bottle), and tin the 

two ends together 

9. Flux and tin the end of a piece of music wire and solder the braided wire ends 

to the music wire 

10. Push music wire through silicone tubing and pull lead wires through the 

tubing 

11. Once the music wire is through the tubing, de-solder the music wire from the 

rest of the lead wire 

12. Place copper tubes on the uncovered ends identical to the previous side 

13. On the end of the wire that is attached to the sensor, tubing should be within 3 

mm of the end of the wire so it can be routed and anchored into the wire slot 

of the plate 

Sensor wiring and encapsulation 

1. Flux and tin solder pads of sensor, then solder wire ends to sensor 

2. Apply a few droplets of Dymax 3401 onto solder connections and cure with 

light to provide strain relief 

3. The tricky part here is to bend the wires 90 to left, wrap them down they side 

of the plate. 

4. Apply a few droplets of Dymax 1072-M into the wire slot on the slide of the 

plate and place tubing into the slot. The tubing is a force fit into the slot so it 

should hold in place once you push it into the slot, then use light to cure the 

glue. 

5. On the side of the plate where the sensor is adhered, completely fill the well 

the sensor sits in with light-curing Dymax 1072-M. The goal is to completely 

fill the well without any bubbles flush with the top of the walls that form the 

well so that there is a flat surface to adhere the teflon covers. 

6. Once the Dymax 1072-M is cured, roughen the brown side of a teflon cover 

for the side and back of the plate with 220 grit sandpaper. Wipe off the teflon 

with a little IPA 

7. Apply a few droplets of Dymax 1072-M distributed on the back of the fixation 

plate and few droplet distributed onto the teflon covers 
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8. Leave the teflon cover sitting on the table, flip the plate over so that the sensor 

side is facing the table and place down onto the teflon cover, carefully 

watching alignment. Hold down with firm pressure and turn on light (since the 

plate is translucent the light can cure the glue from the opposite side of the 

plate). Once teflon cover is adhered, carefully scrape away any excess cured 

glue with forceps or a razor blade. 

9. Follow the same procedure for adhering the teflon cover for the side of the 

plate to cover the wire exit slot. 
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APPENDIX B. STRAIN SENSOR FIXATOR DRAWING 

 



 135 

 

  



 136 

REFERENCES 

1.  HCUPnet. Healthcare Cost and Utilization Project (HCUP). Rockville, MD Agency 

Healthc Res Qual. (1997-2012). https://www.hcup-

us.ahrq.gov/reports/factsandfigures/figures/2005/2005_3_6C.jsp. 

2.  Pollak A, Watkins-Castillo S. Fracture Trends - The Burden of Musculoskeletal 

Diseases in the United States.; 2014. http://www.boneandjointburden.org/2014-

report/via23/fracture-trends. 

3.  Zura R, Xiong Z, Einhorn T, et al. Epidemiology of Fracture Nonunion in 18 Human 

Bones. JAMA Surg. 2016;151(11):e162775. doi:10.1001/jamasurg.2016.2775 

4.  Santolini E, West R. Risk factors for long bone fracture non-union: a stratification 

approach based on the level of the existing scientific evidence. Injury. 2015;46:S8-

S19. doi:10.1016/S0020-1383(15)30049-8 

5.  Tzioupis C, Giannoudis P V. Prevalence of long-bone non-unions. Injury. 

2007;38:S3-S9. doi:10.1016/S0020-1383(07)80003-9 

6.  Hak DJ, Fitzpatrick D, Bishop JA, et al. Delayed union and nonunions: 

Epidemiology, clinical issues, and financial aspects. Injury. 2014;45:S3-S7. 

doi:10.1016/j.injury.2014.04.002 

7.  Antonova E, Le TK, Burge R, Mershon J. Tibia shaft fractures: costly burden of 

nonunions. BMC Musculoskelet Disord. 2013;14(1):42. doi:10.1186/1471-2474-14-

42 

8.  Beaver R, Brinker MR, Barrack RL. An analysis of the actual cost of tibial 

nonunions. J La State Med Soc. 1997;149(6):200-206. 

http://www.ncbi.nlm.nih.gov/pubmed/9188244. Accessed May 23, 2017. 

9.  Busse JW, Bhandari M, Sprague S, Johnson-Masotti AP, Gafni A. An economic 

analysis of management strategies for closed and open grade I tibial shaft fractures. 

Acta Orthop. 2005;76(5):705-712. doi:10.1080/17453670510041808 

10.  Patil S, Montgomery R. Management of complex tibial and femoral nonunion using 

the Ilizarov technique, and its cost implications. Bone Joint J. 2006;88-B(7). 

http://www.bjj.boneandjoint.org.uk/content/88-B/7/928. Accessed May 23, 2017. 

11.  Ilizarov GA. The tension-stress effect on the genesis and growth of tissues. Part I. 

The influence of stability of fixation and soft-tissue preservation. Clin Orthop Relat 

Res. 1989;(238):249-281. http://www.ncbi.nlm.nih.gov/pubmed/2910611. 

Accessed January 12, 2016. 

12.  Stafford PR, Norris BL. Reamer-irrigator-aspirator bone graft and bi Masquelet 



 137 

technique for segmental bone defect nonunions: a review of 25 cases. Injury. 

2010;41:S72-S77. doi:10.1016/S0020-1383(10)70014-0 

13.  Obremskey W, Molina C, Collinge C, et al. Current Practice in the Management of 

Open Fractures Among Orthopaedic Trauma Surgeons. Part B: Management of 

Segmental Long Bone Defects. A Survey of Orthopaedic Trauma Association 

Members. J Orthop Trauma. 2014;28(8):e203-7. 

doi:10.1097/BOT.0000000000000034 

14.  McKibbin B. The biology of fracture healing in long bones. J Bone Joint Surg Br. 

1978;60-B(2):150-162. http://www.ncbi.nlm.nih.gov/pubmed/350882. Accessed 

May 10, 2015. 

15.  Claes L, Recknagel S, Ignatius A. Fracture healing under healthy and inflammatory 

conditions. Nat Rev Rheumatol. 2012;8(3):133-143. doi:10.1038/nrrheum.2012.1 

16.  Schmidt-Bleek K, Schell H, Schulz N, et al. Inflammatory phase of bone healing 

initiates the regenerative healing cascade. Cell Tissue Res. 2012;347(3):567-573. 

doi:10.1007/s00441-011-1205-7 

17.  Kolar P, Gaber T, Perka C, Duda GN, Buttgereit F. Human early fracture hematoma 

is characterized by inflammation and hypoxia. Clin Orthop Relat Res. 

2011;469(11):3118-3126. doi:10.1007/s11999-011-1865-3 

18.  Taguchi K, Ogawa R, Migita M, Hanawa H, Ito H, Orimo H. The role of bone 

marrow-derived cells in bone fracture repair in a green fluorescent protein chimeric 

mouse model. Biochem Biophys Res Commun. 2005;331(1):31-36. 

doi:10.1016/j.bbrc.2005.03.119 

19.  Kon T, Cho TJ, Aizawa T, et al. Expression of osteoprotegerin, receptor activator of 

NF-kappaB ligand (osteoprotegerin ligand) and related proinflammatory cytokines 

during fracture healing. J Bone Miner Res. 2001;16(6):1004-1014. 

doi:10.1359/jbmr.2001.16.6.1004 

20.  Naik AA, Xie C, Zuscik MJ, et al. Reduced COX-2 expression in aged mice is 

associated with impaired fracture healing. J Bone Miner Res. 2009;24(2):251-264. 

doi:10.1359/jbmr.081002 

21.  Wang Y, Wan C, Deng L, et al. The hypoxia-inducible factor alpha pathway couples 

angiogenesis to osteogenesis during skeletal development. J Clin Invest. 

2007;117(6):1616-1626. doi:10.1172/JCI31581 

22.  Mizuno K, Mineo K, Tachibana T, Sumi M, Matsubara T, Hirohata K. The 

osteogenetic potential of fracture haematoma. Subperiosteal and intramuscular 

transplantation of the haematoma. J Bone Joint Surg Br. 1990;72(5):822-829. 

http://www.ncbi.nlm.nih.gov/pubmed/2211764. Accessed May 10, 2015. 

23.  Park S-H, Silva M, Bahk W-J, McKellop H, Lieberman JR. Effect of repeated 



 138 

irrigation and debridement on fracture healing in an animal model. J Orthop Res. 

2002;20(6):1197-1204. doi:10.1016/S0736-0266(02)00072-4 

24.  Bhandari M, Tornetta P, Sprague S, et al. Predictors of reoperation following 

operative management of fractures of the tibial shaft. J Orthop Trauma. 

2003;17(5):353-361. http://www.ncbi.nlm.nih.gov/pubmed/12759640. Accessed 

May 10, 2015. 

