A COMPARATIVE STUDY OF NONLINEAR PROGRAMMING ROUTINES ON THE MICROCOMPUTER VERSUS THE LARGE COMPUTER

by

Frank P. Liwang

B.S., Kansas State University Manhattan, Kansas 1981

A MASTER'S THESIS
submitted in partial fulfillment of the
requirements for the degree

MASTER OF SCIENCE

Department of Industriai Engineering

KANSAS STATE UNIVERSITY
Marhattan, Kansas

1984

Approved by:

TABLE OF CONTENTS

pazeACKNO：ILEDGEMENTS vi
Chapter 1 Introduction 1
1．1 HISTORY 1
1．2 ADVANTAGES OF MICRO／PERSONAL COMPITER OVER LAPGE CCMPUTER 2
1．3 LANGUAGE AND COMPUTER USED IN STUDY 4
1．4 THE OBJECTIVES OF THIS STUDY 5
1.5 What has been done in the ms thesis 6
1．6 PREFACE TO THE REST OF THE THESIS 8
1．7 REFERENCES 10
CHAPTER 2 HOOKE AND JEEVES PATTERN SEARCH 12
2．1 InTRODUCTION 12
2．2 METHOD 12
2．2．1 ALGORITHM AND FLOWCHARTS 12
2．2．2 NUMERICAL EXAMPLE 16
2．3 COMPUTER PROGRAM DESCRIPTION 23
2．3．1 DESCRIPTION OF SUBRCUTINES 23
2．3．2 FROGRAM LIMITATIONS 23
2．3．3 TABLE OF PROGRAM SYMBOLS AND EXPLANATION 24
2．3．4 LISTING OF FORTRAN PROGRMM 26
2．3．5 DESCRIFTICN OF OUTPUT 33
2．3．5 SUMMAPY OF USER PEQUIREMENIS 33
2．3．7 USEP．SUPPLIED SUBRCUTINE 34
2．4 INPUT TO THE COMPUTER PROGRAN 35
2．4．1 CRT DISPLAY OF QUESTICNS 35
2．4．2 NOTES ABOUT THE INPUT 36
2.5 TEST PROBLEMS 37
2.5.1 TEST PROBLEM 1 : SIMPLE PRODUCTICN SCHEDULING. 37
2.5.1.1 SUMMARY 37
2.5.1.2 COMPUTER PRINTOUT OF RESULTS 38
2.5.1.3 USER SUPPLIED SUBROUTINE 45
2.5.2 TEST PROBLEM 2 : PERSONNEL AND PRODUCTION SCHEDULING 46
2.5.2.1 SUMMARY 46
2.5.2.2 DESCRIPTION OF TEST PROBLEM 2 48
2.5.2.3 COMPUTER PRINTOUT OF RESULTS 52
2.5.2.4 USER SUPPLIED SUBRCUTINE 55
2.6 REFERENCES 56
CHAPTER 3 KSU - SEQUENTIAL UNCONSTRAINED MINIMIZATION TECHNIQUE BASED ON HOOKE AND JEEVES PATTERN SEARCH METHOD AND HEURISTIC PROGRAMMING 57
3.1 INTRODUCTION 57
3.2 KSU - SEQUENTIAL UNCONSTRAINED MINIMIZATION TECHNIQUE (KSU-SUMT) 58
3.3 CCMPUTATIONAL PROCEDJRE 59
3.4 PROCEDURE FOR FINDING A FEASIBLE STARTING POINT FROM THE INFEASIBLE INITIAL POINT 62
3.5 COMPUTATIONAL PROCEDURE FOR MINIMIZING $P\left(X, R_{K}\right)$
FUNCTION BY THE MODIFIED HCOKE AND JEEVES PATTEFN SEARCH TECHNIQUE 65
3.6 PROCEDURE FOR MOVING AN INFEASIBLE FOINT INTO THE FEASIBLE OR NEAR-FEASIBLE REGION BOUNDED BY THE INEQUALITY CONSTRATNTS 67
3.7 PROCEDURE FOR MOVING THE NEAR-FEASIBLE KTH SUB-OPTIMUM POINT INTO THE FEASIBLE REGION 70
3.8 COMPUTER PROGRAM DESCRIPTICN 72
3.8.1 DESCRIPTION OF SUBROUTINES 72
3.8.2 PROGRAM LIMITATIONS 12
3.8.3 TABLE OF PRCGram SMBOLS AND EXPLANATION 73
3.8.4 Listing of fortran program 77
3.8.5 DESCRIPTION OF OUTPUT 94
3.8.6 SUMMARY OF USER REQUIREMENTS 96
3.8.7 USER SUPPLIED SUBROUTINES 97
3.9 InPUT TO THE COMPUTER PROGRAM 100
3.9.1 CRT DISPLAY OF QUESTIONS 100
3.9.2 NOTES ABOUT THE INPUT 101
3.10 TEST PROBLEMS 102
3.10.1 TEST PROBLEM 1 : NUMERIC EXAMPLE BY PAVIANI 102
3.10.1.1 SUMMARY 102
3.10.1.2 COMPUTER PRINTOUT OF RESULTS 104
3.10.1.3 USER SUPPLIED SUBROUTINES 106
3.10.2 TEST PROBLEM 2 : PRCBLEM OF MAXIMIZING SYSTEMS RELIABILITY 107
3.10.2.1 SUMMARY 107
3.10.2.2 DESCRIPTION OF THE PROBLEM 109
3.10.2.3 COMPUTER PRIMTOUT OF RESULTS 111
3.10.2.4 USER SUPPLIED SUBROUTINES 115
3.11 REFERENCES 117
CHAFTER 4 RAC - SEQUENTIAL UNCONSTRAINED MINIMIZATION TECHNIQUE 118
4.1 INTRODUCTION 118
4.2 METHOD 118
4.2.1 MAiOR DIFFERENCES BETNEEN RAC-SUMT AND KSU-SUMT 118
4.2.2 SUMMARY OF COMPUTATIONAL PROCEDURE 119
4.3 COMPUTER PRCGRAM DESCRIPTION 123
4.3.1 DESCRIPTION OE SUBROUTINES 124
4.3.2 PROGRAM LIMITATIONS 128
4.3.3 LISTING CF FORTRAN PROGRAM 129
4.3.4 DESCRIPTION OF OUTPUT 170
4.3.5 SUMMARY OF USER REQUIREMENTS 171
4.3.6 USER-SUPPLIED SUBROUTINES 172
4.4 INFUT TO THE COMPUTER PROGRAM 177
4.4.1 CRT DISPLAY OF QUESTICNS 177
4.4.2 USER'S GUIDE TO THE CRT DISPLAY 179
4.5 TEST PROBLEMS 182
4.5.1 TEST PROBLEM 1 : NUMERIC EXAMPLE EY PAVIANI 182
4.5.1.1 SUMMARY 182
4.5.1.2 COMPUTER PRINTOUT OF RESULTS 183
4.5.1.3 USER SUPPLIED SUBROUTINES 186
4.5.2 TEST PROBLEM 2 : PROBLEM OF MAXIMIZING SYSTEMS RELIABILITY 188
4.5.2.1 SUMMARY 188
4.5.2.2 COMPUTER PRINTOUT OF RESULTS 189
4.5.2.3 USER SUPPLIED SUBFOUTINES 193
4.6 REFERENCES 196
CHAPTER 5 DISCUSSION OF LARGE CCMFUTER VERSUS THE MICRO/PERSONAL COMPUTER 197
5.1 CRITERIA USED IN COMPARING THE LAARGE COMPUTER VERSUS THE MICRO/PERSONAL COMPUTER 197
5.2 REASONS FOR USING THE MICRO/PERSONAL COMPUTER IN RESEARCH OR APPLICATION 204
5.3 EXPERIENCE ON THE MICRO/PERSONAL COMPUTER 206
5.4 ADVANTAGES AND DISADVANTAGES OF USING THE MICRO/ PERSONAL COMPUTER 212
5.5 FUTURE STUDY 213
5.6 REFERENCES 214

ACKNOWLEDGEMENTS
I would like to thank by father, Dr. C.L. Hwang, who was by major advisor, for continuous guidance and invaluable advice in planning the study and preparing this thesis. I would also like to thank Dr. Stanley Lee for his suggestions and Dr. Doris Grosh, Dr. Do Sup Chung anci Dr. Frank Tillman for serving on my advisory committee.

Finally, I wish to thank by parents, sisters, and friends for their continuous encouragement.

CHAPTER 1

INTRODUCTION

1.1 HISTORY

The Hooke and Jeeves Pattern Search technique is used to find the local minimum of a multivariable, unconstrained, nonlinear function. The procedure is based on the direct search method proposed by R. Hooke and T.A. Jeeves [9]. At Kansas State University, the method was programmed in Fortran for the campus mainframe computer by S. Kumar [11] in 1959.

The sequential unconstrained minimization technique (SUMT) is lised to find a solution to a nonlinear programming problem with nonlinear inequality and/or equality constraints. The basic scheme of this technique is that a constrained minimization problem is transformed into a sequence of unconstrained minimization problems which can be solved by any of the available unconstrained minimization techniques. The SUMT technique was originally proposed by C.W. Carroll [1,2] in 1959 and further developed by A.V. Fiacco and G.P. McCornick $[3,4,5,6,7]$ in 1964.

At KSU, a computer program was written which uses a modified Hooke and Jeeves pattern search technique as the unconstrained minimization technique for use in the SUMT method. This program was written in Fortran for the large computer by K.C. Lai in 1970 as part of his master's thesis [10, 12, 13].

Also at KSU, S.V. Gopalakrishna wrote a computer program using a conjugate gradient method as the unconstrained minimization technique for use in the SUMT method in 1971 [8]. However, the resuits obtained from the program were not good so the progran was never used.

In 1964, at the Research Analysis Corporation, a computer program was written in Fortran by G.P. McCormick, W.C. MyIander III, and A.V. Fiacco
using a second order gradient method to determine the direction of search and the Fibonacci Search method to determine the optimum step size. The program was entitled "RAC Computer Program Implementing the Sequential Unconstrained Minimization Technique for Nonlinear Programming" (RAC-SUMT) and its share number is 3189 [14]. The program could not handle equality constraints however. A later version of the program, version 4, written in 1971 was able to handle equality constraints and in addition, three more methods were added to be used in determining the direction of search : a conjugate gradient method, a first order gradient method, and a revised version of the second order method used in version 1 [15]. The method used to determine the optimum step size was also changed to the Golden Section Method.

The first version of the RAC-SUMT computer program was checked and modified by F.T. Hsu [16] so that it would run on the computer at K SU in 1969. Version 4 of the RAC-SUMT computer program had not yet been tried here.
1.2 ADVANTAGES OF MICRO/PERSONAL COMPUTER OVER LAFGE COMPUTER

There are a few major advantages which the micro/personal computer has over the large computer which make it attractive to use. One of the major advantages of the micro/personal computer over the large computer is the easy accessibility of the micro/personal computer. One reason why the microcomputer is easily accessible is cecause there is no need to have a security rumber or computer funds to operate the micrc/personal computer as there is for the large computer. Another reason is that there is no need to wait for a terminal or card punch to become available. A third reason is that there is no restriction on the hours when the micro/personal compliter may be used as there is for the large computer. These reasons make the
micro/personal computer more easily accessible than the large computer.
Another major advantage of micro/personal computers over the large computer is cost. The cost of a micro/personal computer is now at a price where many middle and upper class families can purchase ore. In addition to the purchase price being low, the operating cost is also low because there is no need for a staff of computer personnel to keep the micro/personal computer running as there is for the large computer. There is also no charge for using the micro/personal computer as there is for the large computer.

A third reason for using micro/personal computers as opposed to large computers is because of the adequate capability of available micros to handle many types of probiems. The capability of the micro/personal computer has improved greatly over the last few years and many of the limitations which once restricted the types of problems that could be solved on a microcomputer no longer exist.

For example, although microcomputers were once limited to a maximum memory size of 64 K (North Star Horizon), now they can be expanded up to 540 K bytes (IBM PC). See Table 1.1 for a comparison of the features of the two machines. The increase in memory size allows larger programs to be run on the microcomputer and also increases the size of problems which the programs can solve.

Table 1.1 Features of the North Star Horizon and IBM PC

North Star Horizon
CPU : Z80A, 8 bit
Memory : 64K (not expandable)
Operating system : CP/M, North Star DOS
Storage : 360K per 5 1/4 inch floppy disk double sided, double density

IEM PC
CPU : 8088, 16 bit
Memory : 64R (expandable to 640K)
Operating System : PC-DOS
Storage : 360K per $51 / 4$ - inch floppy disk double sided, double density

1.3 LANGUAGE AND CCMPUTER USED IN STUDY

All of the programs used in this study were written in Fortran and developed using a North Star Horizon II microcomputer which has a 280 A CPU. The operating system used was the Lifeboat 2.21A version of CP/M. The source programs were written using Micro Pro's WordStar version 2.26 and compiled with Microsoft's Fortran-80, 1080 version for the North Star microcomputer. The version of Fortran includes the American National Standard Fortran language as described in ANSI document X3.9--1966, approved on March 7, 1966, plus a number or̂ language extensions and some restrictions. Of these extensions, the ones which were used in the programs
were:

1. The literal form of Hollerith data (character string between apostrophe characters) is permitted in place of the standard nH form.
2. Mixed mode expressions and assignments are allowed, and conversions are done automatically.
1.4 THE OBJECTIVES OF THIS STUDY

The objectives of this study are as follows. First, a study was needed to determine the feasibility or practicality of putting the nonlinear programming programs into the microcomputer. When this study first started, only a North Star Horizon microcomputer was available which was limited to $54 k$ bytes of memory. Because of the limited memory of this microcomputer and many others, it was not known whether the programs would fit into the available memory. Also because of its slower speed it was not known whether the programs would be practical to run on the microcomputer.

A second objective was to do a comparative study of the nonlinear programming routines on the large computer versus the microcompliter in terms of ease of use, accuracy of results, size of problem, and total time needed to prepare and run a problem including the time needed to enter data into the terminal, wait for results, etc.

A third objective concerned the checking of the programs. Over a period of 12 years, the Hooke and Jeeves pattern search program, the KSUSUMT program and the RAC-SUMT program have been used for research at KSU. Many students have made minor changes to the programs but there has been no systematic checking of the logic of the changes made to the programs. In this study, a third objective was to systematically check, modify, and
correct che complete programs including any modifications made to them.
A fourth objective is to prepare the programs and the complete documentation of the programs so that they can be used for educational purposes. Included in the documentation is the introduction of the theory behind the techniques used in the programs, numerical examples to illustrate the techniques, the description of the input to the program and how to use the programs, the output from the programs, and a description of the program. The preparation of the programs included making the programs as readable and understandable as possible, restructuring the program if necessary. An input routine also needed to be written for each program to allow input to be entered from the keyboard in an interactive manner.

A fifth objective was to test version 4 of the RAC-SUMT program on the microcomputer. Although version 1 of the RAC-SUMT program had been checked and used at KSU, version 4 had not yet been checked or tested here.

1.5 WHAT HAS BEEN DONE IN THE MS THESIS

The first cbjective of this study was to determine the feasibility or practicality of putting the nonlinear programming routines into the microcomputer. From the printout of the program run on the large computer, the amount of core used could give an indication of whether the program might fit into the microcomputer. However, the exact size of core needed on the microcomputer could not be known until it was actually compiled on the microcomputer.

When the Hooke and jeeves pattern search program and the KSU-SUMT program were compiled, they both fit into the 37 K bytes of available memory but when the RAC-SUMT program was compiled, it exceeded the available memory of the microcomputer. However, by placing the input rolitine into a separate
program, the main program fit into memory.
To determine whether the programs would be practical to run on the microcompliter, the length of time it took to solve a problem had to be determined. Originally, the Hooke and Jeeves pattern search program was programmed using double precision arithmetic. However, test problem 2 which had twenty variables was not finished even after one hour of execution time. Thereafter, the Hooke and Jeeves program and the KSU-SUMT and RAC-SUMT programs were converted to single precision. All tast problems solved by the single precision version of the programs took less than four minutes of execution time demonstrating that it was practical to solve small to moderate size nonlinear programming problems on the microcomputer.

The second objective was to do a comparative study of the nonlinear programming routines on the large computer versus the microcomputer in terms of ease of use, accuracy of results, size of problem, and total time to prepare and run a problem including the time needed to enter data into the terminal, wait for results, and so forth. To accomplish this objective, a set of criteria was chosen to be used in making the comparison. The set of criteria used was similar to those used in comparing competing techniques on the same computer. The test problems were then run on both the microcomputer and the large computer, and finaliy, the results were compared.

The third objective was to systematically check, modify, and correct the complete programs including any modifications made to them. In order to accomplish this objective, first the methodology used in the programs had to be understood. Then the details of the program were studied and finally, any corrections or improvements needed were made to the programs. Because of the usual difficulty in understanding programs written by other people, the sections of code which were not fully clear were not changed. A
major change made to all three programs was to add an input routine which allowed input to be entered interactively from the terminal.

The fourth objective was to prepare the programs and the complete documentation of the programs so they could be used for educational purposes. Much of the documentation was already written by the people who wrote the original programs. It was necessary though to check and update the documentation. More comments were added to the KSU-SUMT program to make it easier to understand. In addition, the step numbers in the algorithm, flowcharts and the program were matched up.

The fifth objective was to test version 4 of the RAC-SUMT program on the microcomputer. When the main program along with the input routine was entered into the microcomputer, it would not fit into the $37 k$ bytes of available memory of the North Star Horizon microcomputer. However, after placing the input routine into a separate program, the main program would finally fit into memory. A few test problems were then run to test out the program.

1.6 preface to the rest of the thesis

In chapter two, the Hooke and Jeeves pattern search technique for unconstrained minimization is presented along with a computer program for it written in Fortran and documentation for the program.

Chapter three presents the KSU-SUMT computer prograrn and the methodology benind the program. The KSU-SUMT technique is implemented using a combination of a modified Hooke and jeeves pattern search and a heuristic programming technique for moving infeasible points back into the feasible region. A computer program written in Fortran is included along with cocumentation for the program.

Chapter four presents the implementation of the SUMT algorithm using the Golden Section method to determine the optimum step size and using one of four gradient methods to determine the direction of search : a first order gradient method, a conjugate gradient method, and two versions of a second order gradient method. The computer program written in Fortran is included along with documentation on how to use the program.

Chapter five presents a discussion of the large computer versus the micro/personal computer in terms of nonlinear programming routines.

1.6 REFERENCES

1. Carrol, C. W., "An Operations Research Approach to the Economic Optimization of a Kraft Pulping Process", Ph.D. Dissertion, Institute of Faper Chemistry, Appletown, Wisc., 1959.
2. Carroll, C. W., "The Created Response Surface Technique for Optimizing Nonlinear Restrained Systems", Operations Research, 9, 169-184, 1961.
3. Fiacco, A. V., and G. P. McCormick, "The Sequential Unconstrained Minimization Technique for Nonlinear Programming : A Primal-Dual Method", Management Sci., 10, 601-617, 1964.
4. Fiacco, A. V., and G. P. McCormick, "Computational Algorithm for the Sequential Unconstrained Minimizatin Technique for Nonlinear Programming", Management Sci.e 10, 601-617, 1964.
5. Fiacco, A. V., and G. P. McCormick, "SUMT without parameters", Systems Research Memorandum No. 121, Technical Institute, Northwestern University, Evanston, Illinois, 1965.
6. Fiacco, A. V., and G. P. McCormick, "Extension of SUMT for Nonlirear Programming : Equality Constraints and Extrapolation", Manasement Sci., 12(11): 816-829, 1966.
7. Fiacco, A. V., and G. P. McCormick, Nonlinear Programming : Seguential Unconstrained Minimization Techniques, Wiley, New York, 1968.
8. Krishna, S. V., "Nonlinear Optimization by the Sequential Unconstrained Minimization Technique Using Conjugate Gradients Methods", M.S. Feport, Department of Industrial Engineering, Kansas State University, 1971.
9. Hooke, R., and T. A. Jeeves, "Direct Search Solution of Numerical and Statistical Problems": J. Assoce Comp, Mache, 8, p. 212, 1961.
10. Hwang, C. L., K. C. Lai, F. A. Tillman, and L. T. Fan, "Optimization of System Reliability by the Sequential Unconstrained Minimization Technique", IEEE Irans. on Reliability, vol. R-24., pp. 133-135.
11. Hwang, C. L., L. T. Fan, and S. Kumar, Hooke and Jeeves Pattern Search Solution to Optimal Production Planning Problems", Report No. 18, Insititute of Systems Design and Optimization, Kansas State University, 1969.
12. Lai, K. C., "Optimization of Incustrial Management Systems by the Sequential Unconstrained Minimization Technique", M.S. Report, Dept. of Industrial Engireering, Kansas State Universiiy, 1970.
13. Tillman, F. A., C. L. Hwang, and W. Kuo, Optimization of Systems Reliability, Marcel Dekker, New York, 1980.
14. McCormick, G. F., W. C. Mylander III, A. V. Fiacco, "Computer Program Implementing the Sequential Unconstrained Minimization Technique for Nonlinear Programming", Advanced Research Department Technical Paper RAC-TP-151, Research Analysis Corporation, April 1965.
15. Kuester, J. L., and J. H. Mize, Optimization Techniques with Fortran, McGraw-Hill Book Company, New York, 1973.
16. Hsu, F. T., L. T. Fan, and C. L. Hwang, "Sequential Unconstrained Minimization Technique (SUMT) for Optimal Production Planning", Report No. 26, Institute for Systems Design and Optimization, Kansas State University, 1971.

HOOKE AND JEEVES FAITERN SEARCH

2.1. INTRODUCTION

This program finds the local minimum of a multivariable, unconstrained, nonlinear function :

$$
\text { Minimize } \quad F\left(x_{1}, x_{2}, \ldots, x_{r}\right)
$$

The procedure is based on the cirect search method proposea by Hooke and Jeeves [2]. No derivatives are required. The procedure assumes a unimodal function; therefore, if more than one minimum exists or the shape of the surface is unknown, several sets of starting values are recormended.

2.2. METHCD

2.2.1 ALGORITHM AND FLCWCHARTS

The direct search method of Eooke and Jeeves [2] is a sequential search routine for mininizing a function $f(\underline{x})$ of more than one variable $x=\left(x_{1}, x_{2}, \ldots, x_{r}\right)$. The argument x is varied until the mirimum of $f(\underline{\underline{x}})$ is obtained. The search routine determines the sequence of values for \underline{x}. The successive values of \underline{x} can be interpreted as points in an r-dimensional space. The procedure consists of two types of moves: Exploratory and Rattern. The descriptive flow diagram for the Hooke and Jeeves pattern search is given in Figure 2.1.

A move is defined as the procedure of going from a given point to the following point. A move is a success if the value of $f(\underline{x}$) decreases (for minimization); otherwise, it is a failure. The first type of move is an exploratory move which is designed to explore the local behavior of the objective function, $f(\underline{x})$. The success or failure of the exploratory moves

Fig. 2.1. Descriptive flow diagram for Hooke and Jeeves pattern search [2]
is utilized by combining it into a pattern which indicates a probabie direction for a successful move $[2,3]$.

The exploratory move is performed as follows :

1. Introduce a starting point x with a prescribed step length d_{i} in each of the independent variables $x_{i}, i=1,2, \ldots, r$.
2. Compute the objective function, $f(x)$ where $\underline{x}=\left(x_{1}, x_{2}, \ldots, x_{r}\right)$.

Repeat the following four steps for $i=1$ to r. (see Figure 2.2)
3. Set $x_{o l d}=x_{i}$ where $x_{\text {old }}$ holds the original vailue of x_{i} before a step size is taken in that dimension.
4. Take a step in the i th dirension by setting $x_{i}=x_{o l d}+d_{i}$.
5. Compute $f_{i}(\underline{x})$ at the trial point x where only x_{i}, the value at the ith dimension, has been changed.
6. Compare $f_{i}(x)$ with $f(x)$:
(i) If $f_{i}(\underline{x})<f(x)$, then the move is a success so set $f(\underline{x})=f_{i}(\underline{x})$ and return to step 3.
(ii) If $f_{i}(\underline{x}) \geq f(\underline{x})$, set $x_{i}=x_{o l \bar{a}}-d_{i \underline{i}}$, compute $f_{i}(\underline{x})$ and see if $f_{i}(\underline{x})<f(\underline{x})$
a) If $f_{i}(\underline{x})<f(\underline{x})$ then the move is a success $\equiv 0$ set $f(\underline{x})=f_{i}(\underline{x})$ and repeat from step 3.
b) If $f_{i}(\underline{x}) \geq f(\underline{x})$, then the move is a failure and see $x_{i}=x_{o l d}$, its original value, anci repeat from step 3.
The point X_{B} obtained at the end of the exploratory moves, which is reached by repeating step 3 until $i=r$, is defined as a bese point. The starting point introciuced in step 1 of the exploratory move is either a starting base point or a point obtained by the pattern move.

Fig. 2.2 Structured diagram for the exploratory moves procedure

The pattern move is designed to utilize the information acquired in the exploratory moves, and executes the actual minimization of the function by moving in the direction of the established pattern. The pattern move is a simple step from the current base to the point

$$
\begin{equation*}
\underline{x}=\underline{x}_{B}+\left(\underline{x}_{B}-\underline{x}_{B}^{*}\right) \tag{1}
\end{equation*}
$$

Where ${X_{B}}^{*}$ is the preceding base point.

Follcwing the pattern move a series of exploratory moves is conducted to further improve the pattern. If the pattern move followed by the exploratory moves brings no improvement, the pattern move is a failure. Then we return to the last base which becomes a starting base and the process is repeated.

If the exploratory moves from any starting base do not yield a point which is better than this base, the lengths of all the steps are reduced and the moves are repeated. Convergence is assumed when the step iengths, d_{i}, have been reduced belcw predetermined limits.

2.2.2 WUMERICAL EXAMPLE

To illustrate the method a simple production scheduling problem will be considered [3]. The function to be minimized is

$$
\begin{equation*}
\hat{r}\left(x_{1}, x_{2}\right)=100\left(x_{1}-15\right)^{2}+20\left(28-x_{1}\right)^{2}+100\left(x_{2}-x_{1}\right)^{2}+20\left(38-x_{1}-x_{2}\right)^{2} \tag{2}
\end{equation*}
$$

To illustrate the procedure, contour ines for equal values of the total cost given by equation (2) are shown in Fig. 2.3. Also presented in the figure are the steps of the Hooke and Jeeves pattern search procedure described in the preceding section. The numbers on the points indicate the sequence in which they are selected. The number on each point also

Fig. 2.3 Hooke and Jeeves pattern search applied to production scheduling problem involving two decision variables.
corresponds to the number of the function values computed from the beginning of the procedure up to and including that point. Table 2.1 presents step by step results of applying the Hooke and Jeeves pattern search method to the two dimensional production scheduling problem.

The point, $x^{l}\left(x_{1}, x_{2}\right)=\underline{x}^{l}(5,10)$, is the starting base. The step length is $\underline{a}=\left(d_{1}, \overline{\mathrm{C}}_{2}\right)=(2,2)$. The new base $\underline{x}^{2}(7,10)$ is obtained by the exploratory moves where $\underline{x}^{3}(7,12)$ and $x^{4}(7,8)$ are failures. Note that $f\left(\underline{x}^{2}\right)<f\left(\underline{x}^{1}\right)$ whereas $f\left(\underline{x}^{3}\right)<\underline{f}\left(\underline{x}^{2}\right)$ and $f\left(\underline{x}^{4}\right)>f\left(\underline{x}^{2}\right)$.

Point $\underline{x}^{5}(9,10)$ is obtained by the pattern move based on equation (1) where $\underline{x}_{B}^{*}=\underline{x}^{1}$ and $x_{B}=\underline{x}^{2}$.

From \underline{x}^{5} the exploratory moves are performed again; $\underline{x}^{7}(11,12)$ becomes a base because $f\left(\underline{x}^{7}\right)<f\left(\underline{x}^{2}\right)$. Note that among these exploratory moves both points \underline{x}^{6} and x^{7} are successes, that $i s, f\left(\underline{x}^{6}\right)<f\left(\underline{x}^{5}\right)$ and $f\left(\underline{x}^{7}\right)<f\left(\underline{x}^{6}\right)$.

Point $\underline{x}^{8}(15,14)$ is reached by the pattern move according to equation (1) where the last base point $\frac{x_{B}}{*}$ is x^{2} and the new base point $\frac{x}{B}$ is \underline{x}^{7}. Point $\underline{x}^{10}(17,16)$ is the result of the exploratory moves where moves to $x^{9}(17,14)$ and to $\underline{x}^{10}(17,16)$ are successes because $f\left(\underline{x}^{9}\right)<\underline{f}\left(\underline{x}^{8}\right)$ and $f\left(x^{l 0}\right)<f\left(x^{9}\right)$. Since $f\left(\underline{x}^{19}<f^{f}\left(\underline{x}^{7}\right), \underline{x}^{10}\right.$ becomes a new base point. The base points are cenoted by $B_{0}, B_{1}, B_{2}, \ldots$ on Fig. 2.3.

The following pattern move where $\frac{x}{B}^{*}=\underline{x}^{7}$ and $x_{B}=\underline{x}^{10}$ results in point $\underline{x}^{11}(23,20)$. Point $x^{13}(21,20)$ is the resuit of the exploratory moves following the rattern move, where $\underline{x}^{12}\left(f\left(\underline{x}^{12}\right)>f\left(\underline{x}^{11}\right)\right), \underline{x}^{14}\left(f\left(\underline{x}^{14}\right)>\right.$ $\left.f\left(\underline{x}^{13}\right)\right)$, and $\underline{x}^{15}\left(f\left(\underline{x}^{15}\right)>f\left(\underline{x}^{13}\right)\right)$ are failures, and $\underline{x}^{13}\left(f\left(\underline{x}^{13}\right)<f\left(\underline{x}^{11}\right)\right)$ is a success. However, \underline{x}^{13} is not accepted as a new base point because $f\left(x^{13}\right)>f\left(x^{10}\right)$. We have to r sturn to the last base point \underline{x}^{10}, which becomes a starting base and the process is restarted from it.

Starting from base point $\underline{\underline{x}}^{10}$ with the original step length $\underline{d}=(2,2)$, the new base point $\underline{x}^{18}(17,18)$ is obtained by the exploratory moves where x^{16} and x^{17}. are failures.

A pattern move along the direction of the line connecting \underline{x}^{10} and \underline{x}^{18} leads to point \underline{x}^{19}. Following this pattern move, the exploratory moves are carried out where \underline{x}^{21}, and x^{22} are failures and $\underline{x}^{20}(19,20)$ is a success; however, \underline{x}^{20} is not accepted as a base because $f\left(\underline{x}^{20}\right)>f\left(\underline{x}^{18}\right)$, and we have to return to the last base x^{18} which becomes a starting base.

The exploratory moves from the starting base, \underline{x}^{18}, to points 23 $\left(=\underline{x}^{22}\right), \underline{x}^{24}, \underline{x}^{25}\left(=\underline{x}^{19}\right)$, and $\left.x^{26}\left(=\underline{x}^{10}\right)\right]$ are all failures. Therefore, the step lengths are reduced from $\underline{\tilde{d}}=(2,2)$ to $\underline{d}=(1,1)$.

The procedure is continued until the limit of the step length, $\underline{d}=$ $(0.05,0.05)$, as the stopping criterion is satisfied. The optimal point $\underline{x}\left(x_{1}=17.81, x_{2}=18.21\right)$ where the value of $f(\underline{x})$ is 2960.74 required 100 calculations of the objective function. The step lengths at this optimal point are $\underline{d}=(0.03125,0.03125)$.

Table 2.1. Step by Step Results of the Two-Dimensional Production Scheduling Problem

Table 2.1. Step by Step Results of the Two-Dimensional Production Scheduling Problem

Table 2.1. Step by Step Results of the Twc-Dimensional Production Scheduling Problem

n	$\mathrm{X}_{\text {B }}$	d	$\underline{\text { x }}$	$\mathrm{f}(\underline{\mathrm{x}}$)	$x^{\text {n }}$	$\mathrm{f}_{\mathrm{i}}(\underline{\mathrm{x}}$)	Comments
30			$(19,18)$	3,340			Pattern
31			$(19,18)$	3,340	$(20,18)$	4,180	Exp fail
32			$(19,18)$	3,340	$(18,18)$	2,980	Exp suc
33			$(18,18)$	2,980	$(18,19)$	3,020	Exp fail
34			$(18,18)$	2,980	$(18,17)$	3,180	Exp fail
32			$(18,18)$	2,980			$\begin{aligned} & \mathrm{f}\left(\mathrm{x}^{32}\right)<\mathrm{f}\left(\mathrm{x}^{27}\right) \\ & \text { Pattern move } \\ & \text { failure } \end{aligned}$
							Return to $x^{27}\left(=B_{5}\right)$
27	B_{5}		$(18,18)$	2,980			Starting base point
35			$(18,18)$	2,980	$(19,18)$	3,340	Exp fail
35			$(18,18)$	2,980	$(17,18)$	3,100	Exp fail
37			$(18,18)$	2,980	$(18,19)$	3,020	Exp fail
38			$(18,18)$	2,980	$(18, i 7)$	3,180	Exp fail
$\Sigma 7$			$(18,18)$	2,980			No better base Exp failure
							$d(1,1)>(.05, .05)$
							$\begin{aligned} & \text { Reduce } d(1,1) \text { to } \\ & d(0.5,0.5) \end{aligned}$
27	B_{5}	(0.5,0.5)	$(18,18)$	2,980			Starting base point
39			$(18,18)$	2,980	(18.5,18)	3,100	Exp fair
40			$(18,18)$	2,980	$(17.5,18)$	2,980	Exp fail

2.3 COMPUTER PROGRAM DESCRIFTION

2.3.1 DESCRIPTION OF SUBROUTINES

The program consists of a main program, a block data subroutine, an exploratory moves subroutine, an input subroutine, and a user supplied objective function subroutine.

The main program makes the pattern moves, checks the stopping criterion, and reduces the step sizes. It calls on the INPUT subroutine to enter the data reeded and the EXPLOR subroutine to perform the searches. It also prints out the intermediate and final solution.

The follcwing subroutines are called by main :
BLOCK DATA INIT initializes the variables in the common block CONST. EXPLOR performs the exploratory moves and also prints intermediate results. INPUT reads in the data needed to solve the problem. This includes the problem title, the number of variables, the initial point, the initial step size, the stopping criterion and the printout option. OBJFUN is a user supplied rourine which defines the objective function.

2.3.2 PROGRAM LIMITATICNS

The program will presently handle up to 50 variables. To solve a larger problem the following changes need to be made.
(1) The constant MAXVAR in the Block Data subroutine should be increased.
(2) The dimensions of the arrays in the main program should be increased to the value of MAYNAR.

REAL X(50), STEP(50), NEVBAS(50), CLDBAS(50)

The FORMAT statements for printing out restilts is set up to print a maximun number of function evaluations of 6 digits.

2.3.3 TABLE OF PROGRAM SYMBOLS AND EXPIANATIOI

TABLE 2.2 Program Symbols and Explanation
FORIRAN Program Symbol

Mathematical Symbol

ALPHA Acceleration factor for pattern move
BETA Reduction factor for step size
CONSOI The logical unit number of the CRT console.
COUNT The objective function counter
EXPCNT The 'COUNT' of the current best point found as a result of an exploratory move

FIRIAL Function value at a trial point during exploratory moves $f_{i}(x)$
FX Function value at the current best point found from an $f(x)$ explcratory move

FXNB Function value at current base point $f\left(x_{B}\right)$
IPRINT Print option
IFRINT = 0 prints optimal solution only
$=1$ prints values before each step size reduction
$=2$ prints all steps
= 3 prints all cetails
LASTBS The 'COUNT' of the last base point
MAXCUT Maximum number of step size reductions. This is used as the stopping criterion.

MAXVAR Maximum number of variables which the program can handie. (Presentiy MAYVAR $=50$)

NEUBAS An array containing the current base point
NuRAS Ease point counter
NUMCUT Number of step size reductions performed
NUMFOR The 'CONNT' of the point before the exploratory moves begin
NUMVAR Number of variables in the problem to be solved.
NI
Set equal to (NUMCUT +1) and only used to identify the point to be printed before a step size reduction

TABLE 2.2 Program Symbols and Explanation
FORTRAN
Program
Mathematical
Explanation
Symbol

OLDBAS An array containing the previous base point

OLDCNT The 'COUNT' of the previous successful point found during the exploratory moves

PRINIR The logical unit number of the printer
SIEP An array containing the current step size
STEPOP The step size option
STEPOP $=0$ uses computed values
STEPOP $=1$ allows the user to specify cwn values
TITME An array containing the title of the problem to be solved
TZER Tolerance of zero. (Because of roundoff errors a number which is supposed to be zero may appear on the printout as a small finite number (eg. l.OE-24). The program checks for a a zero value within the tolerance interval before printing.)
$\mathrm{X} \quad$ An array containing the current values of the variables

XOLD Used to store the value of the ith dimension of X before a step size is taken in that dimension.

2.3.4 LISTING OF FORTRAN PROGRAM

```
C HOOKE AND JEEVES PATTERN SEARCH
C******************************************************************
```

C
C THIS PROGRAM IS FOR FINDING THE LOCAL MINIMUM
C OF A MULTIVARIABLE, UNCONSTRAINED, NONLINEAR FUNCTICN.
C THE PROCEDURE IS BASED ON THE DIRECT SEARCH METHOD
C PROPOSED BY HOOKE AND JEEVES.
C
C
C
C

C
BLOCK DATA INIT
REAL TZER
INTEGER CONSCL, PRINTR, MAXVAR, NUMVAR, IPRINT
COMMON /CONST/ TZER,CONSOL, PRINTR,MAXVAR,NUMVAR,IPRINT
DATA TZER / $1.0 E-08 /$
DATA CONSOL, PRINTR /1,2/
DATA MAXVAR /50/
END
C
C
C
C
C
C

PROGRAM HOOKE
C
EXTERNAL OB.JFUN, INIT
INTEGER CONSOL, PRINTR, MAXVAR, NUMVAR, IPRINT INTEGER MAXCUT, NUMCUT, CCUNT, NUMBAS, LASTBS, EXPCNT REAL TZER, FX, FXNB, ALPHA, BETA
REAL $\mathrm{X}(50), \operatorname{STEP}(50)$, NLWBAS(50), CLDBAS(50)
COMMON /CONST/ TZER,CONSOL, PRINTR,MAXVAR, NUNVAR, IPRINT DATA ALPHA, BETA $/ 1.0,0.5 /$
DATA NUMCUT /O.
DATA COUNT, NUMBAS, LASTBS, EXPCNT $/ 0,0,1,0 /$
FORMAT ('0', 8 X, 'BEFORE EXFLORATORY MOVES', $4 \mathrm{X},{ }^{\prime} \mathrm{PT}$ ', I6, 4X, 'OBJFUN =', E14.6)
FORMAT (' ',8X,4E15.6)
FORMAT (${ }^{\prime} \mathrm{O}^{\prime}, 8 \mathrm{X}$, 'AFTER EXPLORATORY MOVES ',4X,'PT', I6, 4X, 'OBJFUN $=1$, E14.6)
FGRMAT (${ }^{\prime} 0^{\prime}, 8 \mathrm{X}, \mathrm{A}$ AETER PATTERN MOVE',10X, 'PT', Í́,
4X, 'OBJFUN =', E14.6)
FORMAT (' ', 8X, 4E15.6)
FORMAT (' ', 8 X, 'BASE POINT NUMBER ',I5)
FORMAT ('0',8X,'FAILED PATTERN MOVE , RETURN ', 'TO LAST BASE POINT')
C
290 FORMAT ('O', $8 \mathrm{X},{ }^{\prime}$; FAILED EXFLORATORY MOVES, CHECK', ' THE STEP SIZE')
FORMAT (/ '0',8X,'BEFORE STEP-SIZE REDUCTICN 非 ',I2, / 15X,'FUNCTION COUNT = ',I6,

```
    2 / 15X,'OBJFUN =',E14.6 )
    288 FORMAT (' ',8X, 4E15.6)
    286 FORMAT ('O',11X,'* STEP SIZE REDUCED TO : ')
    285 FORMAT (' ',8X, 4E14.5)
    280 FORMAT ('0',//,15X,'** OPTIMAL RESULTS **'/
        1 'O',8X,'TOTAL NUMBER OF FUNCTION CALCULATIONS = ',I6/
    2 'O',8X,'OBJECTIVE FUNCTION = ',E15.6)
    279 FORMAT('0',11X,'VARIABLE',6X,'OPTIMAL POINT',5X,
        'FINAL STEPSIZE')
    278 FORMAT (' ',13X, I3, 7X, E14.6, 4X, E14.5)
            ** READ IN INFUT FROM THE CRT CONSOLE **
    CALL INPUT ( MAXCUT, NEWBAS, STEP )
    FXNB = OBJFUN (NEWBAS)
    COUNT = COUNT + 1
        ** START AT BASE POINT **
    1 DO }10\textrm{I}=1,NUMNA
        X(I) = NEWBAS(I)
    10 CONTINUE
    FX = FXNB
** EXPLORATORY MOVES **
    IF (IPRINT.GE.2) WRITE (PRINTR,299) LASTBS, FX
    IF (IPRINT.GE.2) WRITE (PRINTR,298) (X(I),I=1,NUMVAR)
    CALL EXPLOR ( FX, X, STEP, LASTBS, EXPCNT, COUNT )
    IF (IPRINT.GE.2) WRITE (PRINTR,297) EXPCNT, FX
    IF (IPRINT.GE.2) WRITE (PRINTR,298) (X(I),I=1,NUMVAR)
    IF (FX .GE. FXNB) GO TO }11
    **** WHILE EXPLORATORY MOVES MAKE PROGRESS ***
        ** SET NEW BASE POINT **
    NUMBAS = NUMBAS + }
    IF (IPRINT.EQ.3) WRITE (PRINTR,293) NUMBAS
    DO 20 I=1,NUMVAR
        OLDBAS(I) = NEWBAS(I)
        NEWBAS(I) = X(I)
    20 CONTINUE
        FXNB = FX
        LASTBS = EXPCNT
        DO 30 I=1,NUMV AR
        X(I) = NEWBAS(I) + ALPHA * ( NEWBAS(I) - OLDBAS(I) )
        30 CONTINUE
        FX = OBJFUN(X)
        COUNT = COUNT + 1
        IF ( ABS(FX).LE. TZER ) FX = 0.0
        IF (IPRINT.GE.2) WRITE (PRINTR,295) COUNT, FX
        IF (IPRINT.GE.2) WRITE (PRINTR,294) (X(I),I=1,NUMVAR)
```

 IF (IPRINT.GE.2) WRITE (PRINTR,299) COUNT, FX
 IF (IPRINT.GE.2) WRITE (PRINTR,298) (X(I),I=1,NUMVAR)
 CALL EXPLOR (FX, X, STEP, COUNT, EXPCNT, COUNT)
 IF (IPRINT.GE.2) WRITE (PRINTR,297) EXPCNT, FX
 IF (IPRINT.GE.2) WRITE (PRINTR,298) (X(I),I=1,NUMVAR)
 C
IF (FX.LT.FXNB) GO TO 15
** END (* WHILE LOOP *) **
** PATTERN MOVE FAILED **
IF (IPRINT.GE.2) WRITE (FRINTR,292)
GO TO 1
** EXPLORATORY MOVE FAILED **
** CHECK THE STOPPING CRITERION **
110 IF (IPRINT.GE.2) WRITE (FRINTR,290)
IF (NUMCUT.EQ.MAXCUT) GO TO 190
** STOPPING CRITERION NOT SATISFIED **
** PRINT OUT RESULTS BEFCRE THE STEP SIZE REDUCTION **
N1 = NUMCUT + 1
WRITE (CONSOL,289) N1, COUNT, FXNB
WRITE (CONSOL,288) (X(I), I=1,NUMVAR)
IF(IPRINT.EQ.1) WRITE(PRINTR,289) N1, COUNT, FXNB
IF(IPRINT.EQ.1) WRITE(PRINTR,288) (X(I), I=1,NUMVAR)
** REDUCE THE STEP SIZE **
DO 35 I=1,NUMNAR
STEP(I) = BETA * STEP(I)
35 CONTINUE
NUMCUT = NUMCUT + 1
WRITE (CONSCL,286)
WRITE (CONSOL,285) (STEP(I), I=1,NUMVAR)
IF (IPRINT.GE.1) WRITE (PRINTR,286)
IF(IPRINT.GE.1) WRITE(PRINTR,285) (STEP(I),I=1,NUMNAR)
GO TO 1
C
190 WRITE (CONSCL,280) COUNT, FXNB
WRITE (PRINTR,280) CCUNT, FXNB
WRITE (CONSOL,279)
WRITE (PRINTR,279)
WRITE (CONSOL,278) (I, NEWBAS(I), STEP(I), I=1,NUMNGR)
WRITE (PRINTR,278) (I, NEWBAS(I), STEP(I), I=1,NUMNAR)

SUBROUTINE EXPLOR (FX, X, STEP, NUMFOR, EXPCNT, COUNT)

DO $90 I=1$, NURNAR
$X O L D=X(I)$
$X(I)=X O L D+\operatorname{STEP}(I)$
FTRIAL = OBJFUN(X)
COUNT $=$ COUNT +1
IF (ABS (FTRIAL) .LE. TZER) FTRIAL = 0.0
IF (IPRINT.EQ.3) WRITE (PRINTR,199) I, COUNT, FTRIAL IF (IPRINT.EQ.3) WRITE (PRINTR, 198) (X (J) , J=1, NUMVAR) IF (FTRIAL.LT.FX) GO TO 80
** EXPLORATORY MOVE FAIIED IN POSITIVE DIRECTION ** TRY MOVE IN OPPOSITE DIRECTION
$\mathrm{X}(I)=\mathrm{KOLD}-\operatorname{STEP}(I)$
FTRIAL $=$ OBJFUN(X)
COUNT $=$ COUNT +1
IF (ABS (FTRIAL) . LE. TZER) FTRIAL $=0.0$
IF (IPRINT.EQ.3) WRITE(PRINTR,199) I,COUNT,FTRIAL IF(IPRINT.EQ.3) WRITE(PRINTR,198) (X(J),J=1,NUMVAR) IF (FTRIAL.LT.FX) GO TO 80
** WHEN EXPLORATORY MCVE FAILS IN OPPOSITE DIRECTION **

$$
X(I)=\text { XOLD }
$$

IF(IPRINT.EQ.3) WRITE(PRINTR,199) I, CLDCNT, FX IF (IPRINT.EQ.3) WRITE(PRINTR,198) (X(J), J=1, NUMVAR) GO TO 90
C
$80 \quad \mathrm{FX}=\mathrm{FTRIAL}$
OLDCNT $=$ CCUNT
CONTINUE
C
C
200 FORMAT (1 ', $8 \mathrm{X}, 31(1 *$ 1) //
1 ' ', 8X, 'EXPLORATORY MCVE IN : ')
199 FORMAT (' ', 11X, 'X(',I2, ') DIRECTION ', 3X,
1 'PT', I6, 4X, 'OBJFUN $=1, E 14.6$)
198 FORMAT (${ }^{\prime}$ ', 8 X, 4E15.6)
C
INTEGER CONSOL, PRINTR, MAXVAR, NUMVAR, IPRINT
INTEGER CCUNT, OLDCNT, NUMFOR, EXPCNT
REAL X(MAXVAR), XOLD, STEP(MAXVAR)
REAL FX, FTRIAL, TZER
COMMON /CONST/ TZER,CONSOL,PRINTR,MAXVAR, NUMVAR,IPRINT
IF (IPRINT.EQ.3) WRITE (PRINTR,200)
OLDCNT = NUMFOR

MOVE BACK TO ORIGINAL POINT

EXPCNT $=$ OLDCNT

RETURN
END

SUBROUTINE INPUT (MAXCUT, X, STEP)

> THIS SUBROUTINE READS IN THE DATA NEEDED TO SOLVE THE PROBLEM. THIS INCLUDES THE PROBLEM TITLE, THE NUMBER OF VARIABLES, THE STARTING POINT, THE STARTING STE? SIZES, THE STOPPING CRITERION, AND THE PRINTOUT OPTION.

