ON A BLOCK FLOATING POINT IMPLEMENTATIONOF AN INTRUSION-DETECTION ALGORITHM
by
ROBERT JOSEPH FOGLER
B.S., Kansas State University, 1977

A MASTER'S THESIS

submitted in partial fulfillment of the requirements for the degree
MASTER OF SCIENCE
Department of Electrical Engineering

```
KANSAS STATE UNIVERSITY
Manhattan, Kansas
```

1.979

Approved by:

$$
\begin{aligned}
& \text { Spec od l. } \\
& \text { LD } \\
& 2668 \\
& T 4 \\
& 1979 \\
& F 63 \\
& C .2
\end{aligned}
$$

To my loving parents,
without whose encouragement
this work would not have
been possible.

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION 1
II. ADAPTIVE LATTICE PREDICTOR 3
III. ADAPTIVE THRESHOLD DETECTOR. 12
IV. BLOCK FLOATING POINT NOTATION 15
A. NOTATIONAL DEFINITION 15
B. EQUIVALENT FORMATS AND THE NORMALIZED FORM 17
C. ALIGNED FORMATS 18
D. ARITHMETIC OPERATIONS. 19

1. Clipping 19
2. Arithmetic Shifts 20
3. Addition and Subtraction 21
4. Multiplication and Rounding. 23
5. Division 25
6. Multiplication and Division by Integer Powers of 2. 27
7. Implementation-dependent Formats 28
V. MI CROPROCESSOR IMPLEMENTATION 31
A. HARDNARE 31
B. SOFTWAPE 34
C. EXPERIMENTAL RESULTS 35
VI. CONCLUDING REMARKS 37
RE FERENCES 38
ACKNOW LEDGMENTS 40

APPENDICES
A. A Block Floating Point Format Tutorial Program
B. Intrusion-Detection Algorithm Source Listing

CHAPTER I

INTRODUCTION

The use of adaptive prediction to improve the performance of perimeter sensors for intrusion-detection was introduced in [1]. Such sensors are buried cables, typically 100 meters in length, deployed about an area containing a resource to be protected, as depicted in Fig. 1. The response of a sensor to a given stimulus depends upon the nature as well as the proximity of the source. Such sensors not only respond to intruder stimuli, but also a variety of other sources causing poor signal-to-noise ratios. Examples of such noise sources are shown in Fig. 2.

Adaptive prediction is employed since the ambient noise is nonstationary, or at best, stationary on a short-term basis. Conversely, intruder signals are transients whose spectra are broadband and relatively "white" over the passband of interest--i.e., $0-4 \mathrm{~Hz}$. Hence they pass through the adaptive predictor essentially unchanged. Since the predictor strives to decorrelate the input noise, most of the correlated components are removed, resulting in a substantial reduction of noise power at the output. Thus, the signal-to-noise ratio at the output for an intruder signal embedded in noise is greatly improved.

From the above discussion it follows that the overall problem of detecting an intruder is equivalent to that of detecting a random signal in white noise. The solution to this problem is well-known for the case of stationary signals $[2,3]$. An approximation is enployed since the signal of interest may be stationary only in the short-term. To this end, an adaptive
threshold detector (ATD) is used which processes the predictor output and generates a " 1 " if an intruder is present, or a " 0 " if an intruder is not present.

The adaptive predictor is implemented as a lattice structure (ALP) because it has superior convergence properties to that of transversal filter structures, (due to the successive orthogonalization of the prediction error and the decoupling of the filter coefficients (weights) at each lattice stage [5,6].) Moreover, the lattice structure exhibits a lower sensitivity to roundoff noise [4] as is the case with limited precision implementations.

The ALP-ATD combination, heretofore referred to as the intrusiondetection algorithm, is shown in Fig. 3.

CHAPTER II

ADAPTIVE LATTICE PREDICTOR

An important concept related to the lattice filter structure is the notion of "forward" and "backward" prediction [6].

Given the input sequence $x(n-1), x(n-2), \ldots x(n-N)$, forward prediction implies that the current input sample $x(n)$ is to be predicted. If $\hat{x}(n)$ denotes a linear estimate of $x(n)$, then

$$
\begin{equation*}
\hat{x}(n)=-\left[d_{1, N} x(n-1)+d_{2, N} x(n-2)+\ldots+d_{N, N} x(n-N)\right] \tag{1}
\end{equation*}
$$

where the $d_{i, N}$ are the forward prediction coefficients of an N-weight linear predictor. The corresponding prediction error is given by

$$
\begin{equation*}
e_{N}(n)=x(n)+d_{N}^{T} x_{n} \tag{2}
\end{equation*}
$$

The $d_{i, N}$ are computed so as to minimize the mean-squared error from

$$
\begin{equation*}
\nabla_{d_{i, N}} E\left[e_{N}^{2}(n)\right]=0 \tag{3}
\end{equation*}
$$

which leads to

$$
\begin{equation*}
E\left[x(n) x_{n}\right]=E\left[x_{n} x_{n}^{T}\right] d_{N} . \tag{4}
\end{equation*}
$$

If the process is wide-sense stationary one can denote $E\left[x(n) x_{n}\right]$ by r_{N} and $E\left[x_{n} x_{n}^{T}\right]$ by R_{N} and obtain

$$
\begin{equation*}
r_{N}=-R_{N} d_{N} \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
r_{N}^{T}=\left[R_{x x}(1) R_{x x}(2) R_{x x}(3) \ldots R_{x x}(N)\right] \tag{6}
\end{equation*}
$$

and

$$
\left.R_{N}=\left[\begin{array}{cccccc}
R_{x x(0)} & R_{x x(1)} & R_{x x(2)} & \cdots & \cdots & R_{x x(N-1)} \tag{7}\\
R_{x x(1)} & R_{x x(0)} & R_{x x(1)} & \cdots & \cdots & R_{x x(N-2)} \\
\vdots & & & & & \\
R_{x x}(N-1) & R_{x x} & (N-2) & \cdots & \cdots & \cdots
\end{array}\right] . R_{x x}(0)\right] .
$$

It is observed that the autocorrelation matrix R_{N} is Toeplitz.
In backward prediction, given the same input sequence, a past input sample $x(n-N-1)$ is to be predicted. If $\hat{x}(n-N-1)$ denotes an estimate of that sample, then

$$
\begin{equation*}
\hat{x}(n-N-1)=-\left[c_{1, N} x(n-1)+c_{2, N} x(n-2)+\ldots+c_{N, N} x(n-N)\right] \tag{8}
\end{equation*}
$$

where the $c_{i, N}$ are the backward prediction coefficients of an N-weight linear predictor. The corresponding prediction error is given by

$$
\begin{equation*}
w_{N}(n)=x(n-N-1)+c_{N}^{T} x_{n} \tag{9}
\end{equation*}
$$

Again, computing the $c_{i, N}$ so as to minimize the mean-squared error leads to

$$
\begin{equation*}
s_{N}=-R_{N} c_{N} \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
s_{N}^{T}=\left[R_{x x}(N) R_{x x}(N-1) R_{x x}(N-2) \ldots R_{x x}(1)\right] \tag{11}
\end{equation*}
$$

and R_{N} is given by (7).

Observing that s_{N} and r_{N} are related by

$$
\begin{equation*}
s_{i, N}=r_{N+1-i, N}, \tag{12}
\end{equation*}
$$

from (5) and (10) it is apparent that

$$
\begin{equation*}
c_{i, N}=d_{N+1-i, N}, i=1,2, \ldots N . \tag{13}
\end{equation*}
$$

From the above discussion it follows that the forward prediction coefficients for an $\mathrm{N}+1$ weight predictor can be obtained from

$$
\begin{equation*}
\mathrm{r}_{\mathrm{N}+1}=-\mathrm{R}_{\mathrm{N}+1} d_{\mathrm{N}+1} . \tag{14}
\end{equation*}
$$

The above matrices can be partitioned [9] as follows:

It is apparent that the above expression can be written as

$$
\left[\begin{array}{c:c}
r_{N} \tag{15}\\
\hdashline R_{x x}(\bar{N}+\overline{1})
\end{array}\right]=-\left[\begin{array}{c:c}
R_{N} & s_{N} \\
\hdashline s_{N}^{T} & R_{x x}(0)
\end{array}\right]{ }_{c}{ }_{N+1} .
$$

From matrix bordering [10,11$]$, the following can be obtained:

$$
d_{N+1}=-\left[\begin{array}{c:c}
\beta_{11} & \beta_{12} \tag{16}\\
\beta_{21} & \beta_{22}
\end{array}\right]\left[\begin{array}{c}
r_{N} \\
\bar{R}_{x x}(\bar{N} \overline{1})
\end{array}\right]
$$

where

$$
\begin{aligned}
& \beta_{11}=R_{N}^{-1}+\frac{R_{N}^{-1} s_{N} s_{N}^{T} R_{N}^{-1}}{\xi}, \\
& \beta_{12}=-\frac{R_{N}^{-1} s_{N}}{\xi}, \\
& \beta_{21}=-\frac{s_{N}^{T} R_{N}^{-1}}{\xi}, \\
& \beta_{22}=\frac{1}{\xi},
\end{aligned}
$$

and

$$
\xi=\operatorname{Rxx}(0)-\mathrm{s}_{\mathrm{N}}^{\mathrm{T}} \mathrm{R}_{\mathrm{N}}^{-1} \mathrm{~s}_{\mathrm{N}} .
$$

Now, (16) can be expressed as
which leads to

From (5) and (10), the above expression reduces to

$$
d_{N+1}=\left[\begin{array}{c}
d_{N} \tag{18}\\
-\frac{1}{0}
\end{array}\right]-\frac{1}{\xi}\left[\begin{array}{c}
-c_{N} s_{N}^{T} d_{N}+c_{N}{ }^{R}(N+1) \\
-s_{N}^{T} d_{N}+R_{x x}(N+1)
\end{array}\right]
$$

where $R_{x x}(N+1)-s_{N}^{T} d_{N}$ is a scalar. Letting

$$
K_{N+1}=\frac{R_{x x}(N+1)-s_{N}^{T} d_{N}}{\xi},
$$

(18) reduces to

$$
\mathrm{d}_{\mathrm{N}+1}=\left[\begin{array}{c}
\mathrm{d}_{\mathrm{N}} \tag{19}\\
-\overline{0}
\end{array}\right]-\mathrm{K}_{\mathrm{N}+1}\left[\begin{array}{c}
c_{N} \\
-\frac{1}{1}
\end{array}\right]
$$

Thus, it follows that

$$
\begin{equation*}
d_{i, N+1}=d_{i, N}-K_{N+1} c_{i, N}, \quad i=1,2, \ldots N \tag{20}
\end{equation*}
$$

and from (13),

$$
\begin{equation*}
d_{i, N+1}=d_{i, N}-K_{N+1} d_{N+1-i, N}, \quad i=1,2, \ldots N \tag{21}
\end{equation*}
$$

In the z-transform domain,

$$
\begin{equation*}
D_{N+1}(z)=D_{N}(z)-K_{N+1} C_{N}(z) \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{D}_{\mathrm{N}+1}\left(z^{-1}\right)=\mathrm{D}_{\mathrm{N}}\left(z^{-1}\right)-\mathrm{K}_{\mathrm{N}+1} z^{\mathrm{N}+1} \mathrm{D}_{\mathrm{N}}(z) \tag{23}
\end{equation*}
$$

where $D_{N}(z)=\sum_{i=0}^{N} d_{i, N} z^{-i}$ with $d_{0, N}=1$
and $\quad c_{N}(z)=\sum_{i=1}^{N+1} c_{i, N} z^{-i} \quad$ with $c_{N+1, N}=1$.

Again, from (13) we have

$$
\begin{equation*}
\mathrm{C}_{\mathrm{N}}(z)=z^{-(\mathrm{N}+1)} \mathrm{D}_{\mathrm{N}}\left(z^{-1}\right) \tag{26}
\end{equation*}
$$

The forward and backward prediction errors are respectively,

$$
\begin{equation*}
E_{N}(z)=X(z) D_{N}(z) \tag{27}
\end{equation*}
$$

and

$$
\begin{equation*}
W_{N}(z)=X(z) c_{N}(z) . \tag{28}
\end{equation*}
$$

Substitution of (27) into (22) yields.

$$
E_{N+1}(z)=E_{N}(z)-K_{N+1} W_{N}(z)
$$

or

$$
\begin{equation*}
e_{N+1}(n)=e_{N}(n)-K_{N+1} w_{N}(n) \tag{29}
\end{equation*}
$$

Now, from (28) and (26),

$$
\begin{equation*}
\mathrm{W}_{\mathrm{N}+1}(z)=\mathrm{X}(z)\left[z^{-(\mathrm{N}+2)} \mathrm{D}_{\mathrm{N}+1}\left(z^{-1}\right)\right] \tag{30}
\end{equation*}
$$

Substitution of (30) into (23) results in

$$
\begin{aligned}
W_{N+1}(z) & =z^{-(N+2)}\left[D_{N}\left(z^{-1}\right)-K_{N+1} z^{(N+1)} D_{N}(z)\right] \times(z) \\
& =z^{-1}\left[G_{N}(z)-K_{N+1} D_{N}(z)\right] \times(z)
\end{aligned}
$$

which leads to

$$
\begin{align*}
& W_{N+1}(z)=z^{-1}\left[W_{N}(z)-K_{N+1} E_{N}(z)\right] \\
& w_{N+1}(n+1)=w_{N}(n)-K_{N+1} e_{N}(n) . \tag{31}
\end{align*}
$$

or

For notational convenience an auxiliary backward prediction error $\hat{\mathrm{w}}_{\mathrm{N}+1}(n)$ is defined as

$$
\begin{equation*}
\hat{w}_{N+1}(n)=\hat{w}_{N+1}(n-1)-K_{N+1} e_{n}(n) . \tag{32}
\end{equation*}
$$

From (29) and (32) the following difference equations describe the lattice predictor shown in Fig. 4.

$$
\begin{aligned}
& x(n)=e_{0}(n)=\hat{w}_{0}(n) \\
& e_{\ell}(n)=e_{\ell-1}(n)-K_{\ell} \hat{w}_{\ell-1}(n-1)
\end{aligned}
$$

and

$$
\begin{equation*}
\hat{w}_{\ell}(n)=\hat{w}_{\ell-1}(n-1)-K_{\ell \ell-1}(n), \quad \ell=1,2, \ldots N . \tag{33}
\end{equation*}
$$

The above lattice structure can be made adaptive using several strategies [5-8] which yield time-varying methods for computing the lattice

Fig. 4. One-step delay lattice predictor.
weights K_{ℓ} by minimizing the mean-squared prediction error. The method of steepest descent $[5,6]$ is employed here since it involves only scalar operations and therefore keeps the computational burden to a minimum.

