
ON A BLOCK FLOATING POINT IMPLEMENTATION
OF AN INTRUSION-DETECTION ALGORITHM

by

ROBERT JOSEPH FOGLER

B.S., Kansas State University, 1977

A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Electrical Engineering

KANSAS STATE UNIVERSITY
Manh at t an , Kans as

1979

Approved by

:

Major Professor

UD

H7?

To my loving parents,

without whose encouragement

this work would not have

been possible.

TABLE OF CONTENTS

Chapter • Page

I. INTRODUCTION 1

II. ADAPTIVE LATTICE PREDICTOR 3

III. ADAPTIVE THRESHOLD DETECTOR 12

IV. BLOCK FLOATING POINT NOTATION 15

A. NOTATIONAL DEFINITION 15

B. EQUIVALENT FORMATS AND THE NORMALIZED FORM 17

C. ALIGNED FORMATS 18

D. ARITHMETIC OPERATIONS 19

1. Clipping 19

2. Arithmetic Shifts 20

3. Addition and Subtraction 21

4. Multiplication and Rounding 2 3

5. Division 25

6. Multiplication and Division by Integer
Powers of 2 2 7

7. Implementation- dependent Formats 28

V. MICROPROCESSOR IMPLEMENTATION 31

A. HARDWARE 31

B. SOFTWARE 34

C. EXPERIMENTAL RESULTS 33

VI. CONCLUDING REMARKS 3 7

REFERENCES 38

ACKNOWLEDGMENTS 40

APPENDICES

A. A Block Floating Point Format Tutorial Program

B. Intrusion-Detection Algorithm Source Listing

CHAPTER I

INTRODUCTION

The use of adaptive prediction to improve the performance of perimeter

sensors for intrusion-detection was introduced in [1], Such sensors are

buried cables, typically 100 meters in length, deployed about an area

containing a resource to be protected, as depicted in Fig. 1. The response

of a sensor to a given stimulus depends upon the nature as well as the proxi-

mity of the source. Such sensors not only respond to intruder stimuli, but

also a variety of other sources causing poor signal-to-noise ratios. Examples

of such noise sources are shown in Fig. 2.

Adaptive prediction is employed since the ambient noise is non-

stationary, or at best, stationary on a short-term basis. Conversely,

intruder signals are transients whose spectra are broadband and relatively

"white" over the passband of interest--i.e. , 0-4 Hz. Hence they pass through

the adaptive predictor essentially unchanged. Since the predictor strives to

decorrelate the input noise, most of the correlated components are removed,

resulting in a substantial reduction of noise power at the output. Thus,

the signal-to-noise ratio at the output for an intruder signal embedded in

noise is greatly improved.

From the above discussion it follows that the overall problem of

detecting an intruder is equivalent to that of detecting a random signal in

white noise. The solution to this problem is well-known for the case of

stationary signals [2,3]. An approximation is employed since the signal of

interest may be stationary only in the short-term. To this end, an adaptive

-2-

threshold detector (ATD) is used which processes the predictor output and

generates a "1" if an intruder is present, or a "0" if an intruder is not

present.

The adaptive predictor is implemented as a lattice structure (ALP)

because it has superior convergence properties to that of transversal filter

structures, (^due to the successive orthogonalization of the prediction error

and the decoupling of the filter coefficients (weights) at each lattice stage

[5,6].^ Moreover, the lattice structure exhibits a lower sensitivity to

roundoff noise [4] as is the case with limited precision implementations.

The ALP-ATD combination, heretofore referred to as the intrusion-

detection algorithm, is shown in Fig. 3.

-2a-

CO

SI e

>-
<

^*""N

k

<D

U
u

o

(ft

•H
o
c

O

<u

6
o

C

•p
-

e
X
o
i-H

&

o
tr,

g
en

•H

<

-3-

CHAPTER II

ADAPTIVE LATTICE PREDICTOR

An important concept related to the lattice filter structure is the

notion of "forward" and "backward" prediction [6].

Given the input sequence x(n-l) , x(n-2) , . ..x(n-N) , forward prediction

implies that the current input sample x(n) is to be predicted. If x(n)

denotes a linear estimate of x(n) , then

x(n) = -[d
1)N

x(n-l) + d^
N
x(n-2) ... + d^xCn-N)] CD

where the d^^ ^ are the forward prediction coefficients of an N-weight linear

predictor. The corresponding prediction error is given by

e
N
(n) = x(n) + djjx

n
. (2)

The d. j. are computed so as to minimize the mean -squared error from

V
d. M

E ^,(n)] =0, (3)
i,N

which leads to

E[x(n)x
n] = Etx^djj. (4)

If the process is wide-sense stationary one can denote ETx(n)x] by rXT and
n N

T
E[x x] by ^ and obtain

r
N = -^ CS)

where

and

r
N

= ^ (1) W2
> ***W

P
*

= R
xx(l)

R
xx(0) R

xx(l)

R
xx^

1

Rxx(0) Rxx(l) Rxx(2)
R xx(N-l)

R xx(N-2)

u^w-y R
xx^

N- 2) R (0)
xx

(6)

(7)

It is observed that the autocorrelation matrix R, is Toeplitz.

