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SUMMARY 

When naming pictures, speakers are slower to name pictures with multiple 

appropriate labels (e.g., couch/sofa) compared to pictures consistently given a single label. 

This increased naming time is generally seen as a reflection of the time needed to resolve 

competition between the competing labels. Older speakers show a greater influence of 

name agreement that could reflect a specific age-related increase in sensitivity to lexical 

competition when speaking. The present study examines speakers’ sensitivity to a more 

pervasive form of lexical competition. Using normative data in which individuals report 

features associated with object concepts, it is possible to measure the extent to which 

concepts share features with other concepts. Pictures matched with concepts with high 

featural overlap with other concepts should show greater competition during naming than 

those matched to concepts with lower levels of featural overlap.   Initial evidence in 

younger speakers is consistent with this prediction. Here, we conducted a set of 

experiments to replicate this result in younger speakers and test the prediction that older 

speakers will be more sensitive to variations in featural overlap than younger speakers. We 

observed a marginal negative relationship between featural overlap and response times if 

participants were not pre-exposed to stimuli. With pre-exposure we saw a significant 

negative effect of feature overlap and response times in both young and older adults. There 

was no clear differential effect of featural overlap on semantic competition for young and 

older adults. 
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CHAPTER 1. INTRODUCTION 

Language through adulthood is often thought of as static during normal aging. There 

are often minimal changes to aspects of language processing observed in non-pathologic 

aging (e.g. Burke & Mackay, 1997; Schaie, 2013) compared to changes observed in other 

cognitive processes such as memory (e.g. Ronnlund & Nilsson, 2008; Salthouse, 2016; 

Schaie, 2013; Schroeder & Salthouse, 2004) or speed of processing (e.g. Salthouse, 2016; 

Schaie, 2013). There is even some evidence older adults perform better than their younger 

counterparts such as increased scores on tests of vocabulary (e.g.Salthouse, 2016; 

Schroeder & Salthouse, 2004; Verhaeghen, 2003). However, as in many other domains, 

older adults show differences from younger adults on tasks related to language processing, 

such as increased picture naming times (Au et al., 1995; Nicholas, Barth, Obler, Au, & 

Albert, 1997; Thomas, Fozard, & Waugh, 1977), increased picture naming error rates (Au 

et al., 1995; Nicholas et al., 1997), increased interference during picture naming from 

highly related concepts (Taylor & Burke, 2002), and increased probability of entering a tip 

of the tongue state (Burke, MacKay, Worthley, & Wade, 1991). 

Picture naming is commonly used in language processing research, particularly in 

building models of word production (e.g. Dell, 1986; Howard, Nickels, Coltheart, & Cole-

Virtue, 2006; Levelt, Roelofs, & Meyer, 1999; Oppenheim, Dell, & Schwartz, 2010; 

Schriefers, Meyer, & Levelt, 1990). Studies using picture naming take advantage of the 

variation in the labels speakers provide to investigate aspects of word production, such as 

word frequency (Alario et al., 2004; Barry, Morrison, & Ellis, 1997; Jescheniak & Levelt, 

1994; Snodgrass & Yuditsky, 1996), number of syllables (Ferrand, Segui, & Grainger, 
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1996; Santiago, MacKay, Palma, & Rho, 2000), or name agreement (e.g. Alario et al., 

2004; Barry et al., 1997, Lagrone & Spieler, 2006).  

The work discussed here is specifically concerned with the influence of age on the 

process of selecting and producing a specific word label for a pictured object.  Thus, before 

turning to the specific aspects of the experiments, I will briefly review the consensus view 

of the processes involved in word production. 

1.1 Word Selection in Picture Naming 

In a language production context, our interest in picture naming typically starts after 

an individual’s recognition of a picture when the process of selecting and producing an 

object label begins. Several levels of processing and representation intervene between the 

activation of semantic features during object recognition and the articulation of an object 

label (e.g. Abdel Rahman & Melinger, 2009; Belke & Stielow, 2013; Berg & Levelt, 1990; 

Dell, 1986; Howard et al., 2006; Levelt et al., 1999; Mahon, Costa, Peterson, Vargas, & 

Caramazza, 2007; Oppenheim et al., 2010; Roelofs, 1992). At the first level, speakers have 

some representation of what they wish to convey, referred to as the ‘message’ (Levelt et 

al., 1999). This representation is made up of semantic and conceptual features that capture 

what a speaker wishes to communicate.  The semantic and conceptual content of the 

message is not directly tied to the speaker’s language and accessing this information does 

not appear to involve processes for language production. For example, individuals can 

judge the typical size of pictured objects and the judgments are not influenced by properties 

of the object label such as the frequency of occurrence (Kroll & Potter, 1984). In the context 

of a production task such as picture naming, the semantic and conceptual information about 
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the pictured object must be mapped to a lexical representation corresponding to the label 

the speaker will apply to the object.  At this second level of representation, the lexical (or 

lemma) representation acts as a point of convergence for the collection of semantic features 

accessed during picture recognition. The task at this level is to select the lemma most 

consistent with the activated semantic features.  Finally, the phonological form for the 

selected lemma is assembled and readied for articulation.   

During lemma selection, multiple lemmas may be partially consistent with the 

activated set of semantic features specified as part of the message.  For example, if an 

individual is told to name a picture of a bed, recognition of the picture should involve 

activation of semantic and conceptual representations such as “used to sleep in”, “found 

in bedrooms”, “comfortable”, etc.. The active semantic/conceptual representations feed 

activation to various connected lemmas such as bed, couch, or night stand1. The word bed 

will be highly active because all the active semantic features feed activation to it while 

couch and night stand will be less active because they share some but not all the activated 

features. Selection should favor bed as it is the most highly active, and best fitting, lemma 

representation.  

If semantic features sufficiently activate multiple lemmas, then the process of lemma 

selection is slowed by the need to select one amongst a competing set of activated lemmas 

(Dell, 1986; Levelt et al., 1999; Roelofs, 1992). In the example of an individual naming a 

picture for bed, the system will have multiple other active lemma representations such as 

 
1 In linguistics and psycholinguistics a word is considered to be the smallest unit 

maintaining meaning.  Hence, ‘ax handle’ may be defined as a single word because 

deleting either ‘ax’ or ‘handle’ substantially changes the meaning.  



 4 

couch or night stand. In this case the system must select a lemma representation from the 

active set of representations taking more time than if activation had converged only on bed. 

1.1.1 Competition for Selection 

Given the relatively weak context in which picture naming occurs, some pictures 

will have multiple appropriate labels. Across speakers, such pictures will have lower 

agreement among responses compared to other pictures. This response agreement can be 

quantified as the proportion of speakers who give the modal response for a given picture, 

referred to as name agreement. The typical finding is that pictures with high name 

agreement are named faster than those with lower name agreement (Alario et al., 2004; 

Barry et al., 1997; Bonin, Chalard, Méot, & Fayol, 2002), even when controlling for other 

variables such as the visual complexity of the picture, word frequency, and length of the 

picture label (Alario et al., 2004; Barry et al., 1997; Bonin et al., 2002). It is worth noting 

that while low name agreement could occur for psycholinguistically uninteresting reasons 

such as visual ambiguity, the stimuli typically used in these studies include items with the 

proportion of modal responses ranging from over 80% for high name agreement pictures 

to 40 to 70% for medium name agreement pictures.  For properly selected items, the 

variation in name agreement generally reflects the availability of multiple appropriate 

labels (e.g., couch/sofa/love seat). Thus, the relationship between name agreement and 

naming time appears to reflect variation in competition amongst lemmas for selection and 

the time needed to resolve this competition.   

