COMPARISION OF REAL-WORLD ROADWAY LIGHTING, DYNAMIC SIMULATION AND CBE AND GLAREMARK PREDICTIVE SYSTEMS

BY

SYED ARIF HUSSAIN

B.E. (Mechanical), N.E.D. University of Engineering and Technology, Karachi, Pakistan. 1982

A MASTER'S THESIS

Submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Industrial Engineering KANSAS STATE UNIVERSITY Manhattan, Kansas

1985

Approved by:

207

Major Professor

TABLE OF CONTENTS

LD

14 1915 1915	Page
ACKNOWLEDGEMENTS	IV
LIST OF TABLES.	v
LIST OF FIGURES	VI
INTRODUCTION.	1
Early research on discomfort glare in roadway	
lighting	3
Research on discomfort glare at Kansas State	
University	8
Dynamic simulator	8
PROBLEM	12
METHOD	13
Procedure	13
Real-world	13
Simulator	16
Principles of dynamic simulator	16
Preparation of simulator	18
Predictive systems	25
Glaremark	25
СВЕ	31
Task	37
Simulator	37
Real-world	47
Instructions and informed consent	49
Experimental Design	49
Subjects and recruitment procedure	51

RESULTS..... DISCUSSION..... 61 CONCLUSIONS..... 70 REFERENCES.... 71 APPENDIX I.... APPENDIX II.... 79 APPENDIX III..... 83 APPENDIX IV..... 94 APPENDIX V..... 93 APPENDIX VI.....

Page

ACKNOWLEDGEMENTS

I wish to express my appreciation and gratitude to Dr. Corwin A. Bennett for his valuable help, guidance and encouragement throughout this research project.

I am greatly indebted to Professor Jacob J. Smaltz and Dr. Chi Lung Huang for serving on the graduate committee.

I would also like to express my heartfelt gratitude to Mr. Dale Dubbert for his friendly cooperation in setting up the experiment, Mr. Bill Lee Shelby of ITT (Outdoor Lighting), and Mr. John Howard of Beneral Electric Company for the valuable data and assistance.

LIST OF TABLES

Page

TABLE	1.	Details of lighting installations	14
TABLE	2,	Measurements of lighting installations	15
TABLE	з.	RPM calibration chart	38
TABLE	4.	Luminance calibration chart	39
TABLE	5.	Means of glare responses from real-world	
		and simulator	53
TABLE	6.	ANDVA table for hypothesis 1 and 3	54
TABLE	7.	T-test for hypothesis 1	55
TABLE	8.	Rating (and ranking) of installations	
		according to comfort	56
TABLE	9.	T-test for hypothesis 2	58
TABLE	10.	Spearman's rank correlation coefficient	59
TABLE	11.	Measured and calculated luminances at	
		-ut-off angle	60

LIST OF FIGURES

Page

FIGURE	1.	Double spiral track	17
FIGURE	2.	Intersecting double spirals	19
FIGURE	з.	Roadway simulator diagram	20
FIGURE	4.	Photonegative of double spiral plot	21
FIGURE	5.	Calibration curve	24
FIGURE	6.	Profile of a luminaire and roadway	27
FIGURE	7.	Conventions for horizontal angle	32
FIGURE	8A.	Geomtry of roadway (Horizontal)	34
FIGURE	8B.	Geomtry of roadway (Vertical)	35
FIGURE	9.	General instruction sheet	40
FIGURE	10.	North American Glare Scale	44
FIGURE	11.	Instruction sheet (simulator)	45
FIGURE	12.	Rating form	46
FIGURE	13.	Instruction sheet (roadway)	48
FIGURE	14.	Informed consent	50

INTRODUCTION

The main function of street lighting is to ensure that the efficiency of traffic movement at night shall approximate daylight conditions, with respect to safety, comfort and capacity. It is, of course, impossible to reproduce optimal daylight conditions, and the lighting research on public lighting has, therefore, been directed towards what minimum requirements must be fulfilled by public lighting in order to provide secure, safe,and controlable night driving.

The most important factors in the quality of public lighting are:

For reliability of observation:

the quality, determined by the luminance of the background, and

For ease of perception:

the limitation of glare,

the uniformity of the luminance pattern on the road surface, and

the extent to which the lighting level exceeds that required for reliable perception.

The first factor determining visual comfort, after a suitable lighting level for reliable perception has been provided, is the glare from the light source. Glare from the roadway light sources may be defined as:

> "When the field of vision of an observer contains a light source whose luminance in the direction of the observer is appreciably greater than that of the other parts of

his field of vision, this light source will give rise to glare. The glare produced increases with the luminance and apparent size of the light source, and with decreasing luminance of the background and the angle between the direction of observation and the direction to the light source" (DeBoer, 1967).

Glare is subdivided into two effects which are not completely independent.

<u>Disability</u> <u>Olace</u>(which may not be apparent to the observer) acts to reduce the ability to see or spot an object. It is sometimes referred to as "blinding glare" or "veiling glare".

<u>Discomfort Glare</u> which produces a sensation of discomfort but does not affect the visual acuity or the ability to discern an object.

While both forms of of glare reaction may be caused by the same light flux, the many factors involved in roadway lighting such as source size, displacement angle of the source, illuminance at the eye, etc. do not affect both forms of glare in the same manner, nor to the same degree. The only two factors common to both forms of glare are illuminance at the eye and the angle of flux enterance into the eye. It is generally true that when disability glare is reduced, there also will be a reduction in discomfort glare, but not necassarily in the same relative amount. However, if the discomfort glare is acceptable, hardly any effect on visual performance may be expected.

In this report the discussion is confined to discomfort

glare aspect of roadway lighting.

Early Research On Discomfort Glare In Readway Lighting

Research on disconfort glare has employed forms of apparatus in which the glare source could be varied in size and brightness, while the rest of the visual field remained exactly the same. One of the methods employed was that of Hopkinson (1940) st seq.), Hopkinson and Petherbridge (1954), and Petherbridge and Hopkinson (1950), in which the observer looked into a model room in which there were apertures corresponding to the glare sources under investigation. The luminance of these apertures was provided by an illuminating system outside the model itself. The luminance of the interior of the model was provided by lamps (hidden from the observer) under separate control. Various forms of optical systems were used in different investigations to ensure that any change in the luminance of the glare source would not result in any affect on the luminance of the general surrounding and vice versa.

The method of evaluation of disconfort glare has been to ask obsevers for their direct subjective impressions. In the earliest work (Luckiesh and Holladay, 1925) the procedure was to ask the observer to alter the luminance of the glare source to give in turn a series of sensations of disconfort or confort. A very large number of sensations ranging from "painful" to "very pleasant" were used. Hopkinson (1940) developed a method which employed a series four criteria of disconfort glare ("just perceptible", "just acceptable", "just unconfortable", "just

intolerable"), associating with these criteria a method of 'calibrating' the human observer over a long period so that his evaluation could be improved in precision by experience, and the variance of these evaluation about a mean could be determined. Luckiesh and Guth (1949) used a single criterion of discomfort called the "borderline between comfort and discomfort" or "BCD", rather than a number of criteria.

Research on discomfort glare has, therefore, used "introspective" methods of evaluation. That is, the observer was asked to think about the situation, evaluate it, and make a setting of a controlled variable, such as the glare source luminance, until the glare sensation corresponded to a criterion which had been described to him and which he believed he could reproduce. No successful studies were made using specific visual tasks and the performance of them as the basis of evaluation. Attempts were indeed made to evaluate glare in this way (Bartiett and Pollock 1933, Stone and Groves 1968) but all the investigators who had attempted such a "behaviorist" approach found that acute subjective disconfort arises from situations which give rise to little or no decrement in visual performance. If such decrement does exist, it probably results from very long exposures.

It is necassary to mention here the difference in approach of one group of American researchers (Luckiesh 1925 et seq.) as compared with all others. Luckiesh and Guth, later his colleague, have insisted, from the earliest days of Luckiesh's work, on presenting the glare source momentarily rather than

continuously. Luckiesh's argument was that glare is experienced when the observer looks from his work and sees the glare source for a second or so and then looks down at his work again. Other researchers have used continuous exposure of the glare source, on the basis that in a normal interior, the glare sources (like any other part of the field of view) are continuously exposed.

The results of various investigations into the disconfort glare phenomenon were; (a) all agreed that the magnitude of glare sensation is related directly to the luminance of the glaring source and its apparent size as seen by the observer, and (b) that the disconfort is reduced if the source is seen in a surrounding of high luminance. The glare sensation is also reduced, the further the glare source is off the line of sight. These findings were resulted in the following formula (Hopkinson, 1970):

> 1.6 0.8 2 Glare constant = (Bs w)/Bb 0

where Bs is the luminance of the source, Footlambert,

w is the solid angle subtended by the source, steradian, Bb is the general background luminance, fostlambert, and 8 is the angle between the direction of viewing and the direction of the glare source, decreea.

One of the consequences of the different experimental techniques used by Luckiesh and Guth (momentary exposure) and by other investigators (continuous exposure) was that the exponent of the glare source in the above formula was markedly different. The momentary exposure technique resulted in a higher influence of the luminance of the glare source (and therefore, a higher

exponent of Bb) (Hopkinson 1957).

Such a formula enabled the agnitude of the glare sensation from a single source to be evaluated. However, it was shown that the effect of a number of luminaires can be obtained by suitable addition of the glare constants obtained for individual sources in the field of view. Hopkinson (1940) showed that the simple arithmetic addition of the glare constants gave a value of glare constant which corresponds closely to the sensation from the complete array of multiple sources. Hopkinson (1950) modified this proposal by showing that the glare from a number of Sources is the same as that from a single source of equal apparent area placed at the centroid of the array. Later, Hopkinson (1957) showed, however, that the additive nature of glare was a highly complex phenomenon, the exact additivity function depended upon the luminance of the sources and their position in the field of view, among other thinos.

In Europe, de Boer and Schreuder (1967) conducted an experiment using a dynamic model of a normal street lighting installation. Here the average road surface luminance and its uniformity, and the size and number, light distribution, arrangement and luminous intensity of the street lighting lanterns could be varied independently of each other. A randomized sequence of street lighting installations was presented to the observer who had to choose in their appraisals between the following degrees of glares "unbearable" glare (G=3); "disturbing" glare (G=3); "just admissible" glare (G=6). The "astisfactory" glare (G=7); and "unnoticeable" glare (G=6).

number in bracket indicates the associated "Dlaremarks" that were used for calculation. Their findings resulted in the system "Blaremark". A series of researches (at Kansas State University) relative to the SCD concept has show that the cumulative effect of a number of equally bright sources can be combined (Bennett, 1979). The effect of several sources of differing brightness and location can be expressed in terms of a "Cumulative Brightness Effect" or "CBE" (Bennett, 1980).

Currently, in Europe, Glaremark is in use to prevent discomfort glare in the design of lighting for streets and highways. The Illuminating Engineering Society of North America (IESNA) has been working to add procedures for dealing with discomfort glare to future revisions of its Standard Roadway Lighting Practice, Moreover, North American tests have failed to show the validity or adaptibility of Glaremark (Keck and Odle. 1975). Further unpublished field tests were conducted by Gallagher in Philadelphia (Gallagher & Keck, 1981). The site consisted of a street served by luminaires mounted on opposite spaced poles 110.5 feet apart. Each pole was capable of carrying two luminaires and each luminaire could be switched independently. One type of luminaire was used in all the configurations. Two spacing--110.5 feet opposite and 221 feet opposite and seven light levels -- maximum about four times minimum, were used. Twenty-four subjects rode through each of the 10 configurations and scored each system in terms of brightness and overall quality. Ranking for the ten configurations was based on the "Glaremark" and "CBE" values computed by Merle Keck

using photometric data and field data. Also, the ranking for the ten configurations was done by the observer rating. However, the GlarGmark and North American "CDE" systems were equally unpredictive.

Research On Discomfort Glare At Kansas State University

In order to provide a basis for a North American system research is underway at Kansas State University. The first study was an extensive experiment based upon the pilot of work by Putnam and his coworkers (Bennett, 1977). A multiple regression model was developed for predicting glare sensitivity as a function of glare source size, position and background luminance for a single glare source. This study enabled prediction of an average response for a single, static glare source. Later probit analysis (Bennett and Rubinson, 1979) enabled prediction of an arbitrary percentile rather thean just the average. Further research extended this work to a number of static sources rather than a single source (Bennett, 1980). This research also has shown the declining influence of lights as one looks down the roadway and led to what Keck has called the "Cumulative Brightness Evaluation" or "CBE" model where summation of effects over successive lights are substitued for size, position, and background luminance in the previous multiple regression model. This currently is the CBE procedure.

Dynamic Simulator

Based upon an idea of Dr.Glenn Fry, a dynamic roadway simulator for discomfort glare was designed and built at Kansas

State University (Anantha, Dubbert, and Bennett, 1962). An experiment was conducted using this simulator in the summer of 1962 (Bennett, 1982). Seventy-four subjects were run each for three hours. In the experiment the conditions simulated were

Car speeds of 30 mph and 60 mph,

Spacing of four mounting heights and eight mounting heights, (as spacing is defined to be a multiple of the mounting height),

One sided lighting and two sided staggered lighting, Number of lights of 26, 10, 2, and 1,

A dynamic condition and a static condition.

Statistical results showed that the static condition was less uncemfortable than the dynamic conditions. Correspondingly, the annoyance level was greater for the higher speeds (60 mph vs. 30 mph). Spacing was a statistically significant variable. Observers were less sensitive to the eight H4 conditions than the standard four H4 conditions. No difference was found between lighting on one or both sides or the number of luminaires. The results showed, in general, that the Fry Simulator approach was a useful way to study discomfort glare from fixed roadway lighting. The main advantage is that it is much less expansive than field tests and is much more fiexible.

An improved simulator was developed at Kansas State University (Easwer, Dubbert, and Bennett, 1963). Also a change in the direction for the research was planned. Rather than a "parametric study", a predictive-system-validation approach was planned.

A detailed study on the two predictive systems, namely Glaremark and CBE, was carried out in Fall 1983. Two computer programs were generated for these systems and standard data was used as suggested by Bill Lee Shelby of ITT Outdoor Lighting. The results of these systems revealed that:

- The first three luminaires in front of driver are the most important as far as the glare is concerned; the first luminaire contributes the major portion of this glare,
- As the spacing between the luminaires is increased, the effect of glare becomes less,
- An increase in the mounting height makes a particular installation more comfortable,
- By increasing the windshield cutoff angle, the importance of the first luminaire in front of the driver can be reduced.

An experiment was carried out in 1984, to see if there is a statistically significant difference between the glare responses of a driver and a passenger (Hussain, 1984). Segren pairs of subjects drove or rode through seven different roadway lighting installations in the City of Manhattan,Kansas. No statistically significant difference was found between the responses of drivers and passengers. In addition, it was found that all the lighting installations, studied except one, are confortable using the New North American Glare Scale as the rating instrument. The levels of disconfort glare used in the North American Glare Scale are, "glesant" (Gel), "satisfactory"

(G=3), "BCD" or "just admissible" (G=5), "disturbing" (G=7), and "intolerable" (G=9).