If the total prediction error is denoted by

$$
\begin{equation*}
s_{\ell}^{2}(n)=e_{\ell}^{2}(n)+\hat{w}_{\ell}^{2}(n) \tag{34}
\end{equation*}
$$

the lattice weights K_{ℓ} are updated by

$$
\begin{equation*}
K_{\ell}(n+1)=K_{\ell}(n)-\hat{\mu} \frac{\partial s_{\ell}^{2}(n)}{\partial K_{\ell}(n)} \tag{35}
\end{equation*}
$$

where $K_{\ell}(n)$ denotes the value of K_{ℓ} at time n, and $\hat{\mu}$ is a convergence parameter. From (34)

$$
\begin{equation*}
\frac{\partial s_{\ell}^{2}(n)}{\partial K_{\ell}(n)}=2 e_{\ell}(n) \frac{\partial e_{\ell}(n)}{\partial K_{\ell}(n)}+2 \hat{w}_{\ell}(n) \frac{\partial \hat{w}_{\ell}(n)}{\partial K_{\ell}(n)} \tag{36}
\end{equation*}
$$

Additionally, (33) implies that

$$
\frac{\partial e_{\ell}(n)}{\partial K_{\ell}(n)}=-\hat{w}_{\ell-1}(n-1)
$$

and $\quad \frac{\partial w_{\ell}(n)}{\partial K_{\ell}(n)}=-e_{\ell-1}(n)$.

Substitution of (36) and (37) in (35) leads to

$$
\begin{equation*}
K_{\ell}(n+1)=K_{\ell}(n)+2 \hat{\mu}\left[e_{\ell}(n) \hat{w}_{\ell-1}(n-1)+\hat{w}_{\ell}(n) e_{\ell-1}(n)\right] \tag{38}
\end{equation*}
$$

As discussed in [6], due to the successive orthogonalization and decoupling properties of the lattice structure, the convergence parameter ρ can be computed independently at each lattice stage. Moreover, the power in
the forward and backward prediction error sequences decreases with each successive stage. Thus, if σ_{ℓ}^{2} denotes the power estimate at the ℓ-th stage, it can be updated [5] using the relation

$$
\begin{equation*}
\sigma_{\ell}^{2}(n)=\beta \sigma_{\ell}^{2}(n-1)+(1-\beta)\left[e_{\ell}^{2}(n)+\hat{w}_{\ell}^{2}(n-1)\right] \tag{39}
\end{equation*}
$$

where $|\beta|<1$ is a smoothing parameter. Thus the normalized convergence parameter $\hat{\mu}$ assumes the form $\frac{\alpha}{\sigma^{2}(n)}$ where α is a constant, and the equation for updating the lattice coefficients becomes

$$
\begin{equation*}
K_{\ell}^{(n+1)}=K_{\ell}(n)+\frac{\alpha}{\sigma_{\ell}^{2}(n)}\left[e_{\ell}(n) \hat{w}_{\ell-1}(n-1)+\hat{w}_{\ell}(n) e_{\ell-1}(n)\right] \tag{40}
\end{equation*}
$$

(In practice, the above relation must be slightly modified to account for two problems. The first concerns the case when the power estimate σ_{ℓ}^{2} is very small. Thus, division by σ_{l}^{2} in (40) could cause the algorithm to become unstable. This condition can be avoided by not updating the lattice) coefficients if

$$
\begin{equation*}
\left(\sigma_{\ell}^{2}(n)<\varepsilon\right) \tag{41}
\end{equation*}
$$

where ε is a small positive constant.
A second problem involves a desensitization of the predictor over the long-term as demonstrated for Widrow's LMS (least-mean-square) predictor in $[12,13]$. This effect is referred to as the no-pass phenomenon. It occurs when the predictor with sufficient number of coefficients first adapts to higher levels in the input, decorrelating it as much as possible. It then adapts to very low-level signal components. As such it tends to create an overall transfer function which is close to zero over a significant portion
of the passband. It is this condition which eliminates noise as well as intruder stimuli. Solutions to this problem are given in [13], one of which involves a slightly modified form of the LMS algorithm. A corresponding modification can be made to the lattice predictor as follows:

$$
\begin{equation*}
K_{\ell}(n+1)=u_{\ell}(n)+\frac{\alpha}{\sigma_{\ell}^{2}(n)}\left[e_{\ell}(n) \hat{w}_{\ell-1}(n-1)+\hat{w}_{\ell}(n) e_{\ell-1}(n)\right] \tag{42}
\end{equation*}
$$

where u is a constant arbitrarily close to 1 .
In summary, to account for both the problems cited above, (40) can be expressed as

$$
\begin{equation*}
\mathrm{K}_{\ell}(\mathrm{n}+1)=\mathrm{u} K_{\ell}(\mathrm{n})+\frac{\alpha \delta}{\sigma_{\ell}^{2}(n)}\left[e_{\ell}(\mathrm{n}) \hat{w}_{\ell-1}(\mathrm{n}-1)+\hat{w}_{\ell}(\mathrm{n}) \mathrm{e}_{\ell-1}(\mathrm{n})\right] \tag{43}
\end{equation*}
$$

where $\quad \delta=0$ if $\sigma_{\ell}^{2}(n)<\varepsilon$
and

$$
\delta=1 \text { if } \quad \sigma_{\ell}^{2}(\mathrm{n}) \geq \varepsilon
$$

CHAPTER III

ADAPTIVE THRESHOLD DETECTOR (ATD)

Since the ALP tends to remove the correlated components from input noise while passing the broadband and relatively "white" intruder signals, the ATD need only be capable of detecting intruder signals in essentially white noise.

Thus, we make the following assumptions:

1) Noise and intruder sequences have zero mean.
2) Both sequences have Gaussian distributions.
3) Successive noise and intruder samples are uncorrelated. Then, an optimum decision rule [2] can be obtained.

Let σ_{s}^{2} and σ_{n}^{2} denote intruder and noise variances respectively, and e_{j} denote the predictor output at time j. Then the conditional probability density function given that no intruder is present, and the conditional probability density function given that an intruder is present, are respectively

$$
f\left(e_{j} \mid 0\right)=\frac{1}{\sqrt{2 \pi} \sigma_{n}} e^{-e_{j}^{2} / 2 \sigma_{n}^{2}}, \quad e_{j}=n_{j}
$$

and

$$
\begin{equation*}
f\left(e_{j} \mid 1\right)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-e_{j}^{2} / 2 \sigma^{2}}, \quad e_{j}=n_{j}+s_{j} \tag{1}
\end{equation*}
$$

where $\sigma^{2}=\sigma_{s}^{2}+\sigma_{n}^{2}$.

Using a likelihood ratio approach, the decision that an intruder is present in M samples is given by

$$
\begin{equation*}
\sum_{j=1}^{M} \ln \frac{f\left(e_{j} \mid 1\right)}{f\left(e_{j} \mid 0\right)} \geq K_{1} \tag{2}
\end{equation*}
$$

where K_{1} is a constant. Substitution of (1) in (2) leads to

$$
\begin{equation*}
M \ln \left\{\frac{\sigma^{\prime}}{\sigma}\right\}+\frac{1}{2}\left[\frac{1}{\sigma_{n}^{2}}-\frac{1}{\sigma^{2}}\right] \sum_{j=1}^{M} e_{j}^{2} \geq K_{1} . \tag{3}
\end{equation*}
$$

Since $\sigma^{2}=\sigma_{s}^{2}+\sigma_{n}^{2}$, (3) can be rewritten as

$$
\begin{equation*}
\sum_{j=1}^{M} e_{j}^{2} \geq 2 \sigma_{n}^{2}\left[1+\frac{\sigma_{n}^{2}}{\sigma_{s}^{2}}\right]\left[K_{1}+\frac{M}{2} \ln \frac{\sigma_{s}^{2}}{\sigma_{n}^{2}}\right] \tag{4}
\end{equation*}
$$

Note that $\sigma_{\mathrm{n}}^{2} / \sigma_{\mathrm{s}}^{2}$ is the noise-to-signal ratio at the output of the predictor. If $\sigma_{n}^{2} / \sigma_{s}^{2}$ is assumed to be much less than 1 , then (4) becomes

$$
\sum_{j=1}^{M} e_{j}^{2} \geq 2 \sigma_{n}^{2}\left[k_{1}+\frac{M}{2} \ln \left\{\begin{array}{l}
\frac{\sigma_{s}^{2}}{\sigma_{n}^{2}} \tag{5}\\
n
\end{array}\right\}\right]
$$

or,

$$
\begin{equation*}
\frac{1}{M} \sum_{j=1}^{M} e_{j}^{2} \geq K_{2} \sigma_{n}^{2} \tag{6}
\end{equation*}
$$

where

$$
\mathrm{K}_{2}=\frac{2 \mathrm{~K}_{1}}{\mathrm{M}}+\ln \left\{\frac{\sigma_{\mathrm{s}}^{2}}{\sigma_{\mathrm{n}}^{2}}\right\}
$$

Thus from (6), the optimum decision rule is to declare that an intruder is present if the variance of the predictor output sequence over a M-sample interval is greater than or equal to a fraction of the noise variance. In
practice, however, the noise may only be stationary on a short-term basis. Moreover, the assumptions given above may only be approximately correct. Thus, a suboptimum decision rule is adopted, declaring that an intruder is present if

$$
\begin{equation*}
\frac{1}{M} \sum_{i=1}^{M} e_{j-i+1}^{2} \geq \frac{K}{L} \sum_{i=1}^{L} e_{j-i-D}^{2}+\theta \tag{7}
\end{equation*}
$$

where K and θ are constants,

$$
\frac{1}{M} \sum_{i=1}^{M} e_{j-i+1}^{2} \text { is an estimate of the ALP output at time } j,
$$

and $\quad \frac{1}{L} \sum_{j=1}^{L} e_{j-i-D}^{2}$ denotes the corresponding noise variance which is estimated D samples in the past, (see Fig. 5). The delay term D is introduced to minimize the error in the noise variance estimate due to the possible presence of an intruder signal. The above decision rule is referred to as the ATD algorithm.

Fig. 5. Pertaining to the ATD algorithm.

CHAPTER IV

BLOCK FLOATING POINT NOTATION

Intrusion-detection algorithms have been implemented in the past [1,14] using a block floating point notation similar to that described in [15]. The basic idea is to represent numbers in the form (P / Q), where P indicates the number of integer bits, including sign, to the left of the binary point; Q indicates the number of bits of fraction to the right of the binary point such that $P+Q$ always equals the word length. This construct allows one to keep track of the position of the binary point through arithmetic operations via a simple set of rules $[14,15]$.

This notation has three basic limitations. First, it does not describe and therefore cannot avert the condition of arithmetic overflow. Secondly, it does not describe the degree of resolution obtainable from an arithmetic operation on two numbers which have fewer significant bits than the word length. This again implies that an underflow can not be described. Finally, it cannot conveniently represent numbers of magnitude greater than $2^{\mathrm{N}-1}-1$ or less than $2^{-\mathrm{N}+1}$ where N is the word length.

In an attempt to improve upon the limitations discussed above, an alternate block floating point notation has been developed [16].

A. Notational Definition

Numbers are represented in the form $\pm(S / I / F) E$, where:
S is the number of sign bits; I is the number of (integer) significant bits to the left of the binary point; F is the number of (fraction) bits
to the right of the binary point, and E is the power-of-two exponent.
Additionally, since one may have a priori knowledge of the sign of a number, the following convention is adopted: If a number is positive, a " + " is prefixed to the above representation. Similarly, if a number is known to be negative, a "-" is prefixed. If the sign of a number is not known, there is no prefix. Further, N is defined to be the word length upon which an operator acts, typically equal to or a multiple of the machine word length. The above notation is referred to as the block floating-point (BFP) format.

A number is said to have a valid format if the following conditions are satisfied:

1) The number of sign bits S must be in the range $1 \leq S \leq N-1$.
2) The number of integer bits I must be in the range $0 \leq I \leq N-1$.
3) The number of fraction bits F must be in the range $0<\mathrm{F}<\mathrm{N}-1$.
4) The power-of-two exponent E must be an integer.
5) $S+$ I + F must be $\leq N$.
6) I + F must be ≥ 1.

Some examples of valid formats are given in Table 1 for a 16 bit word length. Note that if the exponent is zero it is omitted.

TABLE 1. Examples of 16 bit representations.

Format	Representation			
$(1 / 0 / 15)$	S.FFF	FFFF	FFFF	FFFF
$+(2 / 3 / 8)$	$00 I I$	I.FFF	FFFF	F000
$-(6 / 3 / 0)$	1111	$11 I I$	I.000	0000
$(4 / 0 / 7)-3$	S.SSS	FFFF	FFF0	0000

Table 2 contains examples of invalid formats and gives the rule which is violated, for the case $N=16$.

TABLE 2. Examples of rule violations.

Format	Rule violated
$(5 /-2 / 6)$	I must be in the range $(0 \leq I \leq N-1)$
$+(1 / 5 / 12)$	$\mathrm{S}+\mathrm{I}+\mathrm{F}$ must be $\leq \mathrm{N}$
$(0 / 2 / 8)$	S must be in the range $(1 \leq S \leq N-1)$
$(3 / 0 / 0)$	I + F must be $>=1$

Note that the third entry in Table 2 describes the condition of arithmetic overflow, and the fourth entry describes the condition of arithmetic underflow.
B. Equivalent Formats and the Normalized Form

In the format description given above, a number can have more than one representation. For example, the format $+(1 / 0 / 15)$ is equivalent to $+(1 / 2 / 13)-2$, since the binary point is located one bit from the left in the binary word in both instances, and the number of significant bits is the same. Moreover, the sign is known to be positive in both cases from the "+" prefix.