While older adults are expected to show increased picture naming times relative to 

younger adults (Au et al., 1995; Nicholas et al., 1997; Thomas et al., 1977) older speakers 
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also show a greater influence of name agreement on picture naming times (Britt, Ferrara, 

& Mirman, 2016; LaGrone & Spieler, 2006). This result suggests that older speakers are 

more sensitive to lemma competition and take longer to resolve this competition compared 

to younger speakers. 

1.2 Naming and Inter-correlational Density 

While naming pictures with medium name agreement represents a situation with 

near maximal overlap of semantic to lemma mapping, activated semantic features should 

commonly result in the activation of more than one lemma.  For example, naming a picture 

of a cat is unlikely to elicit alternative responses and thus would have high name agreement 

but the activated features are likely shared amongst other lemmas, (e.g. dog, rabbit, mouse, 

etc.). The multiple active lemma should result in competition during lexical selection 

similar to that observed when naming medium name agreement items.  

To measure the connections a concept has to other concepts one can estimate its 

semantic density. Semantic density is based on the number and overlap of a concept’s 

semantic connections to other similar concepts. One way to estimate the semantic density 

of a concept is to consider the features of a concept to be key parts of its semantic meaning. 

Using features produced for a concept we can calculate the featural overlap, and implicitly 

semantic overlap, a concept shares with other concepts. Inter-correlational density (McRae, 

Cree, Seidenberg, & McNorgan, 2005) is an example of one such semantic overlap metric. 

McRae et al. (2005) collected feature norms for a set of 541 English object word concepts 

by presenting individuals with the different concept words and asking them to write 

properties describing each word concept. Using those produced features as the pieces of a 



 6 

concept vector McRae et al. (2005) calculated inter-correlational density from pairwise 

correlations between each concept word2. Inter-correlational density is a measure of a 

concepts featural overlap with other concepts and a way to estimate semantic overlap 

(McRae et al., 2005; Mirman & Magnuson, 2008). Concept words with high inter-

correlational density have a large amount of featural overlap, thus when producing names 

for those concepts semantic connections to multiple other lemmas would become active. 

While inter-correlational density is specifically calculated from concept words we can 

extend its implications to pictures representing those concepts.   

Individuals are slower to name pictures of words with higher semantic overlap than 

those with lower semantic overlap (Mirman & Magnuson, 2008; Rabovsky et al., 2016). 

When speakers named pictures matched to concepts from McRae et al. (2005), naming 

times showed a positive linear relationship with inter-correlational density (Rabovsky et 

al., 2016). That is, the more shared features a concept has with other concepts, the slower 

speakers are to select and produce the corresponding picture label, depicted in Figure 1. 

This mirrors the finding that naming pictures with medium name agreement is slower than 

naming high name agreement pictures (Alario et al., 2004; Barry et al., 1997; Britt et al., 

2016; LaGrone & Spieler, 2006).  

 
2 Inter-correlational density is calculated by creating a matrix of concept rows and feature columns with 
cell contents being the produced frequency for each feature on each concept. Features which were 
produced on fewer than three concepts are excluded. Using concept row vectors, individual pairwise 
correlations are conducted for each concept. Then the shared variance (for correlations accounting for 
6.5% or more of the variance) of a concept’s correlations are summed for each concept.  
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If inter-correlational density influences the amount of competition during lemma 

selection, and older adults are more sensitive to competition, then we would predict that 

older speakers will show a greater influence of inter-correlational density (Britt et al., 2016; 

LaGrone & Spieler, 2006). Alternatively, if inter-correlational density estimates a separate 

type of competition from that observed when naming medium name agreement pictures, 

we might not observe age differences across the range of inter-correlational density.  

The following experiments examine the relationship between inter-correlational 

density and naming times for pictures.  We conducted two experiments using the same 

stimuli and similar methods as previous work (Rabovsky et al., 2016). Our first experiment 

was an attempt to replicate the observations of Rabovsky et al. (2016). In our second 

experiment we aimed to address the question of whether older adults are more impacted by 

 

Figure 1 – Response time by inter-correlational density 

Response time modeled as a function of square-root inter-correlational 

density with 95% confidence intervals. Dots represent averages for 10 

quantiles. Reproduced from (Rabovsky, Schad, & Abdel Rahman, 2016) 
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the semantic competition predicted by inter-correlational density in a picture naming 

paradigm.  
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CHAPTER 2. EXPERIMENT 1 

Prior to recruitment of an older adult group it was important to confirm similar 

observations to those in Rabovsky et al., (2016). An initial experiment was conducted with 

college age individuals at the Georgia Institute of Technology.  

2.1 Methods 

2.1.1 Participants 

Thirty-five undergraduate students were recruited from the Georgia Institute of 

Technology School of Psychology subject pool and were awarded course credit for their 

participation. All subjects reported corrected to normal vision. Fourteen participants in total 

had to be excluded for various reasons: six for indicating English was not their first 

language, five were excluded for having too many experimental equipment errors, one was 

excluded because changes were made to the experimental protocol after they participated, 

one was excluded because they made excessive extraneous noise such as tapping on the 

table or fidgeting with experimental equipment meaning accurate voice onset times could 

not be determined, and one was excluded because their audio file was corrupted making it 

impossible to code their responses. After excluding these individuals, a total of twenty-one 

participants were included in the analysis. Participant characteristics can be seen in Table 

1a. 
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Table 1 – Participant characteristics 

Table 1a.  

Younger adult participant characteristics, no familiarization 
 

N Mean St. Dev.  Min Pctl(25) Pctl(75) Max 

Age 21 19.476 1.632 18 18 20 24 

Digit Symbol 21 47.476 6.29 38 43 53 61 

Vocabulary 21 49.952 6.553 36 47 54 59 

Table 1b. 

Younger adult participant characteristics, familiarized 
 

N Mean St. Dev.  Min Pctl(25) Pctl(75) Max 

Age 26 19.731 2.475 18 19 20 31 

Digit Symbol 26 52.346 12.525 34 42.5 55 88 

Vocabulary 26 44.192 5.671 33 40.2 48 55 

Table 1c. 

Older adult participant characteristics 
 

N Mean St. Dev.  Min Pctl(25) Pctl(75) Max 

Age 28 70.464 3.717 65 68.8 73.2 80 

Digit Symbol 28 42.571 8.875 26 36.5 46.8 62 

Vocabulary 28 39.893 11.58 15 32.5 50.2 54 

Experiment 1, young adults sample with no familiarization; Experiment 2a, young 

adult sample with familiarization session; Experiment 2b, older adult sample with 

familiarization. 
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2.1.2 Materials 

Stimuli (𝑛 = 541) were pictures previously used in Rabovsky et al. (2016) and are 

grayscale photos of real world objects set on a light blue background. Pictures were 

selected to match the word concepts used in the feature norms by McRae et al. (2005). 

Pictures were scaled to be 3.5° x 3.5° of visual field at a viewing distance of 42 inches. 

2.1.3 Measures 

Word frequency was estimated using the Zipf scale from SUBTLEX-US 

(Brysbaert & New, 2009; Van Heuven, Mandera, Keuleers, & Brysbaert, 2014). The Zipf 

scale is a logarithmic scale based on word counts from subtitles of American English films. 

Zipf scale values fall in the range of slightly below 1 and slightly above 7 with greater 

values indicating greater word frequency.  