In backward prediction, given the same input sequence, a past input

sample x(n-N-l) is to be predicted. If x(n-N-l) denotes an estimate of that

sample, then

x(n-N-l) = -[c
1 N

x(n-1) + c
2 N

x(n-2) + c^xU-N)] (8)

where the c. „ are the backward prediction coefficients of an N-weight linear

predictor. The corresponding prediction error is given by

w
N
(n) = x(n-N-l) + c^ (9)

Again, computing the c.
N

so as to minimize the mean-squared error

leads to

c m —
*K

where

(10)

sm " [*W-N) RW (N-1) R^CN-2) ... R^Cl)]N xx XX (11)

and R^, is given by (7)

-5-

Observing that s and r are related by

s
i,N

=: r
N+l-i,N ' (12)

from (5) and (10) it is apparent that

C
i,N

= Wi,N '
i=1

' 2 >"- N « (13)

From the above discussion it follows that the forward prediction

coefficients for an N+l weight predictor can be obtained from

N+l 'ViVr (14)

The above matrices can be partitioned [9] as follows:

R
•xx (1)

R (2)

R
xx(N)

R
XX

(N+D

R
xx(0)

R
xx(l) 8

xx(2) ...
R
xx(N-l)

R
xx(N)

R
xx(l)

R
xx(0)

•

R
xx(l) ...

R
xx(N-2)

R
xx(N-l)

R
xx(N-l)

R
xx(N-2)

R
xx(N-3) ...

R
xx(0)

•

_

R
*ki.L_

Rxx^ R (N-l)
XX

R (N-2)
XX

... R (lj
XX

R (0)
xx'

***]

It is apparent that the above expression can be written as

xx^ '

i

i Ns

N
i r ro)
I XX

^(1 (IS)

From matrix bordering [10,11], the following can be obtained:

n:
6 ll! B

12

ff
21 f

ff
22

r
N

(16)

where

-6-

and

'11

-1 T -1

d-1 Jj
S
N

S
N "n

6 - ^B
12

"
? '

s
T

R"
1

B
21 " "

?
1

6
22

=

f
»

C = Rxx(O) - S
N "n

S
N

Now, (16) can be expressed as

^+1
=

V 1
!

\-
! o

"o"To"
i

N
R.~~(N+I)
xx

1

I

*N
S
N

S
N % l'%

S
N

TZ-1~~~ ;"""
i~~

" S
N ^

r
N

R (N+lJ
xx

which leads to

^+1
= \lrN R

ri

1
s
n

s
n

R
^
1

-nI"^
1

s
n Vn+1)

• S
N V r

N
+ R

xx(
N+1)

(17)

From (5) and (10) , the above expression reduces to

*H+1
= "0

1

I

C
N

S
N *H

+ C
N * <*«

- S
N

d
N

+ R
xx

(N+1 ^

(18)

where R (N+l) - s„ cL is a scalar. Letting

i
i„ 1

. |W»a-'Ss

(18) reduces to

-7-

*S+1
= "5 h*] "I

(19)

Thus, it follows that

d
i,N+ l

= d
i,N - ^1 C

i,N '

WA-N

and from (13)

,

(20)

d
i,N+ l

= d
i,N ' *N+1 Wi.N '

i=1
' 2 '-'-N

In the z- trans form domain,

(21)

and

where

l^iCl"
1
) - D^z" 1

) - ^/%W

V*) " £ d^^" 1
with d

Q)N
1

(22)

(23)

(24)

N+l
and V z) - E c.

N
z"

]

with ^ »1.
1=1 •

T251

Again, from (13) we have

V z) - z-^Vz" 1
) (26)

The forward and backward prediction errors are respectively,

E
N
(z) = X(z)D

N
(z)

and W
N
(z) = X(z) (^(z).

(27)

(28)

Substitution of (27) into (22) yields

E
N+1

(z) = E
N
(z) - ^W

-8-

°r e
N+ l

(n) = e
N
(n)

" h*lVn) ' (29)

Now, from (28) and (26),

W
N+1

(z) = X(z)[z-
(N+2)

D
N+1

(z-
1
)] (30)

Substitution of (30) into (23) results in

= 2
_1

[G
N
(z) - K

N+1
D
N
(z)]X(z)

which leads to

W
N+1

(z) = z^tW^z) - K^U)]

w
N+1

(n+l) = w
N
(n) - ^ e^Cn). (31)or

For notational convenience an auxiliary backward prediction error ww (n)

is defined as

From (29) and (32) the following difference equations describe the lattice

predictor shown in Fig. 4.

x(n) = e
Q
(n) = w

Q
(n)

e
£
(n) = ^..(n) - K^w^n-l)

and w^(n) - w^Cn-1) - K^e
£ _ 1

Cn) , I = 1,2, ...N. (33)

The above lattice structure can be made adaptive using several

strategies [5-8] which yield time-varying methods for computing the lattice

-8a-

— A

k \<
*—

5

s

*4>

<

i

tsl

*»<

o
H
P
4J
(0

A3

Q.
<D

P
0)

I

c
o

•H

-9-

weights K^ by minimizing the mean-squared prediction error. The method of

steepest descent [5,6] is employed here since it involves only scalar

operations and therefore keeps the computational burden to a minimum.