25.  Epari DR, Kassi J-P, Schell H, Duda GN. Timely fracture-healing requires 

optimization of axial fixation stability. J Bone Joint Surg Am. 2007;89(7):1575-

1585. doi:10.2106/JBJS.F.00247 

26.  Boerckel JD, Dupont KM, Kolambkar YM, Lin ASP, Guldberg RE. In Vivo Model 

for Evaluating the Effects of Mechanical Stimulation on Tissue-Engineered Bone 

Repair. J Biomech Eng. 2009;131(8):084502-084502. doi:10.1115/1.3148472 

27.  Jain RK. Molecular regulation of vessel maturation. Nat Med. 2003;9(6):685-693. 

doi:10.1038/nm0603-685 

28.  Geudens I, Gerhardt H. Coordinating cell behaviour during blood vessel formation. 

Development. 2011;138(21):4569-4583. doi:10.1242/dev.062323 

29.  Cursiefen C, Chen L, Borges LP, et al. VEGF-A stimulates lymphangiogenesis and 

hemangiogenesis in inflammatory neovascularization via macrophage recruitment. 

J Clin Invest. 2004;113(7):1040-1050. doi:10.1172/JCI200420465.1040 

30.  Adams RH, Alitalo K. Molecular regulation of angiogenesis and 

lymphangiogenesis. Nat Rev Mol Cell Biol. 2007;8(6):464-478. 

doi:10.1038/nrm2183 

31.  Korn C, Augustin HG. Mechanisms of Vessel Pruning and Regression. Dev Cell. 

2015;34(1):5-17. doi:10.1016/j.devcel.2015.06.004 

32.  van Royen N, Piek JJ, Buschmann I, Hoefer I, Voskuil M, Schaper W. Stimulation 

of arteriogenesis; a new concept for the treatment of arterial occlusive disease. 

Cardiovasc Res. 2001;49(3):543-553. 

http://www.ncbi.nlm.nih.gov/pubmed/11166267. Accessed February 2, 2015. 

33.  Street J, Bao M, deGuzman L, et al. Vascular endothelial growth factor stimulates 

bone repair by promoting angiogenesis and bone turnover. Proc Natl Acad Sci U S 

A. 2002;99(15):9656-9661. doi:10.1073/pnas.152324099 

34.  Boerckel JD, Uhrig BA, Willett NJ, Huebsch N, Guldberg RE. Mechanical 

regulation of vascular growth and tissue regeneration in vivo. Proc Natl Acad Sci. 

2011;108(37):E674-E680. doi:10.1073/pnas.1107019108 

35.  Hirao M, Tamai N, Tsumaki N, Yoshikawa H, Myoui A. Oxygen tension regulates 

chondrocyte differentiation and function during endochondral ossification. J Biol 



 139 

Chem. 2006;281(41):31079-31092. doi:10.1074/jbc.M602296200 

36.  Wang Y, Wan C, Gilbert SR, Clemens TL. Oxygen sensing and osteogenesis. Ann 

N Y Acad Sci. 2007;1117:1-11. doi:10.1196/annals.1402.049 

37.  Sheehy EJ, Buckley CT, Kelly DJ. Oxygen tension regulates the osteogenic, 

chondrogenic and endochondral phenotype of bone marrow derived mesenchymal 

stem cells. Biochem Biophys Res Commun. 2012;417(1):305-310. 

doi:10.1016/j.bbrc.2011.11.105 

38.  Hankenson KD, Dishowitz M, Gray C, Schenker M. Angiogenesis in bone 

regeneration. Injury. 2011;42(6):556-561. doi:10.1016/j.injury.2011.03.035 

39.  Dennis SC, Berkland CJ, Bonewald LF, Detamore MS. Endochondral Ossification 

for Enhancing Bone Regeneration: Converging Native Extracellular Matrix 

Biomaterials and Developmental Engineering In Vivo. Tissue Eng Part B Rev. 

October 2014. doi:10.1089/ten.TEB.2014.0419 

40.  Fiedler J, Leucht F, Waltenberger J, Dehio C, Brenner RE. VEGF-A and PlGF-1 

stimulate chemotactic migration of human mesenchymal progenitor cells. Biochem 

Biophys Res Commun. 2005;334(2):561-568. doi:10.1016/j.bbrc.2005.06.116 

41.  Yang Y-Q, Tan Y-Y, Wong R, Wenden A, Zhang L-K, Rabie ABM. The role of 

vascular endothelial growth factor in ossification. Int J Oral Sci. 2012;4(2):64-68. 

doi:10.1038/ijos.2012.33 

42.  Deckers MML, van Bezooijen RL, van der Horst G, et al. Bone morphogenetic 

proteins stimulate angiogenesis through osteoblast-derived vascular endothelial 

growth factor A. Endocrinology. 2002;143(4):1545-1553. 

doi:10.1210/endo.143.4.8719 

43.  Zhang F, Qiu T, Wu X, et al. Sustained BMP signaling in osteoblasts stimulates 

bone formation by promoting angiogenesis and osteoblast differentiation. J Bone 

Miner Res. 2009;24(7):1224-1233. doi:10.1359/jbmr.090204 

44.  Malladi P, Xu Y, Chiou M, Giaccia AJ, Longaker MT. Effect of reduced oxygen 

tension on chondrogenesis and osteogenesis in adipose-derived mesenchymal cells. 

Am J Physiol Cell Physiol. 2006;290(4):C1139-46. doi:10.1152/ajpcell.00415.2005 

45.  Tuncay OC, Ho D, Barker MK. Oxygen tension regulates osteoblast function. Am J 

Orthod Dentofacial Orthop. 1994;105(5):457-463. doi:10.1016/S0889-

5406(94)70006-0 

46.  Utting JC, Robins SP, Brandao-Burch A, Orriss IR, Behar J, Arnett TR. Hypoxia 

inhibits the growth, differentiation and bone-forming capacity of rat osteoblasts. Exp 

Cell Res. 2006;312(10):1693-1702. doi:10.1016/j.yexcr.2006.02.007 

47.  Hausman M., Schaffler M., Majeska R. Prevention of fracture healing in rats by an 



 140 

inhibitor of angiogenesis. Bone. 2001;29(6):560-564. doi:10.1016/S8756-

3282(01)00608-1 

48.  Kanczler JM, Oreffo ROC. Osteogenesis and angiogenesis: the potential for 

engineering bone. Eur Cell Mater. 2008;15:100-114. 

http://www.ncbi.nlm.nih.gov/pubmed/18454418. Accessed February 2, 2015. 

49.  Morgan EF, Salisbury Palomares KT, Gleason RE, et al. Correlations between local 

strains and tissue phenotypes in an experimental model of skeletal healing. J 

Biomech. 2010;43(12):2418-2424. doi:10.1016/j.jbiomech.2010.04.019 

50.  Claes LE, Claes LE, Heigele C a, et al. Effects of mechanical factors on the fracture 

healing process. Clin Orthop Relat Res. 1998;355S:S132-47. 

http://www.ncbi.nlm.nih.gov/pubmed/9917634. 

51.  Shapiro F. Bone development and its relation to fracture repair. The role of 

mesenchymal osteoblasts and surface osteoblasts. Eur Cell Mater. 2008;15:53-76. 

http://www.ncbi.nlm.nih.gov/pubmed/18382990. Accessed April 7, 2015. 

52.  Claes L, Blakytny R, Besse J, Bausewein C, Ignatius A, Willie B. Late 

Dynamization by Reduced Fixation Stiffness Enhances Fracture Healing in a Rat 

Femoral Osteotomy Model: J Orthop Trauma. 2011;25(3):169-174. 

doi:10.1097/BOT.0b013e3181e3d994 

53.  Hou T, Li Q, Luo F, et al. Controlled dynamization to enhance reconstruction 

capacity of tissue-engineered bone in healing critically sized bone defects: an in vivo 

study in goats. Tissue Eng Part A. 2010;16(1):201-212. 

doi:10.1089/ten.TEA.2009.0291 

54.  Carpenter RD, Klosterhoff BS, Torstrick FB, et al. Effect of porous orthopaedic 

implant material and structure on load sharing with simulated bone ingrowth: A 

finite element analysis comparing titanium and PEEK. J Mech Behav Biomed Mater. 

2018;80(September 2017):68-76. doi:10.1016/j.jmbbm.2018.01.017 

55.  Huiskes R, Weinans H, Grootenboer HJ, Dalstra M, Fudala B, Slooff TJ. Adaptive 

bone-remodeling theory applied to prosthetic-design analysis. J Biomech. 

1987;20(11-12):1135-1150. http://www.ncbi.nlm.nih.gov/pubmed/3429459. 

Accessed April 8, 2015. 

56.  Guilak F, Cohen DM, Estes BT, Gimble JM, Liedtke W, Chen CS. Control of stem 

cell fate by physical interactions with the extracellular matrix. Cell Stem Cell. 

2009;5(1):17-26. doi:10.1016/j.stem.2009.06.016 

57.  McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS. Cell Shape, 

Cytoskeletal Tension, and RhoA Regulate Stem Cell Lineage Commitment. Dev 

Cell. 2004;6(4):483-495. doi:10.1016/S1534-5807(04)00075-9 

58.  Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell 



 141 

lineage specification. Cell. 2006;126(4):677-689. doi:10.1016/j.cell.2006.06.044 

59.  Matsumoto T, Yung YC, Fischbach C, Kong HJ, Nakaoka R, Mooney DJ. 

Mechanical strain regulates endothelial cell patterning in vitro. Tissue Eng. 