The above experiment was a pilot study for the present 1984 research. The objective of the research was to compare the real-world roadway lighting, dynamic simulation, and CEE and Glaremark predictive systems. Sixty subjects (30 pairs of subjects) drove or rode through six different lighting installations in the city of Manhattan and rated the quality of lighting using the North American Glare Scale. The same subjects also "drove" in the dynamic simulator, where the six real-world installations were simulated, and again rated the quality of lighting. The results of real-world and dynamic Simulation were then compared with the Glaremark and CEE predictive systems.

PROBLEM

One objective of this study is to validate the dynamic simulator, developed at Kansas State University, by running 60 subjects through six simulated installations. The results the from the dynamic simulator then will be compared with the glare responses of subjects in the "same" real-world lighting installations. Since the dynamics simulator is much less expensive and a more flexible way to study the disconfort glare from fixed roadway lighting, its validation will save expansive field tests.

The second objective of this study is to validate the European predictive system "Glaremark" and North American predictive system "CBE". This is planned to achieve by comparing the glarer responses of 40 subjects, from the six real-world lighting installations, with the results of the above mentioned predictive systems. The validation of these predictive systems is important because it is the easiest approach to predict the disconfort glare from a particular roadway lighting installation without going into the trouble of preparing the simulator, time consuming subject running, or the expensive field tests. Moreover, these systems can be useful in predicting the coefort or disconfort of a lighting installation at the design stages, prior to the existence of the system.

Scosedure

The experiment was divided into three different parts. They are: real-world, simulator, and predictive systems. Real-world

For the real-world part of the experiment, six different roadway lighting installations were selected in the City of Manhattan. The details of these installations are given in Table 1. These installations were selected in such a way that all the systems were different from each other in one way or another. For example, although both systems 3 and 5 (Table 1) were cobraheads, with clear mercury lamps, and double-sided staggered installations, 5 is a 250 M lamp, whereas 3 is a 400 M lamp.

All the measurements relating to the roadway installations (Table 2) were taken by the experimentor. These measurements include:

Mounting height with the help of a theodolite,

Spacing and road width with a measuring tape,

Photometric brightness of all the installations with the help of a Spotmeter.

Since, in a real-world roadway lighting installation, the above mentioned parameters usually are not consistent, means of all the measurements taken for each installation and were used for the simulator as well as calculation purposes.

For the subject running in" real-world", five different orders of installations were selected. These orders are:

TABLE 1.

CH =

Details of the lighting installations.

No.	Location	Luminaire	Lamp	Wattage	Single or Double~sided	Driving
1.	McCall	CH	HPS	400	Single	Dynamic
2.	Claflin	CH	MV	400	Single	Dynamic
з.	Bluemont	СН	MV	400	Double	Dynamic
4.	Vet.Med	Gb	MV	250	Single	Dynamic
5.	N. Manhtn	CH	MV	250	Double	Dynamic
6.	AIB	CO	HPS	250	Single	Static

Gb		Globe (GE's Power Sphere)
CO	-	Cut-off
MV	-	Mercury Vapor
HPS	-	High Pressure Sodium

Cobra Head

TABLE 2.

Measurements of lighting installations.

No.	Spacing (feet)	Mounting Height (feet)	Road Width (feet)	Overhang (feet)
1.	210	30	44	5
2.	190	27	35	5
з.	235	30	24	5
4.	70	10	48	0
5.	195	29	24	5
6.	104	35	36	2

Although entirely different sequences of installation were possible for all 30 pairs of subjects, the above mentioned orders were used mainly to save the miles travelled by each pair.

A set of three instruction sheets (discussed later) were prepared for subjects to give them an understanding of the experiment and specific tasks.

Simulator

<u>Principles of dynamic simulation</u>: The basic concept of the simulation is that a disk is rotated in front of a light source. The disk has a clear spiral which increases in width as it spirals outward. The disk is opaque except for the clear spiral track. An occluder with a narrow open sector occludes most of the disk. As the disk rotates behind the occluder, the observer sees a series of "roadway lights" from the large first light above him to the ever more closely spaced small lights near the horizon. The basic concept is further developed in a new simulator.

The new concept is that two disks rotate in opposite directions (in proportion to the vehicle speed) behind an occluder. The disks are opaque except for clear double-spiral tracks on each of them as shown in Figure 1. The occluder is opaque except for the two narrow sectors. Both the disk and occluder are in front be

FIGURE 1: Double spiral track.

the light source. On the several places where the two sectors and the double-spirals on each disk intersect a series of road lights (Figure 2) occur. These appear to move toward and above the driver, getting larger.

The new concept was used in developing a dynamic simulator at Kansas State University (Easwer, Dubbert, and Bennett, 1983) and is currently in room 126, Durland Hall. A side view of this simulator is shown in Floure 3. It is a driver portion of an old car and is completely sealed from the outside ambient light, that is, light from outside cannot enter inside. The only light a subject can see is the background light and the simulated road lights.

<u>Presentation of Simulator</u>: The above mentioned simulator was used as the second part of the experiment, that is, 60 subjects "drove" this simulator where the six different roadway lighting installations were simulated.

As the first step of preparation, data for all the installations were collected (Table 2) from Kansas Power & Lipht, relevant manufacturers (General Electric Corporation, and ITT Outdoor Liphting), and the road itself.

Two computer programs were written to plot the double spiral for each type of luminaire; one program for double-sided installations and one for single-sided installations (Appendix 1). The spiral plots so obtained (diameter = 3 ft.) then were filled in along the spirals with a black marker pen. These plots then were sent to the Kansas Department of Transportation, Topeka, Kansas, to get the photonegatives as shown in Figure 4.

FIGURE 2: Intersecting double spirals.

FIGURE 3: Roadway simulator diagram

FIGURE 4: Photonegative of c double spiral plot

These phonogegatives were then "sandwiched" between two 3/8" plexiglass sheets of three feet diameter each. Thus, two disks having the same double spiral track, offset from one another by an angle of 52 degrees and rotated in the opposite direction simulated the roadway lights for a particular installation with opposite side lighting.

Two graduated sectors were made for each of the installations except for single-sided installations for which one of the sectors was kept completely opaque. The dimensions of these two sectors were determined separately for each luminaire by taking into account the dimension of each luminaire and using a linear relationship (assuming that as the driver moves toward the luminaire, the dimensions of the luminaire increases linearly).

Two light fixtures were used in line with the open sector to simulate the luminance of the real-world fixtures. Each light fixture used five 300 Watt quartzline lamps covered with a high heat resistant glass on the front side. All the lamps were arranged in the simulator in stacked configuration with the filament of each bulb positioned at the focus of the elliptical reflector made of a sheet of tin. The elliptical reflector increased the efficiency of the light source by concentrating the light from the quartzline lamp on a long, narrow piece of diffusing glass (Factorlite). The net effect was to provide a long narrow bar of intense and well diffused light. Intensities an high as 100,000 cd/m² could be obtained by this system.

To simulate the brightness of each luminaire system

luminance measurements on the roadway were taken with a Spotmeter. Each luminaire was measured at the cut-off angle (20 degrees) from the horizontal. Some luminaires were, however, measured at a closer distance in order to match the photometer reticule size with luminaire size. Also in the case of AIB, direct measurement technique was not used (Appendix 2) because of nonuniform distribution of light. Here, the illuminance was measured using a Vactec low level photometer. Each particular measured using a Vactec low level photometer. Each particular the simulator using the Spotmeter or the Vactec photometer. These equivalent levels within the simulator were converted into "volts" with the help of a calibration curve (Figure 5), so that luminance level could be adjusted with the help of a voltmeter while simulating a lighting system.

Finally the rotational speed of the disk simulating the speed of the car was calculated, considering the fact that one revolution of the spiral corresponds to a distance travelled of one space between poles. If the pole spacing is considered to be a multiple of mounting height, then X(MH)/min. corresponds to 1 rpm of the spiral. Therefore, the rotational speed of the spiral, to simulate a driving speed of M mph is derived as follows:

1	rpm	=	X (MH) /	min.					MH	is	in	feet.
1	rpm	-	X (MH)	<u>ft</u> min	×	miles 5280 ft.	×	60	mir hou	īr		
		-	X (MH) 88	miles/h	nour							

Now, $\frac{\chi(MH)}{88}$ mph = 1 rpm

FIGURE 5: Calibration Curve

where M is the speed of the car in mph and MH is the mounting of the luminaire in feet.

Predictive Systems

Calculation of Glaremark: In this empirical model the observer's position along the roadway is not relevant; it makes no difference to Glaremark if the observer is in lane 1 or lane 6 or whether he is moving or is static. The calculation of Glaremark was done using the following empirical formular

SLI = 13.84 - 3.311agI-80 + 1.31ag(I-80/I-88) - 0.081ag(I-80/I-88) + 1.291agF

GM = SLI + 0.97logL + 4.41logh - 1.46logP.
Where,

GM = Glaremark.

SLI = Specific Lantern Index

- I-80, I-88 = Luminous intensity of the lantern at an angle 80° and 88° respectively, to the vertical, candelas,
 - F = Flashed area of the luminaire as viewed from 76° to the downward vertical, m².
 - L = Average road surface luminance, cd/m²
 - h = Height of the luminaire above the road minus the observer's height, feet,
 - P = A quantity based on the number of luminaires per kilometer.

The purpose of this study is to compare the subject's rating (of quality of light of the real-world lighting

installation) to the results of the Glaremark and CBE predictive systems. It is expected from these predictive systems that they should be able to predict the disconfort glare <u>from any roadway</u> <u>lighting</u> <u>system</u> and not only from the ideal lighting installations (such as perfectly clean and aligned). Only then would these predictive systems be useful for practical purposes. This is the reason calculations were made with the help of standard data provided by the concerned manufacturers.

Since the North Gmerican manufacturers do not provide the "flambed area" for a particular luminair in their standard data. a linear relationship was developed for this surges. The derivation of this formula is as follows:

This formula was basically developed for the "cobra-head" luminaire, assuming that the luminaire is approximately a rectangular box as seen by the observer. In the real-world roadway system the luminous area of a luminaire is not generally perpendicular to the line of sight. The luminous area varies as a function of the vertical angle as the observer moves towards the luminaire. In order to incorporate the luminous area as a function of vertical angle, the vertical dimension of the luminaire is assumed to vary linearly as the angle changes. It can be computed as follows:

Figure 6 shows the width (LHT2) and the vertical height (LHT1) of the luminaire. The following linear relationship is assumed: At a long distance away from the luminaire:

when the viewing angle $\theta = 0^\circ$, the vertical dimension = LHT1 At the cut-off angle,

when the viewing angle $\theta = 20^{\circ}$, the vertical dimension = LHT2. As θ varies from 0 to the cut-off angle, the vertical dimension varies from LHT1 to LHT2, according to following equation,

$$LHT = m\theta + b$$
 (1)

where "m" is the slope of line and "b" is the intercept.

Slope "m" =
$$\frac{LHT2 - LHT1}{\theta_{p} - \theta_{c}}$$

Substituting in equation (1)

LHT =
$$\frac{(LHT2 - LHT1) \cdot \Theta + b}{\Theta_{f} - \Theta_{c}}$$

when $\theta = \theta_L$, LHT = LHT2

therefore,

$$LHT2 = \frac{(LHT2 - LHT1)}{(\theta_{p} - \theta_{c})}, \quad \theta_{p} + b$$
$$b = LHT2 - \frac{(LHT2 - LHT1)}{(\theta_{p} - \theta_{c})}, \quad \theta_{p} + b$$

Substituting the values of M and b in equation (1),

LHT =
$$\frac{(LHT2 - LHT1) \cdot (\Theta - \Theta) + LHT2}{(\Theta_{f} - \Theta_{i})}$$

Therefore, the flashed area "F" can be calculated as:

$$F = LHT \times W$$

$$= \begin{bmatrix} (LHT2 - LHT1) & (\theta - \theta_{f}) \\ (\theta_{f} - \theta_{c}) & + LHT2 \end{bmatrix} W.$$

where.

$$\theta$$
 = 76° from the downward vertical, degrees
 θ = wind-shield cut-off angle, degrees, and
 θ_{c} = 0°; the viewing angle from infinity, degrees

The above dimensions were obtained from the manufacturer for all the luminaires used in the experiment and are given in Appendix 3.

If we calculate the flashed area "F" for cobra-head (M400, General Electric), we would proceed as follows:

 $\theta = 76^{\circ}$ from vertical,

 $\theta = 90^{\circ}$ from vertical, if the distance between the observer and the pole is assumed to be infinite $\theta = 90^{\circ} - 20^{\circ}$ from vertical.

Therefore,

$$F = \frac{(14.875 - 6.750)(76 - 70)}{(70 - 90)} + 14.875 \quad 18.375$$

For a cut-off luminaire:

F = W x LHT2 x cos (0)

For a (General Electric) Power Sphere:

 $F = \pi r^2$.

where, r = radius of the sphere.

The values of I-80 and I-88 were calculated by linear interpolation from the candlepower data supplied by the
manufacturer. A computer program was written to interpolate these values and calculate the Blaremark. The intensities were calculated assuming the horizontal angle to be 90 degrees. This angle was taken as 90 degrees because the convention used by the manufacturer is as shown in Figure 7. All the intensities (Appendix 4) were then multiplied by the "light loss factors" (Appendix 4-A) as follows:

Corrected Intensity = Original Intensity \times LLD \times LDD, candelas. where LLD = Lamp Lumen Depreciation, and

LDD = Luminaire Dirt Depreciation.

All the above data (supplied by the General Electric Company) were then inserted in a computer program which reads the data, interpolates the value of intensity and then calculates the Glaremark.

Cumulative Erightness Evaluation (CRE): The Cumulative Brightness Evaluation or "CBE" is an observer oriented system. Its value varies depending on the lane in which the observer is located and his position along that lane. The equation as developed, based on a suggestion by Dr. Glenn Fry using findings at Kanass State University is as follows:

where, B = Photometric brightness of the glare source, fL S = Source size, steradian A = Source angle off the line of sight, degrees

FIGURE 7: Convention for Horizontal Angle

Calculation of CBE

Calculation of CBE is, indeed, tedious but not complex. For an understanding as to how these calculations were made, complete detail is given as follows:

Figure 8 shows the geometry of roadway with the help of which calculations were made. In Figure 8-A, vertical dimensions are considered, whereas, in Figure 8-B, the luminaire has been projected downwards to the eye level to calculate the angles in the horizontal plane. A los of is assumed that the observer is halfway between two poles (position X in Figure 8).

Now,

Brightness, B =
$$\frac{\text{Intensity(cd)}}{\text{Apparent bright}} \times 452 = \text{Footlambert}$$
area (in,²)

The intensity was obtained from the candlepower tables (Appendix 4) supplied by the manufacturer. The required vertical and horizontal angles were calculated as follows:

D = CD - O where, CD = Distance of observer from the pole, feet

0 = Overhang of the luminaire, feet.
Distance of the observer from the base of the pole.

 $Y = (D^{k} + \chi^{k})^{1/2}$

where, X = Spacing / 2, feet.

