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Abstract

The revelation principle asserts that every outcome brought by a mechanism

is realized by a truthful direct mechanism. The present paper investigates the reg-

ularity conditions of these two mechanisms in the continuous space of the agent’s

type. It questions what regularity condition a general mechanism confers upon a

direct mechanism through the revelation principle. By so doing, we elucidate the

limit of the revelation principle.
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1 Introduction

The revelation principle states that every equilibrium outcome with a mechanism is re-

alized by a truthful direct mechanism. On the strength of this principle, mechanism

design literature focuses upon a direct mechanism in its analysis. Until now, no atten-

tion seems to have been paid to the regularity condition (e.g, continuity and so forth)

transmitted to the direct mechanism from the indirect one via the revelation principle.

When the agent’s type space is discreet, the matter is not problematic since we

need not assume any mathematical structure—functional space, topology–on the direct

mechanism, in search of the optimal direct mechanism. By contrast, with the continuous

type space, the thing is different. Here, while solving for the optimal direct mechanism,

one usually draws upon calculus of variation or optimal control, which requires, at least,

absolute continuity on the state variable.

To apply these optimization techniques, we transform the implementability condition

on the direct mechanism, in which process we are bound to assume absolute continuity

on the mechanism. On the other hand, the direct mechanism derived from an indirect

mechanism through the revelation principle is not assured to be continuous still less

absolutely continuous. This implies that equivalence between an indirect mechanism and

a direct mechanism(due to the revelation principle) should be taken with reservations.

Probably, the only indirect mechanism to have been actually analyzed is the non-

linear price scheme. In search of the optimal scheme, one usually performs pointwise

optimization, which may give rise to a discontinuous marginal price and thus a non-

differentiable price scheme. As mentioned above, the direct mechanism deduced from

this price scheme is not certain to satisfy the regularity condition(absolute continuity).

Furthermore, a continuous price scheme does not necessarily generate a continuous direct

mechanism. Hence a serious challenge to the standard direct mechanism approach in

the theory of mechanism design.

This article investigates into these issues on the regularity conditions which have not

2



drawn until now due theoretical attention.

The next section presents the setting and shows that continuity does not necessarily

pass over from the general mechanism to the direct mechanism. Section 3 gives the

examples of mechanism design theory. Section 4 studies a weaker regularity condition

than continuity. The final section concludes the article.

2 The model

There is an agent and a principal. Θ is the agent’s type space. The type is the agent’s

private information and unobservable to the principal. Y is an allocation space. If

the principal is a monopolistic seller of a commodity and the agent is the buyer, for

instance, the type is the buyer’s appreciation for the commodity and the allocation

space consists of a quality(quantity) and price space. If the principal is a firm and the

agent is the employee, the type is the buyer’s cost parameter in producing an ouput and

the allocation space consists of the space of the output quantity and the salary.

It is assumed that both the spaces Θ and Y are a Hausdorff space and that Θ is a

compact space. The agent’s utility function is assumed to be continuous:

U(y, θ) : Y ×Θ → R.

M is a metric space which we call message space. A mechanism is a function y(m)

from M to Y . A direct mechanism is a mechanism with the message space M coinciding

with Θ. Otherwise, the mechanism is an indirect mechanism.

Definition 1. A direct mechanism y(θ) : Θ → Y is implementable if and only if for any

θ and θ′ ∈ Θ,

U(y(θ), θ) ≥ U(y(θ′), θ)
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We pose

V (θ) := sup
m∈M

U(y(m), θ).

For instance, if y(M) is compact, then the supremum is attained as the maximum.

We pose the maximizer of the utility function as

N(θ) := {m ∈ M |V (θ) = U(y(m), θ)}.

The selection of a set valued map N(θ) is a single valued map s(θ) such that

s(θ) ∈ N(θ).

Proposition 1 (Revelation Principle). Let N(θ) be non-empty for any θ ∈ Θ. What-

ever selection s(θ) is chosen, it holds good that

V (θ) = U(y(s(θ)), θ).

y(s(θ)) is an implementable direct mechanism as a function from Θ to Y . This is

the justification, whereby literature on mechanism design usually concentrates upon the

direct mechanism. On the strength of it, it searches for the optimal direct mechanism

while claiming that all the outcomes by an indirect mechanism are replicated by a direct

mechanism. However, in search of the optimal direct mechanism, we are obliged to

transform the implementability condition into a manageable form(see Proposition 7) in

order to set up the maximization problem.1 For this transformation, we assume, at

least, absolute continuity on the direct mechanism. The problem is that y(s(θ)) is not

certain to satisfy continuity even if y(·) is continuous. In other words, it is not assured

that N(θ) possesses a continuous selection even in the most favourable situation.