Thus, if X denotes the sign prefix, which may be " + ", "-" or 0 , where 0 indicates that the sign of the number is unknown, two formats are said to be equivalent if

$$
\mathrm{X}_{1}=\mathrm{X}_{2}
$$

S1 $=$ S2
$\mathrm{I} 1+\mathrm{F} 1=\mathrm{I} 2+\mathrm{F} 2$
$\mathrm{S} 1+\mathrm{I} 1+\mathrm{Ei}=\mathrm{S} 2+\mathrm{I} 2+\mathrm{E} 2$

Equivalence of formats suggests a normalized form in which the binary exponent E is minimized in absolute magnitude so as to maintain a valid and equivalent format. The rules for normalizing a format are as follows:

CASE: $E 1=0$ (Format is already normalized)
CASE: El>0
$\mathrm{X} 2=\mathrm{X} 1$
$\mathrm{S} 2=\mathrm{S} 1$
$\mathrm{F} 2=\mathrm{MAX}(0, \mathrm{~F} 1-\mathrm{E} 1)$
$\mathrm{I} 2=\mathrm{I} 1+\mathrm{F} 1-\mathrm{F} 2$
$\mathrm{E} 2=\mathrm{E} 1+\mathrm{I} 1-\mathrm{I} 2$
CASE: E1<0
$\mathrm{X} 2=\mathrm{X} 1$
S2 $=$ S 1
$I 2=\operatorname{MAX}(0, I 1+E 1)$
F2 + F1 + I1 - I2
$\mathrm{E} 2+\mathrm{E} 1+\mathrm{I} 1-\mathrm{I} 2$
where the function MAX selects the largest member of the function list, e.g. $\operatorname{MAX}(-3,1,2)=2$.

Examples of the normalized form for the case $N=16$ are given in
Table 3.

TABLE 3. Normalized form examples.

Equivalent format	Normalized form
$(3 / 4 / 5)-3$	$(3 / 1 / 8)$
$(3 / 2 / 6)-3$	$(3 / 0 / 8)-1$
$(2 / 4 / 7) 3$	$(2 / 7 / 4)$
$(3 / 4 / 2) 3$	$(3 / 6 / 0) 1$

In order to perform addition or subtraction of blocked floating point numbers, the binary points of the operands must be aligned within the machine
word; i.e.,

$$
\mathrm{S} 1+\mathrm{I} 1+\mathrm{E}_{1}=\mathrm{S} 2+\mathrm{I} 2+\mathrm{E}_{2} .
$$

Note that equivalent formats are in fact aligned but include an additional constraint in that the precision must be the same. Thus aligned formats are not necessarily equivalent.

Formats are aligned by shifting operands arithmetically left or right where, in general, a right arithmetic shift propagates copies of the sign bit into the most-significant bit of the high-order machine word. On the other hand, left arithmetic shift propagates zeroes into the least-significant bit of the low-order word. The choice of shifting operands left or right for the purpose of alignment of the binary point can be answered by the following queries:

- Will a left shift cause overflow $(S=0)$?
- Will a right shift cause the loss of a significant bit, or even underflow ($F=0, I=0$) ?

D. Arithmetic Operations

1. Clipping. It is sometimes useful to limit the magnitude of a number to a maximum value $2^{\mathrm{L}}-1$, L an integer, setting that number equal to the limit if exceeded. This allows one to perform operations on the number such as addition or subtraction without concern for overflow. In terms of the BFP format, a number is said to be clipped by M bits if the result is limited in amplitude so as to have a format which contains at least $M+1$ sign bits. M is restricted to the range $0 \leq M \leq S+I+F-1$ to prevent underflow. The rules for format clipping are the following.
```
X2 = X1
S2 = MAX (S 1, M+1)
I2 = MAX (0,I1 + S1 - S2)
F2 = F1 + S1 + I1 - S2 - I2
E2 = E1 + F2 - F1
```

Some examples are given in Table 5.

TABLE 5. Some format clipping examples.

M	Operand	Result
3	$-(5 / 0 / 10)$	$-(5 / 0 / 10)$
3	$(1 / 5 / 9)-6$	$(4 / 2 / 9)-6$
4	$(1 / 2 / 8)$	$(5 / 0 / 6)-2$

We note that the results are not necessarily in normal form.
2. Arithmetic Shifts. Such shifts can serve two functions. They can be used to align formats for subsequent arithmetic operations, or they can be used to multiply or divide numbers by integer powers of two. This last case is discussed in a later section.

For notational convenience, left and right arithmetic shifts are treated separately.

The number of left arithmetic shifts M is restricted to the range $0 \leq M<-1$ where S is the number of sign bits in the operand, in order to avoid the condition of arithmetic overflow. The rules for left arithmetic shifts are the following.
$X 2=X 1$
$\mathrm{S} 2=\mathrm{S} 1-\mathrm{M}$
$\mathrm{I} 2=\mathrm{I} 1$
$\mathrm{F} 2=\mathrm{F} 1$
$\mathrm{E} 2=\mathrm{E} 1$
For the right arithmetic shifts, the number of shifts M is restricted to the range $0 \leq M<N-S 1-1$, where N is the word length. The rules for right arithmetic shifts are the following

```
X2 = X1
S2 = S1 + M
F2 + MAX (0, MIN(N-M-S1-I1, F1))
I2 = MIN (I1, N-M-S1)
E2 = El + Il - I2.
```

Some examples for $\mathrm{N}=16$ are shown in Table 5.

TABLE 5. Examples of right arithmetic shifts.

Direction	M	Operand	Result
L	2	$(3 / 2 / 7) 4$	$(1 / 2 / 7) 4$
L	1	$(2 / 0 / 14)$	$(1 / 0 / 14)$
R	3	$(1 / 5 / 1)$	$(4 / 5 / 1)$
R	3	$(1 / 1 / 13)$	$(4 / 1 / 11)$
R	3	$(1 / 13 / 1)$	$(4 / 12 / 0) 1$

Note that the resulting format is not necessarily in normal form.
3. Addition and Subtraction. In order for addition or subtraction to be performed on two operands, the binary points must be aligned; i.e.,

$$
\mathrm{S} 1+\mathrm{I} 1+\mathrm{E} 1=\mathrm{S} 2+\mathrm{I} 2+\mathrm{E} 2
$$

There is a further restriction in that for addition, if the operands for addition and subtraction are not known to have the same sign, then both operands must have at least two sign bits to avoid the condition of arithmetic overflow. The rules for addition and subtraction fall under two cases:

CASE 1 Addition: operands have opposite sign (X2 $=-\mathrm{XI} \neq 0$).
Subtraction: operands have same sign ($\mathrm{X} 2=\mathrm{X} 1 \neq 0$).
It is convenient to compute the intermediate quantities

```
Tl = MAX (S1-S2,0)
T2 = MAX (S2-S1,0)
Ul = MIN (Il+Fl+Tl, MAX (Il+El+Tl,0))
U2 = MIN (I2+F2+T2, MAX (I2+E2+T2,0))
```

and obtain

```
X3 = 0
S3 = MLN (S1,S2)
I3 = MAX (U1,U2)
E3 = S1 + I1 + E1 - S3 - I3
F3 = MAX (F1 - E1 + E3,F2 - E2 + E3).
```

CASE 2 Addition: signs of operands are unknown or have same sign.
Subtraction: signs of operands are unknown or have opposite sign.
Again, the intermediate quantities can be computed as follows:
$\mathrm{T} 1=\operatorname{MAX}(\mathrm{S} 1-\mathrm{S} 2,0)$
$\mathrm{T} 2=\mathrm{MAX}(\mathrm{S} 2-\mathrm{S} 1,0)$
$\mathrm{U} 1=\mathrm{MIN}(\mathrm{I} 1+\mathrm{F} 1+\mathrm{T} 1, \mathrm{MAX}(\mathrm{I} 1+\mathrm{E} 1+\mathrm{T} 1,0))$
$\mathrm{U} 2=\mathrm{MIN}(\mathrm{I} 2+\mathrm{F} 2+\mathrm{T} 2, \mathrm{MAX}(\mathrm{I} 2+\mathrm{E} 2+\mathrm{T} 2,0))$
These results yield
IF $\mathrm{X} 1=\mathrm{X} 2$ THEN $\mathrm{X} 3=\mathrm{X} 1$ ELSE $\mathrm{X} 3=0$
$\mathrm{S} 3=\mathrm{MLN}(\mathrm{S} 1, \mathrm{~S} 2)-1$
$\mathrm{I} 3=\mathrm{MAX}(\mathrm{U} 1, \mathrm{U} 2)$
$\mathrm{E} 3=\mathrm{S} 1+\mathrm{I} 1+\mathrm{E} 1-\mathrm{S} 3-\mathrm{I} 3$
$F 3=M A X(F 1-E 1+E 3, F 2-E 2+E 3)$.
Some examples are included in Table 6.

TABLE 6. Examples related to addition and subtraction.

	Addition	Subtraction	
(+)	(2/0/11)	(-)	(2/0/11)
	$(2 / 0 / 12)$		(2/0/12)
			(1/1/12)
(+)	-(2/2/6) 10	(-)	-(2/2/6) 10
	$\begin{array}{r}+(4 / 1 / 8) 9 \\ \hline(2 / 11 / 0) 1\end{array}$		+(4/1/8) 9
			-(1/12/0)1
(+)	$-(2 / 2 / 6)-5$	(-)	-(2/2/6)-5
	$\frac{(4 / 1 / 8)-6}{(1 / 0 / 12)-2}$		$\frac{(4 / 1 / 8)-6}{(1 / 0 / 12)-2}$

We note that each result is always in normal form.
4. Multiplication and Rounding. Due to variations in computer hardware, the result of a multiplication can assume several forms. The hardware configuration which appears to be the most prevalent is the one in which the product of the largest positive integer that can be stored in a N-bit word, times itself, yields a $2-\mathrm{N}$ bit result which contains two sign bits to the left. Any form of multiplication which does not yield this result is considered special purpose and is not discussed here.

Rules for the multiplication of formats are quite straightforward with one exception. If both the multiplier and the multiplicand exactly equal the largest possible negative integer that can be stored in the given word length N, (e.g., 8000 hexadecimal for the case $N=16$), the result is totally accurate, but possesses only one sign bit. Every other possible combination of values for the multiplier and multiplicand yields a result which contains at least two sign bits. In order to maintain a consistent set of rules for the multiplication of formats, the special case given above is disallowed. Thus, the rules for multiplication are

$$
\begin{aligned}
& \mathrm{S} 3=\mathrm{S} 1+\mathrm{S} 2 \\
& \mathrm{I} 3=\mathrm{I} 1+\mathrm{I} 2 \\
& \mathrm{~F} 3=\mathrm{F} 1+\mathrm{F} 2 \\
& \mathrm{E} 3=\mathrm{E} 1+\mathrm{E} 2,
\end{aligned}
$$

where the sign of the result (X3) can be obtained from Table 7.

TABLE 7. Related to rules for multiplication.

X1	X2	X3
0	0	0
0	+	0
0	-	0
+	0	0
+	+	+
+	-	-
-	+	-
-	-	+

Again, $X=0$ indicates that the sign of the operand is not known. Some examples are as follows:

$$
\begin{array}{ll}
\text { (x) } \begin{array}{ll}
\frac{(1 / 0 / 15)}{(3 / 2 / 7) 3} \\
(2 / 0 / 30) & \text { (x) } \frac{-(2 / 0 / 5)-1}{-(5 / 2 / 12) 2} \\
+(x) & \\
\frac{(2 / 2 / 11)}{(3 / 2 / 20)-1} & \text { (x) } \frac{-(4 / 5 / 7) 1}{+(6 / 5 / 9)-1} \\
\text { (3/10/16) }
\end{array}
\end{array}
$$

Note that the resultant format is of double-word length and is not necessarily in normal form.

It is often desirable to round the double-word result of a multiplication to a N-bit format. Since a product is guaranteed to contain at least two sign bits, a double-word left arithmetic shift is typically performed before rounding to minimize any loss of precision, without concern for arithmetic overflow. One may however wish to perform arithmetic operations such as addition and subtraction on the double-word product before rounding. The choice of rounding before or after an arithmetic operation is made based upon a tradeoff between speed of execution and the desired precision. Rounding usually becomes necessary before an operand is to be used in a subsequent multiplication.

At the machine level, a 2 N -bit operand is rounded to N -bits by incrementing the high-order word if the most significant bit of the low-order word is a 1. Only the high-order word is retained. This operation has two problem cases. First, if the operand is of sufficiently small magnitude that after rounding, the result contains no significant information, underflow has occurred. Secondly, if the high-order word of the operand exactly equals the largest positive integer which can be represented in N bits, (e.g., 7FFF hexadecimal for the case $N=16$), and the most significant bit of the loworder word is a 1 , overflow will occur. Thus, in the rounding of formats,
these cases must not be allowed.
Given the above restrictions, the rules for rounding formats are the following:

```
X2 = X1
S2 = S1
I2 = MIN (I1, N-S1)
F2 = MAX (0, MIN (N-S1-I1, F1+I1-I2))
E2 = E1+I1-I2.
```

Some examples are given in Table 8 for the case $2 \mathrm{~N}=32$.

TABLE 8. Examples related to rounding.

Operand	Result
$+(1 / 1 / 1)$	$+(1 / 1 / 1)$
$(1 / 1 / 30)$	$(1 / 1 / 14)$
$(1 / 30 / 1)$	$(1 / 15 / 0) 15$
$(15 / 2 / 7)$	$(15 / 1 / 0) 1$

5. Division. Due to variations in computer hardware, the result of a division can assume several forms. The hardware configuration which appears to be the most prevalent is one which obeys the following: a double-word length dividend, divided by a single-word divisor yields a single word quotient and remainder. The sign of the remainder is the same as that of the dividend. Arithmetic overflow occurs if the magnitude of the divisor is less than the magnitude of the high-order word of the dividend. Any hardware configuration which does not adhere to these criteria is considered specialpurpose and is not discussed here.

Division is a difficult operation to perform due to the persistent problem of arithmetic overflow. One must always ensure that the divisor is of sufficiently large magnitude and that the dividend is of sufficiently
small magnitude as to prevent the overflow condition. Some relief can be obtained, however, if the divisor is a known constant. In this instance, one can prevent overflow by guaranteeing that the dividend has more sign bits than the divisor. This method has the advantage that it is quite easy to implement. However, it has a disadvantage in that it disallows division with a dividend having a magnitude in the range $\{\mid$ divisor $\mid+1\}$ to $\{\mid$ divisor|x2-1\}, a condition which would not actually cause overflow. The result is a wasted loss of precision caused by shifting the dividend to the right a sufficient number of bits to prevent overflow to the nearest integer power of 2 . Thus, if the divisor is exactly a multiple of 2 , checking the number of sign bits in the dividend is optimum. In this case, however, one may wish to perform the division with arithmetic shifts, a technique discussed in a later section.