If the total prediction error is denoted by

s^Cn) = e^(n) + w^(n) , (34)

the lattice weights K» are updated by

3s^(n)
K
£
(n+ 1) =K

£
(n) -

Q
^-

C 35)

where K^(n) denotes the value of K„ at time n, and (lis a convergence

parameter. From (34)

2
Ss^tn) 3e^(n) 3 w^(n)

W^T = 2ei™ aic^nT
+ 2^ (n)

rqtnT • ^
Additionally, (33) implies that

3K
£
(n)

=
-W£-l

Cn" i:i

3w^(n)
and

3lJ(nT
=

-e £-l
(n) '

(37)

Substitution of (36) and (37) in (35) leads to

KfcOvH) = K£ (n) + 2$[e£(n)w
£ _ 1

(n-l) + ^(nJe^^Oi)] (38)

As discussed in [6], due to the successive orthogonalization and

decoupling properties of the lattice structure, the convergence parameter

can be computed independently at each lattice stage. Moreover, the power in

-10-

the forward and backward prediction error sequences decreases with each

2
successive stage. Thus, if o» denotes the power estimate at the £-th stage,

it can be updated [5] using the relation

o\{ji) = 3a|(n-l) + (1-8) [e|(n) + w^(n-l)
] (39)

where |$ |
< 1 is a smoothing parameter. Thus the normalized convergence

-n a
parameter u assumes the form — where a is a constant, and the equation

for updating the lattice coefficients becomes

K£(n+1) = K£ (n) + -^— [e (n) w .(n-1) + w (n)e (n)] . (40)

o|Cn)

/ In practice, the above relation must be slightly modified to account

2for two problems. The first concerns the case when the power estimate a p is

2very small. Thus, division by Op in (40) could cause the algorithm to become

unstable. This condition can be avoided by not updating the lattice/

coefficients if

o
2

z (n) < z) (41)

where e is a small positive constant.

A second problem involves a desensitization of the predictor over

the long-term as demonstrated for Widrow's LMS (least-mean -square) predictor

in [12,13]. This effect is referred to as the no-pass phenomenon. It occurs

when the predictor with sufficient number of coefficients first adapts to

higher levels in the input, decorrelating it as much as possible. It then

adapts to very low-level signal components. As such it tends to create an

overall transfer function which is close to zero over a significant portion

11-

of the passband. It is this condition which eliminates noise as well as

intruder stimuli. Solutions to this problem are given in [13], one of which

involves a slightly modified form of the LMS algorithm. A corresponding

modification can be made to the lattice predictor as follows:

K^n+1) = UK
£
(n) + -yL_ [e

£
(n) ft

£
(n-1) + w (n) e

£
(n)] (42)

a »(n)

where u is a constant arbitrarily close to 1.

In summary, to account for both the problems cited above, (40) can

be expressed as

K
£
(n+ 1) =uK

£
(n) + -g$- [e (n) w^^n-1) ft (n) e (n)] (43)

o"^(n)

. 2
where <-> = if a£(n) < e

and 6 = 1 if tf/(n) > e

-12-

CHAPTER III

ADAPTIVE THRESHOLD DETECTOR (ATD)

Since the ALP tends to remove the correlated components from input

noise while passing the broadband and relatively "white" intruder signals,

the ATD need only be capable of detecting intruder signals in essentially

white noise.

Thus, we make the following assumptions:

1) Noise and intruder sequences have zero mean.

2) Both sequences have Gaussian distributions.

3) Successive noise and intruder samples are uncorrelated.

Then, an optimum decision rule [2] can be obtained.

2 2
Let o" and denote intruder and noise variances respectively, and

e. denote the predictor output at time j. Then the conditional probability

density function given that no intruder is present, and the conditional

probability density function given that an intruder is present, are

respectively

2 2
, -e./2cT

f(e |0) = —i— e J n
, e. = n.

]
/2 7ran

J 3

1 <'^
and f(e.|l) = e J e. = n. + s. (1)

J /27ra J J J

2 2 2
where a = a + a .

s n

Using a likelihood ratio approach, the decision that an intruder is

present in M samples is given by

-13-

M £(e.|l)

3-1

> K
fCe.|0) - K

l
(2)

where K.. is a constant. Substitution of (1) in (2) leads to

M£n&* 1 1

n

-. M

j=l

eT > K.
J - 1

(3)

2 2 2
Since a = a + <J , (3) can be rewritten as

s n'

^ 2>, 2

ft '- n

2
a

s

K
x f £n -y

n

(4)

2 2
Note that a /a is the noise-to-signai ratio at the output of the predictor.

2 2
If (7 /a is assumed to be much less than 1, then (4) becomes

n s

or,

M

E e
2

> 2a
2

Pi J- n 'i-IHj
n

(5)

M
I I>

2
» K, a

2

M f-* i — 2 n
j=l

(6)

where

2K- la
1 o) S

a
n

Thus from (6) , the optimum decision rule is to declare that an intruder is

present if the variance of the predictor output sequence over a M-sample

interval is greater than or equal to a fraction of the noise variance. In

-14-

practice, however, the noise may only be stationary on a short-term basis.

Moreover, the assumptions given above may only be approximately correct.

Thus, a suboptimum decision rale is adopted, declaring that an intruder is

present if

1=1 J 1=1 J

where K and 9 are constants,

1
M

2
r? >!e. . | is an estimate of the ALP output at time j

,

i=l J
~

and - J]e. .

n
denotes the corresponding noise variance which is

L

£
j-i

estimated D samples in the past, (see Fig. 5) . The delay term D is intro-

duced to minimize the error in the noise variance estimate due to the

possible presence of an intruder signal. The above decision rule is

referred to as the ATD algorithm.

-lUa-

Jp
•H

o
60
i-H

cd

Q
H
<
0)

xp
o
*
be
c
•H
fi
•H
C8

+->

*
<D

cu

.

Lfl

•

GO
•H
Ct,

-15-

CHAPTER IV

BLOCK FLOATING POINT NOTATION

Intrusion-detection algorithms have been implemented in the past

[1,14] using a block floating point notation similar to that described in

[15]. Tne basic idea is to represent numbers in the form (P/OJ , where P

indicates the number of integer bits, including sign, to the left of the

binary point; Q indicates the number of bits of fraction to the right of

the binary point such that P + Q always equals the word length. This con-

struct allows one to keep track of the position of the binary point through

arithmetic operations via a simple set of rules [14,15],

This notation has three basic limitations. First, it does not

describe and therefore cannot avert the condition of arithmetic overflow.