Therefore, vertical angle, V = tan⁻¹ (D^{λ} + X^k)^{1/2}/P Where Pole height, P(feet) = Mounting height (MH) - Eye level (EL)

Also distance of luminaire from the observer,

FIGURE 8A: Geomtry of Roadway (Horizontal)

FIGURE 88: Geomtry of Roadway (Vertical)

 $R = (P^{1} + Y^{2})^{1/2}$

Now,

Horizontal angle, $H = 90 - \tan^{-1} (D/X)$, degrees.

With the help of V versus H, intensities were obtained, which were further multiplied by the "lamp loss factors". That is, Corrected Intensity, I(cd) = Original Intensity x LLD x LDD. where, LLD = Lamp Lumen Depreciation,

LDD = Luminaire Dirt Depreciation.

These factors are given in Appendix 4-A, for the relevant luminaires, where needed.

The "apparent bright area" of the luminaire was calculated using the earlier mentioned linear relationship as follows:

Apparent bright area, $A = \begin{bmatrix} (LHT2 - LHT1) \\ (\theta_j - \theta_j) \end{bmatrix} (V - \theta_j) + LHT2 \\ Here for each successive luminaire the corresponding vertical$

angle "V" was used.

The inclined distance from luminaire to the line of sight,

 $Z = \left(D + (194 - EL)^{3/2}, \text{ feet}\right)$ Angle off the line sight, A = tan⁻¹ (Z/X), degrees By putting the values of A, B, and S in the equation of CBE, we get CBE for the first luminaire. For the second luminaire,

X = X + Sp

and the rest of the calculations are the same. The same geometry can be used for a double-sided installation except that, for the installation across the road:

X = Sp

Since the calculations of CBE are very tedious, a detailed computer program was written to calculate CEE. This program (Appendix 5) can be used for single-sided as well as double-sided installations. All one has to do is to insert the data for the relevant installation and indicate whether it is a single-sided or double-sided installation.

Task

Sixty subjects evaluated or rated the quality of light of six different lighting installations in the City of Manhattan, and of the same installations in the dynamic simulator. Therefore, the task for subjects was divided into two sub-tasks. They are:

Dynamic Simulator: The <u>new dynamic simulator</u> was developed at Kansas State University in Summer 1983, Durland Hall.

Once all the disks and graduated sectors were ready, a disk rpm calibration chart (Table 3) and a luminance calibration chart (Table 4) were propared to simulate the driving speed and the luminance of the systems, respectively.

Room 132, Durland Hall, was used for the orientation of the subjects. Two subjects were called at one time. A "general instruction sheet" was prepared for the subjects (Figure 9) to make them familiar with the experiment in general, and also to

TABLE 3.

RPM Calibration Chart.

No.	Location	(mph)	RPM
1.	McCall	30	13
2.	Claflin	30	10
з.	Bluemont	30	12
4.	Vet.Med	30	25
5.	N.Manhtn	30	14
6.	AIB	Static	Static

TABLE 4.

Luminance Calibration Chart.

No.	Location	Volts
1.	McCall	98.5
2.	Claflin	62.0
з.	Bluemont	63.0
4.	Vet.Med	32.5
5.	N.Manhtn	65.5
6.	AIB	95.0

Sheet No. 1

GENERAL INSTRUCTIONS

This is a study of street lighting quality. That is, we are interested in your impression of the quality of street lighting. More spcifically we are interested in your impressions as to whether any particular luminaire's installation is glaring enough to cause you any discomfort while driving. By street lighting we mean the overhead lights that light the streets and not the traffic signal, meon signs, luminaires used to light the houses, etc.

This study consists of two parts:

- In one case you will drive through several roadway lighting installations, in the city of Manhattan, and
- In the other case you will be driving under simulated conditions in the lab. That is, we have simulated realworld roadway conditions in the laboratory.

In both the situations we want you to rate the quality of lighting by using these forms (see attached rating forms). You are to rate the the lighting as if you were driving down the road alone and that you are not in an experimental setup. Don't look at the lights themselves, look along the roadway as you usually would.

You are to rate the quality of lighting according to the following criteria. There is a concept called "Borderline Between Comfort and Discosfort" or "BCD". If the intensity of light is at a high level, i.e. it is annoying or disturbing you in performing your task but not blinding you temporarily, then we would call

FIGURE 9: GENERAL INSTRUCTION SHEET

the light UNCOMFORTABLY GLARING. If the level of intensity is so much that you don't feel annoyed, then we call this light as COMFORTABLE. Now somewhere between these two extremes there should be a point of change where the light is at the borderline between confort and disconfort. This is what we call ECD. This is the point where the light is not annoying or uncomfortable to you. But, if it is higher, it would be unconfortable. Similarly if the intensity of light is very high i.e., it impairs your vision temporarily it is called INTOLERABLE or UNBERABLE. There is a point between intolerable and unconfortable which is called as DISTURENES. If the intensity of the light is so low that you hardly notice any glare but still can perfora your task, then we call this as PLEASANT (UNNOTICEABLE). There is a point between coefortable and pleasant known as SATISFACTORY. At this point you can perform tasks without any difficulty.

For all the installations in both real-world and simulator you will be asked to rate the the glare criterion for each installation by using the attached <u>North Geerices</u> Glare Scale.

Now, please read the glare scale carefully. If you have any questions regarding the glare criterion or regarding any other task, feel free to ask anything.

There is no risk involved in the experiment except that you will have to drive through different installations and you might notice occasional glare from the luminaires. However, you are free to withdraw from the research at anytime, but we hope that you will complete the session.

At the conclusion of this experiment you will be paid the amount promised. give them an understanding of the <u>North American Glare Scale</u> (Figure 10). Once the subjects were fully familiar with the

nature of the experiment, instruction sheet number two (Figure 11) was given to make them familiar with the specific task of the simulator. Moreover, the experimenter thoroughly explained details of the task in the simulator as well as in the real-world situation.

Sixty subjects were randomly divided into 30 pairs. For these 30 pairs, five different orders of six installations were selected for the simulated as well as the real-world condition. Each pair was asked to randomly select a sequence of installations, from a stack of rating forms (for a specimen rating form, see Figure 12).

Each pair went through each simulated installation at the same time. That is, one subject rated the quality of light of a particular installation in room 126; the other subject waited for his turn in room 132 so that his judgment would not become biased. Each subject went through each installation for 30 seconds. Also the simulated speed was maintained at 30 mph. At the end of each installation he was asked to come out of the simulator, take his time to consult the Morth <u>American Blace</u> Seals (Figure 10) and write down his rating on the form in front of the appropriate installation, along with some comment in his own words about his experience of the glare sources. Then he was asked to go in room 132 so that the second subject could go through the same installation. The second installation was mounted according to the particular sequence and the same

NEW NORTH AMERICAN GLARE SCALE

9 INTOLERABLE (UNBEARABLE)

(DISTURBING)

я

6

4

- 7 BORDER LINE BETWEEN UNCOMFORTABLE AND INTOLERABLE
- 5 BORDER LINE BETWEEN COMFORT AND DISCOMFORT (BCD) (JUST ADMISSIBLE)
- 3 BORDER LINE BETWEEN COMFORTABLE AND PLEASANT (SATISFACTORY)
- 2

1 PLEASANT (UNNOTICEABLE)

FIGURE 10: NORTH AMERICAN GLARE SCALE 44

INSTRUCTION SHEET NO 2.

This simulator is designed to simulate an actual dynamic roadway lighting condition. You, as a subject will be performing an experiment with this simulator.

Take a seat in the car and make yourself comfortable. Locate the string with a metal strip tied to its end in front of you. Grab the metal strip and pull the string over the steering wheel towards you. Now with the other hand adjust your seat so that the tip of the metal strip touches your eye lashes. Now be ready to take-off. Keep your hand on the steering wheel. Also turn on the radio to your favorite channel.

You will be driving the car under several different types of installations at a constant speed of 30 mph. Under each condition you will be asked to rate the glare criterion for luminance as per the North American Glare Scale (see attachment).

At the end of driving through a particular installation, I will change the installation on the simulator and once again you will rate the quality of lighting. Again please careful while rating for the best results.

There is neither any risk nor disconfort involved in taking part in the experiment. However, you are free to withdraw from the research at anytime, but we hope you will complete the session. Please feel free to ask any question at any time.

Thank you very much for your participation.

FIGURE 11: INSTRUCTION SHEET (SIMULATOR)

DRIVER

INSTALLATION	GLARE RATING	REMARKS
VET. MED.		
CLAFLIN		
AIB		
Ν. ΜΑΝΗΤΝ.		
BLUEMONT		
Mc CALL'S		

REAL-WORLD

FIGURE 12: Rating Form

procedure was repeated. However, it should be noted that this procedure of subject running in the simulator was not true in the

early stages of the subject running. That is, in the beginning one subject went through the simulator. Then he and his partner went through the real-world installations, and then after the real-world the other partner was run through the simulator. This procedure was continued with the first 24 subjects. The remaining 36 subjects were run first through the simulator and then through the real-world lighting installations.

Beal-Morid This part of the experiment was conducted after summet. Each pair was called again to drive or ride through six roadway lighting installations. A detailed instruction sheet (Figure 13) was prepared for this tack also. Once again the same 30 pairs who rated the quality of lights in the simulator were asked to randomly select a sequence of roadway installations. If the order was the same as the one they went through in the simulator, they were asked to make another selection.

A 1976 Chryster Cordoba car was used for the real-world experimentation. Since it was found that there is no statistically significant difference in the glare responses of a driver and a passenger (Mussin, 1964), tho subjects rode or drove through the lighting installation at the same time. Once again, they used the North American Blare Scale to rate the quality of light, and the same type of rating forms were used. Also, all the subjects were accompanied by the experimenter through all the installations; it was made sure that the subjects

INSTRUCTION SHEET NO.3

First we will go on the road and drive through several different installations in the city of Manhattan. Please get into the car and fasten the seat belt.

While on the road you are required to strictly observe all the traffic laws e.g. speed limits (in all cases it will be 30 mph), road signs, etc. Try to be in the left or outside lane when I ask you to drive through a particular installation. At some instant I will ask you to rate the quality of lighting of a particular system. After some time I will ask you to pull over to the side of the road (if possible), and consult the North American Glare Scale to rate the quality of lighting.

In all the cases try to assume that you are driving alone and that you are not in experimental situation. When you rate a particular luminaire, please try to be careful and honest so that we get the best results.

There is neither any risk nor disconfort involved in taking part in the experiment. However, you are free to withdraw from the research at any time, but we hope that you will complete the session. Feel free to ask if there is any question or confusion.

Thank you very much for your participation.

FIGURE 13: INSTRUCTION SHEET (ROADWAY)

did not discuss the rating or their feelings with each other. In this case also, driving through each installation lasted 30 seconds on the average, and the driving speed was maintained at 30 mph.

Instructions and Informed Consent

Three instruction sheets were prepared for the subjects. Instruction Sheet No. 1 (Figure 9) was prepared to give a general idea of the experisent, to familiarize the subjects with the new North American Blare Scale (Figure 10), and the task. Instruction Sheet No. 2 (Figure 11) and Instruction Sheet No. 3 (Figure 13) were prepared for the specific tasks of the similator and the real-world roadway installations.

Similarly, an informed Consent (Figure 14) was prepared for each subject, which showed the conditions of the experiment and the willingness of the subjects to appear in the experiment. Experimental Design

The two major hypotheses to be tested in this experiment were:

Ho1: Mean responses of subjects on the roadway =

Predicted values

versus

Ha2: Ho2 is not true.

Also, Ho3: Mean responses of driver = Mean responses of passenger

```
versus
```

Ha3: Ho3 is not true.

Ho4: Q = Q = = Q 1 2 n

versus

INFORMED CONSENT

- There is neither risk or disconfort involved in taking part in the experiment except that you might find some lighting installations uncomfortable.
- 2) All the information regarding your participation in this research will be kept strictly confidential. Your performance as an individual will be treated as research data and will in no way be associated with you for other than identification purposes, thereby assuring anonymity of your responses and observations. Also, some public reports and articles may be made of the experiment, but in all cases your identity will be kept confidential.
- 3) Your participation in this project is voluntary. Your refusal to participate will involve no penalty or loss of benefits to which you are otherwise entitled. You will be permitted to leave at any time and/or may discontinue the experiment without any penalty. However, I hope that you will complete the session.
- 4) Mr. Arif Hussain is conducting this research at the University with Dr. Corwin Bennett as advisor. If you have any questions reparding the experiment of your rights as a test subject, injuries or emergencies resulting from your participation in the experiment, you can contact Dr. Corwin A. Bennett at 532-506.

Thank you very much for your participation.

I have read the Instructions Sheets No. 1, 2, and 3, and the above statements and agree to voluntarily participate in the experiment.

Date

Signature

FIGURE 14: INFORMED CONSENT

Ha4: Ho4 is not true.

Here, Q = Quality of light, and

n = 1,..., 6 different installations

In order to test the first hypothesis, the experimental design selected was two way classification with a completely randomized design. Six types of installations and two experimental setups (real-world and simulator) were the independent variables. The dependent variable was the subjects rating of the lighting installations based upon the North American Glare Scale.

To test the above hypotheses F-tests, t-tests, and LSD methods were employed.

All the conditions such as driving speed, installation to drive through, etc. were kept constant in the real-world as well as in the simulator. However, the order of installations through which each pair went was different in the real-world as well as in the simulator and the selection of these orders was randomized. Subjects and Recruitment Ecocedure

Over 100 subjects signed up for the experiment during the Summer 1984 registration at Kansas State University. Out of these, an incidental sample of 60 subjects were recruited and were paid at the rate of \$15.00 per subject. All the subjects went through each lighting installation for 15-20 seconds in the real-world as well as the same simulated installations.

RESULTS

The mean rating by subjects with means for each installation are listed in Appendix 6, for real-world as well as for the simulator (Table 5).

The SAS program was run to perform an F-test to test whether there is any significant difference in the subjects responses in the real-world and simulated conditions (hypothesis 1). Table 6 gives the ANDVA table for tests 1, 3 and 4. To test hypothesis 1 t-tests also were performed individually for all the installations. Table 7 gives the mean ratings for the simulated installations along with the corresponding standard deviations and critical values of t.

Table 8 gives the results of Glaremark and CEE predictive systems alongwith their ranking according to the confort of the installation. That is, a rank of "1" was assigned to the most comfortable installation. It should be, however, noted that the values of Glaremark shown in Table 8 are converted values, that is, the values have been converted to the values used in the North American Glare Scale. This was done as follows:

10 - original Glaremark predicted value = converted Glaremark value

For all the installations (real-world and simulated) and the predictive systems, a rank of 1 is used for the lowest number or the most comfortable installation. If the Glaremark was not converted according to the North American Glare Scale, the rank order would have been opposite, that is, lowest number would

Means of glare responses from real-world and simulator

Subjects	Installatios	Real-world		Mean	Simulator		Mean
		D [*]	Р*		D	Р	
30	McCall	5.7	5.1	5.4	6.8	6.5	6.7
30	Claflin	4.0	3.4	3.6	3.9	4.1	4.0
30	Bluemont	3,4	3.8	3.1	5.2	4.9	5.1
30	N.Manhtn.	3.7	3.7	3.7	4.6	4.8	4.7
30	Vet.med	2.8	2.8	2.8	3.6	3.4	3.5
30	AIB	3.9	3.6	3.7	5.3	4.8	5.2
Mean		3.9	3.7	3.8	4.9	4.7	4.8
Over.	all mean =	4.3					

×

D = Driver, and

P = Passenger.