Assuming the dividend (operand 1) has a $2-\mathrm{N}$ bit format, the divisor (operand 2) has a N-bit format, and noting the above restrictions concerning overflow, the rules for format division for the quotient (operand 3) and the remainder (operand 4) are respectively:

S3 $=$ S1-S2
$13=\operatorname{MAX}(0,11-12)$
F3 $=\mathrm{N}-\mathrm{S} 3-\mathrm{I} 3$
E3 - E1-E2+I1-I2-I3
where the sign of the quotient can be obtained from Table 9.

TABLE 9. Related to rules for division.

X1	x2	X3
0	0	0
0	+	0
0	-	0
+	0	0
+	+	+
+	-	0
-	+	-
-	-	+

Again,

$$
\begin{aligned}
& \mathrm{X} 4=\mathrm{X} 1 \\
& \mathrm{~S} 4=1 \\
& \mathrm{I} 4=0 \\
& \mathrm{~F} 4=\mathrm{N}-1 \\
& \mathrm{E} 4=\mathrm{S} 1+\mathrm{I} 1+\mathrm{E} 1-\mathrm{N}-1 .
\end{aligned}
$$

Example:

$$
+(3 / 3 / 16) 5 \div-(2 / 0 / 14) 6=-(1 / 3 / 12)-1 \text { rem. }+(1 / 0 / 15)-6
$$

Note that the remainder is in normal form but the quotient is not.
6. Multiplication and division by integer powers of 2. Arithmetic shifts are performed either to align the binary point for a subsequent operation as discussed previously, or to scale an operand by an integer power of 2 . In the latter case, left arithmetic shifts could be considered as multiplications and right arithmetic shifts as division, by positive integer powers of 2. For notational convenience, multiplication and division are treated separately.

In multiplication, M is restricted to the range $0 \leq M \leq S-1$, where S is the number of sign bits in the operand format, in order to avoid overflow. The rules for power-of-two multiplication of formats are the following:

```
X2 = X1
S2 = S1-M
I2 = MIN (I1+F1, I1+M)
F2 = MAX (0, F1+I1-I2)
E2 = E1+I1-I2+M.
```

Some examples are given in Table 10.

TABLE 10. Examples of multiplication.

M	Operand	Result
2	$+(3 / 0 / 10)$	$+(1 / 2 / 8)$
3	$(4 / 0 / 12)-2$	$(1 / 3 / 9)-2$

It should be mentioned that sumnations of numbers having the same formats, over a block of length L (which is an integer power of 2) yield a resultant format which is identical to that of multiplication of an equivalent format by $\log _{2}(\mathrm{~L})$ powers of 2 .

Example:

$$
+(4 / 0 / 12) \times 2^{3}=+(1 / 3 / 9)=\sum_{j=1}^{8}+(4 / 0 / 12) .
$$

For division, M is restricted to the range $0 \leq M \leq N-S-1$ where N is the word length and S is the number of sign bits in the operand. The rules for power-of-two division of formats are the following:

```
X2 = Xl
S2 = S1 + M
I2 = MAX (0, I1-M)
F2 = MAX (0, MIN(F1+I1-I2,N-S2-I2))
E2 = E1+I1-I2-M.
```

Some examples are given in Table 11.

TABLE 11. Examples related to division.

M	Operand	Result
2	$+(3 / 0 / 10)$	$+(5 / 0 / 10)-2$
3	$(4 / 0 / 12)-2$	$(7 / 0 / 9)-5$

Note that for both multiplication and division, the resultant formats are not in normal form.
7. Implementation-dependent formats. There exist sequences of arithmetic operations in which the choice of implementation can disguise the format of the final result. For example, consider a moving window summation whose window length is a multiple of 2 . Then at each iteration a surmation is computed over the window, a previous value is discarded and a new value
is read. This sequence of operations can be implemented in several ways, two of which are given below in a high-level computer pseudo-language. Implementation 1.

DECLARE X(8) 1
POINTER $=1$
2
DO UNTIL ENDFILE 3
READ X(POINTER) 4
SUM $=0 \quad 5$
DO I $=1$ TO $8 \quad 6$
SUM $=$ SUM $+X(I) \quad 7$
ENDLOOP 8
WRI TE SUM 9
POINTER $=\operatorname{MOD}($ POINTER, 8$)+1 \quad 10$
ENDLOOP 11
STOP 12
Implementation 2.
DECLARE X(8) 1
DO I $=1$ TO $8 \quad 2$
$X(I)=0 \quad 3$
ENDLOOP 4
POINTER $=1 \quad 5$
SUM $=0 \quad 6$
DO UNTIL ENDFILE 7
READ NEWVALUE 8
SUM $=$ SUM-X(POINTER) +NEWVALUE 9
WRITE SUM 10
X(POINTER) $=$ NEWVALUE 11
POINTER $=$ MOD (POINTER, 8$)+1 \quad 12$
ENDLOOP 13
If each element of the array X is assumed to have format ($4 / 0 / 12$), then from implementation 1 (statements 5 through 8), the format of SUM is ($1 / 3 / 12$) by inspection. This format is not obvious from implementation 2 since according to the format rules for addition and subtraction, statement 9 cannot be computed repetitively without overflow. The key to solving this dilemma lies in the knowledge that each NEWVALUE is actually subtracted from SUM after some delay as an $\mathrm{X}(\mathrm{I})$.

A proposed solution to this problem is to introduce the notion of an implementation-dependent format, denoted by $\pm[S / I / F] E$ where the parentheses
have been replaced by square brackets. This construct is used only as a documentation aid and should not propagate through a program listing. That is, if a number has an implementation-dependent format [S/I/F]E at a particular stage in a sequence of arithmetic operations, its format in subsequent operations should be (S/I/F)E.

GHAPTER V

MICROP ROCESSOR IMPLEMENTATION

A. Hardware

A microprocessor-based intrusion-detection algorithm test system was designed and constructed using two Texas Instruments 990 series development systems which feature the TMS 9900, a 16 -bit NMOS microprocessor. Both processors were mounted in separate TM990-510 four-slot card cages powered by Kepco RMT $001-\mathrm{A}$ switching supplies, and operate fully independently. The two card cages and power supplies are located in a 12 inch high rack-mounted drawer shown in Fig. 6.

Each 990 system contains four main items which are summarized in a tabular form below.

Manufacturer	Item	Description
Texas Instruments	TM990-100M	CPU, memory, and I/O board
Texas Instruments	TM990-201	Memory expansion board
Analogic	ANDS 1001	A/D converter subsystem
Analogic	ANDS 2001-4	D/A converter subsystem

CPU board. The $990-100 \mathrm{M}$ board can accommodate up to 512 words of RAM and 4 K words of EPROM memory. It contains two interval timers, 16 bits of parallel I/O, and a serial interface for EIA or TTY operation. An operating monitor called TIBUG is also provided which allows the user to modify memory and execute programs from a terminal. An optional line-by-line

assembler was incorporated in the test system to allow convenient modification of programs in the field.

System Memory. All IC sockets on the TM990-201 memory expansion board were populated which yielded 8 K words of EPROM and 4 K words of RAM. EPROM was mapped from memory addresses 2000 to 5FFF hexadecimal and RAM was mapped from A000 to BFFF hexadecimal.

Analog I/0. Analog-to-digital (A/D) conversion on input is performed by an Analogic ANDS 1001 subsystem which provides 16 single-ended or 8 true differential channels with up to 12 bits of resolution. This board can be configured for either sign-magnitude or two's complement representations and can operate as an I/O device or in memory-mapped mode.

Digital-to-analog (D/A) conversion on output is performed by an Analogic ANDS 2001-4 D/A subsystem which provides 4 channels with up to 12 bits of resolution. It as well can be configured for either sign-magnitude or two's complement representations and can output in several voltage ranges.

These boards were configured for the test system as sumarized below. ANDS 1001 A/D:

- ± 5 volts full scale
- 2's complement representation
- 12 bit resolution
- Memory-mapped mode
- CRU base address 03E0 hexadecimal
- Memory base address E000 hexadecimal
- Sequential channel addressing ANDS $2001 \mathrm{D} / \mathrm{A}$:
- ± 5 volts full scale
- I's complement representation
- 12 bit resolution
- Memory base address E100 hexadecimal
- Sequential channel addressing

Terminal Interface. Each TI processor is interfaced to a Digital Equipment Corporation LSI-11 minicomputer which acts as a host allowing the user to communicate with any of the microprocessor systems from one terminal. Further, the LSI-11, running with floppy disks, allows TI object code programs to be loaded and stored from disk via the TIBUG paper tape load and dump routines. Finally, a processor reset feature, incorporated in the test system interface, allows the user to reset any of the processors independently under software control.

B. Software

The intrusion-detection algorithm was implemented in a dual channel configuration, that is, two algorithms per processor. Since the T19900 is capable of executing both channels quite easily at the sampling frequency of 8 sps, modularity was stressed rather than execution speed. Further, all arithmetic operations were coded using the block floating point notation detailed in the previous chapter.

Both the adaptive lattice predictor and the adaptive threshold detector were implemented as subroutines capable of servicing two algorithm channels. This was accomplished by accessing all arrays and variables via displacements relative to a single address pointer. Thus each time a routine is invoked, a pointer is initialized which specifies the algorithm channel. A similar technique was employed for the predictor and detector initialization routines.

Input to the ADP is obtained from a subroutine which reads data samples from the A / D converter. The A / D channel number is passed as an argument which allows the same routine to service more than one algorithm. The ATD output, which is either " 0 " or " 1 ", is passed to an output subroutine which pulses a hardware I / O select line corresponding to an alarm channel, if the ATD output is " 1 ", indicating that an intruder is present. A D/A converter output subroutine is also provided to output intermediate quantities such as the ALP error for the purpose of monitoring algorithm performance in detail.

Algorithm timing is accomplished by one of the real-time clocks provided on the TM990-100M CPU board. Each clock functions as an interval timer which decrements an internal clock register at a rate of $1 / 64$ th the system clock frequency, and causes an interrupt when the register decrements to zero. Thus, with the interval timer programmed to interrupt every 0.125 seconds, the intrusion-detection algorithm operates at 8 Hertz.

The timer interrupt service routine which calls the ALP, the ATD, the attendant $I / 0$, and the support routines, constitutes the main program shell as depicted in Fig. 7. A source listing for the intrusion-detection algorithm is given in Appendix B.

C. Experimental Results

A data sequence consisting of intruder signals embedded in noise caused by a nearby train was processed by the ALP-ATD combination. The resulting ALP and ATD outputs were recorded. The results are shown in Fig. 8.

The upper trace shows the input data sequence which contains five intruder crossings, indicated by the symbol " \uparrow ". The corresponding ALP

Fig. 7. Flowchart representation of intrusion-detection algorithm.
BLOCK FLOATING POINT IMPLEMENTATION
OF INTRUSION-DETECTION ALGORITHM

output shown in the center trace indicates an apparent increase in the signal-to-noise ratio. More notably, a burst of noise which occurs after 200 seconds and having an amplitude at least as great as the last intruder crossing, is very effectively removed. This is reinforced by the output of the ATD which detected the five intruder crossings but did not generate a false alarm on the noise burst.

CHAPTER VI

CONCLUDING REMARKS

The feasibility of implementing an intrusion-detection algorithm using an ALP on a 16-bit microprocessor using block floating point arithmetic was demonstrated. The author feels that the ALP-ATD combination may prove useful in medical instrumentation, radar tracking, and a variety of other signal processing applications. Moreover, the block floating point notation described in Chapter IV may be a forebear to a language for digital signal processors.

Future efforts in the area of signal processing will concern experimentation with alternate lattice structures and the exploitation of frequency information in the detection algorithm.

REFERENCES

[1] N. Ahmed, R.J. Fogler, D.L. Soldan, G.R. E1liott, and N.A. Bourgeois, "On an Intrusion-Detection Approach Via Adaptive Prediction," IEEE Trans. Aerospace and Electronic Systems, May 1979, pp. 430-436.
[2] M. Schwartz and L. Shaw, Signal Processing: Discrete Spectral Analysis, Detection, and Estimation, McGraw-Hil1, 1975, pp. 260-263.
[3] A. Papoulis, Signal Analysis, McGraw-Hi11, New York, N.Y., 1977.
[4] J.D. Markel and A.H. Gray, Jr., "Roundoff noise characteristics of a class of orthogonal polynomial structures," IEEE Trans. Acoust., Speech, and Sig. Proc., ASSP-23, Oct. 1975, pp. 473-486.
[5] L.J. Griffiths, "An adaptive lattice structure for noise-cancelling applications," Proc. ICASSP, Apr. 1978, Tulsa, OK., pp. 87-90.
[6] L.J. Griffiths, "A continuously-adaptive filter implemented as a lattice structure," Proc. ICASSP, May 1977, Hartford, CT., pp. 683-686.
[7] J. Makhoul, "A class of all-zero lattice digital filters: Properties and applications," IEEE Trans. Acoust., Speech, and Sig. Proc., ASSP-26, Aug. 1978, pp. 304-314.
[8] J. Makhoul, "Stable and efficient lattice methods for linear prediction," IEEE Trans. Acoust., Speech, and Sig. Proc., ASSP-25, pp. 423-428.
[9] N. Ahmed and R.J. Fogler, "On an adaptive lattice predictor and a related application," to be published in IEEE Circuits and Systems Magazine, Dec. 1979.
[10] V.N. Faddeeva, Computational Methods of Linear Algebra, Dover Publications, 1959, pp. 111-117.
[11] D.K. Faddeev and V.N. Faddeeva, Computational Methods of Linear Algebra, W.H. Freeman and Co., 1963, pp. 168-171.
[12] N. Ahmed, G.R. Elliot, and S.D. Stearns, "Long-term instability problems in adaptive noise cancellers," Sandia Laboratories, Technical Report No. SAND 78-1032, Aug. 1978; available from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA. 22161.
[13] N. Ahmed, G.R. E1liot, and S.D. Stearns, "Long-term stability considerations of adaptive predictors," Proc. 12th Asilomar Conf. on Circuits and Systems, Asilomar, CA., Nov. 1978, pp. 180-183.
[14] N.A. Bourgeois, Jr., "Data acquisition and test system software," Technical Report - No. SAND 78-1972, March 1979, pp. 21-36.
[15] D.D. McCracken, Digital Computer Programming, John Wiley and Sons, New York, N.Y., March 1963.
[16] J.E. Simpson and R.J. Fogler, "A block floating notation for digital signal processes," to be published in a Sandia Laboratories technical report.