Secondly, it does not describe the degree of resolution obtainable from an

arithmetic operation on two numbers which have fewer significant bits than

the word length. This again implies that an underflow can not be described.

Finally, it cannot conveniently represent numbers of magnitude greater than

N-l -N+l
2 -1 or less than 2 where N is the word length.

In an attempt to improve upon the limitations discussed above, an

alternate block floating point notation has been developed [16].

A. Notational Definition

Numbers are represented in the form +_(S/I/F)E, where:

S is the number of sign bits; I is the number of (integer) signifi-

cant bits to the left of the binary point; F is the number of (fraction) bits

-16-

to the right of the binary point, and E is the power-of-two exponent.

Additionally, since one may have a priori knowledge of the sign of

a number, the following convention is adopted: If a number is positive, a

"+" is prefixed to the above representation. Similarly, if a number is

known to be negative, a "-" is prefixed. If the sign of a number is not

known, there is no prefix. Further, N is defined to be the word length upon

which an operator acts, typically equal to or a multiple of the machine word

length. The above notation is referred to as the block floating-point (BFP)

format.

A number is said to have a valid format if the following conditions

are satisfied:

1) The number of sign bits S must be in the range 1<S<N-1.

2) The number of integer bits I must be in the range 0^I^_N-1.

3) The number of fraction bits F must be in the range 0^_F_^N-1.

4) The power-of-two exponent E must be an integer.

5) S + I + F must be < N.

6) I + F must be * 1.

Some examples of valid formats are given in Table 1 for a 16 bit word length.

Note that if the exponent is zero it is omitted.

TABLE 1. Examples of 16 bit representations.

Format Representation

(1/0/15) S.FFF FFFF FFFF FFFF

+ (2/3/8) 0011 I.FFF FFFF F000

-(6/3/0) 1111 1111 I. 000 0000

(4/0/7) -3 S.SSS FFFF FFF0 0000

-17-

Table 2 contains examples of invalid formats and gives the rule which is

violated, for the case N = 16.

TABLE 2. Examples of rule violations,

Format Rule violated

C5/-2/6) I must be in the range (CKI<N-1)

+(1/5/12) S + I + F must be < N

(0/2/8) S must be in the range (1<S<N-1)

(3/0/0) I + F must be > = 1

Note that the third entry in Table 2 describes the condition of arithmetic

overflow, and the fourth entry describes the condition of arithmetic

underflow.

B. Equivalent Formats and the Normalized Form

In the format description given above, a number can have more than

one representation. For example, the format +(1/0/15) is equivalent to

+(1/2/13) -2, since the binary point is located one bit from the left in the

binary word in both instances, and the number of significant bits is the same.

Moreover, the sign is known to be positive in both cases from the "+" prefix.

Thus, if X denotes the sign prefix, which may be "+", "-" or 0, where

indicates that the sign of the number is unknown, two formats are said to

be equivalent if

XI = X2

SI = S2

II + Fl = 12 + F2

SI + II + El = S2 + 12 + E2

-18-

Equivalence of formats suggests a normalized form in which the binary

exponent E is minimized in absolute magnitude so as to maintain a valid and

equivalent format. The rules for normalizing a format are as follows:

CASE: El = (Format is already normalized)

CASE: E1>0

X2 = XI

S2 = SI

F2 = MAX (0,F1 - El)

12 = II + Fl - F2

E2 = El + II - 12

CASE: EKO

X2 = XI

S2 = SI

12 = MAX (0, II + El)

F2 + Fl + II - 12

E2 + El + II - 12

where the function MAX selects the largest member of the function list, e.g,

MAX (-3,1,2) = 2.

Examples of the normalized form for the case N 16 are given in

Table 3.

TABLE 3. Normalized form examples.

Equivalent format Normalized form

(3/4/5)-3 (3/1/8)

(3/2/6)-3 (3/0/8) -1

(2/4/7) 3 (2/7/4)

(3/4/2) 3 (3/6/0) 1

C. Aligned Formats

In order to perform addition or subtraction of blocked floating point

numbers, the binary points of the operands must be aligned within the machine

-19-

word; i.e.,

SI + II + El = S2 + 12 + E2.

Note that equivalent formats are in fact aligned but include an additional

constraint in that the precision must be the same. Thus aligned formats are

not necessarily equivalent.

Formats are aligned by shifting operands arithmetically left or right

where, in general, a right arithmetic shift propagates copies of the sign bit

into the most-significant bit of the high-order machine word. On the other

hand, left arithmetic shift propagates zeroes into the least-significant bit

of the low-order word. The choice of shifting operands left or right for the

purpose of alignment of the binary point can be answered by the following

queries

:

• Will a left shift cause overflow (S = 0) ?

• Will a right shift cause the loss of a significant bit,
or even underflow (F = 0, I = 0)?

D. Arithmetic Operations

1. Clipping . It is sometimes useful to limit the magnitude of a

number to a maximum value 2 -1, L an integer, setting that number equal to

the limit if exceeded. This allows one to perform operations on the number

such as addition or subtraction without concern for overflow. In terms of

the BFP format, a number is said to be clipped by M bits if the result is

limited in amplitude so as to have a format which contains at least M + 1

sign bits. M is restricted to the range (k_M<S+I+F-l to prevent underflow.

The rules for format clipping are the following.

X2 = XI

S2 = MAX (SI, M+l)
12 = MAX(0,I1 + SI - S2)
F2 = Fl + SI + II - S2 - 12
E2 = El + F2 - Fl

-20-

Sorae examples are given in Table 5.