Participants’ familiarity with a word concept was estimated using mean word 

familiarity from McRae et al. (2005). Familiarity ratings were provided for each word 

concept on a scale of 1-9 (9 being extremely familiar) and averaged across individuals to 

estimate an average word familiarity.  

Each pictures’ objective visual complexity was estimated using its compressed file 

size in kilobytes (Donderi, 2006).  

Word length was estimated using the number of phonemes for the response 

provided by the participant. 
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The number of features for a word concept was estimated using number of 

features excluding taxonomic features produced in McRae et al. (2005). Only features 

which were produced by more than five individuals were included. Taxonomic features 

were excluded as they represent categorization of concepts which does not reflect the same 

type of semantic information as other feature types (e.g. part or function).  

Square-root inter-correlational density was used to account for non-linearity of 

the measure and to better reflect the analyses conducted in Rabovsky et al. (2016).  

 The WAIS III vocabulary (Wechsler, 1997) test has participants provide 

definitions for a set of 30 words which are then scored on a 0-2 scale by the experimenter. 

Bonus items were not included. 

 The WAIS III digit symbol (Wechsler, 1997) test involves participants matching 

and copying as many symbols to a set of numbers in 90 seconds. 

Summary statistics for the item level predictors are shown in Table 2 and 

correlations between predictors can be found in Table 3. 

2.1.4 Procedure 

Each participants’ session began with a demographics questionnaire and the WAIS 

III Digit Symbol test. Individuals were then taken to an individual testing room to complete 

the experimental task. Upon completion of the experimental task a researcher administered 

the WAIS III Vocabulary test.  
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Table 2 – Measure Summary Statistics 

Predictor Mean SD 

Word Frequency 3.59 0.81 

Word Familiarity 5.62 2.00 

Word Length1 4.83 1.73 

Number of Features 13 3 

Visual Complexity2 59.74 23.50 

Inter-Correlational Density3 10.97 7.40 

1. Number of phonemes 

2. Visual Complexity on kilobyte scale 

3. Square-root inter-correlational density 

 

 

Table 3 – Predictor Correlations 

 Word 

Frequency 

Word 

Familiarity 

Visual 

Complexity 

Word 

Length 

NOF ICD 

Word Frequency 1 

    

 

Word Familiarity 0.351 1 

   

 

Visual Complexity 0.086 0.045 1 

  

 

Word Length -0.232 -0.142 0.024 1 

 

 

NOF 0.259 0.263 -0.034 -0.042 1  

ICD 0.100 -0.071 0.012 0.032 0.405 1 

NOF = Number of Features, ICD = Inter-correlational Density 
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The stimuli were presented using EPrime 2.0 (Psychology Software Tools, 

Pittsburgh, PA). Voice onsets were detected using a microphone connected to a Psychology 

Software Tools serial response box. During the experiment, participants were first given a 

verbal description of the task by the experimenter. Participants then read written 

instructions to themselves before starting the task. Participants were instructed to name the 

pictures shown as quickly and accurately as possible when they appeared on the screen. 

The experimenter remained in the room with the participant as they read the instructions 

and for the first 60 trials to answer any questions and verify proper equipment set up. 

Participants saw 8 blocks with 60 pictures and a final block with 61. There were 7 breaks 

spaced evenly throughout the experiment and a check in with the experimenter at the 

halfway point. Pictures were shown once in a different random order for each participant. 

Each trial sequence started with a fixation cross presented in the center of the screen 

for 1000 ms followed by a brief blank screen for 200 ms.  A picture was then presented for 

either 4000 ms or until a voice onset was registered after which it remained on the screen 

for an additional 500 ms. A blank screen was displayed as the inter-trial interval and lasted 

for 1000 ms. Response times were recorded as the time between presentation of a picture 

and registration of a voice onset.  

Responses were transcribed offline. All responses were coded into 8 different 

categories described in Table 4. 
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Table 4 – Trial coding descriptions 

Response Coding Code Description 

Experimental Error 
Instances of outside influence: Hardware didn’t detect response, 

clear interruption during trial. 

Wrong Response Response was clearly incorrect as determined by coder 

Near Response 

Response was an alternative name, superordinate name, or 

sufficiently semantically close as determined by coder (e.g. 

Lion as cat) 

Matched Response Response matched the concept in McRae et al. (2005) 

Filler sounds 
Respondent uttered a clear filler sound prior to their response 

such as “uh” or “um” 

Lip smack 
Respondent produced a loud smacking noise prior to their 

response. Used to locate possible quick responses 

Correction 

Respondent either changed their response mid utterance or 

changed their response after finishing their first utterance. Used 

to exclude following trial as subject may still be recovering from 

previous trial. 

No response Respondent didn’t produce a response.  
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2.2 Results 

For the participants included there were 11,361 observations coded and transcribed. 

Of those observations 47 (0.4%) were coded as experimental errors, 443 (3.9%) as 

incorrect responses, 6500 (57.2%) matched the concept from McRae et al (2005), 3999 

(35.2%) were deemed semantically close to the matched concept, 111 (0.98%) coded as 

filler sounds (e.g. “uh” or “um”), 19 (0.17%) registered lip smacks, 90 (0.79%) were 

response corrections, and 152 (1.34%) had no response. A total of 255 (2.24%) 

observations did not register a voice onset even though a response was provided and were 

also excluded from analyses. A total of 9 items had more responses coded as incorrect than 

near and matched responses so were excluded to avoid including confusing items (n = 14 

matched responses).  

Only responses coded as matching the word concepts from McRae et al (2005) were 

used in analyses. If a participant did not produce a label matching the normed concept it is 

not possible to map accurate feature predictors to that observation. Without a 

corresponding predictor any estimated model would have excessive missing data or would 

be using a potentially erroneous predictor for some responses hindering our ability to make 

strong inferences.  

Because the experimenter was present and actively interacting with both the 

participant and equipment during the first 60 trials, those observations were treated as 

practice trials. Excessively quick responses (i.e. < 300 ms) were also excluded as these are 

likely spurious voice onsets due to a filler sound, lip smack, or other vocalization from the 

participant. Excluding these quick responses removed 24 (0.21%) observations overall and 
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13 (0.2%) of matched responses. Particularly slow responses were excluded by removing 

those which were more than 2.5 within participant standard deviations above the within 

participant mean response time for matched responses. In total 197 (3.03%) matched 

responses were removed from analyses for being slow.  

 

 

Table 5 – Summary statistics of name agreement and proportion matched 

Experiment 1 

      

 

      N Mean St. Dev. Min Pctl(25) Pctl(75) Max 

Name 

Agreement 

541 0.716 0.226 0.152 0.515 0.939 1 

Prop. Matched 541 0.544 0.354 0 0.212 0.879 1 

Experiment 2a 

      

 

N Mean St. Dev. Min Pctl(25) Pctl(75) Max 

Name 

Agreement 

300 0.79 0.208 0.174 0.654 0.962 1 

Prop. Matched 300 0.766 0.243 0.038 0.615 0.962 1 

Experiment 2b 

      

 

N Mean St. Dev. Min Pctl(25) Pctl(75) Max 

Name 

Agreement 

300 0.802 0.204 0.182 0.663 0.962 1 

Prop. Matched 300 0.708 0.272 0.038 0.5 0.923 1 

Experiment 1, young adults naming all pictures from Rabovsky et al. (2016) without 

familiarization; Experiment 2a, young adults naming subset of 300 pictures from original 

541 with familiarization; Experiment 2b, older adults naming same 300 pictures from 

experiment 2a with familiarization.    
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Prior to calculating name agreement pluralized forms of the same word were 

summed to represent a non-plural form (e.g. blueberries and blueberry counted as the 

same) as were repeats of the same word (e.g. blueberry blueberry and blueberry counted 

as the same). Name agreement values were calculated as a proportion of the dominant 

response relative to all the responses for a given picture. Additionally, we calculated the 

proportion of responses for each picture matching the word concept from McRae et al. 