ACKNOWLEDGMENTS

The author would like to thank the Sandia Laboratories, Albuquerque, N.M. for providing the financial support, data, and computing facilities used in connection with this thesis. The assistance and encouragement given by Jim Simpson who originated the Block Floating Point notation, Glenn Elliot, Nick Bourgeois, and Dick Wayne of Sandia Laboratories, is gratefully acknowledged.

The author would also like to express his appreciation to Dr. Donald R. Hummels and Dr. J. David Logan for serving as graduate conmittee members and for sharing their knowledge and experience. A special thanks is extended to my major advisor, Dr. Nasir Ahmed whose teachings both in and out of the classroom have been of immeasurable value.

APPENDIX A

A Block Floating Point Format Tutorial Program

PROGRAIA FURMAI

C
C BLUCK FLDATING PDINT TUIURIAL PROGRAM
C
C JOE．FUGLER 08／21／79
C KEV．O1．00 08／23／79
C

```
LUGICAL＊ 1 I wSTR（81），SpACE
UAIA INSPR（81），SPACE／ 0,1 ＇／
CQUIVALCNCE（INSTR（1），RSTR）
INTEGER \(X, S, I, F, E\)
COMAMON／NSIZE／Nw，wB B ，N
1 FORIAT（＇EVTER MACHINE NORD SIZE：＇，s）
2 FURIAT（＇OCJAMAND：＇，s）
3 FURMAT（ \(80 A 1\) ）
4 FURMAT（＇ULIST OF COMMANDS：＇／／
＊＇HELP TYPES OUT THE LIST DF COMMANDS＇／
＊＇gulr fekminates the format progiami／
＊＇SIZE こHANGES THE MACHINE wORD SIZE＇／
＊＇EQU DETERMINES［F FORMATS ARE EQUIVALEIWT＇／
＊＇（NORA COMPUTES NGRMALIZED E゙GRMAT＇／
＊＇ALIG DETERMINES IF TiU FURMATS ARE ALIGIVED＇／
＊＇CLIP CLIPS A FOKMAT＇／
＊＇ASHL LEFT ARITHMETIC SHIFT＇／
＊＇ASHh RIGHT aRITHEETC Shift＇／
＊＇ADU ADDITION OF RURMATS＇／
＊＇SUE SUBTRACTIDiv Or fURMATS＇／
＊＇APY GULTIPLICATION OF F＇URMATS＇／
＊＇DIV DIVISION DE FURMATS＇／
＊MPYZ YULTIPLICATION BY PONERS OF \(21 \%\)
＊＇DIV2 DIVISIUN BY POMERS OF 2＇／
＊＇RvD RUUND A FORMAT＇／）
IYPE 4
100 TYPE 1
ACCEPI＊，N3w
\(n w=1\)
iv \(=W_{n}+\mathrm{in} B N\)
110 TYPE 2
ACCセPT 3，（INSTR（J）， \(\mathrm{J}=1,80)\)
Ir（SSIK．Eう．＇ASHL＇）CALL ASHL
LF（RSTR．EQ．＇ASHR＇）CALL ASHR
fF（RSTR．EQ．＇MPY2＇）CALL MPY2
IF（RSTR．EQ．＇DIV2＇）CALL DIV2
IF（INSTK（4）．wt．＇2＇）INSTR（4）＝SPACE
［f（RSTR．EQ．＇GEL＇）TYPE 4
IF（RSPR．EU．＇QUI＇）GO TU 120
IF（RSTK．Eう．＇SIZ＇）GO TO 100
IF（RSTR．EZ．＇EUU＇）CALL EQV
IF（RSTR．EQ．＇IOOR＇）CALL NORM
IF（RSTR．Eß．＇ALI＇）CALL ALIGN
IF（RSIR．EX．＇CLI＇）CALL CLIP
IF（RSTR．EN．＇ADD＇）CALL ADU
IF（RSTR．EQ．＇SUB＇）CALL SUB
If（RSTR．EA．＇MPY＇）CALL MPY
If（RSTH．EQ．＇DIV＇）CALL DIV
If（fiSTK．tu．＇RNU＇）CALL RUUND
G TO 110
120 STUE＇PROGRAA TERMINATEU＇
どい
```

SUBRUUTLNE EQV
INTEGER X1, S゙1, I1,F1, E1
IHTEGER X2,S2,I2,F2, E2
C
C ROUTINE TO TEST EQUIVALENCE OF FOKMATS
C
C JOE FOGLEK O8/22/79
C REV. O1.00 08/23/79
C
1 FUKMAI(' EOU: ENTER 'IHE FURMATS: ')
2 FOOMAP(' FDRMATS ARE EQUIVALENT')
3 FORMAT(' FOKMAIS ARE NO'' EQUIVALENT')
C
TYPE 1
CALL GET (X1, S1, I1, H1,E1)
CALL GET (X2,S2, 12,F2,E2)
C
IF (S1.ive.S2) GU TO 100
IF ($11+\mathrm{F} 1 . \mathrm{V} E . I 2+\mathrm{F} 2)$ GO TO 100
It (S1+I1+E1.NE.S2+I2+E2) GO TO 100
IF (X1.NE. X2) GO TO 100
TYPE 2
GO TO 110
100 IYPE 3
110 RE゙TURN
EOU

SUGRUUTLIVE NORM
INTEGER X1.S1,I1,F1,E1 IN IEGER $\times 2,52,12, \mathrm{~F} 2, \mathrm{E} 2$
C
C ROUTINE RU NORMALIZE TWO FURMATS
C
JOE FUGLER 08/22/79
C KEV. 01.00 08/23/79
C
1 FORMAT(' NJRM: ENTER THE FORMAT')
C
TyPE 1
CALL GET (X1,S1, 11,F1,E1)
C
CALL NUKML ($\mathrm{X}_{1}, \mathrm{~S} 1, I 1, \mathrm{~F}_{1}$, ビ1)
C
CALL PUT (X1, S1, 11,F1,E1)
RETURIN
ENO

SUBRUUTINE NORML (X1, S1, 11,F1, ヒ1)
IIFEGER X1,S1, $11, F 1, E 1$
INTEGER X2,S2,I2,F2,E2
C
C NORMALIZATIUN SUPPORT SUBRUUTINE
C
C JUE FOGLER 08/22/79
C REV. O1.00 08/23/79
C
C
IF (E1.EG.0) GU TO 110
C

C
IF (E゙1.LT.O) GO TO 100
$\mathrm{H}_{2}=\mathrm{MAXO}(0, F 1-E 1)$
$I 2=11+E 1-{ }^{*} 2$
$E_{1}=E_{1}+I 1-I 2$
$I 1=12$
$\mathrm{tr}_{1}=\overrightarrow{\mathrm{r}} 2$
GU TU 110
C
$100 \mathrm{I} 2=\mathrm{MAXO}(0, I 1+\Sigma 1)$
$\mathrm{F} 2=11+F 1-I 2$
$E 1=E 1+I 1-12$
$I 1=I 2$
$\mathrm{F}_{1}=\mathrm{F}_{2}$
C
110 PETURN
END

```
SUBROUIINE ALIGN
INTEGER X1, S \(1,11, t 1, \mathrm{E} 1\)
IITEGER \(\times 2, S 2, I 2, F 2, E 2\)
```

C
C RUUPINE IU MORMALIZE TNG FURMATS
C
C JOE FOGLER $08 / 22 / 79$
C REV. 01.00 08/23/79
C
1 FORMAT(' AGIG: ENTER THE FORMATS')
2 FORIMAT (' AKG ', I1,' EXCEEDS ARG ', I1,' BY ', 12,' FUWERS OF 2')
3 FORMAT('FJRMATS AKE ALIGIVED')
C
TYPE 1
CALL GET (X1,S1,I1,F1,E1)
CALL GET $(\times 2, S 2, I 2, F 2, E 2)$
C

```
J1=S1 + I1 +E1
J2 = S2 + I2 +E2
IF (J1.EQ.J2) TYPE 3
IF (J1.G[.J2) IYPE 2,1,2,J1-J2
1F (J1.LI.J2) [YPE 2,2,1,J2-J1
```

C

> RETURN END

SUGROUTINE CLIP
LNTEGER X1，S1，I1，F1，E1
INTEGER X2，S2，I2，F2，E2
C
C RuUtine tu clip a format
C
C JOE FOGLER 08／22／7y
C REV．01．0U 08123／79
C
1 FUKMAT（＇CLIP：hUN MANY BITS？＇，s）
2 FOKMAT（＇ $1<=$ NBIIS $<=1$, I1）
C
「Yロヒ 1
ACCEPT＊，M
CALL GET（X1，S1，11，F1，E1）
C
$J 1=S 1+11+F 1-1$
IF（4．LT．1 ．OR．M．GT．JI）GO TO 100
$x_{2}=x_{1}$
$S 2=M A X 0(S 1, M+1)$
$12=\operatorname{MAXO}(0,11+\mathrm{S} 1-\mathrm{S} 2)$
$\mathrm{F}_{2}=\mathrm{F}_{1}+\mathrm{S}_{1}+\mathrm{I}_{1}-\mathrm{S}_{2}-\mathrm{I} 2$
$E 2=E 1+E 2-F 1$
CALL NORML $(\times 2, S 2,12, F 2, E 2)$
CALL PUT（X2，S2，I2，F2，E2）
GU TU 120
100 TYPE L，J1
120 REIURN
END

SUDRUUTIVE ASHL
INIEGER X1,S1, I1,F1,E1
INIEGER $X 2, S 2,12,52, E 2$
C
C RUUIINE TO LEFT SHIFT A FORMAT
C
C JOE FOGLEK 08/22/79
C KEV. 01.00 08/23/79
C
1 FORMAT(ASHL: HOW MANY BITS? ', S)
2 FUKMAT(' ', I2,' SHIF'TS wILL CAUSE OVERFLOn')
C
TYPE 1
ACCEPT *, M
IF (M.LT.1) GO TO 120
CALL GET (X1,S1,I1,F1,E1)
C
IF (M.GT.S1-1) GO IU 100
$x_{2}=\mathrm{K} 1$
$52=51-4$
$12=I 1$
$\mathrm{F} 2=\mathrm{F} 1$
$E 2=E 1$
CALL NURML (X2,S2,I2,F2,E2)
CALL PUT (X2, S2, I $2, F 2, E \subset 2)$
GU TU 120
100 TYPE 2. M
120 KE゙TUKA
ENO

SUBROUTINE ASHR

COMMUN /wSIZE/ Na,NBn,N
INTEGER X1, S1, I1,F1,E1
INTEGER X2,S2,12,F2,E2
C
C ROUTINE TU RIGHT SHIFT A FORMAI
C
C JOE FUGLER 08122179
C REV. 01.00 08/23/79
C
1 FOR:GAT(' ASHR: HOW MANY BITS? ', S)
2 FURMAT(' ',I2,' SHIFTS WILL CAUSE UNDERFLOW')
C
TYPE 1
ACCEPT *, 4
If (Y.LI.1) GO TO 120
CALL GET (X1,S1, I1,F1,E1)
C
IF (M.GE.N-S1) GO TO 100
$x_{2}=x_{1}$
$\mathrm{S} 2=\mathrm{S} 1+\mathrm{M}$
$F 2=\operatorname{MAXU}\left(0, \operatorname{MNO}\left(\mathrm{iN}-\mathrm{Fi}_{\mathrm{i}}-\mathrm{S} 1-\mathrm{I} 1, F 1\right)\right)$
I2 $=\operatorname{MLNO}(11, N-M-S 1)$
$E_{2}=E_{1}+E 1-I 2$
C
CALL VORML (X2,S2,I2,F2,E2 2$)$
CALL PUT (X2,S2,I2,F゙2,E2)
GO TU 120
100 LYPE $2, \mathrm{M}$
120 RETURN
EivD

SUDROUTINE ADD

INTEGER X1，S1，I 1，F1，ヒ1，T1，U1
IMTEGER X2，S2，I2，F2，E2，T2，U2
INTEGER X 3, S3，I 3，F3，E3
C
ROUTINE TO ADD TWO rORMATS
JOE FOGLER 08／22／79
REV．U1．00 08／23／79

1 FOKMAT（＇ADD：COMPUTES ARG1＋ARG2＇）
2 FORMAT（＇FORMATS AKE NUT ALIGNED＇）
3 FURMAT（＇OVERFLOW POSSIBLE＇）
C
TYPE 1
CALL GET（X1，S1，I1，F1，E1）
CALL GET（ $\times 2, S 2, I 2, F 2, E 2$ ）
If（S $1+11+E 1$ ．NE．$S 2+I 2+E 2)$ GO TO 120
$\Gamma 1=\operatorname{MAXO}(\mathrm{S} 1-\mathrm{S} 2,0)$
$T 2=A A X O(S 2-S 1,0)$
C
If（x1．t゚Q．0）GC TO 100
If $(\times 1 . N E .-\times 2)$ GO TO 100
C
C ARGUMEIN＇S HAVE OPPOSITE EXPLICIT SIGMS
If（S1．LI．1 ．OR．S2．LT．1）GO TO 130
C
$\mathrm{UL}_{1}=\operatorname{INO}(I 1+\mathrm{F} 1+\mathrm{T} 1,4 A X O(I 1+E 1+\mathrm{T} 1,0))$
$\mathrm{U}_{2}=\operatorname{MINU}(I 2+\mathrm{F} 2+\mathrm{T} 2, \mathrm{MAXO}(I 2+E 2+T 2, U))$
$\times 3=0$
$\mathrm{S3}=1 \mathrm{INO}(\mathrm{S} 1, \mathrm{~S} 2)$
$I 3=$ MAXU（U1，U2）
$E 3=S 1+11+E 1-S 3-13$
$F_{3}=\operatorname{AXU}\left(F 1-E 1+E 3, F_{2}-E 2+E 3\right)$
GO IU 110
C
C AKGUMEんTS DO NJT HAVE OPPOSITE EXPLICIT SIGHS
C
100 1F（S1．LT．．OR．S2．LT．2）GU IU 130
C
$U 1=M 1 N O(11+F 1+I 1+1, M A X O(11+E 1+T 1+1,0))$
$\mathrm{U} 2=\mathrm{MNO}(\mathrm{I} 2+\mathrm{F} 2+\mathrm{T} 2+1, \mathrm{MAXO}(I 2+E 2+\mathrm{T} 2+1,0))$
$\times 3=0$
If $\left(X_{1} . E Q . X_{2}\right) \times 3=X_{1}$
$53=M I N O(S 1, S 2)-1$
$I 3=\operatorname{MAXO}\left(U 1, U_{2}\right)$
$E 3=51+11+E 1-53-13$
$F 3=1 A X O(F 1-E 1+E 3, F 2-E 2+E 3)$
C
110 CALL $\mathrm{PUT}(X 3, S 3, I 3, F 3, E 3)$
GU TU 140
120 TYYE 2
GU TU 140
130 1YPE 3
140 REIURA
も际