HIGTH Tab.	te tor	пуротпе	ises I and	5.					
Source	DF	Sum Of	Squares	Mean S	Square	F-Valu	e	PR	> F
Model	371	2028	. 57	5.47	7	2.18		0.0	001
Error	348	872	. 32	2.51					
Corrected Total	719	2900	.89						
Source		DF	ANOVA S	s	F-Value		PR	>	F
Pair		29	319.10		4.39		0.	000	1
IType		5	541.01		43.17		0.	000	1
Setup		1	191.17		76.26		ο.	000	1
IType*Setu	ıp	5	27.96		2.23		ο,	050	4
Pair*IType *Setup	•	319	928.15		1.16		٥.	086	7
Seat		1	4.84		1.93		0.	165	8
IType*Seat		5	5.87		0.47		ο.	802	4
Setup*Seat		1	0.04		0.01		٥.	906	4
IType*Setu *Seat	p	5	10.46		0.83		٥.	527	7

Test of hypotheses using the ANOVA MS for Pair*IType*Setup as an error term.

Source			DF	ANOVE SS	F-Value	PR > F
IType			5	541.01	37.19	0.0001
Setup			1	191.17	65.70	0.0001
IType*	Setu	νp	5	27.96	1.92	0.0894
IType	=	Туре	of	installation,		

Seat = Driver or passenger, Setup = Real-world or simulator.

T-tests	for hypothesis 1	(comparision o	f roadway and	simulator)
Subjects	Installation	Real-world	Simulator	s t
60	McCall	5.40	6.63	1.61 -5.76
60	Claflin	3.68	4.03	1.90 -2.71
60	Bluemont	3.10	5.03	1.60 -7.03
60	N.Manhtn.	3.60	4.67	1.83 -4.60
60	Vet.Med	2.80	3.48	1.74 -3.27
60	AIB	5.17	5.17	1.92 -5.65
s	= Standard de	viation of roa	dway results.	
t	(Mean of ro	oadway - Me	an of simulat:	1/2 ion) (n)
If t	> t */2.(n-1)	dard deviation , reject the h	of roadway ypothesis.	

* If the absolute value of t is greater than 1.96, the hypothsis is rejected at the 0.05 significance level.

Rating (and rar	king) of inst	allations acc	ording to co	mfort.
Installation	Real-world	Simulator	Glaremark	CBE
McCall	5.38(6)	6.63(6)	6.15(5)	709.37(6)
Claflin	3.68(4)	4.03(2)	5.37(4)	319,15(4)
Bluemont	3.62(2)	5.03(4)	5.01(3)	199.66(3)
N.Manhtn	3.60(3)	4.67(3)	4.89(2)	93.99(2)
Vet.Med.	2.80(1)	3.48(1)	7.38(6)	3.56(1)
AIB	3.76(5)	5.17(5)	4.25(1)	401.22(5)
Mean	3.80	4.80	5.50	287.86

*

Predicted BCD luminance, fL.

indicate the most comfortable installation.

In order to test if there is a significant difference in the real-world and predicted results (hypothesis 2) t-tests were performed individually for all the installations and the Glaremark predictive system. Table 9 gives the mean responses of the subjects on the roadway for each installation, their corresponding standard deviations, critical values of t and results of the predictive systems.

For all installations the "Spearman's Rank Correlation Coefficient" or r was determined (Table 10) using combinations of results of all the possible variables, for example, results of real-world and Giaremark, Glaremark and CBE, etc. The sign of r indicates the nature of the relationship between two variables. Positive values indicate a tendency for the variables to increase together, and negative values indicate a tendency for one variable to increase while the other decreases. A "zero" correlation implies no relationship, while -1 and +1 correlations inply perfect negative and positive relationship.

Table 11 shows the average measured luminance of six lighting installations at the cut-off angle as well as the calculated luminances of the same installations. These calculations were made using the approach used in the evaluation of CEE values.

T-test for hypothesi	s 2 (comparision	of roadway	and Glare	mark)
Installation	Roadway	S	GM	ť
McCall	5.38	1.68	6.15	- 3.55
Claflin	3.68	1.66	5.37	- 7.89
Bluemont	3.62	1.51	5.01	- 7.13
N.Manhtn	3.60	1.80	7.38	- 15.91
Vet.Med.	2.80	1.61	4.89	- 10.05
AIB	3.75	1.92	4.25	- 2.02
Mean	3.80		5.50	

S # Standard Deviation

GM = Glaremark

t = (Mean of roadway - Predicted value) (n) Standard Deviation of Roadway If t > t , reject the hypothesis

If t > t , reject the hypotheses $\frac{\kappa}{2}$, (n -1)

 If the calculated value of t is greater than 1.96, the hypothesis is rejected at the 0.05 significance level.

Spearman's Rank Correlation Coefficient

	Real-world	Simulator	Glaremark	CBE
Real-world	-	-	-	-
Simulator	0.77	-	-	-
Glaremark	-0.257	-0.37	-	-
CBE	0.94	0.83	-0.2	-

Measured and calculated luminances at cut-off angle.

Installations	Average measured luminance at cut-off angle, "fl"	Calculated lumi- nance at cut-off angle, "fl"
McCall	79300	25698
Claflin	8940	13752
Bluemont	9500	13752
N.Manhtn.	11630	11183
Vet.Med.	427	421
AIB	52000	21000

DISCUSSION

An experiment was run at Kansas State University to see whether there is a statistically significant difference in the glare responses of a driver and a passenger (Hussain, 1984). It was found that there is no difference in the response. The confirmation of this hypothesis was important because in the real-world situation the results of this hypothesis were used and two subjects were run at the same time through the lighting installations. As shown in Table 6, since the interaction effects is not significant, the presence or absence of the main effects can be investigated. At the 0.05 significance level hypothesis 3 could not be rejected this shows that there is no significant difference in responses to glare between a driver and a passenger.

It has been found, that at the 0.05 significance level, there is enough evidence to say that null hypothesis i cannot be accepted. This means that there is a statistically significant difference in the glare responses of subjects in the real-world and simulated conditions. Also, the t-tests showed that all the results of the simulated installations were significantly different from the corresponding real-world installation (Table 7).

For each installation, the mean rating of the subjects is on the higher side for the simulator (Table B) as compared to the real-world. That is, the disconfort was stronger in the simulator than the corresponding real-world lighting installation. The reason for this strong effect of glare in the simulator could be attributed to the following two important factors:

In real-world lighting installations, the overall effect of glare is somewhat lowered by other light fittures such as the headlights of other motor vahicals, neon signs, light from houses, etc. In other words the background luminance in the realworld situation is high in the city because of ths the subjects never felt too much disconfort during night driving. On the other hand, in the simulator all the background luminance was provided by a light source (which was adjusted to a maximum of 1 cd/m) and the dash light (which on an average provide 10.4 cd/m). This caused a darker background in the simulator as compared to the real-world, with the result of which the same simulated lighting installation was more uncomfortable in the simulator than in the real-world.

The luminaires of all the lighting installations were measured with the help of a Spotester. It was found that the installations have luminaires/lamps which vary significantly in intensity (Appendix 2). Moreover, most of the installations were found to be old, misalligned, and their lamps were somewhat diamed because of years of usage, dirt, and soot, etc. All these factors resulted in an less intense systems. On the other hand, the simulation was ideal; that is, the light source was properly aligned and clean which resulted in a rating on the higher side as compared to the real-world installations.

The Spearman's Rank Correlation Coefficient (Table 10) for real-world and simulator (r = 0.77) results, however, showed a stronge positive correlation to the real-world ranking which means the ranks of lighting installations (on the basis of

comfort) for the two setups are very close. The rank order of. almost all the real-world lighting installations was found to be similar to those of the simulator except the Bluemont and Claflin Avenues. In the real-world their ranking was 4 and 2 respectively. whereas in the simulator they ranked as 2 and 4. Apparently Bluemont and Claflin Avenue have almost the same parameters except that Bluemont is a double-sided installation and Claflin is a single-sided installation which. Therefore, the only reason that can be given for the difference in the real-world and simulator rankings for these installations is that the simulated brightness of Bluemont's luminaire was 11630 fl whereas the brightness of Claflin Avenue was 8940 fl (Appendix 2). This difference of 2700 fl did not make a significant difference in the real-world driving but the ideal environment of the simulator caused more discomfort to the subjects and hence a higher rating for Bluemont Avenue.

A t-test was performed for each installation to test hypothesis 2; that is, to see whether the results of the roadway matched the results of Baremark predictive system (Table 0). At the 0.05 significance level it was found that the null hypothesis for all the installations could not be accepted. This means that there were statistically significant differences in all real-world and Baremark results. More importantly, Spearman's Rank Correlation Coefficient for real-world and Glaremark came out to be -0.237. This shows that the predictive system is very poorly correlated to the real-world results. The reason for poor correlation of the Blaremark with the real-world

results is that, although McCall, Claflin, Bluemont, and the North Manhattan Avenue showed a ranking quite close to the realworld results, the ranks of Vet.Med. and AlB caused a major decline in the correlation coefficient. This is primarily because Vet.Med. installation has very low mounting heights and the luminaires are very closely spaced, while on the other hand in case of AIB there are only two luminaires. According to the restrictions imposed by the Glaremark, an installation with these parameter is not at all acceptable for prediction. That is, Glaremark cannot be applied to these installations at all.

Blaremark cannot be applied to a broad range/variety of installations because of the following restrictions (Blare and uniformity in road lighting installations, CIE Publication 31 (TC-4.6), 1977):

It is applicable to systems longer than 300 meters with the following range of variables

> 50 < I-80 <7000 (cd) 1 < I-80/I-88 <50 7×10 < F < 4×10 (m) 0.3 < L < 7 (cd/m) 5 < h < 20 (m) 20 < p < 100

In other words, the predictive system is applicable to those systems only where, the intensity "I" of luminaire at 80 degrees from the vertical is greater or equal to 50 candelas or less than or equal to 7000 candelas; the ratio of intensities at 80 and 88 degrees from the vertical lies between 1 and 50; the flashed area

"F" of the luminaire lies between 7x10 and 4x10 square meter; the average road surface luminance "L" lies between 0.3 and 7 cd/m ; the difference of the mounting height and the eye level "H" should lie between 5 and 20 feet; the number of luminaires in one kilometer "P" should be between 20 and 100.

According to the researchers who developed the empirical relationship for Blaremark, these restrictions should be strictly observed in order to use Blaremark effectively. It is possible that in big cities more than one installation meet all the requirements of Blaremark but in Manhattan it was observed that all six installations which were selected for the experiment fell out of the range of at least one of these restrictions and, therefore, Blaremark did not prove to be a useful tool for predicting disconfert diare for these installations.

The basic concept of a predictive system is that it should be able to predict the disconfort glare (with reasonable accuracy) from all types of lighting installations and not only ideal systems, such as like those which are perfectly clean and alligned, with road surface properties constant, etc. So because of the restrictions Glaremark cannot be applied to a lot of practical situations like the ones selected for the exercisent.

The lighting installations in the city of Manhattan are not ideal. The six lighting installations selected for the experiment are perhaps representative lighting installations of the United States. That is, everywhere one will find (for the same installation) different mounting heights, spacing, photometric characteristics, etc. Therefore, if Glaremark cannot

predict the discomfort glare from these lighting installations then it is probably not suitable for North America. This predictive system was tested twice (Keck and Odle, 1975 and Gallagher, 1981) but unfortunately could not be validated. Therefore, instead of trying to validate Glaremark forever, research on the predictive systems should be diverted elsewhere.

A point, when the visual sensation experienced by the observer changes from comfortable to uncomfortable, called "Borderline Between Comfort and Discomfort" or "BCD" can be obtained by a properly instructed observer who has means to vary the luminance level of the light source. This concept of BCD was used to develop the equation for "Cumulative Brightness Evaluation" or "CBE" which combines the effect of several sources of differing brightness and location. Now, the predicted values of CBE cannot be compared with the results of real-world installations as was done in the case of Glaremark. This is because Glaremark uses the same ordinal scale for rating an installation as in the case of real-world, that is, the North American Glare Scale (as transformed above). The values of CRE can be compared directly only with the luminance at the BCD for each installation which is not possible because of the experimental design. It is, however, possible to predict from the mathematical combination of all the luminances in the field of view. which of the six installations is the most comfortable. The rankings so obtained can then be compared with the real-world rankings. Therefore, the Spearman's Rank Correlation Coeffecient for the results of real-world and CBE (Table 10) indicate a very
strong positive correlation (0.94). The only difference in ranks was found in Bluemont and North Manhattan Avenue. In the realworld the results showed that Bluemont is more comfortable than North Manhattan Avenue, whereas CBE predicts the opposite. Logically CBE has predicted correctly because North Manhattan Avenue is a 250W installation whereas Bluemont is a 400W installation. and the higher the wattage, and, thus intensity of the system (keeping other factors constant) the more discomfort it can provide. However the subjects rating was not wrong either. because the actual luminance measurements for the two installations showed that even though North Manhattan is a 250W installation its average luminance is 11630 fl as compared to Bluemont's which is 9500 fl. Bluemont Avenue is one of the major and busiest roadways of Manhattan where traffic rush (and - hence the disturbance from other light sources) even at midnight is higher then the North Manhattan Avenue, where the background luminance is considerably lower. Less traffic on North Manhattan means less disturbance from other light sources and less dirty luminaires (because of vehicle exhaust). Therefore, the overall effect on subjects was to give, on an average, the same rating for the two different installations. On the other hand CBE was not affected by these factors and predicted the ranking.

Another very interesting fact which was observed with CBE was the way it calculates the brightness of a particular luminaire.

Brightness = Apparent bright area (in^k) × 452 × fl

Where.

Intensity = Intensity (from data) × Light Loss Factors Apparent bright area was calculated as mentioned in the method section.

Using this approach, the brightness of all the lighting installations was calculated at the cut-off angle. It was observed that the calculated values matched with at least one of the values obtained with the help of a Spotmeter for all the installations. For example, the calculated brightness at the cutoff angle for Claflin and North Manhattan Avenue were 13752 fL and 11183 fL respectively, and these values matched with atleast one observed value of each installation. In the case of Bluemont Avenue where the readings were fairly similar to the calculated value of 10,000 fl almost matched with the average observed value of 9500 fl. It was, however, noticed that the average measured luminance does not match the calculated values (Table 11). The reason that all the observed values did not match the calculated values is the varying luminances of the luminaires in the same installation. This shows that CBE system can be relied upon for predicting the disconfort glare, if the formula is somehow revised to give the reasonable numbers, that is, numbers which could be directly compared with the North American Slare Scale.

An F-test was performed (Table 6) to see if the quality of light is the same 'or all the lighting installations. It was found that all the lighting installations differ from each other in the quality of light. However, the mean ratings of the quality of light (on the basis of the North American Glare Scale) by 60

subjects showed that all but one of the real-world lighting installations selected for the experiment are consortable for hight driving. For example, the mean rating of all the lighting installations lies between 2.8 for Vet.Med. installation and 3.77 for AIB, which is very confortable on the basis of North American Glare Scale. The mean rating for McCall road came out to be 5.38 which is slightly unconfortable.