INTEGER*1 TITLE(58)
INTEGER CONSOL, PRINTR, MAXVAR, NUMVAR, IPRINT INTEGER MAXCUT, STEPOP
REAL X(MAXVAR), STEP(MAXVAR), TZER
COMMON /CONST/ TZER,CONSOL,PRINTR,MAXVAR,NUMVAR,IPRINT
WRITE (CONSOL, 199)
WRITE (PRINTR,199)
WRITE (CONSOL, 198)
WRITE (PRINTR,198)
WRITE (CONSOL, 197)
WRITE (PRINTR,197)
WRITE (CONSOL, 196)
READ (CONSOL, 195) TITLE
WRITE (PRINTR, 194) TITLE
20 WRITE (CONSOL, 193)
READ (CONSOL, 192) NUINAR
C
C * CHECK THAT THE MAXIMUM NUMBER OF VARIABLES IS NOT EXCEEDED IF (NUMVAR.LE.MAXVAR) GO TO 50

WRITE (CONSOL,191)
WRITE (PRINTR,191)
WRITE (CONSOL,190)
WRITE (PRINTR,190)
STOP
C
50 WRITE (PRINTR, 189)
WRITE (PRINTR,188) NUMNAR
WRITE (CONSCL,180)
DO $70 \mathrm{I}=1$, NUMVAR
WPITE (CONSCL, 179) I
READ (CONSOL, 178) X(I)
CONTINUE
C
WRITE (CONSOL, 177)
READ (CONSOL, 176) STEPOP
IF (STEPOP.EQ.1) GO TO 100
DO $90 \mathrm{I}=1$, NUMNAR $\operatorname{STEP}(I)=0.02 * X(I)$ $\operatorname{IF}(\operatorname{ABS}(\operatorname{STEP}(I)) . \operatorname{LE} . \operatorname{TZER}) \operatorname{STEP}(I)=0.01$
CONTINUE
GO TO 130
C
100 DO $110 \mathrm{I}=1$, NUMVAR WRITE (CONSOL, 175) I READ (CONSCL, 174) STEP(I)
CONTINLE

```
C
    130 WRITE (CONSCL, 173)
        WRITE (PRINTR,173)
        DO }120\mathrm{ I=1,NUMNAR
        WRITE (CONSOL,172) I, X(I), I, STEP(I)
        WRITE (PRINTR,172) I,X(I), I, STEP(I)
        CONTINUE
    WRITE (CONSOL, 171)
    READ (CONSOL, 170) MAXCUT
    IF (MAXCUT.EQ.0) MAXCUT = 3
    WRITE (CONSOL,169) MAXCUT
    WRITE (PRINTR,169) MAXCUT
    WRITE (CONSOL,187)
    READ (CONSOL,186) IPRINT
    IF ( IPRINT.EQ.0) WRITE (PRINTR,185)
    IF ( IPRINT.EQ.1) WRITE (PRINTR,184)
    IF ( IPRINT.EQ.2) WRITE (PRINTR,183)
    IF ( IPRINT.EQ.3) WRITE (PRINTR,182)
    WRITE (CONSOL,149)
    WRITE (PRINTR,150)
    IF (IPRINT.GE.1) WRITE (PRINTR,149)
C
    FORMAT ('0',20X,'HOCKE AND JEEVES PATTERN SEARCH ')
    FORMAT ('0',8X,'MINIMIZES AN UNCONSTRAINED, ',
        'MULTIVARIABLE, NONLINEAR FUNCTION')
    197 FORMAT ('O',8X, 31('*') )
    196 FORMAT ('0','ENTER PROBLEM TITLE : ')
    195 FORMAT (58A1)
    194 FORMAT ('0',15X,58A1)
    193 FORMAT ('O','NUMBER OF VARIABLES : ')
    192 FORMAT (I3)
    191 FORMAT ('O',8X,'*** ERROR **** THE MAXIMUM NUMBER CF',
        ' VARIABLES' /
        ' ',8X,' THIS PROGRAM CAN HANDLE IS 20')
    FORMAT ('O',8X,'TO SOLVE A LARGER PROBLEM, THE',
    1 ' DIMENSIONS OF THE ARRAYS ' / ' ',8X,
    1 'IN THE MAIN PROGKAM WILL HAVE TO BE MODIFIED' /)
C
    189 FORMAT ('O',8X,'**** INPUT DATA ECHO ***')
    188 FORMAT ('O',8X,'NUMBER OF VARIABLES = ',I2)
    187 FORMAT ('O','PRINTOUT OPTION : ' /
        1 5X,'RETURN for printout of optimal solution only'/
    2 5X,' }1\mathrm{ for results before each stef-size',
    ' cut --- SUGGESTED OPTION' /
    5X,' 2 for printout of all steps' /
    5X,' 3, for printout of all details: /
    186 FORMAT (I1)
    185 FORMAT ('O',8X,'PRINT OPTION SELECTED --- PRINTOUT',
        ' OF OPTIMAL SOLUTION ONLY')
        FORMAT ('0',8X,'PRINT OPTION SELECTED --- RESULTS',
        ( AT EACH STEP-SIZE CUT')
        FORMAT ('O',8X,'PRINT OPTION SELECTED --- PRINTOUT',
        ' OF ALL STEPS')
```

```
    182 FORMAT ('O',8X,'PRINT OPTION SELECTED --- PRINTOUT',
        1 ' OF ALL DETAILS')
C
    180 FORMAT ('0',3X,'ENTER THE INITIAL POINT : ')
    179 FORMAT (' ','STARTING X(', I2,') = ')
    178 FORMAT (F15.0)
    177 FORMAT ('O':'STEP SIZE OPTIONS : ' /
        5X,'RETURN to use computed value ',
        ' STEP(I) = 0.02 * X(I)' /
        5X,' 1 to specify own values '/
        5X,'ENTER OPTION : ')
    FORMAT (I1)
    FORMAT (' ','STEP(',I2,') = ')
    FORMAT (F15.0)
    FORMAT ('0',15X,'INITIAL POINT AND STEP SIZE')
    FORMAT (' ',11X,'X(',I2,') = ',G14.6,
        6X,'STEP(',I2,')= ',G14.5)
    171 FOFMAT ('O',' THE MAXIMUM NUMBER OF STEP-SIZE',
        ' REDUCTIONS :' /
        5X, 'RETURN for default of 3'/
        5X,'ENTER NUMBER : ')
    170 FORMAT (I2)
    169 FORMAT ('O',8X,'THE MAXIMUM NUMBER OF STEP-SIZE',
        ' REDUCTIONS = ',I2 /
    1 ' ',8X,'THE REDUCING FACTOR = 0.5 ')
    i50 FORMAT ('0',8X,'**** END OF INPUT ECHO ****'//)
    149 FORMAT ('0',8X,'IN THE FOLLOWING OUTPUT, THE VALUES',
        1 ' PRINTED ARE, RESPECTIVELY : '/
    2 ' ',12X,'THE FUNCTION COUNTER, THE FUNCTION VALUE'/
    3 ' ',12X,'AND THE DECISION VARIABLE VECTOR '//)
C
RETURN
END
```


2.3.5 DESCRIPTION OF OUTPUT :

The initial parameter values and the final soluticn are always printed. Intermediate results are printed if the user specifies IPRINT $=l_{r} 2$, or 3 on the printout option.

Printout options include :
0 Only optimal solution
1 Results at each step-size reduction
2 Results at each step
3 All details

2.3.6 SUMMARY OF USER REQUIRENENTS

1. Create a file on disk that contains OBJFUN, the objective function subroutine.
2. Determine the initial estimate of the optimal point to be used as the starting point.
3. Determine the initial step size and the final step sizes. The program asks for the initial step sizes and MAXOUT, the maximum number of step size reductions. MAXCUT is determined as the number of times the the initial step size must be reduced by $1 / 2$ to get the £inal step size.

Note : The rext two steps will vary depending on the particular compiler used. The following applies if using Microsofi RORTRAN.
4. Compile the objective function subroutine using the F80 command. F80 =B:objfile where objfile is the name of the file which contains the objective function subroutine.
5. Run the program using the L80 command as follows :
where the B refers to drive B where the program and objective function files are. The $/ G$ tells the computer to $G o$ and execute the program.

2.3.7 USER SUPPLIED SUBROUTINE

FUNCIION OBJFUN (X) is the user supplied subrolitine in Fortran which defines the objective function to be minimized. The function should be defined in terms of the variable $X(I), I=1, N$ where N is the number of variables. The subroutine should contain a declaration statement

REAL X(50)
An example of the subroutine is shown below for the function
Minimize $f(x)=x_{1}^{2}+x_{1} x_{2}+x_{2}^{2}-3 x_{2}$

Note that Fortran statements begin in colmn 7 or beyond.

```
FUNCTION OBUFUN (X)
REAL X(50)
OBJFUN = X(1)**2 + X(1)*X(2) + X(2)**2 - 3.*X(2)
RETURN
END
```


2.4.1 CRT DISPLAY OF QUESTIONS

HOOKE AND JEEVES PATTERN SEARCH
USED TO MINIMIZE AN UNCONSTRAINED, MULTIVARIABLE, NONLINEAR FUNCTION

```
*
```

ENTER PROBLEM TITLE :
IUMBER OF VARIABLES :
ENTER THE INITIAL POINT :
STARTING X (1) =
STARTING X(2) =
STEP SIZE OPTIONS :
RETURN to use computed value $\operatorname{STEP}(I)=0.02 * X(I)$
1 to specify own values
ENTER OPTION :
$\operatorname{STEP}(1)=$
$\operatorname{STEP}(2)=$

INITIAL POINT AND STEP SIZE ECHO

$X(1)=$	10.000	$\operatorname{STEP}(1)=$	1.0000
$X(2)=$	10.000	$\operatorname{STEP}(2)=$	1.0000

THE MAXIMUM NUMBER OF STEP-SIZE REDUCTIONS
RETURN for default of 3
ENTER NUMBER :
THE MAXIMUM NUMBER OF STEP-SIZE REDUCTIONS = 3
THE REDUCING EACTOR $=0.5$

FRINTOUT OPTION :
RETURN for printout of optimal solution only
1 for results before each step-size cut --. SUGGESTED 2 for printout of all steps 3 for printout of all details
ENTER OPTICN :
2.4.2 NOTES ABOUT THE INPUT

Print options 2 and 3 produce a large amount of data and should only be used for small problems (2 or 3 variables). These two options are mainly a teaching tool used for learning the details of the method.

2.5 TEST PRCBLEMS

2.5.1 TEST PRCBLEM 1 : SIMPLE PRODUCTION SCHEDULING

2.5.1.1 SUMMARY

NUMBER OF VARIABLES : 2
FUNCTION :

$$
\text { Min } F(\underline{x})=100\left(x_{1}-15\right)^{2}+20\left(28-x_{1}\right)^{2}+100\left(x_{2}-x_{1}\right)^{2}+20\left(38-x_{1}-x_{2}\right)^{2}
$$

STARTIMG POINT : $x_{1}=5.0, x_{2}=10.0$
INITIAL STEP SIZE : $d_{1}=2.0, d_{2}=2.0$
MAXIMUM NUMBER OF STEP SIZE REDUCTION : 6
OPTIMAL POINT :

$$
\begin{aligned}
F(\underline{x}) & =2960.74 \\
x_{1} & =17.81 \\
x_{2} & =18.22
\end{aligned}
$$

NUMBER OF FUNCTION EVALUATIONS : 100

MICROCOMPUTER
SIMGLE PRECISION 0.04 min . 1.57 min .

LARGE COMPUTER SINGLE PRECISION 0.02 min .
2.5.1.2 COMPUTER PRINTOUT OF RESULTS
hOOKE AND JEEVES PATTERN SEARCH
MInImizes an unconstrained, multivariable, nonlinear function

SIMPLE PRODUCTION SCHEDULING PROBLEM
*** INPUT DATA ECHO ***
NUMMER OF VARIABLES = 2
INITIAL POINT AND STEP SIZE
$X(1)=5.00000 \quad \operatorname{STEP}(1)=2.0000$
$X(2)=10.00000 \quad \operatorname{STEP}(2)=2.0000$
THE MAXIMUM NUMBER OF STEP-SIZE REDUCTIONS = 6
THE REDUCING FACTOR $=0.5$
PRINT OFTION SELECTED --- PRINTOUT OF aLl DETAILS
**** END OF INPUT ECHO ****
in the following output, the values printed are, respectively : THE FUNCTION CCUNTER, THE FUNCTION VALUE and tie decision variable vector

EXPLORATORY MOVE IN :
X(1) DIRECTION PT 2 OBJFUN $=.240400 E+05$
.700000E+01 . $100000 \mathrm{E}+02$
X(2) DIFECTION PT 3 OBJFUN $=.249400 E+05$
.700000 E+01 . $120000 \mathrm{E}+02$
$\mathrm{X}(2)$ DIRECTION PT 4 OBJFUN $=.259000 E+05$ $.700000 \mathrm{E}+01$. $800000 \mathrm{E}+01$ $\mathrm{X}(2)$ DIRECTION PT 2 OBJFUN $=.249400 \mathrm{E}+05$.700000E+01 .100000E+02

AFTER EXPLORATORY MOVES PT 2 OBJFUN $=.249400 E+05$ $.700000 \mathrm{E}+01$. $100000 \mathrm{E}+02$
BASE POINT NUMBER 1
after pattern move
FT . 900000E+01 . $100000 \mathrm{E}+02$

```
BEFORE EXPLORATORY MOVES PT 5 OBJFUN = .181400E+05
    .900000E+01 .100000E+02
```


EXPLORATORY MOVE IN :
X (1) DIRECTION PT 6 OBJFUN $=.132600 E+05$
$.110000 \mathrm{E}+02 \quad .100000 \mathrm{E}+02$
X (2) DIRECTION PT $7 \quad$ CBJFUN $=. i 19800 E+05$
$.110000 \mathrm{E}+02$. $120000 \mathrm{E}+02$
AFTER EXPLORATORY MOVES PT 7 OBJFUN $=.119800 E+05$
$.110000 \mathrm{E}+02$. $120000 \mathrm{E}+02$
BASE POINT NUMBER 2
AFTER PATTERN MOVE PT 8 OBJFUN $=.510000 E+04$
$.150000 \mathrm{E}+02.140000 \mathrm{E}+02$
BEFORE EXPLORATORY MOVES PT 8 OBJFUN $=.510000 E+04$
$.150000 \mathrm{E}+02.140000 \mathrm{E}+02$

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

EXPLORATORY MOVE IN :
X (1) DIRECTICN PT 9 OBJFUN $=.470000 E \div 04$
$.170000 \mathrm{E}+02$. $140000 \mathrm{E}+02$
$\mathrm{X}(2)$ DIRECTION PT 10 OBJFUN $=.342000 \mathrm{E}+04$
.170000E+02 .160000E+02
AFTER EXPLORATORY MOVES PT 10 OBJFUN $=.342000 E+04$
.170000E+02 .160000E+02
BASE POINT NUMBER 3

after pattern move . $230000 \mathrm{E}+02$	$\begin{array}{r} \text { PT } \\ .200000 \mathrm{E}+02 \end{array}$	11	OBJFUN $=$. $830000 \mathrm{E}+04$
BEFORE EXPLORATCRY	MOVES PT	11	OBJFUN =	. $830000 \mathrm{E}+04$
* *	-200000E+02		***	* ** * *

EXPLORATORY MOVE IN :
X (1) DIRECTION PT 12 OBJFUN $=.136600 E+05$
$.250000 \mathrm{E}+02$.200000E+02
K(1) DIRECTION PT 13
$.210000 \mathrm{E}+02.200000 \mathrm{E}+02$
$\mathrm{X}(2)$ DIRECTION PT 14 OBJFUN $=.518000 E+04$
$.210000 \mathrm{E}+02$.220000E+02
$X(2)$ DIRECTION FT 15 CBJFUN $=.550000 E+04$
$.210000 \mathrm{E}+02$.180000E+02
$\mathrm{X}(2)$ DIRECTION PT 13 OBJFUN $=.486000 E+04$
.210000E+02 .200000E:-02
AFTER EXPLORATORY MOVES PT
$.210000 \mathrm{E}+02.200000 \mathrm{E}+02$

FAIIED fattern MOVE , RETURN TO LAST BASE POINT

BEFORE EXPLORATORY MOYES PT 10 OBJFUN $=.342000 E+04$ $.170000 \mathrm{E}+02 \quad .160000 \mathrm{E}+02$

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

EXPLORATORY MOVE IN :
X(1) DIRECTION PT 16 OBJFUN $=.430000 E+04$
$.190000 \mathrm{E}+02$. $160000 \mathrm{E}+02$
$X(1)$ DIRECTION PT 17 OBJFUN $=.446000 E+04$
$.150000 \mathrm{E}+02$. $160000 \mathrm{E}+02$
$\mathrm{X}(1)$ DIRECTION PT 10 OBJFUN $=.342000 \mathrm{E}+04$
$.170000 \mathrm{E}+02 \cdot 160000 \mathrm{E}+02$
X(2) DIRECTION PT 18 OBJFUN $=.310000 E+04$
$.170000 \mathrm{E}+02$. $180000 \mathrm{E}+02$
AFTER EXPLORATORY MOVES PT 18 OBJFUN $=.310000 E+04$ $.170000 E+02.180000 E+02$
BASE POINT NUMBER 4
AFTER PATTERN MOVE PT 19 OBJFUN $=.374000 E+04$.170000E+02 .200000E+02

BEFORE EXPLORATORY MOVES PT 19 OBJFUN $=.374000 E+04$ $.170000 E+02.200000 E+02$

EXPLORATORY MOVE IN :
$X(1)$ DIRECTION PT $20 \quad$ OBJFUN $=.334000 E+04$.190000E+02 .200000E+02
$X(2)$ DIRECTION PT 21 OBJFUN $=.430000 E+04$ $.190000 \mathrm{E}+02 \quad .220000 \mathrm{E}+02$ $\mathrm{X}(2)$ DIRECTION PT $22 \quad$ OBJFUN $=.334000 E+04$. $190000 \mathrm{E}+02$. $180000 \mathrm{E}+02$ X(2) DIRECTION PT 20 $.190000 \mathrm{E}+02$.200000E+02

AFTER EXPLORATORY MOVES PT $.190000 \mathrm{E}+02 \mathrm{D}, 200000 \mathrm{E}+02$

Falled pattern move, return to Last base point
BEFORE EXPLORATCRY MOVES PT 18 CBJFUN $=.310000 E+04$ $.170000 \mathrm{E}+02$.180000E+02

EXPLORATCRY MOVE IN :
X (1) DIRECTION PT $23 \quad$ CBJFUN $=.334 C O O E \div 04$
$.190000 \mathrm{E}+02$.180000E+02
X(1) DIRECTION PT 24
OBJFUN $=.478000 E+04$
$.150000 \mathrm{E}+02$.180000E+02
X(1) DIRECTION PT 18
CBJFUN $=.3100005+04$
.170COOE+02 .180000E+02
X(2) DIRECTION PT 25
$.170000 \mathrm{E}+02$.200000E+02
X(2) DIRECTION PT 26 OBJFUN $=.342000 E+04$.170000E+02 .160000E+02
$\mathrm{X}(2)$ DIRECTION PT 18 OBJFUN $=.310000 E+04$ $.170000 E+02.180000 E+02$

AFTER EXPLORATORY MOVES PT 18 OBJFUN $=.310000 E+04$ $.170000 \mathrm{E}+02$. 180000E+02

* FAILED EXPLORATORY MOVES, CHECK THE STEP SIZE
* STEP SIZE REDUCED TO :
$.10000 E+01 \quad .10000 E+01$
BEFGRE EXPLORATORY MOVES PT 18 OBJFUN $=.310000 E+04$ $.170000 \mathrm{E}+02$.180000E +02

EXPLORATORY MOVE IN :
$\mathrm{X}(1)$ DIRECTION PT 27 OBJFUN $=.298000 E+04$
$.180000 E+02 \quad .180000 E+02$
$\mathrm{X}(2)$ DIRECTION PT 28 OBJFUN $=.302000 \mathrm{E}+04$
$.180000 \mathrm{E}+02 \quad .190000 \mathrm{E}+02$
X(2) DIRECTION PT $29 \quad \mathrm{CBJFUN}=.318000 E+04$
$.180000 \mathrm{E}+02$. 170000E+02
X(2) DIRECTION PT 27 OBUFUN $=.298000 E+04$ $.180000 \mathrm{E}+02$.180000E +02

AFTER EXPLORATORY MOVES PT 27 OBJFUN $=.298000 E+04$ $.180000 \mathrm{E}+02 \quad .180000 \mathrm{E}+02$
BASE POINT NUMBER 5
AFTER PATTERN MOVE PT 30 OBJFUN $=.334000 E \div 04$ $.190000 \mathrm{E}+02$. 180000 +02

BEFORE EXPLORATORY MOVES PT 30 OBJFUN $=.334000 E+04$ $.190000 \mathrm{E}+02.180000 \mathrm{E}+02$

EXPLORATORY MOVE IN :
X(1) DIRECTICN PT 31 OBJFUN $=.418000 E+04$ $.200000 \mathrm{E}+02 \quad .180000 \mathrm{E}+02$ K(1) DIRECTION PT $32 \quad \mathrm{CBJFUN}=.298000 E+04$ $.180000 \mathrm{E}+02 \quad .180000 \mathrm{E}+02$
X (2) DIPECTION PT 33 OBJFUN $=.302000 E+04$ $.180000 \mathrm{E}+02 \quad .190000 \mathrm{E}+02$
$X(2)$ DIRECTION PT $34 \quad O B J F U N=.318000 E+04$ $.180000 \mathrm{E} \div 02$.17C000E+02 X (2) DIRECTION PT 32 OBJFUN $=.298000 E+04$ $.180000 E+02.180000 E+02$

AFTER EXPLORATORY MOVES PT 32 OBJFUN $=.298000 E+04$ $.180000 \mathrm{E}+02.180000 \mathrm{E}+02$

FAILED PATTERN MOVE , RETURN TO LAST BASE POINT
BEFORE EXPLORATORY MOVES PT 27 OBJFUN $=.298000 E+04$ $.180000 \mathrm{E}+02$.180000E+02

4 more pages of intervening printout is left out

```
EXPLORATORY MOVE IN :
    X( 1) DIRECTION PT 75 CBJFUN = .296750E+04
    .180000E+02 .182500E+02
    X(1) DIRECTION PT 76 OBJFUN = .296250E+04
    .177500E+02 .182500E+02
    X(1) DIRECTION PT 67 OBJFUN = .296125E+04
    .178750E+02 .182500E+02
    X(2) DIRECTION PT }77\mathrm{ CBJFUN = .296312E+04
    .178750E+02 .183750E+02
    X(2) DIRECTION PT 78 OBJFUN = .296312E+04
    .178750E+02 .181250E+02
    X( 2) DIRECTION PT 67 CBJFUN = .296125E+04
    .178750E+02 .182500E+02
AFTER EXPLORATORY MOVES PT 67 CRJFUN = .296125E+04
    .178750E+02 .182500E+02
* FAILED EXPLORATORV MOVES, CHECK THE STEP SIZE
    * STEP SIZE REDUCED TO :
    .62500E-01 .62500E-01
BEFORE EXPLORATORY MOVES PT 67 OBJFUN = .296125E+04
    .178750E+02 .18250CE+02
EXPLORATORY MOVE IN :
    X(1) DIRECTION DT 79 CBJFUN = .296344E+04
    .179375E+02 .182500E+02
    X( 1) DIRECTION PT 80 CBJEUN = .296094E+04
    .178125E+02 .182500E+02
    X(2) DIRECTION PT 81 CBJFUN = .296203E+04
    .178125E+02 .183125E+C2
    X(2) DIRECIION PT 82 CBJEUN = .296078E+04
    .178125E+02 .181875E-02
AFTER EXPIORATORY MOVES IT 82 CBJFUN = .296078E+04
    .178125E+02 .181875E+02
EASE POINT NUIBER lo
AFTER PATTERN NOVE PT 83 CBJFUN = .296187E+04
    .177500E+C2 .181250E+C2
REFORE EXPLORATCRY MOVES PT 83 CBJFUN = .296187E+04
    .177500E+02 .181250E+02
```

.178125E+02 . $181250 \mathrm{E}+02$
X (2) DIRECTION PT 85 OBJFUN $=.296078 \mathrm{E}+04$.178125E+02 .181875E+02

AFTER EXPLORATORY MOVES PT 85 OBJFUN $=.296078 \mathrm{E}+04$.178125E+02 . 181875E+02

FAILED PATTERN MOVE , RETURN TO LAST BASE POINT
BEFORE EXPLORATORY MOVES PT 82 OBJFUN = .296078E+04 $.178125 \mathrm{E}+02$. $181875 \mathrm{E}+02$

EXPLORATORY MOVE IN :
X (1) DIRECTION PT 86 CBJFUN $=.296172 E+04$
.178750E+02 .181875E+02
$\mathrm{X}(1)$ DIRECTION PT 87 OBJFUN $=.296172 \mathrm{E}+04$
. 177500E+02 . $181875 \mathrm{E}+02$
$\mathrm{X}(1)$ DIRECTION PT 82 OBJFUN $=.296078 \mathrm{E}+04$
.178125E+02 .181875E+02
$\mathrm{X}(2)$ DIRECTION PT 88 OBJFUN $=.296094 \mathrm{E}+04$
$.178125 \mathrm{E}+02 \quad .182500 \mathrm{E}+02$
$\mathrm{X}(2)$ DIRECTION PT 89 OBJFUN $=.296156 \mathrm{E}+04$
$.178125 \mathrm{E}+02$. $181250 \mathrm{E}+02$
X (2) DIRECTION PT 82 .178125E+02 .181875E+02

AFTER EXPLORATORY MOVES PT 82 OBJFUN $=.296078 \mathrm{E}+04$.178125E+02 . 181875E+02

* FAILED EXPLORATORY MOVES, CHECK THE STEP SIZE
* STEP SIZE REDUCED TO :
.31250E-01 .31250E-01
BEFORE EXPLORATORY MOVES PT 82 OBJFUN $=.296078 \mathrm{E}+04$ $.178125 \mathrm{E}+02$. $181875 \mathrm{E}+02$

EXPLORATORY MOVE IN :
X(1) DIRECTION PT 90 OBJFUN $=.296102 E+04$
. $178437 \mathrm{E}+02$. $181875 \mathrm{E}+02$
X(1) DIRECTION PT 91
. 177812E+02 . $181875 \mathrm{E}+02$
X (1) DIRECTION PT 82
.178125E+02 .181875E+02
X (2) DIRECTION PT 92 .178125E+02 .182187E+02

AFTER EXPLORATORY MOVES PT $.178125 \mathrm{E}+02$. $182187 \mathrm{E}+02$
BASE POINT NUMBER 11
AFTER PATTERN MOVE PT 93 OBJFUN = .296094E+04 .178125E+02 .182500E+02

```
BEFORE EXFLORATORY MOVES PT 93 CBJFUN = .296094E+04
    .178125E+02 .182500E+02
```

EXPLORATORY MOVE IN :
X (i) DIRECTION PT 94 OBJFUN $=.296086 E+04$
$.178437 \mathrm{E}+02$. $182500 \mathrm{E}+02$
X(2) DIRECTION PT 95 OBJFUN $=.296113 E+04$
$.178437 \mathrm{E}+02$. 182812E+02
X (2) DIRECTION PT 96 OBJFUN $=.296082 E+04$
$.178437 \mathrm{E}+02 \mathrm{O}$.182187E+02
AFTER EXPLORATORY MOVES PT 96 OBJFUN $=.296082 E+04$
$.178437 \mathrm{E}+02 \mathrm{O}$. $182187 \mathrm{E}+02$

FAILED PATTERN MOVE , RETURN TO LAST BASE FOINT
BEFORE EXPLORATORY MOVES PT 92 OBJFUN $=.296074 E+04$ $.178125 E+02.182187 E+02$

EXPLORATORY MOVE IN :
X (1) DIRECTION PT 97 CBJFUN $=.296082 E+04$ $.178437 \mathrm{E}+02$. $182187 \mathrm{E}+02$
$\mathrm{X}(1)$ DIRECTION PT 98 OBJFUN $=.296113 \mathrm{E}+04$
$.177812 \mathrm{E}+02 \mathrm{C}$. $182187 \mathrm{E}+02$
$\mathrm{X}(1)$ DIRECTION PT 92 OBJFUN $=.296074 E+04$
$.178125 \mathrm{E}+02 \mathrm{O} \quad .182187 \mathrm{E}+02$
X (2) DIRECTION PT $99 \quad O B J F U N=.296094 E+04$
$.178125 \mathrm{E}+02 \quad .182500 \mathrm{E}+02$
X(2) DIRECTION PT 100 OBJFUN $=.296078 \mathrm{E}+04$
$.178125 \mathrm{E}+02 \quad .181875 \mathrm{E}+02$
$X(2)$ DIRECTION PT 92 OBJFUN $=.296074 E+04$ $.178125 E+02$.182187E+02

AFTER EXPLORATORY MCVES PT 92 OBJFUN $=.296074 E+04$ $.178125 \mathrm{E}+02$.182187E +02

* FAIIED Exploratory moves, check the step size
** OPTIMAL RESULTS **
TOTAL NUMBER OF FUNCTION CALCULATIONS $=100$
OBJECTIVE FUNCTION $=.296074 E+04$

VARIABLE
1
2

OFTIMAL POINT
$.178125 \mathrm{E}+02$
$.182187 \mathrm{E}+02$

FINAL STEPSIZE
. $31250 \mathrm{E}-01$
. $31250 \mathrm{E}-01$

2.5.1.3 USER SUPELIED SUBRCUTINE

REAL FUNCTICN OBJFUN (X)

C

C

$$
\begin{aligned}
\text { OBJFUN } & =100 . *(X(1)-15 .) * * 2+20 \cdot *(28 .-X(1)) * * 2 \\
X & +100 . *(X(2)-X(1)) * * 2+20 \cdot *(38 .-X(1)-X(2)) * * 2
\end{aligned}
$$

C
RETURN
END
2.5.2 TEST PROBLEM 2 : PERSONNEL AND PRODUCTION SCHEdULING - TEN STAGE

2.5.2.1 SUMMARY

NUMBER OF VARIABLES : 20
FUNCTION :

$$
\operatorname{Min} F(\underline{x})=\sum_{n=1}^{10} S_{n}
$$

where

$$
\begin{aligned}
S_{n} & =\left[340.0 W_{n}\right]+\left[64.3\left(W_{n}-W_{n-1}\right)^{2}\right] \\
& +\left[0.2\left(P_{n}-5.67 W_{n}\right)^{2}+51.2 P_{n}-281.0 W_{n}\right] \\
& +\left[0.0825\left(I_{n}-320.0\right)^{2}\right]
\end{aligned}
$$

STARTING POINT :

$$
\begin{aligned}
\underline{x} & =\left(x_{1}, \ldots, x_{10}, x_{11}, \ldots, x_{20}\right) \\
& =(300, \ldots, 300,50, \ldots, 50)
\end{aligned}
$$

INITIAL STEP SIZE :

$$
\begin{aligned}
\underline{d} & =\left(d_{1}, \ldots, d_{10}, d_{11}, \ldots, d_{20}\right) \\
& =(6.0, \ldots, 6.0,1.0, \ldots, 1.0)
\end{aligned}
$$

MAXIMUM NUMBER OF STEP SIZE REDUCTIONS : 3

OPTIMAL POINT :

$$
\begin{aligned}
F(\underline{x})= & 241,516 \\
\underline{x}= & (471.00,444.00,416.25,381.75,376.50, \\
& 364.50,348.75,359.25,329.25,272.25, \\
& 77.62,74.25,70.88,67.75,65.12, \\
& 62.75,60.62,59.00,57.38,56.12) \\
d_{\text {final }}= & \left(d_{1}, \ldots, d_{10}, d_{11}, \ldots, d_{20}\right) \\
= & (0.75, \ldots, 0.75,0.125, \ldots, 0.125)
\end{aligned}
$$

MICROCOMPUTER
SINGLE DOUBLE PRECISION PRECISION

EXECUTION TIME :
3.15 min.
$>60 \mathrm{~min}$.

LARGE COMPUTER
SINGLE
PRECISION
.02 min.

2.5.2.2 DESCRIPTION OF TEST PROBLEM 2

Numerical Example 2 : A Personnel and Production Scheduling Problem
The capability and practicality of the method is demonstrated by obtaining an optimal solution to a well-known mocel of Holt, Modigliani, Muth and Simon [1]. This model which has been derived for their paint factory scheduling problem considers the production and inventory system with two independent variables in each planning period. The schematic representation of the problem is shown in Fig. 2.4.

The two irdependent variables are the production rate and work force level at each month. The problem is to determine the optimal production rate and work force level such that the total operating cost for the planning horizcn is minimized.

Let us define
$\mathrm{n}=\mathrm{a}$ month in the planning horizon
$N=$ the duration, in months
$P_{n}=$ production rate at the n-th month
$W_{n}=$ work force level in the n-th month
$Q_{n}=$ sales rate at the n-th month
$I_{n}=$ inventory level at the end of the n-th month
Inventory level at the end of each month is computed by using the recursive relationship between sales, production and irventory as follows :

$$
I_{n}=I_{n-1}+P_{n}-Q_{n}, \quad n=1,2, \ldots, N
$$

The model considers that the total operating cost consists of the following four cost items.

1. Regular payroll cost $=340.0 \mathrm{~N}_{\mathrm{n}}$
2. Hiring and layô̂f cost $=64.3\left(W_{n}-W_{n-1}\right)^{2}$
3. Overtime cost $=0.2\left(P_{n}-5.67 W_{n}\right)^{2}+51.2 P_{n}-281.0 W_{n}$
4. Inventory cost $=0.0825\left(I_{n}-320.0\right)^{2}$

It is assumed that backlog of orders or negative inventories are permitted.

The decision problem can now be stated as follows:
Cnoose the optimum values for production rate, P_{n}, and workforce level, W_{n}, at each month of the planning horizon so that the total cost S_{n} which is given by

$$
S_{N}=\sum_{n=1}^{N} S_{n}
$$

is minimized. S_{n} is defined as

$$
\begin{aligned}
S_{n} & =\left[340.0 W_{n}\right]+\left[64.3\left(W_{n}-W_{n-1}\right)^{2}\right] \\
& +\left[0.2\left(P_{n}-5.67 W_{n}\right)^{2}+51.2 P_{n}-281.0 W_{n}\right] \\
& +\left[0.0825\left(I_{n}-320.0\right)^{2}\right]
\end{aligned}
$$

The numerical data for the ten-stage (20 dimensional) example follows :

$$
\begin{aligned}
& Q_{1}=430, \quad Q_{2}=447, \quad Q_{3}=440, \quad Q_{4}=316, Q_{5}=397 \\
& Q_{6}=375, \quad Q_{7}=292, \quad Q_{8}=458, \quad Q_{2}=400, \quad Q_{10}=350 . \\
& I_{0}=263 \\
& W_{0}=81
\end{aligned}
$$

Table 2.3 shows the computational results of the example.
In the example, the starting point is selected arbitrarily at $\underline{x}^{0}=\left(P_{1}^{0}, \ldots, P_{10}^{0}, W_{1}^{0}, \ldots, W_{10}^{0}\right)=(300, \ldots, 300,50, \ldots, 50)$. 1709 calculations of the functional value are required for an sptimal solution which satisfies the stcpping criterion, $\underline{d}_{\text {stcp }}=(1.0, \ldots, 1.0)$.

Table 2.3 Results of the Personnel and Production Scheduling Problem (20 dimensions)

Month n	Sales Q_{n}	Production P_{n}	Inventory I_{n}	Work Force W_{n}
0		253.00	81.00	
1	430	471.00	304.00	77.62
2	447	444.00	301.00	74.25
3	440	416.25	277.25	70.87
4	397	381.75	343.00	67.75
5	375	376.50	322.50	65.12
7	292	348.75	312.00	62.75
8	458	359.25	368.75	60.62
9	300	329.25	199.25	59.00
10	350			

Total cost $S_{10}=\$ 241,516$

HOOKE AND JEEVES PATIERN SEARCH
MINIMIZES AN UNCONSIRAINED, MULITVARIABIE, NONLINEAR FUNCTION

```
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
```

 PRODUCTION SCHEDULING --- 10 STAGE
 *** INPUT DATA ECHO ***

NUMBER OF VARIABLES $=20$
INITIAL POINT ARD STEP SIZE
$X(1)=300.000 \quad \operatorname{STEP}(1)=6.0000$
$X(2)=300.000 \quad \operatorname{STEP}(2)=6.0000$
$X(3)=300.000 \quad \operatorname{STEP}(3)=6.0000$
$X(4)=300.000 \quad \operatorname{STEP}(4)=6.0000$
$X(5)=300.000 \quad \operatorname{STEP}(5)=6.0000$
$X(6)=300.000 \quad \operatorname{STEP}(6)=6.0000$
$X(7)=300.000 \quad \operatorname{STEP}(7)=6.0000$
$X(8)=300.000 \quad \operatorname{STEP}(8)=6.0000$
$X(9)=300.000 \quad \operatorname{STEP}(9)=6.0000$
$X(10)=300.000 \quad \operatorname{STEP}(10)=6.0000$
$X(11)=50.0000 \quad \operatorname{STEP}(11)=1.00000$
$X(12)=50.0000 \quad \operatorname{STEP}(12)=1.00000$.
$X(13)=50.0000$
$X(14)=50.0000$
$X(15)=50.0000$
$\operatorname{STEP}(13)=1.00000$
$\operatorname{STEP}(14)=1.00000$
$X(16)=50.0000$
$\operatorname{STEP}(15)=1.00000$
$x(17)=50.0000$
$\operatorname{STEP}(16)=1.00000$
$\operatorname{SIEP}(17)=1.00000$
$X(18)=50.0000 \quad \operatorname{STEP}(18)=1.00000$
$X(19)=50.0000 \quad \operatorname{STEP}(19)=1.00000$
$X(20)=50.0000 \quad \operatorname{STEP}(20)=1.00000$
THE MAXIMUM NUBER CF STEP-SIZE REDUCTIONS = 3
THE REDUCING FACIOR $=0.5$
FRINT OPTION SEIECTED -- RESULTS AT EACH STEP-SIZE OT
**** END OF INPUT ECHO ****

IN THE FOLIOWING OUTPUT, THE VALUES ERINTED APE, RESPECTIVELY :
THE FUNCTION COUNIER, THE FUNCIION VALUE
AND THE DECISION VARIABIE VECIOR

BEFORE STER-SIZE REDUCTION \# 1 FUNCTION COUNT $=671$
OBJFUN $=$.241676E+06 $.474000 \mathrm{E}+03$. $438000 \mathrm{E}+03$
$.372000 \mathrm{E}+03$. $360000 \mathrm{E}+03$
$.336000 \mathrm{E}+03$. $282000 \mathrm{E}+03$
$.710000 \mathrm{E}+02$. $680000 \mathrm{E}+02$
.610000E+02 .600000E+02
. $420000 \mathrm{E}+03$
. $348000 \mathrm{E}+03$
$.780000 \mathrm{E}+02 \quad .740000 \mathrm{E}+02$
$.650000 \mathrm{E}+02$. $630000 \mathrm{E}+02$
$.590000 \mathrm{E}+02.580000 \mathrm{E}+02$

* STEP SIZE REDUCED TO :
. $30000 \mathrm{E}+01 \quad .30000 \mathrm{E}+01$
$.30000 \mathrm{E}+01$. $30000 \mathrm{E}+01$
$.30000 \mathrm{E}+01 \quad .30000 \mathrm{E}+01$
$.50000 \mathrm{E}+00$. $50000 \mathrm{E}+0$
$.50000 \mathrm{E}+00$. $50000 \mathrm{E}+00$

BEFORE STEP-SIZE REDUCTICN \# 2 FUMCTION COUNT $=897$
OBJFUN $=.241571 \mathrm{E}+06$
$.468000 \mathrm{E}+03.444000 \mathrm{E}+03$
. $378000 \mathrm{E}+03$.363000E +03
$.333000 \mathrm{E}+03$.276000E+03
$.710000 \mathrm{E}+02$.680000E+02
$.615000 \mathrm{E}+02.600000 \mathrm{E}+02$
$.30000 \mathrm{E}+01 \quad .30000 \mathrm{E}+01$
$.30000 \mathrm{E}+01$. $30000 \mathrm{E}+01$
$.50000 \mathrm{E}+00 \quad .50000 \mathrm{E}+00$
$.50000 \mathrm{E}+00$. $50000 \mathrm{E}+00$
$.50000 \mathrm{E}+00.50000 \mathrm{E}+00$

$.417000 \mathrm{E}+03$
. $381000 \mathrm{E}+03$
$.351000 \mathrm{E}+03$. $360000 \mathrm{E}+03$
$.775000 \mathrm{E}+02$. $740000 \mathrm{E}+02$
$.655000 \mathrm{E}+02$. $635000 \mathrm{E}+02$
$.585000 \mathrm{E}+02 \quad .570000 \mathrm{E}+02$

* SIEP SIRE REDUCED TO :

$.15000 \mathrm{E}+01$	$.15000 \mathrm{E}+01$	$.15000 \mathrm{E}+01$	$.15000 \mathrm{E}+01$
$.15000 \mathrm{E}+01$	$.15000 \mathrm{E}+01$	$.15000 \mathrm{E}+01$	$.15000 \mathrm{E}+01$
$.15000 \mathrm{E}+01$	$.15000 \mathrm{E}+01$	$.25000 \mathrm{E}+00$	$.25000 \mathrm{E}+00$
$.25000 \mathrm{E}+00$	$.25000 \mathrm{E}+00$	$.25000 \mathrm{E}+00$	$.25000 \mathrm{E}+00$
$.25000 \mathrm{E}+00$	$.25000 \mathrm{E}+00$	$.25000 \mathrm{E}+00$	$.25000 \mathrm{E}+00$

BEFORE STEP-SIZE REDUCTICN \# 3
FUNCTION COUNT $=1201$
CBJFUN $=.241540 \mathrm{E}+06$ $.471000 \mathrm{E}+03.442500 \mathrm{E}+03$
$.376500 \mathrm{E}+03$.364500E+03 $.331500 \mathrm{E}+03$. $274500 \mathrm{E}+03$
$.710000 \mathrm{E}+02$. $680000 \mathrm{E}+02$
$.417000 \mathrm{E}+03$
$.381000 \mathrm{E} \div 03$

$$
.742500 \mathrm{E}+02
$$

$.612500 \mathrm{E}+02$
$.597500 \mathrm{E}+02$
. 349500E $\div 03$ $.360000 \mathrm{E}+03$
.612500E+02

$$
.777500 \mathrm{E}+02
$$

. $632500 \mathrm{E}+02$

* STEP SITE RETUCED TO :
$.75000 \mathrm{E}+00 \quad .75000 \mathrm{E}+00$
$.75000 \mathrm{E} \div 00 \quad .75000 \mathrm{E}+00$
$.75000 \mathrm{E}+00.75000 \mathrm{E}+00$. $75000 \mathrm{E}+00 \mathrm{O} .75000 \mathrm{E}+00$
$.75000 \mathrm{E}+00$. $75000 \mathrm{E}+00.12500 \mathrm{E}+\mathrm{CO} .12500 \mathrm{E}+00$
$.12500 \mathrm{E}+00$. $12500 \mathrm{E}+\mathrm{CO} .12500 \mathrm{E}+00 \mathrm{O} .12500 \mathrm{E} \div 00$
$.12500 \mathrm{E}+00.12500 \mathrm{E}+00 \mathrm{O} .12500 \mathrm{E}+00 \mathrm{O} .12500 \mathrm{E}+00$

TOTAL NUMBER OF FUNCTION CALCULATIONS = 1709
OBJECTIVE FUNCTION $=\quad .241516 \mathrm{E}+\mathrm{C} 6$

VARIABLE	OPIIMAL POINI	FINAL STEPSIZE
1	$.471000 \mathrm{E}+03$	$.75000 \mathrm{E}+00$
2	$.444000 \mathrm{E}+03$	$.75000 \mathrm{E}+00$
3	$.416250 \mathrm{E}+03$	$.75000 \mathrm{E}+00$
4	$.381750 \mathrm{E}+03$	$.75000 \mathrm{E}+00$
5	$.376500 \mathrm{E}+03$	$.75000 \mathrm{E}+00$
6	$.364500 \mathrm{E}+03$	$.75000 \mathrm{E}+00$
7	$.348750 \mathrm{E}+03$	$.75000 \mathrm{E}+00$
8	$.359250 \mathrm{E}+03$	$.75000 \mathrm{E}+00$
9	$.329250 \mathrm{E}+03$	$.75000 \mathrm{E}+00$
10	$.272250 \mathrm{E}+03$	$.75000 \mathrm{E}+00$
11	$.776250 \mathrm{E}+02$	$.12500 \mathrm{E}+00$
12	$.742500 \mathrm{E}+02$	$.12500 \mathrm{E}+00$
13	$.708750 \mathrm{E}+02$	$.12500 \mathrm{E}+00$
14	$.677500 \mathrm{E}+02$	$.12500 \mathrm{E}+00$
15	$.651250 \mathrm{E}+02$	$.12500 \mathrm{E}+00$
16	$.627500 \mathrm{E}+02$	$.12500 \mathrm{E}+00$
17	$.606250 \mathrm{E}+02$	$.12500 \mathrm{E}+00$
18	$.590000 \mathrm{E}+02$	$.12500 \mathrm{E}+00$
19	$.573750 \mathrm{E}+02$	$.12500 \mathrm{E}+00$
20	$.561250 \mathrm{E}+02$	$.12500 \mathrm{E}+00$

FUNCTION OBJFUN (X)

C

TOTAL $=0.0$
DO $50 \mathrm{~N}=1, \mathrm{NSTAGE}$ $\mathrm{N}=\mathrm{N}+1$

- $I(N 1)=I(N I-1)+P(N)-Q(N)$
$S(N)=340.0 * W(N 1)+64.3 *(W(N 1)-W(N 1-1)) * * 2$
$1+0.20 *(P(N)-5.67 * W(N 1)) * * 2+51.2 * D(N)$
$2-281.0 * T(N 1)+0.0825 *(I(N 1)-320.0) * * 2$
TOTAL $=$ TOTAL $+S(N)$

50 CONTINUE
CBJFUN = TCTAL
C
A PERSONNET AND PRODUCTION SOHEDULING FROBLEM --- 10 STAGES
NSTAGE --- THE NUMBER OF STAGES (MCNTHS IN THE PLANNING HORIZON)
$P(N)$ - THE PRODUCTION RATE AT THE N-TH MONTH
W(N) --- WORK FORCE LEVEL IN THE N-TH MONTH
$Q(N)$ - - SALE RATE AT THE N-TH MONHH
I (N) —— INVENTORY LEVEL AT THE END CI THE N-TH MONTH
$S(N)$ - OPERATING CCSTS FOR THE N-TH MCNTH
TOTAL --- THE TOTAL OPERATING COSTS FOR PLANNING HORIZON
REAL X(50)
REAL $P(25), W(25), I(25), Q(25)$
REAL S(11), TOTAL
INTEGER NSTAGE, J, K, N, Nl
DATA W(1) /81.0/
DATA I (1) /263.0/
DATA Q(1) / 430.0/
DATA $Q(2), Q(3), Q(4), Q(5) / 447.0,440.0,316.0,397.0 /$
DATA $Q(6), Q(7), Q(8), Q(9) / 375.0,292.0,458.0,400.0 /$
DATA Q(10) / 350.0 /
C
DO $10 \mathrm{~J}=1$, NSTAGE
$P(J)=X(J)$
$K=J+N S T A G E$
$W(J+1)=X(K)$
C
C
$1+0.20 *(P(N)-5.67 * W(N 1)) * * 2+51.2 * D(N)$
C
REIURN
END

2.6 Reperences

1. Holt, C.C., F. Modigliani, J.F. Muth and H.A. Simon, Planning Production, Inventories, and Work Force, Prentice-Hall, Englewood Cliffs, ilew Jersey, 1960.
2. Hooke, R., and T.A Jeeves, "Direct Search Solution of Numerical and Statistical Problems", J. Assoc. Comput. Mach., vol. 8, p.212, 1961.
3. Hwang, C.L., L.T. Fan, and S. Kumar, "Hooke and Jeeves Pattern Search Solution to Optimal Production Planning Problems", Report No. 18, Institute for Systems Design and Optimization, Kansas State University, Manhattan, Kansas, 1969.