(2005) referred to as proportion matched.  Summary statistics for name agreement and 

proportion matched can be found in Table 5. 

Picture name agreement showed substantial variation (min =15%, max =100%) 

across items and a slight negative skew (M (sd) = 72% (23%); Mdn = 76%, g1 = -0.41). 

Because the mean agreement was below our intended inclusion criteria of 80%, many 

matched responses would be excluded (𝑛 = 2106, 38.28% of included responses) and a 

large number of the pictures (𝑛 = 213, 45.51% of included items). Instead of further 

limiting included observations, we decided not to use a name agreement exclusion criteria. 

This decision was made because name agreement is thought to be capturing aspects of the 

semantic overlap for a concept word describing a picture. Because of this, we were 

concerned having a name agreement cutoff would be limiting the range of semantic overlap 

for responses provided.  

Two mixed effects models with crossed random effects (Baayen, Davidson, & 

Bates, 2008) were fit with the lme4 package (Bates, Mächler, Bolker, & Walker, 2015) in 

the R statistical environment (R Development Core Team, 2008). Statistical tests were 

conducted using the lmerTest package (Kuznetsova, Brockhoff, & Christensen, 2017). 

Because response times are highly skewed, they were transformed to response speed, 
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1/RT(s), to compensate for this non-normality. The initial model predicted response speed 

with fixed effects word frequency, word familiarity, visual complexity, word length, 

number of features, and inter-correlational density. Intercepts were allowed to vary over 

both subjects and items. Slopes for number of features and inter-correlational density 

varied over subjects. 

Word frequency (𝑏 = 0.07, 𝑡(463.79) = 4.31, 𝑝 < 0.001), word familiarity (𝑏 =

0.02, 𝑡(444.65), = 4.46, 𝑝 < 0.001), and number of features (𝑏 = 0.01, 𝑡(196.94) =

3.84, 𝑝 < 0.001) all positively predicted response speeds. Visual complexity was a 

significant negative predictor of response speed (𝑏 = −0.001, 𝑡(461.75) = −2.19, 𝑝 =

0.029). While inter-correlational density was not a significant predictor, it showed a 

marginal negative relationship with response speed (𝑏 = −0.002, 𝑡(398.84) = −1.74,

𝑝 = 0.083). Word length was not a significant predictor of response speed (𝑏 = 0.006,

𝑡(446.31) = 1.12, 𝑝 = 0.265).  

Because word length showed no significant relationship with response speed, a 

second model was fit excluding word length as a predictor. Again, word frequency (𝑏 =

0.063, 𝑡(459.51) = 4.34, 𝑝 < 0.001), word familiarity (𝑏 = 0.02, 𝑡(446.86) = 4.60,

𝑝 < 0.001), and number of features (𝑏 = 0.01, 𝑡(196.67) = 3.89, 𝑝 < 0.001) were all 

significant positive predictors of response speed. As we observed in our first model, visual 

complexity was a significant negative predictor of response speed (𝑏 = −0.001,

𝑡(460.87) = −2.12, 𝑝 = 0.035. Inter-correlational density and response speed also still 

showed a marginal negative relationship (𝑏 = −0.002, 𝑡(399.17) = −1.78, 𝑝 = 0.077). 

A chi-square test of model fit between the two models indicated no improvement of fit 



 20 

(𝜒2(1) = 1.27, 𝑝 = 0.262) with the inclusion of word length, so for subsequent analyses 

it was excluded. Fixed and random effects for both models can be found in Tables 6 and 7. 

 

Table 6 – Model estimates Experiment 1, model 1 

 Fixed effects 

Coefficient Estimate Std. Error df t-value 

Intercept 0.478 0.082 392.567 5.847*** 

Word Frequency 0.073 0.017 463.794 4.308*** 

Word Familiarity 0.020 0.005 444.650 4.461*** 

Visual 

Complexity 

-0.001 0.000 461.754 -2.191* 

Word Length 0.006 0.005 446.313 1.115 

ICD -0.002 0.001 398.848 -1.738 

NOF 0.011 0.003 196.936 3.836*** 
     

Random Effects 

Groups Name Variance Std. Dev. 

 

Subject Intercept 0.013 0.113 

 

 

NOF 0.00002 0.004 

 

 

ICD 0.0000005 0.001 

 

Item Intercept 0.023 0.153 

 

Residual 

 

0.063 0.250 

 

NOF = Number of features, ICD = Inter-correlational Density. 

* p < 0.05, ** p < 0.01, *** p <0.001   
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Table 7 – Model Estimates Experiment 1, model 2 

 Fixed effects 

Coefficient Estimate Std. Error df t-value 

Intercept 0.538 0.062 257.521 8.680*** 

Word Frequency 0.063 0.015 459.508 4.341*** 

Word Familiarity 0.021 0.005 446.863 4.598*** 

Visual 

Complexity 

-0.001 0.0004 460.866 -2.119* 

NOF 0.011 0.003 196.669 3.894*** 

ICD -0.002 0.001 399.168 -1.775 
     

Random Effects 

Groups Name Variance Std. Dev. 

 

Subject Intercept 0.013 0.113 

 

 

NOF 0.00002 0.004 

 

 

ICD 0.0000005 0.001 

 

Item Intercept 0.023 0.153 

 

Residual 

 

0.063 0.250 

 

NOF = Number of features, ICD = Inter-correlational Density. 

* p < 0.05, ** p < 0.01, *** p <0.001   
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2.3 Discussion 

One key goal of this initial experiment was to replicate the observation of inter-

correlational density predicting picture naming speeds (Rabovsky et al. 2016). While we 

did not observe this relationship, these data showed the patterns we would expect given the 

observations from Rabovsky et al. (2016). Naming speed was positively predicted by word 

familiarity, word frequency, and number of features. Additionally, while visual complexity 

is not usually included as a predictor in picture naming studies due to mixed evidence for 

its prediction of response latencies (Alario et al., 2004) and difficulty creating an objective 

definition (Donderi, 2006; Forsythe, 2009) with these data it reliably predicts slower 

picture naming response times. We would anticipate visual complexity to negatively 

predict response speed, as it is here. The assumption is that more visually complex images 

require more time to process during visual recognition and thus response times should be 

slower.  

Failure to observe inter-correlational density as a significant predictor of picture 

naming speed is counter to previous observations (Rabovsky et al., 2016). One primary 

concern in this experiment was the number of observations removed. Given the few 

constraints participants had when producing names, they often provided responses that 

differed from the matched word concepts in McRae et al. (2005). Because both inter-

correlational density and number of features are only available for specific words it is not 

possible to map all responses to these item predictors resulting in many responses being 

excluded (n = 3744, 37.3 % of valid responses). With such a large proportion of responses 

removed power may not have been sufficient to detect a statistical effect. It should be noted 

that we do not believe most unmatched responses were removed because the participant 



 23 

was confused on what the image was as most (86.58 %) unmatched responses were coded 

as semantically near responses (e.g. bird, hawk, or eagle for a picture of buzzard) 

An additional concern with excluding so many responses is the possibility inter-

correlational density and response variability are connected. Inter-correlational density 

represents the featural overlap of a concept word with other concepts from the McRae et 

al. (2005) corpus. This means that concepts with high inter-correlational density likely 

share features and are potentially describable with a similar superordinate response. As an 

example, 39 of the concepts in McRae et al (2005) are different types of birds and share 

multiple produced features. However, when naming these different birds many (51%) 

responses were simply bird and on average few responses (M = 0.29) matched the expected 

concept word. Due to this, it may be the case that certain groups of high inter-correlational 

density items were excluded systematically. 