CONCLUSIONS

The effect of glare from a simulated lighting installation is found to be higher in the dynamic simulator as compared to the corresponding real-world lighting installation. However, on the basis of comfort, the rank orders of installations in simulator came out to very close to those of real-world. This shows that with the dynamic simulator can be used effectively for roadway lighting experiments.

The European system (Glaremark) proved to be inappropriate for predicting discomfort glare from roadway lighting in these cases.

The North American system (Cumulative Brightness Evaluation, or CEE) has shown a very strong correlation to the real-world rank orders on the basis of comfort. Further research in CEE is needed to develop it into a formula which gives predicted values compatible to the North American Glare Scale.

REFERENCES

Adrian, W., and D.A.Schreuder, A simple method for the appraisal of glare in street lighting, <u>Journal of Illuminating Engineering</u> Society, 1969.

Anantha, B.N., D.Dubbert, and Corwin A. Bennett, <u>Disconfort</u> Glaffi, ErX's <u>Dynamic Disk Spadway Lighting Skoulator</u>, Manhattan, Kansas, Engineering Experiment Station: Special Report 155, Summer 1983,

Bennett, C.A., Discomfort glare: Parametric study of angularly small sources, <u>Journal of Illusinating Engineering Society</u>, 1977. Cady, F.E., and Henry B. Dates, <u>Illusinating Engineering</u>, John Wiley and Sons, Inc. New York, 1923.

DeBoer, J.B., <u>Public Lighting</u>, Phillips technical library, Eindhoven, The Netherland, 1970.

Gallagher, V.P., Subjective appraisal of discomfort glare in a dynamic driving environment, Philadelphia, Pennsylvania (unpublished).

Glare and uniformity in road lighting installations, CIE Publication No. 31 (TC-4.6), 1976.

Hopkinson, R.G., and J.B. Collins, <u>The Ergenemics of Lighting</u>, Macdonald Technical and Scientific, London, 1970.

Hussain, S.A., Some observations on roadway lighting discomfort glare calculations, Kansas State University, Manhattan, Kansas.

1984 (unpublished).

Kaufman, J.E., and Howard Haynes, <u>Illuminating Engineering</u> Society Lighting <u>Handbook</u>, Reference Volume, IESNA, 1981.

Smallwood, G.E., <u>Guide for the design of readway lighting</u>, Roads and Transportation Association of Canada, Ottowa, 1983. APPENDIX I Program for single and double spiral plots

```
//FORT.SYSIN DD *
C--DYNAMIC DISK SPIRAL PLOT-----BEGIN-----BEGIN-----
 C--VARIABLE BECLARATION
      REAL H.V.S.INRAD.CUTANG.LHT.EYELVL,X.Y.RADIUS.ANGLE.
        INITAN, HEIGHT, FINANG, SHIFT, SHFT, D, A2, 81, C1
       INTEGER COUNT.INIT.FINAL.REV.I
 C--THIS SPACE IS RESERVED FOR VARIABLE ASSIGNMENT
C-- MCCALL ROAD, SINGLE SIDED 4000 COBRAHEAD, NºS.
      H = 41.0
      H = HOUNTING HEIGHT (FEET)
      V = 42.
      V = VIEWING DISTANCE IN THE SIMULATOR (INCHES)
      S = 210.0
      S = LUHINARE LONGITUDINAL SPACING (FEET)
      INRAD = 2.
      INRAD = INNER DISK HUB RADIUS (INCHES)
      REV = 8
      REV = NUMBER OF PLOT REVOLUTIONS
      CUTANG = .349
      CUTANG = CUT OFF ANGLE (RADIANS)
      LHT = 6.75
      LHT = VERTICLE DIMENSION OF LUMINARE (INCHES)
      EYELVL = 3.5
      EYELVL = EYE LEVEL OF THE OBSERVER (FEET)
      B = 14.875
      D = DEPTH OF THE LUMINAIRE (INCHES)
      SHFT = 0.0
      SHFT = SHIFT ANGLE BETWEEN TWO DOUBLE SPIRALS
C--PLOT INNER SPIRAL
      HEIGHT = H-EYELVL
      CALL PLTOPT('PAPERWIDTH=WIDE.COPIES=2#')
      CALL PLOTS
      CALL PLOT(25.0.17.0.23)
      SHIFT#-3.37
C-- PLOT INITIAL POINT
     RADIUS=U=TAN(CUTANG)
     INITAN = (2.*3.1416*HEIGHT*V)/(S*RADIUS) + SHIFT
     X=(RADIUS+INRAD)*COS(INITAN)
     Y=(RADIUS+INRAD)=SIN(INITAM)
     CALL SHOOTH(X,Y,O)
C--FIND LOOP PARAMETERS
        INIT = INT(.(INITAN - SHIFT)*8. / 3.1416) + 1
        FINAL = 1A#RFU
C-* PLOT SPIRAL
     00 10 COUNT = INIT.FINAL
        ANGLE = COUNT+3.1416/8. + SHIFT
        RADIUS = ((2.+3.1416+HEIGHT+V)/(S+(ANGLE-SHIFT))) + INRAB
        X = RADIUS=COS(ANGLE)
        Y = RADIUS=SIN(ANGLE)
        CALL SMOOTH(X.Y.2)
```

```
2.02
       CONTINUE
 C--PLOT FINAL POINT
       FINANG = (FINAL+1.)+3.1416/8. + SHIFT
          RADIUS = ((2.*3.1416*HEIGHT*V)/(S*(FIHAHG-SHIFT))) + IMRAD
       X=RADIUS=COS(FINANG)
       T=RADIUS +SIN(FINANG)
       CALL SHOOTH(X,Y,24)
 C--PLOT OUTER SPIRAL
 C-- PLOT INITIAL POINT
       RADIUS= V*TAH(CUTANG)*(1.+(D/(12.*HEIGHT)))-0.025
       I=(RADIUS+INRAD) =COS(INITAN)
       Y=(RADIUS+INRAD)=SIN(INITAN)
       CALL SHODTH(X,Y,O)
 C--PLOT SPIRAL
      BO 11 COUNT = INIT.FINAL
          ANGLE=COUNT+3.1416/8. + SHIFT
          LHTV = ((D-LHT)/(INITAM-2+3.1416*REV))*(AMGLE-INITAM)+D
          RADIUS=((2.+3.1416+HEIGHT+V)/(S+(AHGLE - SHIFT)))+
                 (1.+(LHTV/(12.*HEIGHT)))+IMRAD-0.025
          X = RADIUS+COS(ANGLE)
          Y = RADIUS*SIN(ANGLE)
          CALL SHOOTH(X.Y.2)
11
      CONTINUE
C--PLOT FINAL POINT
         RADIUS=((2.*3.1416*HEIGHT*V)/(S*(FINANG-SHIFT)))*(1.+
                 (LHT/(12.*HEIGHT)))-0.025
      I=(RADIUS+INRAD)=COS(FINANG)
      f=(PADIUS+INRAD)*SIN(FINANG)
      CALL SHOOTH(X.1.24)
      SHIFT = SHFT
C---PLOT CENTER LINES
      CALL PLOT(0..1..3)
      CALL PLOT(0..-1..2)
      CALL PLOT(1..0...3)
      CALL PLOT(-1...0...2)
C-- TERMINATE PLOT PROGRAM
      CALL PLOT(0..0..999)
      STOP
      END
/=
```

7 S

```
C--DIMAMIC DISK SPIRAL PLOT-----BEGIN------
C--VARIABLE DECLARATION
     REAL H.V.S.INRAD.CUTANG.LHT.EYELVL.X.Y.RADIUS.ANGLE,

    INITAN.HEIGHT.FINANG.SHIFT.SHFT,D.A2.B1.C1

     INTEGER COUNT.INIT.FINAL, REV. I
C--BLUEMONT, DOUBLE SIDED 4000 COBRAHEAD.
C--THIS SPACE IS RESERVED FOR VARIABLE ASSIGNMENT
     H = 30.5
     H = NOUNTING HEIGHT (FEET)
     9 = 42.
     # = VIEWING DISTANCE IN THE SIMULATOR (INCHES)
     S = 236
     S = LUMINARE LONGITUDINAL SPACING (FEET)
     INRAD = 2.
     INRAD = INNER DISK HUB RADIUS (INCHES)
     850 2 8
     REV = NUMBER OF PLOT REVOLUTIONS
     CUTANG = .349
с
     CUTANG = CUT OFF ANGLE (RADIANS)
     LHT = 6.75
     LHT = VERFICLE DIREMSION OF LUNIMARE (INCHES)
     ETELVL = 3.5
     ETELVL = EYE LEVEL OF THE OBSERVER (FEET)
```

```
0 = 14.875
       D = DEPTH OF THE LUMINAIRE (INCHES)
       SMFT = 0.908 + 3.1415
       SHFT = SNIFT ANGLE BETWEEN TWO DOUBLE SPIRALS
 C---PLOT INNER SPIRAL
       HEIGHT # H-FYFIU
       CALL PLTOPT('PAPERWIDTH=WIDE,COPIES=2#')
       CALL PLOTS
       CALL PLOT(25.0.15.0.23)
       SHIFT=0
 C--REPEAT TWICE FOR DOUBLE SPIRAL PLOT
       00 20 I = 1,2
C-+ PLOT INITIAL POINT
      RADIUS=V=TAN(CUTANG)
       INITAN = (2.+3.1416+HEIGHT+V)/(S+RADIUS) + SHIFT
       X=(RADIUS+INRAD)+COS(INITAN)
       f=(RADIUS+INRAD)*SIN(INITAN)
      CALL SHOOTH(X,Y O)
C--FIND LOOP PARAMETERS
          INIT = INT((INITAN - SHIFT)*8. / 3.1416) + 1
          FINAL = 16#RFU
C-- PLOT SPIRAL
      DO 10 COUNT = INIT.FINAL
         ANGLE = COUNT+3.1416/8. + SHIFT
         RADIUS = ((2.*3.1416*NEIGHT*V)/(S*(AMGLE-SHIFT))) + INRAD
         X = RADIUS+COS(ANGLE)
         Y = RADIUS+SIN(ANGLE)
         CALL SHOOTN(X,Y.2)
      CONTINUE
C--PLOT FINAL POINT
      FINANG = (FINAL+1.)+3.1416/8. + SNIFT
         RADIUS = ((2.+3.)+16+HEIGHT+V)/(S+(FINANG-SHIFT))) + INRAD
      X=RADINS#COS(FINANG)
      T=RABIUS=SIN(FINANG)
      CALL SHOOTH(X,Y.24)
C--PLOT ONTER SPIRAL
C-- PLOT INITIAL POINT
      RADIUS= V*TAN(CUTANG)*(1.+(D/(12.*HEIGHT)))-0.025
      X=(RADIUS+IMRAD)+COS(INITAN)
      Y=(RABIUS+INRAD)=SIN(INITAN)
      CALL SHOOTH(X.Y.O)
C--PLOT SPIRAL
      DO 11 COUNT = INIT.FINAL
         ANGLE=COUNT=3.1416/B. + SHIFT
         LHTV = ((D-LHT)/(INITAN-2*3.1416*REV))*(ANGLE-INITAN)+0
         RADIUS=(([.*3.1416*HEIGNT*V)/(S*(ANGLE - SHIFT))):
                (1.+(LHTV/(12.*HEIGNT)))+INRAD-0.025
        X = RADIUS=COS(ANGLE)
         Y = RABING#STN(ANGLE)
        CALL SHOOTH(X.Y.2)
11 CONTINUE
```

```
C--PLOT FINAL POINT
         RADIUS=( 12. +3.1416+HEIGHT+V)/(S*(FINANG-SHIFT))+(1.+
                 (LHT/(12. +HEIGHT)))-0.025
      X=(RADIUS+INRAD)=COS(FINANG)
      T=(RADIUS+INRAD) *SIN(FINANG)
      CALL SHODTH(X, 1, 24)
      SHIFT = SHFT
20
      CONTINUE
C--PLOT CENTER LINES
      CALL PLOT(0.,1.,3)
      CALL PLOT(0..-1...2)
      CALL PLOT(1..0..3)
      CALL PLOT(-1...0...2)
C-- TERMINATE PLOT PROGRAM
      CALL PLOT(0.,0.,999)
      STOP
      END
```

/=

APPENDIX II Dale's report

Manhattan Roadlight Measurements

To: Or. Sennett From: O. Dubbert

The following luminous emsurements were taken with the perturbal sponters, the luminum was sensered at a concert angle of 20 free Moniparati, Some luminers, however, were maximum at a penduc toiser distance in order to mach the photometer resolution is the visit he luminare size. The photometer restances concerned on the luminare just and photometer restances was concerned on the luminare photometer restances.

Approximate Retácule Positioning on Luminare Globe

A total of six installations were measured, five with the spotmeter (luminance) and one with the Vactec photometer (illuminance).

Luminance Data

 Claflin Road from Demison Ave. to N. Manhattan Ave., Single Sided with Cobrahead Fixtures.

Seven luminares neasured:

13500 fL 6900 fL 20800 fL 3500 fL 3500 fL 3500 fL 3300 fL 94mas: 8940 fL Standard Geviation: 6580 fL N. Manhattan Ave. from Claflin Rd. to Bluemont Ave., Ocuble sided, Staggered with Cobrahead fixtures.

Four luminares neasured:

10500 fL 10000 fL 11000 fL 15000 fL

Hean: 11630 fL Standard Deviation: 2290 fL

 Bluemont Ave. from N. Manhattan Ave. to Juliette Ave., Ocuble Sided with Cobrahead Fixtures.

Three luminares neasured:

8000 fL 10000 fL 10500 fL Mean: 9500 fL Standard Oevistion: 1323 fL

4. NoCall Rd. near Marding Glass Co., Single Sided H.P.S. with Cobrahead fixtures.

Three luminares measured:

```
150000 fL
60000 fL
28000 fL
Mean: 79300 fL
Standard Deviation: 63300 fL
```

5. Vet. Med. Center Parking Lot, Globe Luminares.

Three luminares neasured:

400 fL 280 fL 600 fL Nean: 427 fL Stand Deviation: 162 fL 6.

American Institute of Baking, Two H.P.S. Cutoff Luminares.

Because of the nonuniform distribution of light with the N.P.S. luminare the direct measurement technique was not used on this partoular installation. The Illuminame at the 20° outpit angle was measured using the Vacceto low iewel photometer. The surface illumination at the cutoff angle was found to be:

0.441 fc

Each particular mean lumination level vis them matched with an equivalent level within the simulator by using the spotmeter or the Yactec photometer in the case of the A.f.S. installation.

From simple observation of the installations, the samese to linell senge it. - the straighter, some unifer and lines coulder power of lighter were final to be n Menatana Are, and Blomese Jose. The installations at Christia M., Ver, Net Concer, and NeGLI AL were final to be every meaning and Jonasance. The Christian Arabitation exhibitate several different our operatures indicating that difference humanses were based in the Same installation. The NeGLI M. setup has luminares which way up to five field in brightness.