CHAPTER 3

KSU - SEQUENTIAL UNCONSTRAINED MINIMIZATION TECHNIQUE
BASED ON HOOKE AND JEEVES PATTERN SEARCH AND HEURISTIC PROGRAMMING

3.1 INTRODUCTION

The general nonlinear programming problem with nonlinear (and/or linear) inequaltiy and/or equality constraints is to choose \underline{x} to
$\operatorname{minimize} f(\underline{x})$
subject to
$g_{i}(\underline{x}) \geq 0, i=1,2, \ldots, m$
and

$$
n_{j}(\underline{x})=0, j=1,2, \ldots, \ell
$$

where \underline{x} is an n-dimensional vector $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. A number of techniques have been developed to solve this problem. Among them, a technique which was originally proposed by Carroll [1,2] and further developed by Fiacco and McCormick [3,4,5,6,7] is introduced here.

This technique, known as the sequential unconstrained minimization technique (SUMT), is considered one of the simplest ard most efficient methods for soiving the problem given by equation (3.1). The basic schane of this technicue is that a constrained minimization problem is transformed into a sequence of unconstrained minimization probiems which can be optimized by ary availabie techniques for solving unconstrained miminization.

The unconstrained minimization technique which is employed here is the well-known Hooke and Jeeves patcern search techniqu: [8,9]. For increasing the efficiency of the method, some modifications have been made. Among these modifications, a heuristic programing technique [10] is usea to handle the inequality constraints of the problem given by equation (3.1).

The method and its computational procedure is illustrated in cetail in the following sections of this chapter. The method has been presented in [11,12,13].
3.2 KSU - SEQUENTLAL UNCONSTRAINED MINIMIZATION TECHNLQUE (KSU-SUNT) The KSU-SUMT technique for solving the problem given by equation (3.1) is based on the minimization of a function

$$
\begin{equation*}
P\left(\underline{x}, r_{k}\right)=f(\underline{x})+r_{k} \sum_{i=1}^{m} 1 / g_{i}(\underline{x})+r_{k}^{-1 / 2} \sum_{j=1}^{\sum} h_{j}^{2}(\underline{x}) \tag{3.2}
\end{equation*}
$$

over a strictly monotonic decreasing sequence $\left\{r_{k}\right\}$. The sequential minimization of the unconstrained P function, $P\left(\underline{x}, r_{k}\right)$, converges to the solution of the original objective function, $f(\underline{x})$, under certain requirements. The essentiai requirement is the convexity of the P function. The intuitive concept of the P function is described below:

Since the sequence $\left\{r_{k}\right\}$ is strictily monotonic decreasing, as $r_{k} \rightarrow 0$ the thira term of the P function, $r_{k}^{-1 / 2} \sum_{j=1}^{\ell} h_{j}^{2}(x)$, will approach to ∞ unless $h_{j}(x)=0$ for $j=1,2, \ldots, 2$. Thus, in the process of minimizing the $?$ function, the equality constraints will be forced to $z \in r o$.

The second tem of the P function, $r_{k} \sum_{i=1}^{m} l / g_{i}(\underline{x})$, approaches infinity as the value of x approaches one of the boundaries of the inequality constraints, $g_{i}(\underline{x}) \geq 0$. Hence, the value of \underline{x} will tend to remain inside the inequality-constrained feasible region.

The motivation behind this formulation of the P function is the transformation of the original constrained problem into a sequence of unconstrained minimization problems, $\left\{P\left(\underline{X}, r_{k}\right)\right\}$.

The solution to the problem is to first derine the P function as shown
in equation (3.2). The search for the minimum P function value is started at an arbitrary point which is inside the feasible region bounded by the inequality constraints. After a minimum P function value is reached, the value of r_{k} is reduced, and the search is repeated starting from the previous minimum point of the P function. By employing a strictly monotonic decreasing sequence $\left\{r_{k}\right\}$, a monotonic decreasing sequence $\left\{P_{\min }\left(\underline{x}, r_{k}\right)\right\}$ inside the feasible region bounded by the inequality constraints is obtained. The equality constraints, $h_{j}(\underline{x})=0$ for $j=1,2, \ldots, 2$, will be satisfied automatically by the nature of the formulation of the P function as r_{k} approaches zero as explained before.

When $r_{k} \rightarrow 0$, the second term of equation (3.2), $r_{k} \sum_{i=1}^{m} 1 / g_{i}(\underline{x})$ approaches zero, while the third term, $r_{k}^{-1 / 2} \sum_{j=1}^{m} h_{j}^{2}(\underline{x})$, is forced to approach zero, as described before. In other words, as $r_{k} \rightarrow 0, P\left(\underline{x}, r_{k}\right) \rightarrow f(\underline{x})$, where \underline{x} is the optimum point which yields the minimum $P\left(\underline{x}, r_{k}\right)$ and is the optimum point of the probiem given by equation (3.1). Further mathematical proof of the convergence of the method can be seen in reference $[3,4,5,6,7]$.

3.3 COMPUTATIONAL PROCEDURE

The computational procedure for KSU-SUMT based on Hocke and Jeeves pattern search and heuristic programming is summarized below (see Fig. 3.1).

Step (1) Select a starting point $\underline{x}^{0}=\left(x_{1}^{0}, x_{2}^{0}, \ldots, x_{n}^{0}\right)$, the initial vailue of the penalty coefficient $r_{k}{ }^{0}$, the initial colerance limit of the violation to constraints, B^{0}, and the initial step sizes, \underline{d}^{0}, needed in the search process.

Step (2) Cheok if the initial point is feasible subject to the inequality constraints. If it is, go to step 3; otherwise, go to step 2 a.

Fig. 3.1. Descriptive flow diagram for KSU-SUMT with modified Hooke and Jeeves Pattern Search.

Step (2a) Locate a feasible starting point by minimizing the total weight of violation, TGH, defined as

$$
\begin{equation*}
T G H=\left[\sum_{t \in T} E_{t}^{2}\left(\underline{x}^{0}\right)+\sum_{S \in R} n_{s}^{2}\left(\underline{x}^{0}\right)\right]^{1 / 2} \tag{3.3}
\end{equation*}
$$

where $T=\left\{\operatorname{tig}_{\varepsilon}\left(\underline{x}^{0}\right)<0\right\}$ and $R=\left\{\sin S_{S}\left(\underline{x}^{0}\right) \neq 0\right\}$. Note that TGH includes only the violated constraints.

Step (3) Define the P function as $[6,7]$

$$
\begin{equation*}
P\left(\underline{x}, r_{k}\right)=f(\underline{x})+r_{k} \sum_{i} 1 / g_{i}(\underline{x})+r_{k}^{-1 / 2} \sum_{j} n_{j}^{2}(\underline{x}) \tag{3.4}
\end{equation*}
$$

where $g_{i}(\underline{x}) \geq 0, i=1,2, \ldots, m$ are inequality constraints, and $h_{j}(\underline{x})=0$, $j=1,2, \ldots, 2$, are equality constraints.

Step (4) Minimize the P function by Hooke and Jeeves pattern search technique. After every move during the search check if the move went out of the feasible region. If it did, go to step $4 a ;$ if it did not, continue the search. When the minimum P function value is reached, go to step 5.

Step (4a) Move back to the near-feasible region and then return to step 4. The near-feasible region is defined as the region where all points in the region satisfy the following condition [10]

$$
T G H \leq B
$$

where B is the tolerance limit of violation which is sequentially decreased.
Step (5) Check if the P optimun point, \underline{x}, obtained in step 4 is inside the feasible region. If it is feasible, go to step 7; if it is near-feasible or not feasible, go to step $\mathrm{o}^{\text {. }}$

Step (6) Move the P optimum point, \underline{x}, from the infeasibie region into the feasible region along the direction toward the last optimum point, then go to step 7.

Step (7) Check if a stopping criterion such as

$$
\left|\left|\frac{f(\underline{x})}{G\left(\underline{x}, r_{k}\right)}\right|-1\right|<\varepsilon
$$

is satisfied. If the criterion is satisfied, the P optimum point, x, is also the solution to the original objective function, $f(\underline{X})$; otherwise, go to step 8. The dual value $G\left(\underline{x}, r_{k}\right)$, is defined as $[6,7]$

$$
G\left(\underline{x}, r_{k}\right)=f(\underline{x})-r_{k} \sum_{i=1}^{m} 1 / g_{i}(\underline{x})+r_{k}^{-1 / 2} \sum_{j=1}^{\ell} n_{j}^{2}(\underline{x})
$$

Step (8) Set $k=k+1 ; r_{k}=r_{k-1} / C$, where C is a constant greater than 1 ; and $\underline{a}_{k}=\underline{d}^{0} /(k+1)$; and go back to step 3.

The following sections present the details of each step described above. The basic Hooke and Jeeves pattern search technique is presented in chapter 2.

3.4 PROCEDURE FOR FINDING A FEASIBLE STARTING POINT FROM THE INFEASIBLE INITIAL POINT

The procedure for selecting a feasible starting point when the initial point is out of the feasible region bounded by inequality constraints, $g_{i}(\underline{x}) \geq 0$ for $i=1,2, \ldots, m$, is based on Hooke and Jeeves pattern search technique. For increasing the speed ard efficiency of the process, some modifications Ircm the basic Hocke and Jeeves pattern search technique have been made.

Note that in the above description of the feasible region only the inequality constraints are included. The violation to equality constraints is not considered here but is taken into account in the SUMT formulation automatically as explained in Section $3.2[6,7]$.

The procedure is smmarized below (refer to Figure 3.2).
0. Start at the initial infeasible starting point

1. Define the weight of violation

$$
\begin{aligned}
& \text { TGH }=\left\{\sum_{t}\left[g_{t}(x)\right]^{2}+\sum_{s}\left[h_{S}(x)\right]^{2}\right\}^{1 / 2} \\
& \text { for all } g_{t}(x)<0, h_{S}(x) \neq 0
\end{aligned}
$$

Fig. 3.2 Descriptive flow diagram for locating a feasible starting point

Step (0) Start at the input initial point, \underline{x}^{0}, whicn is out of the feasible region bounded by the inequality constraints and needs to be moved into the feasible region.

Step (1) Define the weight of violation, TGH, as

$$
\operatorname{TGH}=\left[\sum_{t \varepsilon T}\left[g_{t}\left(\underline{x}^{0}\right)\right]^{2}+\sum_{S \in R}\left[n_{s}\left(\underline{x}^{0}\right)\right]^{2}\right]^{1 / 2}
$$

where $T=\left\{t \mid g_{t}\left(\underline{x}^{0}\right)<0\right\}$ and $R=\left\{\sin \left(\underline{x}^{0}\right) \neq 0\right\}$.

Step (2) Make an exploratory move to minimize the weight of violation. Note, that TGH includes only the violated constraints. Also note that the cbjective function to be minimized in this step is TGH. The point obtained a¿ the end of the exploratory moves is defined as the new base point.

For increasing the efficiency of the process, two modirications are made here. First, the starting step-sizes used are twice the input starting step-sizes. Second, after every successful move, the feasibility is checked; whenever a move has reached a point which is inside the feasible region bounced by inequality constraints, the process of selecting a feasibie starting point is terminated.

Step (3) Check if the exploratory moves have made any progress in decreasing the value of THH. If progress has been made, go to step 5; otherwise, go to step 4.

Step (4) Decrease the step sizes and return to step 2.
Step (5) Wake a pattern move along the line connecting the two base points to a new pattern move foint x_{p}.

Step (6) Check if the value of TGH at x_{p} is less than that at x_{B}. If i乞 is, go to step 7, otherwise, return to step 2.

Step (7) Set $x_{B}=x_{p}$.
Step (8) Cneck if x_{B} is in the feasible region bounded by the
inequality constraints. If K_{B} is feasible, set the step-sizes back to the original step-sizes and exit this procedure. Otherwise, if \underline{x}_{B} is still infeasible, return to step 2.
3.5 COMPUTATIONAL PROCEDURE FOR MINIMIZING $f\left(x, r_{k}\right)$ FUNCTION BY THE
MODIFIED HOOKE AND JEEVES PATTERN SEARCH

The computational procedure for minimizing the $P\left(\underline{x}, r_{k}\right)$ function is a modification of Hooke and Jeeves pattern search technique [8,9]. The method is a sequential search routine for locating a point $\underline{x}=$ $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ which minimizes the function $P\left(\underline{x}, r_{k}\right)$. The original Hooke and Jeeves pattern search method is presented in chapter 2. The procedure presented here is a modification of the technique so that it will handle constraints. The procedure is performed as follows: (see Fig. 3.3)

Step (1) Make exploratory moves to minimize the P function. If an exploratory move goes out of the feasible region, check if Y, the original objective function has decreased. If it has, then move the infeasible point back into the feasible region according to the procedure in Fig. 3.4. Otherwise, if Y has not inproved, then either make a move in the opposite direction or move back to the original point.

Step (2) Check if the exploratory moves have made progress in decreasing the P function. If progress has been made, go to step 3; otherwise, go to step 10.

Step (3) Set the new base point equal to the exploratory move point.
Step (4) Make a pattern move.
Step (5) Check if the pattern move point is feasible. If it is, go to step 8; otherwise, go to step 6.

Step (6) Check if the Y value has improved from its previous best vaiue. If it has, go to step 7; otherwise, return to step 1.

Fig. 3.3 Descriptive flow diagram for minimizing $P\left(x, r_{k}\right)$ function

Step (7) Move back into the feasible or near-feasible region according to the procedure in Fig. 3.4.

Step (8) Check the pattern move point to see whether the P function value has decreased. If it has, go to step 9; otherwise, return to step 1.

Step (9) Set the new base point equal to the pattern move point and return to step 1.

Step (10) Check if the maximm number of step size reductions have been made. If it has, exit the procedure; otherwise, go to step 11.

Step (11) Reduce the step sizes.
Step (12) Check if the number of exploratory move failures is greater than or equal to the maximum number of step size reductions. If it is, go to step 13; otherwise, return to step 1.

Step (13) Reduce the R value, increase the step size, and increase the maximum number of step size reductions by one. Make an exploratory move by taking step size moves in all directions at once. If the move goes out of the feasible region, check if y, the original objective function value has decreased. If it has, then move the infeasible point back into the feasible or near-feasible region according to the procedure in Fig. 3.4. Otherwise, make simultaneous exploratory moves in the opposite directions. Return to step ? after completing this step.

3.6 PROCEDURE FOR MOVING AN INFEASIBLE FOINT INTO THE FEASIELE OR NEARFEASIBLE REGION BOUNDED BY INEQUALITY CONSTRAINTS

The procedure for moving an infeasible point into the feasible or the near-feasible region bounded by the inequality constraints is based on a simplified Hooke and Jeeves pattern search. Since the optimum will be located at somewhere very close to the boundary of the set of constraints for most of the constrained probiems, the moving back procedure used here
0. Start at the infeasible point which needs to be moved back into the near-feasible region.

1. Compute the weight of violation

$$
\operatorname{TGH}=\left[\sum_{t}\left[g_{t}(x)\right]^{2}+\sum_{S}\left[h_{S}(x)\right]^{2}\right]^{1 / 2}
$$

for all $g_{t}(x)<0, \quad h_{s} \neq 0$

3. Ma'ke exploratory moves to minimize TGH with step sizes half of the entered step sizes.

3a. After every move, check if $T G H \leq B$. If it is, go to step 6 ; ctherwise, continue until expioratory moves have been made in every dimension.

Fig. 3.4 Descriptive flow diagram for moving an infeasible point back into the near-feasible region.
consists of small step-size exploratory moves only. Pattern moves are not used.

The procedure is summarized below (refer to Fig. 3.4).
Step (0) Start at the infeasible point, x, which is to be moved into the feasible or the near-feasible region bounded by inequaliy constraints.

Step (1) Compute the weight of violation, TGH, at \underline{x}

$$
\operatorname{TGH}=\left[\sum_{t \in T}\left[g_{t}(\underline{x})\right]^{2}+\sum_{s \in R}\left[h_{s}(\underline{x})\right]^{2}\right]^{1 / 2}
$$

where $T=\left\{t \mid g_{t}(\underline{x})<0\right\}$ and $R=\{\sin (\underline{x}) \neq 0\}$.
Step (2) Check if \underline{x} is in the near-feasible region defined as the region where all the points in the region satisfy the following condition [10] $T G H \leq B$
where B is the tolerance limit of violation. If $T G H \leq B$, go to step 6; otherwise, go to step 3.

The starting tolerance limit, B^{0}, for the kth sub-optimum search is defined as [11]

$$
B_{k}^{0}=(0.5 / n) \sum_{i=1}^{n} d_{i}
$$

where d_{i} is the starting step-size for the i th dimension used in the kith sub-optimum search; n is the number of dimensions in the problem. This implies that the starting tolerance limit for the kth sub-optimum search is set to be ralf of the average starting step-sizes. After an infeasible point is moved back to the feasible or near-feasible region bounded by the inequality constraints, the size of the tolerance limit is decreased.

Step (3) Make exploratory moves to minimize TGH using step sizes which are half as large as the step sizes used before entering this routine.

Step (3a) After every move check if TGH \leq B. If it is, go to step 6; otherwise, continue until exploratory moves have been made in every
dimension.
Step (4) Check if the exploratory moves have made progress in decreasing the vallue of TGH. If progress has been made, return to step 3; otherwise, go to step 5.

Step (5) Increase the step sizes used for finding a feasible point and return to step 3.

Step (6) Reduce the tolerance limit, B, to $3 / 4$ of its current value. Set x to be the feasible or near feasible point found and exit the procedure.
3.7 PROCEDURE FOR MOVING THE NEAR-FEASIBLE KIH SUB-OPTIMUM POINT INTO THE FEASIBLE REGION

After the kth sub-optimum has been reached, it is desirable to have the optimum point in the feasible region subject to all the inequality constraints.

If the optimal point for $P\left(x, r_{k}\right)$ is in the near-feasible region but not in the feasible region, it will be moved back into the feasible region by the following procedure (reier to Figure 3.5).

Step (0) Start at the k th sub-optimum infeasible point, X_{k}^{0}, which is to be moved into the feasible region.

Step (1) Move x_{k}^{0} toward X_{k-1}^{0}, the feasible $(k-1)$ st sub-optimum point using a step size which is equal to $1 / 3$ of the distance between $x_{k}{ }^{0}$ and ${ }^{\circ}{ }_{k-1}$. Set the new point to be $\underline{x}_{k}{ }^{0}$.

Step (2) Check if ${\underset{X}{k}}^{0}$ is feasible. If $\underline{x}_{k}{ }^{0}$ is feasible, exit the procedure; otherwise, go to step 3.

Step (3) If the pull back proceciure has been repeated five times without fincing a feasible point, go to step 4; otherwise, repeat from step 1.

Step (4) Set $X_{k}^{0}=x_{k-1}^{0}$ and exit the procedure.
0. Start at the k th suboptimum infeasible point $x_{k}{ }^{0}$

1. Move x_{k}^{0} toward x_{k-1}^{0}, the feasible $(k-1)$ st suboptimum point using a small step size. The new point becomes the k th suboptimum point $x_{k}{ }_{k}$.

Fig. 3.5 Descriptive flow diagram for moving the near-feasible kith suboptimum point into the feasible region.

3.8.1 DESCRIPIION OF SUBROUTINES

The main program is supplemented with 7 subroutines : BACK, CKVIOL, INPUT, PENAT, WEIGH, OBRES, OUTPUT.

SUBRCUTINE BACK pulls the infeasible point back into the feasible or nearfeasible region. The procedure is presented in Section 3.6. SUBRCUTINE CKVIOL checks for violation to inequality constraints and also upcates the iteration count.

SUBRCUTINE INPUT is used to enter cata interactively from the terminal.
SUBROUTINE PENAT Computes the penalty terms for SUMT formulation.
SUBROUTINE WEIGH computes the total weight of violation to the inequality and equality constraints as defined by equation 3.3.

SUBROUTINE OBRES defines the objective function and constraints for the problem to be solved. (User-defined).

SUBROUTINE OUTPUT prints out additional information desired by the user. (User-defineã).

3.8.2 PROGRAM LIMITAATIONS

The program will presently hanale a problem with 20 variables, 20 inequality constraints and 20 equality constraints. To solve a larger problem, the dimensions of the arrays in the program must be changed. The key to the changes follows :

$X, F X, B K, ~ P X, ~ O X, ~ D, ~ P D ~$	-- N dimensions
FG	-- NG dimensions
FH	-- NH dimensions

The program requires at least 22 K bytes of memory.

Table 3.1. Program Symbols and Explanation

Program Symbols

Explanation
Mathematical
Symbols

B
BX(I) previous base point in Hooke and Jeeves pattern search
D(I) step size in Hooke and Jeeves pattern search
EXPSUC Exploratory success flag, EXPSUC = TRUE when an exploratory move succeeds in one of the N dimensions ; otnerwise EXPSUC = FALSE.

FEAS a logical variable indicating whether the current point is feasible or infeasible. FEAS = TRUE if the point is feasible.

FG(J) (j) th inequality constraint value at point FX(I)
$\mathrm{FH}(\mathrm{K}) \quad(\mathrm{K})$ th equality constraint value at point $\mathrm{FX}(\mathrm{I})$
FP P function value at point $\mathrm{EX}(\mathrm{I}) \quad \mathrm{P}$
FRAC the fraction which is used to multiply the step sizes by in routine BACK.

FX(I) the current base point during the exploratory moves
FY $\quad f$ function value at point FX(I)
FIGH the intemediate least value of TGH during the pulling back procedure
$G(J) \quad(j)$ th inequality constraint value at point $X(I)$
$H(K) \quad(k)$ th equality constraint value at coint $X(I)$
ICONS the logical unit number for console display
ICUT input option code for the starting step size values used at each subproblem search. IOJT $=0$ means use input $D(I)$. $I C J I=1$ means use $D(I) / K$ for k th stage.

IDIFF counts the number of consecutive exploratory move failures plus infeasible cattern moves. When IDIFF = INCUT, then simulcaneous step size moves are made.

Table 3.1. Program Symbols and Explanation

Program
Mathematical
Symbols
Explanation
Symbols

INCUT the maximum number of step size reductions for a fixed r. It is used as a subproblem stopping criterion.

IPRINT
ISIZE

ISKIP
program control code, ISKIP $\leftarrow 1$ when MXBACK is exceecied in routine BACK before a feasible point is found.

ITER number of f function values computed within a subproblem
ITEPB equal to MXBACK + ITER . It is used in routine BACK to terminate the search for a feasible point.

ITMAX maximum number of f function values to be computed for a subproblem. It is used as a subproblem stopping criterion. (User-supplied)

MG
number of inequality constriants
MOUT program control code, MCUT $=3$ when exploratory moves make progress in loop 101 of the main program.

Mif number of equality constraints
MAXP maximum number of subproblems to be solved. It is used as a final stopping criterion.

MXBACK The maximum number of iterations (function evaluations) to be macie in routine BACK.

NXEEAS The maximum number of iterations made in searching for an initial feasiole point before terminating the search.

N
number of decision variables
NOBP It is also the number of times subroutine BACK is called.
NOCUT number of step size reductions made for a subproblem.
NOEXP numer of successful exploratory moves racie in the feasible region.

NOIT total number of f function values computed since the start of the program.

NOITB number of exploratory moves made in the infeasible region (subrcutine BACK.).

NOFEAS number of exploratory and pattern moves made in the feasible region

NOPAT number of successful pattern moves made in a subproblem.
NOPULU number of times the pulling back procedure is executed in the process of moving the infeasible subproblem optimum point into the feasible region.

NSTAGE number of stages (suipproblems) computed k

OPTICN the option for using default values for input parameters in routine INPUT. (User-supplied).

OX(I) Poptimum point of previous subproblem
D $\quad P$ function value at point $X(I)$ p

FB initial tolerance limit of constraint violation
$P D(I) \quad$ initial step size (User-supplied)
PENAl penalty value to inequality constraints

PENA2
penalty value to equality constraints
PX(I) pattern move point in Hooke and Jeeves pattern search
PUIL a fraction used to puil back the kth suboptimum point into the feasible region
penalty coefficient for SUMP formulation (User supplied or computed by formula)

$$
r_{k}=\frac{Y}{\sum_{i} \frac{1}{G_{i}}+\sum_{j} h_{j}}
$$

RATIO reducing factor for R frcm one subprobiem to the next. (ie. $r_{k}=r_{k-1} / C$) (User supplied)
SIGH intermediate least value of TCH during search for a feasible starting point

TGH
weight of violation to constraints

$$
\left(\sum_{k} g_{k}^{2}+\sum_{S} h_{S}^{2}\right)^{1 / 2}
$$

Table 3.1. Program Symbols and Explanation

THETA value of the final stopping criterion (user supplied).
TYER tolerance of zero. It is used in the INFUT routine to make sure the computed step size values are not too small.

X(I) a trial point during the exploratory moves
$\mathrm{XB}(\mathrm{NB}) \quad$ intermediate best point in pulling back procedure
XOLD the value of the th dimension of X before a step size is taken in that dimension. (subroutine BACK).

I
f function value at point $X(I) f$
YSIOP computed value of the final stopping criterion
$\left|\left|\frac{f}{f-r_{k} \sum_{i} \frac{1}{g_{i}}+r_{k}^{-1 / 2} \sum_{j} n_{j}^{2}}\right|-1\right|$

REAL $X(20), F X(20), B X(20), P X(20), O X(20), P D(20), D(20)$
REAL FG(20), FH(20)
REAL B, FP, FRAC, FY, FTGH, P, PB, PENAT, PENA2, PULL
REAL R, RATIO, STGH, TGH, THETA, TOLR, XOLD, Y, YSTOP
COMMON /BLOGY/ ITMAX, MG, MH, N
COMMON /INOUT/ ICONS, IPRINT
DATA ICONS, IPRINT /1,2/
DATA MAXP /50/, MXEEAS /500/
DATA TOLR / 1.0E-3/
DATA NOEXP, NOPAT, NOCUT, NOEP, NOFEAS, NOITB $/ 0,0,0,0,0,0 /$
DATA ITER, NOIT, NSTAGE / $0,0,1 /$
FORMAT (20X, 'INITIAL POINT' // $3 \mathrm{X}, \mathrm{I}={ }^{\text {' }}$, E11.4, ', $\mathrm{P}=$ ', E11.4, ', $R=$ ', E11.4, ', RATIO = ', E11.4, / $3 \mathrm{X},{ }^{\prime} \mathrm{B}=1$, E11.4, ', IHCUT = ', I4, ', THETA = ', FORMAT $\left(10 \mathrm{X},{ }^{\prime} \mathrm{X}\left({ }^{\prime}, \dot{I} 2,{ }^{\prime}\right)={ }^{\prime}, E 14.6,5 \mathrm{X},{ }^{\prime} \quad D\left({ }^{\prime}, I 2, '\right)={ }^{\prime}, E 14.6\right)$
FORMAT ($/, 4 \mathrm{X},{ }^{\prime * *}$ P OPTIMUM.. ($\left., \mathrm{I} 2,{ }^{\prime}\right)^{\prime} /$
$13 X,{ }^{\prime} F Y={ }^{\prime}, E 13.6,{ }^{\prime}, \quad F P=', E 13.6, \quad ', \quad R=', E 11.4,3 X$,
2 'ITER = ', I6 /

20X, 'MOIT =', I6, ', NOITB =', I5, ', NOFEAS = ',I5,
4 ', NCBP = ', I5 /
5 20X, 'NOEXP = ', I5, ', NOPAT =',I5, ', NOCUT = ', I5,' ' '/
20X, 'YSTOP = ', El3.6, ' .' /)

1011 FORMAT (5X, / 5X,'**CONSIRAINTS ..')
1012 FORMAT (10X,'G(',I2,') = ',E14.6, ' '')
1013 FORMAT (10X,'H(',I2,') = ',E14.6, ' '')
1015 FORMAT ($3 \mathrm{X}, \dot{\prime} \mathrm{i}^{* * * * *}$ THE ABCVE RESULTS ARE THE FINAL OPTIMUM .')
1016 FORMAT (3X,'**NO. OF P OPTIMUM EXCEEDED ',I5,' .')
1020 FORMAT ($/, 6 \mathrm{X}, 1 * *$ FEASIBLE STARTING POINT FOUND .. 1)
1023 FORMAT (/,' A FEASIBLE STARTING POINT CANNOT BE FOUND AFTER', I5, ' ITERATIONS' / IX, 'TRY A DIFFERENT STARTING ', 'POINT AND/OR STEP SIZES')
1025 FORMAT (2X, 1** SUBPROBLEM SEARCH TERMINATED BECAUSE ', 'ITERATION MAXIMUM EXCEEDED **'/)
1027 FOPMAT (3X, '** EROBLEM MAY BE TCO FLAT -- R VALUE REDUCED ', 'AND INCUT VALUE INCREASED')
1023 FCRMAT (6X, 'EYPLORATORY MONES TAKEN IN ALU DIRECTIONS ', 'AT CNCE FAILED'/)
1029 FORMAT (6X, 'EXPIORATORY MOVES TAKEN IN ALL DIRECTIONS ', 'AT CNCE SUCCESSEUL'/)

C
C
C *** READ IN PROBLEM NAPE, DIMENSIONS, AND OTHER INPUT
C
1 CALL INPUT (R , RATIO, INCUT, THETA, IOUP, X, D)
C
$B=0.0$
C
DO 4 I=l,N
$B X(I)=X(I)$
$E X(I)=X(I)$
$P D(I)=D(I)$
$O X(I)=X(I)$
$B=B+0.5 * D(I)$
4 CONIINUE
C
C **DECIDE THE STARTING VALUE OF TCLERANCE ITMIT FOR ($G(J)<0)$
$B=B / N$
$P B=B$
$B=2.0 * B$
CALL OBRES (FY, FY,FG,FH)
CALL CKVIOL (EG,FEAS,ITER)
CALL WEIGH (FG,FH,STGH)
11 CALL PENAT (FG,FH, EENA1, DENA2)
C **COMPUTE AN INITIAL VALUE GF R WHEN IHPUT R VALUE IS .IE. 0
IF (R) $12,12,15$
$12 \quad R=A B S(E V /(P E N A L+E E N A 2))$
IF (R.LE.TOLR) $R=4.0$
$R=R / 4.0$
C
C

* THE P-FUNCTION *
$15 \mathrm{FP}=\mathrm{FY}+\mathrm{R}^{*} \mathrm{PENA}+\mathrm{R}^{* *}(-0.5) *$ FENA2
C

```
C
WRITE (ICONS,1007)
WRITE (ICONS,1005) EY,FP,R,RATIO,B,INCUT,THETA
WRITE (ICONS,1006) ( I, FX(I), I, D(I), I=1,N )
WRITE (ICONS,1011)
IF (MG.GT.0) WRITE (ICONS,1012) ( I, FG(I), I = 1,MG )
IF (MH.GT.0) WRITE (ICONS,1013) ( I, FH(I), I = 1,MH)
WRITE (IPRINT,1007)
WRITE (IPRINT,1005) FY,FP,R,RATIO,B,INCUT,THETA
WRITE (IPRINT,1006) ( I, FX(I), I, D(I), I=l,N )
WRITE (IPRINT,1011)
IF (MG.GT.0) VRITE (IPRINI,1012) ( I, RG(I), I =l,MG )
IF (MH.GT.0) WRITE (IPRINT,1013) ( I, FH(I), I =l,MH ).
WRITE (IPRINT,1007)
    * SIOP THE PROGRAM AFTER PRINIING THE BEST POINT
    IF (ITER.GT.MXFEAS) STOP
C
C * FIG. 1-2 *
C IS THE INITIAL POINT EEASIBLP ?
    IF (FEAS) GO TO 50
C
C
    16 EXPSUC = .EALSE.
C
        DO 28 I=1,N
        FX(I) = X(I) + 2.0 * D(I)
        CALU OBRES (FX, FY, FG, FH)
        CALL CKVIOI (FG,FEAS,ITER)
        CAIL WEIGH (FG,FH,TGH)
        IF (FEAS) GO TO 44
        IF (STGH-TGE) 20,20,26
            FX(I) = X(I) - 2.0 * D(I)
            CALL OBRES (FX,FY,FG,FH)
            CALI CKVIOL (FG,FEAS,ITER)
            CAIJ WEIGH (FG,FH,TGH)
            IF (FEAS) GO TO 44
            IF (SIGH-TGH) 24,24,26
                FX(I) = X(I)
                GO TO 28
C
        EMPSUC = .TTRUE.
        STEH = IGH
        X(I) = FX(I)

C * FIG. \(2-3 *\)
C ** DID EXPIORATORY MCVES MAKE EROGRESS ?

\section*{IF (EXPSUC) GO TO 34}

C
29 IF (ITER.LE.MXFEAS) CO TO 30
WRITE (ICCNS,1023) MXFEAS WRIIE (IPRINT,1023) MXFEAS GO TO 11

C
C * FIG. 2-4 *
C ** CUT STEP-SIZES FOR FINDING A FEASIBLE STARTING POINT.
30 DO \(32 \mathrm{I}=\mathrm{I}, \mathrm{N}\) \(D(I)=D(I) * 0.5\)
32 CONIINUE
GO 1016
C
C * FIG. 2-5 *
C ** MAKE PATIERN MOVE FOR FINDING A FEASIBLE STARTING POINT.
34 DO \(36 \mathrm{I}=1, \mathrm{~N}\) \(P Y(I)=F X(I)+(F X(I)-B X(I))\)
36 CONTINUE
C
CALL CBPES (DX,FY,FG,FH)
CAIU CKVIOT (FG,FEAS,INER)
CALL WEIGH (FG,FH,TGH)
C
C * FIG. 2-5 *
C ** DID PATIERN MOVE MAKE PROGRESS ? IF (STGH-TGH) \(16,16,40\)
C
C * FIG. 2-7 *
C ** THE PATTERN MOVE POINT BECOMES THE NEN BASE POINT
40 DO \(42 \mathrm{I}=1, N\)
\(E X(I)=P X(I)\)
\(X(I)=P X(I)\)
\(E X(I)=P X(I)\)
42 CONIINUE
C
C
C ** IS THE NEN BASE DOINI EEASIBLE ?
IF (FEAS) GO TO 44
STCH=TGH
GO 1016
C
44 DO \(46 \mathrm{I}=1, \mathrm{~N}\) \(D(I)=E D(I)\) \(O X(I)=F X(I)\) \(B_{X}^{\prime}(I)=F X(I)\)
46 CONITNUE
ITER \(=0\)
WRITE (IPRINT,1020)
GO TO 11
C

50 IDIFF \(=0\)
MCUT=1
51 EXPSUC \(=\).FALSE.
IDIFF \(=\) IDIFF +1
C * FIG. 3-1 *

C
C **MAKE EXPLORATORY MOVES FOR MINIMIZING THE P-FUNCTION
C
DO \(101 \mathrm{I}=1, \mathrm{~N}\)
\(X(I)=F X(I)+D(I)\)
CALI OBRES (X,Y,FG,FH)
CALL CKVIOL (FG,FEAS,ITER)
IF (FEAS) GO TO 62
IF (Y.GE.FY) GO TO 68
CALL BACK (X,D,Y,FG,FH,NOITB;B,ISKIP,ITER) NCBP \(=\mathrm{NOBP}+1\) IF (ITER.GE.ITMAX) GO TO 140
```

* ISKIP = 1 MEANS MXBACK WAS REACHED WHILE IN ROUIINE BACK
SO THE FOINT IS STILU INFEASIBLE
IF (ISKIP.EQ.1) GO TO 68

```

C
62 NOFEAS \(=\) NOFEAS +1
CAL工 PENAT (FG,FH,PENAl, PENA2) \(P=Y+R * P E N A 1+R * *(-0.5) *\) PENA2 IF (P.LT.FP) GO TO 88

C
\(68 \quad X(I)=F X(I)-D(I)\)
CAIU CERES (X,Y,FG,FH)
CALL CKVIOL(FG,FEAS,ITER)
IF (FEAS) GO TO 80
IF (Y.GE.FY) GO TO 86
CALL EACK ( \(\mathrm{X}, \mathrm{D}, \mathrm{Y}, \mathrm{FG}, \mathrm{FH}, \mathrm{NOITB}, \mathrm{B}, \mathrm{ISKIP}, I T E R\) )
\(\mathrm{NCBP}=\mathrm{NCBP}+1\)
IF (ITER.GE.ITMAX) GO TO 140
IF (ISKIP.EO.1) GO TO 86
C
\(80 \quad\) NOFEAS \(=\) NCFEAS +1 CAIL PENAT (FG,FH,FENAI, PENA2)

IF (P.LT.FP) GO TO 88
C
\(86 \quad X(I)=F X(I)\)
GO TO 101
C
88 EXPSUC \(=\).TRUE.
\(\mathrm{FY}=\mathrm{Y}\)
\(\mathrm{FF}=\mathrm{P}\)
\(F X(I)=X(I)\)
C
101 CONIINUE
C

IF (ITER.GE.ITMAX) CO TO 140
C
* FIG. 3-2 *

C ** DID THE EXPLORATORY MOVES MAKE PROGRESS ? IF (EXFSUC) GO TO 111

C
C *FIG. 3-10 *
C ** IS STOPPING CRITERICN SATISFIED ? IF (NOCUT.GE.INCUT) GO TO 150
C
C
C * FIG. 3-11 *
C ** CUT STEP-SIZES FOR MINIMIZING THE P-FUNCTION
DO \(105 \mathrm{I}=1, \mathrm{~N}\)
\(D(I)=0.5 * D(I)\)
105 CONTINUE
C
NOCUT \(=\) NOCUT +1
C
C * FIG. 3-12 *
IF (IDIFF.LT.INCUT) GO TO 51 IF (MCUT.EQ.3) GO TO 51

C
C
C
C
C********* A STEP SIZE IN ALL DIRECTIONS SIMULTANEOUSLY
C
WRITE (IPRINT,1027)
\(R=R / 2.0\)
CALL PENAT (FG,FH, PENAI, PENA2)
\(\mathrm{FP}=\mathrm{FY}+\mathrm{R} * \mathrm{PENA}+\mathrm{R}^{* *}(-0.5) *\) FENA2
INCUT \(=\) INCUT +1
NOCUT=0
C
DO \(109 \mathrm{I}=1, \mathrm{~N}\)
\(P D(I)=P D(I) * 4.0\)
\(D(I)=P D(I)\)
109 CONTINUE
C
2109
IF (ICUT) 2109,2109,102
DO \(2110 \mathrm{I}=\mathrm{l}, \mathrm{N}\)
\(D(I)=D(I) / N S T A G E\)
2110 CONTINUE
C
DO \(103 \mathrm{I}=1\), N
\(X(I)=F X(I)+D(I)\)
103 CONTINUE
C
CALL CBRES (X,Y,FG,FH)
CALT CKVIOL (FG,FEAS,ITER)
IF (FEAS) CO TO 1106
IF (Y.GT.FY) GO TO 1108
CALL BACK ( \(\mathrm{X}, \mathrm{D}, \mathrm{Y}, \mathrm{FG}, \mathrm{FH}, \mathrm{NOITB}, \mathrm{B}\), ISKIP, ITER)
\(\mathrm{NOBP}=\mathrm{NOBP}+1\)
```