A follow up item analysis was conducted to address whether high inter-

correlational density items were more likely to have unmatched responses. We fit a linear 

regression model predicting the proportion of matched responses for a picture. The model 

included the predictors word frequency, word familiarity, visual complexity, number of 

features, and square root inter-correlational density. The model was fit using the lm 

function in the R statistical environment (R Development Core Team, 2008). In this model, 

each of the predictors uniquely contributed to the proportion of matched responses. Word 

frequency (𝑏 = 0.16, 𝑡(535) = 6.78, 𝑝 < 0.001), word familiarity (𝑏 = 0.03, 𝑡(535) =

3.65, 𝑝 < 0.001), and number of features (𝑏 = 0.02, 𝑡(535) = 5.61, 𝑝 < 0.001) 

positively predicted proportion of matched responses while visual complexity (𝑏 =

 −0.001, 𝑡(535) = −2.29, 𝑝 = 0.022) and inter-correlational density (𝑏 =
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−0.01, 𝑡(535) =  −5.97, 𝑝 < 0.001) negatively predicted the proportion of matched 

responses for a picture. Importantly, pictures of high inter-correlational density concepts 

appear to elicit a lower proportion of matched responses so are more likely to be excluded 

from our analyses. 
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CHAPTER 3. EXPERIMENT 2A 

To increase the number of matching responses, individuals were exposed to each 

of the pictures were accompanied by the matched concept name from McRae et al., (2005). 

During the familiarization phase, speakers saw each picture paired with labels. Similar 

procedures are common within the psycholinguistic literature (e.g. Alario et al., 2004; 

Llorens, Trébuchon, Riès, Liégeois-Chauvel, & Alario, 2014). 

3.1 Methods 

3.1.1 Participants 

A total of 26 undergraduate students from the Georgia Institute of Technology 

School of Psychology participant pool were recruited. All participants reported English as 

their first language and normal or corrected to normal vision. All participants were 

compensated with course credit. Participant characteristics can be found in Table 1b. 

3.1.2 Materials 

Stimuli were a subset of 300 images from those used in Experiment 1. The 300 

images were randomly selected from the original 541 to avoid any experimenter bias and 

to maximize comparability of predictor distributions. During the familiarization phase, 

pictures were shown along with the matched concept word (McRae et al., 2005). 

Demographic information, WAIS Digit Symbol, WAIS Vocabulary, word frequency, word 

familiarity, visual complexity, number of features, and inter-correlational density were all 

gathered in the same way as in Experiment 1. 
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3.1.3 Procedure 

When participating in this experiment, individuals started by completing a 

demographics questionnaire and WAIS Digit Symbol before the experimental task. The 

experimental task was completed on a computer in a quiet room. After completing the 

experimental task the experimenter administered the WAIS Vocabulary to the participant  

The experiment was presented using EPrime 2.0 (Psychology Software Tools, 

Pittsburgh, PA). The experimental task was split into two parts: an initial familiarization 

session and an experimental session. Instructions were administered in the same way as in 

Experiment 1 with an additional refresher after the participant completed the 

familiarization session. Trial timing and stimuli presentation for both the familiarization 

and experimental sessions was identical to Experiment 1.  

During familiarization, participants were shown each of the 300 picture stimuli in 

a random order with the associated word from McRae et al. (2005) displayed below in 

Arial font. Participants were instructed to look at the picture before saying the displayed 

word out loud. The experimenter was initially in the room with the participant to describe 

the task, answer questions, and verify the equipment was set up correctly before stepping 

out of the room after the first 60 trials.  

Once the familiarization session was completed, the participant was instructed to 

alert the experimenter. The experimenter then described the experimental task to the 

participant again and answered any questions they might have before leaving the 

participant to continue. Participants then saw each of the 300 pictures again in a random 

order without the associated concept word. During this part of the experiment, participants 
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were instructed to name the pictures as quickly and accurately as possible. In order to 

discourage participants from defaulting to superordinate names (e.g. all birds called bird), 

experimenters indicated to participants their memory was not being tested but that they 

should name the pictures with the most specific label which felt appropriate. To reduce 

participant exhaustion, there were 8 breaks spaced evenly throughout the experiment and 

one experimenter check in at the halfway point. 

3.2 Results 

Responses were coded and transcribed using the coding scheme laid out in Table 

4. Responses were excluded following the same criteria as Experiment 1 with the exception 

that familiarity trials were treated as practice trials.  

Data was analyzed using a mixed-effects model with crossed random effects 

(Baayen, Davidson, & Bates, 2008). Models were fit in the R statistical environment (R 

Development Core Team, 2008) using the lme4 package (Bates, Mächler, Bolker, & 

Walker, 2015) and statistical tests conducted using the lmerTest package (Kuznetsova, 

Brockhoff, & Christensen, 2017). The model estimated was based off the final model in 

Experiment 1 predicting response speed with fixed effects of word frequency, word 

familiarity, visual complexity, number of features, and inter-correlational density. Random 

intercepts were estimated for both subjects and items while random slopes were estimated 

for subjects on inter-correlational density and number of features.  

As in our previous experiment, word frequency (𝑏 = 0.08, 𝑡(289.98) = 5.08,

𝑝 < 0.001) and number of features (𝑏 = 0.008, 𝑡(264.56) = 2.46, 𝑝 = 0.015) were both 

positive predictors of response speed. However, with familiarization, neither word 
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familiarity (𝑏 = 0.0004, 𝑡(275.47) =  0.79, 𝑝 = 0.433) nor visual complexity (𝑏 =

−0.0005, 𝑡(287.04) =  −1.46, 𝑝 = 1.457) showed a significant relationship with 

response speed. Inter-correlational density, however, was a significant negative predictor 

of response speed (𝑏 = −0.006, 𝑡(259.09) = −4.537, 𝑝 < 0.001), predicting slower 

responses as inter-correlational density increased. Random and fixed effects for this model 

can be found in Table 8. 

Inspection of correlations between random effects indicated that much of the 

variation across subjects for the number of features was being captured by the random slope 

of inter-correlational density (𝑟 =  0.94). A second model was fit matching the previous 

analysis but excluded the random slope for number of features in order to test whether 

estimating the additional parameters greatly improves model fit.  The results from this 

analysis closely matched those from our previous model. Word frequency (𝑏 =  0.08,

𝑡(290.00) =  5.08, 𝑝 <  0.001) and number of features (𝑏 =  0.008, 𝑡(289.25)  =

 2.48, 𝑝 =  0.014) were both significant positive predictors of response speed. Response 

speed also showed a significant negative relationship with inter-correlational density (𝑏 =

 −0.006, 𝑡(233.14) =  −4.50, 𝑝 <  0.001). As in the previous model, visual complexity 

(𝑏 =  −0.0005, 𝑡(287.06) =  −1.46, 𝑝 =  0.145) was a non-significant negative 

predictor and familiarity (𝑏 =  0.004, 𝑡(275.47)  =  0.79, 𝑝 =  0.431) was a non-

significant positive predictor of response speed. A chi-square model comparison test 

(𝜒2(3) = 2.69, 𝑝 = 0.443) indicated no significant improvement of model fit with the 

inclusion of the random parameters for number of features. A table of fixed and random 

effects for this model can be found in Table 9. 
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Table 8 – Model estimates Experiment 2a, model 1 

Fixed effects 

Coefficient Estimate Std. Error df t-value 

Intercept 0.717 0.064 208.246 11.254*** 

Word Frequency 0.076 0.015 289.981 5.077*** 

Word Familiarity 0.004 0.005 275.473 0.786 

Visual 

Complexity 

-0.001 0.0003 287.041 -1.459 

NOF 0.008 0.003 264.562 2.460* 

ICD -0.006 0.001 259.089 -4.537*** 
     

Random Effects 

Groups Name Variance Std. Dev. 