The Nanhattan road light installations proved to be far from the near ideal lab simulation, however, due to the limits of the simulator parameters, a true simulation would prove to be far to complex and impractical.

Oale Dubbert 8-13-84

APPENDIX III

Diagram of Refractors

APPENDIX IV

Candelpower Tables

OIMECIDRY MECORD	288
CD DATA FILE RECORD	1.902
CANOLEPOMER CONSTANT	1,0000
LUHEN RATING	1 00000
HORIZONTAL INCREMENT	10,000
VERTICAL INCREMENT	10,000
CRIT. HDR. INCREMENT	5.000
CRIT. VER. INCREMENT	2,500
CRIT. MOR. START	52,500
CRIT. VER. START	60,000

CANUELA DATA (02)

1000	1 50 11		NULC #	,								
ANGLE	0,0	5.0	15.0	25.0	35.0	45.0	55.0	65.0	75.0	35.0	95.0	105.0
0.0	1.3700	17850	22800	18400	12800	8545	10700.	8150	3125	1265	764	
5.0	1.3700	1.7700	22500	19000	13900	96.30	11200	9100	3670	1530	341	- ñ
15.0	13700	17400	21900	20200	16100	11800	12200	11000	4360	2040	004	3.42
25.0	13700	17000	21600	21400	17400	12900	10800	12600	5430	2140	1070	392
35.0	13700	16400	21100	21200	13700	15300	12500	14500	6650	2830	1220	841
45.0	13700	15500	19700	21500	21500	21900	20100	18700	11200.	6110	1610	142
55.0	13700	14900	18000	21200	24500	26800	35500	27300	25800	12700	1990	841
65.0	13700	14400	15500	19100	25300	31700	456.00	42000	51300	15100	2060	450
75.0	13700	13900	13400	16100	21700	34700	402.00	486.00	50700	11,400	2060	841
35.0	13700	13100	11500	12700	16300	281.00	265 00	363.00	35800	6340	1760	841
95.0	13700	12200	9550	94.00	11300	132.00	16300	19200	1 23 00	29.30	1150	450
105.0	13700	11400	7570	6800	8640	10800	10100	9550	5430	1450	917	0
115.0	13700	10500	6420	5430	6730	8480	8410	45.00	2900	1220	450	ō
125.0	13700	99.40	5500	5120	6340	7800	8100	5270	2220	917	45.0	ő
135.0	13700	9480	5040	5090	5110	65.00	7640	43.60	1910	917	- 6	- ă
145.0	13700	9170	4820	5200	59.60	5660	4450	3820	1910	841	. ă	ŏ
155.0	13700	3790	4890	4740	5960	5730	6270	3820	1630	841		ŏ
165.0	13700	. 3560	4890	5730	6190.	5810	6340	4130	1450	0	ŏ	ă
175.0	13700	8640	5040	5730	6340	5890	6110	42.00	1610	ŏ	ŏ	ŏ

CRITICAL CANDELA DATA (04)

	60.0	02.5	05.0	07.5	70.0	72.5	75.0	77.5	- 00-0	32.5	35.0	47.5
52,5	23100	25500	23200	23200	21500	21100	19900	19600	17900	14300	10600	6570
57.5	33000	31800	25200	30200	30200	31700	30300	30700	25800	18700	13100	7300
62.5	37700	37400	37900	38500	41300	44300	44900	39400	32600	21700	14300	6330
67.5	40,000	42200	44000	47600	52400	55600	55300	453.00	35300	21300	13800	7950
72.5	40200	441.00	46100	52900	59200	62300	59000	45900	32600	12100	12100	7030
77.5	3/700	42,400	47200	51500	58100	602.00	53700	39100	27300	7950	9550	5730
62.5	32900	37300	41400	45600	50400	50000	41900	31000	20700	4820	7030	4590
87.5	27400	29900	32200	355 00	37800	37300	28300	21300	13900	2900	4740	2980
92,5	21600	22300	23000	24800	25100	23200	13600	13700	3430	12200	3060	2450
97.5	12900	16400	16400	1 66 00	15600	14400	11000.	- 8560	5270	10900	2050	1630
102.5	12300	12700	11500	10200	9170	8180	6270	4740	3060	3640	1450	1380
07.5	10500	10400	8480	6960	5730.	5270	3900	3290	2140	6420	1300	1070
ت. 12	9710	986.0	6880	52.00	4130	3820	3060	2680	1910	1380	924	994
117.5	9400	91.00	6420	4280	3520	2830	2520	2060	1530	1300	917	341
122.5	9020	9100	5660	3820.	3130	2600	22.90	1910	1530	1070	917	917
27.3	3560	7870	52.70	36.70	2330	2220	1 990	1610	1150	10.70	841	841

MEMORADIAY PHOTOASTRIC CURVES AS OF 10/ 3/34 **** 2438 (ID 1

CURVE .40	LUMINAIRE	LAG	UIST-TYP	SOC.P.	SEA	COMPANTS	AUT	OALE
170537*	H-2508	ALICSH	L=#=[1]	вн	0		402	8 008

CUAVE LAST ADDIFIED ON SOOG !!

JINECTORY RECORD	467	
CO OATA FILE RECORD	3331	
CANDLEPO.IER CD.ISTANT	1.0000	
LUMER RATING	10000	
TAL LACKERS IN TAL LACKERST	10,000	
VERTICAL INCREMENT	10,000	
CRIT. HOR. INCREMENT	5.000	
CALT, VER, LICREALEAT	2,500	
CHIT, dud. START	52,500	
CRIT. VER. START	60.000	

CANDELA DATA (02)

RUNZ	* GK []	GAL AN	012 **									
ANGLE 0.0 15.0 25.0 35.0 35.0 55.0 55.0 95.0 95.0 95.0 125.0 95.0 125.0	0.0 1705 1705 1705 1705 1705 1705 1705 170	5.0 1905 1894 1d37 1812 1795 1740 1704 1704 1601 1570 1534 1501 1570 1534 1502 1443 1453	15.0 2304 2234 2253 2253 2253 2037 1909 1760 1611 1483 1293 1216 1124 1083 1124 1083 1052	25.0 2284 2336 2412 2433 2452 2494 2294 2294 1894 1694 1694 1288 1190 1103 1011 1011 1011 1011 1011 1011	35.0 1042 12375 1642 1950 2335 2525 2525 2525 2525 2525 2525 25	45.0 707 713 719 847 1150 1500 1454 2109 1960 1740 1540 1540 1540 1540 1540 1540 1540 15	55.0 550 502 121 1357 1488 1694 1437 1760 1355 1355 1355 1355 502 502 502 502 121 1357 502 502 502 502 502 502 502 502	0.0 4839 575 713 575 11488 1919 2356 2273 11242 990 6672 754	/5.0 3240 498 5134 12373 3166 2273 3166 2455 2456 2456 2457 452 4365 2455 2455 2455 2455 2455 2455 2455 24	35.0 2057 304 349 349 1032 1032 1032 1032 1032 340 1032 340 237 340 237 340 239 245 245 292 5295 190	95.0 190 216 257 207 241 262 241 262 241 262 190 190 190 195 190 195 12d	105.0 129 139 149 149 144 144 133 154 159 159 159 128 128 128 128 128 128 128 128 128 128
	1.45			CRITIC	AL CAN	DELA C	ATA (04)				
52.5 57.55 62.55 67.55 5	50.0 1432 1540 1683 1494 2045 2145 2007 1761 1550 1345 1196 1062 919 795 703	62.0 1416 1591 1776 1931 2253 2253 2253 2089 1037 1555 1329 1155 1329 1155 1329 1155 1329 1155 1329 1155 1329 1057	65.0 1406 1581 1791 2048 2315 2407 2371 2175 1865 1324 1170 1073 913 770 657	67.5 1345 1500 1853 223d 2516 252d 2566 2243 1620 1309 1309 1309 1309 1309 1309 1309 130	70.0 1237 1504 1689 2340 2756 2335 1363 1524 1273 1524 1273 1524 1273 1524 1273 1524 1273 1524	72.5 1201 1438 1904 2438 2664 2392 1432 1442 1170 901 657 570	75.0 1042 1437 1955 3064 3274 2961 2361 2361 1699 1293 1057 873 734 336 575 516	77.5 d72 1273 1342 2435 2925 202 158 1170 919 749 621 934 428 428 429 252 202	30.0 770 1078 1493 1971 2350 2444 2259 1370 1370 1032 811 057 529 446 400 375	82+5 667 929 1550 1532 1731 140 1731 1424 867 703 505 467 411 347 318	85.0 565 734 9299 11293 12622 12633 12622 12633 734 5955 405 405 405 405 405 252 252	37.5 421 529 642 726 501 775 540 534 472 400 534 472 400 534 472 207 257

018ECTW47 REDIRO 283 CO DATA FILE RECIAO 260 CANOLEFAMER CUNSTANT 1.0000 HORIZONTAL INCREMENT 10,000 HORIZONTAL INCREMENT 10,000 CRIT, HGA, INCREMENT 5.000 CRIT, HGA, INCREMENT 5.000 CRIT, HGA, INCREMENT 52,500 CRIT, HGA, START 52,500

. CANGELA GATA (02)

HDRZ	VERIN	CAL AN	QLE 33									
ANGLE	0,0	5.0	15.0	25.0	35.0	45.0	55.0	65.C	75.0	35.0	95.0	105.0
0.0	1349	1585	1935	1626	1426	1.086	1255	1261	380	226	144	103
5.0	1349	1575	1796	1652	1400	1009	1065	1086	427	226	144	103
15.0	1349	1565	1760	L678	1374	932	875	911	474	226	144	103
20.0	1349	1539	1770	1750	1508	1086	334	782	551	273	160	103
35.0	1349	1503	1.765	1868	1951	1616	1312	1101	329	540	226	113
45.0	1349	1467	1729	1961	214L	2105	8681	1642	1441	1235	2.88	118
35.0	1349	1431	1668	1791	2033	2239	2419	2779	2795	1894	314	129
65.0	1349	1395	1570	1359	1755	2357	2897	41.79	5496	1853	319	134
75.0	1349	1354	1462	1034	1719	2162	2820	4220	6310	1390	283	139
35.0.	1349	1318	1318	839	142D	1673	2167	2872	3561	751	221	134
95.0	1349	1256	1179	710	1153	1297	1559	1348	1379	360	165	118
105.0	1349	1220	1029	618	916	988	1070	1127	59.7	211	129	93
115.0	1349	1173.	896	576	762	793	334	726	355	149	103	77
125.0	1349	1143	777	571	679	710	710	525	247	118	87	62
135.0	1349	1112	700	607	66.9	700	654	396	. 170	50 L	77	52
145.0	1349	1091	643	654	705	695	618	381	144	98	67	52
155.0	1.349	10/6	633	684	731	695	587	381	154	87	62	46
165.0	1349	1055	633	721	172	/05	>87	.381	175	82	62	41
175.0	1349	1055	628	741	793	721	597	396	190	87	57	41

CRITICAL CANDELA DATA (04)

	60.0	62.5	65.0	67.5	70.0	72.5	75.0	77.5	80.0	32.5	85.0	87.5
52.5	2403	2429	2434	2434	2337	22.90	2290	2.306	2403	2409	1822	1235
57.5	2892	2985	3129	3232	3186	3108	3304	3567	3664	2995	1971 .	1235
62.5	3325	3587	3:880	4055	3973	4143	4786	5172	44.48	3186	1925	1209
67.5	3685	4071	4477	4483	4658	5322	6212	5996	4508	2975	1786	1153
72.5	3768	4302	4493	4472	5188	6268	6590	5651	3901	2506	1549	1024
77.5	3567	3963	3953	4210	5342	6402	5939	4503	2960	1925	1235	834
82.5	3047	3201	.3201	3736	4966	5455	4344	3062	2028	1364	896	623
8/.5	2419	2439	2553	3175	4184	3999	2784	1930	1287	396	618	443
92.5	1909	1991	2059	2614	3253	2671	1698	1158	793	582	422	324
97.5	6161	1503	1642	2033	2311	1704	1060	731	515	396	304	242
102.5	1215	1199	1276	1467	1529	1096	695	49.4	371	293	237	1.96
107.5	993	978	983	1024	1009	746	504	376	288	. 232	190	160
112.5	370	339	/87	145	690	546	391	299	237	196	165	139
117.5	777	741	664	561	494	412	319	247	206	170	144	134
122.5	726	674	266	432	355	324	268	221	185	149	129	113
127.5	6/4	. 623	484	350	273	252	226	185	154	139	118	108
THUME	40 515	INT NATE:	C 1 4.2D		OIST-1	'YD 60	C 2 0	EV COM	ALC: NOT TO		 A117 	04.75

ANAMEGUAD-FAY PHOTOMETRIC CURVES AS OF 10/ 3/d4 NAME

CLAYE ND LIHILALIKE LAN? DIST-TY? SIC., ?. REV CONKEATS------ NOT DATE 176933- N-2508 +22-00X 5-5-11 BH 0 NCP 8008

PAGE NO I

JUNYE LAST HAUIFIED ON BOOBII

OFSECTORY SECORD	603
GRODER BILLS ATAD GO	22 65
JANOLEPULER CONSTANT	1,0000
LUXEN RAFING	1000001
HORIZONTAL INCREMENT	10,000
VARTICAL INCREAENT	10,000
CRIT, MOR. LACREALAT	5.000
CRIT. VER. LNCHEMENT	2.500
CHIT. HUR. START	52,500
CRIT. VER. START	50.000

CANGELA DATA (02)

BURZ	VERTI	CAL 80	222 22	>								
ANGLE	0.0	5.0	15.0	25.0	35.0	45.0	o.cc	65.0	75.0	05.0	25.0	105.0
0.0	15333	17192	16702	13950	10167	70.74	2900	4568	3144	1965	1022	1210
4.0	12333	17094	16947	14343	10708	7565	6337	5256	35 50	2426	1913	1325
15.0	16333	16996	17192	14736	11249	0055	7074	59.44	+029	2047	2014	1376
26.0	15333	16946	17143	15227	12035	9234	3351	7074	47.15	3095	2309	13/5
10.0	14333	14449	17241	15763	13312	10954	1:0217	8301	-207	3140	2407	1021
25.0	14111	10753	17094	16308	14d84	12575	11740	9624	6434	3733	2211	14.25
55.0	14333	10750	17045	16701	16210	14490	13017	11591	3391	4962	22.60	1425
13.0	4777	14467	14701	17241	17192	15768	14735	14687	12378	6533	2358	15 23
22.0	14222	16433	14505	17290	17634	16003	16406	17331	15522	7457	2505	1523
13.0	10222	14104	16210	16006	17241	14452	17241	19010	15766	7417	2456	1474
00.0	16222	14112	15621	1 62 10	15605	16112	15259	17290	13036	6336	2309-	1523
99.0	13333	10.044	16080	16276	156.72	15040	14736	144.90	10356	5060	2309	1523
105.0	10333	12×04	10000	13270	14104	12548	12771	11145	4154	4225	2162	1376
115.0	10333	12011	19290	12771	1 21 22	11445	10767	Q1144	42-14	34.19	20.63	14.25
125.0	10333	12/15	13950	14111	12133	0433		7546	3408	1201	2113	1277
135.0	16333	100/1	13459	11151	9073	70401	7970	1000	4141	24.43	22.60	1228
142.0	16333	15424	12921	9115	3203	1990	1210	0101	4470	22.42	2211	1170
155.0	16333	15424	12526	8940	7074	00 3 3	00.32	6 /07	4374	3242	1720	1120
165.O	16333	15277	12133	8449	56.31	6091	2140	5/9/	4274	24.37	1.72	234
175.0	15333	15129	12035	d154	0435	5944	5993	9031	+4.21	2401	- 212	2.34