 IF (ITER.GE.ITMAN) CO TO 140
 IF (ISKIP.EQ.1) GO TO 1108
 C
1106 NOFEAS = NOFEAS + 1
CALL PENAT (FG,FH,PENAL,PENA2)
P}=Y+R * PENAl + R**(-0.5) * PENA2,
IF (P-FP) 1115,1108,1108
C
C * EXPIORATORV NOVE FAIIED IN POSITIVE DIRECIIONS
C * MAKE MOVE IN OPPCSIIE DIRECTICNS
1108 DO 1109 I=l,N
X(I) = FX(I) - D(I)
l109 CONTIMUE
C
CALL GRRES (X,Y,FG,EF)
CALU CKVIOL (EG, EEAS,ITER)
IF (FEAS) GO TO 1112
IF (Y.GT.EY) GO TO 1114
CALH BACK (X,D,Y,FG,FH,IOIMB,B,ISKIP,ITER)
NCBP = NCBP + I
IF (ITER.GE.ITMAX) GO TO 140
IF (ISKIP.E@.1) GO TO 1114
C
1112 NOFEAS = NOPEAS + 1
CALE PENAT (FG,FH,PENAI,PENA2)
P = Y + R * PENAl + R**(-0.5) * PENA2
IF (P.LT.FP) GO TO 1115
C
C * EXPIORAIORY MOVE FAILED IN CPPOSITE DIRECIION
C * FX(I) IS STIIJ THE BEST POINT FOUND SO FAR
1114 MCTT = 3
WRITE (IFRINN,1028)
GO TO 5l
C
C ** EXPIORATORY MCVE MADE PROGRESS
1115 FP=P
FY=Y
C
C * SET NWW BASE DOINT *
DO 1ll6 I=l,N
FX(I) = X(I)
1116 CONTINUE
WRITE (IFRINT,1029)
GO TO 50
C
C
END OF PRCCEIURE
C************** FOR TAKING SIMUNMANECUS STEP SIZES
C
C
C
C ************ WHEN EXPIORATORY MOVES MADE PRCGRESS
C
lll NOEXP=NOEXP + 1
MCUT = 3
C

```

C * FIG. 3-3 \& 3-4 *
C ** MAKE PATHERN MOVE FOR MINIMIZING THE F-FUNCTION
C ** AND SET A NEN BASE POINT DO \(112 \mathrm{I}=1, \mathrm{~N}\) \(P X(I)=E X(I)+(E X(I)-B X(I))\) \(\mathrm{BX}(\mathrm{I})=\mathrm{FX}(\mathrm{I})\)
112 CONTINUE
C CALL OBRES (PX,Y,FG,FH) CALL CKVIOL (FG,FEAS,ITER)

C
C * FIG. 3-5 *
C ** IS PATTEPN MOVE POINT EEASIBLE ? IF (FEAS) GO TO 124
C
C * FIG. 3-6 *
C ** HAS THE OBJECTIVE FUNCTICN IMPROVED ? IF (Y.GT.FY) GO TO 51

C
C * FIG. 3-7 *
C ** MOVE BACK INIO THE FEASIBLE OR NEAR FEASIBLE REGION CAL工 BACK ( \(P X, D, Y, F G, F H, N O I T B, B\), ISYIP, ITER) \(\mathrm{NOBP}=\mathrm{NCBP}+1\)

C IF (ITER.GE.ITMAX) GO TO 140 IF (ISKIP.EQ.i) GO TO 50

C
C
C ** DID PAITERN MOVE MAKE EROGRESS ?
124 CALL DENAT (FG,FH, PENAI, PENA2) \(P=Y+R * P E N A I+R * *(-0.5) * P E N A 2\) IF (P.GE.FP) GO TO 50
C NOPAT = NOPAT + 3 NOFEAS \(=\) NOFEAS +1
C
C * FIG. 3-9 *
C ** SET NEW BASE POINT
DO \(129 \mathrm{I}=1\), N
\(\mathrm{FX}(\mathrm{I})=\mathrm{PX}(\mathrm{I})\)
129 CONTINUE
C
\(\mathrm{EV}=\mathrm{Y}\)
\(\mathrm{FD}=\mathrm{P}\)
GO 1050
C
C * END OF PROCEDURE *
C

C
C
C * BRANCH HERE WHEN ITMAX IS EXCEEDED
C

C
C ** BRANCH HERE WHEN THE MAXIMMM NUMBER OF STEP SIZE
C ** REDUCTIONS HAVE EEEN HADE
C
150 CALU CBRES ( \(\mathrm{FX}, \mathrm{FY}, \mathrm{FG}, \mathrm{FH}\) )
CALL CKVIOL (FG,FEAS,ITER)
C
C ** IS THE KIH SUB-OPTIMIUM POINT FEASIBLE ?
160 IF (FEAS) GO TO 170
C
C
C ** FIG. 5 **
C*********** DULU BACK THE INFEASIBLE STAGE-OPTIMLM
C INTO THE FEASIELE REGION
C
161 NOPULT=0
PULU=0.63
C
C
* FIG. 5-1 *

C ** MOVE THE KIH SUB-OPTIMUM TONERD THE ( \(\mathrm{K}-1\) ) ST SUB-OPTIMUM 162 DO \(163 \mathrm{I}=1, \mathrm{~N}\)
\(\mathrm{FX}(\mathrm{I})=\) PULL \(*(\mathrm{FX}(\mathrm{I})-\mathrm{OX}(\mathrm{I}))+\mathrm{OX}(\mathrm{I})\)
163 CONIINUE
C
NCPULU \(=\) NOPULL +2
CALL OBRES (FX,FY,FG,FH)
CALL CKVIOL (FG,FEAS,ITER)
NOITB \(=\) NOITB +1
C
C * EIG. 5-2 *
C ** IS THE STAGE OPIIMLM POINT NON FEASIBLE ?
IF (FEAS) GO TO 170
C
C
* FIG. 5-3 *

IF (NOPULE.ET.5) GO TO 162
C
C
C ** SET THE KIH SUB-OPTIMUM EQUAL TO THE (K-i) ST SUB-OPTIMUM POINT 165 DO \(166 I=1, N\) \(\mathrm{FX}(\mathrm{I})=O X(\mathrm{I})\)
166 CONTINUE
C
CALL CBRES (FX,FY,FG,FH)
CALU CKVIOL (FG,FEAS,ITER)
C
C * END OF PROCEDURE *
C FOR PULLING BACK THE INFEASIBLE STAGE OPTIMLM POINT

C
C
C******** OUTPUT THE RESULIS AT THE KTH SUB-OPTIMIM POINTT ******:*** C

170 CALT PENAT (FG,FH, PENAI, PENA2)
\(\mathrm{FP}=\mathrm{FY}+\mathrm{R} * \mathrm{PENAI}+\mathrm{R}^{* *}(-0.5)\) * FENA2
NOIT = NOIT + ITER
```

YSTOP = ABS(FY / (FY-R*PENAI + R**(-0.5) * PENA2))
YSTOP = ABS(YSTOP-1.0)

```
            WRITE (ICONS,1007)
            WRITE (ICONS, 1008) NSTAGE, FY, FP, R, ITER, NOIT, NOITB, NOFEAS, NCBP,
            1
        WRITE (IFRINT, 1008) NSTAGE,FY,FP,R, ITER,NOIT, NOITB, NOFEAS, NOBP,
                        NOEXP, NOPAT, NOCUT, YSIOP
            WRITE (ICONS,1006) ( I, FX(I), I, D(I), I=l,N)
            WRITE (IPRINT,IC06) ( I, FX(I), I, D(I), \(I=1, N\) )
            WRITE (ICONS, 1011)
            WRITE (IPRINT,I011)
            IF (MG) \(216,216,215\)
    215
            WRITE (ICONS, 1012) ( J, FG(J), J=1,MG )
            WRITE (IPRINT,IO12) ( J, FG(J), J=1,MG )
    216 IF (MH) 218,218,217
        WRITE (ICONS, 1013) ( \(\mathrm{K}, \mathrm{FH}(\mathrm{K}), \mathrm{K}=1, \mathrm{MH})\)
        WRITE (IPRINT,1013) ( \(\mathrm{K}, \mathrm{FH}(\mathrm{K}), \mathrm{K}=1, \mathrm{MH})\)

C
C **OUTPUT ADDITIONAL INFOFMATION DESIRED BY USER
218 CAL工 OUTPUT (FX,FY,FG,FH)
WRITE (IERINT,1007)
C
C **CHECK IF THE FINAL STOPPING CRITERION IS SATISFIED IF (YSTOP-THETA) \(230,230,220\)
C
C **CHECK IF MAXP IS EXCEEDED
220 IF (NSTAGE-MAXP) \(221,232,232\)
C
C **STORE THE IAST SUB-OFTIMUM POINT
221 DO 222 \(I=1, N\) \(D(I)=E D(I)\) \(O X(I)=E X(I)\)
222 CONTINUE
C
C
C*********** SHIFT TO THE NEXT SUBTRCBIEM SEARCH *****************
\(R=R / R A T I O\)
\(F P=F Y+R * P E M A 1+R^{* *}(-0.5) *\) PENA2
NSTAGE = NSPAGE +1
IF (NOBP.GT.0) INCUT = INCUT +1
\(\mathrm{NOBP}=0\)
\(\mathrm{NOITB}=0\)
NCEEAS \(=0\)
NOEXP=0
NOPAT=0
NOCUT=0
\(\operatorname{ITER}=0\)
\(\mathrm{B}=0.0\)
C
C **DECIDE THE INITIAL STEP-SIZES AND TOLERANCE LIMIT
IF (ICJT) \(227,227,229\)
227
\[
\text { DO } 228 \mathrm{I}=1, \mathrm{~N}
\]
\[
D(I)=P D(I) / N S T A G E
\]
\[
B=B+0.5 * D(I)
\]

228
CONTINUE \(B=B / N\) GO TO 50
C
\begin{tabular}{ll}
229 & \(\mathrm{~B}=\mathrm{PB}\) \\
GO TO 50
\end{tabular}

C
230 WRITE (ICONS,1015)
WRITE (IPRINT,1015)
GO TO 236
C
232 WRITE (ICONS,1016) MAXP
WRITE (IPRINT,1016) MAXP
C
236 STOP
END
C
C
C
C ** FIG. \(4^{* *}\)
C******************* MOVE BACK EROCEDURE
C
SUBROUTINE BACK ( \(\mathrm{X}, \mathrm{D}, \mathrm{Y}, \mathrm{G}, \mathrm{H}, \mathrm{NOITB}, \mathrm{B}\), ISKIP, IMER)
C
C
C
C
C
C
C
C
INTMGER* 1 NB
INIEGER ISKIP, IMER, ITERB, ITMAX
INTEGER MG, MH, MXBACK, N, NOITB
REAL \(D(20), G(20), H(20), X(20)\)
REAL B, FRAC, FIGH, TGH, XOLD, Y CCMMON /BLOGY/ ITMAX, MG, MH, N

MXBACK IS THE MAXIMUM NUMBER OF ITERATIONS TO BE MADE BEFORE EXITING THIS ROUTINE. IF MXBACK IS EXCEEDED, A PREMATURE EXIT FRCM THIS ROUTINE WILL EE MADE LEAVING THE POINT STILI INFEASIELE. THE VARIABLE ISKIP WIIL BE SET TO 1 TO FIIG THIS COMDITICN.
\(\mathrm{MBACK}=4^{*} \mathrm{~N}\)
ITERB \(=\) ITER + MXBACK
ISKIP \(=0\)
FRAC \(=0.5\)
C
C
C ** COMPUTE THE WEIGHT CF VIOLATION
CALL WEICH ( \(\mathrm{G}_{\mathrm{F}} \mathrm{H}, \mathrm{TGH}\) )
C

C \(\quad\) FIG. 4-2 *
C ** CHECK IF THE POINT IS IN THE NEAR-FEASIBLE REGION 4 IF (TGH.LE.B) GO TO 57
C
FTGH \(=\) TGH
C
C
C **MAKE EXPLORATORY MCVES FOR MINIMIZING TGH
22 EXPSUC = .FALSE.
C
DO \(38 \mathrm{NB}=1, \mathrm{~N}\)
XOLD \(=X(N B)\)
\(X(N B)=X O L D-F R A C * D(N B)\)
CAL工 CBRES ( \(X, Y, G, H\) )
CALL CKVIOL (G,FEAS,ITER)
CALL WEIGH (G,H,TGH)
IF (FEAS) GO TO 46
C
\(\mathrm{NOITB}=\mathrm{NOITB}+1\) IF (TGH-FTGH) \(37,32,32\)

C
\(32 \mathrm{X}(\mathrm{NB})=\mathrm{XOLD}+\mathrm{FRAC} * \mathrm{D}(\mathrm{NB})\) CALJ CBRES ( \(\mathrm{X}, \mathrm{Y}, \mathrm{G}, \mathrm{H}\) )
CALL CKVIOL (G,FEAS,ITER)
CAIU WEIGH ( \(\mathrm{G}, \mathrm{H}, \mathrm{TGH}\) )
IF (FEAS) GOTO 46
C
NOITB \(=\) NOITB +1
IF (TGH-FTGH) \(37,36,36\)
C
\(36 \quad \mathrm{X}(\mathrm{NE})=\mathrm{XOLD}\) GO TO 38
C
37 EXPSUC \(=\).TRUE
FTGH=TGH
IF (TGH.LE.B) GO TO 46
C
38 CONTINUE
C
IF (ITER.GE.ITHAX) GO TO 60
C
C * FIG. 4-4 *
C ** DID EXPIORATCRY NOVES MAKE PRCGRESS ?
IF (EXPSUC) GO TO 22
C
42 IF (ITER - ITERB) 44,43,59
C
C * FIG. 4-5 *
C ** INCREASE STEP SIZES
43 FRAC \(=\) FRAC * 5.0
GO TO 22
C
\(44 \quad\) FRAC \(=\operatorname{FRAC} * 1.5\)
GO TO 22
C

C ** REDUCE STEP SIZE TO HELP FREVENT EXFLORATORY MCVES BACK INTO
C ** INFEASIBLE REGION
46 DO \(50 \mathrm{I}=1, \mathrm{~N}\)
```

 D(I) = D(I) * 0.55
    ```

50 CONTINUE
C
C * FIG. 4-6 *
C **DECREASE THE VEIUE OF B
57 IF (TGH .IT. \(0.7 * \mathrm{~B}\) ) \(\mathrm{B}=0.75 * \mathrm{~B}\) CO TO 60
C
C ** WHEN MXBACK IS EXCEEDED BEFORE A FEASIBIE POINT IS FOUND,
C SET ISKIP \(=1\) BEFORE LEAVING THE SUBROUTINE
C
59 ISKIP = I
C
60 RETURN
END
C
C
SUBRCUTINE PEMAT (G, H,PENAI, PENA2)
C
C
C
C
C
C
THIS SUBROUTINE COMPUTES THE PENALTY TERMS FOR SUMT FORMUATION
PENAI FCR INEQUALITY CONSTRAINTS
PENA2 FOR EQUALITY CONSIRAINTS

INTEGER ITMAX, MG, MH, N
REAL \(G(20), H(20)\), PENA1, PENA2
COMMON /BLCGY/ ITMAX, MG, MH, N
C
PENAI \(=0.0\)
DENA2 \(=0.0\)
C
1 DO \(4 \mathrm{I}=1\), MG IF ( \(\operatorname{ABS}(G(I))\).LE. \(0.1 E-8) \quad G(I)=0.1 E-08\) PENAI \(=\) FENAI \(+\operatorname{ABS}(1.0 / G(I))\)
CONIINUE
C
5 IF (MH) \(10,10,6\)
DO \(9 \mathrm{~K}=1\), MH PENA2 \(=\) EENA2 \(+\mathrm{H}(\mathrm{K}) * * 2\)
9 CONTINUE
C
10 REIUPN
END
C
C

\section*{SUBRCUTINE WEIGH ( \(\mathrm{G}, \mathrm{H}, \mathrm{TGH}\) )}

4 IF (MH.LE.O) GO TO 8
        DO 7 I=l, MH
        IF ( \(\mathrm{H}(\mathrm{I}) . E Q .0 .0)\) GO 207
        TGH \(=\) TGH \(+\mathrm{H}(\mathrm{I}) * * 2\)

CONTINUE
C
8 IF (TGH.LT.O.0) TGH \(=0.0\)
TGH = SQRT(TGH)
C
REIURN
END
C
C
SUBROUTINE CKVIOL (G,FEAS,ITER) CONSIRAINTS AND ALSO UPDATES THE ITERATION COUNT. IT IS CALIED AFTER EACH CALL TO SUBRCUTIINE CBRES.

LCGICAL FEAS
INIEGER*I I
INTEGER ITER, IMMAX, NG, IH, N
REAL G(20)
COAMON /BLOGY/ ITMAX, MG, MH, N
```

 IF (NG.EQ.0) GO TO 10
    ```
            DC \(9 \mathrm{I}=1, \mathrm{MG}\)
            IF ( G(I).GE.O.O ) CO TO 9
                FEAS = . FAISE.
                GO TO 10
            9 CONIINUE

C

END

SUBRCUTINE INPUT ( R, RATIO, INCUT, THETA, ICUT, X, D )

C

LOGICAL NAME(50)
INTEGER*I I
INTEGER ICONS, ICUT, INCUT, IPRINT, ISIZE, ITMAX
INTEGER MG, MH, N, OPTION
REAL \(X(20), D(20), R\), RATIO, THETA, TZER
COMIMON /BLOGY/ ITMAX, MG, MH, N
COMMDN /INOUT/ ICONS, IPRINT
DATA TZER / 1.0E-5/.
WRITE (ICONS,199)
WRITE (IPRINT,199)
WRITE (ICONS,198)
WRITE (IFRINT,198)
WRITE (ICONS,197)
READ (ICCNS,196) NAME
WRITE (IPRINT,195) NANE
WRITE (ICONS,194)
READ (ICONS,193) N
WRITE (IPRINT,190) N
WRITE (ICONS,189)
READ (ICONS,193) MG
WRITE (IFRINT,188) MG
WRITE (ICONS,187)
READ (ICONS,I93) MH
WRITE (IFRINT,185) MH

WRITE (ICONS,182)
DC \(50 \mathrm{I}=\mathrm{l}, \mathrm{N}\)
WRITE (ICONS,177) I
READ (ICONS,176) X(I)
CONTINUE
WRITE (ICONS,175)
READ (ICONS,174) ISIZE
IF (ISIZE.EQ.1) GO TO 80
DO \(70 \mathrm{I}=1, \mathrm{~N}\) \(D(I)=0.02 * X(I)\) IF ( \(\operatorname{PBS}(D(I)) . I E . T Z E R) D(I)=0.01\)
CONIINUE
GO TO 100
WRITE (ICONS,171)
DO \(90 \mathrm{I}=1, \mathrm{~N}\)
WRITE (ICONS,173) I READ (ICONS,172) \(D(I)\)
CONTINUE

C DEFAULT VALUES OF THE INPUT PARAMETERS
C
100 ITMAX \(=100\)
ICUT \(=0\)
\(R=0.0\)
RATIO \(=4.0\)
INCUT \(=4\)
THETA \(=0.0001\)

C

C

C

C

C

C

C
C
199 FORMAT (/,31X,'KSU SUMT FRCGRAM')
198 FCRMAT (/,I1X,30(1*') )
197 FORMRT (/,9X, 'PRCBLEM NAME : ')
196 FORMAT (50A1)
195 FORMAT (/,13X,50AD)
194 FORMAT (/,9x, MUMBER OF VARTABLES : '
193 FORNAT (I3)
192 FORMAT (II)
191 FORMAT (I2)
190 FORMAT (/,21X,'NO. OE X(I) ... ',4X, I3)
189 FORMAT (' 's8X,'NUMBER OF INEQUALITY CONSTRAINTS',
1 ( ( G(X) >=0) : リ
188 FORMAT (' ',20K,'NG. OF G(J) >=0 ... ',I2)
187 FORMAT (' ',8X,'NUABER OF EQUALITY CONSTRAINTS \((H(X)=0): ~(1)\)
186 FORMAT (' ',20X,'NO. OF \(H(J)=0 \quad \ldots \quad\) ', I2)
WRITE (ICONS,180)
READ (ICONS,179) ITMAX
IF (ITMAX.IE.0) ITHAX \(=100\)
WRITE (IPRINT,178) ITMAX
WRITE (ICONS,167)
READ (ICONS,166) R
WRITE (ICONS,165)
READ (ICONS,166) RATIO
IF (RATIO .LT. 2.0) RATIO \(=4.0\)
WRITE (ICONS,164)
READ (ICONS,163) INCUT
IF (INCUT.IP.0) INCUT = 4
WRITE (ICONS,162)
READ (ICONS,166) THETA
IF (THETA.IE.0.0) THETA \(=0.0001\)


FORMAT (I3)
FORMAT ( \(/ 8 \mathrm{X}\), 'TO USE ALL DEFAULT VALUES (ENTER 0) '/ 8X,'TO SPECIFY CWN VALUES (ENTER 1) : ')
FORMAT (' ',5X,'THE DEFAULT VALUES FOR THE FOLLOWING ', 'PARAMEIERS ARE SHOWN BELCN : ' // 8X,'ITMAX - THE MAX. NO. OF ITERATIONS AT EACH ', 'STAGE = 100 ' / 8X, 'R -- FENALTY COEFFICIENT ', \(1=Y / \operatorname{SUM}(1.0 / G(I)\) ) ' / 8X, 'RATIO --- REIUCING FACIOR \(=4.01 /\) 8X, 'INCUT - NUMBER OF CUT-DCNIN STEP SIZE ', 'OPERATIONS \(=4\) '/ 8K, 'THETA --- FINAL STOPPING CRITERION \(=0.0001{ }^{\prime}\) )

FORMAT (/,16X,'ENTER THE INITIAL POINT : ' //)
FORMAT ( \(\left.{ }^{\prime} 1,8 \mathrm{X}, \mathrm{X}\left(1, \mathrm{I} 2,{ }^{\prime}\right)=1, \mathrm{Gl} 2.4\right)\)
FORMAT (' \(1,7 \mathrm{X}, \mathrm{M}\) MX. NO. OF ITERATIONS AT EACH STAGE '/ 8X,' ( PRESS RETURN FOR DEFAULT OF 100 ) 1/ 8X,'ITMAX = ')
FORMAT (I5)
FORMAT (/,11X,'MAX. NO. OF ITERATIONS AT EACH STAGE ...' 'I5)
FORMAT \(\left(1+1,8 \mathrm{X}, 1 \mathrm{X}\left(1, I 2,{ }^{\prime}\right)=1\right)\)
FORMAT (FI5.0)
FORMAT (' ', 8 X, 'WOULD YOU LIKE TO SPECIFY THE STEP-SIZE ', ' ( ENIER 1 ) ' / 5X,'OR USE COMPUTIED VALUE ', \(\left.{ }^{1} D(I)=0.02 * X(I) \quad(E N T E R 2): ~ 1\right)\)
FORMAT (II)
FORMAT \(\left({ }^{\prime}+1,8 \mathrm{X}, \mathrm{D}(1, I 2,1)=1\right)\)
FORMAT (F15.0)
FORMAT (5X,' 1)
FORMAT ( 1 ',7X,'R ——— PENALTY COEFFICIENT FOR SLMMT FOFMULATION'
/ 8X,'PRESS RETURN TO USE A COMDUTED VALUE ',
' \(\mathrm{R}=\mathrm{Y} / \operatorname{SUM}\left(1.0 / G(\mathrm{I})\right.\) ) ' / \(\left.8 \mathrm{X},{ }^{\prime} \mathrm{R}=\mathrm{I}\right)\)
FORMAT (F15.0)
FGRMAT (' ',7X,'RATIO ——— REDUCING FACIOR FOR R FRCM STAGE ', 'TO STAGE' / 8X, 'ERESS RETURN TO USE DEFAULT VALLE', 1 OF 4.0 1/ 8X,'RATIO = ')
FCRMAT (' ',7X,'INCUT - NUMBER OF CUT-DCWN SIEF-SIZE ',
'OPERATIONS IN'/2CX,'HCCKE AND JEEVES SFARCH TECHNIQUE'/ 8X,'ERESS REIURN FOR DEFAULT OF 4 '/ \(8 \mathrm{X}, ' \operatorname{INCJT}=1\) )
FORMAT (II)
FORMAT (' '7X,'THETA -- FINAL STOPPING CRITERION ' / 8X,' ( SUCGESTED VALUES ARE : \(0.01,0.001,0.0001,1\), '0.00001, 0.000001)'/ 8K, 'PRESS RETURN FCR DEFAULT VALUE OF \(0.00011 /\) 8X,'TFETA \(=1\) )

160 FORMAT (/,9X,'DEFAULT VALUES CHOSEN')
C
PETURN
END

\subsection*{3.8.5 DESCRIPTION OR CUTPUT}

The program title is printed followed by the name of the problem to be solved. Then the number of variables, inequality constraints and equality constraints are printed. The specified maximum number of iterations at each stage are printed last.

Following a row of asterisks the user supplied values of the parameters are printed along with the starting point and values of the constraints at the starting point. An explanation of the variables printed at the initial point follows.
\(Y\)-- \(F\) function value at the initial point
\(P\) - \(P\) function value at the initial point
R --- penalty coefficient for SUMT formulation (computedं or user supplied)

RATIO --- reducing factor for \(R\); \(r_{k+1}=r_{k}\) /RATIO. (User-supplieā)
B --- tolerance limit of constraint violation.
INCUT --- maximum number of step size reductions for a fixed \(r\). This is used as a subproblem stopping criterion. (User-supplied).

THETA --- final stopping criterion valle. (User-supplied).
\(X(I)\) - the starting point. (User-supplied).
\(D(I)\)-- the starting step size. (User-supplied).
\(G(I)\) - the inequality constraint values at the starting point.
\(H(I)\)-- the equality constraint values at the starting point. If the user supplied initial point was infeasible, the program will next print a feasible starting point if one can be found. If the input starting point was feasible, then the results at each of the subproblem optimum points are printed.

The first line tells how many subproblem ( P optimum) points have been solved. The explanation of the varibles printed at each Poptimum point
fcllows.
FY -- the \(F\) function value at the \(P\) optimum point.
FP - the minimum \(P\) function value for the subproblem.
R --- the penalty coefficient for SUMT formulation used at the subproblem.

ITER --- the number of \(F\) function values computed for the subproblem. NOIT - the total number of \(F\) function values computed since the start of the program. (the cumulative ITER count).

NOITB - the number of exploratory moves made in the infeasible region. NOFEAS --- the number of exploratory and pattern moves made in the feasible region.

NCBP --- number of times subroutine BACK is called.
NOEXP --- number of successful series of exploratory moves where a series of exploratory moves occurs when step sizes have been taken in all dimensions.

NODAT --- number of successful pattern moves
NOCUT - number of step size reauctions for the subproblem. This may be less than the maximun specified if the maximum number of iterations is exceeded. It may also exceed the maximum specified if a sutproblem is considered too flat in that more step size cuts are needed to get a more appropriate step size.

YSTOP --- computed value of the final stopping criterion This value must be less than or equal to THETA to satisfy the final stopping criterion.
\(X(I)\) - the \(P\) optimum point for the subproblem
\(D(I)\)--- the final step size used before terminating the subproblem
search.
G(I) -- the inequality constraints at the \(P\) optimum point.
\(H(I)\) - the equality constraint values at the \(P\) optimum point In addition to the above values, a message is printed out if the subproilem search was stopped because the maximum numer of iterations was reached.

\subsection*{3.8.6 SUMMARY OF USER REQUIREMENTS}
1. Create a file on disk that contains both subroutine OBRES and subroutine OUTPUT.
2. Choose a point to be used as the starting point. A feasible point should be used if possible although the program will attempt to locate a feasible point if one is not given.
3. Determine the initial step size and the final step size. Compute INCUT as the number of times the initial step size must be reduced by \(1 / 2\) to get the final step size.

Note : The following steps will vary depending on the particular compiler used. The following applies if using Microsoft Fortran-80 for the North

Star microcomputer.
4. Compile subroutine OBRES and OUTPUT using the F80 command F80 =B:filename
where filerame is the name of the file containing the two subroutines and the letter \(B\) is the disk drive where the file resicies.
5. Run the progiam using the L20 command

L80 B:filename, B:RSUMT/G
Note : If several runs of the problem are to be made using different starting points and/or parameter values for each run, then the following two steps should be used instead of step 5.
6. Link edit the main program with the user supplied subroutines as follows L80 B:filename, B:issump/N,B:KSUMT/E

Note the oraer of the user supplied filename and the main program KSUMT. This order should not be reversed. The above statement link edits the two files and creates an executable file with a filename of KSUMT.COM. 7. Run the program by simply typing the filename of the executable file B:KSUMT

To run the program again for a different starting point or parameter, simply repeat either step 5 or step 7 depending on which was usea previously.

\subsection*{3.8.7 USER-SUPPLIED SUBROUTINES}

Both of the user-supplied subroutines must contain a declaration staterent :

REAL \(X(20), G(20), H(20)\)
The following problem is used to show how to code the user-supplied subroutines.

Minimize \(f(x)=x_{1}{ }^{2}+x_{2}{ }^{3}-x_{1} x_{2}\) subject to
\[
\begin{aligned}
& g_{1}(x)=8 x_{1}+x_{2}^{2}-15 \geq 0 \\
& g_{2}(x)=5 x_{1}^{4}+x_{2}^{3}-20 \geq 0 \\
& h_{1}(x)=x_{1}^{2}+x_{2}^{2}-25=0 \\
& x_{i} \geq 0, \quad i=1,2
\end{aligned}
\]

\section*{CRRES \\ (X,Y, G, H)}

This subroutine defines the objective function \(Y\) (to be minimized), the inequality constraints \(\left(g_{j}(x) \geq 0\right)\), ana the equality constraints \(\left(h_{j}(x)=\right.\) 0 ) . The equations are defined in terms of \(X_{i}\). To transfer data from this subroutine to subroutine OUTPUT, blank COMMON may be used.

The OBRES routine for the example problem is shown below.

\section*{SUBROUTINE CERES ( \(\mathrm{X}, \mathrm{Y}, \mathrm{G}, \mathrm{H}\) )}

C THIS RCUTINE DEFINES THE OBJECTIVE FUNCTION (TO BE MINIMIZED) AND C THE CCNSTRAINTS ( \(>=0\) AND \(=0\) ).
```

REAL X(20), G(20), H(20), Y

```
COMMON VALL
```

VALI = X(1)*X(2)
Y = X(1)**2 + X(2)**3 - VALI

```
\(G(2)=5 . * X(1) * * 4+X(2) * * 3-20\).
\(G(3)=X(1)\)
\(G(4)=X(2)\)
\(G(5)=X(3)\)

C \(H(1)=X(1) * * 2+X(2) * * 2-25\).
C RETURN
END

\section*{QUPPT \((X, W, G, H)\)}

This subroutine is used to print out additional information desired by the user. If there is nothing to print out, simply code the subroutine name, the dimension statement, and a RETURN and END. This subroutine is called after printing out the results at each subproblem optimum point. To transfer data from subroutine OBRES to this routine, blank COMMON may be used.
print out the additional data cesired. The logical unit number for the WRITE statement is a 1 For the CRT screen and a 2 for the printer. For example, to display information on the CRT screen, the following statements would be used

99 FORMAT ( 2 X, IINFO \(=1\), I2)
The logical unit number is different for different compilers. Please check the Fortran user manual for the proper values. The above values are appropriate for Microsoft's Fortran-80 for the North Star microcomputer.

To illustrate the above for the example problem, VAL1 has been passed into OUTPUT from subroutine OBRES using blank COMMON. VAL1 is then displayed on the CRT screen. VAL2 is computed in the routine and sent to the printer.

The OUTPUT routine for the example problem is shown below :

SUBROUTINE OUTPUT (X,Y,G,H)
C
C THIS SUBRCUTINE PRINTS OUT ADDITIONAL IMFORMATION
C DESIRED BY THE USER.
REAL \(X(20), G(20), H(20), Y\) COMMON VAL 1
C
WRITE \((1,99)\) VAL1
C
VAL2 \(=G(1)+G(2)\)
WRITE (2,98) VAL2
C
99 FORMAT (5X, 'VAL1 \(={ }^{\prime}\), F9.2)
98 FORMAT (2X, 'VAL2 \(=1, F 12.5\) )
C
RETURN
END

\subsection*{3.9 INFUT TO THE COMPUTER FROGRAM}
3.9.1 CRT DISPIAY OF QUESTIONS

KSU SUMT PRCGRAM

PRCBLEM NAME :
NUMBER OF VARIABLES :
MUABER OF INEQUALITY CONSTRAINTS \((G(X)>=0):\)
NUMBER OF EQUALITY CONSTRAINTS \((\mathrm{H}(\mathrm{X})=0):\)
ENTER THE INITIAL POINT :


WOUID YOU LIKE TO SPECIFY THE STEP-SIZE ( ENTER 1)
OR USE COMPUTED VALUE \(D(I)=0.02 * X(I)(E N I E R 2): 1\)
\(D(1)=\)
\(D(2)=\)
\(D(N)=\)

THE DERALITT VALUES FOR THE FOLIONING PARANETERS ARE SHONN BELCN :
ITMAX - THE MAX. NO. OF ITERATIONS AT EACH SIAGE \(=100\)
\(\mathrm{K}-\mathrm{D}^{-}\)PENALTY COEFFICIENT \(=\mathrm{Y} / \operatorname{SUM}(1.0 / \mathrm{G}(\mathrm{I})\) )
RATIC -- REIUCING EACIOR \(=4.0\)
INCUT -~ MUREER OE CUYLDOWN STEP SIZE OPERATIONS = 4
THETA --- FINAL STOPPING CRITERION \(=0.0001\)
TO USE ALL DEFAULT VALUES (ENTER 0)
TO SPECIFI ONN VALUES (ENTER 1) : 1

MAX. NO. CF ITLRATIONS AT EACH STAGE ( PRESS RETURN FOR DEFALLT OF 100 )
ITMAX \(=\)

R --- PEINALTY COEFFICIENT FOR SUMT FORMULATION
PRESS RETURN TO USE A COMDUTED VALUE \(R=Y / \operatorname{SUM}(1.0 / G(I)\) )
\(\mathrm{R}=\)

RATIO --- REDUCING EACIOR EOR R ERCM STAGE TO STAGE PRESS RETURN TO USE DEFAULT VALUE OF 4.0 RATIO =

INCUT --- NUMBER OF CUT-DOWN STEP-SIZE OPERAMIONS IN HOOKE AND JEEVES SEARCH TECHNIQUE
PRESS RETURN FOR DEFAULT OF 4 INCUT =

THETA --- FINAL SIOPDING CRITERION
( SUGGESTED VALUES ARE : 0.01, 0.001, 0.0001, 0.00001, 0.000001 ) PRESS RETURN FOR DEFAULT VALUE CF 0.0001 THETA \(=\)

\subsection*{3.9.2 NOTES ABCUT THE INPJT}

The maximum size problem that can be solved is 20 variables, 20 inequality constraints, and 20 equality constraints. To solve a larger problem, the dimensions in the main program must be modified. For the key to the changes, see section 3.8.2 ERCGRAM LIMIMATICNS.

\subsection*{3.10 TEST PROBLE:MS}
3.10.1 TEST PROBLEM 1 : NUMERIC EXAMPLE BY PAVIANI
3.10.1.1 SUMMARY

NO. OF VARIABLES : 3
NO. OF CONSTRAINTS : 1 nonlinear equality constraint
1 linear equality constraint
3 bounds on independent variables
OBJECTIVE FUNCTION :
\[
\text { Minimize } f(x)=1000-x_{1}^{2}-2 x_{2}^{2}-x_{3}^{2}-x_{1} x_{2}-x_{1} x_{3}
\]

CONSTRAINTS :
\[
\begin{gathered}
h_{1}(x)=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-25=0 \\
h_{2}(x)=8 x_{1}+14 x_{2}+7 x_{3}-56=0 \\
x_{i} \geq 0 \quad i=1,2,3
\end{gathered}
\]

STARTING POINT : \(\quad x_{i}=2 \quad i=1,2,3\)
INITIAL STEP SIZE : \(d_{i}=.05 \quad i=1,2,3\)

PARAMETERS : ITMAX \(=200\)
\[
\begin{aligned}
& r=1.398 \quad \text { (computed value) } \\
& \text { INCUT }=4 \\
& \text { THETA }=.1000 E-04
\end{aligned}
\]

RESULTS : \(\quad f(x)=962.3\)
\[
\begin{aligned}
x_{1} & =2.79 \\
x_{2} & =3.35 \\
x_{3} & =4.14 \\
h_{1}(x) & =0.06 \\
n_{2}(x) & =0.01
\end{aligned}
\]

NO. OF K ITERATED : 4
NO. OF FUNCTION EVALUATIONS : 432

MICROCOMPUTER
SINGLE PRECISION
EXECUTION TIME:
.42 min.
LARGE COMPUTER DOUBLE PRECISION
.02 min.
3.10.1.2 COMPUTER PRINTOUT OF RESULIS

\section*{KSU SUMT ERGGRM}

TEST PRCBLEM 1 : NUMERIC EXAMFLE BY PAVIANI
\[
\begin{array}{llll}
\text { NO. } O F X(I) \\
\text { NO. } O F G(J) & \cdots=0 & & 3 \\
\text { NO. } O F H(J)=0 & \ldots & 3
\end{array}
\]

MAX. NO. OF ITERATIONS AT EACH STAGE ... 200

INITIAL POINT
\(\mathrm{Y}=.9760 \mathrm{E}+03, \mathrm{P}=.1124 \mathrm{E}+04, \mathrm{R}=.1398 \mathrm{E}+01, \mathrm{RATIO}=.4000 \mathrm{E}+01\) \(B=.5000 \mathrm{E}-01\), INCUT \(=4\), THETA \(=.1000 \mathrm{E}-04\).
\begin{tabular}{lll}
\(X(1)=\) & \(.200000 \mathrm{E}+01\) & \(D(1)=\) \\
\(X(2)=\) & \(.200000 \mathrm{E}+01\) & \(D(2)=\) \\
\(X(3)=\) & \(D 00000 \mathrm{E}-01\) \\
\(.200000 \mathrm{E}+01\) & \(D(3)=\) & \(.5000000 \mathrm{E}-01\)
\end{tabular}
**CONSTRAINTS .
\(G(1)=.200000 E+01\), \(G(2)=.200000 E+01\),
\(G(3)=.200000 \mathrm{E}+01\)
H( 1) \(=-.130000 \mathrm{E}+02\),
\(\mathrm{H}(2)=.200000 \mathrm{E}+01\),
** PROBLEM MAY BE TCO FLAT - - R VALUE REDUCED AND INCUT VALUE INCREASED EXPLORATORY MOVES TAKEN IN ALL DIRECTIONS AT CNCE SUCCESSFUL
** P OPTIMUM.. (1)
\(F Y=.962096 E+03, \quad E P=.964700 E+03, R=.6991 E+00\) ITER \(=188\) NOIT \(=188\), NOITB \(=0\), NCFEAS \(=177, \mathrm{NCBP}=0\) NOEXP \(=21\), NCPAT \(=12, \quad\) NOCUT \(=5\). YSTOP \(=.232732 \mathrm{E}-02\).
\begin{tabular}{ll}
\(X(1)=\) & \(.273750 \mathrm{E}+01\)
\end{tabular}\(\quad D(1)=0.625000 \mathrm{E}-02\)
**CONSTRAINTS . .
\(G(1)=.273750 \mathrm{E}+01\)
\(G(2)=.350001 E+00\)
\(G(3)=.420625 \mathrm{E}+01\),
\(H(1)=.308928 E+00\)
\(H(2)=.243748 \mathrm{E}+00\),
** P OPTIMMM..
\(\mathrm{FY}=.962247 \mathrm{E}+03, \quad \mathrm{FP}=.963002 \mathrm{E}+03, \mathrm{R}=.1748 \mathrm{E}+00 \quad \mathrm{ITER}=63\) NOIT \(=251\), NOITB \(=0\), NOFEAS \(=59, ~ N O B P=0\) NOEXP \(=4\), NOPAT \(=1, \quad\) NOCUT \(=5\). YSTOP \(=.491858 \mathrm{E}-03\).
\begin{tabular}{llll}
\(X(1)=\) & \(D 2500 \mathrm{E}+01\) & \(D(1)=\) & \(.312500 \mathrm{E}-02\) \\
\(X(2)=\) & \(.343751 \mathrm{E}+00\) & \(D(2)=\) & \(.312500 \mathrm{E}-02\) \\
\(X(3)=\) & \(D(3)=\) & \(.312500 \mathrm{E}-02\)
\end{tabular}
**CONSTRAINTS . .
\(G(1)=.272500 \mathrm{E} \div 01\)
\(G(2)=.343751 E+00\),
\(G(3)=.420625 E+01\),
\(\mathrm{H}(\mathrm{l})=.236311 \mathrm{E}+00\)
\(\mathrm{H}(2)=.562477 \mathrm{E}-01\),
** P OPIIMUM.. ( 3 )
\(\mathrm{FY}=.962292 \mathrm{E}+03, \quad \mathrm{FP}=.962515 \mathrm{E}+03, \mathrm{R}=.4370 \mathrm{E}-01 \quad \mathrm{ITER}=112\) NOIT \(=363, \mathrm{NOITB}=0\), NOFEAS \(=105, \mathrm{NCBP}=0\) NOEXP \(=12\), NOPAT \(=6\), NOCUT \(=5\). YSTOP \(=.931025 \mathrm{E}-04\).
\begin{tabular}{llll}
\(X(1)=\) & \(D(1)=\) & \(.208333 \mathrm{E}-02\) \\
\(X(2)=\) & \(D(12)=\) & \(.208333 \mathrm{E}-02\) \\
\(X(3)=\) & \(D(3)=\) & \(.208333 \mathrm{E}-02\)
\end{tabular}
**CONSTRAINTS
\(G(1)=.277708 \mathrm{E}+01\),
\(G(2)=.335418 \mathrm{E}+00\)
\(G(3)=.415833 \mathrm{E}+01\)
\(H(1)=.116413 E+00\),
\(\mathrm{H}(2)=.208244 \mathrm{E}-01\),
** P OPITMLM.. (4)
\(E Y=.962339 E+03, \quad F P=.962410 \mathrm{~F} \div 03, \quad \mathrm{R}=.1092 \mathrm{E}-01 \quad \operatorname{ITER}=69\) NOIT \(=432, \mathrm{NOITB}=0\), NOFEAS \(=65\), NOBP \(=0\) NOEXP \(=5\), NOPAT \(=2\), NOCUT \(=5\). YSIOP \(=.786781 \mathrm{E}-05\).
\begin{tabular}{|c|c|c|c|}
\hline \(X(1)=\) & .278958E+01 & \(D(1)=\) & .156250E-02 \\
\hline \(X(2)=\) & . \(335413 \mathrm{E}+00\) & \(D(2)=\) & .156250E-02 \\
\hline \(X(3)=\) & .414271E -01 & D ( 3) = & .156250E-02 \\
\hline
\end{tabular}
**CONSTRAINTS ..
\(G(I)=.278958 \mathrm{E}+01\)
\(G(2)=.335418 \mathrm{E}+00\)
\(G(3)=.414271 E+01\)
\(H(1)=.562935 \mathrm{E}-01\)
\(H(2)=.114517 \mathrm{E}-01\),
***** THE ABOVE RESULTS ARE THE FINAL OPTIMUM .
3.10.1.3 USER SUPPLIED SUBROUTINES

SURROUTINE OBRES ( \(\mathrm{X}, \mathrm{Y}, \mathrm{G}, \mathrm{H}\) )
C
C
C

\section*{TEST PROBLEM 1 : NUMERIC EXAMFLE BY PAVIANI}

REAJ \(X(20), Y, G(20), H(20)\)
REAL XI, X2, X3
C
\(X 1=X(1)\)
\(X 2=X(2)\)
\(X 3=X(3)\)
C
\(Y=1000.0-X I * * 2-2.0 * X 2 * * 2-X 3 * * 2-X 1 * X 2-X 1 * X 3\)
C
\(\mathrm{H}(1)=\mathrm{XI} * * 2+\mathrm{X} 2 * * 2+\mathrm{X} 3 * * 2-25.0\)
\(H(2)=8.0 * X 1+14.0 * X 2+7.0 * X 3-56.0\)
C
\(G(1)=X 1\)
\(G(2)=X 2\)
\(G(3)=X 3\)
C
REIURN
END
C
SUBROUTINE OUTPUT ( \(\mathrm{X}, \mathrm{Y}, \mathrm{G}, \mathrm{H}\) )
REAL \(X(20), Y, G(20), H(20)\)
RETURN
END

\subsection*{3.10.2 TEST PROBLEM 2 : MAXIMIZInG SISTEMS RELIABILITY}
3.10.1.2 SUMMARY

No. OF VARIABLES : 4
NO. OF CONSTRAINTS : 1 inequality constraint
4 upper bounds on independent variables
4 lower bounds on independent variables
OBJECTIVE FUNCTION :
\[
\begin{aligned}
\text { Minimize } f(x)= & -1+R_{3}\left[\left(1-R_{1}\right)\left(1-R_{4}\right)\right]^{2} \\
& +\left(1-R_{3}\right)\left\{1-R_{2}\left[1-\left(1-R_{1}\right)\left(1-R_{4}\right)\right]\right\}^{2}
\end{aligned}
\]

CONSTRAINTS :
\[
\begin{aligned}
& g_{1}(x)=c-\left(2 K_{1} R_{1}^{\alpha_{1}}+2 K_{2} R_{2}^{\alpha_{2}}+K_{3} R_{3}^{\alpha_{3}}+2 K_{4} R_{4}^{\alpha_{4}}\right) \geq 0 \\
& g_{i+1}(x)=1-R_{i} \geq 0 \\
& g_{i+5}(x)=R_{i}-R_{i, \min } \geq 0 \quad i=1,2,3,4 \\
& =1,2,3,4
\end{aligned}
\]
\[
\text { where } k_{1}=100 \quad k_{2}=100 \quad k_{3}=200 \quad k_{4}=150
\]
\[
c=800 \quad \alpha_{i}=0.6 \quad i=1,2,3,4
\]
\[
R_{i, \min }=0.5 \quad i=1,2,3,4
\]

STARTING POINT :
\[
R_{i}=0.6
\]
\[
i=1,2,3,4
\]

INITIAL STEP SIZE : \(\quad d_{i}=0.05 \quad i=1,2,3,4\)
PARAMETERS: \(\operatorname{ITMAX}=200\)
\[
\begin{aligned}
& r=.4412 E-02 \quad \text { (computed value) } \\
& \text { INCUT }=4 \\
& \text { THETA }=.1000 E-03
\end{aligned}
\]

RESULTS : \(\hat{1}(x)=0.9955\)
\[
\begin{aligned}
& R_{1}=0.7928 \\
& R_{2}=0.9172 \\
& R_{3}=0.8068 \\
& R_{4}=0.7882
\end{aligned}
\]

NO. OF K ITERATED : 6
NO. OF FUNCTION EVALUATIONS : 1048
\begin{tabular}{ccc} 
& MICROCOMPLTER & LARGE COMPUTER \\
SINGLE PRECISION & DOUBLE PRECISION
\end{tabular}
3.10.2.2 DESCRIPTION OF THE PROBLEM

The problem of maximizing the reliability of the complex system given in Fig. 3.3 which is subject to a single constraint can be stated as follows \([11,12,13]\)

Maximize the system reliability
\[
\begin{aligned}
R_{S}= & 1-Q_{S} \\
=1 & -R_{3}\left[\left(1-R_{1}\right)\left(1-R_{4}\right)\right]^{2} \\
& -\left(1-R_{3}\right)\left\{1-R_{2}\left[1-\left(1-R_{1}\right)\left(1-R_{4}\right)\right]\right\}^{2}
\end{aligned}
\]
subject to
\[
\begin{align*}
& C_{S}=\sum_{i} c_{i} \leq C  \tag{3.5}\\
& R_{i} \geq R_{i, \min }
\end{align*}
\]
where
\[
C_{i}=k_{i} R_{i}^{\alpha} i \quad i=1,2,3,4
\]

The constraint given by eq. (3.5) can be interpreted as follows. \(\bigwedge_{i}\) can represent the weight, cost, or volume of each unit or component of the system, and the total weight, cost, or volume of the system must be less than \(C\). Each of these is a function of reliability that can be expressed by eq. (3.6) where \(K_{i}\) is a proportionality constant and \(\alpha_{i}\) the exponential factor that relates \(C_{i}\) and the reiiaiolity. That is, \(K_{i}\) is the weight, cost, or voiume of the component when \(R_{i}=1\) and \(K_{i} R_{i}{ }^{\alpha}\) is the reduced cost, weight, or volume when \(R_{i}<1\). Usually \(\alpha_{i}\) is less than one. The following vallues are assigned to the constants \(K_{1}, K_{2}, K_{3}\), and \(K_{4}\), the constraint \(C\), the exponential constant \(a_{i}\), and the minimum reliability for each component \(R_{i, \text { min }}, i=1,2,3,4\).
\[
\begin{array}{lll}
k_{1}=100, & k_{2}=100, & k_{3}=200,
\end{array} k_{4}=150,0 . ~\left(k_{i}=0.6, \quad R_{i, \min }=0.5 \quad i=1,2,3,4 .\right.
\]


Figure 3.3 A schematic diagram of a complex system.
3.10.2.3 COMFUTER PRINIOUT OF RESULTS

\section*{KSU SUMT PRGGRAM}

TEST FRCBLEM 2 : MAXIMIZING SYSTEMS RELIABILITY
\begin{tabular}{llll} 
NO. OF \(X(I)\) & \(\ldots\) & & 4 \\
NO. OF G(J) & \(>=0\) & \(\ldots\) & 9 \\
NO. OF \(H(J)=0\) & \(\ldots\) & 0
\end{tabular}

MAX. NO. OF ITERATIONS AT EACH STAGE ... 200

INITIAL POINT
\(Y=-.8862 \mathrm{E}+00, \quad \mathrm{P}=-.6647 \mathrm{E}+00, \quad \mathrm{R}=.4431 \mathrm{E}-02, \quad \mathrm{RATIO}=.4000 \mathrm{E}+01\)
\(\mathrm{B}=.5000 \mathrm{E}-01, \quad\) INCUT \(=4\), THETA \(=.1000 \mathrm{E}-03\).
\begin{tabular}{llll}
\(X(1)=\) & \(D(1)=\) & \(.500000 \mathrm{E}-01\) \\
\(X(2)=\) & \(D(12)=\) & \(.500000 \mathrm{E}-01\) \\
\(X(3)=\) & \(D(3)=\) & \(.500000 \mathrm{E}-01\) \\
\(X(4)=\) & \(D 00000 \mathrm{E}+00\) & \(D(4)=\) & \(.500000 \mathrm{E}-01\)
\end{tabular}
**CONSTRAINTS .
\(\mathrm{G}(1)=.137580 \mathrm{E}+03\)
\(G(2)=.400000 \mathrm{E}+00\)
\(G(3)=.400000 E+00\),
\(G(4)=.400000 \mathrm{E}+00\)
\(G(5)=.400000 \mathrm{E}+00\)
\(G(6)=.100000 E+00\)
\(G(7)=.100000 E+00\),
\(\mathrm{G}(8)=.100000 \mathrm{E}+00\).
\(\mathrm{G}(9)=.100000 \mathrm{E} \div 00\),
\(\operatorname{COST}=662.42\)

** P OPTIMM. ( 1)
\(\mathrm{FY}=-.987505 \mathrm{E}+00, \quad \mathrm{FP}=-.841031 \mathrm{E}+00, \quad \mathrm{R}=.4431 \mathrm{E}-02 \quad \mathrm{ITER}=124\) \(\mathrm{NOIT}=124, \mathrm{NOITB}=16\), NOFEAS \(=107, \mathrm{NCBP}=1\) NOEXP \(=10\), NOPAT \(=2, \operatorname{NCCUT}=4\).
YSTOP \(=.129168 \mathrm{E}+00\).
\begin{tabular}{llll}
\(X(1)=\) & \(D 77500 \mathrm{E}+00\) & \(D(1)=\) & \(.171875 \mathrm{E}-02\) \\
\(X(2)=\) & \(D(2)=\) & \(.171875 \mathrm{E}-02\) \\
\(X(3)=\) & \(D 17187 \mathrm{E}+00\) & \(D(3)=\) & \(.171875 \mathrm{E}-02\) \\
\(X(4)=\) & \(D(4769 E+00\) & \(.7765 \mathrm{E}+00\) & \(D(475 \mathrm{E}-02\)
\end{tabular}
```