TABLE 5. Some format clipping examples.

M Operand Result

3

3

4

-(5/0/10)

(1/5/9) -6

(1/2/8)

-(5/0/10)

(4/2/9) -6

(5/0/6) -2

We note that the results are not necessarily in normal form.

2. Arithmetic Shifts . Such shifts can serve two functions. They can

be used to align formats for subsequent arithmetic operations, or they can be

used to multiply or divide numbers by integer powers of two. This last case

is discussed in a later section.

For notational convenience, left and right arithmetic shifts are

treated separately.

The number of left arithmetic shifts M is restricted to the range

0<_M<S-1 where S is the number of sign bits in the operand, in order to avoid

the condition of arithmetic overflow. The rules for left arithmetic shifts

are the following.

X2 = XI

S2 = Sl-M
12 = II

F2 = Fl

E2 = El

For the right arithmetic shifts, the number of shifts M is restricted

to the range 0^MJN-S1-1, where N is the word length. The rales for right

arithmetic shifts are the following

-21-

X2 = XI

S2 = SI + M
F2 + MAX (0, MIN(N-M-S1-I1, Fl))

12 = MIN (II, N-M-Sl)
E2 = El + II - 12.

Some examples for N = 16 are shown in Table 5.

TABLE 5. Examples of right arithmetic shifts.

Direction M Operand Result

L 2 (3/2/7)4 (1/2/7)4

L 1 (2/0/14) (1/0/14)

R 3 (1/5/1) (4/5/1)

R 3 (1/1/13) (4/1/11)

R 3 (1/13/1) (4/12/0)1

Note that the resulting format is not necessarily in normal form.

3. Addition and Subtraction . In order for addition or subtraction

to be performed on two operands, the binary points must be aligned; i.e.,

SI + II + El = S2 + 12 + E2.

There is a further restriction in that for addition, if the operands

for addition and subtraction are not known to have the same sign, then both

operands must have at least two sign bits to avoid the condition of arithmetic

overflow. The rules for addition and subtraction fall under two cases:

CASE 1 Addition: operands have opposite sign (X2 = -XI £ 0)

.

Subtraction: operands have same sign (X2 » XI f* 0).

It is convenient to compute the intermediate quantities

Tl = MAX (S1-S2.0)
T2 = MAX (S2-S1,0)
Ul = MIN (I1+F1+T1, MAX (I1+E1+T1 ,0))
U2 = MIN (I2+F2+T2, MAX (I2+E2+T2 ,0))

.2-

and obtain

X3 =

S3 = MIN (S1,S2)

13 = MAX (U1,U2)
E3 = SI + II + El - S3 - 13
F3 = MAX (Fl - El + E3, F2 - E2 + E3).

CASE 2 Addition: signs of operands are unknown or have same sign.

Subtraction: signs of operands are unknown or have opposite sign.

Again, the intermediate quantities can be computed as follows:

Tl = MAX (Sl-S2,0)
T2 = MAX (S2-S1,0)
Ul = MIN (II + Fl + Tl, MAX (II + El + Tl, 0))
U2 = MIN (12 + F2 + T2, MAX (12 + E2 + T2, 0))

These results yield

IF XI = X2 THEN X3 = XI ELSE X3 =

S3 = MIN (S1,S2)-1
13 = MAX (U1,U2)
E3 = SI + II + El - S3 - 13
F3 = MAX (Fl - El + E3, F2 - E2 + E3).

Some examples are included in Table 6.

TABLE 6. Examples related to addition and subtraction.

C+)

(+)

(+)

Addition

(2/0/11)

(2/0/12)

(1/1/12)

(2/2/6) 10

•(4/1/8) 9

(2/11/0)1

(2/2/6) -5

(4/1/8) -6

(l/0/12)-2

Subtraction

(2/0/11)
(-) (2/0/12)

(1/1/12)

-(2/2/6) 10

(-) +(4/1/8) 9

-(1/12/0)1

-(2/2/6)-5
(-) (4/1/8) -6

£l/0/12)-2

We note that each result is always in normal form.

-23-

4. Multiplication and Rounding . Due to variations in computer hard-

ware, the result of a multiplication can assume several forms. The hardware

configuration which appears to be the most prevalent is the one in which the

product of the largest positive integer that can be stored in a N-bit word,

times itself, yields a 2-N bit result which contains two sign bits to the

left. Any form of multiplication which does not yield this result is

considered special purpose and is not discussed here.

Rules for the multiplication of formats are quite straightforward with

one exception. If both the multiplier and the multiplicand exactly equal the

largest possible negative integer that can be stored in the given word length

N» (e.g., 8000 hexadecimal for the case N=16) , the result is totally accurate,

but possesses only one sign bit. Every other possible combination of values

for the multiplier and multiplicand yields a result which contains at least

two sign bits. In order to maintain a consistent set of rules for the

multiplication of formats, the special case given above is disallowed. Thus,

the rules for multiplication are

S3 = SI + S2
13 = II + 12

F3 = Fl + F2

E3 = El + E2,

where the sign of the result (X3) can be obtained from Table 7.

TABLE 7. Related to rules for multiplication.

XI X2 X3

+

-

+

+ + +

+ - -

-

- + -

- - +

-24-

Again, X = indicates that the sign of the operand is not known. Some

examples are as follows:

(1/0/15) (3/2/7)3
(x) (1/0/15) (x) -(2/0/5)-l

(2/0/30) -(5/2/12)2

+ (2/2/11) -(4/5/7)1
(x) (l/0/9)-l (x) -(2/5/9) -1

(3/2/20)-l +(6/10/16)

Note that the resultant format is of double-word length and is not necessarily

in normal form.