CRITICAL CANOELA DATA (04)

	(A) (A)	12.1	42.0	47 -	70.0	72.5	75.0	77.5	30.0	32.5	35.0	37.5
	30.3	04.7	05.0		0477	0034	1203	7123	40.91	5256	456.9	3732
52.5	1100/	11044	11150	10915	2017	9033	2423	6100	7210	4117	5354	4323
57.5	12963	12524	12260	11035	11249	10414	9025	10000	14.45	7417	0100	4745
62.5	14147	14097	13052	13056	13066	12378	11494	10021	20.45		0120	
47 5	14376	14571	15522	15571	15178	14442	13312	11542	9912	3321	0~20	23.0
77	14407	14004	17192	17434	16996	10259	14982	12919	10306	3238	7368	20.00
14.2	1 (020	14124	12440	1:417	14273	17349	10112	13705	11347	93-32	7663	37.47
11.2	11929	10125	10157	101/14	12417	17487	16161	13-01	11347	2333	7663	5551
32.5	133/1	10/04	19137	19100	10017	17103	12434	1 2 2 4 1	1.1054	10.85	7172	5354
87.5	13273	13665	18362	10/04	13213	17192	11202	12230	10070	2242	4770	5050
92.5	1/663	17650	17973	176d4	19770	12017	14392	12250	01.24	7510	4001	4618
97.4	1 2052	16799	16701	16259	15522	14540	15515	110.25	A1/20	1210		43.01
32.4	15175	15375	15174	14/45	13951	13017	11544	9373	3203	20:01	2124	92.20
07 -	11147	12453	13452	13105	12428	11396	1)217	8744	7172	5346	4303	3431
101.5	10.77.1	13,77	12223	11543	10507	9873	3793	7467	0238	5237	44.21	3634
112.5	12111	12477	10-10	100.11	1225	8449	7545	4435	5452	4667	4026	32-2
11/.5	11042	11295	10059	10021	2252	7646	4402	3744	4443	4127	3635	3025
122.5	13561	10116	9579	0/44	0252	(202	530.3	61.00	42.72	2741	3430	2017
27.4	3530	9136	35+2	7310	/360	0/30	5793	3109	-372	-103		

LAMP D	ATA
-	210

						HEATCH.				+08.70h18	_		
					and C		Read		-	~		well speak,):
GE Creamy AND Alternation Code	-				Eng of Matanhoong Parcel	UNE TRANS			Treat International	100	914 13 U 914 250 U 924 450 U].	
"Swaff Swim	d Paler	Delas I	mapy b	-				_				Work 1532 + BU	-
wiet:75.82	- 107	Cwar	. 5	18 600	0.40	0.84	10 200					0.480	
when?5.80	1457	Centr		19 600	0.001	0.84	10,300		-	-		_	
488175-C BU	14957	0.4	5	19 600	0.00	0.84	10.300	-	- 1	-		1000112-002	-
-38-75-0-60	101	0.0		18 600	7-801	084	10.000						
anen75-cu	1487	Cear	5	14:000	074	087	10,000	12 008	0.58	0.97	0.000	100.000	-
100.200	1.461	Pres.		14,000	2711	084	10.000	1 12 000	2.45	0.5e	8,000		
SLAAT SHORE	e Piter	Drive 1	Repu B	-								-	
UNRORA U	-58	Cear .	3	20 600	0.631	0.94	10.000	1.15.800		1.84	10,000	-	
VI0.0250/01/	1.456	Pres.		20 600	0.781	0.85	10.000	10.000	(1.00	12.000		
CO-POT - SHOP	les .		_							_		-	
entails.		200		34.000	2.001	6.44	bit dans					-	
Printed Curr	1414	200		34.000		0.14	10,000	12,000			15 000		
PUBLICS 1BUT	1458	Dear 1		10,000	0.00	0.04	10,000						
Cel Cafere	458	Dear		10,000	2.80	0.64	27 (100)	1.2.1					
TUBY 2-DOMESTIC	104	Pros.	7	10,000	0.77 .	0.58	10,000						
CIRC 2 GHR	1,9488	-Pres		49,000		0.18	25,000	1.2			-		
006-MATT - MINON	Tree .		_		_			-				-	
11 000 IV	1447	Own	1.	115/005	0.80	A.11	17,000	117.000	1.00	4.94		-	
	Mar.	Prov.	100	178,000	S 18.	6.64	12.000	10.000			10.000		
1081-005-1817	-	Cast	10.1	115,000	0.80	4.19	12,000			0.65	10,000		
08/ 001/8/	1.007	Care .	- Ph 1	115.000	0.001	A 12	11000	1.2					
105 Mal 77 Encode	- Party	a Draw	Manuel 1	lana .		_						-	
110000000	MAR	Cent	-	155.000	0.85	147	1,005	140,000	2.94	1.84	-	-	
100-32-00	1.55	100	121		12221		+ 000		- 80		~300		

Safeth Galido serves are available care despiration in pranting from World to writt an other than remain the safet has available as \$20,700,10,00 with 60,010 U with a remain 40 aminute 110 percentage up other another bases

MARINING (All mercury and Multi-Vapor Jamos)

-

The law can be write the law of day references the spectra can be be able to the second secon

FILAMENT AND QUARTIZLINE' LAMP DATA

		-		1.0		
GB Creating	1000	Land	Burning Paulout	3104	West	L/N
0300*2.0.	300	A	Marrie	\$167	4.180	2.000
242973.05	+25	* -	mang	8 900	8 800	1 000
C60073 CL (122M	500	A	Marriel	10 140	10.000	2,300
25/072 02	400		Marrie .	11100	10240	3.566
C121(13 CL 200)	1250	10	and the second	24 102	97.146	1.000
2140013-05 24040	1 1 500	1.000	PRV 2	1 35 000	24/20 1	3 200
Lange for relation as		-				_
215001.00	1.90	2.1	84	2 400	2 800	2 000
02500 L 00	100	2.1	30-	5,000	6.850	2 002

MERCURY LAMP DATA	(See WARNING on page H6 for SAF+T+GARD' Lamo
-------------------	--

					VERTICA			104-00M	4			
				14PH			Lans Orac	Carra Curran		100	Service in the	
OE Orean-up	ANSI	1	Carryon	unitar Inclusion	- Des			-	Rearry			
100 wat - 1,4e 24 500	- Nours 12 Neuro, etert - 2	Inc. (Base			_							
	-34-7 4 -00 1-31-4-00 Et	Over	1 .	3497	: 12	084	100	077	925			
175-Mail - U/a 24,000	" Neural 12 Neural start - 1	domy line			-							
	10040 1114 CA	Sevet	: 2	7 510 8 400	240	11	13	0.00	0.4			
200-mm - 1/4 (4.500-	- THUR IS HAVE HAR	Annu Bana		1.000	1.000	- 112	104	- 191	242			
and the same	NOVE OF GA	OF LA	. 1	11,500	0.00	102	12.20	050	0.00			
406 max - L/s 24 265	New Chartenant -	And I have	_									
station in the	4330. 849 OK	Citize Citize Citize		12.00	0.00	100	1.55	287	200 200			
1990-Had - Lin 12100	- New PLANCE -	Monio Long					- 10	2.17	1.04			
A DOLOG	**************************************	-Ce 140		122	0.54	0.00	A SEC.	100	12			
Currelan.me				" Marcus	1000	Case of the	Seat 2" "	200 44.4	NACO' MA			

The second area of a second state on present a charged have the second as a second state of a second s

THUMANORS 55-100 55-100 205-600 1000 matt watt matt watt HIGH INTENSITY DISCHARGE LAMPS)

reger mannen, Dacharge (HC) lakter als most which have a passive discharge art have answering all pressures and current memoian sufficient is provide descript hadrone of webs relations within their arcs scient free lands have have become provide primarily able relation which is

High affects - more umans pay wait of power consumed

ung anothe an and when the manifesterial - results controls automatic

Long arms ine any state Uniter namestance – rescue carrier submittee
 Contest incurse – perman prode light content by use of refrection and refrections in submittee in by some of content

The time process will large new it control use as mercury metal Electric Multi-Lager) and high pressure solium (Genere Electric Lucacia)

(HID WARMUP CHARACTERISTICS) (TIME TO REACH SO% LIGHT OUTPUT)

Watty Strokes

_

HID RESTRIKE CHARACTERISTICS)

All red large we describe when there is a power retentation of the same social integration many bases the amount retented to buses the app for they are being social Bacavity in their general retented in a sector the application being and het here could be hardware the same with an event the amount when here and under hardware manual the same with all resets (managements).

THE TO RESTRIKE)

Metter 34 mouter Meter 1515 mouter (MDR115 510 mouter) Lander 1 moute

TROBOSCOPIC EFFECT)

and anno surger same to how the alternative surveives. The can cause small strong stands to finder. To pred the announces three phase power is supported to memory and Lemon same. Sone phase seasant can be used with market plane. Song phase party into a use of the men loads strong.

EIGHTING STSTEN MAINTENANCE FACTOR

Control time of the Last metric interaction of the second of the

0/10004 //1046					
	Lusiensing Dirt Depreciation (LOO)				
Decreased and Standal	5 98 5 90				
INDECK APPLICATIONS					
Lummans Type	Lamonary Din Depresiation (3,00)				
	Light	Medura	many		
Sectional and Travel	0.87	010	0.66		
Decrement.	0.54	0.80	977		
Owner was reserved	0.00 0.00 0.00				

EUCALOX LAMP DATA

LAMP DATA

				- 24	SALE N	
Gil D-same Altrevation	ana See	~	=	-	-	fine of Assessing Parall
	100	-		- 04		
1.32 med	274	Car	24	2 290	2.80	0.78
LU28 0. med	474	24.64	24	2 -80	2.90	0.13
SOLVER THE RES	DE- Nove 1	Conser.	Trape Int	-	_	
12.90	548	Cer	5	< 000	1.00	0.73
(180-3	548	20.40		3 900	2.00	0.73
76 HATT LDD 24.0	and - Images I	1-000 000	may be			
11170	542	Case		5 900	190	0.75
LU/9/0	562	25.46		1 400	0.00	0.73
100-991TU/#24	36- Mar	12 March Inc	n. Margar B	-	_	
LU/108	354	0.00	3	1 300	0.00	0.73
LU106/0	554	34.00		4 500	1.90	0.79
130-Walf Unv 24	201 - Your		r mart	-		
LUP #0-58	068	Our		16.000	0.80	0.73
U2152-08-D	200	0.044		10 320	0.80	0.73
Lu+95-108	548	Over		15.000	070	0.73
305 WATT Life 24	Jost - Image	10 hours an	e manif	-	_	
C0300	588	-	75	22 000	0.80	0.73
256 mall Line 24	-	10.000	-	-	_	
L0290	382	0.0	-	27 100	0.80	6.73
wi990-0	510	Orter		29 100	0.90	0.75
0.080/8	592	-		30 100	0.00	0.73
LUN0/21**	110	-	58	22 908	0.02	6.75
210 MATT LINE 21	-	10000	r Neps I	-	_	
1000	367	Deer	94	31,000	0.90	0.73
	100-100	-	r Begel	-	_	_
10400	581	0.00	24	40,000	1.00	073
LU-409/0	581	0fter	2	47 500	0.90	0.73
1000 WATT UND	A REPORT	-	Ships Se	-		_
					1000	

"Ute 12 200 heres to Theory and Cit Be use and 2000"

-110

Service wettige crear and officer Locate lange nas not have the same boll \$25.5 (light came weigh if survey are interchanged the encour sector has need to be change a cate of the set of service and sectors.

a load - the bag are presented over sources a load - group Systems Desarrows and Lots will be furnished with the Are assessment with an instant are moduli asses.

L SD West	Line of the set	LCL 5-716 Med-um appeal must	
1/60/3-Med	1470-0 med	extransition offy?	
1/105 Med	Light States		
a surface of stations.	Compared and Amount		