1Calculus of variation or optimal control in most cases.
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We have several fundamental propositions, for which proof the reader is referred to

Aubin and Cellina (1984).

Proposition 2 (Maximum principle). If y(M) is compact, V (θ) is continuous.

We have a stronger result.

Proposition 3. Let Θ and Y be a metric space. If U is Lipschitzean on Y × Θ, so is

V on Θ.

Proof. Take θ1 and θ2 ∈ Θ. For any ε > 0, there is y1 such that V (θ1) ≤ U(y1, θ1) + ε.

Then, we have

V (θ1)− V (θ2) ≤ U(y1, θ1)− U(y1, θ2) + ε,

≤ ld(θ1, θ2) + ε.

where l is a Lipschitz constant of U . ε can be arbitrary and the proposition follows.

It follows, in this case, that V is absolutely continuous. In economic theory, in search

of the optimal implementable mechanism, we resort to calculus of variations(or optimal

control) and V is treated as a state variable, which is required to be absolutely continu-

ous. Therefore, if the agent’s utility function U is Lipschitzean, V fulfils the regularity

condition for the use of the techniques.

Proposition 4. If y(M) is compact, N(θ) is upper semicontinuous.2

Note first that no regularity is assumed upon y except that y(M) is compact. The

compactness must not be so strong an assumption in our mechanism context, where

evey type of agent sends the best message m so as to be allocated the best y(m). That

condition ensures the existence of the best message.

2The definitions of semicontinuity are relegated to the appendix.
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According to the proposition, if M is compact and the mechanism y(m) is continuous,

N(θ) is upper semicontinuous. The problem is that an upper semicontinuous set-valued

map is not certain to have a continuous selection even under a fairly strong condition.3 In

other words, the implementable direct mechanism deduced from y(m) is not necessarily

continuous. However, in the case where N(θ) is single-valued, we have the following:

Corollary 1. If y(M) is compact and if N(θ) is a single valued map, N(θ) is continuous.

For instance, if with all θ, U(y(m), θ) is strictly concave in m, then N(θ) is single-

valued and indeed continuous.

In view of the above facts, in the next section, we shall take a look at the examples

of models in mechanism design theory.

3 Examples

3.1 The case of U(y, θ) = qθ − p

Rochet (1985) gives implementability conditions with a more general form of U without

any regularity condition on the mechanism y(θ). For our purpose, though, the following

specification is enough.

Let us suppose that y = (p, q) and Y = Q× P where Q ⊂ RL for L ≥ 1 is a closed

and bounded quality(quantity) space and that P = R is a price space. Suppose also

that Θ ⊂ RL is a convex set.

In the following particular setting, Rochet (1985) and Rochet (1987) derives the

regularity of V (θ) from the implementability constraint without assuming any regularity

on the direct mechanism:

U(y, θ) = U(q, p, θ) := qθ − p.

3By contrast, a lower semicontinuous set-valued function possesses a continuous selection if it is of
closed convex values.
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Therefore, in this case, the regularity condition does not jeopardize the claim for gener-

ality of a direct mechanism.

Proposition 5. The mechanism is almost everywhere implementable4 if and only if

V is convex,

∇V (θ) = q(θ) a.e.

This proposition makes no regularity assumption upon the mechanism. The proof is

based upon the linearity between θ and q, and the subdifferential of a convex function.

In search of the optimal mechanism, replacing q(θ) with ∇V , Rochet and Chone (1998)

search for the optimal V in the Sobolev spaceH1. Since the convex function is continuous

in the interior of the domain, no additional regularity condition is assumed a priori.

Thus, the revelation principle is totally valid.

In the one-dimensional type space, we obtain the following proposition.

Proposition 6. Suppose that Θ = [θ, θ] ⊂ R. The mechanism (q, p) is implementable if

and only if

V is convex and absolutely continuous,

V̇ (θ) = q(θ) a.e.

Proof. We only show that implementability leads to absolute continuity of V (θ). U(y, θ)

is absolutely continuous in θ for every y. Thus

|V (θ′′)− V (θ′)| ≤ sup
θ∈Θ

|U(y(θ), θ′′)− U(y(θ), θ′)| ≤ sup
θ∈Θ

∫ θ′′

θ′
|Uθ(y(θ), θ̃)|dθ̃ ≤

∫ θ′′

θ′
|q|dθ̃,

where q is the maximum of Q.