2007;13(1):207-217. doi:10.1089/ten.2006.0058 

60.  Krishnan L, Underwood CJ, Maas S, et al. Effect of mechanical boundary conditions 

on orientation of angiogenic microvessels. Cardiovasc Res. 2008;78(2):324-332. 

doi:10.1093/cvr/cvn055 

61.  Yung YC, Chae J, Buehler MJ, Hunter CP, Mooney DJ. Cyclic tensile strain triggers 

a sequence of autocrine and paracrine signaling to regulate angiogenic sprouting in 

human vascular cells. Proc Natl Acad Sci U S A. 2009;106(36):15279-15284. 

doi:10.1073/pnas.0905891106 

62.  Boerckel JD, Kolambkar YM, Stevens HY, Lin ASP, Dupont KM, Guldberg RE. 

Effects of in vivo mechanical loading on large bone defect regeneration. J Orthop 

Res. 2012;30(7):1067-1075. doi:10.1002/jor.22042 

63.  Turner CH, Pavalko FM. Mechanotransduction and functional response of the 

skeleton to physical stress: The mechanisms and mechanics of bone adaptation. J 

Orthop Sci. 1998;3(6):346-355. doi:10.1007/s007760050064 

64.  Ingber DE. Cellular mechanotransduction: putting all the pieces together again. 

FASEB J. 2006;20(7):811-827. doi:10.1096/fj.05-5424rev 

65.  Giancotti FG. Integrin Signaling. Science (80- ). 1999;285(5430):1028-1033. 

doi:10.1126/science.285.5430.1028 

66.  Lee D-Y, Yeh C-R, Chang S-F, et al. Integrin-mediated expression of bone 

formation-related genes in osteoblast-like cells in response to fluid shear stress: roles 

of extracellular matrix, Shc, and mitogen-activated protein kinase. J Bone Miner 

Res. 2008;23(7):1140-1149. doi:10.1359/jbmr.080302 

67.  Turner CH, Forwood MR, Otter MW. Mechanotransduction in bone: do bone cells 

act as sensors of fluid flow? FASEB J. 1994;8(11):875-878. 

http://www.ncbi.nlm.nih.gov/pubmed/8070637. Accessed August 15, 2015. 

68.  Papachristou DJ, Papachroni KK, Basdra EK, Papavassiliou AG. Signaling 

networks and transcription factors regulating mechanotransduction in bone. 

Bioessays. 2009;31(7):794-804. doi:10.1002/bies.200800223 

69.  Hynes RO. Integrins: bidirectional, allosteric signaling machines. Cell. 

2002;110(6):673-687. http://www.ncbi.nlm.nih.gov/pubmed/12297042. Accessed 

January 14, 2015. 

70.  Thompson WR, Rubin CT, Rubin J. Mechanical regulation of signaling pathways 

in bone. Gene. 2012;503(2):179-193. doi:10.1016/j.gene.2012.04.076 



 142 

71.  Helmke BP, Rosen AB, Davies PF. Mapping mechanical strain of an endogenous 

cytoskeletal network in living endothelial cells. Biophys J. 2003;84(4):2691-2699. 

doi:10.1016/S0006-3495(03)75074-7 

72.  Orr AW, Helmke BP, Blackman BR, Schwartz MA. Mechanisms of 

mechanotransduction. Dev Cell. 2006;10(1):11-20. 

doi:10.1016/j.devcel.2005.12.006 

73.  Sokabe M, Sachs F, Jing ZQ. Quantitative video microscopy of patch clamped 

membranes stress, strain, capacitance, and stretch channel activation. Biophys J. 

1991;59(3):722-728. doi:10.1016/S0006-3495(91)82285-8 

74.  Duncan RL, Hruska KA. Chronic, intermittent loading alters mechanosensitive 

channel characteristics in osteoblast-like cells. Am J Physiol. 1994;267(6 Pt 

2):F909-16. http://www.ncbi.nlm.nih.gov/pubmed/7528987. Accessed June 30, 

2015. 

75.  Duncan RL, Kizer N, Barry EL, Friedman PA, Hruska KA. Antisense 

oligodeoxynucleotide inhibition of a swelling-activated cation channel in osteoblast-

like osteosarcoma cells. Proc Natl Acad Sci U S A. 1996;93(5):1864-1869. 

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=39873&tool=pmcentre

z&rendertype=abstract. Accessed August 16, 2015. 

76.  Lansman JB, Hallam TJ, Rink TJ. Single stretch-activated ion channels in vascular 

endothelial cells as mechanotransducers? Nature. 325(6107):811-813. 

doi:10.1038/325811a0 

77.  Kizer N, Guo XL, Hruska K. Reconstitution of stretch-activated cation channels by 

expression of the alpha-subunit of the epithelial sodium channel cloned from 

osteoblasts. Proc Natl Acad Sci U S A. 1997;94(3):1013-1018. 

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=19631&tool=pmcentre

z&rendertype=abstract. Accessed August 16, 2015. 

78.  Malone AMD, Anderson CT, Tummala P, et al. Primary cilia mediate 

mechanosensing in bone cells by a calcium-independent mechanism. Proc Natl 

Acad Sci U S A. 2007;104(33):13325-13330. doi:10.1073/pnas.0700636104 

79.  Temiyasathit S, Tang WJ, Leucht P, et al. Mechanosensing by the primary cilium: 

deletion of Kif3A reduces bone formation due to loading. PLoS One. 

2012;7(3):e33368. doi:10.1371/journal.pone.0033368 

80.  Hoey DA, Tormey S, Ramcharan S, O’Brien FJ, Jacobs CR. Primary cilia-mediated 

mechanotransduction in human mesenchymal stem cells. Stem Cells. 

2012;30(11):2561-2570. doi:10.1002/stem.1235 

81.  McGlashan SR, Jensen CG, Poole CA. Localization of extracellular matrix receptors 

on the chondrocyte primary cilium. J Histochem Cytochem. 2006;54(9):1005-1014. 

doi:10.1369/jhc.5A6866.2006 



 143 

82.  Iomini C, Tejada K, Mo W, Vaananen H, Piperno G. Primary cilia of human 

endothelial cells disassemble under laminar shear stress. J Cell Biol. 

2004;164(6):811-817. doi:10.1083/jcb.200312133 

83.  Davies PF. Hemodynamic shear stress and the endothelium in cardiovascular 

pathophysiology. Nat Clin Pract Cardiovasc Med. 2009;6(1):16-26. 

doi:10.1038/ncpcardio1397 

84.  Ingber DE. Tensegrity I. Cell structure and hierarchical systems biology. J Cell Sci. 

2003;116(7):1157-1173. doi:10.1242/jcs.00359 

85.  Vincent LG, Choi YS, Alonso-Latorre B, del Álamo JC, Engler AJ. Mesenchymal 

stem cell durotaxis depends on substrate stiffness gradient strength. Biotechnol J. 

2013;8(4):472-484. doi:10.1002/biot.201200205 

86.  Hadjipanayi E, Mudera V, Brown RA. Close dependence of fibroblast proliferation 

on collagen scaffold matrix stiffness. J Tissue Eng Regen Med. 2009;3(2):77-84. 

doi:10.1002/term.136 

87.  Yeh Y-T, Hur SS, Chang J, et al. Matrix stiffness regulates endothelial cell 

proliferation through septin 9. PLoS One. 2012;7(10):e46889. 

doi:10.1371/journal.pone.0046889 

88.  Wang H-B, Dembo M, Wang Y-L. Substrate flexibility regulates growth and 

apoptosis of normal but not transformed cells. Am J Physiol Cell Physiol. 

2000;279(5):C1345-1350. http://ajpcell.physiology.org/content/279/5/C1345.short. 

Accessed August 16, 2015. 

89.  Leight JL, Wozniak MA, Chen S, Lynch ML, Chen CS. Matrix rigidity regulates a 

switch between TGF-β1-induced apoptosis and epithelial-mesenchymal transition. 

Mol Biol Cell. 2012;23(5):781-791. doi:10.1091/mbc.E11-06-0537 

90.  Huebsch N, Arany PR, Mao AS, et al. Harnessing traction-mediated manipulation 

of the cell/matrix interface to control stem-cell fate. Nat Mater. 2010;9(6):518-526. 

doi:10.1038/nmat2732 

91.  Nelson CM, Jean RP, Tan JL, et al. Emergent patterns of growth controlled by 

multicellular form and mechanics. Proc Natl Acad Sci U S A. 2005;102(33):11594-

11599. doi:10.1073/pnas.0502575102 

92.  Dalby MJ, Gadegaard N, Tare R, et al. The control of human mesenchymal cell 

differentiation using nanoscale symmetry and disorder. Nat Mater. 2007;6(12):997-

1003. doi:10.1038/nmat2013 

93.  Burke DP, Kelly DJ. Substrate stiffness and oxygen as regulators of stem cell 

differentiation during skeletal tissue regeneration: a mechanobiological model. 

PLoS One. 2012;7(7):e40737. doi:10.1371/journal.pone.0040737 



 144 

94.  Khetan S, Guvendiren M, Legant WR, Cohen DM, Chen CS, Burdick JA. 

Degradation-mediated cellular traction directs stem cell fate in covalently 

crosslinked three-dimensional hydrogels. Nat Mater. 2013;12(5):458-465. 

doi:10.1038/nmat3586 

95.  Sumanasinghe RD, Bernacki SH, Loboa EG. Osteogenic differentiation of human 

mesenchymal stem cells in collagen matrices: effect of uniaxial cyclic tensile strain 

on bone morphogenetic protein (BMP-2) mRNA expression. Tissue Eng. 