SUBROUTINE SUR

INTEGER $X 1, \mathrm{~S} 1, \mathrm{I} 1, \mathrm{~F} 1, \mathrm{E} 1, \mathrm{~T} 1, \mathrm{U} 1$
INTEGER $X 2, S 2, I 2, F 2, E 2, T 2, U 2$
INIEGEK $\times 3, S 3,13, F 3$, E 3
C
C ROUTIAE TO SUB IWO FORMATS
C
C JOE FOGLER 08/22/79
C REV. 01.00 0४/23/79
C
1 FURMAT(' SUE: COMPUTES ARG1 - ARG2')
2 FURMAT' (' FUKMATS ARE NUT ALIGNED')
3 FURMAT(' OVERHEOW HOSSIBLE')
C
IYPE 1
CALL GET (X1,S1, I1,F1,E1)
CALL GEI (X2,S2,I2,F2,E2)
$\mathrm{Ir}(\mathrm{S} 1+\mathrm{I} 1+\mathrm{E} 1$. NE. $\mathrm{S} 2+\mathrm{I} 2+\mathrm{E} 2)$ GO TO 120
$T 1=M A X O(S 1-S 2,0)$
$T 2=M A X O(S 2-S 1,0)$
C
If (x1.EQ.0) GU TU 100
IF (X1.NE.X2) GO TU 100
C
C ARGUMENTS HAVE SAME EXPLICIT SIGNS
C

```
IF (Sl.LI.1 .UR. S2.LI.1) GO TO }13
```

$U 1=M \perp N O(I 1+F 1+T 1, M A X O(I 1+E 1+T 1,0))$
$u_{2}=M \operatorname{INO}\left(12+F^{\prime} 2+12, M A X O\left(12+E^{\prime} 2+I 2,0\right)\right)$

C
$\times 3=0$
S3 3 MINU(S1,S2)
$13=M A X U\left(\dot{i} 1, \mathrm{U}_{2}\right)$
$E 3=51+I 1+E 1-53-I 3$
$\mathrm{F}_{3}=\mathrm{MAXO}(F 1-E 1+E 3, F 2-E 2+E 3)$
GO [U 110
C
C ARGUMENTS DO NOT HAVE SAME EXPLICIT SIGNS
C
100 IF (S1.LT. 2 .OK. S2.LT.2) GO TO 130
$U 1=4 \operatorname{INO}(11+F 1+11+1, H A X 0(I 1+E 1+T 1+1,0))$
$U 2=M 1$ HO $(I 2+F 2+\Gamma 2+1, N A X O(I 2+E 2+T 2+1,0))$
$\times 3=0$
IF $(\times 1 . E Q . \times 2) \times 3=\times 1$
S3 $=$ MINO (S1,S2) - 1
$I 3=$ MAXO (U1,U2)
E゙3 = $\mathrm{S} 1+\mathrm{I} 1+\mathrm{E} 1-\mathrm{S} 3-\mathrm{I} 3$
$F_{3}=\operatorname{AA} 0\left(F 1-E 1+E 3, F^{\prime} 2-E 2+E 3\right)$
C
110 CALL PUT (X3,S3, I3,F3,E3)
GO TO 140
120 TYPE 2
GO TU 140
130 TYPE 3
140 REIURN
END

SUBRDUTLIE MPY

COMmUN / NSIZE/ NW, GBA, M
1HTEGER X1,S1,11,F1,E1,T1, U1
INTEGER X2,S2,12,F2,E2,T2,U2
INTEGEH X3,S3,13,F3,E゙3
C
C ROUTINE IO MULIIPLY Two formats
C JOE FUGLER 08/22/79
C REV. 01.v0 08/23/79
C
1 FORMAT(' MPY: COMPUTES ARG1 X ARG2')
2 FURMAT(' wUKD SIZE IS NOW ',I3,' BITS')
3 FORMAT(' NARNING -- BOTH CANNOT BE LARGEST NEGATIVE (WUMEER')
C

TYPE 1

CALL GET (X1, S1, 11, F1, E1)
CALL GEI 「(X2,S2,I2,F2,E2)
C

$$
x_{3}=0
$$

IF (X1.EG.O .OR. X2.EQ.O) GO IO 100
IF ($\times 1$. EQ. $\times 2$) $\times 3=1$
IF (X1.NE. X2) X3 $=-1$
C
$100 \mathrm{~S} 3=\mathrm{S} 1+\mathrm{S} 2$
$13=11+12$
$\mathrm{r}^{3}=\mathrm{F} 1+\mathrm{F}_{2}$
$E 3=E 1+E 2$
CALL HORML (X3, S3, I3, F3, E3)
CALL PUT(X3,S3,I3,F3,E3)
C

C
$\mathrm{H}_{\mathrm{N}}=2$
$N=$ Non*Nw
IYYE 2,N
C
RETURI
ETN

Subkuurlive DIV
CUMMDN／NSIZE／Nw，Nibiv，N
INTLGER X1，S1，I1，F1，ビ1，T1，U1
1NTEGER X2，S2，I2，F2，E2，T2，U2
［NTEGER X3， $53,13, F 3, E 3$
C
C ROUTINE TU DIVIDE TwU FORMATS
C
C JUE FOGLER 08／22／79
C REV． 01.00 U\＆／23／79
C
1 fORMAI（＇DIV：COMEUTES ARG1／ARG2＇）
2 FORMAI（＇OVERFLOW POSSIBIE＇）
3 FGKMAT（＇WJRD SIZE IS NOW＇，I3，＇BITS＇）
4 FURMAT（＇WARNING－OVERFLUW CDNDITIOVS MUST BE CHECKED＇）
C
TYPE 1
$N=2 * N B N$
CALL GET（X1，S1，I1，F1，E1）
$\mathrm{NiN}=1$
$\mathrm{N}=\mathrm{NA*}$ ivBn
CALL GET $(\times 2,52,12, F 2, E 2)$
C
1f（S1．LE．S2）GO TO 120
C
$x_{3}=0$
1F（X1．E，U．O ．OR．X2．E．U．U）GO TO 100
IF $\left(x_{1}\right.$. 匕心．$\times 2$ ）$\times 3=1$
IF（X1．VE．X2）$\times 3=-1$
C
$100 \mathrm{~S} 3=\mathrm{S} 1-\mathrm{S} 2$
$13=\operatorname{MAXO}(0,11-12)$
F3 $=1-53-$ I3
$\mathrm{E} 3=\mathrm{E} 1-\mathrm{E} 2+\mathrm{I} 1$－I2－I 3
CALL NURML（K3，S3，I3，F3，E3）
CALL PUT（X3，S3，I3，F3，E3）
TYYE 4
TYPe 3，is
GU TU 130
C
120 TYPE 2
C
130 RETLRN END

SUSROUTLAF FPY2
COMMON／WSIZE゙／NW，NOW，N
INTEGER $\times 1, S 1, I 1, F 1, E 1$
INIEGER $\times 2,52, I 2, F 2, E 22$
C
C RUUTINE TO MULIIPLY A FOFNAT
C BY AN INTE゙GEK PONER OF 2.
C
C JOE FOGLER 08／22／79
C REV．01．00 06／23／79
C
1 FORMAT（＇MPY2：HOW MANY PONERS OF 2？＇，S）
2 HORMAT（＇ARG X 2＊＊＇，I2，＇wILL CAUSE OVERFLON＇）
C
TYPE 1
ACCEPT $*, m$
1F（Y．LI．1）GO TO 120
CALL GET（X1，S1，I1，F1，E1）
C
IF（A．GT．S1－1）GO TO 100
$x_{2}=\times 1$
$\$ 2=\$ 1-k$
I2 $=4 \operatorname{INO}(11+F 1, I 1+M)$
$\mathrm{F}_{2}=\mathrm{A} A \times 0(0, \mathrm{~F} 1+I 1-I 2)$
$E 2=E 1+I 1-I 2+M$
C
CALL NUKML（X2，S2，I2，F2，ヒ2）
CALL PUT（ $\grave{2} 2, S 2, I 2, \mathrm{E} 2, E 2)$
Gu゙ 10 120
C
100 TYPE 2，M
120 KETURN END

SUGRUUTIUE DIV2
CUMMON/NSIZEE/ N. N, NEW, A
1:TEGEK X1,S1,I1,F1,E1
INTEGER $\times 2, \mathrm{~S} 2,[2, F 2$, th 2
C
C ROUTINE TU DIVIDE A FUKiAAT
C BY AN INIEGER PJNER OF 2.
C
C JOE FUGLER 1) $6 / 22 / 79$
C REV. 01.00 O $8 / 23 / 79$
C
1 FURMAT(1 DIV2: HUw MANY POMERS OF 2? ', $\$$)
2 FURIAA'(' ARG / $2 * *$ ', I2,' WILL CAUSE UNDERFLUW')
C
TYEE 1
ACCEPI *, M
ir (M.LI.1) GU TO 120
CALL GE1 (X1,S1,I1,E1,E1)
C

$$
\begin{aligned}
& \text { It }(M \cdot G E \cdot(1-S 1) \text { GO TO } 100 \\
& \times 2=X 1 \\
& S 2=S 1+M \\
& 12=M A X O(0, I 1-M) \\
& H 2=M 4 X O(U, H I N O(i+1+I 1-I 2, N-S 2-I 2)) \\
& E 2=E 1+I 1-I 2-
\end{aligned}
$$

C
CALL NURAL (X2,S2,12,F2,E2)
CALL PUS(×2,S2,12,E2,E2)
GO IO 120
C
100 IYPE $2, \mathrm{M}$
120 HETURA
ENL

```
SubruutItte Roumo
COMAUN /wSLZE/ m,y,Ntavi,N
LNTEGER X1,S1,11,t1,E1
INTEGGR X2,S2,12,F2,C2
```

C
C RUUTLiEe fu kJuND A DUHBLE LEf,GTH
C OPERAND IU SI vGLE NOKD LENGTH
C
C JOE FUGLER 08/22/79
C REV. 01.00 08/23/79
C
1 FURMAT(' RND: EMTER THE FOMMAT')
2 FUKMAT(' "ARNIMG -- FORMAT DVERFLOW MUST bE CHECKED')
3 FOkBAI(' wJku SIZe IS Nuw ', [3,' BITS')
C
$10 w=2$
$N=$ inn*Nom
C
TYRE 1
CALL GEI (X1, S1, I1, F1, E1)
C

$$
N: N=1
$$

$w=N * N B N$
C
$x_{2}=x_{1}$
$s 2=51$
$12=m \operatorname{INO}(11,(1)-S 1)$
$t 2=\operatorname{AXO}(0, H 1 N O(i v-S 1-I 1, f 1+I 1-I 2))$
$E 2=E 1+11-12$
C
CaLL PUT (X2,S2,I2,F2,E2)
lf (X1.NE.-1) TYPE 2
TYPE 3 , N
C
KとTukis
EVN

SUQRGUIINE PUT(X,S, $1, r, t)$
C
C SUBRGUTLINE TU NRITE A FURMAT
C
C JUE FUGLEK 06/21/79
C REV. 01.00 0ヶ/23/79
C
IWTEGEK X,S,I,F,E
LUGICAL*1 S「R1 (4)
DACA STK1 /'-',' ','+',' '/
C

2 FOKMAT(' = ', 1A1,'(',12,'/',12,'/',12,')')
C

$$
\begin{aligned}
& \text { If (e.ive.0) TYPE } 1, \operatorname{STR}(X+2), S, I, F, E \\
& \text { If (U..EW.O) TYPE } 2, \operatorname{STR}(X+2), \text { S, I, F } \\
& \text { RE. IURN } \\
& \text { END }
\end{aligned}
$$

SUHPDUTLNE GET（X，S，I，F，E）
C
C GET FUKMAT SUAROUTINE：
C
C JOE rOGLER Vठ／21／79
C KEV．01．0U 0४／23／79
C
InTEGどR $X, S, I, F, E, E S$
LUGICAL＊1 SIR（81）
LOGICAL＊ 1 SPACE，DE゙LI F_{i}
DAIA SPACG／＇$/$
COMMUN／NSIZE／Nw，ivBN，w
C

```
1 FORMAT(1>',S)
2 FOKMAT(JUA1)
3 FUK.\4[(' ')
4 \text { tukimAI(1H+,1A1,S)}
5 \text { FURMAT(' PRFCISIUN EXCEEUS',13)}
O FOK.AAT(' PRECISIUN UIVDEFINED')
7 HOKFAT(' NJT ENUUGH SIGN EITS')
8 FURMAI(' IVVALID FORMAI')
```