**CONSIRAINTS ..
G(1) = .195078E+02 ,
G(2) = .222500E+00
G(3) = .182813E+00
G(4) = .212031E+00
G(5) = .222344E+00
G(6) = .277500E+00
G(7) = .317187E+00
G(8) = .287969E+00
G(9) = .277656E+00 ,

```
\(\operatorname{COST}=780.49\)
```

 ** P OPTIMUM.. (2)
    ```
\(F Y=-.993208 \mathrm{E}+00, \quad \mathrm{FP}=-.953826 \mathrm{E}+00, \quad \mathrm{R}=.1108 \mathrm{E}-02 \quad \mathrm{ITER}=100\) NOIT \(=224\), NOITB \(=5\), NOFEAS \(=87, \mathrm{NCBP}=1\) NOEXP \(=6\), NOPAT \(=6\), NOCUT \(=5\). YSTOP \(=.381396 \mathrm{E}-01\).
\begin{tabular}{lll}
\(X(1)=\) & \(D(1)=\) & \(D 29687 \mathrm{E}-03\) \\
\(X(2)=\) & \(D(2)=\) & \(.429687 \mathrm{E}-03\) \\
\(X(3)=\) & \(D(3)=\) & \(.429687 \mathrm{E}-03\) \\
\(X(4)=\) & \(D 09531 \mathrm{E}+00\) & \(D 88906 \mathrm{E}+00\)
\end{tabular}
**CONSTRAINTS . .
\(\mathrm{G}(\mathrm{l})=.427661 \mathrm{E}+01\)
\(G(2)=.193203 E+00\),
\(G(3)=.133750 \mathrm{E}+00\),
\(G(4)=.190469 E+00\)
\(G(5)=.211094 \mathrm{E}+00\)
\(G(6)=.306797 \mathrm{E}+00\)
\(G(7)=.366250 \mathrm{E}+00\),
\(G(8)=.309531 \mathrm{E}+00\),
\(G(9)=.288906 E+00\),
\(\operatorname{COST}=795.72\)
** SUBPROBLEM SEARCH TERMINATED BECAUSE ITERATION MAXIMLM EXCEEDED **
** P OPTIMUM. . ( 3 )
\(\mathrm{FY}=-.993752 \mathrm{E}+00, \quad \mathrm{FP}=-.983683 \mathrm{E}+00, \mathrm{R}=.2759 \mathrm{E}-03 \mathrm{ITER}=203\) NOIT \(=427\), NOITB \(=164\), NOFEAS \(=25, \mathrm{NCBP}=14\) NOEXP \(=1, \operatorname{NOPAT}=0\), NOCUT \(=2\). YSTOP \(=.100304 \mathrm{E}-01\).
\begin{tabular}{lll}
\(X(1)=\) & \(D(1)=\) & \(.319257 \mathrm{E}-05\) \\
\(X(2)=\) & \(D(2)=\) & \(.319257 \mathrm{E}-05\) \\
\(X(3)=\) & \(D(3)=\) & \(.319257 \mathrm{E}-05\) \\
\(X(4)=\) & \(D(4)=\) & \(.319257 \mathrm{E}-05\)
\end{tabular}
```

**CCNSTRAINTS ..
G(1) = .153925E+01 ,
G(2) = .182703E+00
G(3) = .133750E+00
G(4) = .179969E+00
G(5) = .211094E+00 ,
G(6) = .317297E+00,
G(7) = .366250E+00,
G(8) = .320031E+00.
G(9) = .288906E+00 ,

```
    \(\operatorname{COST}=798.46\)
** PROBLEM MAY BE TOO FLAT -- R VALUE REDUCED AND INCUT VALUE INCREASED EXPLORATOPY MOVES TAKEN IN ALL DIRECTIONS AT ONCE SUCCESSFUL
** SUBPROBLEM SEARCH TERMINATED BECAUSE ITERATION MAXIMUM EXCEEDED **
** D OPTIMUM.. (4)
\(F Y=-.995522 \mathrm{E}+00, \quad \mathrm{FP}=-.993988 \mathrm{E}+00, \quad \mathrm{R}=.3461 \mathrm{E}-04 \quad \mathrm{IT} \mathrm{ER}=204\) NOIT \(=631\), NOIIB \(=22\), NOFEAS \(=164, ~ N C B P=12\) NOEXP \(=14\), NOPAT \(=10\), NOCUT \(=0\). YSTOP \(=.153822 \mathrm{E}-02\).
\begin{tabular}{llll}
\(X(1)=\) & \(D(1)=\) & \(.761217 \mathrm{E}-03\) \\
\(X(2)=\) & \(D(12833 \mathrm{E}+00\) & \(=\) & \(.761217 \mathrm{E}-03\) \\
\(X(3)=\) & \(D(3)=\) & \(.761217 \mathrm{E}-03\) \\
\(X(4)=\) & \(D 06850 \mathrm{E}+00\) & \(D(4)=\) & \(.761217 \mathrm{E}-03\)
\end{tabular}
\[
\begin{array}{rlrl}
* * \operatorname{CONSIPAINIS} \cdots \\
\mathrm{G}(1) & = & .201355 \mathrm{E}+00, \\
\mathrm{G}(2) & =.207167 \mathrm{E}+00, \\
\mathrm{G}(3) & =.328061 \mathrm{E}-01, \\
\mathrm{G}(4) & =.193150 \mathrm{E}+00, \\
\mathrm{G}(5) & =.211814 \mathrm{E}+00, \\
\mathrm{G}(6) & =.292833 \mathrm{E}+00, \\
\mathrm{G}(7) & =.417194 \mathrm{E}+00, \\
\mathrm{G}(8) & =.306850 \mathrm{E}+00, \\
\mathrm{G}(9) & =.288186 \mathrm{E}+00,
\end{array}
\]
    COST \(=799.80\)
** SUBPRCBIEM SEARCH TERMINATED BECAUSE ITERATION MAXIMUM EXCEEDED **
```

** P OPTIMUM.. (5)

```
\(E Y=-.995522 \mathrm{E}+00, \quad \mathrm{FP}=-.995138 \mathrm{E}+00, \mathrm{R}=.8653 \mathrm{E}-05 \mathrm{TTER}=207\) NOIT \(=\)-838, \(\mathrm{NOITB}=181\), NOFEAS \(=9, ~ \mathrm{NCBP}=9\) NOEXP \(=1\), NODAT \(=10\), MOCUT \(=1\).
\[
\text { YSTOP }=.384986 \mathrm{E}-03 .
\]
\begin{tabular}{lll}
\(X(1)=\) & \(D(1)=\) & \(.167468 \mathrm{E}-03\) \\
\(X(2)=\) & \(D(2)=\) & \(.167468 \mathrm{E}-03\) \\
\(X(3)=\) & \(D(3)=\) & \(.167468 \mathrm{E}-03\) \\
\(X(4)=\) & \(D(4)=\)
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{**CONSTRAINTS . .} \\
\hline \(\mathrm{G}(\mathrm{I})=\) & .201355E+00 \\
\hline \(\mathrm{G}(2)=\) & .207167E+00 \\
\hline G( 3 ) \(=\) & .828061E-01 \\
\hline G( 4) = & .193150E+00 \\
\hline \(\mathrm{G}(5)=\) & .211814E+00 \\
\hline \(\mathrm{G}(6)=\) & .292833E+00 \\
\hline \(\mathrm{G}(7)=\) & .417194E+00 \\
\hline \(\mathrm{G}(8)=\) & \(.306850 \mathrm{E}+00\) \\
\hline \(\mathrm{G}(9)=\) & .288186E+00 \\
\hline
\end{tabular}
\(\operatorname{COST}=799.80\)
** SUBPROEIEM SEARCH TERMINATED BECAUSE ITERATION MAXIMUM EXCEEDED **
** P OPTIMJM.. ( 6)
\(\mathrm{FY}=-.995522 \mathrm{E}+00, \quad \mathrm{FP}=-.995426 \mathrm{E}+00, \quad \mathrm{R}=.2163 \mathrm{E}-05 \quad \operatorname{ITER}=210\) NOIT \(=1048\), NOITB \(=180\), NOFEAS \(=14, \mathrm{NOBP}=10\) NOEXP \(=2\), NOPAT \(=0\), NOCUT \(=0\). YSTOP \(=.962615 \mathrm{E}-04\).
\begin{tabular}{llll}
\(X(1)=\) & \(D(152833 \mathrm{E}+00\) & \(D(1)=\) & \(.153512 \mathrm{E}-03\) \\
\(X(2)=\) & \(D(2)=\) & \(.153512 \mathrm{E}-03\) \\
\(X(3)=\) & \(D(3)=\) & \(.153512 \mathrm{E}-03\) \\
\(X(4)=\) & \(.736850 \mathrm{E}+00\) & \(D(4)=\) & \(.153512 \mathrm{E}-03\)
\end{tabular}
    **CONSTRAINTS ..
    \(G(1)=.201355 \mathrm{E}+00\)
    \(G(2)=.207167 E+00\)
    \(G(3)=.828061 \mathrm{E}-01\),
    \(G(4)=.193150 \mathrm{E}+00\)
    \(G(5)=.211814 \mathrm{E}+00\)
    \(G(6)=.292833 E+00\)
    \(G(7)=.417194 E+C 0\).
    \(G(8)=.306850 E+00\)
    \(G(9)=.288186 \mathrm{E}+00\),
    \(\operatorname{Cos}=799.80\)

SUBROUTINE OBRES (X,Y,G,H)
IEES PRCBLEM 2 -- MAXIMIZING SYSTEMS RELIABILITY
REAL \(X(20), Y, G(20), H(20)\)
REAL C, COST
REAL R1, R2, R3, R4
REAL Kl, K2, K3, K4
REAL A1, A2, A3, A4
REAL RMINI, RMIN2, RMIN3, RMIN4
COMMON COST
DATA C /800.0/
DATA Kl, \(\mathrm{K} 2, \mathrm{~K} 3, \mathrm{~K} 4 / 100.0,100.0,200.0,150.0 /\)
DATA Al, \(A 2, A 3, A 4 / 0.6,0.6,0.6,0.6 /\)
DATA RMIN1, RMIN2, RMIN3, RMIN4 / 0.5, 0.5, 0.5, 0.5 /
C
\(\mathrm{Pl}=\mathrm{X}(1)\)
\(R 2=X(2)\)
\(R 3=X(3)\)
\(R 4=X(4)\)
C
\[
Y=-1.0+R 3 *((1 .-R 1) *(1 .-R 4)) * * 2
\]
\[
1
\]
        \(\operatorname{COST}=2 * \mathrm{Kl} * \mathrm{Rl} * * \mathrm{Al}+2 * \mathrm{~K} 2 * \mathrm{R} 2 * * \mathrm{~A} 2\)
        1
        \(+\mathrm{K} 3 * \mathrm{R} 3 * * A 3+2 * \mathrm{~K} 4 * R 4 * * A 4\)
\(G(2)=1.0-R I\)
\(G(3)=1.0-R^{2}\)
\(G(4)=1.0-R 3\)
\(G(5)=1.0-R 4\)
\(G(6)=\mathrm{Rl}-\mathrm{RMINI}\)
\(G(7)=R 2-\) RMIN2
\(G(8)=R 3-R M I N 3\)
\(G(9)=R 4-R M I N 4\)
C
PEIURN
END
C
C
C
INTEGER ICONS, IPRINT
REAL \(X(20), Y, G(20), H(20)\)
COMMON COST
COMMON /INCUT/ ICONS, IFRINT

WRITE (IPRINT,199) COST
199 FORMAT (/, 6X,'COST \(=1, F 9.2\) )
C
RETURN
END

\subsection*{3.11 References}
1. Carrol, C. W., "An Operations Research Approach to the Economic Optimization of a Kraft Pulping Process", EheD. Dissertion, Institute of Paper Chemistry, Appletown, Wisc., 1959.
2. Carroll, C. W., "The Created Response Surface Technique for Optimizing Nonlinear Restrained Systems", Operations Research, 9, 169-184, 1961.
3. Fiacco, A. V., and G. P. McCormick, "The Sequential Unconstrained Minimization Technique for Nonlinear Programming : A Primal-Dual Methoa", Management Scie, 10, 360-366, 1964.
4. Fiacco, A. V., and G. P. McCormick, "Computational Algorithm for the Sequential Unconstrained Minimizatin Technique for Nonlinear Programming", Management Scies 10, 601-617, 1964.
5. Fiacco, P. V., and G. P. McCormick, "SUMT without parameters", Systems Research Memorandum No. 121, Technical Institute, Northwestern University, Evanston, Illinois, 1965.
6. Fiacco, A. V., and G. P. McCormick, "Extension of SUMT for Nonlinear Frogramming : Equality Constraints and Extrapolation", Management Scier 12 (11) : 816-829, 1966.
7. Fiacco, A. V., and G. P. McCormick, Nonlinear Programming ; Sequential Unconstrained Minimization Techniques, Wiley, New York, 1968.
8. Hooke, Ro, and T. A. Jeeves, "Direct Search Solution of Numerical and Statistical Problems", J. Assoce Compe Macher 8, p. 212, 1961.
9. Hwang, C. L., L. T. Fan, and S. Kumar, "Hooke anc̄ ueeres Pattern Search Solution to Optimal Proauction Planning Problems", Report MO2 18, Insititute of Systems Design and Optimization, Kansas State University, 1969.

1C. Paviari, D. A., and D. M. Himmelblau, "Constrained Nonlinear Optimization by Heuristic Prcgramming", AICHE meeting in New Orleans, March, 1969.
11. Lai, K. C., "Optimization of Industrial Management Systems by the Sequential Unconstrained Minimization Technique", M.S. Report, Dept. of Ircustrial Engineering, Kansas State University, 1970.
12. Fiwang, C. I., K. C. Lai, F. A. Tillman, and L. T. Fan, "Optimization of System Reliability by the Sequential Unconstrained Minimization Technique", IEEE Transe on Reliability, vol. R-24., pp. 133-135., June 1975.
13. Tillman, F.A., C. L. Hwang, and W. Kuo, Optimization of Systems Reliability, Marcel Dekker, New York, 1980.

\section*{CHAPTER 4}

\section*{RAC - SEQUENTIAL UNCCNSTRAINED MINIMIZATION TECHNIQUE}

\subsection*{4.1 INTRODUCTION}

The general nonlinear programing problem with nonlinear (and/or linear) inequality and/or equality constraints is to choose \(x\) to
```

minimize f(x)
subject to

```
\[
g_{i}(x) \geq 0, \quad i=1,2, \ldots, m
\]
and
\[
h_{j}(x)=0, \quad j=1,2, \ldots, 2
\]
where \(x\) is an n-aimensional vector \(\left(x_{1}, x_{2}, \ldots, x_{n}\right)\). A number of techniques have been developed to solve this problem. The method presented here is the sequential unconstrained minimization technique (SJMT) as implemented by Fiacco and McCormick [1,2,3,4,5]. The basic SUMT algorithm was introduced in Chapter 3.

The major aifferences between the RAC-SUMT and the KSU-SUMT computer program is described below.

\subsection*{4.2 METHOD}
4.2.1 MAJOR DIFFERENCES BETWEEN RAC-SUMT AND KSU-SUMT COMPUTER PROGRAM

Al though both the RAC-SUMT and KSU-SUMT computer programs use the basic SUMT algorithm, there are a few major differences in the implementation of the algorithm. The first major difference is in the formulation of the Pfunction. The KSU-SUMT formulation of the P-function is
\[
P\left(x, r_{k}\right)=f(x)+r_{k} \sum_{i=1}^{m} 1 / g_{i}(x)+r_{k}^{-1 / 2} \sum_{j=1}^{2} h_{j}^{2}(x)
\]

The RAC-SUMT formulation of the P-function is [6]
\[
P\left(x, r_{k}\right)=f(x)-r_{k} \sum_{i=1}^{m} \ln s_{i}(x)+r_{k}^{-1} \sum_{j=1}^{2} n_{j}^{2}(x)
\]

Whereas the KSU-SUMT program uses \(\sum_{i} 1 / g_{i}(x)\) as the added barrier for inequality constraints, the RAC-SUMT program uses \(-\sum_{1} \ln \delta_{i}(x)\). In addition, insteac of using \(r^{-1 / 2}\) as the penalty factor for the equality constraints, the term \(r^{-1}\) is usea.

A second major difference between the two programs is in the method used to minimize the P-function. Whereas the KSU-SUMT program uses the Hooke and Jeeves pattern search technique to minimize the P-function, the RAC-SUMT program uses one of four methods : two versions of a second order gradient method, a first order gradient method, or a conjugate gradient method. The four methods are actually only used to determine the search direction; the Golden Section method determines the step size.

A third difference is the use of extrapolation in the RAC-SUMT program to speed up convergence to the optimum point. The extrapolation is carried out using the previous two or three suboptimum points. The new point computed by extrapolation is then used as a starting point for the next subproblem search.

The details of the unconstrained minimization techniques and the extrapolation technique are explained in [5]. In the next section, a summary of the basic logic of the method is presented.

\subsection*{4.2.2 SU:MMARY OF COMPUTATIONAL PROCEDURE}

The computational procedure for RAC-SUMT is summarized below (see Fig. 4.1).


Fig. 4.1 Descriptive flow diagram for RAC-SUMT method

Step (1) Select a starting point \(x^{0}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)\) and the initial value of the penalty coefficient \(r\).

Step (2) If the user requests it, print out the values of both the numeric and analytic first and second. partial derivatives at the starting point. This enables the user to check the user-supplied analytic derivatives by comparing them with the computed numeric derivatives.

Step (3) Check if the initial point is feasible subject to the inequality constraints. If it is, go to step 4; otherwise, go to step Ba.

Step (Ba) Locate a feasible point by minimizing the negative of the sum of the violated inequality constraints.

Step (4) Define the P function as
\[
P\left(x, r_{k}\right)=f(x)-r_{k} \sum_{i=1}^{m} \ell \pi E_{i}(x)+r_{k}^{-1} \sum_{j=1}^{\ell} n_{j}^{2}(x)
\]
where \(g_{i}(x) \geq 0, i=1,2, \ldots, m\), are inequality constraints and \(h_{j}(x)=0\), \(j=1,2, \ldots, l\), are equality constraints.

Step (5) Minimize the \(P\) function for the current value \(r_{k}\). The direction of search is obtained by using either a second order gradient method, a first order gradient method (Steepest descent) or a conjugate gradient method (modified Fletcher-Powell); the method is chosen by the user. The step size is determined using the Golden Section method.

Step (6) Check if the final convergence has been obtained. If ic has, then stop; otherwise, go to step 7. The criteria for determining convergence is one of the following :
\[
\begin{aligned}
& \quad\left|\frac{G-f(x)}{G}\right|<\theta \\
& \text { or }\left|r \sum_{j=1}^{m} \ln g_{j}(x)\right|<\theta
\end{aligned}
\]
where \(G\) is the dual value, \(G=f(x)+(2 / r) \sum_{j=1}^{\ell} h^{2}(k)-m \cdot r-r \cdot r\)

Step (7) Reduce the \(r\) value, \(r_{k}=r_{k-1} / C\), where \(C\) is a constant greater than 1.

Step (8) Extrapolate through the last two or three suboptimum points to get the starting point for the next subproblem search. Then return to step 5.

The RAC-SUMT computer program is actually two programs : a READIN program and a RACSUMT program. The READIN program is used to input the data and the RACSUMT program does the computations to get the solution. The reason why two separate programs are used instead of one is that both programs could not fit into the computer memory at the same time.

The microcomputer used was a North Star Horizon II which has 64 K bytes of memory but only 37 K bytes of it is available for the program and data; the other 27 K is reserved for the operating system and other functions. The software used was Microsof t's Fortran-80 for the NorthStar microcomputer which was run under the CP/M (version 2.26) operating system.

Using Microsoft's North Star Fortran compiler, the size of the READIN program was 14 K bytes while the size of the RACSUMT program depended on the size of the problem : 32 K bytes was needed for test problem \(1(N=3, M=2)\) while 34 K bytes was needed for test probiem \(2(N=4, M=9)\). Therefore, both. programs will not fit intomemory at the same time. But since the READIN program is needed only to input the data, it can be removed from the computer's memory once it is through executing and the RACSUMT program can then be brought into memory. This process is done automatically with a CALL FCHAIN statement which loads the FACSUMT program into memory and begins to execute it. This statement is the last statement in the READIN program.

The only problem with the above procedure is that when the RACSUMT program is lcaded into memory, the data from the READIN program is lost. In order to save the data, the READIN program must store the data on disk and the RACSUMT program must then read the data back from disk. This is what is done in the two programs.

IF the FORTRAN compiler does not nave a program chaining statement ( CALL FCHAIN ('filename', drive)), it is still possiole to run the program.

Simply remove the statement CALL FCHAIN ('RACSUMT COM', 2) from the READIN program and add a step 6 which is simply to type

\section*{B: RACSUMT}
which loads and executes the RACSUMT program manually. This step is performed after the READIN program is finished executing, which occurs when a STOP and then an \(A\) is displayed on the CRT screen.

\subsection*{4.3.1 DESCRIPTION OF SUERCUTINES}

The READIN program consists of a main program which allows the user to interactively enter the data needed for the RACSUMT program.

The RACSUMT program consists of a main progran, two control subroutines (BODY, FEAS), sixteen special purpose subroutines (CONVRG, EVALU, GRAD, INPUT, INVERS, OPT, OUTPUT, PEVALU, REJECT, RHOCOM, SECORD, STORE, XMOVE, DIFF1, DIFF2, CHCKER) and three user supplied subroutines (RESTNT, GRAD1, MATRIX). Input is coordinated by the READIN program and subroutine INPUT. Output is from the main program and suiproutines BODY, CHECKER, CONVRG, FEAS, INVERS, OFT, OUTPUT. The relationship among the suioroutines is shown in Fig. 4.2 and Fig. 4.3.

The description of each subroutine follows.
SUBROUTINE BODY coordinates all subroutines.
SUBROUTINE CHCKER is used to check the correctness of the user-supplied first and second partial derivatives by printing the values of both the user-supplied analytic derivatives and the computed numeric derivatives. SUBROUTINE CONVRG (N1) checks for convergence to the subproblem. SUBROUTINE DIFF1 (IN) computes numeric first derivatives by central difference.
* Indicates user-supplied subroutines


Fig. 4.3 Descriptive flow diagram for minimizing \(P(x, r)\) function in XWOVE subroutine

SUBROUTINE DIFF2 (IN) complites numeric second partial derivatives by central difference.

SUBROUTINE EVALU evaluates the P-function, the dual value \(G\), and the constraints.

SUBROUTINE FEAS determines the feasibility of the starting point; if it is not feasible, a feasible point is sought; if no feasible point is possible, an error message is printed.

SUBROUTINE FINAL (N2) checks for final convergence to the optimum point. SUBROUTINE GRAD (IS) computes the gradient of the P-function. SUBROUTINE INPUT reads in the input data which was saved on disk by the READIN program.

SUBROUTINE INVERS (NSME) SOlves the set of equations to determine the search direction.

SUBROUTINE OPT performs a one dimensional search for the optimal step size using the Golden Section method.

SUBROUTINE OUTPUT (K) prints out the results at each suboptimum point. SUBROUTINE PEVALU computes the P-function value and dual value using the previousiy computed values of \(f(x)\) and \(g(x)\).

SUBROUTINE REJECT returns stored values to their normal locations. SUBROUTINE RHOCOM computes an initial value of \(r\).

SUBROUTINE SECORD (IS) computes second partial derivatives of the Pfunction.

SUBROUTINE STORE stores the vallies of the current point.
SUBROUTINE XMOVE determines the search direction and then calls OPT to find the step size. The user has the option of specifying which method to use to compute the search direction (two versions of a second order gradient method, the steepest descent method, or a modified Fletcher-Powell method).

SUBROUTINE RESTNT (I,VAL) specifies the objective function and constraints (user supplied).

SUBROUTINE GRAD1 (I) specifies the first partial derivatives of the objective function and constraints (user supplied).

SUBRCUTINE MATRIX (J,L) specifies the second partial derivatives of the objective function and constraints (user supplied).

\subsection*{4.3.2 PROGRAM LIMITATIONS}

The program will presently handle a problem with 20 variables and 40 constraints (inequality + equality). To solve a larger problem, the aimensions of the arrays in the program must be changed. The key to the changes are as follows :
\(\mathrm{X}, \mathrm{DEL}, \mathrm{A}, \mathrm{X1}, \mathrm{X} 2, \mathrm{X} 3, \mathrm{DELX}, \mathrm{DELXO}\),
XR1, XR2, PGRAD, DIAG, SIG, XXX, YY, DELL --- N dimensions
RJ, RJ1 --- \(M+M Z\) dimensions
The READIN program requires \(14 K\) bytes of memory and the RACSUMT program requires at least 32 k bytes of memory. The smallest problems require \(32 k\) bytes; larger problems like test problem 2 (4 variables, 9 constraints) require \(34 k\) bytes; larger problems will require even more menory. Note that even t'hough a microcomputer may have 64 K bytes of memory, usually only 30 40 K bytes of it may actually be used for the program; the rest is taken up by the operating system or reserved for special purposes. Thus, the North Star Horizon microcomputer with 64k bytes of memory has only 37 K bytes available for the program and will not be able to solve a problem very much larger than test problem 2.

PROGRAM RSUMT

C
** RAC SUMT PROGRAM --- VERSION 4 **


THIS PROGRAM IS FOR OPTIMIZING THE GENERAL NONLINEAR PROGRAMMING PFOBLEM WITH NONLINEAR (AND/OR LINEAR) INEQUALITY AIDD/OR EQUALITY CONSTRAINTS.

THE METHOD EMPLOYS :
SUMT FORMULATION .......... FIACCO AND MCCORMICK
SEARCH TECHNIQUE ........ THE USER HAS THE OPTION OF SPECIFYING WHICH OF THE FOLLOWING METHODS TO USE TO DETERMINE THE DIRECTION OF SEARCH. CONJUGATE GRADIENT METHOD FIRST ORDER GRADIENT METHOD SECOND ORDER GRADIENT METROD THE OPTIMUM STEP SIZE IS DETERMINED USING THE GOLDEN SECTION METHOD.

THE PRCGRAM IS WRITTEN BY :
W.C. MYLANDER , R. L. HCLMES AND G. P. MCCORMICK

RESEARCH ANALYSIS CORPORATION, MCLEAN, VA., 1971.

\section*{}

EXTERNAL RESTNT, GRAD1, MATRIX
INTEGER CONSOL, PRINTR
COMMON /SHARE/ X(20), DEL(20), A(20,20), N,M,MN,NP1,NM1
COMMON /EGAL/ H, H1, MZ
COMMON /OPTNS/ NT1,NT2,NT3,NT4, NT5, NT6, MT7,NT8, NT9, NT10
COMMON /VALUE/ F,G,PO,RSIGMA,RJ (20), RHO
COMMON /CRST/ DELX(20), DELXO(20), RHOIN, RATIO, EPSI, THETAO,
2 ER2, P1, F1, RJ1(40), DOTT, PGRAD(20), DIAG(20),
3 PREV3, ADELX, NTCTR, NUMINI, NPHASE, NSATIS
COMMON /EXPOPT/ NEXOP1, NEXOP2, XEP1, XEP2
COMMON/DEVC/ CONSOL, PRINTR, NP
DATA CONSCL, PRINTR / 1,2/
DATA XEP1, XEP2 / 0.0001, 0.0/

CALL INPUT
\(\mathrm{NTCTR}=0\)
\(\mathrm{NP} 1=\mathrm{N}+1\)
\(\mathrm{NM} 1=\mathrm{N}-1\)
* CALL TIMEC

NPHASE \(=4\)

40 STOP
40 STO?

SUBROUTINE BODY
BODY COORDINATES THE FLCW AMONG THE SUBROUTINES THAT ACTUALLY DO
THE CALCULATIONS REQUIRED BY THE VARICUS PARTS OF THE ALGORITHM.
INTEGER CONSOL, PRINTR
COMMON /SHARE/ X(20), DEL(20), A(20,20), N,M,MN, NP1, NM1
COMMON /OETNS/ NT1, NT2,NT3,NT4,NT5,NT6,NT7,NT8,NTQ,NT10
CCMMON /VBLUE/ E,G,PO,RSIGMA, KJ (20), RHO
COMMON /CRST/ DELX (20), DELXC(20), RHOIN, RATIO, EPSI, THETAO, RSIG1, G1, X1(20), X2(20), X3(20), XR2(20), XR1(20), PR1,
CALL EVALU
\(P O=0.0\)
\(\mathrm{G}=0.0\)
\(\mathrm{H}=0.0\)
RSIGMA \(=0.0\)
CALL OUTPUT (2)
CALL STORE
IF (NEXOP1.GT.1) CALL CHCKER
IF (NEXOP1.EQ.3) STOP 01072
IF (NEXOP?.EQ.5) STOF 01:04
CALL FEAS

GO TO ( \(30,30,30,30,40\) ), NPHASE
NPHASE \(=2\)
NTCTR=0
CALL BODY
WRITE (FRINTR, 181)
WRITE (PRINTR,189) F
WRITE (PRINTR,187)
WRITE (PRINTR,186) ( \(I, ~ X(I), I=1, N\) )
WRITE (PRINTR,180)
FORMAT (//,2X,19HFINAL VALUE OF \(F=, 1\) PE15.6)
FORMAT (//,2X,14HFINAL X VALUES )
FORMAT ( \(1 \mathrm{X}, 3(2 \mathrm{X}, 2 \mathrm{HX}(, I 2,3 H)=, 1\) PE14.6) \()\)
FORMAT (//,1X,38(1* 1))
FORMAT ( \(11^{\prime}, 1\) )
```

 NF3=2
 MN=0
 NUMINI=0
 C OPTION OF GETTING INITIAL RHO
CALL RHOCOM
CALL EVALU
10 CALE XMCVE
GO TO (30,20), NT3
C
C* * 20 CALL TIMEC
20 CALL OUTPUT (1)
GO TO 40
C
C* * 30 CALL TCHECK
30 CONTINUE
C
C IN FEASIBILITY PHASE, }4\mathrm{ MEANS FEASIBILITY ACHIEVED
40 GO TO (50,50,50,200), NSATIS
C
50 CALL CONVRG (N1)
GO IO (60,10,125), N1
C
C MINIMUM ACHIEVED IF N1 = 1
60 GO TO (70,80), NT3
C
C* * 70 CALL TIMEC
70 CALL OUTPUT(1)
C
C NUMBER OF MINIMA ACHIEVED INCREASED BY }
80 NUMINI = NUMINI + 1
MN = 0
GO TO (190,90,90), NFHASE
C
C* 90 CALL ESTIM
C
C FINAL MIGHT HAVE BEEN CALLED BY ESTIM
C -- CONVERGED IF N2 = 1
C* GO TO (100,110,120), NT4
C
C
C
C
NT4=1 FINALL CONVERGENCE ON O CRDER ESTIMATES
NT4=2 CONVERGE CN FIRST ORDER ESTIMATES
NT4=3 CONVERGE ON SECCND ORDER ESTIMATES
CALL FINAL (NF1)
GO TO (130,140), NF!
110 GO TO (130,140), NF2
120 GO TO (130,140), NF3
125 NPHASE = 5
130 RETURN
C
140 RHO = RHO / RATIO
C USING PREVIOUSLY COMPUTED VALLES FOR F, AND RJ
P IS RECOMFUTED WITH THE NEW VALUE OF RHO.
CALL PEVALU
C

```
```

CC A VECTOR IS LEFT IN DELX(I) BY ESTIM
IF (NUMINI-2) 10,150,150
GO TO (10,160,160), NT7
CALL GRAD(2)
CALL OPT
GO TO (180,170), NT3
WRITE (PRINTR,210)
FORMAT (//,2X,3OHMOVED ON EXTRAPOLATION VECTOR)
CALL OUTPUT (1)
GO TO 50
DUAL VALUE GREATER THAN O MEANS NO FEASIBLE FOINT EXISTS
190 IF (C) 90,90,200
RETURN
END

```

SUBROUTINE CHCKER

INTEGER CONSOL, PRINTR
COMMCN /SHARE/ X (20), DEL(20), A 20,20 ), N, M, MN,NP1, NM1
COMMON /EQAL/ H, H1, MZ
COMMON /EXPOPT/ NEXOP1, NEXOP2, XEP1, XEP2
COMMON /DEVC/ CONSOL, PRINTR, NP
C
\(M M=1+M+M Z\)
DO \(5 j=1, N\) \(D E L(J)=1.2345678\)
5 CONTINUE
C
DO \(10 \quad I=1, M M Z\)
IN \(=I-1\)
IF (IN) \(170,170,180\)
WRITE (PRINTR,1)
GO TO i90
C
WRITE (PRINTR,2) IN
CALL GRAD1 (IN) WRITE (PRINTR,3)
WRITE (PRINTR, 4) (J, DEL(J), J=1,N)
CALL DIFF1 (IN)
WRITE (PRINTR,6)
WRITE (PRINTR, 4) (J, DEL(J), \(\dot{\prime}=1, N)\)
CHCKER COMPUTES AND LIST THE FIRST PARTIAL DERIVATIVES USING GRAD1 AND THEN USING NUMERICAL DIFFERENCING (DIFF1). IF REQUESTED, THE SECOND PARTIAL DERIVATIVES ARE COMPUTED AND LISTED USING MATRIX AND DIFF2.

ONTINUE
SCMETIMES FIRST DERIVATIVES ARE TO BE CHECKED

IF (NEXOP1.LT.4) GO TO 160

C

C
DO \(150 \mathrm{I}=1\), MMZ
        IN \(=I-1\)
        IF (IN) 200,200,210
        WRITE (PRINTR,1)
        GO TO 220
        WRITE (PRINTR,2) IN
    \(I T=2\)
        DO \(30 \mathrm{~K}=1\), N
        LO \(30 \mathrm{~J}=1, \mathrm{~N}\)
        \(A(K, J)=0.0\)
    CONTINUE
    CALL MATRIX (IN,IT)
    IF (IT.EQ.1) GO TO 150
    DO \(50 \mathrm{~K}=2, \mathrm{~N}\)
        \(K M 1=K-1\)
        DO \(40 \mathrm{~J}=1, \mathrm{KM1}\)
            IF ( \(\mathrm{A}(\mathrm{K}, \mathrm{J}) . \mathrm{EQ} \cdot 0.0\) ) GO TO 40
            NEXOP1 \(=5\)
            WRITE (PRINTR,7) K, J
            GO TO 60
        CONTINUE
    CONTINUE
    WRITE (PRINTR, 9 )
    DO \(90 \mathrm{~K}=1, \mathrm{~N}\)
        DO \(70 \mathrm{~J}=\mathrm{K}, \mathrm{N}\)
            IF ( \(\mathrm{A}(\mathrm{K}, \mathrm{J}) . \mathrm{NE} .0 .0\) ) GO TO 80
        CONTINUE
        WRITE (PRINTR, 8) (K, J, A(R, J), J=1,N)
    CONTINUE
    DO \(110 \mathrm{~K}=1, \mathrm{~N}\)
    DO \(110 \mathrm{~J}=1\), N
        \(A(K, J)=0.0\)
    CONTINUE
        WRITE (PRINTR,11)
        CALL DIFF2 (IN)
        DO \(140 \mathrm{~K}=1, \mathrm{~N}\)
        DO \(120 \mathrm{~J}=\mathrm{K}, \mathrm{N}\)
            IF (A(K,J).NE.O.0) GO TO 130
        CONTINUE
        GO TO 140
        WRITE (PRINTR, 8) ( \(K, J, A(K, J), J=1, N)\)
        CONTINUE
        CONTINUE
    CONTINUE
    1 FORMAT (//, 2X, 38HVALUES OF OBJECTIVE FUNCTION PARTIALS )
    2 FORMAT ( \(/, 2 \mathrm{X}, 29 \mathrm{HJ}\) ALUES OF CONSTRAINT NUMEER , I2 )
    3 FORMAT (/, 2X, 25HANALYTICAL FIRST PARTIALS )
```

4 EORMAT (1X, 3(2K,4HDEL(, I2, 3H)=,514.7))
6 FORMAT (/, 2X, 24HNUMERICAL FIRST PARTIALS)
7 FORMAT (/, 2X, 2HA(, I2,1H, ,I2, 10H) .NE. 0.0)
8 FORMAT (1X, 3(2X, 2HA(, I2,1H,,I2,4H)=,E12.6))
9 FORMAT (/, 2X, 26HANALYTICAL SECOND PARTIALS)
11 FORMAT (/, 2X, 25HNUMERICAL SECOND PARTIALS)

```

10 IF ( ABS(DOTT).LT.EPSI ) GO TO 70 GO TO 40
40 GO TO \((50,60)\), NSWN
50 IF (MN.LE.1) RETURNC

C

C
\(70 \quad \mathrm{~N} 1=1\)
75
C

FOUND THE MINIMUM TO THE SUBPRCBLEM RETURN
\(Q 1=P 0\)

RETURN .
END

SUBROUTINE DIFF2 (IN)

CONTINJE
\(X(N)=\operatorname{XSSS}(N)\)
C
RETURN
END

SUBROUTINE DIFF1 (IN)
DIFF2 COMPUTES THE SECOND DERIVATIVES BY NUMERICAL DIFFERENCING
COMMON /SHARE/ X (20), DEL(20), A(20,20), N,M, MN, NP1,NM1
COMMON /EXPOPT/ NEXOP1, NEXOP2, XEP1, XEP2 COMMON /STIRX/ XSTR(20), XSSS(20), DDLL(20)

DO \(10 \mathrm{~J}=1, \mathrm{~N}\)
\(\operatorname{XSSS}(\mathrm{J})=X(\mathrm{~J})\)
CONTINUE
DO \(50 \mathrm{~J}=1, \mathrm{~N}\)
IF (J.EQ.1) GO TO 20
\(\mathrm{JM1}=\mathrm{J}-1\)
\(X(J M 1)=X S S S(J M 1)\)
\(X(J)=X S S S(J)+X E P 1\)
CALL GRAD1 (IN)
DO 30 I \(=1\), N
\(\operatorname{DDLL}(I)=\operatorname{DEL}(I)\)
CONTINUE
\(X(J)=\operatorname{XSSS}(J)-X E P 1\)
CALL GRAD1 (IN)
DO \(40 \mathrm{I}=\mathrm{J}, \mathrm{N}\) \(A(J, I)=(D D L L(I)-D E L(I)) /(2.0 *\) XEP1)
CONTINUE

DIFF1 COMPUTES THE FIRST DERIVATIVES BY NUMERICAL DIFFERENCING. USER CAN CALL FOR DIFFERENCING OF SELECTED FUNCTIONS.