2006;12(12):3459-3465. doi:10.1089/ten.2006.12.3459 

96.  Kearney EM, Farrell E, Prendergast PJ, Campbell VA. Tensile strain as a regulator 

of mesenchymal stem cell osteogenesis. Ann Biomed Eng. 2010;38(5):1767-1779. 

doi:10.1007/s10439-010-9979-4 

97.  Simmons CA, Matlis S, Thornton AJ, Chen S, Wang CY, Mooney DJ. Cyclic strain 

enhances matrix mineralization by adult human mesenchymal stem cells via the 

extracellular signal-regulated kinase (ERK1/2) signaling pathway. J Biomech. 

2003;36(8):1087-1096. http://www.ncbi.nlm.nih.gov/pubmed/12831733. Accessed 

August 23, 2015. 

98.  Jang J-Y, Lee SW, Park SH, et al. Combined effects of surface morphology and 

mechanical straining magnitudes on the differentiation of mesenchymal stem cells 

without using biochemical reagents. J Biomed Biotechnol. 2011;2011:860652. 

doi:10.1155/2011/860652 

99.  Subramony SD, Dargis BR, Castillo M, et al. The guidance of stem cell 

differentiation by substrate alignment and mechanical stimulation. Biomaterials. 

2013;34(8):1942-1953. doi:10.1016/j.biomaterials.2012.11.012 

100.  Chen Y-J, Huang C-H, Lee I-C, Lee Y-T, Chen M-H, Young T-H. Effects of cyclic 

mechanical stretching on the mRNA expression of tendon/ligament-related and 

osteoblast-specific genes in human mesenchymal stem cells. Connect Tissue Res. 

2008;49(1):7-14. doi:10.1080/03008200701818561 

101.  Chen Y-J, Huang C-H, Lee I-C, Lee Y-T, Chen M-H, Young T-H. Effects of Cyclic 

Mechanical Stretching on the mRNA Expression of Tendon/Ligament-Related and 

Osteoblast-Specific Genes in Human Mesenchymal Stem Cells. Connect Tissue Res. 

May 2015. 

http://www.tandfonline.com/doi/abs/10.1080/03008200701818561?journalCode=i

cts20#.VdoPbflViko. Accessed August 23, 2015. 

102.  Michalopoulos E, Knight RL, Korossis S, Kearney JN, Fisher J, Ingham E. 

Development of methods for studying the differentiation of human mesenchymal 

stem cells under cyclic compressive strain. Tissue Eng Part C Methods. 

2012;18(4):252-262. doi:10.1089/ten.TEC.2011.0347 

103.  Steward AJ, Kelly DJ. Mechanical regulation of mesenchymal stem cell 

differentiation. J Anat. 2014;(September):n/a-n/a. doi:10.1111/joa.12243 



 145 

104.  Huang C-YC, Hagar KL, Frost LE, Sun Y, Cheung HS. Effects of cyclic 

compressive loading on chondrogenesis of rabbit bone-marrow derived 

mesenchymal stem cells. Stem Cells. 2004;22(3):313-323. 

doi:10.1634/stemcells.22-3-313 

105.  Kisiday JD, Frisbie DD, McIlwraith CW, Grodzinsky AJ. Dynamic compression 

stimulates proteoglycan synthesis by mesenchymal stem cells in the absence of 

chondrogenic cytokines. Tissue Eng Part A. 2009;15(10):2817-2824. 

doi:10.1089/ten.TEA.2008.0357 

106.  Mauck RL, Byers BA, Yuan X, Tuan RS. Regulation of cartilaginous ECM gene 

transcription by chondrocytes and MSCs in 3D culture in response to dynamic 

loading. Biomech Model Mechanobiol. 2007;6(1-2):113-125. doi:10.1007/s10237-

006-0042-1 

107.  Iqbal J, Zaidi M. Molecular regulation of mechanotransduction. Biochem Biophys 

Res Commun. 2005;328(3):751-755. doi:10.1016/j.bbrc.2004.12.087 

108.  Pelaez D, Arita N, Cheung HS. Extracellular signal-regulated kinase (ERK) dictates 

osteogenic and/or chondrogenic lineage commitment of mesenchymal stem cells 

under dynamic compression. Biochem Biophys Res Commun. 2012;417(4):1286-

1291. doi:10.1016/j.bbrc.2011.12.131 

109.  Steward AJ, Wagner DR, Kelly DJ. Exploring the roles of integrin binding and 

cytoskeletal reorganization during mesenchymal stem cell mechanotransduction in 

soft and stiff hydrogels subjected to dynamic compression. J Mech Behav Biomed 

Mater. 2014;38:174-182. doi:10.1016/j.jmbbm.2013.07.020 

110.  Nerem RM. Hemodynamics and the vascular endothelium. J Biomech Eng. 

1993;115(4B):510-514. http://www.ncbi.nlm.nih.gov/pubmed/8302033. Accessed 

August 24, 2015. 

111.  Zheng W, Christensen LP, Tomanek RJ. Stretch induces upregulation of key 

tyrosine kinase receptors in microvascular endothelial cells. Am J Physiol Heart 

Circ Physiol. 2004;287(6):H2739-45. doi:10.1152/ajpheart.00410.2004 

112.  Joung IS, Iwamoto MN, Shiu Y-T, Quam CT. Cyclic strain modulates tubulogenesis 

of endothelial cells in a 3D tissue culture model. Microvasc Res. 2006;71(1):1-11. 

doi:10.1016/j.mvr.2005.10.005 

113.  Wang JH, Grood ES. The strain magnitude and contact guidance determine 

orientation response of fibroblasts to cyclic substrate strains. Connect Tissue Res. 

2000;41(1):29-36. http://www.ncbi.nlm.nih.gov/pubmed/10826706. Accessed 

August 24, 2015. 

114.  Meinel L, Karageorgiou V, Fajardo R, et al. Bone Tissue Engineering Using Human 

Mesenchymal Stem Cells: Effects of Scaffold Material and Medium Flow. Ann 

Biomed Eng. 2004;32(1):112-122. doi:10.1023/B:ABME.0000007796.48329.b4 



 146 

115.  Ando J, Nomura H, Kamiya A. The effect of fluid shear stress on the migration and 

proliferation of cultured endothelial cells. Microvasc Res. 1987;33(1):62-70. 

doi:10.1016/0026-2862(87)90007-0 

116.  Li Y-SJ, Haga JH, Chien S. Molecular basis of the effects of shear stress on vascular 

endothelial cells. J Biomech. 2005;38(10):1949-1971. 

doi:10.1016/j.jbiomech.2004.09.030 

117.  Gomes ME, Sikavitsas VI, Behravesh E, Reis RL, Mikos AG. Effect of flow 

perfusion on the osteogenic differentiation of bone marrow stromal cells cultured on 

starch-based three-dimensional scaffolds. J Biomed Mater Res A. 2003;67(1):87-95. 

doi:10.1002/jbm.a.10075 

118.  McCoy RJ, O’Brien FJ. Influence of shear stress in perfusion bioreactor cultures for 

the development of three-dimensional bone tissue constructs: a review. Tissue Eng 

Part B Rev. 2010;16(6):587-601. doi:10.1089/ten.TEB.2010.0370 

119.  Angele P, Yoo JU, Smith C, et al. Cyclic hydrostatic pressure enhances the 

chondrogenic phenotype of human mesenchymal progenitor cells differentiated in 

vitro. J Orthop Res. 2003;21(3):451-457. doi:10.1016/S0736-0266(02)00230-9 

120.  Miyanishi K, Trindade MCD, Lindsey DP, et al. Effects of hydrostatic pressure and 

transforming growth factor-beta 3 on adult human mesenchymal stem cell 

chondrogenesis in vitro. Tissue Eng. 2006;12(6):1419-1428. 

doi:10.1089/ten.2006.12.1419 

121.  Puetzer J, Williams J, Gillies A, Bernacki S, Loboa EG. The effects of cyclic 

hydrostatic pressure on chondrogenesis and viability of human adipose- and bone 

marrow-derived mesenchymal stem cells in three-dimensional agarose constructs. 

Tissue Eng Part A. 2013;19(1-2):299-306. doi:10.1089/ten.TEA.2012.0015 

122.  Wright MO, Stockwell RA, Nuki G. Response of plasma membrane to applied 

hydrostatic pressure in chondrocytes and fibroblasts. Connect Tissue Res. 

1992;28(1-2):49-70. http://www.ncbi.nlm.nih.gov/pubmed/1628490. Accessed 

August 30, 2015. 

123.  Browning JA, Saunders K, Urban JPG, Wilkins RJ. The influence and interactions 

of hydrostatic and osmotic pressures on the intracellular milieu of chondrocytes. 

Biorheology. 2004;41(3-4):299-308. 

http://www.ncbi.nlm.nih.gov/pubmed/15299262. Accessed August 30, 2015. 

124.  Mizuno S. A novel method for assessing effects of hydrostatic fluid pressure on 

intracellular calcium: a study with bovine articular chondrocytes. Am J Physiol Cell 

Physiol. 2005;288(2):C329-37. doi:10.1152/ajpcell.00131.2004 

125.  Hui TH, Zhou ZL, Qian J, Lin Y, Ngan AHW, Gao H. Volumetric deformation of 

live cells induced by pressure-activated cross-membrane ion transport. Phys Rev 

Lett. 2014;113(11):118101. http://www.ncbi.nlm.nih.gov/pubmed/25260007. 