C

$$
90 E=0
$$

$x=0$
DO $95 \quad I=1,81$

$$
S \operatorname{SIR}(1)=0
$$

95 COMTINUE
IYロE 1
ACCEPT $2,(S T R(J), J=1,80)$
$\operatorname{Isiox}=1$
100 Ir（SIR（INDX）．NE．SPACE）GU TU 110
INUX $=1$ MOX +1
IF（1．vDX．GI． 20 ）GO 10206
GU TO 100
C
110 IF（SIR（INUX）．NE．＇＋＇）GU TO 120
$X=1$
$\operatorname{ITv} x=1 \operatorname{ND} \alpha+1$
Gu TO 130
120 IF（SPR（INDX）．NE．＇－＇）Gl TO 130
$x=-1$
$\operatorname{INDX}=I N D X+1$
130 IF（STR（INDX）．NE．SPACE）GO IO 135
INIIX $=[N D X+1$
IF（INOX．G1．80）GO TO 206
GU TU 130
135 IF（SHR（IADX）．NE゙．＇（＇）GU TU 200
INDX $=1$ VDX +1
CALL CLivv（STK，INDX，＇／＇，S，IERR）
1H（IEFK．NE．O）GO TO $2 \cup 0$
I：UX＝INOX＋ 1
CALL CUNV（SIR，IMDX，＇／＇，I，IERK）
IF（ 1 EHR．NE．O）GO TU 200
LiveX $=1$ VDX +1
CALL CONV（SIK，INDX＇，＇）＇，F，IEGK）
IF（IERt．HE．O）GO TU 200
$\operatorname{IND} X=1$（n）$X+1$

```
C
    150 If (STR(IPDX).NE.SPACE) GO TO 100
        INDX = INDX + 1
        If (i,NDX.Gr.80) GO TO }18
        G0) TU 150
C
    100 ES = 0
        If (STH(INOX).EQ.'+') GO TO 170
        If (STR(INDX).NE.'-') GO TO 180
        ES = 1
    170 IHDX = INOX + 1
    180 CALL CUGV(STR,INDX,SPACE,E,IERR)
        IF (IERH.NE.0) E = O
        IF (ES.NE.0) E = -F
    C
    185 IF (I.EW.O .ANU. F.EQ.O) GO TU 220
        IF (S.LT.1) GU TO 230
        IF (I.GT.M-1) GU TO 210
        IF (F.GT.N-1) GO TO 210
        IF (I+F.LF.1) GO TO 230
        Ir (S+I+F.GI.N) GO TO 210
        RETURN
C
    200 If (INDX.LE.0 .UR. INI)X.GT.80) GO TU 206
        TYPE 3
        DU LUS K=1,INDX
        TyPE 4,' '
    205 CUNTINUE
        IYPE 4,'M
        IYPE 3
    206 PYPE 8
        Gu TU }->
    210 TYPE S,N
        Gu ro yo
    220 TYPE O
        Gu to 90
    230 TYPと 7
        GO IU 90
        ENU
```

SUbKUUTINE CONV（STK，INDX，OE゙LI到，IVAL，IEんR）
C
C RUUTINE TO CONVERT AN ASCII STRING TO AN INTEGER
C
C JUE FOGLE゙K 08／21／79
C REV．01．00 08／23／79
C
LOGICAL＊1 STR（81），DELIN，TABL（10），SPACE，DUMMY
 DA1A SPAこE゙／＇$/$
C
$I E R R=1$
IVAL $=0$
100 IF（STR（INDX）．NE．SPACE）GO TO 110
INDX $=1 N D X+1$
IF（INDX．GI．80）GO TD 140
GU TO 100
C
$110 \quad 00 \quad 120 \quad 1=1.10$
$J=[-1$
If（STR（INDX）．EQ．TABL（I））GO TO 130
120 CONTINUE
125 1F（SIK（INDA）．（VE．SPACE）（GU TO 135
INUX $=1 \sim D X+1$
1f（INDX．GT．80）GO TO 135
GO 10 125
C
130 IEAK $=U$
IVAL $=1 U^{*} \perp V A L+J$
INUX $=$ INUX +1
IF（INDX．LE゙．80）GO TU 110
$1 E K K=1$
GU $\Gamma 0140$
C
135 IF（STH（INDX）．NE．DFLIM．AND．DELIH．NE．SPACE）IFRR＝ 1
140 RETUK：
evo

APPENDIX B

Intrusion-Detection Algorithm
Source Listing
＊
＊Least mean square adaptive lattice predictur
＊with adaptive threshold detection
＊
＊Joe fugletr 08／13／79
＊REV．02．03 09／05／79
＊
＊DELCARATIONS

ADCO	EQU	＞E000	；A／O CONVERTER CHANNEL U	
DAC 0	EQU	＞E100	；D／A CONVERTER CHANNEL U	
ADCCRU	CGU	$>03 E 0$	；A／D CRU BASE ADDRESS	
ADMODE	EQU	＞000C	；A／D MEMORY－MAP MODE BIT＊	
IMRCRU	E．GU	>0100	－TIMER CRU EASE ADDRESS	
TMRCNT	cqu	＞17C1	；TIMER COUNT FOR 8HZ Livterrufi	
IMRENB	Euv	>0003	；TIMER ENABLE BIT \＃	
［MMUDE	Eus	>0000	；TIMER INTERKUPT MODE bit \＃	
TMRVEC	EQU	＞FFR8	；TIMER VECTOK ADURESS	
TARMSK	HQu	＞0003	；ILMER INTERRUE＇T MASK	
BRAINCH	cidu	>0460	；Branch instruetion	
SELCRJ	EQU	>0000	；SEL CRU BASE ADDRESS	
SELI	EQU	>0000	；SEL 1 displacement	
SEL2	EQU	＞0020	；SEL2 DISPLACEMENT	
－sP0	EGU	＞A000	；wforkspace 0	
NSP1	E゙きU	＞AO20	；WORKSPACE 1	
NSP2	EQU	＞A040	；WORKSPACE 2	
nSP3	EQu	＞A400	；WURKSPACE 3	
＊SP4	EQU	＞A420	；NORKSPACE 4	
WSP5	EQU	＞ 4440	；WUKKSPACE 5	
LTPTKO	Egu	＞A060	；LATTICE 0 POINTER	
LTPTR1	EQU	＞ 4400	：LATTICE 1 POINTEK	
F	EQU	>0000	；$F(M, L)$ distlacement	
G	EQU	>0020	；G（ $4, L)$ DISPLACEMENT	
G1	EQU	>0040	；G（ $M-1, L)$ DISPLACEMENT	
8	EOU	＞0060	；B（ 1 ，L l （ DISPI，ACEMENT	
V	EQU	＞0080	；V (M, L) DISPLACEMENT	
U	EROU	$>7 \mathrm{FFC}$	； 0.999878	$+(1 / 0 / 15)$
ALPHA	EGij	$>028 \mathrm{~F}$	； 0.1998901	$+(6 / 0 / 10)-5$
beta	EGU	＞ 7070	；0．9799804	＋（1／0／15）
GA AMA	E．ul	＞028f	； 0.1998901 （1－BETA）	$+(0 / 0 / 10)-5$
EPSLON	ビGU	>0001	； 0.000122	＋（1／2／13）
v	EQU	>0008	；NUMEEP Of lattice stages	

$B-2$

ATPTR0	EQU	＞A100	；ATD 0 PUINTEK
ATPTR1	E่งU	＞A500	；ATU 1 Puinter
M	EQU	>0020	； 2 ＊ 16 BYPE GA wINDU．LENGTH
L	EuU	>0080	； $2 *$ b 4 RYfE OR mindow Lengim
D	EJJ	>0020	；2＊DELAY LENGTH
K	EQU	>0002	；ATD CONSTANT LOG2（L／M）
THETAH	EGU	>0000	；THETA $=0.0029297+(27 / 0 / 5)-8$
thetal	どひU	>0018	；
EA	EQU	D $+\mathrm{L}+2$	；EA POINTER AdDress oisflacement
EB	EQU	EA +2	：Eb PUINTER ADORESS DISPlackinen＇
EC	Edu	$\mathrm{EB}+2$	：EC POIATER ADDRESS DISPLACEIAEVT
QA	E゙囚U	Ect2	；QA ADDRESS DISPLACEMENT
$Q B$	EQU	$3 \mathrm{~A}+4$	；QS AUDRESS OISPLACEMENT
PIJSMAX	EQU	＞7FFF	；LARGGEST POSITIVE NUMBER
NEGMAX	EQU	＞8000	；LARGEST NEGATIVE NUABEK
LAST	EQU	＞A7FF	；LAST EYTE OF RAM USED

```
＊
＊adap＇IIVE lattice predictor shell ＊
```

AORG＞A800

START	L．P P	＊SP0	；UEFINE SHELL NURKSPACE
	BL	aTMINIT	；InItialize The timer
	BL	a CLFRAM	；CLEAR RAM
	LI	R9，ATPTP0	：LOAD ATO O POINIER
	BL	aIINIT	：luIfIALIZE ATD 0
	LI	R9，ATPTF1	；load atd 1 pointer
	BL	aATINIT	；InIIIALIZE ATD 1

* SHELL MAIV LOOP (TIMER INTERRUPT SERVICE)

TMRSRV	Lx:PI	WSPO
	L1	R12,TMRCRU
	Sou	IIARENB
	LI	R1, >0000
	BL	aREAD
	LI	R9, LTPTR0
	BL	a ALP
	LI	R9, ATPTR0
	8L	a ATD
	AOV	R1,RO
	LI	R1, >0000
	BL	awRITE
	MOV	R4,R0
	Lif	R1, >0002
	BL	awRITE
	MOV	K7,R0
	LI	R1, >0000
	3L	OPUT
	LI	R1, >0001
	BL	a READ
	LI	R9,LIPTR1
	BL	a ALP
	L1	RG, ATPTR1
	BL	a ATD
	MOV	R1, R0
	L 1	R1, >0001
	BL	antITE
	MOV	R4,R0
	L1	R1, >0003
	BL	duRTTE
	MUV	R7.R0
	LI	R1, >0001
	BL	aPUT
	LIMI	IMRMSK
	JMP	S +0

```
:DFFIAE SHELL NORḰSPACE
; LUAD TIMER CRU-BASE ADDKESS
: ENABLE THE TIMER
; LOAD A/D CHANNEL NUMBER
;READ A/D CHANNEL O
;LOAD LATTICE O POINTER
:INVOKE LATTICE PREOICTUK
;LUAD ATD O POINTER
;INVOKE ADAPTIVE THRESHOLU DETECTOR
;GEI E(M)**2
:LOAD D/A CHANNEL NUMBER
; OUTPUT E(M)**2 TO D/A CH 1)
;GET OA(M)
; LOAD CHANNEL 2
; WKITE GA(M) TO D/A CH }
;GET ALAPM(M)
; LOAD CHANNELJ O
;WRITE ALARM TO OUTPUT O
;LOAD A/D CHANAEL NUMFEK
;READ A/D SHANNEL 1
; LOAD LATTICE 1 POINTER
; INVGKE LATEICE PREDICTUR
:LOAD ATD 1 POINTER
; INVOKF ADAPTIVE THFESNOLD DEIECTOR
;GET &(M)**2
:LOAD D/A CHANNEL NUMBER
:OUTPUT E(M)**2 TO D/A CH 1
:GET OA(F)
; luad chanNEl 3
;vRITE QA(M) TO D/A CHi 3
;GET ALARM(M)
; LOAD OUTDUT CHANNEL NUMDEK
: DUTPUT ALARM TO OUTPUT CHANNEL O
; ENABLE TIMER INTERRUPT
; WAIT FOR TIMER IMTERRUEI
```

*
* tIMER INITIALIZATION kUUTINE
*
* REGISTEK USAGE: RU,R11,R12
*

TMINIT	LI	R12, ADCCRU
	S6O	ADMODE
	41	R12, BRANCH
	MOV	R12, ©TMRVEC
	LI	R12, TMRSKV
	MUV	K12, @TMKVEC+2
	LI	R12. IMRCRU
	LI	RO, TMRCNT
	LDCR	RO, 0
	SHZ	TMMODE
	H	*R11

: LOAD A/D CRU-BASE ADDKESS : A/D MEMGRY-MAPPED MODE : LGAD BRANCH INSTRUCTIUN ; STURE AT IIMER VECTOR ADDRESS : LOAD TIMER SERVICE ADURESS : STORE AT TIAER VECTOR + 2
: LOAD TIMER CRU-BASE AUURESS ; LOAD TIMER COUINT
; SETT UP TIMER
; TIMER INTERRUPT MODE
; RETURN TO CALLER
*

* clear ram ruutine
*
* REGISTER USAGE: R0,R11
*

CLRHAM LI RO, WSPI :LUAD ADDRESS OF WURKSYACE 1 LOOPC
*RO+
HO, LASI + 1
LOOPS

* H 11
: CLEAK KA付
; END OE RAM?
; LUUP IF NUT
; ELSE PETURN TO CALLEK

*
* a/d read sunhuutine
*
* REGISTER USAGE:
* RO RETURNS SAMPLE FROM A/D) IN ($2 / 0 / 11$) FORMAT
* RI CUNTAINS A/D CHANNEL *
* R11 SUBRUUTINE LINKAGE REGISTER

*		
READ	SLA	$R 1,1$
	AI	R1, ADCO
	MUV	*R1, RO
	CI	RO,NEGMAX
	JIVE	S +
	INC	RO
	SHA	RO, 1
	B	$* R 11$

; FORM A/D CHANNEL DISPLACEMENT
; FORM A/D CHANNEL AUDRESS
;READ FROM A/D
;DISALLOW LARGEST NEGATIVE
;REFURMAT IO
;RETURN TO CALIER
$(1 / 0 / 11)$
$(2 / 0 / 11)$

* D/A arIte subroutine

```
* REGISTER USAGE:
```

* RO contains data to be dutput (lfft justified)
* R1 CUNTAINS D/A CHANNEL *
* R11 SUBRUUIINE LINKAGE pEGISTER
*

NRITE SLA PI, FORM D/A CHANNEL DISPLACEMENI
AI R1,DACO ;FORM D/A CHANNEL ADDRESS
HOV RO, \# R1
B *R11
; FORM D/A CHANNEL DISPLACEMENI
; FORM D/A CHA:NELL ADDRESS
; OUTPU'T DAIA TO D/A CONVERTEK : RETUNN TO CALLER
*

* put subruutine
*

REGISTER USAGE:
*

* HO INUICATES ALARM TRUE IF NONZERO
* RI JUPPUT CHANNEL NUABFR (O OR 1)
* R11 SUBRUUTINE LINKAGE REGISTER
* NOTE: OUTPUT FALLS FOR APPROX. . 66 MICROSECUPDS
*

PUT	MOV	RO,RO
	JEQ	KETP
	LI	H12,SELCRU
	CI	R1, >0000
	JEQ	PUTO
	C1	R1, >0001
	JEU	PUT1
	Jinp	RETP
(1)T0	TB	SEL1
	Jinp	RETP
PUT1	TB	SriL 2
RETP	B	* R11

```
;ALARM TRUE?
;NO, DON'T OUTPUT
;LOAD SEL CRU BASE ADDRESS
; OUTPUT CHAVINEL O?
; YESS
;OUIPUT CHANMEL 1?
; YES
;TNIDOLE SELL LINE
;TVIDDLE゙ SEL2 LINE
;REIURN TO CALLER
```