 

Subject Intercept 0.022 0.148 

 

 

NOF 0.000007 0.003 

 

 

ICD 0.000002 0.001 

 

Item Intercept 0.018 0.132 

 

Residual 

 

0.069 0.262 

 

NOF = Number of features, ICD = Inter-correlational Density. 

* p < 0.05, ** p < 0.01, *** p <0.001   
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Table 9 – Model estimates Experiment 2a, model 2 

Fixed effects 

Coefficient Estimate Std. Error df t-value 

Intercept 0.717 0.062 275.080 11.531*** 

Word Frequency 0.076 0.015 289.999 5.076*** 

Word Familiarity 0.004 0.005 275.468 0.788 

Visual 

Complexity 

-0.001 0.0003 287.058 -1.460 

NOF 0.008 0.003 289.251 2.481* 

ICD -0.006 0.001 233.135 -4.496*** 
     

Random Effects 

Groups Name Variance Std. Dev. 

 

Subject Intercept 0.017 0.130 

 

 

ICD 0.000002 0.002 

 

Item Intercept 0.017 0.132 

 

Residual 

 

0.069 0.262 

 

NOF = Number of features, ICD = Inter-correlational Density. 

* p < 0.05, ** p < 0.01, *** p <0.001   
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3.3 Discussion 

The addition of a familiarization session impacted our observations in meaningful 

ways compared to Experiment 1. As expected, given previous observations, including our 

own, both increasing word frequency (e.g. Alario et al., 2004) and number of features 

(Rabosky et al. 2016) were related to shorter response speeds. In line with our original 

hypothesis, higher inter-correlational density was associated with longer response speeds. 

Interestingly, in this experiment, we deviated from our previous observations as we did not 

observe slower responses with increasing visual complexity or quicker responses for 

pictures of concepts with higher word familiarity.   

The observation of a negative relationship between response speed and inter-

correlational density is in agreement with the idea that the more semantic overlap a concept 

has then selection and subsequent production of a word describing that concept will be 

slowed (Abdel Rahman & Melinger, 2009; Dell, 1986; Howard et al., 2006; Levelt et al., 

1999; Roelofs, 1992). There are a few explanations for why adding familiarization led to 

observing an effect of inter-correlational density. The simplest explanation is either our 

previous experiment failed to detect a significant relationship or this experiment showed 

such a relationship simply due to random chance. Given the limited examples of using 

inter-correlational density as a semantic predictor in this type of paradigm, it is difficult to 

address the possibility of a chance finding. In an attempt to do so, we re-analyzed a set of 

data from an unfamiliarized paradigm similar to Experiment 1 (Lagrone & Spieler, 2006). 

After matching the responses in those data to the concept words from McRae et al. (2005), 

we were able to fit the same models used in Experiments 1 and 2. In that analysis, we saw 

a similar pattern of results as Experiment 1 without a significant relationship between inter-
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correlational density and response speeds.  It therefore seems unlikely that chance alone 

explains the statistical differences observed and that familiarization impacts our 

observations in other ways.  

Originally, we had assumed failure to detect an effect was due to a lack of power 

which familiarization would alleviate by increasing our number of valid responses. To an 

extent, we achieved this as there was a substantial increase in the number of matched 

responses in Experiment 2a (𝑀(𝑠𝑑)  =  0.76(0.24), 𝑀𝑑𝑛 =  0.85) compared to 

Experiment 1 (𝑀(𝑠𝑑) =  0.54(0.35), 𝑀𝑑𝑛 =  0.64). This increase in proportion of 

matched responses led to including more observations in Experiment 2a (𝑛 =  5,734) than 

in Experiment 1 (𝑛 =  5,502) despite the total number of observations being greater in 

Experiment 1 (exp1: 𝑛 =  11,361; exp2: 𝑛 =  7,800). 

We were also concerned that by excluding so many responses, we were 

systematically excluding observations of concept words with high inter-correlational 

density. This was in part addressed, as in Experiment 2a only one picture elicited no 

matching responses while in Experiment 1 sixty-six pictures had no matching responses. 

However, when we fit a linear regression model predicting proportion of matched 

responses for a picture, we found very similar results to those from our previous 

experiment. Word frequency (𝑏 =  0.05, 𝑡(294) =  3.18, 𝑝 =  0.002), word familiarity 

(𝑏 =  0.02, 𝑡(294) =  3.30, 𝑝 =  0.001), and number of features (𝑏 =  0.02,

𝑡(294) =  4.06, 𝑝 <  0.001) all positively predicted the proportion of matched 

responses. Additionally, greater inter-correlational density (𝑏 =  −0.01, 𝑡(294) =

 −6.77, 𝑝 <  0.001) still predicted a lower proportion of matched responses. This 
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indicates that even though we improved the overall proportion of matched responses, 

observations with high inter-correlational density were still more likely to be excluded. 

With familiarization, the relationship between visual complexity and response 

speed is minimal, which makes some intuitive sense. Visual complexity should reduce 

response speeds in part because visual recognition of more complicated pictures takes more 

time. Once participants have been exposed to the images and some appropriate names for 

those pictures the process of visual recognition is likely quicker. Once familiarized to the 

pictures, visual recognition time may be fairly uniform across the range of pictures or at 

the very least reduced to the point where differences are undetectable in this context. This 

is further supported by our secondary analysis predicting proportion of matched responses, 

where more complex pictures were no more likely to have unmatched responses. 

While we were expecting word familiarity to show a relationship with response 

speed, even with familiarization, there are reasons one might not. Some authors have 

argued that object familiarity is closely connected to visual recognition (Forsythe, 2009; 

Logothetis, & Sheinberg, 1996). To the extent word familiarity captures object familiarity, 

one might expect pictures described by more familiar words to be recognized easier, and 

thus have faster response speeds. If familiarization is impacting the process of visual 

recognition, then after familiarization, the benefits of a word being more familiar may be 

reduced sufficiently to make any relationship of word familiarity and response speed 

undetectable. 
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CHAPTER 4. EXPERIMENT 2B 

Addition of a familiarization session appears to have provided a sufficient increase 

in power and reduction of excluded responses to observe a negative relationship between 

inter-correlational density and response speed. Given this observation, we recruited a group 

of community-dwelling older adults to address the question of whether adult aging would 

have an impact on semantic interference predicted by inter-correlational density. 

4.1 Methods 

4.1.1 Participants 

A total of 26 community dwelling older adults were recruited from the Atlanta area. 

All participants reported corrected to normal vision and English as their first language. No 

participants reported a history of dementia, cognitive impairment, serious head injury, 

cerebrovascular events (e.g. stroke), or serious ongoing cardiovascular issues. Participants 

were compensated with around $25 depending upon the time it took to complete the 

experiment. Participant characteristics can be found in Table 1c. 