 147 

Accessed August 30, 2015. 

126.  Betts DC, Müller R. Mechanical regulation of bone regeneration: theories, models, 

and experiments. Front Endocrinol (Lausanne). 2014;5:211. 

doi:10.3389/fendo.2014.00211 

127.  Goodship AE, Kenwright J. The influence of induced micromovement upon the 

healing of experimental tibial fractures. J Bone Joint Surg Br. 1985;67(4):650-655. 

http://www.ncbi.nlm.nih.gov/pubmed/4030869. Accessed September 7, 2015. 

128.  Goodship AE, Cunningham JL, Kenwright J. Strain rate and timing of stimulation 

in mechanical modulation of fracture healing. Clin Orthop Relat Res. 1998;(355 

Suppl):S105-15. http://www.ncbi.nlm.nih.gov/pubmed/9917631. Accessed 

February 17, 2015. 

129.  Claes LE, Wilke H-J, Augat P, Rübenacker S, Margevicius KJ. Effect of 

dynamization on gap healing of diaphyseal fractures under external fixation. Clin 

Biomech (Bristol, Avon). 1995;10(5):227-234. 

http://www.ncbi.nlm.nih.gov/pubmed/11415558. Accessed January 20, 2015. 

130.  Perren SM. Physical and biological aspects of fracture healing with special reference 

to internal fixation. Clin Orthop Relat Res. 1979;(138):175-196. 

http://www.ncbi.nlm.nih.gov/pubmed/376198. Accessed January 20, 2017. 

131.  Gardner MJ, van der Meulen MCH, Demetrakopoulos D, Wright TM, Myers ER, 

Bostrom MP. In vivo cyclic axial compression affects bone healing in the mouse 

tibia. J Orthop Res. 2006;24(8):1679-1686. doi:10.1002/jor.20230 

132.  Willie BM, Blakytny R, Glöckelmann M, Ignatius A, Claes L. Temporal variation 

in fixation stiffness affects healing by differential cartilage formation in a rat 

osteotomy model. Clin Orthop Relat Res. 2011;469(11):3094-3101. 

doi:10.1007/s11999-011-1866-2 

133.  Glatt V, Miller M, Ivkovic A, et al. Improved healing of large segmental defects in 

the rat femur by reverse dynamization in the presence of bone morphogenetic 

protein-2. J Bone Joint Surg Am. 2012;94(22):2063-2073. 

doi:10.2106/JBJS.K.01604 

134.  Schwarz C, Wulsten D, Ellinghaus A, Lienau J, Willie BM, Duda GN. Mechanical 

Load Modulates the Stimulatory Effect of BMP2 in a Rat Nonunion Model. Tissue 

Eng Part A. 2013;19(1-2):247-254. doi:10.1089/ten.tea.2012.0265 

135.  Glatt V, Evans CH, Matthys R. Design, characterisation and in vivo testing of a new, 

adjustable stiffness, external fixator for the rat femur. Eur Cell Mater. 2012;23:289-

298; discussion 299. http://www.ncbi.nlm.nih.gov/pubmed/22522283. Accessed 

January 20, 2015. 

136.  Hou T, Li Q, Luo F, et al. Controlled dynamization to enhance reconstruction 



 148 

capacity of tissue-engineered bone in healing critically sized bone defects: an in vivo 

study in goats. Tissue Eng Part A. 2010;16(1):201-212. 

doi:10.1089/ten.TEA.2009.0291 

137.  Ilizarov GA. The tension-stress effect on the genesis and growth of tissues: Part II. 

The influence of the rate and frequency of distraction. Clin Orthop Relat Res. 

1989;(239):263-285. http://www.ncbi.nlm.nih.gov/pubmed/2912628. Accessed 

January 12, 2016. 

138.  Mofid MM, Manson PN, Robertson BC, Tufaro AP, Elias JJ, Vander Kolk CA. 

Craniofacial Distraction Osteogenesis: A Review of 3278 Cases. Plast Reconstr 

Surg. 2001;108(5):1103-1114. doi:10.1097/00006534-200110000-00001 

139.  Alzahrani MM, Anam EA, Makhdom AM, Villemure I, Hamdy RC. The effect of 

altering the mechanical loading environment on the expression of bone regenerating 

molecules in cases of distraction osteogenesis. Front Endocrinol (Lausanne). 

2014;5:214. doi:10.3389/fendo.2014.00214 

140.  Morgan EF, Hussein AI, Al-Awadhi BA, et al. Vascular development during 

distraction osteogenesis proceeds by sequential intramuscular arteriogenesis 

followed by intraosteal angiogenesis. Bone. 2012;51(3):535-545. 

doi:10.1016/j.bone.2012.05.008 

141.  Matsubara H, Hogan DE, Morgan EF, Mortlock DP, Einhorn TA, Gerstenfeld LC. 

Vascular tissues are a primary source of BMP2 expression during bone formation 

induced by distraction osteogenesis. Bone. 2012;51(1):168-180. 

doi:10.1016/j.bone.2012.02.017 

142.  Natu SS, Ali I, Alam S, Giri KY, Agarwal A, Kulkarni VA. The biology of 

distraction osteogenesis for correction of mandibular and craniomaxillofacial 

defects: A review. Dent Res J (Isfahan). 2014;11(1):16-26. 

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3955310&tool=pmcen

trez&rendertype=abstract. Accessed November 25, 2015. 

143.  Nogueira MP, Paley D, Bhave A, Herbert A, Nocente C, Herzenberg JE. Nerve 

lesions associated with limb-lengthening. J Bone Joint Surg Am. 2003;85-

A(8):1502-1510. http://www.ncbi.nlm.nih.gov/pubmed/12925630. Accessed 

January 12, 2016. 

144.  Claes L, Augat P, Schorlemmer S, Konrads C, Ignatius A, Ehrnthaller C. Temporary 

distraction and compression of a diaphyseal osteotomy accelerates bone healing. J 

Orthop Res. 2008;26(6):772-777. doi:10.1002/jor.20588 

145.  Makhdom AM, Cartaleanu AS, Rendon JS, Villemure I, Hamdy RC. The Accordion 

Maneuver: A Noninvasive Strategy for Absent or Delayed Callus Formation in 

Cases of Limb Lengthening. Adv Orthop. 2015;2015:912790. 

doi:10.1155/2015/912790 



 149 

146.  Augat P, Burger J, Schorlemmer S, Henke T, Peraus M, Claes L. Shear movement 

at the fracture site delays healing in a diaphyseal fracture model. J Orthop Res. 

2003;21(6):1011-1017. doi:10.1016/S0736-0266(03)00098-6 

147.  Bishop NE, van Rhijn M, Tami I, Corveleijn R, Schneider E, Ito K. Shear does not 

necessarily inhibit bone healing. Clin Orthop Relat Res. 2006;443:307-314. 

doi:10.1097/01.blo.0000191272.34786.09 

148.  Gibney E. The inside story on wearable electronics. Nature. 2015;528(7580):26-28. 

doi:10.1038/528026a 

149.  McGilvray KC, Unal E, Troyer KL, et al. Implantable microelectromechanical 

sensors for diagnostic monitoring and post-surgical prediction of bone fracture 

healing. J Orthop Res. 2015;33(10):1439-1446. doi:10.1002/jor.22918 

150.  Wise KD. Integrated sensors, MEMS, and microsystems: Reflections on a fantastic 

voyage. Sensors Actuators, A Phys. 2007;136(1):39-50. 

doi:10.1016/j.sna.2007.02.013 

151.  Wachs RA, Ellstein D, Drazan J, et al. Elementary Implantable Force Sensor: For 

Smart Orthopaedic Implants. Adv Biosens Bioelectron. 2013;2(4). 

http://www.ncbi.nlm.nih.gov/pubmed/24883335. Accessed January 16, 2017. 

152.  Boutry CM, Beker L, Kaizawa Y, et al. Biodegradable and flexible arterial-pulse 

sensor for the wireless monitoring of blood flow. Nat Biomed Eng. 2019;3(1):47-

57. doi:10.1038/s41551-018-0336-5 

153.  Nadeau P, El-Damak D, Glettig D, et al. Prolonged energy harvesting for ingestible 

devices. Nat Biomed Eng. 2017;1:0022. doi:10.1038/s41551-016-0022 

154.  Chew DJ, Zhu L, Delivopoulos E, et al. A Microchannel Neuroprosthesis for 

Bladder Control After Spinal Cord Injury in Rat. Sci Transl Med. 

2013;5(210):210ra155-210ra155. doi:10.1126/scitranslmed.3007186 

155.  Chow EY, Chlebowski AL, Chakraborty S, Chappell WJ, Irazoqui PP. Fully 

wireless implantable cardiovascular pressure monitor integrated with a medical 

stent. IEEE Trans Biomed Eng. 2010;57(6):1487-1496. 

doi:10.1109/TBME.2010.2041058 

156.  Griss P, Enoksson P, Tolvanen-Laakso HK, Meriläinen P, Ollmar S, Stemme G. 

Micromachined electrodes for biopotential measurements. J 

Microelectromechanical Syst. 2001;10(1):10-16. doi:10.1109/84.911086 

157.  Cao H, Landge V, Tata U, et al. An implantable, batteryless, and wireless capsule 

with integrated impedance and pH sensors for gastroesophageal reflux monitoring. 