*
* LE゙AST MEAN SQUARE ADAPTIVE LATTICE PREDICTOP
* KEGISTER USAGE:
* RO RETURNS PREDICTOR ERROR
* R1 IHKU Ro USED
* Kg puINTER
* R10 SAVES RETURN LINKAGE
* R11 LuCAL SURKOUTIIVE RETURN LINKAGE

ALP	MUV	R11,R10	; SAVE RETURN LINKAGE	
	MUV	RO, OFF (R9)	$; F(M, 1)=X(M)$	(2/0/11)
	MOV	RO, aG (K9)	$; G(M, 1)=X\left(N_{i}\right)$	($2 / 0 / 11$)
	LI	KR, N	; LOAD \# Of LATTICE STAGES	
LUOPL	MOV	ab(R9), R1	; LUAD $3(M, L)$	$(1 / 0 / 15)$
	MOV	$a \mathrm{G} 1(\mathrm{R9})$, R2	; LOAD G(M-1,L)	$(1 / 1 / 14)$
	HL	amULT	; $b(M, L) * G(M-1, L)$	(2/1/29)
	MOV	R2,R4	; COPY ARGUMEMT	
	MOV	R3, R5	;	
	MUV	OF(R9),R2	; LOA! F (M,L)	$(1 / 1 / 14)$
	CLR	R3	; EXTEND PRECISIUN	
	BL	a ASHR	; KEFORMAT F (M, L)	(2/1/14)
	S	R4,R2	; $F(M, L)=B(M, L) * G(M-1, L)$	$(1 / 2 / 29)$
	S	RS, H 3	;	
	JOC	$\mathrm{S}+4$;	
	DEC	82	;	
	BL	a ASHL	; CLIP TO	(1/1/29)
	BL	aEDIT	; ROUND TO	$(1 / 1 / 14)$
	MUV	R2, $\mathrm{FF}+2$ (R9)	$\begin{aligned} & ; F(M, L+1)= \\ & ; F(M, L)-B(M, L) * G(M-1, L) \end{aligned}$	$(1 / 1 / 14)$
*	MOV	ab(R9), K1	; LOAD B (N, L)	$(1 / 0 / 15)$
	MOV	eF(R9), R 2	; LOAD F (M,L)	$(1 / 1 / 14)$
	BL	amULT	; $B(M, L) * F(4, L)$	(2/1/29)
	MOV	K2,R4	: COPY ARGUMENT	
	MOV	R3, R5	;	
	MOV	aG1 (R9) , R2	; LOAD G (M-1,L)	$(1 / 1 / 14)$
	CLR	R3	: EXTEND PRECISIUN	
	BL	dASHK	; HEFGKMAT G (M-1,L)	$(2 / 1 / 14)$
	S	R4, R2	$; G(M-1, L)-B(M, L) * F(M, L)$	$(1 / 2 / 29)$
	S	R5, R3	;	
	JUC	S+4	;	
	DEC	$R 2$;	
	BL	a ASHL	: CLIE TO	$(1 / 1 / 29)$
	BL	aEDIT	; ROUND TO	$(1 / 1 / 14)$
	MOV	R2, $1 \mathrm{GG}+2$ (R9)	; $G(M, L+1)=$	
*			; $G(M-1, L)-B(M, L) * F(M, L)$	$(1 / 1 / 14)$

B－7

Muv
AdS
MPY
MOV
AbS
MPY
A
A
JiNC INC
$B L$
$B L$
LI
mpy
MOV
nov
LI
MOV MPY

A
A
JNC IMC ML BL
inu MOV

CLR
C I
JLT
mov
MOV
bL
mov
MOV
múv
१uv
あし
A
A
JNC
INC
3L
－
MOV
ABS
SRA
LI
in PY
D IV
INV
JLT
Ne：G
MuV

QF（R9），R2
R2
R2，R2
aG1（R9），R4
R4
R4，R4
R4，R2
k5，R 3
$\mathrm{s}+4$
R2
áASHL
aEDIT
R1，GAMMA
R1，R2
R2，R4
R3，R5
R1，BETA
aV（R9），H2
R1，R2
Q4，R2
R5，R3
$\$+4$
R2
aASHL
aとUIT
R2，aV（R9）
R2，R7

R6
R2，EPSLON
BYPASS
$\mathrm{af}+2$（R9），R1
aG1（R9），R2
amULT
R2，R4
R3，R5
aF（R9），K1
$a G+2$（R9），R2
anult
R4，R2
R5，R3
$\mathrm{S}+4$
R2
aASHL
aEDIT
R2，R6
R2
R2， 1
H1，ALPHA
R1，R2
R7，R2
Ro
$s+4$
R2
R2，R6

：LUAD F F （ H, L ）	$(1 / 1 / 14)$
； $\operatorname{ABS}(\mathrm{F}(\mathrm{M}, \mathrm{L})$ ）	＋（1／1／14）
； $\mathrm{F}(\mathrm{M}, \mathrm{L})$＊＊2	＋（2／2／28）
；LOAD G（M－1，L）	$(1 / 1 / 14)$
；ABS（G（M－1，L））	＋（1／1／14）
；G（ $M-1, L) * * 2$	＋（2／2／28）
$; F(M, L) * * 2+G(M-1, L) * * L$	＋（1／3／28）
；	
；	
；${ }^{\text {a }}$	
；CLIP TO	＋（1／2／28）
；ROUND TO	＋（1／2／13）
；GAMMA $=1-$ bETA	＋（0／0／10）－5
；GAMMA＊（F（M，L）＊＊2＋G（M－1，L）＊＊2）	
；Cuey argumeror	＋（7／2／23）－5
；	
；LOAD BETA	＋（1／0／15）
；LOAD V $\mathrm{M}-1, \mathrm{~L})$	＋（1／2／13）
； EETA＊V（M－1，L）	＋（2／2／28）
；BE，TA＊V（M－1，L）＋	
；GAMmA＊$\left(\mathrm{F}(\mathrm{M}, \mathrm{L}){ }^{*} * 2+\mathrm{G}(\mathrm{M}\right.$	L）＊＊2）
，	＋（1／3／28）
；CLIP TO	＋（1／2／28）
；RUUAD TO	＋（1／2／13）
；V M, L ）$=$ BETA＊V（M－1，L）＋	
；GAMMA＊（F（M，L）＊＊2＋G（M－1，L）＊＊2）	
；	＋（1／2／13）

$$
; r=0
$$

$$
; V(M, L)<E P S L O N ?
$$

;YES, GYPASS COMPUTATIUN OK I

```
; LOAD F(in,L+1)
    (1/1/14)
;LOAD G(M-1,L)
    (1/1/14)
; F'(M,L+1)*G(%-1,L)
    (2/2/28)
;COPY ARGJMENT
;
; LOAD H゙(M,L) (1/1/14)
;LOAD G(N,L+1)
    (1/1/14)
; F(M,L)*G(M,L+1)
                                (2/2/28)
;F(M,L+1)*G(M-1,L) + F(M,L)*G(M,L+1)
;
;
;
;CLIP TU
    (1/2/28)
;ROUND TO (1/2/13)
;SAUE SIGIN IYFO
;ABS( )
; REFORMAT
;LOAD ALPHA
;ALPHA*ABS( ) +(\varepsilon/2/23)-5
; ALPHA*AES(
                                    )/V(M,L) +(7/0/9)=5
;TEST SIG'J
;RESTORE SIGN
;T = ALPHA*(F゙(M,L+1)*G(M-1,L) +
; F(M,L)*G(M,L+1))/V(H,L) (7/0/9)-5
```

BYPASS	LI	R1, U	: LOAD U	$+(1 / 0 / 15)$
	MOV	ab (R9), R2	; LOAD B(M,L)	(1/0/15)
	BL	a MULT	; U*B(1A,L)	(2/0/30)
	A	Ro,R2	; B $(M+1, L)=U * B(M, L)+1$	$(1 / 1 / 30)$
	BL	OASHL	; CLIP TO	(1/0/30)
	BL	atdit	; ROUND TO	(1/0/15)
	SOV	R2, ab(R9)	: StURF. \quad ($M+1, L)$	(1/0/15)
	MOV	aG(R9), dG1 (K9)	; $G(M-1, L)=G(M, L)$	$(1 / 1 / 14)$
	INCT	R9	; Bump pointer	
	DEC	R8	;CUUNT $=$ COUNT -1	
	JEQ	ENDLOP	; QUIT IF COUNT=0	
	B	aloopl	; ELSE PROCESS next stage	
ENDLOP	MOV	ạG(R9), ọG (R9)	; $G(N-1, N+1)=G(n, N+1)$	$(1 / 1 / 14)$
	muv	dF (R9), R0	; LOAL PPEDICTOR ERROR	(1/1/14)
	MUV	R0,R2	; CUPY E(M)	$(1 / 1 / 14)$
	ABS	R2	; $\operatorname{ABS}(E(M))$	$+(1 / 1 / 14)$
	MPY	$\mathrm{R} 2, \mathrm{H} 2$; E(4)**2	+(2/2/28)
	BL	a ASHL	; Clip Tu	+(1/2/28)
	-	acdit	; RUUND to	+(1/2/13)
	MUV	R2, R1	; Cupy ém) for output	$+(1 / 2 / 13)$
	SRA	RO, 4	; HORMAT E(M) FOR OUTPUT	$(5 / 1 / 10)$
	SRA	R1,4	; FORMAT E゙(M) 2 2 FOR OUTPUF	$+(5 / 2 / 9)$
	B	*R10	; RETURN TO CALLER	

* ADAP'ilve threshold detector routine

B-10

*

* $2^{\prime} \mathrm{S}$ Cumplervent SIGNED MULTIPLY ROUTIME
* H2:R3 <--R1*R2
* RO IS MODIFIED
* R11 IS USED FOR RETURN LINKAGE'
*

iUULT

CLR	RO
MOV	R1,R1
JGT	$S+6$
JEQ	$S+4$
MOV	R2,RO
MUV	R2,R2
JGT	$S+6$
JEN	$S+4$
A	$R 1, R 0$
MPY	R1,R2
S	$R O, R 2$
H	WR11

```
;SIGN FIX = 0
;TEST SIGN OF R1
;
;
;SIGN FIX= (R2)
; [EST SIGN OF R2
;
;
;SIGNFIX=SIGNFIX + (KI)
;R2:R3 <-- R1 * R2
;FIX SIGN OF RESUL'T
;RETURN TO CALLEF
```

* EDIT (ROUNDUP) ROUTIME
* R2 < = $-\operatorname{tDIT}(R 2: R 3)$
* R1 IS USEU FOR SUBKOU'IINE LINKAGE

EDIT	Mov	R3, R3	: TEST MSB OF LOW ORDER WURD
	JGT	EDT	; DON'T INCREMENT IF' ZERO
	JEQ	EDT	;
	INC	R2	: INCREIENT HIGH-ORDER WOKD
	JNO	EDT	;SKIP IF NO OVERFLOW
	LI	R2, POSMAX	; LUAD LARGEST POSITIVE NUMBEK
EDT	CI	R2, NEGMAX	; DISALLON LARGESI negative inu.
	Jive	$\mathrm{S}+4$;
	INC	R2	;
	B	*R11	; RETURN TO CALLER

DUUGLE PKECISIJN RIGHT ARITHMF,IIC SHIFT
*

* R2:R3 <-- ASHR(R2:R3)
* R11 IS USECD rOR SUBROUTINE LINKAGE

ASHR	SKL	R3,1	; SHIFT LONER WORD RIGHT
	SRA	R2,1	; SHIFT HIGHER wORD RIGHT
	JHC	S +6	;SKIP IF LSB NAS ZERO
	A I	R3, ivEGMAX	; SET MSB OF LOWER WORD TO
	B	* R11	;RETUFN TU CALLER

*
* DDUBLE PRECISION LEFT ARITHMETIC
* SHLF' NITH UVERFLOw CHECK
*
* R2:R3 <-- ASHL(R2:R3)
* R11 IS USED FOK SUBROUTINE LINKAGE
*

ASHL	SLA	R2,
	JINU	ASL
	JNC	PASL
	LI	R2, NEGMAX
	CLR	R3
	JMP	RASL
PASL	LI	R2, POSMAX
	SETO	R3
	JMP	RASL
ASG	SLA	R3,1
	JINC	S+4
	INC	R2
RASL	O	\#R11

```
;SHIFT HIGHER WORD LEES
;OVERFLOW?
; NAS IT POSITIVE?
;NO, LOAU MAX NEG. VALUE
;
;RETUURN TO CALLER
; YES, LOAD MAX POS. VALUE
;
; KETURA TU CALLEER
;SHIFT LONER. WORD LEFT
;SKIF IF MSB NAS ZEPO
;SET LSG OF HIGHER ORDER NORD
;RETURN TO CALLEER
```


ON A BLOCK FLOATING POINT IMPLENENTATION OF AN INTRUSION-DETECTION ALGORITHM

by

ROBERT JOSEPH FOGLER
B.S., Kansas State University, 1977

AN ABSTRACT OF A MASTER'S THESIS
submitted in partial fulfillment of the
requirements for the degree

MASTER OF SCIENCE

Department of Electrical Engineering
K.ANSAS STATE LNIVERSITY

Manhattan, Kansas

The main objective of this paper is to present various aspects of implementing a specific intrusion-detection aigorithm on a microprocesscr using block floating point arithmetic. In particular a TI 9900 based rest system is considered.

The proposed algorithm is able to detect intruder stimuli which are broadband and transient in nature, while rejecting correlated noise which may be present with the intruder signal. The algorithm consists of two main functional blocks: an adaptive lattice predictor (ALP) and an adaptive threshold detector (ATD).

The ALP is used to remove correlated noise hence reduces the number of false alarms, while improving the signal-to-noise ratio when intruder stimuli are present, the reby simplifying the task of the ATD.

The ATD uses a variance estimate of a noise segment, and a signal plus noise segment from the AlP output sequence. It then compares a function of these estimates with a fixed threshold.

Experimental results demonstrating the performance of the intrusiondetection 3 gorithm using data obtained from an actual test site are included.