It is often desirable to round the double-word result of a multipli-

cation to a N-bit format. Since a product is guaranteed to contain at least

two sign bits, a double -word left arithmetic shift is typically performed

before rounding to minimize any loss of precision, without concern for

arithmetic overflow. One may however wish to perform arithmetic operations

such as addition and subtraction on the double-word product before rounding.

The choice of rounding before or after an arithmetic operation is made based

upon a tradeoff between speed of execution and the desired precision.

Rounding usually becomes necessary before an operand is to be used in a

subsequent multiplication.

At the machine level, a 2N-bit operand is rounded to N-bits by

incrementing the high-order word if the most significant bit of the low-order

word is a 1. Only the high-order word is retained. This operation has two

problem cases. First, if the operand is of sufficiently small magnitude that

after rounding, the result contains no significant information, underflow has

occurred. Secondly, if the high-order word of the operand exactly equals the

largest, positive integer which can be represented in N bits, (e.g., 7FFF

hexadecimal for the case N = 16) , and the most significant bit of the low-

order word is a 1, overflow will occur. Thus, in the rounding of formats,

-25-

these cases must not be allowed.

Given the above restrictions, the rules for rounding formats are the

following:

X2 = XI

S2 = SI

12 = MIN (II, N-Sl)
F2 = MAX (0, MIN (N-S1-I1, F1+I1-I2))
E2 = E1+I1-I2.

Some examples are given in Table 8 for the case 2N = 32.

TABLE 8. Examples related to rounding.

Operand Result

+ (1/1/1) +(1/1/1)

(1/1/30) (1/1/14)

(1/30/1) (1/15/0)15

(15/2/7) (15/1/0)1

5. Division . Due to variations in computer hardware, the result of

a division can assume several forms. The hardware configuration which appears

to be the most prevalent is one which obeys the following: a double-word

length dividend, divided by a single-word divisor yields a single word

quotient and remainder. The sign of the remainder is the same as that of

the dividend. Arithmetic overflow occurs if the magnitude of the divisor is

less than the magnitude of the high-order word of the dividend. Any hardware

configuration which does not adhere to these criteria is considered special-

purpose and is not discussed here.

Division is a difficult operation to perform due to the persistent

problem of arithmetic overflow. One must always ensure that the divisor is

of sufficiently large magnitude and that the dividend is of sufficiently

-26-

small magnitude as to prevent the overflow condition. Some relief can be

obtained, however, if the divisor is a known constant. In this instance, one

can prevent overflow by guaranteeing that the dividend has more sign bits than

the divisor. This method has the advantage that it is quite easy to implement.

However, it has a disadvantage in that it disallows division with a dividend

having a magnitude in the range {| divisor | + l\ to (|divisor
|

x 2 - ll , a

condition which would not actually cause overflow. The result is a wasted

loss of precision caused by shifting the dividend to the right a sufficient

number of bits to prevent overflow to the nearest integer power of 2. Thus,

if the divisor is exactly a multiple of 2, checking the number of sign bits in

the dividend is optimum. In this case, however, one may wish to perform

the division with arithmetic shifts, a technique discussed in a later section.

Assuming the dividend (operand 1) has a 2-N bit format, the divisor

(operand 2) has a N-bit format, and noting the above restrictions concerning

overflow, the rules for format division for the quotient (operand 3) and the

remainder (operand 4) are respectively:

S3 = S1-S2
13 = MAX (0, 11-12)

F3 = N-S3-I3
E3 - E1-E2+I1-I2-I3

where the sign of the quotient can be obtained from Table 9.

TABLE 9. Related to rules for division.

XI X2 X3

+

-

+

+ + +

+ - -

-

- + -

- - +

-27-

Again,

X4 = XI

S4 = 1

14 =

F4 = N-l
E4 = S1+I1+E1-N-1.

Example :

+ (3/3/16)5 +-(2/0/14)6 = -(l/3/12)-l rem. +(l/0/15)-6

Note that the remainder is in normal form but the quotient is not.

6. Multiplication and division by integer powers of 2 . Arithmetic

shifts are performed either to align the binary point for a subsequent

operation as discussed previously, or to scale an operand by an integer power

of 2. In the latter case, left arithmetic shifts could be considered as

multiplications and right arithmetic shifts as division, by positive integer

powers of 2. For notational convenience, multiplication and division are

treated separately.

In multiplication, M is restricted to the range 0<M<5-1, where S is

the number of sign bits in the operand format, in order to avoid overflow.

The rules for power-of-two multiplication of formats are the following:

X2 = XI

S2 = Sl-M
12 = MIN (Il+Fl, Il+M)

F2 = MAX (0, F1+I1-I2)
E2 = E1+I1-I2+M.

Some examples are given in Table 10.

TABLE 10. Examples of multiplication.

M Operand Result

2

3

+ (3/0/10)

(4/0/12) -2

+(1/2/8)

(l/3/9)-2

-28-

It should be mentioned that summations of numbers having the same

formats, over a block of length L (which is an integer power of 2) yield a

resultant format which is identical to that of multiplication of an equi-

valent format by log
2
(L) powers of 2.

Example :

\
8

+(4/0/12)x2° = +(1/3/9) = £ + (4/0/12).

j = l

For division, M is restricted to the range 0^M<N-S-1 where N is the

word length and S is the number of sign bits in the operand. The rules for

power-of-two division of formats are the following:

X2 = XI

S2 = SI + M
12 = MAX (0, Il-M)
F2 = MAX (0, MIN(F1+I1-I2, N-S2-I2))
E2 = E1+I1-I2-M.