IEEE Trans Biomed Eng. 2012;59(12 PART2):3131-3139. 

doi:10.1109/TBME.2012.2214773 



 150 

158.  Troughton RW, Ritzema J, Eigler NL, et al. Direct left atrial pressure monitoring in 

severe heart failure: Long-term sensor performance. J Cardiovasc Transl Res. 

2011;4(1):3-13. doi:10.1007/s12265-010-9229-z 

159.  Totsu K, Haga Y, Esashi M. Vacuum sealed ultra miniature fiber-optic pressure 

sensor using white light interferometry. TRANSDUCERS 2003 - 12th Int Conf Solid-

State Sensors, Actuators Microsystems, Dig Tech Pap. 2003;1:931-934. 

doi:10.1109/SENSOR.2003.1215628 

160.  Lal A. Integrated pressure and flow sensor in silicon-based ultrasonic surgical 

actuator. In: 2001 IEEE Ultrasonics Symposium. Proceedings. An International 

Symposium (Cat. No.01CH37263). Vol 2. ; 2001:1373-1376. 

doi:10.1109/ULTSYM.2001.991976 

161.  Hong MK, Wong SC, Mintz GS, et al. Can coronary flow parameters after stent 

placement predict restenosis? Cathet Cardiovasc Diagn. 1995;36(3):278-282. 

doi:10.1002/ccd.1810360321 

162.  Umbrecht F, Wendlandt M, Juncker D, Hierold C, Neuenschwander J. A wireless 

implantable passive strain sensor system. In: Proceedings of IEEE Sensors. Vol 

2005. ; 2005:20-23. doi:10.1109/ICSENS.2005.1597627 

163.  Mahutte CK. On-line arterial blood gas analysis with optodes: current status. Clin 

Biochem. 1998;31(3):119-130. 

164.  Kim YT, Kim Y-Y, Jun C-H. Needle-shaped glucose sensor with multi-cell 

electrode fabricated by surface micromachining. 1999;3680(II):924-930. 

165.  Mastrototaro JJ, Cooper KW, Soundararajan G, Sanders JB, Shah R V. Clinical 

experience with an integrated continuous glucose sensor/insulin pump platform: A 

feasibility study. Adv Ther. 2006;23(5):725-732. doi:10.1007/BF02850312 

166.  Ling Y, Pong T, Vassiliou CC, Huang PL, Cima MJ. Implantable magnetic 

relaxation sensors measure cumulative exposure to cardiac biomarkers. Nat 

Biotechnol. 2011;29(3):273-277. doi:10.1038/nbt.1780 

167.  Epari DR, Lienau J, Schell H, Witt F, Duda GN. Pressure, oxygen tension and 

temperature in the periosteal callus during bone healing--an in vivo study in sheep. 

Bone. 2008;43(4):734-739. doi:10.1016/j.bone.2008.06.007 

168.  Claes LE, Cunningham JL. Monitoring the mechanical properties of healing bone. 

Clin Orthop Relat Res. 2009;467(8):1964-1971. doi:10.1007/s11999-009-0752-7 

169.  Szivek JA, Ruth JT, Heden GJ, Martinez MA, Diggins NH, Wenger KH. 

Determination of joint loads using new sensate scaffolds for regenerating large 

cartilage defects in the knee. J Biomed Mater Res Part B Appl Biomater. 2016:1-13. 

doi:10.1002/jbm.b.33677 



 151 

170.  Klosterhoff BS, Tsang M, She D, et al. Implantable Sensors for Regenerative 

Medicine. J Biomech Eng. 2017;139(2):020806. doi:10.1115/1.4035436 

171.  Tarchala M, Harvey EJ, Barralet J. Biomaterial-Stabilized Soft Tissue Healing for 

Healing of Critical-Sized Bone Defects: the Masquelet Technique. Adv Healthc 

Mater. February 2016. doi:10.1002/adhm.201500793 

172.  Frost HM. From Wolff’s law to the Utah paradigm: Insights about bone physiology 

and its clinical applications. Anat Rec. 2001;262(4):398-419. doi:10.1002/ar.1049 

173.  Rot C, Stern T, Blecher R, Friesem B, Zelzer E. A Mechanical Jack-like Mechanism 

Drives Spontaneous Fracture Healing in Neonatal Mice. Dev Cell. 2014;31(2):159-

170. doi:10.1016/j.devcel.2014.08.026 

174.  Gerstenfeld LC, Cullinane DM, Barnes GL, Graves DT, Einhorn TA. Fracture 

healing as a post-natal developmental process: Molecular, spatial, and temporal 

aspects of its regulation. J Cell Biochem. 2003;88(5):873-884. 

doi:10.1002/jcb.10435 

175.  Claes L., Heigele C. Magnitudes of local stress and strain along bony surfaces 

predict the course and type of fracture healing. J Biomech. 1999;32(3):255-266. 

doi:10.1016/S0021-9290(98)00153-5 

176.  Miller GJ, Gerstenfeld LC, Morgan EF. Mechanical microenvironments and protein 

expression associated with formation of different skeletal tissues during bone 

healing. Biomech Model Mechanobiol. March 2015. doi:10.1007/s10237-015-0670-

4 

177.  Histing T, Garcia P, Holstein JH, et al. Small animal bone healing models: standards, 

tips, and pitfalls results of a consensus meeting. Bone. 2011;49(4):591-599. 

doi:10.1016/j.bone.2011.07.007 

178.  Horner EA, Kirkham J, Wood D, et al. Long bone defect models for tissue 

engineering applications: criteria for choice. Tissue Eng Part B Rev. 

2010;16(2):263-271. doi:10.1089/ten.TEB.2009.0224 

179.  Klosterhoff BS, Nagaraja S, Dedania JJ, Guldberg RE, Willett NJ. Material and 

Mechanobiological Considerations for Bone Regeneration. In: Bose S, 

Bandyopadhyay A, eds. Materials and Devices for Bone Disorders. 1st ed. 

Academic Press; 2017:197-264. 

180.  Wulsten D, Glatt V, Ellinghaus A, et al. Time kinetics of bone defect healing in 

response to BMP-2 and GDF-5 characterised by in vivo biomechanics. Eur Cell 

Mater. 2011;21:177-192. http://www.ncbi.nlm.nih.gov/pubmed/21312163. 

Accessed March 22, 2016. 

181.  Oest ME, Dupont KM, Kong H-J, Mooney DJ, Guldberg RE. Quantitative 

assessment of scaffold and growth factor-mediated repair of critically sized bone 



 152 

defects. J Orthop Res. 2007;25(7):941-950. doi:10.1002/jor.20372 

182.  Kolambkar YM, Dupont KM, Boerckel JD, et al. An alginate-based hybrid system 

for growth factor delivery in the functional repair of large bone defects. 

Biomaterials. 2011;32(1):65-74. doi:10.1016/j.biomaterials.2010.08.074 

183.  Wehner T, Wolfram U, Henzler T, Niemeyer F, Claes L, Simon U. Internal forces 

and moments in the femur of the rat during gait. J Biomech. 2010;43(13):2473-2479. 

doi:10.1016/j.jbiomech.2010.05.028 

184.  Luo M, Martinez AW, Song C, Herrault F, Allen MG. A microfabricated wireless 

RF pressure sensor made completely of biodegradable materials. J 

Microelectromechanical Syst. 2014;23(1):4-13. 

doi:10.1109/JMEMS.2013.2290111 

185.  Oest ME, Dupont KM, Kong H-J, Mooney DJ, Guldberg RE. Quantitative 

assessment of scaffold and growth factor-mediated repair of critically sized bone 

defects. J Orthop Res. 2007;25(7):941-950. doi:10.1002/jor.20372 

186.  Bauman JM, Chang Y-H. High-speed X-ray video demonstrates significant skin 

movement errors with standard optical kinematics during rat locomotion. J Neurosci 

Methods. 2010;186(1):18-24. doi:10.1016/j.jneumeth.2009.10.017 

187.  Epari DR, Duda GN, Thompson MS. Mechanobiology of bone healing and 

regeneration: in vivo models. Proc Inst Mech Eng Part H J Eng Med. 

2010;224(12):1543-1553. doi:10.1243/09544119JEIM808 

188.  Lane SW, Williams DA, Watt FM. Modulating the stem cell niche for tissue 

regeneration. Nat Biotechnol. 2014;32(8):795-803. doi:10.1038/nbt.2978 

189.  Vining KH, Mooney DJ. Mechanical forces direct stem cell behaviour in 

development and regeneration. Nat Rev Mol Cell Biol. 2017;18(12):728-742. 

doi:10.1038/nrm.2017.108 

190.  Pobloth A, Checa S, Razi H, et al. Mechanobiologically optimized 3D titanium-

mesh scaffolds enhance bone regeneration in critical segmental defects in sheep. Sci 

Transl Med. 2018;8828(January). 

191.  Cilla M, Borgiani E, Martínez J, et al. Machine learning techniques for the 

optimization of joint replacements: Application to a short-stem hip implant. 