COMMON /SHARE/ \(\mathrm{X}(20), \operatorname{DEL}(20), A(20,20), N, M, M N, N P 1, N M 1\)
COMMON /EXPOPT/ NEXOP1, NEXOP2, XEP1, XEP2
COMMON /STIRX/ XSTR(20), XSSS(20), DDLL(20)
```

FETURN
END

```

SUBROUTINE EVALU
IN THE NORMAL PHASE EUALU CALLS THE USER-SUPPLIED ROUTINES TO
EVALUATE THE CBJECTIVE FUNCTION AND THE CONTRAINT FUNCTIONS AT THE CURRENT POINT. IN THE FEASIBILITY PHASE THIS RCUTINE PUTS THE NEGATIVE SUM OF THE VIGLATED CONSTRAINTS IN LOCATICN E.

INTEGER CONSCL, PRINTR
COMMON /SHARE/ K(20), DEL(20), A(20,20), N,M,MN,NP1,NM1
COMMON /EQAL/ H, H1, MZ
COMMON /OPTNS/ NTi, N172,NT3,NT4,NT5,NT6,NT7,NT8,NT9,NT10
COMMON /VALUE/ F,G, PO, RSICMA, RJ (20), RHO
COMPON /CRST/ DELX (20), DELXO(20), RHOIN, RATIO, EPSI, THETAO,
1 RSIG1, G1, X1(20), K2(20), X3(20), XR2(20), XR1(20), PR1,
2 SR2, P1, F1, RJi(40), DOTT, PGRAD(20), DIAG(20),
3 PREV3, ADELX, NTCTR, NUMINI, NPHASE, NSATIS
```

H=0.0
RSIGMA = 0.0
F}=0.
NSATIS = 2

```
APHASE DETERMINES THE FHASE OF PROCRAM
    1 PROBLEM IN FEASIBILITY PHASE
    2 PROBLEM IN REGULAR PHASE
    3 PROBLEM IN GUESS PHASE
    4 EVALUATE ALL FUNCTIONS REGARDLESS OF PHASE

C
C
C
\[
10
\]
\[
\mathrm{C}
\]
C

C
40 IF (M.EQ.O) GO TO 90
C

C
C

C

C
C
C
```

 INDICATES SATISFACTION OF CONSTRAINT (1 OR MCRE)
 NSATIS = 1
 RSIGMA = RSIGMA - RHO * ALOG! RJ(J))
    ```
        ALL VIOLATED CONSTRAINTS ADDED INTO OBJECTIVE FUNCTION
        \(F=F-R J(J)\)
        GO TO 80
    RSIGMA \(=\) RSIGMA \(-\operatorname{RHO} * A L O G(\operatorname{RJ}(J))\)
GO TO 80
    continue
    CONTINUE
        EQUALITIES NOT COMPUTED IN FEASIEILITY PHASE
        \(P O=F+\) RSIGMA
        \(G=E-\) FHO * FLOAT (M)
        IF (NT2.EQ.1) G = G - RHO * FLOAT(N)
        RETURN
C
C REGULAR PHASE
    100
C
C NON NEGATEITIES INCLUDED
    110
    120
C
    130
    \(\because \because\) FEASIBILITY PHASE
    10 GO TO \((20,40)\), NT2
        NON-NEGATIVES INCLUDED
        DO \(30 \mathrm{I}=1, \mathrm{~N}\)
        IF (X(I).LE.0.0) GO TO 260
        RSIGMA \(=\) RSIGMA - RHO *ALOG ( X(I) )
        CONTINUE
        IF (M.EQ.O) GO TO 90
        DO \(80 \mathrm{~J}=1, \mathrm{M}\)
        CALL RESTNT (J, RJ (J) )
        IF ( RJ1(J).LE.O.O ) GO TO 50
        IF ( RJ(J).GT.0.0 ) GO TO 60
        VIOLATION OF A PREVIOUSLY SATISFIED CONSTRAINT
        GO TO 250
        IF ( RJ (J).GT.0.0) GO TO 70
        GO TO 80
        GO TO (10,100,190,200), NPHASE
```

 RSIGMA \(=\) RSIGMA - RHO *ALCG(RJ (J))
 CONTINUE
    ```

C
C EVALUATE AND ADD IN EQUALITY CONSTRAIV'TS
150 CONTINUE
CALL RESTNT ( \(0, F\) )
IF (MZ) 180,180,160
DO \(170 I=1\), MZ
\(J=I+M\)
CALL RESTNT (J, RJ (J) )
\(C\) ADD INTO THIRD TERM OF P FUNCTION
\(H=H+(\operatorname{RJ}(J)) * 2\)
CONTINUE \(H=H / R H O\)

C
\(180 \quad \mathrm{PO}=\) RSICMA +H
\(P O=F+P O\)
\(G=2.0 * \mathrm{H}-\mathrm{RHO} * \mathrm{FLOAT}(\mathrm{M})\)
\(G=G+F\)
IF (NT2.EQ.1) \(G=G-R H O * F L O A T(N)\)
C DUAL VALUE
RETURN
C
C GUESS PHASE NOT YET CODED
190 RETURN
C
C STRAIGHT FUNCTION EVALUATION ( MAIN + FEASIBLE ONLY )
200 CONTINUE
IF (M.EQ.O) GO TO 220
DO \(210 \mathrm{I}=1, \mathrm{M}\)
CALL RESTNT (I, RJ(I))
210 CONTINLE
C
220 CALL RESTNT ( \(0, F\) )
C EQUALITY CONSTRAINTS
230 DO \(240 \mathrm{I}=1, \mathrm{MZ}\)
\(K Z=M+I\)
CALL RESTNT (KZ, RJ(KZ))
CONTINUE
C
250 RETURN
C
C CONSTRAINTS VIOLATED NOT SO BEFORE
260 NSATIS \(=3\)
\(P O=10.0 E 35\)
C
RETURN
END

SUBROUTINE FEAS
\(10 \quad \operatorname{NFIX}^{\top}=1\) DO \(30 \mathrm{I}=1, \mathrm{~N}\) IF (X(I) ) 20,20,30 \(N F I X=2\) \(X(I)=1.0 E-05\)
CONTINUE
C
C
\(40 \quad\) NPHASE \(=4\)
CALL EVALU
NPHASE \(=1\)
WRITE (PRINTR, 130)
130 FORMAT (//, 2X, 43HMADE VARIABLES WHICH VIOLATED NON NEGATIVE 30HCONSTRAINTS SLIGHTLY POSITIVE )
CALL CUTPUT (2)
C
50 IF (M) \(90,90,50\)
C
60 DO \(\left.\begin{array}{rl}70 \\ \text { IF } & I=1, M \\ (R J\end{array}\right) \quad 100,100,70\)
70 CONTINUE IF (NPHASE.EQ.1) GO TO 90
C

FORMAT (//,2X,38HTHE FEASIBLE STARTING POINT AND VALUES ) \(G=0.0\) CALL RESTNT \((0, F)\) CALL OUTPUT (2)
C
90 RETURN
C
100 CALL BODY
IF (NPHASE.EQ.5) RETURN

150 FORMAT (/////,2X,4 ( 1 7H POINT. / 2X, 36HWILL LOOK FOR DATA TO NEXT PROBLEM. )
C TO INDICATE TO MAIN TO START ON NEXT PROBLEM
    NPHASE \(=5\)
    GO TO 90

END

SUBROUTINE FINAL (N2)
FINAL CONTAINS THE TESTS USED TO DETERMINE WHETHER A POINT SATISFIES THE FINAL CONVERGENCE CRITERION CHOSEN TO DETERMINE
IF THE NLP PROBLEM HAS BEEN SOLVED.
N2 SET EQUAL TO 1 IF CONERGENCE CRITERION IS SATISFIED.
N2 SET EQUAL TO 2 OTHERWISE.
INTEGER CONSOL, PRINTR
CCMMON /SHARE/ X(20), DEL(20), A(20,20), N,M, MN,NP1, NM1
COMMON /OPTNS/ NT1,NT2,NT3,NT4,NT5,NT6,NT7,NT8, NT9,NT10
COMMON /VALUE/ F,G,PO,RSIGMA,RJ (20),RHO
COMMON /CRST/ DELX(20), DELXO(20), RHOIN, RATIO, EPSI, THETAO,
1 RSIG1, G1, X1(20), X2(20), X3(20), XR2(20), XR1(20), PR1,
2 PR2, P1, F1, RJ1(40), DOTT, PGRAD(20), DIAG(20),
3 PREV3, ADELX, NTCTR, NUMINI, NPHASE, NSATIS
COMMON /DEVC/ CONSOL, PRINTR, NP
GO TO (10,20:30), NT5
\(E P S I L=A B S(E / G-1.0)\)
IF (EPSIL-TiETAO) 50:50,70

C
IF ( ABS (RSIGMA) - THETAO ) 50,50,70
IF (NUMINI-1) 50,40,40
\(\operatorname{PEST}=P R 1-(P R 1-P O) /(1.0-1.0 / S Q R T(R A T I O))\)
EPSIL \(=\mathrm{ABS}(\) PEST/G-1.0)
IF (EFSIL-THETAO) 50,70,70
C
\(\mathrm{N} 2=1\)
GO TO 80
C
\(\mathrm{N} 2=2\)
80 RETURN
END

50 DO \(70 \mathrm{I}=1, \mathrm{~N}\)
        \(\operatorname{DELXO}(I)=-\) RHO \(/ X(I)\)
        GO TO \((60,70)\), IS
            \(A(I, J)=(-\operatorname{DELO} O(I) / X(I))\)
        CONTINUE
C
    80 CONTINUE
        IF (M.LE.O) GO TO 180
        DO \(170 \mathrm{~K}=1\), M
            CALL GRAD1(R)
            IF ( RJ(K).GT.0.0 ) CO TO 110
C
C ALL VIOLATED CONSTRAINT GRADS ADDED TO OBJECTIVE FUNCIION
        DO \(100 \mathrm{I}=1, \mathrm{~N}\)
            IF (DEL(I) ) 90,100,90
                                \(\operatorname{DELXO}(I)=\operatorname{DELO}(I)-D E L(I)\)
        CONTINUE
        GO TO 170
C
\(110 \mathrm{TT}=\mathrm{RHO} / \mathrm{RJ}(\mathrm{K})\)
        DO \(160 \quad I=1, N\)
```

IF (DEL(I)) 120,160,120
C IF DEL(I) = 3 SKIP ALL THE FOLLOWING COMPUTATION
INVOLVING * BY DEL(I)
T = TT * DEL(I)
DELXO(I) = DELXC(I) - T
GO TO (130,160), IS
T = T / RJ(K)
DO 150 JJ=1,I
IF (DEL(JJ)) 140,150,140
A(I,JJ) = A(I,JJ) + T * DEL(JJ)
ConTInUE
CONTINUE
CONTINUE
c
C EQUALITY CHANGES FOR GRAD
IF (MZ.LE.0) GO TO 250
GO TO (250,190,250), NPHASE
C
190 RQ = 2.0 / RHO
DO 240 J=1,MZ
K=M+J
CALL GRAD1(K)
TT = R2 * RJ(K)
DO 230 I=1,N
IF (DEL(I).EQ.0.0) GO TO 230
DELYO(I) = DELXO(I) + DEL(I) * TT
GO TO (200,230), IS
2 0 0
C
250 GO TO (260,280), IS
C
260 DO 270 I=1,N
DIAG(I) = A(I,I)
270 CONTINUE
C
280 GO TO (290,330,290), NPHASE
C
290 DO 300 I=1,N
DELXO(I) = - DELXC(I)
300 CONTINUE
C
310 ADELX = 0.0
DO 320 I=1,N
ADELX = ADELX + DELXO(I)**2
320 CONTINUE
C
ADELX = SQRT(ADELX)
RETURN

CALL GRAD1(0)
DO 340 I $=1, \mathrm{~N}$
$\operatorname{DELXO}(I)=-\operatorname{DELXO}(I)-\operatorname{DEL}(I)$
continue
C
C LEAVES THE NEGATIVE GRadIENT OF P In DELXO GO TO 310

C
END

SUBROUTINE INPUT
C
INTEGER CONSCL, PRINTR
COMMON /SHARE/ X(20), DEL(20), A(20,20), H,M, IN, NP1,NM1
COMMON /EQAL/ H, H1, MZ
CCMMON /OPTNS/ NT1,NT2,NT3,NT4,NT5,NT6,NT7,NT8,NT9,NT10
COMMON /VALUE/ F,G, PO,RSIGMA, RJ(20), RHO
COMMON /CRST/ DELX(20):DELXO(20),RHOIN, RATIO, EPSI, THETAO, 1 RSIG1, G1, X1(20), X2(20), X3(20), XR2(20), XR1(20), PR1,
2 PR2, P1, F1, RJ1(40), DOTT, PGRAD(20), DIAG(20),
3 PREV3, ADELX, NTCTR, NUMINI, NPHASE, NSATIS
COMMON /EXPOPT/ NEXOP1, NEXOP2, XEP1, XEP2
COMMON /DEVC/ CONSOL, PRINTR, NP
C
CALL OPEN (6,'OPTIONS DAT',2)
READ (6) N, M, MZ
READ (6) (X (I), $I=1, N$)
READ (6) RHOIN, RATIO, EPSI, THETAO
READ (6) NT1,NT2,NT3,NT4,NT5,NT6,NT7,NT8,NT9,NT10
READ (6) NEXOP1, NEXOP2
ENDFILE 6
C
RETURN
END

SUBRCUTINE INVERS (NSME)
40 NINV $=1$
$50 \quad A(1,1)=1.0 / A(1,1)$
[0 $60 \mathrm{I}=2, \mathrm{~N}$
$A(1, I)=A(1, \bar{I}) * A(1,1)$
50 CONTINUE
C

C
$A(J, J)=A(J, J)-T$
$I F(A(J, J)) 110,100,120$
NINV = NINV + 1
GO TO 170
C

110 NINV $=$ NINV +1
120 A DIFFERENT METHOD IS USED. OF THE SYMMETRY OF THE A MATRIX.

IF NSME $=1$ WCRKING WITH A NEW A MATRIX

INTEGER CONSCL, PRINTR
DIMENSION B(20)

3 PREV3, ADELX, NTCTR, NUMINI, NPHASE, NSATIS
COMMON /EXPOPT/ NEXOP1, NEXOP2, XEP1, XEP2
COMMON /DEVC/ CONSOL, PRINTR, NP
GO TO $(20,170)$, NSIME
NINV $=0$
IF ($\mathrm{A}(1,1)$) 40,30,50
NINV=1
GO TO 70
$50 \quad A(1,1)=1.0 / A(1,1)$
LO $60 \mathrm{I}=2, \mathrm{~N}$ $A(1, I)=A(i, \bar{I}) * A(1,1)$
CONTINUE
70 DO $160 \mathrm{~J}=2, \mathrm{~N}$ JM1 $=\mathrm{J}-1$
$T=0.0$
DO GO I=1, JM1
IF ($\mathrm{A}(\mathrm{I}, \mathrm{J})) 80,90,80$ $T=T+A(J, I) * A(I, J)$
CONTINUE
$A(J, J)=1.0 / A(J, J)$

INJERS SOLVES THE SET OF EQUATION FOR THE MOVE-VECTOR USING THE CROUT PROCEDURE. IF THE MATRIX IS NOT FOSITIVE DEFINITE,

PERFORMING A L-U DECOMPOSITION OF THE MATRIX A, TAKING ADVANTAGE
IF A NON-POSITIVE PIVOT CANDIDATE IS GENERATED, THEN MCCORMICK'S PROCEDURE IS USED (SEE PP. 167-168 IN FIACCO AND MCCORMICK).

IF NSME $=2$ USING PREVIOUS A MATRIX, BUT HAVE A NEW RIGHT-HAND SIDE. NINV IS THE NUMBER OF NON-POSITIVE PIVCT CANDIDATES GENERATED.

COMPON /SHARE/ X(20), DEL(20), A(20,20), N,M, MN, NP1,NM1
COMMON /OPTNS/ NT1,NT2,NT3,NT4,NT5,NT6,NT7,NT8,NT9,NT10
CCMMON /CRST/ DELX(20), DELXO(20), RHOIN, RATIO, EPSI, THETAO,
1 RSIG1, G1, X1(20), X2(20), X3(20), XR2(20), XR1(20), PR1,
2 PR2, P1, F1, RJ1(40), DOTT, PGRAD(20), DIAG(20),

IF (J.EQ.N) GO TO 170
$J P 1=J+1$
DO $150 \mathrm{~L}=\mathrm{JP} 1, \mathrm{~N}$

130 140

150 160
c
170 CONTINUE
C

C
180

190
200
210

220
230
240
C
250
260
430
420
270
440
280
C
C

C
310
C
320
continue
CONTINUE
continue
continue

CONTINE
D 350 II $=1, N$

$$
T=0.0
$$

$$
\text { DO } 140 \quad I=1, \mathrm{JM} 1
$$

$$
\operatorname{IF}(\mathrm{A}(\mathrm{I}, \mathrm{~J})) 130,140,130
$$

CONTINUE
$A(L, J)=A(L, J)-T$
$A(J, L)=A(L, J) * A(J, J)$

IF (NINV) $180,180,290$
$B(1)=B(1) * A(1,1)$
DO $210 \mathrm{~J}=2, \mathrm{~N}$
$T=0.0$
JM1=J-1
DO 200 I=?, JM1 IF ($\mathrm{A}(\mathrm{J}, \mathrm{I})$) 190,200,190 $T=T+A(J, I) * B(I)$
CONTINUE
$B(J)=(B(J)-T) * A(J, J)$
DO 240 I=1,NM1
NMK $=\mathrm{N}-\mathrm{I}$
DO $230 \mathrm{~J}=1$, I $\mathrm{L}=\mathrm{NP} 1-\mathrm{J}$ IF (A(NMK, L)) 220,230,220 $B(N M K)=B(N M K)-A(N M K, L) * B(L)$
CONTINUE

GO TO $(280,260)$, NT3
WRITE (PRINTR,430)
FORMAT (/,2X, 12HDEL P VECTOR)
WRITE (PRINTR,420) (I, DELXO(I), $I=1, N$)
FORMAT $(/, 3(2 X, 4 H D E L(, I 2,3 H)=, E 15.8)$)
WRITE (PRINTR,440)
FORMAT ($/ 2 X, 24 H S E C O N D$ ORDER MOVE VECTOR)
WRITE (PRINTR,420) (I, DELX(I), $I=1, N$)
RETURN
COMPUTE ORTHOGONAL MOVE
$I=N-I I+i$
IF ($\mathrm{A}(\mathrm{I}, \mathrm{I})$) 310,300,320
$B(I)=0.0$
GO TO 350
$B(I)=1.0$
GO TO 330

CHECK MAYBE DO DIFF FOR P.S.D.
ZC2 $=0.0$
DO $370 \mathrm{I}=1, \mathrm{~N}$ $Z C 2=Z C 2+\operatorname{DELXO}(I) * B(I)$
370 CONTINUE
C

C 400 IF (NEXOP2.NE.2) GO TO 250
C

C

```
DELX(I) = - DELX(I)
```

 30 CONTINUE
 C
40 CONTINUE
$\mathrm{N} 404=0$
$\mathrm{M}=\mathrm{M}=\mathrm{N}+1$
C $\quad \mathbb{M}$ IS NOW NUMBER OF POINTS AFTER MINIMUM ACHIEVED NTCTR = NTCTR + 1
DO $50 \mathrm{I}=1, \mathrm{~N}$
$X 2(I)=X(I)$
50 CONTINUE
C
PXT=PO
N401=0
$60 \quad$ N401 $=$ N401 +1
DO $70 \mathrm{I}=1, \mathrm{~N}$
$X(I)=X 2(I)+\operatorname{DELX}(I)$
70 CONTINUE
C
call evalu
C
C 1 MEANS SATISFIED A CONSTRALNT NOT PREVIOUSLY SATISFIED.
2 MEANS NO CHANGE
3 MEANS VIOLATION
IF POINT IS NOT FEASIBLE GIVE IT AN ARBITRARILY HIGH VALUE.
C
$80 \quad \mathrm{PX2}=10.0 \mathrm{E} 35$
$P 0=10.0 E 35$
GO TO 100
C
90 CONTINUE
PX2 = PO
IF (PX1-PX2) 100,100,150
100 IF (N401-2) $130,110,110$
110 DO $120 \mathrm{I}=1, \mathrm{~N}$ $X 1(I)=X(I)$
120 CONTINUE
C
$P 1=P X 2$
GO TO 430
C
C ONLY ONE POINT SO FAR COMPUTED
130 DO $140 I=1, N$ $X 3(I)=X 2(I)$
140 CONTINUE
C
PREV3 $=$ PX1
GO TO 180
C
150 DO $160 \mathrm{I}=1, \mathrm{~N}$
$X 3(I)=X 2(I)$
$X 2(I)=X(I)$
$\operatorname{DELX}(I)=1.61803399 * \operatorname{DELX}(I)$

C

| | $\begin{aligned} & \text { PREV3 }=\text { PX1 } \\ & \text { PX1 }=\text { PX2 } \\ & \text { GO TO } 60 \end{aligned}$ |
| :---: | :---: |
| C | |
| C | THE GOLDEN SECTION SEARCH METHOD. |
| C | |
| C | B VECTOR GOES TO X1(I) |
| 170 | $\mathrm{P} 0=1.0 \mathrm{E} 36$ |
| | N404 = $\mathrm{N} 404+1$ |
| 180 | DO $190 \mathrm{I}=1, \mathrm{~N}$ |
| | $X 1(I)=X(I)$ |
| 190 | CONTINUE |
| C | |
| | $\mathrm{P1}=\mathrm{PO}$ |
| | $\text { DO } 200 \quad I=1, N$ |
| | $X(I)=0.38196601 *(X 1(I)-X 3(I))+X 3(I)$ |
| | $X 2(I)=X(I)$ |
| 200 | CONTINUE |
| C | |
| | Call evalu |
| C | |
| | GO TO ($540,270,210$) , NSATIS |
| C | |
| 210 | IF (N404.LT.30) GO TO 170 |
| C | |
| C | IT IS POSSIBLE NO FEASIBLE POINT EXISTS, IF NOT, TRY MOVING ON |
| C | DELXO. IF IT IS NOT POSSIELE TO MOE ON DELXO THEN WE MUST BE |
| C | AT A SOLUTION OF THE NLP PROBLEM. |
| C | |
| | IF (N404.GT. 100) GO TO 240 |
| 220 | DO $230 \mathrm{I}=1, \mathrm{~N}$ |
| | IF ($\operatorname{ABS}(\mathrm{ABS}(\mathrm{X} 3(\mathrm{I}) / \mathrm{X1}(\mathrm{I})$)-1.0) .GT. 1.0E-07) GO TO 170 |
| 230 | CONTINUE |
| C | |
| 240 | GO TO (250,260), N405 |
| 250 | $\mathrm{N} 4 \mathrm{C} 5=2$ |
| C | |
| C | TRY TO MOVE ON GRADIENT |
| | NTCTR = NTCTR - 1 |
| | $\mathbb{N}=\mathbb{M}-1$ |
| | GO TO 20 |
| C | |
| 260 | WRITE (PRINTR,580) |
| 580 | FORMAT (//, 2X, 42HOPT CAN'T FIND A FEASIBLE POINT THAT GIVES , 33 H A LONER VALJE OF THE P-FUNCTION) |
| こ* * | CALL IIMEC |
| | CALL OUTFUT (1) |
| | CALL REJECT |
| | STOP 22042 |
| C | |
| 270 | CONTINUE |
| | $\mathrm{N} 4 \mathrm{O} 4=0$ |
| | PX1 $=$ P0 |
| | DO $280 \mathrm{I}=1, \mathrm{~N}$ |

```
        X(I) = 0.38196601:(X1(I)-K2(I)) + X2(I)
    2 8 0
C
C
    290
    300
    3 1 0
C
    3 2 0
    3 3 0
C
    3 4 0
C
C
C
C
    3 7 0
C
C
    380
C
C
CONTINUE
CALL EVALU
GO TO (540,290,220), NSATIS
C
```

290
300
310
C

C
340

C
c

C

C
370
C

C

C
C

```
    PX2 = PO
        N401 = 1
    N401 = N401 + 1
        IF ( N401-25) 340,310,310
        KSW=2
    IF (N401-40) 320,460,460
    DO }330\mathrm{ I=1,N
        IF ( ABS(X2(I)/X(I)-1.0 ).GE.1.0E-7 ) GO TO 340
    CONTINUE
    GO TO 460
    IF ( ABS( PX1/PX2-1.0 ) .LE. 1.0E-7 ) GO TO 460
    IF ( PX1-PX2 ) 350,460,400
    THRON AWAY RIGHT PART
        DO 360 I=1,N
        X1(I) = X(I)
        contINUE
        P1 = PX2
        DO 370 I=1,N
        POINT XP1 BECOMES XP2 TEMPORARILY IN X STORAGE
        X(I) =0.38196601*( X1(I)-X3(I)) + X3(I)
        CONTINUE
        CALL EVALU
        GO TO (540,380,170), NSATIS
        CONTINUE
        PX2 = PX1
        SWITCH VECTORS TO PROPER POSITION
        PX1=PO
        DO 390 I=1,N
            XX = X2(I)
            K2(I) = X(I)
            X(I) = XX
        cCNTINUE
        GO TO 300
    LEFT SIDE TOSSED AWAY
    CHANGES FOR NONUNIMODAL FUNCTION. GO TO THROW AWAY RIGHT
    IN CASE INITIAL ValuE LESS THAN FEASIBLE POINT.
    IF (PREV3-PX2) 350,350,410
    DO 420 I=1,N
        X3(I) = X2(I)
        X2(I) = X(I)
        CONTINUE
```

C

450 CONTINUE
PX2 $=$ F0
GO TO 300
C
C THE INTERIOR POINTS NOW GIVE EQUAL VALUE FOR P. COMPUTE MIDPOINT.
DO $470 \mathrm{I}=1, \mathrm{~N}$

$$
\operatorname{DELXO}(I)=X(I)
$$

$$
X(I)=(\operatorname{DELXO}(I)+X 2(I)) * 0.5
$$

470 CONTINUE
C

C
480 IF (ABS(FO/PX1-1.0) .GT.1.0E-07) GO TO 520
490 GO TO $(500,510)$, ISN
500 IF (PO.LT.P31) GO TO 510
ISW=2
C IF P-FUNCTION DIDN'T GO DOWN, TRY NEGATIVE VECTOR.
GO TO 20
C
510 RETURN
C
520 DO $530 \quad I=1, N$ $X(I)=D E L X O(I)$
530 CONTINUE
GO TO 350
C
C WE ARE NOW IN FEASIBILITY PHASE
540
DO $550 \mathrm{I}=1, \mathrm{M}$
IF ($\mathrm{RJ}(\mathrm{I})$) $560,560,550$
550 CCNTINUE
C
NSATIS $=4$
RETURN
C
C PROBLEM HAS BECOME FEASIBLE
C P - FUNCTION CHANGES IF A CONSTRAINT BECOMES FEASIBLE
$560 \quad \mathrm{MN}=0$
DO $570 \mathrm{I}=\mathrm{i}, \mathrm{M}$
$\operatorname{RJ1}(I)=\operatorname{RJ}(I)$
570 CONTINUE
RETURN
END

SUBROUTINE OUTPUT (K)
OUTPUT PRINTS OUT INFORMATION ON THE RESULTS OF EACH ITERATION
INTEGER CONSOL, PRINTR
COMMON /SHARE/ X (20), DEL(20), A(20,20), N, M, M, NP1, NM1
COMMON /EQAL/ H, H1, MZ
COMMCN /OPTNS/ NT1,NT2,NT3,NT4,NT5,NT6,NT7,NT8,NT9,NT10
COMMON /VALUE/ F,G,PO,RSIGMA,RJ(20),RHO
COMMON /CRST/ DELX(20), DELXO(20), RHOIN, RATIO, EPSI, THETAO, 1 RSIG1, G1, X1(20), X2(20), X3(20), XR2(20), XR1(20), PR1,
2 PR2, P1, F1, RJ1(40), DOTT, PGRAD(20), DIAG(20),
3 PREV3, ADELX, NTCTR, NUMINI, NPHASE, NSATIS
COMMON /DEVC/ CONSOL, PRINTR, NP
$N Z=M+M Z$
GO TO $(10,20), K$
10 WRITE (PRINTR, 1) NTCTR
WRITE (PRINTR,2) RHO, RSIGMA
20 WRITE (PRINTR,3) F, PO,G
WRITE (PRINTR,4)
WRITE (PRINTR,5) (J,X(J), J=1,N)
WRITE (PRINTR,6)
GO TO $(30,40), N T 2$

C
30
WRITE (PRINTR,8) (I, RJ(I), I=1,NZ)
GO TO 50
40 WRITE (PRINTR, 3) ($I, R J(I), I=\hat{i}, N Z)$

1 FORMAT (///, 8X, 18H *** POINT NUMBER , I5, 8H ***)
2 FORMAT ($/, 2 \mathrm{X}, 6 \mathrm{HRHO}=, \mathrm{E} 14.7,4 \mathrm{~K}$, GHRSIGMA $=, \mathrm{E} 4.7$)
3 FORMAT (/ , 2X, $3 \mathrm{HF}=, \mathrm{E} 14.7,4 \mathrm{X}, 3 \mathrm{HP}=, \mathrm{E} 14.7,4 \mathrm{X}, 3 \mathrm{HG}=, 514.7$)
4 FORMAT (/, 2X, 18HVALUES OF X VECTOR)
5 FORMAT (1X, 3(2X,2HX (, I2, $3 H)=, E 14.7)$)
6 FORMAT (/, 2X, 25HVALUES OF THE CONSTRAINTS)
8 FORMAT $(1 \mathrm{X}, 3(3 \mathrm{X}, 2 \mathrm{HG}(, \mathrm{I}, 3 \mathrm{H})=, \mathrm{E} 14.7)$)
C
50 RETURN
END

SUBRCUTINE PEVALU
PEVAL'U COMPUTES THE VALUE GF THE FENALTY FUNCTION AND THE VALUE OF THE DUAL USING PREVIOUSLY COMPUTED VALUES FOR F AND RJ.

INTEGER CONSOL, PRINTR
COMMON /SHARE/ X (20), DEL(20), A 20,20$)$, N,M, MN,NP1, NM1
COMMON /EQAL/ H, H1, MZ
COMMON /OPTNS/ NT1, NT2,NT3,NT4,NT5,NT6,NT7,NT8,NT9,NT10
COMMCN /VALUE/ F,G, PO,RSIGMA,RJ(20),RHO
COMMON /CRST/ DELX(20), DELXO(20), REOIN, RATIO, EPSI, THETAO,

RSIG1, G1, X1(20), X2(20), X3(20), XR2(20), XR1(20), PR1,
2 PR2, P1, F1, RJ1(40), DOTT, $\operatorname{PGRAD}(20), \operatorname{DIAG}(20)$,
3 PREV3, ADELX, NTCTR, NUMINI, NPHASE, NSATIS
COMMON /DEVC/ CONSOL, PRINTR, NP

C

$$
\text { GO TO }(140,120,150) \text {, NPHASE }
$$

C
$\mathrm{H}=0.0$
RSIGMA=0.0
NONNEGS IF INCLUDED ARE ADDED TO P-- ARE POSITIVE IN ALL PHASES GO $\mathrm{TO}(10,30)$, NT2

DO $20 I=1, \mathrm{~N}$
RSIGMA $=$ RSIGMA - KHO $A L O G(X(I))$
CONTINUE
30 GO TO $(40,50,150)$, NPHASE
OBJECTIVE FUNCTION - SIGMA VIOLATED CONSTRAINTS
$F=0.0$
IF (M) $100,100,60$ DO $90 \mathrm{~J}=1, \mathrm{M}$

IF (RJ(J)) 80,80,70
RSIGMA $=$ RSIGMA - RHO*ALOG $(R J(J))$
GO TO 90
$F=F-\operatorname{RJ}(J)$
CONTINUE
EQUALITIES NOT ADDED IN FEASIBILITY PHASE CONTINUE

$$
F(M Z) 140,140,110
$$

DO $130 \quad I=1, M Z$
$\mathrm{K}=\mathrm{M}+\mathrm{I}$
$H=H+\operatorname{RJ}(K) * * 2$
CCNTINUE
$\mathrm{H}=\mathrm{H} / \mathrm{RHO}$
$H S=H+$ RSIGMA
$P O=F+H S$
HMS $=2.0 * \mathrm{H}-\mathrm{RHO}$ FLOAT (M) $G=F+H M S$ IF (NTL.EQ.1) $G=G-$ RHO*FLOAT(N)
C
150 RETURN
END

SUBROUTINE REJECT

 LOCATION.REJECT RETURNS THE STORED VALUES OF THE OBJECTIVE FUNCTICN, THE CONSTRAINT FUNCTION AND THE PENALTY FUNCTION TO THEIR NORMAL

INTEGER CONSOL, PRINTR
COMMON /SHARE/ X(20), DEL(20), A(20,20), N, M, MN, NP1, NM1
COMMCN /EQAL/ H, H1, MZ
COMMON /VALUE/ F,G,PO,RSIGMA,RJ (20),RHO
COMMON /CRST/ DELX(20), DELXO(20),RHOIN,RATIO, EPSI, THETAO,
1 RSIG1, G1, X1(20), X2(20), X3(20), XR2(20), XR1(20), PR1,
2 PR2, P1, F1, RJ1(40), DOTT, PGRAD(20), DIAG(20),
3 PREV3, ADELX, NTCTR, NUMINI, NPHASE, NSATIS
COMMON /DEVC/ CONSOL, PRINTR, NP

C
$M M Z=M+M Z$
DO $20 \mathrm{~J}=1, \mathrm{MMZ}$
$\operatorname{RJ}(J)=R J 1(J)$
CONTINUE
$\mathrm{P} 0=\mathrm{P} 1$
RSIGMA = RSIG1
$\mathrm{G}=\mathrm{G} 1$
$\mathrm{F}=\mathrm{F} 1$
$\mathrm{H}=\mathrm{H} 1$
RETURN
END

SUBROUTINE RHOCOM

C RHOCOM COMFUTES THE INITIAL R VALUE IF DESIRED

INTEGER CONSOL, PRINTR
COMMON /SHARE/ X(20), DEL(20), $\mathrm{A}(20,20), \mathrm{N}, \mathrm{M}, \mathrm{MN}, \mathrm{NP} 1$, NM1
COMMON /OPTNS/ NT1,NT2,NT3,NT4,NT5,NT6,NT7,NT8,NT9,NT10
COMMON /VALUE/ F,G, PO,RSIGMA, RJ (20), RHO
COMMON /CRST/ DELX(20), DELXO(20), RHOIN, RATIO, EPSI, THETAO,
1 RSIG1, G1, X1(20), X2(20), X3(20), XR2(20), XR1(20), PR1,

2 PR2, P1, F1, $\mathrm{FJ} 1(40)$, DOTT, PGRAD(20), DIAG(20),
3 PREV3, ADELX, NTCTR, NUMINI, NFHASE, NSATIS
COMMON /DEVC/ CONSOL, PRINTR, NP
C
GO TO ($110,50,10,190$), NT1
$\mathrm{RHO}=\mathrm{RHOLN}$
20
30
40
IF (RHO) 30,30,40
$\mathrm{RHO}=1.0$
RETURN
C
$50 \quad$ NPAR1 $=1$
60 RHO $=1.0$
NT1 $=2$ MEANS RHO WHICH MINIMIZES GRADIENT MAGNITUDE
CALL GRAD (2)
DO $70 \mathrm{I}=1, \mathrm{~N}$
$\operatorname{PGRAD}(I)=\operatorname{DELXO}(I)$
70 CONTINUE
$\mathrm{RHO}=2.0$
CALL GRAD (2)
DO $80 \mathrm{I}=1, \mathrm{~N}$
$\operatorname{DELXO}(I)=\operatorname{DELXO}(I)-\operatorname{PGRAD}(I)$
$\operatorname{PGRAD}(I)=\operatorname{PGRAD}(I)-D E L X O(I)$
CONTINUE
C
GO TO $(90,130)$, NPAR1
90 DOT1 $=0.0$
DOT2 $=0.0$
DO $100 \mathrm{I}=1, \mathrm{~N}$ DOT1 $=\operatorname{DOT1}+\operatorname{DELXO}(I) * \operatorname{FGRAD}(I)$ DOT2 $=$ DOT2 $+\operatorname{DELXO}(I) * * 2$
100 CONTINUE
RHO $=\mathrm{ABS}(D O T 1 / D O T 2)$
GO TO 20
C
C NT1=3 MEANS COMPUTE RHO SO AS TO MINIMIZE DELP (/DDP/1.) DEL P
110 NPAR2 $=1$
120 NPAR1 $=2$
GO TO 60
130 RiOO $=1.0$
C
ASSUME SIGMA TERM IS CONSIDERABLE GREATER THAN F TERM
CALL SECORD (2)
DO $140 \quad \mathrm{I}=1, \mathrm{~N}$
$\operatorname{DELX}(I)=\operatorname{PGRAD}(I)$
140 CONTINUE
CALL INVERS (1)

DO $150 \mathrm{I}=1, \mathrm{~N}$
X1(I) $=\operatorname{DELX}(I)$
$\operatorname{DELX}(I)=\operatorname{DELXO}(I)$
CONTINUE
CALL SECORD (2)
CALL INVERS (1)
DO $160 \quad \mathrm{I}=1, \mathrm{~N}$
XR2 $(I)=$ DELX(I)
CONTINUE
GO TO (170,200), NPAR2
170 DOT1 $=0.0$
DOT2 $=0.0$
DO $180 \mathrm{I}=1, \mathrm{~N}$
$\mathrm{DOT1}=\mathrm{DOT1}+\mathrm{PGRAD}(I) * \mathrm{X1}(I)$ DOT2 $=$ DOT2 + DELXO(I) * XR2(I)
CONTINUE
RHO $=$ SQRT(ABS(DOT1/DOTE))
GO TO 20
C
C RHO MINIMIZES 2ND ORDER MOVE
190 NPAR2 $=2$
GO TO 120
C
200 DOT1 $=0.0$
DOT2 $=0.0$
DO $210 \quad I=1, N$
DOT1 $=\mathrm{X} 1(I) * * 2+$ DOT1
DOT2 $=\mathrm{X1}(\mathrm{I}) * \mathrm{XR} 2(I)+$ DOT2
210 CONTINUE
$\mathrm{RHO}=\mathrm{ABS}($ DOT1/DOT2 $)$
GO TO 20
C
END

SUBROUTINE SECORD (IS)
SECORD EVALUATES THE MATRIX OF SECOND PARTIALS OF THE PENALTY FUNCTION.
(1) MEANS DON'T COMPUTE GRADIENT OUTER PRODUCT (IN SECORD).

INTEGER CONSOL, PRINTR
COMMON /SHARE/ X(20), DEL(20), A(20,20), N, M, MN,NP1,NM1
COMMON /EQAL/ H, H1, MZ
COMMON /OPTNS/ NT1,NT2,NT3,NT4,NT5,NT6,NT7, NT8,NT9, NT10
COMMON /VALUE/ F,G, PO, RSIGMA, RJ (20), RHO
COMMON /CRST/ DELX(20), DELXO(20), RHOIN, RATIO, EPSI, THETAO,
1 RSIG1, G1, X1(20), X2(20), X3(20), XR2(20), XR1(20), PR1,
2 PR2, P1, F1, RJ1(40), D0TT, PGRAD(20), DIAG(20),
3 PREV3, ADELX, NTCTR, NUMINI, NPHASE, NSATIS
COMMON /DEVC/ CONSOL, PRINTR, NP
C

> DO $10 \mathrm{I}=1, \mathrm{~N}$
> DO $10 \mathrm{~J}=1, \mathrm{~N}$

```
                A(I,J) = 0.0
    10 CONTINUE
C
C GRADIENT TERM NOT PREVIOUSLY COMPUTED.
20 DO 30 I=1,N
    DO 30 J=1,I
        A(I,J) = 0.0
    30 CONTINUE
C
C
        4 0 ~ D O ~ 5 0 ~ I = 1 , N
        A(I,I)=RHO / X(I)**2
        50 CONTINUE
C
        \sigma0 CONTINUE
            IF (M.LE.O) GO TO 130
            DO 120 IN=1,M
        IF ( RJ(IN)) 120,120,70
        CALL GRAD1(IN)
        TT = RHO / RJ (IN)**2
        DO }110\textrm{I}=1,\textrm{N
                IF ( DEL(I)) 80,110,80
                T = TT * DEL(I)
                DO 100 J=1,I
                                    IF ( DEL(J)) 90,100,90
                                    A(I,J) = A(I,J) +T * DEL(J)
                CONTINUE
        CONTINUE
            CONTINUE
C
C EQUALITY CONSTRAINTS
    130 IF (MZ) 210,210,140
    140 GO TO (210,150,230), NPHASE
C
    150 RQ = 2.0 / RHO
        DO 200 JJ=1,MZ
        IN = M + JJ
        CALL GRAD1 (IN)
        DO 190 I=1,N
            IF ( DEL(I)) 160,190,160
                T = RQ * DEL(I)
                LO 180 J=1,I
                IF ( DEL(J)) 170,180,170
                        A(I,J) = A(I,J) +T*DEL(J)
                CONTINUE
        CONTINUE
    200
        CONTINUE
C
    210
        DO 220 I=1,N
        DIAG(I) = A(I,I)
        A(I,I) = 0.0
        CONTINUE
```

```
C
C READY NON FOR MATRIX OF 2ND PARTIALS OF RESTRAINTS
    230
C
    240
\[
\text { DO } 330 \quad \mathrm{IN}=1, \mathrm{M}
\]
C
    2 5 0
    260
    261
C
    270
C
    280
    250
    300
    301
C
    3i0
    320
    330
C
    340
    350
C
C
    GO TO (240,510,520), NT10
```

```
READY NOW FOR MATRIX OF 2ND PARTIALS OF RESTRAINTS GO TO \((240,510,520)\), NT10
\[
\text { IF (M.LE.O) GO TO } 340
\]
LORN \(=2\) CONSTRAINT ASSUMED NONLINEAR
CALL MATRIX (IN,LORN)
IF (LORN.LT.2) GO TO 330
IF ( RJ (IN).GT.0.0 ) GO TO 280
DO \(261 \mathrm{I}=2, \mathrm{~N}\)
IM1 \(=I-1\)
DO 260 J=1,IM1
IF ( \(\mathrm{A}(\mathrm{J}, \mathrm{I})) 250,260,250\)
\(A(I, J)=A(I, J)+A(J, I)\)
\(A(J, I)=0.0\)
CONTINUE
CONTINUE
\[
\begin{aligned}
& \text { DO } 270 I=1, N \\
& \text { DIAG(I) }=\operatorname{DIAG}(I)-A(I, I) \\
& A(I, I)=0.0 \\
& \text { CONTINUE } \\
& \text { GO TO } 330
\end{aligned}
\]
\[
\begin{aligned}
& T=- \text { RHO / RJ }(I N) \\
& \text { DO } 301 I=2, N \\
& \text { IM1 }=I-1 \\
& \text { DO } 300 \mathrm{~J}=1, I M 1 \\
& \quad \operatorname{IF}(A(J, I)) 290,300,290 \\
& A(I, J)=A(I, J)+T * A(J, I) \\
& A(J, I)=0.0 \\
& \text { CONTINUE } \\
& \text { CCNTINUE }
\end{aligned}
\]
\[
\begin{aligned}
& \text { DO } 320 \quad I=1, N \\
& \text { IF }(A(I, I)) 310,320,310 \\
& D I A G(I)=D I A G(I)+T * A(I, I) \\
& A(I, I)=0.0
\end{aligned}
\]
CONTINUE
```


CONTINUE