4.1.2 Materials 

Materials used were identical to those used in experiment 2a, except for 20 

additional pictures, which were included as practice trials. The practice stimuli were 

selected from the remaining 241 pictures not included in experiment 2a and were paired 

with the matched concept word from McRae et al. (2005). 

4.1.3 Procedure 
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Experiment 2b followed the same procedure as experiment 2a except for three 

primary differences. Prior to the familiarization session, individuals were shown the 20 

pictures selected as practice trials in a random order. These practice trials were displayed 

in the same way as the familiarization session, ending with a prompt encouraging the 

participant to ask the experimenter any questions they might have. Additionally, the 

experimenter was in the room with the participant for the entirety of the experiment. This 

change was decided upon after data from an initial pilot participant suggested that some 

older adults may have trouble responding consistently at a level where voice onsets could 

be registered. To avoid losing excessive data, the experimenter was in the room with the 

participant to verify proper voice onsets were registered throughout the experimental 

session. The inter-trial interval was also extended to 1500 ms, allowing older adults to 

better recover from a response and prepare for the next trial.  

4.2 Results 

As in both previous experiments, a mixed effects model with crossed random 

effects (Baayen, Davidson, & Bates, 2008) was fit in the R statistical framework (R 

Development Core Team, 2008) using the lme4 package (Bates, Mächler, Bolker, & 

Walker, 2015) with statistical tests conducted using the lmerTest package (Kuznetsova, 

Brockhoff, & Christensen, 2017). Response speeds were modeled to be predicted by word 

frequency, word familiarity, visual complexity, number of features and inter-correlational 

density as fixed effects. Intercepts were allowed to vary across random the factors, subjects 

and items. Because our previous experiment suggested accounting for variability in the 

slopes for number of features across subjects added no improvement in model fit, only the 

slope of inter-correlational density was allowed to vary across subjects. 
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Table 10 – Model estimates Experiment 2b, older adults only 

Fixed effects 

Coefficient Estimate Std. Error df t-value 

Intercept 0.548 0.068 286.267 8.020*** 

Word Frequency 0.080 0.017 301.191 4.867*** 

Word Familiarity 0.019 0.005 286.248 3.517*** 

Visual 

Complexity 

-0.001 0.0004 293.727 -1.297 

NOF 0.006 0.004 292.884 1.789 

ICD -0.005 0.001 245.315 -3.153*** 
     

Random Effects 

Groups Name Variance Std. 

Dev. 

 

Subject Intercept 0.020 0.141 

 

 

ICD 0.000003 0.002 

 

Item Intercept 0.022 0.148 

 

Residual 

 

0.054 0.233 

 

NOF = Number of features, ICD = Inter-correlational Density. 

* p < 0.05, ** p < 0.01, *** p <0.001   
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Word frequency (𝑏 =  0.08, 𝑡(301.192) =  4.87, 𝑝 <  0.001) and word 

familiarity (𝑏 =  0.02, 𝑡(286.25)  =  3.52, 𝑝 <  0.001) again were significant positive 

predictors of response speed. As we observed with the young adults, inter-correlational 

density (𝑏 =  −0.005, 𝑡(245.32)  =  −3.15, 𝑝 = 0.002) showed a significant negative 

relationship with response speed. Visual complexity was also a non-significant negative 

predictor (𝑏 =  −0.0005, 𝑡(293.73) =  −1.30, 𝑝 =  0.196) of response speed. Unlike 

our results from Experiment 2a, number of features (𝑏 =  0.006, 𝑡(292.88) =  1.79,

𝑝 =  0.075) did not show a significant relationship with response speed, though the 

coefficient was still positive. Both random and fixed effects can be seen in Table 10. 

4.3 Discussion 

These data, for the most part, are consistent with our observations in younger adults. 

Response speed shows the expected positive relationship with word frequency, the 

negative relationship with inter-correlational density, and a limited relationship with visual 

complexity as we saw in Experiment 2a. However, in this sample, older adults did not show 

as strong a relationship of naming times with number of features. Additionally, even with 

familiarization, the older adults still seem to be quicker when naming pictures of more 

familiar concept words where the younger adults did not.  

While number of features was not a significant predictor of response speed this 

does not necessarily indicate facilitation was not present in older adults. If we look at the 

coefficients and standard errors for number of features in both the young adult (𝑏 =

 0.008, 𝑠𝑒 =  0.003) and older adult group (𝑏 =  0.006, 𝑠𝑒 =  0.004), we see that the 

magnitude and direction of the relationship predicted is very similar. Older adults tend to 
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show greater within- and between-individual variability for response latencies (e.g. 

Hultsch, MacDonald, & Dixon, 2002), which can limit our ability to detect statistical 

effects. Failing to detect a significant relationship may be in part due to the very small 

effects being observed and the increase in variability and thus standard errors of the 

estimates for older adults. 
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CHAPTER 5. EXPERIMENT 2A & 2B COMBINED ANALYSIS 

5.1 Results 

Observations from both younger adults and older adults were analyzed together to 

address the question of whether adult aging impacts semantic competition during picture 

naming predicted by inter-correlational density. A mixed effects model with crossed 

random effects (Baayen, Davidson, & Bates, 2008) was estimated using lme4 (Bates, 

Mächler, Bolker, & Walker, 2015) with statistical tests conducted using the lmerTest 

package (Kuznetsova, Brockhoff, & Christensen, 2017) in the R statistical environment (R 

Development Core Team, 2008). Response speed was predicted by fixed effects of word 

frequency, word familiarity, visual complexity, age group, number of features, inter-

correlational density, and the interactions of age group with number of features, inter-

correlational density, and familiarity. Random intercepts were estimated for items and 

subjects. Random slopes for inter-correlational density were estimated for subjects. Age 

group was coded as “0” for young adults and “1” for older adults. 

In these data, response speed had a significant positive relationship with word 

frequency (𝑏 =  0.08, 𝑡(295.30)  =  5.36, 𝑝 <  0.001) and number of features (𝑏 =

 0.008, 𝑡(340.24)  =  2.56, 𝑝 =  0.011). Significantly slower response speeds were 

seen in the older adult group (𝑏 =  −0.16, 𝑡(82.63) =  −3.59, 𝑝 <  0.001). Increasing 

inter-correlational density also showed the expected slower response speeds (𝑏 =

 −0.006, 𝑡(311.89) =  −4.632, 𝑝 <  0.001). When both groups were considered 

together, word familiarity (𝑏 =  0.004, 𝑡(320.15) =   0.75, 𝑝 =  0.452) did not show 
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significant prediction of quicker response speeds. Additionally, visual complexity (𝑏 =

 −0.0005, 𝑡(290.78)  =  −1.47, 𝑝 =  0.142) showed a non-significant relationship with 

response speed. 

The negative relationship observed in inter-correlational did not differ across age 

groups (𝑏 =  0.001, 𝑡(70.26) =  1.30, 𝑝 =  0.199). Similarly, the positive relationship 

of response speed and number of features did not significantly vary across ages (𝑏 =

 −0.001, 𝑡(10639.37) =  −0.65, 𝑝 =  0.517). However, the positive influence of word 

familiarity on response speeds was greater in older adults (𝑏 =  0.02, 𝑡(10639.52) =

 6.39, 𝑝 <  0.001). Random and fixed effects can be found organized in Table 11. 