Tsuchiya H, ed. PLoS One. 2017;12(9):e0183755. 

doi:10.1371/journal.pone.0183755 

192.  Binder EF, Brown M, Steger-may K, Yarasheski KE, Schechtman KB. Effects of 

Extended Outpatient Rehabilitation After Hip Fracture. JAMA. 2004;292(7):837-

846. 

193.  Quarta M, Cromie M, Chacon R, et al. Bioengineered constructs combined with 



 153 

exercise enhance stem cell-mediated treatment of volumetric muscle loss. Nat 

Commun. 2017;8:1-17. doi:10.1038/ncomms15613 

194.  Rando TA, Ambrosio F. Forum Regenerative Rehabilitation : Applied Biophysics 

Meets Stem Cell Therapeutics. Cell Stem Cell. 2018;22(3):306-309. 

doi:10.1016/j.stem.2018.02.003 

195.  Abraham WT, Stevenson LW, Bourge RC, et al. Sustained efficacy of pulmonary 

artery pressure to guide adjustment of chronic heart failure therapy: complete 

follow-up results from the CHAMPION randomised trial. Lancet. 

2016;387(10017):453-461. doi:10.1016/S0140-6736(15)00723-0 

196.  Klosterhoff BS, Ong KG, Krishnan L, et al. Wireless implantable sensor for 

noninvasive, longitudinal quantification of axial strain across rodent long bone 

defects. J Biomech Eng. 2017;139(11). doi:10.1115/1.4037937 

197.  Kolambkar YM, Bajin M, Wojtowicz A, Hutmacher DW, García AJ, Guldberg RE. 

Nanofiber orientation and surface functionalization modulate human mesenchymal 

stem cell behavior in vitro. Tissue Eng Part A. 2014;20(1-2):398-409. 

doi:10.1089/ten.TEA.2012.0426 

198.  Visser L De, Bos R Van Den. Novel approach to the behavioural characterization of 

inbred mice : automated home cage observations. Genes, Brain Behav. 2006;5:458-

466. doi:10.1111/j.1601-183X.2005.00181.x 

199.  Maas SA, Ellis BJ, Ateshian GA, Weiss JA. FEBio: Finite Elements for 

Biomechanics. J Biomech Eng. 2012;134(1):011005. doi:10.1115/1.4005694 

200.  Boerckel JD, Kolambkar YM, Dupont KM, et al. Effects of protein dose and 

delivery system on BMP-mediated bone regeneration. Biomaterials. 

2011;32(22):5241-5251. doi:10.1016/j.biomaterials.2011.03.063 

201.  Ozcivici E, Luu YK, Adler B, et al. Mechanical signals as anabolic agents in bone. 

Nat Rev Rheumatol. 2010;6(1):50-59. doi:10.1038/nrrheum.2009.239 

202.  Rubin CT, Lanyon LE. Regulation of bone mass by mechanical strain magnitude. 

Calcif Tissue Int. 1985;37(4):411-417. doi:10.1007/BF02553711 

203.  Razi H, Birkhold AI, Weinkamer R, Duda GN, Willie BM, Checa S. Aging Leads 

to a Dysregulation in Mechanically Driven Bone Formation and Resorption. J Bone 

Miner Res. 2015;30(10):1864-1873. doi:10.1002/jbmr.2528 

204.  Hoyt BW, Pavey GJ, Pasquina PF, Potter BK. Rehabilitation of Lower Extremity 

Trauma : a Review of Principles and Military Perspective on Future Directions. Curr 

Trauma Reports. 2015;1(1):50-60. doi:10.1007/s40719-014-0004-5 

205.  Miglioretti DL, Johnson E, Williams A, et al. The use of computed tomography in 

pediatrics and the associated radiation exposure and estimated cancer risk. JAMA 



 154 

Pediatr. 2013;167(8):700-707. doi:10.1001/jamapediatrics.2013.311 

206.  Lin MC, Hu D, Marmor M, Herfat ST, Bahney CS, Maharbiz MM. Smart bone 

plates can monitor fracture healing. Sci Rep. 2019;(August 2018):1-15. 

doi:10.1038/s41598-018-37784-0 

207.  Labus KM, Sutherland C, Notaros BM, et al. Direct Electromagnetic Coupling for 

Non-Invasive Measurements of Stability in Simulated Fracture Healing. J Orthop 

Res. 2019;(August 2018):1-26. doi:10.1002/jor.24275 

208.  Dalise S, Cavalli L, Ghuman H, et al. Biological effects of dosing aerobic exercise 

and neuromuscular electrical stimulation in rats. Sci Rep. 2017;7:1-13. 

doi:10.1038/s41598-017-11260-7 

209.  Sebbag E, Felten R, Sagez F, Sibilia J, Devilliers H, Arnaud L. The world-wide 

burden of musculoskeletal diseases: a systematic analysis of the World Health 

Organization Burden of Diseases Database. Ann Rheum Dis. 2019:annrheumdis-

2019-215142. doi:10.1136/annrheumdis-2019-215142 

210.  Schwartz AM, Schenker ML, Ahn J, Willett NJ. Building better bone: The weaving 

of biologic and engineering strategies for managing bone loss. J Orthop Res. 

2017;35(9):1855-1864. doi:10.1002/jor.23592 

211.  Rubin CT, Lanyon LE. Regulation of bone formation by applied dynamic loads. J 

Bone Jt Surg. 1984;66(3):397-402. http://jbjs.org/content/66/3/397. Accessed 

December 15, 2014. 

212.  Schmidt-Bleek K, Kwee BJ, Mooney DJ, Duda GN. Boon and Bane of 

Inflammation in Bone Tissue Regeneration and Its Link with Angiogenesis. Tissue 

Eng Part B Rev. 2015;21(4):354-364. doi:10.1089/ten.TEB.2014.0677 

213.  Ogle ME, Segar CE, Sridhar S, Botchwey EA. Monocytes and macrophages in 

tissue repair: Implications for immunoregenerative biomaterial design. Exp Biol 

Med. 2016;241(10):1084-1097. doi:10.1177/1535370216650293 

214.  Alexander KA, Chang MK, Maylin ER, et al. Osteal macrophages promote in vivo 

intramembranous bone healing in a mouse tibial injury model. J Bone Miner Res. 

2011;26(7):1517-1532. doi:10.1002/jbmr.354 

215.  Raggatt LJ, Wullschleger ME, Alexander KA, et al. Fracture Healing via Periosteal 

Callus Formation Requires Macrophages for Both Initiation and Progression of 

Early Endochondral Ossi fi cation. AJPA. 2014;184(12):3192-3204. 

doi:10.1016/j.ajpath.2014.08.017 

216.  Xie H, Cui Z, Wang L, et al. PDGF-BB secreted by preosteoclasts induces CD31hi 

Emcnhi vessel subtype in coupling osteogenesis. Nat Med. 2014;20(11):1270-1278. 

doi:10.1038/nm.3668.PDGF-BB 



 155 

217.  Champagne CM, Takebe J, Offenbacher S, Cooper LF. Macrophage Cell Lines 

Produce Osteoinductive Signals That Include Bone Morphogenetic Protein-2. Bone. 

2002;30(1):26-31. 

218.  Herbert S, Stainier DYR. Molecular control of endothelial cell behaviour during 

blood vessel morphogenesis. Nat Rev Mol Cell Biol. 2012;12(9):551-564. 

doi:10.1038/nrm3176.Molecular 

219.  Owen JL, Mohamadzadeh M. Macrophages and chemokines as mediators of 

angiogenesis. Front Physiol. 2013;4(159):1-8. doi:10.3389/fphys.2013.00159 

220.  Schlundt C, El Khassawna T, Serra A, et al. Macrophages in bone fracture healing: 

Their essential role in endochondral ossification. Bone. 2018;106:78-89. 

doi:10.1016/j.bone.2015.10.019 

221.  Sivaraj KK, Adams RH, Abzhanov A, et al. Blood vessel formation and function in 

bone. Development. 2016;143(15):2706-2715. doi:10.1242/dev.136861 

222.  Ricard N, Simons M. When It Is Better to Regress : Dynamics of Vascular Pruning. 

PLOS Biol. 2015:1-6. doi:10.1371/journal.pbio.1002148 

223.  Cristofaro B, Shi Y, Faria M, et al. Dll4-Notch signaling determines the formation 

of native arterial collateral networks and arterial function in mouse ischemia models. 

Development. 2013;140:1720-1729. doi:10.1242/dev.092304 

224.  McWhorter FY, Wang T, Nguyen P, Chung T, Liu WF. Modulation of macrophage 

phenotype by cell shape. Proc Natl Acad Sci U S A. 2013;110(43):17253-17258. 

doi:10.1073/pnas.1308887110 

225.  Fahy N, Menzel U, Alini M, Stoddart MJ. Shear and Dynamic Compression 

Modulates the Inflammatory Phenotype of Human Monocytes in vitro. Front 

Immunol. 2019;10(March):1-12. doi:10.3389/fimmu.2019.00383 

226.  Lienau J, Schmidt-Bleek K, Peters A, et al. Differential regulation of blood vessel 

formation between standard and delayed bone healing. J Orthop Res. 