Some examples are given in Table 11.

TABLE 11. Examples related to division.

M Operand Result

2

3

+ (3/0/10)

(4/0/ 12) -2

+(5/0/10)-2

(7/0/9) -5

Note that for both multiplication and division, the resultant formats are not

in normal form.

7. Implementation-dependent formats . There exist sequences of

arithmetic operations in which the choice of implementation can disguise the

format of the final result. For example, consider a moving window summation

whose window length is a multiple of 2. Then at each iteration a summation

is computed over the window, a previous value is discarded and a new value

-29-

is read. This sequence of operations can be implemented in several ways, two

of which are given below in a high-level computer pseudo-language.

Implementation 1 .

DECLARE X(8) 1

POINTER =1 2

DO UNTIL ENDFILE 3

READ X(POINTER) 4

SUM =0 5

DO I 1 TO 8 6

SUM = SUM + X(I) 7

ENDLOOP 8

WRITE SUM 9

POINTER = MD D (POINTER, 8) + 1 10
ENDLOOP 11

STOP 12

Implementation 2 .

DECLARE X(8) 1

DO I = 1 TO 8 2

X(I) =0 3

ENDLOOP 4

POINTER =1 5

SUM = 6

DO UNTIL ENDFILE 7

READ NEWVALUE 8

SUM = SUM-X(POINTER)+NEWVALUE 9

WRITE SUM 10

X(POINTER) = NEWVALUE 11

POINTER = MOD (POINTER, 8) + 1 12

ENDLOOP 13

If each element of the array X is assumed to have format (4/0/12) ,

then from implementation 1 (statements 5 through 8) , the format of SUM is

(1/3/12) by inspection. This format is not obvious from implementation 2

since according to the format rules for addition and subtraction, statement

9 cannot be computed repetitively without overflow. The key to solving this

dilemma lies in the knowledge that each NEWVALUE is actually subtracted from

SUM after some delay as an X(I) .

A proposed solution to this problem is to introduce the notion of an

implementation-dependent format, denoted by +[S/I/F]E where the parentheses

-30-
*

have been replaced by square brackets. This construct is used only as a

documentation aid and should not propagate through a program listing. That

is, if a number has an implementation-dependent format [S/I/F]E at a

particular stage in a sequence of arithmetic operations, its format in

subsequent operations should be (S/I/F)E.

-31-

CHAPTER V

MICROPROCESSOR IMPLEMENTATION

A. Hardware

A microprocessor-based intrusion-detection algorithm test system was

designed and constructed using two Texas Instruments 990 series development

systems which feature the TMS 9900, a 16-bit NMOS microprocessor. Both

processors were mounted in separate TM990-510 four-slot card cages powered

by Kepco RMT 001-A switching supplies, and operate fully independently. The

two card cages and power supplies are located in a 12 inch high rack-mounted

drawer shown in Fig. 6.

Each 990 system contains four main items which are summarized in a

tabular form below.

Manufacturer Item Description

Texas Instruments TM990-100M CPU, memory, and 1/0 board

Texas Instruments TM990-201 Memory expansion board

Analogic ANDS 1001 A/D converter subsystem

Analogic ANDS 2001-4 D/A converter subsystem

CPU board . The 990-100M board can accommodate up to 512 words of

RAM and 4K words of EPROM memory. It contains two interval timers, 16 bits

of parallel 1/0, and a serial interface for EIA or TTY operation. An operat-

ing monitor called TIBUG is also provided which allows the user to modify

memory and execute programs from a terminal. An optional line-by-line

-32-

I
r

• #

I CUpC

*«

#

o

1/1

4->

o

o

H
ed

C
o
•H
-M
U
o
M
O
TJ

c
oH

=C

-

-3 3-

assembler was incorporated in the test system to allow convenient modifi-

cation of programs in the field.

System Memory . All IC sockets on the TM990-201 memory expansion

board were populated which yielded 8K words of EPROM and 4K words of RAM.

EPROM was mapped from memory addresses 2000 to 5FFF hexadecimal and RAM was

mapped from A000 to BFFF hexadecimal.

Analog I/O . Analog-to-digital (A/D) conversion on input is performed

by an Analogic ANDS 1001 subsystem which provides 16 single-ended or 8 true

differential channels with up to 12 bits of resolution. This board can be

configured for either sign-magnitude or two's complement representations and

can operate as an 1/0 device or in memory-mapped mode.

Digital-to-analog (D/A) conversion on output is performed by an

Analogic ANDS 2001-4 D/A subsystem which provides 4 channels with up to 12

bits of resolution. It as well can be configured for either sign-magnitude

or two's complement representations and can output in several voltage ranges.

These boards were configured for the test system as summarized below.

ANDS 1001 A/D:

+_ 5 volts full scale

2's complement representation

12 bit resolution

Memory-mapped mode

CRU base address 03E0 hexadecimal

Memory base address E000 hexadecimal

Sequential channel addressing

ANDS 2001 D/A:

• +_ 5 volts full scale

• 2's complement representation

-34-

12 bit resolution

Memory base address E100 hexadecimal

Sequential channel addressing

Terminal Interface . Each TI processor is interfaced to a Digital

Equipment Corporation LSI-11 minicomputer which acts as a host allowing the

user to communicate with any of the microprocessor systems from one terminal.

Further, the LSI-11, running with floppy disks, allows TI object code programs

to be loaded and stored from disk via the TIBUG paper tape load and dump

routines. Finally, a processor reset feature, incorporated in the test

system interface, allows the user to reset any of the processors indepen-

dently under software control.