5.2 Discussion 

Across the two groups we see some similar patterns. Response times are shortened 

with increasing values of word frequency and number of features. At the same time, we 

see longer response latencies with increasing semantic feature overlap. With 

familiarization, visually complex pictures do not appear any slower to name than simpler 

pictures. Older adults overall were slower than younger adults to provide names for the 

pictures shown. This is in line with previous research (e.g. Au et al., 1995; Nicholas, Barth, 

Obler, Au, & Albert, 1997; Thomas, Fozard, & Waugh, 1977) but is not particularly 

interesting in this context as it likely reflects changes not specific to lexical processes, such 

as speed of processing (e.g. Salthouse, 2016; Schaie, 2013). Older adults showed more 

facilitation from word familiarity than younger adults. However, we did not observe 

differences between younger and older adults in facilitation from number of features or 

interference due to semantic overlap.  
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Table 11 – Model estimates Experiments 2a and 2b combined 

Fixed Effects 

Coefficient Estimate Std. Error df t-value 

Intercept 0.710 0.061 349.139 11.582*** 

Word Frequency 0.077 0.014 295.296 5.363*** 

Word Familiarity 0.004 0.005 320.148 0.752 

Visual 

Complexity 

-0.001 0.0003 290.783 -1.473 

Age -0.156 0.044 82.628 -3.588*** 

NOF 0.008 0.003 340.237 2.556* 

ICD -0.006 0.001 311.893 -4.632*** 

Age*ICD 0.001 0.001 70.255 1.297 

Age*NOF -0.001 0.002 10639.374 -0.648 

Age*Familiarity 0.016 0.003 10639.516 6.385*** 
     

Random Effects 

Groups Name Variance Std. Dev. 

 

Subject Intercept 0.018 0.135 

 

 

ICD 0.000002 0.001 

 

Item Intercept 0.018 0.134 

 

Residual 

 

0.064 0.252 

 

Age coded as 0 = Young adult, 1 = Old adult; NOF = Number of 

features, ICD = Inter-correlational Density, Familiarity = Word 

Familiarity. 

* p < 0.05, ** p < 0.01, *** p <0.001   
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As we mentioned from our previous analysis, the failure to observe a significant 

relationship between number of features and response speed was unlikely to reflect a 

genuine age difference, which appears to be supported here. However, one could apply the 

same argument by saying that the failure to detect a significant interaction between age and 

number of features is due the variability in response times of older adults and the small 

effects we are observing. This could be the case, but there is no clear theoretical reason 

older adults would not show facilitation during picture naming from the increased semantic 

information captured by number of features.  

Older adults showing greater facilitation in response times from word familiarity 

was not one of our primary hypotheses, but might be expected (e.g. Newman, & German, 

2005). Word familiarity ratings capture many aspects of processing during picture naming 

(Balota, Pilotti, & Cortese, 2001; Newman, & German, 2005). As we mentioned before, to 

the extent that word familiarity reflects object familiarity, it may be capturing aspects 

recognition processing (Alario et al. 2004; Forsythe 2009). Beyond just a role in 

recognition, word familiarity may also impact the transmission of information following 

lemma selection to later stages, such as word form or phoneme selection (Newman & 

German, 2005). More familiar words may have stronger connections between their 

associated lemmas and connected representations in these later stages. Older adults might 

show reduced efficiency in transmission between processing stages, introducing noise and 

making processing slower (Burke et al., 1991). Having stronger connections between the 

lemmas of familiar words and later lexical representations would be protective against 

reductions in transmission efficiency and increase the differences of facilitation from 

familiarity between young and older adults.  
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Counter to our original hypothesis, we did not observe differences in semantic 

competition between age groups. In the case of naming pictures with varying name 

agreement, older adults appear to be more impacted by high semantic competition 

compared to younger adults (Lagrone, & Spieler, 2006). Here, we see no such pattern, and 

older adults show similar competition to younger adults across the range of inter-

correlational density. This seems to suggest a difference in the type of competition we 

observe with inter-correlational density compared to name agreement.  

In picture naming studies using name agreement, stimuli are specifically chosen so 

some stimuli have multiple accurate responses (e.g. couch/sofa). Pictures that elicit fewer 

dominant responses are thought to capture aspects of semantic competition caused by high 

semantic overlap between a set of highly active competitors. In the case of inter-

correlational density, the semantic overlap estimated is more general in nature and reflects 

not just relationships between very close alternatives, but also overlap with objects that 

share broader aspects of semantic information, such as context, function, and form. 

Because of this, the competition predicted by name agreement likely represents very high 

competition between a small set of closely related competitors while inter-correlational 

density represents a weaker, but more general type of semantic overlap. Looking at Figure 

2, we can see the name agreement of a picture and the inter-correlational density for the 

associated concept word share a weak relationship for both young (𝑟 =  −0.239) and older 

adults (𝑟 =  −0.244), supporting the idea that the two measures are capturing different 

aspects of semantic overlap.  
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If older adults show greater competition during lemma selection due to increased 

noise, we might expect competition between lemmas with very similar levels of activation 

to be particularly difficult to resolve in older adults. When older adults are naming pictures 

with medium name agreement (e.g. couch/sofa), increased noise in the system would make 

distinguishing a winner between two lemmas with very close activation levels more 

difficult. In the case of inter-correlational density, which captures semantic overlap more 

 

Figure 2 – Picture name agreement and inter-correlational density. 

Percent name agreement by square root inter-correlational density of matched 

concepts in younger and older adult samples with familiarization. 
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generally, we would expect greater differences between the activation levels of active 

lemmas. With greater distinctions between competitors, increased noise in older adult 

processing would impact competition to a limited degree and competition would look more 

similar to younger adults. 

 

 

 

 

 

  



 46 

CHAPTER 6. CONCLUSION 

Through a series of experiments, we attempted to address our primary question of 

whether older adults are more impacted by semantic competition during lexical selection 

as predicted by a semantic density measure. To that effect, these data did not provide 

support for this hypothesis. However, this may be due to differences in the levels of 

semantic competition predicted by variations in name agreement versus inter-correlational 

density. In the process of asking this question, we were able to replicate the observation of 

inter-correlational density as a semantic predictor of competition, at least in the context of 

picture naming with pre-exposure to stimuli and matched concept words. Without pre-

exposure, semantic competition was not clearly observed in young adults. When pre-

exposed to the stimuli and matched responses, though, both young and older adults showed 

clear semantic competition during picture naming, predicted by inter-correlational density. 

It may be the case that without pre-exposure, responses were too variable, reducing our 

ability to detect a relationship. We also observed differential influences of word familiarity 

across age groups during picture naming. 

While we failed to provide support for our original hypothesis, several limitations 

may be informative for future work. Inter-correlational density represents the semantic 

feature overlap for a limited corpus of words and as such limits our ability to use unmatched 

responses. By using a broader semantic density measure, we would be better able to include 

responses which do not correspond to the matched concept word. Additionally, because of 

how inter-correlational density is calculated, there are groups of objects which share many 

features and thus have high-inter-correlational density but can be can easily described using 
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category or superordinate labels and are thus excluded. Using a semantic density metric 

not limited by a small set of concept words may allow researchers to better select items 

from a range of semantic density but avoid over selection from a specific category. One 

additional concern with these data is our failure to account for participant differences, 

specifically the level of education. Given that our younger adult sample is made up of 

college-age undergraduate students, we can make some reasonable assumptions about their 

education level. In our older adult sample, we recruited from the Atlanta community with 

little control on such participant characteristics. In future work, to the extent possible, 

matching groups on participant characteristics may lead to better group comparability for 

the process of interest. Future work should take efforts to better consider participant 

differences as well as the limitations of using inter-correlational density as a semantic 

overlap metric and consider alternatives for selection of items or predictors. 
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