4i.e, it holds good, for almost every θ, that U(y(θ), θ) ≥ U(y(θ′), θ) for any θ′.
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Absolute continuity is a standard regularity condition imposed upon the state vari-

able in the calculus of variations. Thus, in the case of the one-dimensional type space, we

can resort to the calculus of variations by replacing q with U̇ . Likewise, the second equa-

tion in the proposition and absolute continuity make q(θ) measurable and integrable.

As a result, we can resort to optimal control without any additional assumption.

The above two proposition are derived by use of the convexity of U(θ) and the

subdifferential without any regularity assumption on the mechanism itself. In order to

use this technique, we need linearity between the agent’s type and the action variable

q(see Rochet (1985) and Rochet (1987)).

3.2 The general case

In the case of the more general form of U , we cannot use the technique employed in

the previous section and we are obliged to put some prior regularity condition upon a

mechanism in order to derive the implementability condition(c.f. Guesnerie and Laffont

(1984) and Fudenberg and Tirole (1993)).

Let us suppose that Θ = [θ, θ] ⊂ R, Y = Q × P where Q is a non-empty, compact,

convex subset of RL for L ≥ 1 and P = R.

U(y, θ) := U(q, p, θ).

Assumption 1. U is strictly increasing in p. U is of class C2.

With these assumptions, we obtain the necessary condition for implementability.

Proposition 7. Under Assumption 1, let the mechanism y = (q, p) be absolutely con-

tinuous(or piecewise C1). If the mechanism is implementable, then it obtains that5[
∂
∂θ

(∂qU(q(θ),p(θ),θ)

∂pU(q(θ),p(θ),θ)

)]
dq
dθ

(θ) ≤ 0, for any θ where p and q are differentiable.

5This is a product of vectors.
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Proof. See Fudenberg and Tirole (1993). The proof assumes the mechanism to be piece-

wise C1 but it is straightforward that the proof extends to absolute continuity.

The proof builds upon almost everywhere differentiability of the mechanism due

to absolute continuity(or piecewise C1). As was remarked above, this is an annoying

regularity assumption since the direct mechanism generated by the indirect mechanism

is not assured to be continuous.

Assumption 2. The following vector is component-wise non-negative: i.e. on Q×P×Θ,

∂

∂θ

(∂qU

∂pU

)
≥ 0.

Boundary behaviour: for any (q, p, θ) ∈ Q× P ×Θ there exists K0 and K1 > 0 such

that for all ql where l = 1, . . . , L,

∣∣∣∂ql
U(q, p, θ)

∂pU(q, p, θ)

∣∣∣ ≤ K0 + K1|θ|

uniformly in (q, p, θ).6

When the action space is one-dimensional, L = 1, we obtain the necessary and

sufficient condition for implementability.

Proposition 8. Under Assumptions 1 and 2 and L = 1, the absolutely continuous(or

piecewise C1) mechanism is implementable if and only if dq
dθ
≥ 0 a.e.

On the strength of this proposition, the standard mechanism design literature works

not with (q(θ), p(θ)) but (q(θ), V (θ)). It resorts to optimal control with V (θ) a state vari-

able and q(θ) a control variable. As is stated after the previous proposition, an indirect

mechanism does not necessarily generates an absolutely continuous direct mechanism;

in particular, this implies that the optimal non-linear price scheme does not necessarily

give rise to a direct mechanism with that regularity. Accordingly, the optimal direct

6Here, (q1, . . . , qL) = q ∈ RL.

9



mechanism found by use of the above proposition(through optimal control) may not be

optimal, compared to the optimal non-linear price scheme.

4 Weaker regularity

The above argument shows that the assumption that an indirect mechanism generates

an absolutely continuous(or piecewise C1) direct mechanism through the revelation prin-

ciple is rather strong. The next question is whether an indirect mechanism generates a

direct mechanism with a weaker regularity or a measurable direct mechanism. We refer

to the theory of a measurable selection of a multi-valued map.

Definition 2. Suppose that (Ω,A) is a measurable space and X is a polish(i.e. separable,

complete and metric) space and that F : Ω  X is a multi-valued map with closed

images. F is measurable if the inverse image of every open set is a measurable set: i.e,

if, for any open set O ⊂ X,

F−1(O) := {w ∈ O|F (w) ∩O 6= ∅}

is measurable.