2009;27(9):1133-1140. doi:10.1002/jor.20870 

227.  Ruehle MA, Li MA, Cheng A, Krishnan L, Willett NJ, Guldberg RE. Decorin-

supplemented collagen hydrogels for the co-delivery of bone morphogenetic 

protein-2 and microvascular fragments to a composite bone-muscle injury model 

with impaired vascularization. Acta Biomater. 2019. 

doi:10.1016/j.actbio.2019.01.045 

228.  Duvall CL, Taylor WR, Weiss D, Guldberg RE. Quantitative microcomputed 

tomography analysis of collateral vessel development after ischemic injury. Am J 

Physiol - Hear Circ Physiol. 2004;287(1):H302-H310. 

doi:10.1152/ajpheart.00928.2003 



 156 

229.  Badylak SF, Valentin JE, Ravindra AK, McCabe GP, Stewart-Akers AM. 

Macrophage Phenotype as a Determinant of Biologic Scaffold Remodeling. Tissue 

Eng Part A. 2008;14(11):1835-1842. doi:10.1089/ten.tea.2007.0264 

230.  Tellier L, Krieger J, Brimeyer A, et al. Localized SDF-1α Delivery Increases Pro-

Healing Bone Marrow- Derived Cells in the Supraspinatus Muscle Following 

Severe Rotator Cuff Injury. Regen Eng Transl Med. 2018;4(2). 

doi:10.1002/cncr.27633.Percutaneous 

231.  Schlundt C, Schell H, Goodman SB, Vunjak-Novakovic G, Duda GN, Schmidt-

Bleek K. Immune modulation as a therapeutic strategy in bone regeneration. J Exp 

Orthop. 2015;2(1):1. doi:10.1186/s40634-014-0017-6 

232.  Leong PL, Morgan EF. Correlations between indentation modulus and mineral 

density in bone-fracture calluses. Integr Comp Biol. 2009;49(1):59-68. 

doi:10.1093/icb/icp024 

233.  Cheng A, Krishnan L, Pradhan P, Weinstock LD, Wood LB. Impaired Bone Healing 

Following Treatment of Established Nonunion Correlates With Serum Cytokine 

Expression. J Orthop Res. 2019;(February):299-307. doi:10.1002/jor.24186 

234.  Palomares KTS, Gleason RE, Mason ZD, et al. Mechanical stimulation alters tissue 

differentiation and molecular expression during bone healing. J Orthop Res. 

2009;27(9):1123-1132. doi:10.1002/jor.20863 

235.  McDermott AM, Herberg S, Mason DE, et al. Recapitulating bone development for 

tissue regeneration through engineered mesenchymal condensations and mechanical 

cues. Sci Transl Med. 2019;11(June). doi:10.1101/157362 

236.  Lange J, Sapozhnikova A, Lu C, et al. Action of IL-1β during fracture healing. J 

Orthop Res. 2010;28(6):778-784. doi:10.1002/jor.21061 

237.  Mumme M, Scotti C, Papadimitropoulos A, et al. Interleukin-1β modulates 

endochondral ossification by human adult bone marrow stromal cells. Eur Cells 

Mater. 2016;24:224-236. doi:10.22203/ecm.v024a16 

238.  Carmi Y, Voronov E, Dotan S, et al. The Role of Macrophage-Derived IL-1 in 

Induction and Maintenance of Angiogenesis. J Immunol. 2009:4705-4714. 

doi:10.4049/jimmunol.0901511 

239.  Honorati MC, Cattini L, Facchini A. IL-17, IL-1β and TNF-α stimulate VEGF 

production by dedifferentiated chondrocytes. Osteoarthr Cartil. 2004;12(9):683-

691. doi:10.1016/j.joca.2004.05.009 

240.  Chen C, Xu ZQ, Zong YP, et al. CXCL5 induces tumor angiogenesis via enhancing 

the expression of FOXD1 mediated by the AKT/NF-κB pathway in colorectal 

cancer. Cell Death Dis. 2019;10(3). doi:10.1038/s41419-019-1431-6 



 157 

241.  Liu W, Wang P, Xie Z, et al. Abnormal inhibition of osteoclastogenesis by 

mesenchymal stem cells through the miR-4284/CXCL5 axis in ankylosing 

spondylitis. Cell Death Dis. 2019;10(3). doi:10.1038/s41419-019-1448-x 

242.  Heilmann A, Schinke T, Bindl R, et al. The Wnt serpentine receptor frizzled-9 

regulates new bone formation in fracture healing. PLoS One. 2013;8(12):1-10. 

doi:10.1371/journal.pone.0084232 

243.  Roca H, Jones JD, Purica MC, et al. Apoptosis-induced CXCL5 accelerates 

inflammation and growth of prostate tumor metastases in bone. J Clin Invest. 

2018;128(1):248-266. doi:10.1172/JCI92466 

244.  Keophiphath M, Rouault C, Divoux A, Clément K, Lacasa D. CCL5 promotes 

macrophage recruitment and survival in human adipose tissue. Arterioscler Thromb 

Vasc Biol. 2010;30(1):39-45. doi:10.1161/ATVBAHA.109.197442 

245.  Suffee N, Richard B, Hlawaty H, Oudar O, Charnaux N, Sutton A. Angiogenic 

properties of the chemokine RANTES/CCL5. Biochem Soc Trans. 

2011;39(6):1649-1653. doi:10.1042/bst20110651 

246.  Spiller KJKL, Anfang R, Spiller KJKL, et al. The Role of Macrophage Phenotype 

in Vascularization of Tissue Engineering Scaffolds. Biomaterials. 

2014;35(15):4477-4488. doi:10.1016/j.biomaterials.2014.02.012.The 

247.  Bartneck M, Heffels KH, Pan Y, Bovi M, Zwadlo-Klarwasser G, Groll J. Inducing 

healing-like human primary macrophage phenotypes by 3D hydrogel coated 

nanofibres. Biomaterials. 2012;33(16):4136-4146. 

doi:10.1016/j.biomaterials.2012.02.050 

248.  Gerstenfeld LC, Thiede M, Seibert K, et al. Differential inhibition of fracture healing 

by non-selective and cyclooxygenase-2 selective non-steroidal anti-inflammatory 

drugs. J Orthop Res. 2003;21(4):670-675. doi:10.1016/S0736-0266(03)00003-2 

249.  Seide K, Aljudaibi M, Weinrich N, et al. Telemetric assessment of bone healing with 

an instrumented internal fixator: a preliminary study. J Bone Joint Surg Br. 

2012;94(3):398-404. doi:10.1302/0301-620X.94B3.27550 

250.  Egan KR, Muchow RD, Peppler WW, Anderson PA. Theoretical breast cancer 

induction risk from thoracic spine CT in female pediatric trauma patients. 

Pediatrics. 2012;130(6):e1614-20. doi:10.1542/peds.2012-0272 

251.  Mulpuru SK, Madhavan M, McLeod CJ, Cha Y-M, Friedman PA. Cardiac 

Pacemakers : Function , Troubleshooting , and Management. J Am Coll Cardiol. 

2017;69(2). doi:10.1016/j.jacc.2016.10.061 

252.  Yacoub MH, Mcleod C. The expanding role of implantable devices to monitor heart 

failure and pulmonary hypertension. Nat Rev Cardiol. 2018;15(December). 

doi:10.1038/s41569-018-0103-z 



 158 

253.  Hickey BA, Towriss C, Baxter G, et al. Early experience of MAGEC magnetic 

growing rods in the treatment of early onset scoliosis. Eur Spine J. 2014;23(SUPPL. 

1):0-4. doi:10.1007/s00586-013-3163-0 

254.  Kellam JF, Meinberg EG, Agel J, Karam MD, Roberts CS. Fracture and Dislocation 

Classification Compendium — 2018. J Orthop Trauma. 2018;32(1):1-10. 

doi:10.1097/BOT.0000000000001063 

255.  Eming SA, Wynn TA, Martin P. Inflammation and metabolism in tissue repair and 

regeneration. Science (80- ). 2017;356(6342). 

http://science.sciencemag.org/content/356/6342/1026.full. Accessed June 21, 2017. 

256.  Edgar LT, Hoying JB, Weiss JA. In Silico Investigation of Angiogenesis with 

Growth and Stress Generation Coupled to Local Extracellular Matrix Density. Ann 

Biomed Eng. 2015;43(7):1531-1542. doi:10.1007/s10439-015-1334-3 

257.  Ho JS, Yeh AJ, Neofytou E, et al. Wireless power transfer to deep-tissue 

microimplants. Proc Natl Acad Sci. 2014;111(22):7974-7979. 

doi:10.1073/pnas.1403002111 

258.  Agrawal DR, Tanabe Y, Weng D, et al. Conformal phased surfaces for wireless 

powering of bioelectronic microdevices. Nat Biomed Eng. 2017;1(3):0043. 

doi:10.1038/s41551-017-0043 

259.  Krishnan SR, Ray TR, Ayer AB, et al. Epidermal electronics for noninvasive , 

wireless , quantitative assessment of ventricular shunt function in patients with 

hydrocephalus. 2018;8437(October). 

260.  Feiner R, Engel L, Fleischer S, et al. Engineered hybrid cardiac patches with 

multifunctional electronics for online monitoring and regulation of tissue function. 

Nat Mater. 2016;15:679-686. doi:10.1038/NMAT4590 

261.  Someya T, Bao Z, Malliaras GG. The rise of plastic bioelectronics. Nature. 

2016;540(7633):379-385. doi:10.1038/nature21004 

 