```
CONTINUE
GO IO \((520,350,520)\), NPHASE
IF (MZ.EQ.0) GO TC 420
EQUALITY SECOND PARTIALS HERE
IF (NT1O.GE.2) GO TO 420
DO 410 II \(=1\), MZ
\(I N=M+I I\)
LORN=2
CALL MATRIX (IN,LORN)
IF (LORN.LT.2) GO TO 410
\(T=2.0\) * RJ(IN) / RHO
```

C
C

C
DO $380 \mathrm{I}=2, \mathrm{~N}$
IM1 $=1-1$
DO 370 J=1, IM
IF ($A(J, I)) 360,370,360$
$A(I, J)=A(I, J)+T * A(J, I)$
$A(J, I)=0.0$
CONTINUE
Continue
DO $400 \quad I=T, N$
$\operatorname{IF}(A(I, I)) 390,400,390$
$\operatorname{DIAG}(I)=\operatorname{DIAG}(I)+T^{* A(I, I)}$
$A(I, I)=0.0$
continue
continue
GET MATRIX OF 2ND PARTIALS OF OBJECTIVE FUNCTION
LLL=2
CALL MATRIX (0, LLL)
IF (LLL.LT.2) GO TO 490
DO 441 I=2,N
IM1 $=$ I-1
DO $440 \mathrm{~J}=1$, IM1
IF ($A(J, I)) 430,440,430$
$A(I, J)=A(I, J)+A(J, I)$
CONTINUE
CONTINUE
DO $470 \quad I=1, N$
IF ($A(I, I)) 450,460,450$
$A(I, I)=\operatorname{DIAG}(I)+A(I, I)$
GO TO 470
$A(I, I)=\operatorname{DIAC}(I)$
CONTINUE
RETURN
DO $501 I=1, N$
$A(I, I)=\operatorname{DIAG}(I)$
DO $500 \mathrm{~J}=\mathrm{I}, \mathrm{N}$
$A(I, J)=A(J, I)$
CONTINUE
CONTINUE
GO TC 480
GO TO ($520,350,350$), NPHASE
DO 531 I=2,N
IM1 $=1-1$
DO $530 \mathrm{~J}=1$, IM 1
$A(J, I)=A(I, J)$
continue
continue
DO $540 \quad I=1, N$
$A(I, I)=\operatorname{DIAG}(I)$

540 CONTINUE GO TO 480

C
END

SUBROUTINE STORE
C STORE STORES THE VALUES OF THE CURRENT POINT AND THE ASSOCIATED VALUES OF THE FUNCTION IN A TEMPORARY AREA.

INTEGER CONSOL, PRINTR
COMMON /SHARE/ X(20), DEL(20), A(20,20), N,M,MN,NP1,NM1
COMMON /EQAL/ H, H1, MZ
COMMCN /VALUE/ F,G,PO,RSIGMA,RJ (20),RHO
COMMON /CRST/ DEIX(20), DELXO(20), RHOIN, RATIO, EPSI, THETAO,
1 RSIG1, G1, X1(20), X2(20), X3(20), XR2(20), XR1(20), PR1,
2 PR2, P1, F1, RJ1(40), DOTT, PGRAD(20), DIAG(20),
3 PREV3, ADELX, NTCTR, NUMINI, NPHASE, NSATIS
COMMON /DEVC/ CONSOL, PRINTR, NP
C

10 CONTINUE
$M M Z=M+M Z$
DO $20 \mathrm{~J}=1, \mathrm{MMZ}$
$\operatorname{RJ} 1(\mathrm{~J})=\operatorname{RJ}(\mathrm{J})$
CONTINUE
$\mathrm{P} 1=\mathrm{P} 0$
F1 $=5$
G1=G
RSIG1=RSIGMA
$\mathrm{H} 1=\mathrm{H}$
c
RETURN
END

SUBROUTINE XMOVE


```
        70 DO \(80 \mathrm{I}=1, \mathrm{~N}\)
        \(\operatorname{DELX}(I)=\operatorname{DELXO}(I)\)
    80 CCNTINUE
        IF (IREP.GT.N) GO TO 40
        IF (IT.EQ.O) GO TO 130
        DO \(90 \mathrm{I}=1, \mathrm{~N}\)
        \(S I G(I)=X(I)-X X X(I)\)
        \(Y Y(I)=\operatorname{DELL}(I)-D E L X O(I)\)
    90 CONTINUE
C NEGATIVE GRADIENT STORED AND COMPUTED. COMPUTE HY.
        DO \(101 \mathrm{I}=1, \mathrm{~N}\)
        \(\operatorname{DELX}(I)=0.0\)
        DO \(100 \mathrm{~J}=\mathrm{f}, \mathrm{N}\)
                \(\operatorname{DELX}(I)=\operatorname{DELX}(I)+A(I, J) * Y Y(J)\)
            CONTINUE
    101 CONTINUE
C COMPUTE Y(SIG-HY) - 1
        ZCON=0.0
        DO \(110 I=1, N\)
        \(Z C C N=Z C O N+Y Y(I) *(S I G(I)-D E L X(I))\)
    110 CCNTINUE
        IF (ZCON.EQ.O.0) GO TO 130
        - IREP \(=\operatorname{IREP}+1\)
        \(Z C=1.0 / Z C O N\)
C UPDATE H MATRIX USING MCC FORMULA WHEN SCALAR NOT EQUAL TO ZERO
        DO \(121 \mathrm{I}=1\), N
            \(T 1=2 C *(S I G(I)-\operatorname{DELX}(I))\)
            DO \(120 \mathrm{~J}=\mathrm{i}, \mathrm{N}\)
                \(A(I, J)=A(I, J)+T 1 *(-\operatorname{DELX}(J)+\operatorname{SIG}(J))\)
                \(A(J, I)=A(I, J)\)
            CONTINUE
    120 CONTIN
C STORE CURRENT FOINT AND CURRENT GRADIENT (NEG)
    130 DC \(140 I=1, N\)
        \(X X X(I)=X(I)\)
        DELL(I) \(=\) DFLXO(I)
        CONTINUE
    150 CONTINUE
    151 CONTINUE
    \(\mathrm{ZC1}=0.0\)
    DO \(100 \mathrm{I}=\mathrm{i}, \mathrm{N}\)
            \(2 C 1=\operatorname{DELK}(I) * * 2+2 C 1\)
```

C
C
C
C
C
C
C
C
C

CALL STORE
CALL OPT
$I T=I T+1$
RETURN
C
180 CONTINUE
C
C STEEPEST DESCENT
CALL GRAD (2)
DO $190 \mathrm{I}=1, \mathrm{~N}$
$\operatorname{DELX}(I)=\operatorname{DELXO}(I)$
190 CONTINUE
C
CALL STORE
CALL OPT
C
RETURN
END

* DEFAULT VALUES OF THE PARAMETERS
$\mathrm{RHO}=1.0$
RHOIN $=$ RHO
RATIO $=4.0$
EPSI $=0.1 \mathrm{E}-4$
THETAO $=0.1 \mathrm{E}-2$

```
    NT1=3
    NT2=1
    NT3=1
    NT4=1
    NT5=2
    NT6=1
    NT7=1
    NT8=1
    NT9=1
    NT10=1
C
    NEXOPi = 1
    NEXOP2 = 1
C
    6 0 ~ W R I T E ~ ( C O N S O L , ~ 1 7 4 ) ~
    READ (CONSOL, 173) OPTION
    IF (OPTION.LE.O) GO TO 70
C
C
    1 WRITE (CONSCL, 170)
        READ (CONSOL,169) NT1
        IF (NT1.NE.3) GO TO 21
C
    2 WRITE (CONSOL, 160)
        READ (CONSOL, 167) RATIO
        IF (RATIO.LE.1.0) RATIO = 4.0
        IF (OFTION.NE.9g) GO TO 60
C
    3 WRITE (CONSOL, 159)
    READ (CONSOL, 167) EPSI
    IF (EPSI.LE.0.0) EPSI = 0.1E-4
    IF (OPTICN.NE.g9) GO TO 60
C
4 WRITE (CONSOL, 158)
READ (CONSOL, 167) THETAO
IF (THETAO.LE.0) THETAO \(=0.1 \mathrm{E}-2\)
IF (OPTION.NE.GO) GO TO 60
C
5 WRITE (CONSOL, 155)
READ (CONSOL,154) NT2
IF ( (NT2.LE.0).OR. (NT2.GT.2) ) NT2=1
IF (OPTION.NE.9G) CO TO 50
C
6 WRITE (CONSOL, 150)
READ (CONSOL, 154) NT'5
IF ( (NTう.LE.O).OR. (NTJ.GT.2) ) NT5 = 2
IF (OPTION.NE.90) GO IO 60
```

C
7 WRITE (CONSOL, 149)
READ (CONSOL, 154) NT9
IF ((NT9.LE.0).OR.(NT9.GT.3)) NT9 = 1
IF (OPTION.NE.99) GO TO 60
C
8 WRITE (CONSOL, 147)
READ (CONSOL, 154) NT7
IF ((NT7.LE.O).OR.(NT7.GT.3)) NT7 = 1
IF (OPTION.NE.99) GO TO 60
C
9 WRITE (CONSOL, 145)
READ (CONSOL, 154) NEXOP1
IF ((NEXOP1.LE.0).OR.(NEXOP1.GT.5)) NEXOP1 = 1
IF (OFTION.NE.99) GO TO 60
C
10 WRITE (CONSCL, 144)
READ (CONSOL, 154) NEXOP2
IF ((NEXOP1.LE.0).OR.(NEXOP2.GT.4)) NEXOP2 = 1
C
C * ECHO CHECK OPTIONS CHOSEN
70 WRITE (CONSOL, 143)
WRITE (PRINTR,143)
C
75 GO TO (76,77,78), NT1
76 WRITE (CONSOL,109)
WRITE (PRINTR,109)
GO TO 79
C
77 WRITE (CONSCL, 108)
WRITE (PRINTR,108)
GO TO 79
C
78 WRITE (CONSCL, 110) RHOIN
WRITE (PRINTR,110) RHOIN
C
79 WRITE (CONSOL, 140) RATIO, EPSI, THETAO WRITE (PRINTR, 140) RATIO, EPSI, THETAO
C
80 WRITE (CONSOL, 138)
WRITE (PRINTR,138)
GO TO 82
C
81 WRITE (CONSOL, 137)
WRITE (PRINTR,137)
C
82 GO TO $(83,84)$, NT5
83 WRITE (CONSOL,135)
WRITE (PRINTR,135)
GO TO 85
C
84 WRITE (CONSOL, 134)
WRITE (PRINTR,134)

C
87 WRITE (CONSOL, 131)
WRITE (PRINTR,131)
GO TO 89
C
88 WRITE (CONSOL, 130)
WRITE (PRINTR, 130)
C
89 GO TO $(90,91,92)$, NT7
90 WRITE (CONSOL, 128)
WRITE (PRINTR, 128)
GO TO 93
C
91 WRITE (CONSOL, 127)
WRITE (PRINTR,127)
GO TO 93
C
92 WRITE (CONSOL, 126)
WRITE (PRINTR,126)
C
93 GO TO ($94,95,96,97,98$), NEXOP1
94 WRITE (CONSOL, 125)
WRITE (PRINTR, 125)
GO TO 99
C
95 WRITE (CONSOL, 124)
WRITE (PRINTR, 124)
GO TO 99
C
96 WRITE (CONSCL, 123)
WRITE (PRINTR,123)
GO TO 99
C
97 WRITE (CONSOL, 122)
WRITE (PRINTR,122)
GO 1099
C
98 WRITE (CONSCL, 121)
WRITE (PRINTR,121)
C
99 GO TO $(100,101,102,103)$, NEXOP2
C
100 WRITE (CONSOL, 119)
WRITE (PRINTR,119)
GO TO 105
C
101 WRITE (CONSC, 118)
WRITE (PRINTR,118)
GO TO 105
C

FORMAT (//,20X,'RAC-SUMT --- VERSION 4.1'/)
FORMAT (' ',5X,'PROBLEM NAME : ')
FORMAT (60A1)
FORMAT (10 ',12X,60A1)
FORMAT (${ }^{\circ} \mathbf{O}^{\prime}, 5 \mathrm{x}, \mathrm{A}$ NUMBER OF VARIABLES : 1)
FORMAT (I2)
FORMAT (' ',5X,'NUMBER OF IMEQUALITY CONSTRAINTS',
' ($G(X)>=0$) : '
FORMAT (' ',5X,'NUMBER OF EQUALITY CONSTRAINTS',
' $(H(X)=0): 1)$
185
182
181
180
178
C
175 FORMAT (/,8X, 'The default values for the ',
FORMAT ('O',' $\mathrm{N}=1, \mathrm{I} 3,4 \mathrm{X}, \mathrm{M}=1, \mathrm{I} 3,4 \mathrm{X}, \mathrm{MZ}=\mathrm{I}, \mathrm{I3})$
FORMAT ('O',15X,'ENTER THE INITIAL POINT : '/)
FORMAT (\quad ',5X, ' $\mathrm{X}\left(\mathrm{\prime}, \mathrm{I}, \mathrm{I}^{\prime}\right)=1$)
FORMAT (G15.4)
FORMAT (1X,3(2X,'X(',I2,') =',E14.7))

1 ' parameters follow :'/
$15 \mathrm{x}, \mathrm{\prime} 1) \quad \mathrm{R}=1.0 \mathrm{I} /$
$25 \mathrm{x}, \mathrm{\prime} 2) \quad \mathrm{C}=4.0 \mathrm{I} /$
$35 \mathrm{X}, 13$) EPSI $=0.1 \mathrm{E}-41 /$
4 5X, '4) THETA $=0.1 \mathrm{E}-2^{\prime} /$
5 5X,'5) Constraint option --- include X(I) >= 0 constraints'/
6 5X,'6) Final convergence criterion : RSIGMA < THETA //
7 5X,'7) Subproblem convergence criterion ${ }^{\text {F1 } 1: ~ D E L P ~<E P S I ' / ~}$
8 5X,'8) No extrapolation'/
5X,'9) No checking for derivatives'/
$5 \mathrm{x}, \mathrm{\prime} 10$) Unconstrained minimization technique : Second order', ' gradient method'/
5X,' press RETURN to use all default values'/
5X, : Enter option number ($1,2, \ldots, 10$) to change one or more', options')
174 FORMAT (/,5X,'ENTER cption n:mber (RETURN if finished) : ')
173 FORMAT (I2)


```
    144 FORMAT (/,5X,'10) Unconstrained minimization technique used'/
```

143 FORMAT（／，2X，＇OPTIONS SELECTED＇）
140 FORMAT（ $2 \mathrm{X},{ }^{\prime} 2$ ） $\mathrm{C}=1, \mathrm{E} 11.4 / 2 \mathrm{X},{ }^{\prime} 3$ ）EPSI＝＇，E11．4／ 2X，14）THETA $=1$, E11．4）

FORMAT（2X，＇10）UNCONSTRAINED MINIMIZATION TECHNIQUE－－＇， ＇MODIFIED FLETCAER－FOWELL METHOD＇）
FORMAT（2X，＇1）$\left.R={ }^{\prime}, E 11.4,5 \mathrm{X}, ~ '(U S E R ~ S P E C I F I E D) '\right) ~$
109 FORMAT（2X，＇1）R TO BE COMPUTED BY FORMULA 1＇）
FORMAT（2X，＇1）R TO BE COMPUTED BY FORMULA 2＇）
C

| | | |
| :---: | :---: | :---: |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |

2X，＇4）THETA $=1$, E11．4 ）

FORMAT（2X，＇5）CONSTRAINT OPTION－－－INCLUDE $X(I)>=0 '$ ， ＇CONSTRAINTS＇）
FORMAT（2X，＇5）CONSTRAINT OPTION－－－DO NOT INCLUDE X（I）$>=0^{\prime}$ ， （ CONSTRAINTS＇）
FORMAT（ $2 \mathrm{X},{ }^{\prime} 6$ ）FINAL CONVERGENCE CRITERION－－－＇， ${ }^{\prime} \mathrm{ABS}[\mathrm{F}(\mathrm{X}) / \mathrm{G}]$－ 1 （ THETA＇）
FORMAT（2X，＇6）FINAL CONVERGENCE CRITERION－－－＇， ＇RSIGMA（ THETA＇）
FORMAT（ $2 \mathrm{X}, 17$ ）SUBPROBLEM CONVERGENCE CRITERION 非1＇）
FORMAT（ $2 \mathrm{X},{ }^{\prime} 7$ ）SUBPROBLEM CONVERGENCE CRITERION 非2＇）
FORMAT（2X，＇7）SUBPRCELEM CONVERGENCE CRITERION 非3＇）
FORMAT（ $2 \mathrm{X}, 18$ ）NO EXTRAPOLATION＇）
FORMAT（2X，＇8）EXTRAPOLATE THRCUGH LAST 2 MINIMA＇）
FORMAT（2X，＇8）EXTRAPOLATE THROUG＇LAST 3 MINIMA＇）
FORMAT（2X，＇9）NO CHECKING FOR DERIVATIVES＇）
FORMAT（2X，＇9）SOLVE PROBLEM AFTER CHECKING FIRST DERIVATIVES＇；
FORMAT（2X，＇9）CHECK FIRST DERIVATIVES BUT DO NOT SCLVE＇， －PROBLEM＇）
FORMAT（2X，＇9）SOLVE PROBLEM AFTER CHECKING 1ST AND 2ND＇， ＇DERIVATIIVES＇）
FORMAT（2X，＇9）CHECK IST AND 2ND DERIVATIVES＇， ＇BUT DO NOT SOLVE PROBLEM＇）
FORHAT（2X，＇10）UNCONSTRAINED MINIMIZATION TECHNIQUE－－＇， ＇2ND ORDER GRADIENT METHOD＇）
FORMAT（2X，＇10）UNCONSTRAINED MINIMIZATION TECHNIQUE－－＇， ＇MODIFIED 2ND ORDER GRADIENT METHOD＇）
FORMAT（2Y，＇10）UNCONSTRAINED MINIMIZATION TECHNIQUE－－＇， ＇STEEPEST DESCENT NETHOD＇）
FORMAT（MODIFIED FLETCHER－FOWELL METHOD＇）

```
STOP
END
```


4.3.4 DESCRIPTION OF CUTPUT

The program title is printed followed by the name of the problem to be solved. Then the dimensions of the problem are printed where $N=$ the number of decision variables, $M=$ the number of inequality constraints, and $M Z=$ the number of equality constraints.

A list of options selected is next printed out. The options printed are :

1) R -- penalty factor
2) C -- reducing factor
3) EPSI -- subproblem stopping value
4) THETA -- final stopping value
5) Constraint option
6) Final convergence criterion
7) Subproblem convergence criterion
8) Extrapolation option
9) Key for checking derivatives
10) Unconstrained minimization technialie chosen.

Following the list of options, the objective function value E is printed. Note that although the variables P and G are printed, they will always show a value of zero because they have not been computed. Arter the value of 5 , the initial point is printed followed by the values of the constraints at the initial point. Then the values of the user supplied analaytic and the computed numeric derivatives at the starting point are printed if the user specified it on option 9 (Key for checking derivatives).

After printing the derivatives, the program checks if the initial point is feasible and if necessary, it attempts to locate a feasible point. Tne feasible starting point is then printed along with the values of the objective function and constraints at the feasible starting point.

At each suboptimum point, the following results are printed. First the iteration counter identified as "Point Number" is printed. Then the value of r (RHO) and the value of the penalty term (RSIGMA) is printed where RSIGMA $=-r \sum_{i} \ln \left[g_{i}(x)\right]+r^{-1} \sum_{j} h_{j}^{2}(x)$. The next line contains the objective function value F, the P-function value P, and the dual value G at the suboptimum point. The values of the decision variable x is then printed followed by the values of the constraints.

At the optimum point, the value of the objective function F and the decision variable x are printed.

4.3.5 SUMMARY OF USER REQUIREMENTS

1. Create a file on disk that contains subroutines RESTNT, GRAD1 and MATRIX. (see the following section for a description of how to code these routines.) 2. Make an estimate of the optimum point which is to be used as the starting point for the search.

NOTE : The following steps will vary depending on the particuiar compiler used. The following applies if using Microsoft FORTRAN-80.
3. Compile subroutines RESTNT, GRAD1, AND MATRIX using the F80 command. F80 =B:filename
where the letter B refers to the disk drive where the file resides and the filename is the name of the file containing the three subroutines.
4. Link edit the main program with the user supplied subroutines as follows:

L80 E:filename, B:RACSUMT/N, B:RACSUMT/E
Note that the iser derined filename precedes the main program RACSUMT.
5. Run the program by typing

B:READIN

READIN is the input program that allows one to interactively enter the data needed to solve the problem. After the data is entered, READIN saves the data on the disk before chaining to the main program RACSUMT. RACSUMT then reads the data back from the disk and proceeds to solve the problem.

To resolve the problem with different input values, simply repeat step 5.

4.3.6 USER-SUPPLIED SUBROUTINES

Each user-supplied subroutine must contain the COMMON card : COMMON /SHARE/ $\mathrm{X}(20), \operatorname{DEL}(20), \mathrm{A}(20,20), \mathrm{N}, \mathrm{M}, \mathrm{MN}, \mathrm{NP} 1, \mathrm{NM} 1$ The user may use blank COMMON to transfer data between his subrcutines.

In the subroutines, the parameter I and J identify which constraint is needed. For example, in RESTNT when $I=0$, the value of the objective function is needed; when $I=1$, constraint $g_{1}(x)$ is needed; when $I=2, g_{2}(x)$ is needed, etc.

The following problem is used to show how to code the user supplied subroutines.

Minimize $f(x)=x_{1}^{2}+x_{2}^{3}-x_{1} x_{2}$
subject to

$$
\begin{gathered}
g_{1}(x)=8 x_{1}+x_{2}^{2}-15 \geq 0 \\
g_{2}(x)=5 x_{1}^{4}+x_{2}^{3}-20 \geq 0 \\
h_{1}(x)=x_{1}^{2}+x_{2}^{2}-25=0 \\
x_{i} \geq 0, \quad i=1,2
\end{gathered}
$$

This subroutine defines the objective function (to be minimized), the inequality constraints (≥ 0), and the equality constraints $(=0)$. The variable VAL must be assigned the equation of the objective function or constraint depending on the value of I.

When $I=0$, this routine must set VAL $=f(x)$.
When $I=1, \ldots, m$, this routine must set VAL $=g_{I}(x)$.
When $I=m+1, \ldots, m+l$, this routine must set VAL $=h_{I}(x)$. Note that the equality constraints follow all inequality constraints.

The non-negativity constraints do not have to be coded if option 5 on the CRT display is set to 1. The variable x is located in the labeled COMMON region named SHARE

The RESTNT routine for the example problem is shown below.

SUBROUTINE RESTNT (I,VAL)

```
* THE 2ND INEQUALITY CONSTRAINT G2(X) >=0
```

 VAL \(=5 . * X(1) * * 4+X(2) * * 3-20\).
 RETURN

C

C * THE EQUALITY CONSTRAINT $H 1(X)=0$
VAL $=X(1) * * 2+X(2) * * 2-25$.
RETURN
END

GRAD1 (I)

This subroutine defines the gradient of the objective function and constraints. When $I=0$, the gradient of the objective function is needed and when $I>0$, the gradient of the It' constraint is needed. The values of the gradient are placed in the array $\operatorname{DEL}(J)$ where $\operatorname{DEL}(J)$ is the J th partial derivative of the Ith constraint.

For $I=0$, this routine must set $D E L(J)=\partial f(x) / \partial x_{j}, j=1, \ldots, n$.
For $I=1, \ldots, m$ this routine must set $\operatorname{DEL}(J)=\partial g_{I} / \partial x_{j}, j=1, \ldots, n$.
For $I=m+1, \ldots, m+1$, this routine must set $\operatorname{DEL}(J)=a h_{I}(x) / \partial x_{j}, j=1, \ldots, n$.
X and DEL are in the COMMON region SHARE. DEL is not initialized to zero before entering GRAD1 so all elements of DEL must be assigned a vaiue, including the zero elements.

The GRAD1 routine for the example problem is shown below.

SUBROUTINE GRAD1 (I)

* THE GRADIENT OF THE CONSTRAINTS

50 GO TO $(1,2,3), I$
* THE GRADIENT OF G1 (X) $>=0$
$1 \operatorname{DEL}(1)=8.0$
DEL (2) $=2 . * X(2)$
RETURM

```
C % THE GRADIENT OF H1 (X) =0
    3 DEL(1) = 2.*X(1)
    DEL(2) = 2.*X(2)
    RETURN
C
```


END

MATRIX (J,L)

This subroutine supplies the upper triangle and diagonal elements of the MATRIX of second partial derivatives of f, g_{j} or h_{j}. The lower triangle elements of A, the array of second partial derivatives, must not be disturbed. The upper triangle and diagonal elements of A are ali initialized to zero before being passed into MATRIX so only the nonzero elements of A need to be provided.

When $J=0$, this routine must set $A(K, I)=\partial^{2} f(x) / \partial x_{K} \partial x_{I}$ for $K=1, \ldots, n$; $I=K, \ldots, n$.

When $J=1, \ldots, m$, this routine must set $A(K, I)=\partial^{2} g_{J}(x) / \partial x_{K} \partial x_{I}$ for $K=1, \ldots, n ; I=K, \ldots, n$.

When $J=m+1, \ldots, m+\ell$, this routine must set $A(K, I)=\partial^{2} h_{J}(x) / \partial x_{K} X_{I}$ for $K=1, \ldots, n ; I=K, \ldots, n$.
X and A are located in the COMMON region SHARE.
The MATRIX routine for the example problem is shown below.

SUBROUTINE MATRIX (J,L)
C
THIS SUBROUTINE SUPPLIES THE UPPER TRIANGLE AND DIAGONAL ELEMENTS OF THE MATRIX OF SECOND PARTIAL DERIVATIVES.
ONLY THE NONZERO ELEMENTS NEED TO BE PROVIDED.
COMMON /SHARE/ X(20), DEL(20), A(20,20), N, M, MN, NP1, MM1
IF (J.GT.O) GO TO 50
** THE SECOND PARTIALS OE THE OBJECTIVE FUNCTION $f(1,1)=2$. $A(1,2)=-1$. $A(2,2)=3$. RETURN

```
C ** THE SECOND PARTIALS OF THE CONSTRAINTS %%
    5 0
    CO TO (1,2,3), J
C
    1 A(2,2)=2.
        REIURN
C *THE 2ND PARTIALS OF GZ(X)
    2
        A(1,1) = 60.*X(1)**2
        A(2,2) = 6.*X(2)
        RETURN
C
C
    * THE 2ND PARTIALS OF H1(X)
        A(1,1) = 2.
        A(2,2)=2.
        RETURN
    EMD
```

4.4 INPUT TO THE COMPUTER PROGRAM

4.4.1 CRT DISPLAY OF QUESTIONS

$$
\text { RAC-SUMT --- VERSION } 4.1
$$

PROBLEM NAME :
NUMBER OF VARIABLES :
NUMBER OF INEQUALITY CONSTRAINTS $(G(X)>=0)$:
NUMBER OF EQUALITY CONSTRAINTS $(H(X)=0):$

ENTER THE INITIAL POINT :
$X(1)=$
$X(2)=$
-
$X(N)=$

THE DEFAULT VALUES FOR THE PARAMETERS FOLLOW :

1) $R=1.0$
2) $C=4.0$
3) $\operatorname{EPSI}=0.1 E-4$
4) THETA $=0.1 \mathrm{E}-2$
5) CONSTRAINT OPTION --- INCLUDE $\mathrm{X}(\mathrm{I})>=0$ CONSTRAINTS
6) FINAL CONVERGENCE CRITERION : RSIGMA < THETA
7) SUBPROBLEM CONVERGENCE CRITERION 非1: DELP < EPSI
8) NO EXTRAPOLATION
9) NO CHECKING FOR DERIVATIJES
10) UNCONSTRAINED MINIMIZATION TECHNIQUE : SECOND ORDER GRADIENT METHOD PRESS RETURN TO USE ALL DEFAULT VALUES
ENTER OPTION NUMBER ($1,2, \ldots, 10$) TO CHANGE ONE OR MORE OPTIONS
ENTER OPTION NUMBER (RETURN IF EINISHED) : 1
11) R -- PENALTI FACTOR
(IETURN FOR $R=1.0$)
1 R COMPUTED BY FORMULA 1 (SEE USER'S GUIDE)
2 R COMPUTED BY FORMULA 1 (SEE USER'S GUIDE)
3 SFECIFY OWN VALUE OF ?
R OPTION CODE =
ENTER OPTION NUMBER (RETURN IF FINISHED) : 2
12) C -- reducing factor for r frcm stage to stage (RETURN FOR C $=4.0$)
$C=$
ENTER OFTION NUMBER (RETURN IF FINISHED) : 3
13) EPSI - - SUBPROBLEM STOPPING VALUE
(RETURN FOR EPSI $=0.1 \mathrm{E}-4$) EPSI =

ENTER OPTION NUMBER (RETURN IF FINISHED) : 4
4) THETA --- FInal STOPPING Value
(RETURN FOR THETA $=0.1 \mathrm{E}-2$)
THETA $=$
ENTER OPTION NUMBER (RETURN IF FINISHED) : 5
5) CONSTRAINT OPTION

1 INCLUDE $X(I)>=0$ CONSTRAINTS
2 DO NOT INCLUDE X(I) >= 0 CONSTRAINTS ENTER OPTION :

ENTER OPTION NUMBER (RETURN IF FINISHED) : 6
6) FINAL CONVERGENCE CRITERION

1 ABS[$F(X) / G]-1<T H E T A$
2 RSIGMA < THETA
FINAL CONVERGENCE CRITERION =
ENTER OPTICN NUMBER (RETURN IF FINISHED) : 7
7) SUBPROBLEM CONYERGENCE CRITERION

1 SEE USER'S GUIDE
2 SEE USER'S GUIDE
3 GRADIENT OF P < EPSI SUBPROBLEM CONVERGENCE CRITERION =

ENTER OPTION NUMBER (RETURN IF FINISHED) : 8
8) EXTRAPOLATION OPTION

1 NO EXTRAPOLATION
2 EXTRAPOLATE THRCUGH LAST 2 MINIMA
3 EXTRAPOLATE THRCUGH LAST 3 MINIMA
EXTRAPCLATION OPTION =
ENTER OPTION NUMBER (RETURN IF FINISHED) : 9
9) KEY FOR CHECKING DERIVATIVES

1 DO NOT CHECK DERIVATIVES
2 SOLVE PROBLEM AFTER CHECKING FIRST DERIVATIVES
3 CHECK FIRST DERIVATIVES BUT DO NOT SOLVE PROBLEM
4 SOLVE PRCBLEM AFTER CHECKING 1ST AND 2ND DERIVATIVES
5 CHECK 1ST AND 2ND DERIVATIVES BUT DO NOT SOLVE PROBLEM KEY =

ENTER OPTION NUMBER (RETURN IF FINISHED) : 10
10) UNCONSTRAINED MINIMIZATION TECHNIQUE USED

1 2ND ORDER GRADIENT METHOD
2 SAME AS 1 WITH MODIFICATION
3 STEEPEST DESCENT METHOD
4 MODIFIED FLETCHER - POWEL METHOD
METHOD =

4.4.2 USER'S GUIDE TO THE CRT DISPLAY

1) R. - PENALTY FACTOR
(RETURN FOR R $=1.0$)
1 The value of r is made by finding an approximation solution $\min \left\{\nabla\left[P\left(x^{0}, r\right)\left[\nabla^{2} P\left(x^{0}, r\right)\right]^{-1} \nabla P\left(x^{0}, r\right)\right]\right\}$ which is a gcod approximation only when x^{0} is close to the boundary of a constraine or when $\nabla^{2} f\left(x^{0}\right)=0$ and when there are no equality constraints.

2 The value of r is made by finding the r that minimizes the magnitude of the gradient at x (ie. min $\nabla P\left(x^{0}, r\right)$). This can only be used if there are no equality constraints.

3 Specify cwn value of r. Several values of r may have to be tried to get the best solution to the problem. Possible values that may be tried are 10000, 1000, 100, 10, 1, 0.1, 0.01, 0.001.
2) C - REDUCING FACTOR FOR R FROM STAGE TO STAGE
(RETURN FOR C $=4.0$)
The parameter $C(>0)$ is used to compute consecutive values of r;
$r_{k+1}=r_{k} / C$. The value of C is usually chosen as 4.0 or 16.0 .
3) EPSI --- SUBPROBLEM STOPDING VALUE
(FETURN FOR EPSI $=0.1 \mathrm{E}-4$)
EPSI is the tolerance used to decide when the subproblem minimum has been reached. (see 7. SUBPROBLEM CONVERGENCE CRITERION).
4) THETA -- FINAL STOPPING VALUE
(RETURN FOR THETA $=0.1 \mathrm{E}-2$)
THETA is the tolerance used to decide ir the solution to the problem has been reached. Suggested values of THETA are 0.01, 0.001, 0.0001, $0 . C 0001$.
5) CONSTRAINT OPTION

1 INCLUDE $X(I)>=0$ CONSTRAINTS
2 DO NOT INCLUDE $X(I)>=0$ CONSTRAIMTS
ENTER OPTION :
This option is set equal to 1 if the non-negativity constraints are to be included in the problem; otherwise, the option is set to 2.
6) FINAL CONVERGENCE CRITERION

1 Quit when $\left|\frac{G-F(x)}{G}\right|<\theta$
where G is the dual value. This criterion says quit when the relative difference between the dual value ard function value is less than a specified tolerance (THETA).
$2 \quad$ Quit when $\left|r \sum_{j=1}^{m} \ln g_{j}(x)\right|<\theta$
This criterion says quit when the penal ty term for inequality constraints is less than a tolerance.

The final convergence criterion is used to determine when the problem has been solved.
7) SUBPROBLEM CONVERGENCE CRITERION

1 Quit when $\left|\nabla_{x} P^{t}\left(x^{i}, r\right)\left[\frac{\partial^{2} P(x, r)}{\partial x_{i} \partial x_{j}}\right]^{-1} \nabla_{x} P\left(x^{i}, r\right)\right|<\varepsilon$
2 Quit when $\left|\nabla_{x} P^{t}\left(x^{i}, r\right)\left[\frac{\partial^{2} P(x, r)}{\partial x_{i} \partial x_{j}}\right]^{-i} \nabla_{x} P\left(x^{i}, r\right)\right|<\frac{P\left(x^{i-1}\right)-P\left(x^{i}\right)}{5}$
3 Quit when $\left|\nabla_{x} P\left(x^{i}, r\right)\right|<\varepsilon$
8) EXTRAPOLATION OPTION

1 NO EXTRAPOLATION
2 EXTRAPOLATE TRROUGH THE LAST 2 SUB?ROBLEM MINIMA
3 EXTRAPOLATE THROUGH THE LAST 3 SUBPROBLEM MINIMA
(Normally set to 1)
If option 2 or 3 are used, the program will use the previous two or three subprobiem points to extrapolate to the final solution. The new point will then be used as a starting point for the next subproblem search. options 2 or 3 are lised to try to speed up convergence to the optimum point.
9) KEY FOR CHECKING DERIVATIVES

1 DO NOT CHECK DERIVATIVES.
2 SCLVE PROBLEM AFTER CHECKING FIRST DERIVATIJES.
3 CHECK. FIRST DERIVATIVES BUT DO NOT SOLVE PRCBLEM.
4 SOLVE PRCBLEM AFTER CHECKING 1 ST AND 2ND DERVIATIJES.
5 CHECǨ 1ST AND 2ND DERIVATIVES BUT DO NOT SCLVE PRORLEM.

Cptions 2-5 may be used if the problem nas complex derivatives. The checking consists of printing out the values of the user-defined analytic derivatives and the numeric derivatives (computed by numeric differencing). If the two values are not similar in magnitude, then an error may be suspected in the user defined derivatives.
10) UNCCNSTRAINED MINIMIZATION TECHNIQUE USED

1 A second order gradient method is used to minimize the unconstrained P-function. This method requires first and second derivatives of the objective function and constraints.

2 Same as 1, except that when an "orthogonal move" is made because of an inderinite Hessian matrix, - ∇ P is added to the orthogonal move vector.

3 The steepest descent method, a first order gradient method, is lused to minimized the P-function. Only first derivatives are required.

4 McCormick's modification of the Fletcher-Powell method is used to minimize the P-function. This method needs first derivatives.

4.5.1 TEST PROBLEMS

4.5.1 TEST PROBLEM 1 : NUMERIC EXAMPLE BY PAVIANI

4.5.1.1 SUMMARY

No. of variables : 3
No. of constraints : 1 nonlinear equality constraint
1 linear equality constraint
3 bounds on independent variables
Objective function:

$$
\text { Minimize } f(x)=1000-x_{1}^{2}-2 x_{2}^{2}-x_{3}^{2}-x_{1} x_{2}-x_{1} x_{3}
$$

Constraints :

$$
\begin{gathered}
h_{1}(x)=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-25=0 \\
h_{2}(x)=8 x_{1}+14 x_{2}+7 x_{3}-56=0 \\
x_{i} \geq 0, \quad i=1,2,3
\end{gathered}
$$

Starting point : $x_{i}=2, i=1,2,3$
Parameters : $r=1.0, \quad C=4.0$

$$
E P S I=10^{-2}, \quad \text { THETA }=10^{-5}
$$

Unconstrained minimization technique used : modified Fletcher-Poweil method Results : $f(x)=961.74$

$$
\begin{aligned}
x_{1} & =3.368 \\
x_{2} & =0.231 \\
x_{3} & =3.689 \\
n_{1}(x) & =0.0006 \\
n_{2}(x) & =0.0002
\end{aligned}
$$

No. of function evaluations : 38

Execution time : 1.2 min.

RAC-SUMT --- VERSION 4.1

TEST PFODLEM 1

$N=3 \quad M=0 \quad M Z=2$
OPTIONS SELECTED

1) $R=.1000 E+01$ (USER SPECIFIED)
2) $C=.4000 E+01$
3) EPSI $=.1000 \mathrm{E}-01$
4) THETA $=.1000 \mathrm{E}-04$
5) CONSTRAINT OPTION --- INCLUDE $X(I)>=0$ CONSTRAINTS
6) FINAL CONVERGENCE CRITERICN -- ABS[$F(X) / G]-1<T H E T A$
7) SUBPROBLEM CONVERGENCE CRITERION \#1
8) EXTRAPOLATE THROUGH LAST 2 MINIMA
9) SOLVE PROBLEM AFTER CHECKING 1ST AND 2ND DERIVATIIVES
10) UNCONSTRAINED MINIMIZATION TECHNIQUE - MODIFIED FLETCHER - POWELL -
$F=.9760000 E+03 \quad P=.0000000 E+01 \quad G=.0000000 E+01$
values of x vector
$X(1)=.2000000 E+01 \quad X(2)=.2000000 \mathrm{E}+01 \quad X(3)=.2000000 \mathrm{E}+01$
Values of the constraints
$G(1)=-.1300000 E+02 G(2)=.2000000 E+01 G($
values of objective function partials
ANALYTICAL FIRST PARTIALS
DEL(1) $=-.8000000 E+0$?
DEL
11) $=-.1000000 \Sigma+02$
$\operatorname{DEL}(3)=-.6000000 E+01$

NUMERICAL FIRST PARTIALS
$\operatorname{DEL}(i)=-.7934570 E+01 \operatorname{DEL}(2)=-.9765625 E+01 \operatorname{DEL}(3)=-.6103516 E+01$
values of constraint number 1
ANALYTICAL FIRST PARTIALS
$\operatorname{DEL}(1)=.4000000 E+01 \operatorname{DEL}(2)=.4000000 E+01 \operatorname{DEL}(3)=.4000000 E+01$
NUMERICAL FIRST PARTIALS
$\operatorname{DEL}(1)=.3955895 E+01 \operatorname{DEL}(2)=.3995895 \mathrm{E}+01 \operatorname{DEL}(3)=.3995895 \mathrm{E}+01$
Values of constraint nuvber 2
ANALYTICAL FIRST PARTIALS
$\operatorname{DEL}(1)=.8000000 \mathrm{E}+01 \mathrm{CEL}(2)=.1400000 \mathrm{E}+02 \operatorname{DEL}(3)=.7000000 \mathrm{E}+01$
NUNERICAL FIRST PARTIALS
$\operatorname{LEL}(1)=.3010854 E+01 \operatorname{DEL}(2)=.1399994 E+02 \operatorname{DEL}(3)=.6980896 \mathrm{E}+01$

values of objective function partials

ANALYTICAL SECOND PARTIALS

$$
\begin{aligned}
& \mathrm{A}(1,1)=-.200000 \mathrm{E}+01 \quad \mathrm{~A}(1,2)=-.100000 \mathrm{E}+01 \quad \mathrm{~A}(1,3)=-.100000 \mathrm{E}+01 \\
& \mathrm{~A}(2,1)=.000000 \mathrm{E}+01 \mathrm{~A}(2,2)=-.400000 \mathrm{E}+01 \quad \mathrm{~A}(2,3)=.000000 \mathrm{E}+01 \\
& A(3,1)=.000000 \mathrm{E}+01 \mathrm{~A}(3,2)=.000000 \mathrm{E}+01 \quad \mathrm{~A}(3,3)=-.200000 \mathrm{E}+01
\end{aligned}
$$

NUMERICAL SECOND PARTIALS

$$
\begin{aligned}
& A(1,1)=-.200033 \mathrm{E}+01 \quad \mathrm{~A}(1,2)=-.100136 \mathrm{E}+01 \quad A(1,3)=-.100136 \mathrm{E}+01 \\
& \mathrm{~A}(2,1)=-.00000 \mathrm{E}+01 \text { A(2, 2) }=-.399590 \mathrm{E}+01 \text { A(} 2,3)=-.00000 \mathrm{E}+01 \\
& \mathrm{~A}(3,1)=.000000 \mathrm{E}+01 \text { A(3, 2) }=.000000 \mathrm{E}+01 \quad \mathrm{~A}(3,3)=-.199795 \mathrm{E}+01
\end{aligned}
$$

VALUES OF CONSTRAINT NUMBER 1
analy ical second partials
$A(1,1)=.200000 \mathrm{E}+01$ A $(1,2)=.000000 \mathrm{E}+01$ A(1, 3) $=.000000 \mathrm{E}+01$
$A(2,1)=.000000 \mathrm{E}+01$ A(2, 2) $=.200000 \mathrm{E}+01$ A(2, 3) $=.000000 \mathrm{E}+01$
$\mathrm{~A}(3,1)=.000000 \mathrm{E}+01 \mathrm{~A}(3,2)=.000000 \mathrm{E}+01 \quad \mathrm{~A}(3,3)=.200000 \mathrm{E}+01$

NUMERICAL SECOND PARTIALS

$$
\begin{aligned}
& \mathrm{A}(1,1)=.199914 \mathrm{E}+01 \mathrm{~A}(1,2)=.000000 \mathrm{E}+01 \text { A }(1,3)=.000000 \mathrm{E}+01 \\
& \mathrm{~A}(2,1)=.000000 \mathrm{E}+01 \mathrm{~A}(2,2)=.199914 \mathrm{E}+01 \mathrm{~A}(2,3)=.000000 \mathrm{E}+01 \\
& \mathrm{~A}(3,1)=.000000 \mathrm{E}+01 \mathrm{~A}(3,2)=.000000 \mathrm{E}+01 \mathrm{~A}(3,3)=.199914 \mathrm{E}+01
\end{aligned}
$$

values of constraint number 2
anal yTical second partials

$$
\begin{aligned}
& \mathrm{A}(1,1)=.000000 \mathrm{E}+01 \mathrm{~A}(1,2)=.000000 \mathrm{E}+01 \mathrm{~A}(1,3)=.000000 \mathrm{E}+01 \\
& \mathrm{~A}(2,1)=.000000 \mathrm{E}+01 \mathrm{~A}(2,2)=.000000 \mathrm{E}+01 \mathrm{~A}(2,3)=.000000 \mathrm{E}+01 \\
& \mathrm{~A}(3,1)=.000000 \mathrm{E}+01 \mathrm{~A}(3,2)=.000000 \mathrm{E}+01 \mathrm{~A}(3,3)=.000000 \mathrm{E}+01
\end{aligned}
$$

NUMERICAL SECCND PARTIALS
*** POINT NUMBER 8 ***
RHO $=.1000000 \mathrm{E}+01$ RSIGMA $=-.1010660 E+01$
$F=.9610892 E+03 \quad P=.9603866 E+03 \quad G=.9587054 \mathrm{E}+03$
vaiues of X VECTOR

$$
X(1)=.3395841 E+01 \quad X(2)=.2170724 E+00 \quad X(3)=.3727081 E+01
$$

VALUES OF THE CONSTRAINTS
$G(1)=.4599898 E+00 \quad G(2)=.2953072 E+00 \quad G($
*** POINT NUMBER 14 ***
RHO $=.2500000 \mathrm{E}+00 \quad$ RSIGMA $=-.2567300 \mathrm{E}+00$
$F=.9615558 \mathrm{E}+03 \quad P=.9013916 \mathrm{E}+03 \quad G=.9609008 \mathrm{E}+03$

VALUES OF X VECTOR

$$
X(1)=.3374081 \mathrm{E}+01 \quad X(2)=.2235025 \mathrm{E}+00 \quad X(3)=.3702933 \mathrm{E}+01
$$

VALUES OF THE CONSTRAINTS
$G(1)=.1460915 E+00 \quad G(2)=.4221725 E-01 \quad G($
*** POINT NUMBER 16 ***
RHO $=.6250000 \mathrm{E}-01 \quad$ RSIGMA $=-.6339629 \mathrm{E}-01$
$F=.9615630 E+03 \quad P=.9618439 E+03 \quad G=.9620641 \mathrm{E}+03$
VALUES OF X VECTOR
$X(1)=.3377104 \mathrm{E}+01 \quad X(2)=.2206620 \mathrm{E}+00 \quad X(3)=.3700392 \mathrm{E}+01$
VALUES OF THE CONSTRAINTS
$G(1)=.1464233 E+00 \quad G(2)=.8842468 E-02 \quad G($
*** POINT NUMBER 25 ***
RHO $=.1562500 \mathrm{E}-01 \quad$ SIGMA $=-.1645939 \mathrm{E}-01$
$F=.9617327 E+03 \quad P=.9617232 E+03 \quad G=.9616998 E+03$
VALUES OF X VECTOR
$X(1)=.3367842 E+01 \quad X(2)=.2307426 E+00 \quad X(3)=.3689812 E+01$
VALUES OF THE CONSTRAINTS

$$
G(1)=.1031494 E-01 \quad G(2)=.1815796 E-02 \quad G(
$$

*** POINT NUMBER 27 ***

RHO $=.3906250 \mathrm{E}-02 \quad$ SIGMA $=-.4113468 \mathrm{E}-02$
$F=.9617391 E+03 \quad P=.9617462 E+03 \quad G=.9617495 E+03$
VALUES OF X VECTOR

$$
X(1)=.3367891 E+01 \quad X(2)=.2306978 E+00 \quad X(3)=.3589177 E+01
$$

VALUES OE THE CONSTRAINTS
$G(1)=.59337$ б́2 $\mathrm{E}-02$
$G(2)=-.2868652 E-02$
G(

RHO $=.9765625 \mathrm{E}-03 \quad$ SIGMA $=-.1030822 \mathrm{E}-02$