Proposition 9 (Measurable Selection). Suppose that (Ω,A) is a measurable space

and X a polish space and F : Ω  X a measurable multi-valued map with non-empty

closed images. Then F possesses a measurable selection(i.e. a selection which is mea-

surable as a single-valued function).

Proof. See Th.8.1.3 in Aubin and Frankowska (1990).

For the details of the characterization of the measurable multi-valued map, refer to

Aubin and Frankowska (1990). Here it suffices to have

Proposition 10. On the same assumption as in Proposition 9, if F−1(C) ∈ A for every

closed set C ⊂ X, then F is a measurable multi-valued map.
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Proof. Let us take an open set O ⊂ X and define the closed set

Cn := {x ∈ X|d(x, {O) ≥ 1

n
}7.

Obviously, we have O = ∪n≥1Cn and we see that F (ω) ∩ O 6= ∅ holds if and only if

F (ω) ∩ Cn 6= ∅ for some n ≥ 1. In consequence,

F−1(O) = ∪n≥1F
−1(Cn) ∈ A.

Proposition 11. On the same assumption as in the previous proposition, if F is upper

semicontinuous, then F is measurable.

Proof. If F is upper semicontinuous, then F−1(C) is closed for every closed C ⊂ X.

From the previous proposition it follows that F is measurable.

Proposition 12. On the same assumption as in the previous proposition, if F is upper

semicontinuous, then it has a measurable selection.

Proof. From Propositions 10 and 12, follows the proposition.

Now, we can make a statement upon the mechanism.

Proposition 13. Let there be given Y , Θ, M and U(y, θ) as in Section 2 and suppose

in addition that Y is Polish. Then, if y(M) is compact, N(θ) possesses a measurable

selection.

Proof. It follows from Propositions 4 and 12.

7d is a distance and { is a complement of a set.
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In particular, if the mechanism y(m) is continuous, we can obtain, at least, a mea-

surable direct mechanism, y(m(θ)).

Now, to the direct mechanism we can give a regularity condition.

Proposition 14. Let there be given Y , Θ and U(y, θ) as in Section 2 and suppose in

addition that Y is Polish. Then, if the direct mechanism y(θ) is implementable and y(Θ)

is compact, then N(θ) possesses a measurable selection.

The proposition states that even though implementable, the direct mechanism is

not necessarily measurable. There exists, however, a measurable direct mechanism with

which every type of agent is as well off as with y(θ). This case includes the one in Section

3.2.

5 Conclusion

We have examined the regularity condition which the direct mechanism inherits from

the general mechanism through the revelation principle. Generally, the maximizer of

the agent’s utility function is not a single valued function in the type. This causes the

direct mechanism induced not necessarily to take over the regularity condition that the

general mechanism initially possesses.

6 Appendix

In the case of a single-valued map, we can equivalently define continuity either by the

inverse image of an open set or the limit of a converging sequence. In the case of a

multi-valued map, these two definitions are not equivalent and consequently we have

the two corresponding definitions of continuity.

Definition 3. Suppose that X and Z are topological spaces. A multi-valued map F from

X to the subsets of Z is said to be upper semicontinuous at x if for any neighbourhood
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V of F (x), there exists a neighbourhood U of x such that F (U) ⊂ V .

F is upper semicontinuous if it is upper semicontinuous at every point.

Lemma 1. Suppose that X and Z are topological spaces and that F is a multi-valued

map from X to the subsets of Z. F is upper semicontinuous if and only if the inverse

image of any closed set A, i.e. {x|F (x) ∩ A 6= ∅} is closed.

Proof. First, it is straightforward that F is upper semicontinuous if and only if the core

of any open set B, i.e. {x|F (x) ⊂ B} is open. If we denote the core and the inverse

image of a set S by F+1(S) and F−1(S), then we see that F+1({S) = {F−1(S). The rest

follows from this.

Definition 4. Suppose that X and Z are topological spaces. A multi-valued map F from

X to the subsets of Z is said to be lower semicontinuous at x if for any y ∈ F (x) and

for any neighbourhood V (y) of y, there exists a neighbourhood U(x) of x such that for

any x′ ∈ U(x), F (x′) ∩ V (y) 6= ∅.

F is lower semicontinuous if it is lower semicontinuous at every point.

Definition 5. Let the specifications of the previous definitions be given. F is continuous

at x if it is both lower and upper semicontinuous at x. F is continuous if it is continuous

at every point.
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