CONTRACTOR OF STREET, STREET,

MARIETART	BET MATED AND LIVEY
Gent	24 200+
10	24.000-
	10.000
24	(3.980
12	10 880

The start is store when these terms

APPENDIX V

Computer programs for Predictive Systems

```
$J0B
(#$3+*)
(* NORTH MANHATTAN AVENUE *)
PROGRAM CBE(IMPUT.OUTPUT):
CONST
 EL = 4.0:
             (* EYE LEVEL *)
 MH = 29:
              (* nOUNTING HEIGHT *)
 0 = 5.0:
             (* OVERHANG OF THE LUMINAIRE *)
 CUTOFF = 70.0; (* WIND-SHIELD CUT-OFF ANGLE = 90 - 20 DEGREE *)
 IANGLE = 90.0: (* INITIAL ANGLE *)
 LHT1 = 11.686: (* HEIGHT OF THE LUMINAIRE*)
 LHT2 = 4.625; (* WIDTH OF THE LUMINAIRE *)
 W = 13.910:
                (* LENGHT OF THE LUNINAIRE *)
 E = 1.070;
                (* A FACTOR, INITIAL LUMENS/ RATED LUMENS *)
```

```
LVU = 0.95;
                 (* LUMINAIRE BIRT DEPRECIATION *)
  LLB = 0.77:
                  (= LARP LUMEN DEPRECIATION *)
  SP = 1.95:
                  (* SPACING BETWEEN THE LUHINAIRES *)
  SIDES = 2:
                  (# '1" FOR SINGLE-SIDED, '2' FOR DOUBLE-SIDED =)
  ROUTE = 31
                  (* WE USED 1.2.3.4.5.AND 6 ROUTES *)
TYPE
  INT_ARRAY = ARRAY(.1..5.1..7.1..11.) OF INTEGER:
VAR
  P.D.CD.X.TOTCBE.CBE.V.H.R.B.A.AREA.INT.Z.S:REAL:
  TABLE : INT ARRAY:
PROCEDURE READ DATA:
1148
  I.J.K : INTEGER:
REGIN
  READLN(I):
  UHILE I O 0 DO
  RID36
    FOR J == 1 TO 7 DO
    FOR K := 1 TO 11 DO
      READ (TABLE(.I.J.K.));
    READIN(T):
  END:
END:
PROCEDURE INITIALIZE:
REGIN
    CD := 21.0:
    I := SP/2:
    P 1= MH - EL:
    D := CD - O:
    TOTCRE := 0.0:
END:
PROCEDURE RE_INITIALIZE:
BEGIN
    CD := 27.0:
    X := SP:
    D := CD - D;
END-
PROCEDURE INTENSITY;
VAR
  CHECK.VALUE1.VALUE2.VALUE3.VALUE4.PREVH.MEXTH.PREVV.MEXTV: INTEGER;
  TEMP1, TEMP2, TEMP3, TEMP4 : INTEGER:
  INT1, INT2 : REAL;
REGIN
    CHECK := 0:
    PREVH := 45:
    MEXTH := 55:
    TEHP1 := 1:
    TEMP2 := TEMP1 + 1:
```

```
95
```

```
WHILE(CHECK = 0) BO
      IF ((H )= PREVH) AND (H < NEXTH)) THEN
        CHECK IF 1
      ELSE
      BEGIN
         PREVH := PREVH + 10:
          NEXTH := NEXTH + 10:
          TEMP1 := TEMP1 + 1:
          TEMP2 ## TEMP2 + 1:
      END
    END:
    CHECK := 0:
    PREVV := 5:
    NEXTV := 15:
    TEMP3 := 2:
    TEMP4 := TEMP3 + 1:
    UHILE (CHECK = 0) DO
      IF ((V >= PREVV) AND (V < NEXTV)) THEN
        CHECK -= 1
      ELSE
      BEGIN
        PREVV := PREVV + 10:
        NEXTV := NEXTV + 10:
        TEMP3 := TEMP3 + 1:
        TEMP4 := TEMP4 + 1:
      END
    END:
    VALUE1 := TABLE(.ROUTE.TEMP1.TEMP3.):
    VALUE2 := TABLE(.ROUTE, TEMP2, TEMP3.):
    VALUE3 := TABLE(.ROUTE.TEMP1.TEMP4.):
    VALUE4 := TABLE(.ROUTE.TEMP2.TEMP4.):
    INT1 := VALUE1 - ((VALUE1 - VALUE2)*(H - PREVH)/(NEXTH - PREVH));
    INT2 := VALUE3 - ((VALUE3 - VALUE4)*(H - PREVH)/(NEXTH - PREVH)):
    INT := INT1 - ((INT1 - INT2)*(V-PREVV)/(NEXTV - PREVV))
ENB:
PROCEDURE CALCULATE;
VAR
V1. H1: REAL:
BEGIN
    V1:= ARCTAN((SQRT(SQR(X) + SQR(B)))/P);
    V == 180 = V1/3.142:
    H1:= 180*(ARCTAN(D/X))/3.142;
    H := 90 - H1:
    R == SQRT(SQR(X) + SQR(D) + SQR(P));
    B == SQRT(SQR(D) + SQR(P));
    A := (ARCTAN(B/X))+180/3.142:
   AREA == (((LHT1 - LHT2)/(CUTOFF - IANGLE)+(V - CUTOFF)) + LHT1) +4:
   INTENSITY:
   Z :=INT*E*LLD*LDD*452/AREA:
```

```
S 1= AREA/(144#SOR(R)):
    CBE == ((Z**1.67)*S)/(EXP(0.08*A)):
    TOTCBE := TOTCBE + CBE:
END:
PROCEDURE PRINT RESULTS:
BEGIN
    WRITELN( ' R
                 ='.R:10:2):
    URITELN(' V ='.V:10:2):
    WRITELH( H
                = .H:10:2):
    WRITELH(' I =',INT:10:2);
    WRITELN( A
                  = .A:10:2):
    WRITELH( Z
                   =',Z:10:2);
    WRITELH( S
                   ='.S:10:8);
    WRITELH( AREA = . AREA: 10:2):
    WRITELH(' CBE =', CBE:10:2);
    WRITELH('-');
END:
PROCEDURE LOOP1:
VAR
I : INTEGER:
BEGIN
   FOR I == 1 TO 8 BO (* WE USED 8 LUNIMAIRES IN FRONT OF DRIVER *)
      REGIN
         CALCULATE;
         PRINT RESULTS:
         X I= X+SP
      END
END:
(+HAIN PROGRAM+)
REGIN
   READ DATA:
    INITIALIZE:
   PAGE:
   WRITELH(" THE FOLLOWING IS THE AMSWER FOR ROUTE'.ROUTE:2):
    WRITELH('-'):
   WRITELN (" THE FOLLOWING IS FOR SIDE 1"):
   WRITELH('-'):
   L00P1:
   IF(SIPES = 2) THEN
      BEGIN
         WRITELW (' THE FOLLOWING IS FOR SIDE 2'):
         URITEL H((-/):
         RE INITIALIZE:
         L00P1;
      END:
   WRITELH(' THE TOTAL CBE VALUE IS', TOTCBE:10:2);
END.
$ENTRY
1349 1467 1729 1961 2141 2105 1868 1642 1441 1235 288
1349 1431 1668 1791 2033 2239 2419 2779 2795 1894 314
```

THE FOLLOWING IS FOR SIDE 1

R	-	101.92
ψ.	-	75.79
н	-	80.68
1		2747.59
A	=	16.93
z	-	7247.95
s	-	0.00008966
AREA		134.11
CBE		64.71
8	=	294.00
9	=	85.11
н		86.87
I	2	1091.42
6	=	5.79
2	=	4370.74
s	-	0.00000710
AREA	=	88.34
CBE	=	5.34
P		49.9 40
ü.	-	97 05
ů.		00 12
7	-	994 04
-	-	3 49
2	-	3079 04
ŝ	-	0.00000229
ARFA		78.80
CRF	÷	1.78
		117.0
8		683.15
ü.	=	87.89
Ĥ.	=	99 44
7	-	802.92
ā.	-	2 49
7	-	79.02 77
ŝ	-	0 00000111
4854	-	74 49
CRE		0.97
	-	V.U/
8		979 00
0	-	00 7/
÷.	2	00.30
7	-	757 04
à.	-	1.04
7		3703.15
ŝ	1	0.00000045
ARFA	-	72 40
CBE		0.51

8	= 1072.91
v	= 88.65
н	= 89.15
I	= 729.74
A	= 1.59
z	= 3638.88
ŝ	= 0.0000043
ADEA	- 70.95
CBC	- 0.77
CPL	- 0.35
P	1247.95
á	- 00.00
	- 07.20
÷ .	- /10.47
8	= 1.34 - 7507.0/
-	* 3373.96
3	= 0.00000030
AKER	= 69.94
635	# 0.24
-	
к	1462.80
2	= 89.01
н	= 89.3/
1	= 696.49
A	= 1.16
z	= 3560.79
s	= 0.00000022
AREA	= 69.20
CBE	= 0.17
THE F	OLLOWING IS FOR SIDE 2
R	= 197.82
v	82.73
н	= 83.56
T	1541.57
4	= 9.49
2	a 5451.40
ŝ	= 0.00001775
ARFA	= 100.04
CBE	. 14 71
	- 14121
D	- 101 42
	- 01 77
à.	a 04.77
	- 000 45
1	= 989.45 - A00
Å,	= 989.45 = 4.88 = 4749.59
4 2 0	= 989.45 = 4.88 = 4249.59
A Z S	= 989.45 = 4.88 = 4249.59 = 0.0000373
A Z S AREA	= 989.45 = 4.88 = 4249.59 = 0.00000373 = 82.37

CBE	-	2.90
R	=	585.95
9		87.54
н	=	87.85
I		853.59
A		3.26
z	=	3952.78
s	=	0.00000155
AREA		76.40
CBE	=	1.21
R	=	780.71
ų		88.15
н	-	88.38
1	=	788.86
A	=	2.44
z	=	3802.17
s	=	0.00000084
AREA	Ξ	73.40
CBE	=	0.65
R	=	975.57
v	=	88.52
н	=	88.71
1		751.07
A	Ξ	1.96
z	=	3711.03
s	=	0.00000052
AREA	=	71.60
CBE		0.41
R	=	1170.47
0	Ξ	88.76
н	=	88.92
1	*	726.31
A	=	1.63
z	=	3649.93
S	=	0.0000036
AREA	=	70.40
CBE	=	0.28
R	=	1365.41
ų.	z	88.94
н		89.08
I	=	708,85
A	=	1.40
Z		3606.11
S	=	0.0000026
AREA	=	69.54
CBE	u.	0.20

R	=	1560.36
V.		89.07
Н	=	89.19
I	z	695.87
A	=	1.22
z	=	3573.15
S	=	0.0000020
AREA	=	63.90
CBE	Ξ	0.15

THE TOTAL CBE VALUE IS 93.99
APPENDIX VI

Data from Roadway and Simulator

McCall Road

Subject	Simulator (Driver)	Simulator (Passeng)	Roadway (driver)	Roadway (Passeng)
1	в	7	7	5
2	7	8	7	3
3	7	7	3	5
4	7	7	7	7
5	7	6	6	2
6	7	9	5	7
7	7	2	7	6
8	4	7	3	5
9	5	7	6	в
10	8	3	5	6
11	6	6	5	4
12	6	7	6	7
13	5	4	5	3
14	7	8	6	3
15	6	3	5	4
16	7	7	5	8
17	7	9	3	3
18	5	2	5	6
19	7	7	7	7
20	7	4	5	4
21	9	8	5	6
22	в	6	4	5
23	5	9	6	4
24	6	7	в	7

26	8	7	2	5
27	-		-	-
20	7	0		5
28	/	8	в	4
29	6	7	7	4
30	8	9	9	7
Total	204	194	170	153
Mean	6.8	6.5	5.7	5.1
	6.7		5	.4

Claflin Road

Subject	Simulator (Driver)	Simulator (Passeng)	Roadway (Driver)	Roadway (Passeng)
1	4	4	3	4
2	1	6	7	6
3	8	2	4	3
4	6	3	3	2
5	1	5	5	6
6	4	3	8	6
7	8	4	3	1
8	3	4	2	2
9	6	4	5	6
10	5	5	3	3
11	5	2	5	2
12	5	5	5	3
13	1	2	1	5
14	3	1	4	4
15	5	6	1	2
16	3	7	5	6
17	2	5	1	1
18	2	3	5	4
19	5	5	6	3
20	2	1	5	1
21	3	8	3	3
22	4	3	5	1
23	з	5	2	4
24	4	3	3	2

	4.	.0		.7
Mean	3.9	4.1	4.0	3.4
Total	118	124	119	102
30	5	1	5	4
29	5	3	6	4
28	6	6	5	3
27	2	6	3	4
26	3	5	3	4

Bluemont Avenue

Subject	Simulator (Driver)	Simulator (Passeng)	(Driver)	Roadway (Passeng)
1	8	6	5	4
2	4	5	4	2
3	6	5	5	3
4	7	2	1	1
5	7	7	4	3
6	3	7	3	3
7	6	2	4	4
8	5	5	2	3
9	6	7	5	6
10	5	4	3	4
11	5	5	4	3
12	5	6	4	3
13	2	2	1	4
14	5	5	4	5
15	4	4	3	3
16	5	7	5	6
17	3	7	1	3
18	4	5	3	5
19	6	5	4	4
20	6	6	4	4
21	5	2	1	8
22	2	4	1	1
23	7	7	4	3
24	4	4	3	5

	5.1		1	
Mean	5.2	4.9	3.4	3.8
Total	156	146	102	114
30	7	8	5	6
29	5	4	7	4
28	6	5	5	3
27	7	2	2	3
26	5	5	2	3
25	6	2	3	5

North Manhattan Avenue

Subject	Simulator (Driver)	Simulator (Passeng)	Roadway (Driver)	Roadway (Passeng)
1	7	6	3	4
2	6	6	8	5
2	7	5	4	1
4	5	3	7	1
5	8	5	4	5
6	3	9	5	2
7	5	2	3	3
8	7	5	4	4
9	3	5	2	6
10	3	2	2	4
11	4	2	4	2
12	5	6	4	4
13	2	3	1	4
14	4	6	2	5
15	2	5	1	3
16	2	5	1	4
17	2	6	1	3
18	2	5	3	4
19	6	6	5	4
20	6	7	6	2
21	5	3	5	1
22	2	3	1	1
23	4	7	2	4
24	3	3	4	4

	4.	í 7	3.	7
Mean	4.6	4.8	3.7	3.6
Total	137	143	110	107
30	8	7	5	6
29	4	2	8	6
28	8	7	3	3
27	3	4	4	2
26	3	4	3	4
25	5	3	2	6

Veterniary Medicine Building

Subject	Simulator (Driver)	Simulator (Passeng)	(Driver)	Roadway (Passeng)
1	2	3	1	2
2	1	2	1	2
3	2	7	2	4
4	2	4	1	3
5	4	3	3	4
6	2	3	2	1
7	6	5	2	1
8	6	3	1	4
9	2	4	3	2
10	7	5	2	2
11	3	1	3.	1
12	5	3	5	3
13	3	2	2	1
14	6	3	2	2
15	2	2	2	2
16	5	5	3	4
17	5	7	1	1
18	5	2	2	3
19	4	4	5	2
20	3	1	3	3
21	5	6	1	6
22	2	2	7	7
23	7	3	3	2
24	1	2	6	4

112

	13		2	!
Mean	3.6	3.4	2.8	2.8
Total	108	101	83	85
30	6	5	2	5
29	3	3	5	3
28	2	2	7	2
27	3	1	1	3
26	2 .	1	1	2
25	1	5	2	4

American Institute of Baking

Subject	Simulator (Driver)	Simulator (Passeng)	Real-world (Driver)	Real-world (Passeng)
1	9	5	3	5
2	3	4	2	2
3	8	3	2	3
4	4	2	1	3
5	5	5	3	1
6	5	5	6	4
7	9	7	2	4
в	8	4	5	3
9	4	4	6	3
10	5	3	2	5
11	6	2	6	2
12	6	5	5	4
13	3	3	3	3
14	4	6	5	3
15	5	3	4	2
16	5	6	2	7
17	5	2	1	1
18	4	4	5	2
19	в	6	в	4
20	7	2	2	2
21	7	3	5	5
22	6	5	6	3
23	2	9	2	2
24	5	5	6	7

	5.	1	3.	8
Mean	5.3	4.8	3.9	3.6
Total	160	143	117	109
30	8	8	9	6
29	5	6	7	5
28	5	3	2	2
27	2	5	1	3
26	2	8	1	1
25	4	8	3	7

COMPARISION OF REAL-WORLD ROADWAY LIGHTING, DYNAMIC SIMULATION,

AND CBE AND GLAREMARK PREDICTIVE SYSTEMS

ΒY

SYED ARIF HUSSAIN

B.E. (Mechanical), N.E.D. University of Engineering and Technology, Karachi, Pakistan. 1982

> AN ABSTRACT OF A MASTER'S THESIS Submitted in partial fulfillment of the requirements for the degree

> > MASTER OF SCIENCE

Department of Industrial Engineering KANSAS STATE UNIVERSITY

Manhattan, Kansas

1985

An experiment was conducted , in Summer 1984 at Kansas State University to compare the glare responses of subjects from the roadway lighting installations, with the simulation of the same lighting installations, and with the predicted values of the glare by Glaremark and CBE predictive systems. Sixty subjects rode or drove through six different lighting installations in the city of Manhattan, to rate the quality of light on the basis of North American Glare Scale. The same subjects "drove" through the dynamic simulation of the same six lighting installations. At 0.05 significance level significant differences were found in the results of real-world and dynamic simulation. However, on the basis of comfort, a very stronge positive correlation was found in the rank orders of real-world and simulated installations. At 0.05 significance level, both the predictive systems showed significant differences in the real-world and predicted results. However, the rank orders predicted by CBE showed a very stronge positive correlation with the rank orders of real-world installation.