```
F=.9617449E+03 P = .9617443E+03 G = .9617427E+03
```

VALUES CE X VECTOR

$$
X(1)=.3367628 \mathrm{E}+01 \quad X(2)=.2313299 \mathrm{E}+00 \quad X(3)=.3688648 \mathrm{E}+01
$$

VALUES OF THE CONSTRAINTS

$$
G(1)=.5550385 \mathrm{E}-03 \quad G(2)=.1792908 \mathrm{E}-03 \quad G(
$$

FINAL VALUE OF $E=9.617449 \mathrm{E}+02$

Finai X Values

```
X( 1) = 3.367628E+00 X( 2) = 2.313299E-01 X( 3) = 3.688648E+00
```

4.5.1.3 USER SUPPLIED SUBROUTINES

SUBROUTINE RESTNT (I,VAL)
C
C ** TEST PROBLEM 1 - PAVIANI **
C

C

C COMMON /SHARE/ X(20),DEL(20), A(20,20), N,M,MN,NP1,NM1 IF (I.GT.O) GO TO 10
$1 \quad$ VAL $=\begin{array}{r}1000.0-X(1) \\ \end{array}$
RETURN
C
C
1 VAL $=X(1) * * 2+X(2) * 2+X(3) * * 2-25.0$ RETURN
C
$2 \quad \mathrm{VAL}=8.0 \% X(1)+14.0 * X(2)+7.0 * X(3)-56.0$ RETURN
C END
C
C
SUBRCUTINE GRAD1 (I) COMMON /SHARE/ X(20), DEL(20), A(20,20), N,M,MN,NP1,NM1

C IF (I.GT.O) GO TO 10
$\operatorname{DEL}(1)=-2.0 * X(1)-X(2)-X(3)$
$\operatorname{DEL}(2)=-4.0 * X(2)-X(1)$
$\operatorname{DEL}(3)=-2.0 * X(3)-X(1)$
RETURN
C
$10 \operatorname{CO} T O(1,2)$, I
C
$1 \operatorname{DEL}(1)=2.0 * X(1)$
$\operatorname{DEL}(2)=2.0 * X(2)$
$\operatorname{DEL}(3)=2.0 * X(3)$
RETURN
C
$2 \operatorname{DEL}(1)=8.0$
$\operatorname{DEL}(2)=14.0$
$\operatorname{DEL}(3)=7.0$ RETURN
C
END
C
C
SUBROJTINE MATRIX (J,L)
C

C $A(1,1)=-2.0$ $A(1,2)=-1.0$ $A(1,3)=-1.0$
C $A(2,2)=-4.0$ $A(2,3)=0.0$
C $A(3,3)=-2.0$ RETURN
C
10 GO TO $(1,2)$, J
C
$1 \mathrm{~A}(1,1)=2.0$
$A(2,2)=2.0$ $A(3,3)=2.0$ RETURN
C
END
4.5.2 TEST PROBLEM 2: PROBLEM OF MAXIMIZING SYSTEM RELIABLITY
4.5.2.1 SUMMARY

No. of variables : 4
No. of constraints : 9
Objective function:

$$
\text { Minimize } f(x)=-1+R_{2}\left[\left(1-R_{1}\right)\left(1-R_{4}\right)\right]^{2}+\left(1-R_{3}\right)\left\{1-R_{2}\left[1-\left(1-R_{1}\right)\left(1-R_{4}\right)\right]\right\}^{2}
$$

Constraints :

$$
\begin{aligned}
& g_{1}(x)=c-\left(2 K_{1} R_{1}^{\alpha}+2 K_{2} R_{2}^{\alpha}+K_{3} R_{3}^{\alpha}+2 K_{4} R_{4}^{\alpha_{4}}\right) \geq 0 \\
& g_{i+1}(x)=1-R_{i} \geq 0, \quad i=1,2,3,4 \\
& g_{i+5}(x)=R_{i}-R_{i, \min } \geq 0, \quad i=1,2,3,4
\end{aligned}
$$

where $\quad k_{1}=100, \quad K_{2}=100, \quad K_{3}=200, \quad k_{4}=150$
$C=800$

$$
\alpha_{i}=0.6, \quad R_{i, \min }=0.5, \quad i=1,2,3,4
$$

Starting point : $R_{i}=0.6, \quad i=1,2,3,4$
Parameters : $r=.03578, \quad C=4.0$

$$
\text { EPSI }=10^{-5}, \quad \text { THETA }=10^{-5}
$$

Unconstrained minimization technique used : Steepest descent method

Results : $f(x)=0.9999985$

$$
\begin{aligned}
& R_{1}=0.9970 \\
& R_{2}=0.9996 \\
& R_{3}=0.6622 \\
& R_{4}=0.6368
\end{aligned}
$$

No. of function evaluations : 38

Execution time : 3.0 min .

RAC-SUMT -- VERSION 4.1

TEST FROBLEM 2

$N=4 \quad M=9 \quad M Z=0$
OPTIONS SELECTED

1) R TO BE COMPUTED BY FORMULA 2
2) $C=.4000 E+01$
3) EPSI $=.1000 E-04$
4) THETA $=.1000 \mathrm{E}-04$
5) CONSTRAINT OPTION --- DO NOT INCLUDE X(I) $>=0$ CONSTRAINTS
6) FINAL CONVERGENCE CRITERION --. RSIGMA < THETA
7) SUBPROBLEM CONVERGENCE CRITERION 非 1
8) NO EXTRAPOLATION
9) NO CHECKING FOR DERIVATIVES
10) UNCONSTRAINED MInIMIZATION TECHNIQUE -- STEEPEST DESCENT METHOD
$F=-.8862336 \mathrm{E}+00 \quad \mathrm{P}=.0000000 \mathrm{E}+01 \quad \mathrm{G}=.0000000 \mathrm{E}+01$
VALUES OF X VECTOR

$$
X(1)=.6000000 E+00 \quad X(2)=.6000000 E+00 \quad X(3)=.6000000 E+00
$$

$$
X(4)=.6000000 E+00 \quad \mathbb{X}(
$$

VALUES OF THE CONSTRAINTS
$G(1)=.1375800 E+03$
$G(2)=.4000000 E+00$
$G(3)=.4000000 E+00$
$G(4)=.4000000 E+00 \quad G(5)=.4000000 E+00 \quad G(6)=.1000000 E+00$
$G(7)=.1000000 E+00 \quad G(8)=.1000000 E+00 \quad G(9)=.1000000 E+00$

*** POINT NUMBER 6 ***

RHO $=.3577597 \mathrm{E}-01 \quad$ RSIGMA $=.2573350 \mathrm{E}+00$
$F=-.9748093 E+00 \quad P=-.7174743 \mathrm{E}+00 \quad G=-.1296793 \mathrm{E}+01$
Values of X VECTOR

$$
\begin{aligned}
& X(1)=.7355722 \mathrm{E}+00 \quad X(2)=.7904098 \mathrm{E}+00 \quad X(3)=.7320088 \mathrm{E}+00 \\
& X(4)=.6883459 \mathrm{E}+00 \quad X(
\end{aligned}
$$

VALUES OF THE CONSTRAINTS

| $G(1)=.5433093 E+02$ | $G(2)=.2643272 E+00$ | $G(3)=$ |
| :--- | :--- | :--- |
| $G(4)=.2095902 E+00$ | | |
| $G(7)=.2904098 E+00$ | $G(5)=.3116541 E+00$ | $G(6)=.235728 E+00$ |
| $G(8)=.2520088 E+00$ | $G(9)=.1883450 \mathrm{E}+00$ | |

$F=-.9896287 E+00 \quad P=-.9176715 E+00 \quad G=-.1070125 E+01$
Values of X VEctor
$X(1)=.8135905 \mathrm{E}+00$
$X(2)=.8868126 \mathrm{E}+00 \quad X(3)=.7150513 \mathrm{E}+00$
$X(4)=.6810546 \mathrm{E}+00 \quad X($

VALUES OF THE CONSTRAINTS

$$
\begin{array}{llll}
G(1)=.3539966 \mathrm{E}+02 & G(2)=.1864095 \mathrm{E}+00 & G(3)=.1131874 \mathrm{E}+00 \\
G(4)=.284987 \mathrm{E}+00 & G(5)=.3189454 \mathrm{E}+00 & G(6)=.3135905 \mathrm{E}+00 \\
G(7)=.3868126 \mathrm{E}+00 & G(8)=.2150513 \mathrm{E}+00 & G(9)=.1810546 \mathrm{E}+00
\end{array}
$$

*** POINT NUMBER 22 ***

RHO $=.2235998 \mathrm{E}-02 \quad$ RSIGMA $=.2150956 \mathrm{E}-01$
$F=-.9973105 E+00 \quad P=-.9758009 E+00 \quad G=-.1017434 E+01$
VALUES OF X VECTOR

```
X( 1) = .9130118E+00 X( 2) = .9494833E+00 X( 3) = .6719643E+00
X( 4) = .6503463E+00 X(
```

values of the constraints
$G(1)=.2745135 E+02 \quad G(2)=.8698821 E-01 \quad G(3)=.5051672 E-01$
$G(4)=.3280357 E+00 \quad G(5)=.3496537 E+00 \quad G(6)=.4130118 E+00$
$G(7)=.4494833 E+00 \quad G(8)=.1719643 E+00 \quad G(9)=.1503463 E+00$
*** POINT NUMBER 28 ***
RHO $=.5589995 E-03 \quad$ RSIGMA $=.6239673 E-02$
$F=-.9993114 E+00 \quad P=-.9930718 E+00 \quad G=-.1004342 E+01$
VALUES OF X VECTOR

$$
\begin{aligned}
& X(1)=.9586948 \mathrm{E}+00 \quad X(2)=.9743827 \mathrm{E}+00 \quad X(3)=.6640598 \mathrm{E}+00 \\
& X(4)=.6392964 \mathrm{E}+00 \quad X(
\end{aligned}
$$

VALUES OF THE CONSTRAINTS

| $G(1)=.2227216 E+02$ | $G(2)=.4130524 \mathrm{E}-01$ | $G(3)=.2561730 E-01$ |
| :--- | :--- | :--- | :--- |
| $G(4)=.3359402 \mathrm{E}+00$ | $G(5)=.3607036 \mathrm{E}+00$ | $G(5)=.4586948 \mathrm{E}+00$ |
| $G(7)=.4743827 E+00$ | $G(8)=.1640598 \mathrm{E}+00$ | $G(5)=.1392964 \mathrm{E}+00$ |

*** POINT NUMEER 32

RHO $=.1397499 E-03$ RSIGMA $=.1788709 E-02$
$F=-.9998465 E+00 \quad P=-.9980577 E+00 \quad G=-.1001104 E+01$

VALUES OF X VECTOR

$$
\begin{aligned}
& X(1)=.9815737 \mathrm{E}+00 \quad X(2)=.9874529 \mathrm{E}+00 \quad X(3)=.6623129 \mathrm{E}+00 \\
& X(4)=.6368518 \mathrm{E}+00 \quad X(
\end{aligned}
$$

VALUES OF THE CONSTRAINTS
$G(1)=.1868634 E+02$
$G(2)=.1842630 E-01$
$G(3)=.1254714 E-01$
$G(4)=.3376871 E+00 \quad G(5)=.3631482 E+00 \quad G(6)=.4815737 E+00$
$G(7)=.4874529 E+00 \quad G(8)=.1623129 E+00 \quad G(9)=.1368518 E+00$
**: POINT NUMBER $34 \quad * * *$
RHO $=.3493747 \mathrm{E}-04 \quad$ RSIGMA $=.4942107 \mathrm{E}-03$
$F=-.9999571 E+00 \quad P=-.9994630 E+00 \quad G=-.1000272 E+01$
VALUES OF X VECTCR

$$
\begin{aligned}
& X(1)=.9896193 \mathrm{E}+00 \quad X(2)=.9937997 \mathrm{E}+00 \quad X(3)=.6622716 \mathrm{E}+00 \\
& X(4)=.6368153 \mathrm{E}+00 \quad X(
\end{aligned}
$$

VALUES CF THE CONSTRAINTS

| $G(1)=$ | . $1696405 \mathrm{E}+02$ | $G(2)=$ | . $1038069 \mathrm{E}-01$ | $G(3)=$ | . $6200314 \mathrm{E}-02$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $G(4)=$ | . $3377284 \mathrm{E}+00$ | $C(5)=$ | . $3631847 \mathrm{E}+00$ | $G(6)=$ | . $4896193 E+00$ |
| $G(7)=$ | . $4937997 \mathrm{E}+00$ | $G(8)=$ | $.1622716 \mathrm{E}+00$ | $G(9)=$ | . $1368153 \mathrm{E}+00$ |

*** POINT NUMBER 36 ***
RHO $=.8734368 \mathrm{E}-05 \quad$ RSIGMA $=.1390110 \mathrm{E}-03$
$F=-.9999923 E+00 \quad P=-.9998533 E+00 \quad G=-.1000071 E+01$
VALUES OF X VECTGR
$X(1)=.9953239 E+00 X(2)=.9975349 E+00 \mathrm{X}(3)=.6622406 \mathrm{E}+00$
$X(4)=.6368152 \mathrm{E}+00 \quad X($
VALUES CF THE CONSTRAIVTS

| 1) | | G(2) | 2 | G(3) | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| (4) | $4 \mathrm{E}+00$ | G(5) | $.3631848 \mathrm{E}+00$ | G(6) | +00 |
| | 975349E+00 | G(8) | $1622406 \mathrm{E}+00$ | G(9) | 368152E+00 |

*** POINT NUMBER 37 ***

RHO $=.2183592 \mathrm{E}-05 \quad$ RSIGMA $=.3581667 \mathrm{E}-04$
$F=-.9999965 E+00 \quad P=-.9999597 E+00 \quad G=-.1000016 E+01$
VALUES OF X VECTOR
$X(1)=.9962229 \mathrm{E}+00 \quad X(2)=.9987994 \mathrm{E}+00 \mathrm{X}(3)=.6622418 \mathrm{E}+00$
$X(4)=.6368178 E+00 \quad X($

VALUES OF THE CONSTEAINTS
$G(1)=.1557214 E+02$
$G(2)=.3777087 E-02$
$G(3)=.1200557 \mathrm{E}-02$
$G(4)=.3377582 E+00$
$G(5)=.3631822 E+00$
$G(6)=.4962229 E+00$
$G(7)=.4987994 E+00$
$G(8)=.1622418 E+00$
$G(9)=.1368178 E+00$

*** POINT NUMBER 38 ***

RHO $=.5458980 \mathrm{E}-06 \quad$ RSIGMA $=.9961238 \mathrm{E}-05$
$F=-.9999985 E+00 \quad P=-.9999885 E+00 \quad G=-.1000003 E+01$
Values or x vector
$X(1)=.9969606 E+00$
X(
2) $=.9996238 \mathrm{E}+00$
$X(3)=.6622428 \mathrm{E}+00$
$X(4)=.6368231 E+00 \quad X($
VALUES OF THE CONSTRAINTS
$G(1)=.1538367 E+02$
$G(2)=.3039360 E-02$
$G(3)=.3761649 E-03$
$G(4)=.3377572 E+00$
$G(5)=.3631769 \mathrm{E}+00$
$G(6)=.4969606 \mathrm{E}+00$
$G(7)=.4996238 E+00$
$G(8)=.1622428 \mathrm{E}+00$
$G(9)=.1368231 \mathrm{E}+00$

FINAL VALUE OF $\mathrm{F}=-9.999985 \mathrm{E}-01$

FINAL X VaLUES

$$
\begin{aligned}
& X(1)=9.969606 \mathrm{E}-01 \quad X(2)=9.996238 \mathrm{E}-01 \quad X(3)=6.622428 \mathrm{E}-01 \\
& X(4)=6.368231 \mathrm{E}-01 \quad X(
\end{aligned}
$$

SUBRCUTINE RESTNT (I,VAL)
C
C THE RELIABILITY PROBLEM
C
REAL R1, R2, R3, R4, Q1, Q2, Q3, Q4, PART2
REAL C, K1, K2, K3, K4, A1, A2, A3, A4, RMIN
COMMON /SHARE/ X(20), DEL(20), A(20,20), N,M,MN,NP1,NM1
COMMON /CONST/ C, K1, K2, K3, K4, A1, A2, A3, A4, RMIN
DATA C, K1, K2, K3, K4 1800.0, 100.0, 100.0, 200.0, 150.0 /
DATA A1, A2, A3, A4, RMIN / .60, .60, .60, .60, .50/
C
$R 1=X(1)$
$\mathrm{R} 2=\mathrm{X}(2)$
R3 $=X(3)$
$R 4=X(4)$
$Q 1=1.0-R 1$
$\mathrm{Q} 2=1.0-\mathrm{R} 2$
$Q 3=1.0-R 3$ Q4 $=1.0-\mathrm{R} 4$

C
PART2 $=1.0-R 2^{*}\left(1.0-\right.$ Q1* $\left.^{*} Q^{\prime}+\right)$
IF (I.GT.0) GO TO 100
C
C * THE OBJECTIVE FUNCTION TO BE MINIMIZED
VAL $=-1.0+R 3 *(Q 1 * Q 4) * 2+Q 3 * P A R T 2 * 2$ RETURN
C
C * THE INEQUALITY CONSTRAINTS $(G(I)>=0)$
100 GO TO ($1,2,3,4,5,6,7,8,9$), I
C
$1 \quad \operatorname{COST}=2 * K 1 * R 1 * *_{A 1}+2 * K 2 * R 2 * * A 2+K 3 * R 3 *{ }^{*} A 3+2 * R 4 * R 4 * A_{4}$
VAL $=C-\operatorname{COST}$ GETURN

C
2 VAL $=1.0-R 1$
RETURN
$3 \mathrm{VAL}=1.0-\mathrm{R} 2$ RETURN
$4 \mathrm{VAL}=1.0-R 3$ RETURN
5 VAL $=1.0-R 4$ RETURN
6 VAL $=\mathrm{R} 1-\mathrm{RMIN}$ RETUKN
7 VAL $=$ R2 - RMIN RETURN
8 VAL = R3 - RMIN RETURN
$3 \quad V A L=R 4-R M I N$ RETURN
C

C

C
REAL R1, R2, R3, R4, Q1, Q2, Q3, Q4, PART2
REAL C, K1, K2, K3, K4, A1, A2, A3, A4, RMIN
COMMON /SHARE/ X(20), DEL(20), A 20,20$), N, M, M N, N P 1, N M 1$
COMMON /CCNST/ C, K1, K2, K3, K4, A1, A2, A3, A4, RMIN
$R 1=X(1)$
$R 2=X(2)$
R3 $=X(3)$
$R 4=X(4)$
Q1 $=1.0-\mathrm{R1}$
Q2 $=1.0-\mathrm{R} 2$
$Q 3=1.0-R 3$
Q4 $=1.0-R 4$
PART2 $=1.0-R^{*}\left(1.0-\right.$ Q $\left.^{*} Q 4\right)$
C * SET DE TO ZERO BEFORE FILLING IN THE NONZERO ELEMENTS DO 50 INDEX $=1,4$ DEL(INDEX) $=0.0$
50 CONTINUE
C
IF (I.GI.O) GO TO 100
C
C * THE GRADIENT OF THE OBJECTIVE FUNCTION
$\operatorname{DEL}(1)=2.0{ }^{*} \mathrm{R} 3 * Q 1 * \mathrm{Q} 4 *(-\mathrm{Q} 4)+2.0 * \mathrm{Q} 3 * P A R T 2 *(-R 2) * Q 4$
DEL (2) $=-2.0$ *Q3*PART2* ($1.0-\mathrm{Q} 1 * Q 4)$
$\operatorname{DEL}(3)=(Q 1 * Q 4) * 2-\operatorname{PART2**2}$
$\operatorname{DEL}(4)=2.0{ }^{* R} 3^{*} \mathrm{Q}^{*}{ }^{*} \mathrm{Q} 4 *(-\mathrm{Q} 1)+2.0$ *Q3*PART2*(-R2)*Q1 RETURN
C
C * THE GRADIENT OF THE CONSTRAINTS
100 GO TO ($1,2,3,4,5,5,7,8,9$), I
C
$1 \operatorname{DEL}(1)=-2.0 * K 1 * K 1 * R 1 * *(A 1-1)$
$\operatorname{DEL}(2)=-2.0 * \mathrm{R}_{2} * A 2 * R \mathrm{R}^{*} *(\mathrm{Az}-1)$
$\operatorname{DEL}(3)=-K 3 * A 3 * R 3 * *(A 3-1)$
$\operatorname{DEL}(4)=-2.0 * K 4 * A 4 * R 4 * *(A 4-1)$
RETURN
$2 \operatorname{DEL}(1)=-1.0$
RETURN
$3 \operatorname{DEL}(2)=-1.0$
RETURN
$4 \operatorname{DEL}(3)=-1.0$ RETURN
$5 \operatorname{DEL}(4)=-1.0$
RETURN
$6 \operatorname{DEL}(1)=1.0$
RETURN
7 DEL(2) $=1.0$
RETURN
$8 \operatorname{DEL}(3)=1.0$ RETURN
$9 \operatorname{DEL}(4)=1.0$ RETURN
END

SUBROUTINE MATRIX (J,L)
C
REAL R1, R2, R3, R4, Q1, Q2, Q3, Q4, PART2
REAL C, K1, K2, K3, K4, A1, A2, A3, A4, RMIN
COMMON /SHARE/ X(20), DEL(20), A(20,20), N,M,MN,NP1,NM1
COMMON /CONST/ C, K1, K2, K3, K4, A1, A2, A3, A4, KMIN
C
$R 1=X(1)$
$R 2=X(2)$
$R 3=X(3)$
$R 4=X(4)$
Q1 $=1.0-\mathrm{R} 1$
$Q 2=1.0-\mathrm{R} 2$
$Q 3=1.0-R 3$
Q4 $=1.0-\mathrm{R}^{4}$
PART2 $=1.0-R 2 *(1.0-Q 1 * Q 4)$
C
IF (J.GT.0) GO TO 100
C
c * THE SECOND PARTIALS OF the objective function
$A(1,1)=2 * R 3 * Q 4 * Q 4+2 * Q 3 *(R 2 * * 2) *(Q 4 * * 2)$

$A(1,4)=2 * R 3 * Q 1 * Q 4+2 * R 3 * Q 1 * Q 4$
1
C
$A(2,2)=2 * Q 3 *(1.0-Q 1 * Q 4) * * 2$
$A(2,3)=2 * P A R T 2 *(1.0-Q 1 * Q 4)$
$\mathrm{A}(2,4)=2 * \mathrm{Q}^{*}\left(1.0-\mathrm{Q} \mathrm{H}^{*} \mathrm{Q} 4\right) * \mathrm{R} 2 * Q 1+2 * Q 3 * P A R T 2 * Q 1$
$\mathrm{A}(3,4)=-2{ }^{*} \mathrm{Q}^{*}{ }^{*} \mathrm{Q}^{*} \mathrm{Q}_{\mathrm{Q}}+2{ }^{*} \mathrm{PART} 2 * \mathrm{R} 2 *{ }_{2} 1$
$A(4,4)=2 * R 3 *(Q 1 * * 2)+2 * 23 *(R 2 * * 2) *(Q 1 * * 2)$
RETURN
C
C * THE SECOND PARTIALS OF THE CONSTRAINTS
100 GO TO ($1,2,2,2,2,2,2,2,2$), J
C
$1 \mathrm{~A}(1,1)=-2.0^{*} \mathrm{~K}_{1} \mathrm{~A}_{\mathrm{A} 1 *(\mathrm{~A} 1-1)} \mathrm{FR}^{\mathrm{R}}{ }^{*} *(\mathrm{~A} 1-2)$
$A(2,2)=-2.0 * \mathrm{~K}_{2}^{* A 2 *(\mathrm{~A} 2-1) * R 2 *(A 2-2) ~}$
$A(3,3)=-K 3 * A 3 *(A 3-1) * R 3 * *(A 3-2)$
$A(4,4)=-2.0 * \mathrm{~K} 4 * 24 *(\mathrm{~A} 4-1) *$ 2. $4 * *(\mathrm{~A} 4-2)$
2 RETURN
C
END

4.6 REFERENCES

1. Fiacco, A. V., and G. F. McCormick, "The Sequential Unconstrained Minimization Technique for Nonlinear Programming : A Primal-Dual Method", Management Scie, 10, 360-366, 1964.
2. Fiacco, A. V., and G. P. McCormick, "Computational Algorithm for the Sequential Unconstrained Mirimizatin Technique for Nonlinear Programming", Maragement Sci., 10, 601-617, 1964.
3. Fiacco, A. V., and G. P. McCormick, "SUMT without parameters", Systems Research Memorandum No. 121, Technical Institute, Northwestern University, Evanston, Illinois, 1965.
4. Fiacco, A. V., and G. P. McCormick, "Extension of SUMT for Nonlinear Programming : Equality Constraints and Extrapolation", Management Scie, 12 (11): 816-829, 1966.
5. Fiacco, A. V., and G. P. McCormick, Nonlinear Programming i Sequentjal Unconstrained Minimization Techniques, Wiley, New York, 1968.
6. Kuester, J. L. and J. H. Mize, Dptimization Techniques with Fortren, McGraw-Hill Book Company, 1973.

5.1 CRITERIA USED IN COMPARING THE MICRO/PERSONAL COMPUTER VERSUS the large computer

Many of the criteria used in evaluating competing techniques [1] on the same computer can aiso be used in evaluating the micro/personal computer against the large computer. The criteria which are used in this study are:

1. Time required in a series of tests
(Preparation time, queue time, and execution time)
2. Size of the problem
(number of variables, number of inequality constraints, number of equality constraints)
3. Accuracy of the solution with respect to the optimal vector x " and lor with respect to $f\left(x^{*}\right), h\left(x^{*}\right), g\left(x^{*}\right)$.
4. Simplicity of use
5. Time required in a series of tests

The total time required to solve a problem on the large computer includes preparation time, the queue time which is the time which has to be spent waiting in a queue for either a terminal or for other people's jobs to finish executing, and exacution time. Of these times, the queue time can take up a significantly large proportion of the overall time needed to solve a problem. This is because each time the program has to be run, there is some queue time involved and because the program usually does not run the first time because of errors, there will be an accumulation of queue times. However, wher using a micro/personal computer there is no queue time so of ten the same problem can be solved faster on a micro/personal computer than on the large computer.
2. Size of the problem

The size of the problem which can be solved on each of the programs is shown below :

The Hooke and Jeeves pattern search
Large : 50 variables
Micro : 50 variables

KSU-SUMT

| Large : 20 variables | |
| :--- | :--- |
| | 20 inequality constraints |
| | 20 equality constraints |
| Micro : 20 variables | |
| | 20 inequality constraints |
| | 20 equality constraints |

RAC-SUMT
Large : 20 variables
20 inequality constraints
20 equality constraints
Micro: 20 variables
20 inequality constraints
20 equality constraints

On each of the three programs, the dimensions of the micro computer was set equal to the dimensions of the programs written for the large computer. However, for the RAC-SUMT program, although the main program fits into the 37 K bytes of usable computer memory of the North Star computer, the user supplied subroutines may not fit into the memory. This is because the main program uses 28 K bytes of memory which leaves only ok bytes for the user
supplied subroutines. In the RAC-SUMT program, three user supplied subroutines are required : RESTNT, GRAD, MATRIX. The RESTNT subroutine which supplies the objective function and the constraints may not be very large but the GRAD subroutine and the MATRIX subroutine which supply the first and second partial derivatives of the objective function and constraints can get quite large. Therefore the user supplied subroutines can easily exceed the 9 K bytes.
3. Accuracy of the solution

The results of the test problems run on the large computer and the microcomputer are shown below:

The Hooke and Jeeves pattern search
Test problem 1 :
Large : $f\left(x^{*}\right)=2960.74$
Micro: $f\left(x^{*}\right)=2950.74$

Test problem 2 :

$$
\begin{aligned}
& \text { Large : } f\left(x^{*}\right)=241,516 \\
& \text { Micro : } f\left(x^{*}\right)=241,516
\end{aligned}
$$

KSUJ-SUMT
Test problem 1

$$
\text { Large : } \begin{aligned}
f\left(x^{*}\right) & =962.50 \\
g_{1}\left(x^{*}\right) & =2.73 \\
g_{2}\left(x^{*}\right) & =.352 \\
g_{3}\left(x^{*}\right) & =4.17
\end{aligned}
$$

$$
\begin{aligned}
& h_{1}\left(x^{*}\right)=.01 \\
& h_{2}\left(x^{*}\right)=.005 \\
& \text { Micro : } f\left(x^{*}\right) \\
&=962.34 \\
& g_{1}\left(x^{*}\right)=2.79 \\
& g_{2}\left(x^{*}\right)=.335 \\
& g_{3}\left(x^{*}\right)=4.14 \\
& h_{1}\left(x^{*}\right)=.05 \\
& h_{2}\left(x^{*}\right)=.01
\end{aligned}
$$

Test problem 2

$$
\begin{aligned}
\text { Large }: f\left(x^{*}\right) & =.9946 \\
g_{1}\left(x^{*}\right) & =.0454 \\
g_{2}\left(x^{*}\right) & =.1778 \\
g_{3}\left(x^{*}\right) & =.1203 \\
g_{4}\left(x^{*}\right) & =.1775 \\
g_{5}\left(x^{*}\right) & =.2170 \\
g_{6}\left(x^{*}\right) & =.3222 \\
g_{7}\left(x^{*}\right) & =.3797 \\
g_{8}\left(x^{*}\right) & =.3225 \\
g_{9}\left(x^{*}\right) & =.2830 \\
\text { Micro }: f^{*}\left(x^{*}\right) & =.9955 \\
g_{1}\left(x^{*}\right) & =.201 \\
g_{2}\left(x^{*}\right) & =.207 \\
g_{3}\left(x^{*}\right) & =.828 \\
g_{4}\left(x^{*}\right) & =.193 \\
g_{5}\left(x^{*}\right) & =.212 \\
g_{6}\left(x^{*}\right) & =.293
\end{aligned}
$$

$$
\begin{aligned}
& g_{7}\left(x^{*}\right)=.417 \\
& g_{8}\left(x^{*}\right)=.307 \\
& g_{9}\left(x^{*}\right)=.288
\end{aligned}
$$

RAC-SUMT

Test problem 2

$$
\begin{aligned}
\text { Large }: & f\left(x^{*}\right) \\
g_{1}\left(x^{*}\right) & =.999904 \\
g_{2}\left(x^{*}\right) & =.0036 \\
g_{3}\left(x^{*}\right) & =.0042 \\
g_{4}\left(x^{*}\right) & =.1206 \\
g_{5}\left(x^{*}\right) & =.4267 \\
g_{6}\left(x^{*}\right) & =.4964 \\
g_{7}\left(x^{*}\right) & =.4958 \\
g_{8}\left(x^{*}\right) & =.3794 \\
g_{9}\left(x^{*}\right) & =.0733
\end{aligned}
$$

$$
\text { Micro: } f\left(x^{*}\right)=.999998
$$

$$
g_{1}\left(x^{*}\right)=15.38
$$

$$
g_{2}\left(x^{*}\right)=.00304
$$

$$
g_{3}\left(x^{*}\right)=.00376
$$

$$
g_{4}\left(x^{*}\right)=.3378
$$

$$
g_{5}\left(x^{*}\right)=.3632
$$

$$
g_{6}\left(x^{*}\right)=.4970
$$

$$
g_{7}\left(x^{*}\right)=.4996
$$

$$
g_{8}\left(x^{*}\right)=.1622
$$

$$
g_{g}\left(x^{*}\right)=.1368
$$

The above results of the problem run on the micro/personal computer and the large computer are essentially the same. In the Hooke and Jeeves pattern search problems, the objective function values were idertical when run on the micro/personal computer and the large computer. The objective function for the test problems run by the KSU-SUMT and RAC-SUMT were nearly identical for the micro/personal computer as compared to the large computer. The results for RAC-SUMT test problem 1 was not shown because the version of RAC-SUMT on the large computer could not handle equality constraints. Note that in nonlinear programming problems the objective function may not be unimodal, so that there may be several points which give the same value of the objective function. Tnis is probably why there are differences in the values of the constraints for the KSU-SUMT and RAC-SUMT test problems although the objective functions are nearly identical.

An. exact comparison of the results from the micro/personal computer and the large computer is also not valid because the programs stored on the micro/personal computer and the ones stored in the large computer are not identical. The programs stored in the large computer are an older version although for the Hocke and Jeeves pattern search and the KSU-SUMT program, they are essentially the same. Only in the RAC-SUMT program were any major changes made in the newer version but most of the changes were in terms of adding new features to the program while the basic method of the program remained unchanged. These results indicate that the micro/personal computer can produce solutions which are as good as those produced by the large computer.
4. Simplicity of use

For the large computer some job control language (JCL) statements are needed to run the programs whereas for the micro/personal computer a few
operating systems commands are needed to invoke the Fortran compiler and the linkage editor in order to run the program. The commands needed to run the micro/personal computer are usually easier to learn and remember than the corresponding JCL neeeded to run the programs on the large computer. To illustrate the complexity of the JCL for the large computer, the JCL statements needed to run the RAC-SUMT program is shown below.

// EXEC FORTGCLG //FORT.SYSIN DD *

the user supplied subroutines go here
//LKED.LIB DD DSN=DSBN7.HWANG.ORFILES, DISP=SHR
//LKED.SYSIN DD *
INCLUDE LIB(RACSUMT)
ENTRY MAIN
//GO.SYSIN DD *
the user supplied data cards go here

The more simple operating systems commands needed to run the RAC-SUMT program are as follow :

The following command is used to compile the user supplied subroutines. F80 =B:filename

The following command is used to link edit the compiled user supplied subroutines with the compiled RAC-SUMT program and create a executable file. L80 B:filename, B:RACSUMT/N, B:RACSUMT/E

The following command is used to begin execution of the RAC-SUMI program: B:READIN

As shown above, it is much easier to remember the commands needed for the microcomputer than it is to remember or even understand the JCL statements neecied for the large computer.

5.2 REASONS FOR USIMG THE MICRO/PERSONAL COMPUTER IN RESEARCH OR APPLICATIONS

One of the reasons for using a micro/personal computer is the easy accessibility to the micro/personal computer. There is no need to have a security number to use the micro/personal computer as there is for using the large computer. No computer funds are needed to run a program as for the large computer. There is also no restriction on the hours of use as for the large computer.

A second reason for using the micro/personal computer is the low operating cost of the micro/personal computer. The only cost for operating the micro/personal computer is the electricity cost for running the computer, the cost of paper for printing out results and the cost of mini disks for storing the programs. On the other hand, the operating cost for the large computer can be expensive as one or more operators are needed to keep the computer running, to mount tapes or disks when requested, and to dispatch computer printouts to users, among other tasks. In addition, an accountant is needec to keep track of the accounts of the various computer users. Systems programmers are also needed to maintain the system programs in good running order. All of these people are needed to keep the large computer working properly and to meet the needs of the various users of the large computer system. Their services can be quite expensive.

A third reason for using the micro/personai computer is the adequate capacity of the micro to handle the problems to be solved. Most of ten the complete capacity of a large computer is not needed when the problem to be solved is oniy mocierately large. For many problems, the micro/personal computer has enough capacity to be able to handie them. For example, the Hooke and Jeeves pattern search program and the KSU-SUMT progran require
only 22 K and 32 K bytes of memory so they can easily fit into the available computer memory of a 64 K microcomputer. The RAC-SUMT program requires more memory than what is available but with some modifications, it also can run on the micro/personal computer.

One of the attractive features of the micro/personal computer is the ability to make changes to the program easily and quickly. This is a feature of the word processing software that is available to create and edit programs. The word processing software locates particular statements guickly ard allows additions, deletions, and replacements to be made very easily. For instance, to charge a variabie name throughout the program, oniy one command needs to be issued and all chanqes will be made. The word processing software used in creating the proqraq was yicropro's Morastar. Having also used IBM's virtual machine system product editor \{also known as XeDImy on the larqe computer, my experience has been that the word processor on the microcomputer is just as sophisticated as that for the large computer.

One type of problem whici was ancountered when using the Fortran compiler was determining where an error occurred when an erzoz message appeared. Although a line number indicating where the error occurred is supposed to be given, sometimes io line number $\mathfrak{k} a \mathrm{~s}$ present. And when the line number is presert, it often is off by one or two lines. Also, when ar error cccurs in a subroutine, the line number is given in reference to the start of the subroutine, whereas the word processirg editor wich was used runbered all lines with respect to the start of the program. There were therefore some adjustments needed to determine the location of the error in the subroutine. In
addition to the line number where an error occurred, the last 20 characters scanned at the time the error was detected is given. These 20 characters are often misleading because the error is usuaily not in the 20 characters but a line or two before or after the statement whick concained the 20 characters.
another type of problem which was encountered wher using the Fortran compiler was causea by the compiler not checking for ail types of syntax errors. One of the syntax errors not checked for'was incorrectly usinq single precision built-in functions like ABS, ALOG, and SCRT when the double precision functions DABS, DIOG, and DSQRT shouid have been used. Another type of erfor not checked for was the matching of parameters in the subroutine in number, type, and length with the paraneters expected by the calling proqram. When these types of errors occurred, the results of calculations done by the program was often totally incorrect and many times error messages would appear during execution which were nonsensical like a message of 'Error -- Argument to cos too lazge' when the cos function was never used in the proqram.

These types of errors were some of the most difficult to debug ard hopefully newer versions of the compiler will check for these additional types of errors. one of the reasons for the probleas with the Zozささan compiler is probably because the Fortran compiler is still in the developing stage and because it is a first version, we can expect errors to be present. Probably many of the errors wili be taken care of in newer
versions of the software.

Gae of the disadvantages of the microcomputer compared to the large computer is the limited memory capacity of the nicrocomputer. Although most microcomputers now on the market contain 64 K bytes of memory, usualiy only $30-40 \mathrm{~K}$ bytes are available for the program; the remainder of the memory is taken up by the operating system or reserved for special purposes. Thus, the size of the progran which can fit into the microcomputer is limited to $30-40 \mathrm{~K}$ bytes on many 64 K byte microcomputers. For the vorth Star Horizon microcomputer used in this study which was Iunning under the CP/M operating systen, 37 K bytes of the 54 K bytes were avaialable for the proqram.

Both the Hooke and Jeeves pattern search proqram and the KSUSumt computer program were able to fit into the 37 K bytes of available memory of the North Star Horizon microcomputer. However, the rac-Summ program was larger than the 37 k bytes and thus would cot fit into memory. To get arourd this problem, the original program was divided into two separate proqrams and only one of the programs was loaded at a time into memory. The RacSunt program was able to run on the microcomputer in this way.

The size of the problem that can be solved by the RAC-Surt program though is still iimited. hhereas the PAC-SUMT program was dimensioned to solve a problem wi九h 20 variables, 20 inequaiity constraints and 20 equality constraints, there is not enough memory to run a problem that large. This is because although the two separate parts of the gAC-SUMT program each fit
into the computer memory, the user supplied routines must also fit into memory with the second part. The largest test problem used (4 variables, 9 inequality constraints) took up nearly all the available memory once it was loaded into the computer memory with the main prograu. Thus, a problem wuch larger than this will not fit into the North Star micrccomputer.

Although the RAC-SJAT proqram is restricted by the 64 k bytes of computer memory, the trend now is toward aicrocomputers with at least 128 K bytes of main memory. fith so much memory, the RAC-SUUT program along with the user-supplied subroutines will easily fit into the available menory. There will also be ro need to divide the oriqinal progran into two separate proqrams.

Another disadvantage of the micro/personal computer compared to the large computer is the slower execution speed of the micro/personal computer. The execution time of the test problems run on both the micro and the large computer showed that the micro was at least an order of maqnituce slower than the large computer. In all test problems solved in this study, the micro/personal computer took less than four minutes to solve while the large computer solved all problems in less than fire seconds. These problems were all solved using the single precision version of the proqrams. When the same problems were solved using double precision, the execution time on the micro/personai computer more than aoubled. For example, test problem 2 solved by Hooke anc Jeeves pattern search proqram took only 3 minuees using single precision but with double precision,
it was still not finished after one hour of computation time.

The reason why the double precision version of the proqram took so much longer is that the calculation done ir the progran had to be carried out by software routines rather than hardware. At the time the Fortran software was purchased, there was haraware available to handle aouble precision, however, the Fortran software to take advantage of the special hardware was not yet available. As ii becomes available, double precision Will become less prohibitive to do on the micro/pe=sonal computer, but for now, if double precision results are neeced, it will probably have to be done on the large compurer.

However, for problems solved by sinqle precision, the slower execution time as compared to the large computer was not significant in that execution time is only a small fraction of the overall time needed to solve a problem. Much more time is spent preparing data for the computer, entering the data into the computer, correcting mistakes in the data and waiting for resulさs. Por a micro/personal computer, the big savings in time is in rot kavirg to wait for a terminal or cara purch to become a qailable, waiting for turnarourd tine, and then waiting for the results to be printed. These savings in wait times are repeated every time the program has to be run because of errors in the data or changes made to the parameters in the program. So although the execution time of the micro/personal conputer may be slower than for the large computer, the overall time needed to solve a problen will probainly be less because of not having
to wait for devices to become available.

Thus, from my experience on the micro/personal computer. I have found that on the plus side, the word processing capabilities on the micro/personal computer make proqram modification ana correction a much easier task thar before. Also on the pius sice is the savings in time by not having to wait for a terminal to be free or waiting for the coaputer to process your job. on the negative side, the Fortran software for the micro/conputer was not as developea as for the larqe compater, although this will probably be improved as newer versions come out. Another argument on the neqative side is that the memory capacity of most micro/personal computers with Є4K bytes of memory was not enough for the RAC-SumT program. although this is also being corrected as newer micro/personal computers are coming out with more and more memory.
5.4 ADVANTAGES AND DISADVANTAGES OF USING THE MICFO/PERSONAL COMPUTER

The advantages of using a micro/personal computer include easy accessibility, low operating cost, adequate memory capacity to run the proqrams, no waiting for devices to become available, and results which are comparable to those for the larqe computer.

Disadvantages of using the micro/personal computer include the slower processing speed which makes programs usinq double precision arithmetic ± 00 slow to run on the micro. The slower processing speed thougs was not significant when running programs using single precision. Another disadvantage is the limited memory of the 64 K microcomputer which restricts the size of problems that the RAC-sunt program could solve. This limitation though is being overcome with the larqer memory capacity of the newer micro/personal computers which allow memory expansion up to 512% bytes.

A thira disadvantage is the problem encountered with a Fortran compiler which is still in the developinq stage. The initial version of the Fortran compiler can be expected to stili have errors in it and as was found out, it aoes not have all the features or error checking capabilities of the Fortran compiler for the large computer. We can expect that the portran software will improve as newer versions of it come out.

5.5 FUTURE STUDY

An interesting area of research would be to determine whether graphics could be used on the microcomputer to help in searching for a solution to the nonlinear programming probiem.

5.6 REFERENCES

1. Crowder, H. P., R. S. Dembo, and J. M. Mulvey, "Reporting Computational Experiments in Mathematical Programming", Mathematical Programming, 15, pp. 316-329, 1978.

A COMPARATIVE STUDY OF NONLINEAR PROGRAMMING ROUTINES ON THE MICROCOMPUTER VERSUS THE LARGE COMPUTER

by

Frank P. Fiwang

B.S., Kansas State University Manhattan, Kansas 1981

AN ABSTRACT OF A MASTER'S THESIS

submitted in partial fulfillment of the
requirements for the degree

MASTER OF SCIENCE

Department of Industrial Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1984

ABSTRACT

With the microcomputer becoming ever more popular and affordable, a study was needed to determine the practicality and feasioility of putting nonlinear programming routines on the microcomputer.

The nonlinear programming programs under study were the Hooke and Jeeves Pattern Search, and two Sequential Unconstrained Minimization Techniques (SUMT), the KSU-SUMT program developed at KSU and the RAC-SUMT program developed at the Research Analysis Corporation, McClean, VA.

It was found from this study that the nonlinear programming programs would fit into the available memory of a 64 K microcomputer. The size of problem that could be solved by the Hooke and Jeeves pattern search and the KSU-SUMT program was the same as for the large computer. However, for the RAC-SUMT program, a 64 K microcomputer did not have enough memory to solve as large a problem.

In comparing the large computer versus the microsomputer for the nonlinear programming routines, it was found that the microcomputer compared favorably to the large computer in terms of ease of use, accuracy, and total time to run a problem. The operating system comnands needed to run a Fortran program was somewhat easier to learn and remember for the microcomputer than for the large computer. The results of the test problems run on the microcomputer and large computer were nearly identical indicating that the accuracy of the results by the microcomputer were very good. In terms of total time needed to run a program which includes time needed to enter data into the terminai, wait for results and execution time, the microcomputer and large computer took about the same amount of time.