B. Software

The intrusion-detection algorithm was implemented in a dual channel

configuration, that is, two algorithms per processor. Since the TI9900 is

capable of executing both channels quite easily at the sampling frequency of

8 sps, modularity was stressed rather than execution speed. Further, all

arithmetic operations were coded using the block floating point notation

detailed in the previous chapter.

Both the adaptive lattice predictor and the adaptive threshold

detector were implemented as subroutines capable of servicing two algorithm

channels. This was accomplished by accessing all arrays and variables via

displacements relative to a single address pointer. Thus each time a routine

is invoked, a pointer is initialized which specifies the algorithm channel.

A similar technique was employed for the predictor and detector initializa-

tion routines.

-35-

Input to the ADP is obtained from a subroutine which reads data

samples from the A/D converter. The A/D channel number is passed as an

argument which allows the same routine to service more than one algorithm.

The ATD output, which is either "0" or "1", is passed to an output subroutine

which pulses a hardware I/O select line corresponding to an alarm channel, if

the ATD output is "1", indicating that an intruder is present. A D/A

converter output subroutine is also provided to output intermediate quantities

such as the ALP error for the purpose of monitoring algorithm performance in

detail.

Algorithm timing is accomplished by one of the real-time clocks

provided on the TM990-100M CPU board. Each clock functions as an interval

timer which decrements an internal clock register at a rate of l/64th the

system clock frequency, and causes an interrupt when the register decrements

to zero. Thus, with the interval timer programmed to interrupt every 0.125

seconds, the intrusion-detection algorithm operates at 8 Hertz.

The timer interrupt service routine which calls the ALP, the ATD,

the attendant I/O, and the support routines, constitutes the main program

shell as depicted in Fig. 7. A source listing for the intrusion-detection

algorithm is given in Appendix B.

C. Experimental Results

A data sequence consisting of intruder signals embedded in noise

caused by a nearby train was processed by the ALP-ATD combination. The

resulting ALP and ATD outputs were recorded. The results are shown in Fig. 8.

The upper trace shows the input data sequence which contains five

intruder crossings, indicated by the symbol "". The corresponding ALP

-35a-

L

(start)

ii

Initialize the timer

ii

Initialize ALP ch. & ch . 1

j[

Initialize ATD ch. & ch . 1

I
Restart timer

/input sample from A/D ch. 0/

Invoke ALP ch.

Invoke ATD ch.

/output predictor error to D/A ch. /

/Output ch. alarm pulse/

/input sample from A/D ch. 1 /

Invoke ALP ch. 1

Invoke ATD ch. 1

/Output predictor error to D/A ch. 1 /

/output Ch. 1 alarm pulse /
_r

Wait for timer interrupt

Fig. 7. Flowchart representation of
intrusion-detection algorithm.

-25b-

oz

xo

•-•©

X o
OIK
O.IUo
zz

OS

5

Utm

. &,
P

•«•* 3

(30

<v ut C
<• •H

f»
Q

tl
u> z c

o
o

o
Oh
in

m z
o
o

OS

3
O-
G

CO

•H
Ph

9
<»

ftl
PI

s

oo
3 %o

MO

-36-

output shown in the center trace indicates an apparent increase in the signal-

to-noise ratio. More notably, a burst of noise which occurs after 200 seconds

and having an amplitude at least as great as the last intruder crossing, is

very effectively removed. This is reinforced by the output of the ATD which

detected the five intruder crossings but did not generate a false alarm on

the noise burst.

-37-

CHAPTER VI

CONCLUDLNG REMARKS

The feasibility of implementing an intrusion-detection algorithm

using an ALP on a 16-bit microprocessor using block floating point arith-

metic was demonstrated. The author feels that the ALP-ATD combination may

prove useful in medical instrumentation, radar tracking, and a variety of

other signal processing applications. Moreover, the block floating point

notation described in Chapter IV may be a forebear to a language for digital

signal processors.

Future efforts in the area of signal processing will concern experi-

mentation with alternate lattice structures and the exploitation of frequency

information in the detection algorithm.

-38-

REFERENCES

[1] N. Ahmed, R.J. Fogler, D.L. Soldan, G.R. Elliott, and N.A. Bourgeois,
"On an Intrusion-Detection Approach Via Adaptive Prediction," IEEE
Trans. Aerospace and Electronic Systems , May 1979, pp. 430-436.

[2] M. Schwartz and L. Shaw, Signal Processing: Discrete Spectral Analysis
,

Detection, and Estimation , McGraw-Hill, 1975, pp. 260-263.

[3] A. Papoulis, Signal Analysis , McGraw-Hill, New York, N.Y., 1977.

[4] J.D. Markel and A.H. Gray, Jr., "Roundoff noise characteristics of a
class of orthogonal polynomial structures," IEEE Trans. Acoust.

,

Speech, and Sig. Proc , ASSP-23, Oct. 1975, pp. 473-486.

[5] L.J. Griffiths, "An adaptive lattice structure for noise-cancelling
applications," Proc. ICASSP , Apr. 1978, Tulsa, OK., pp. 87-90.

[6] L.J. Griffiths, "A continuously-adaptive filter implemented as a
lattice structure," Proc. ICASSP , May 1977, Hartford, CT. , pp. 683-686.

[7] J. Makhoul, "A class of all-zero lattice digital filters: Properties
and applications," IEEE Trans. Acoust., Speech, and Sig. Proc , ASSP-26,
Aug. 1978, pp. 304-314.

[8] J. Makhoul, "Stable and efficient lattice methods for linear prediction,"
IEEE Trans. Acoust., Speech, and Sig. Proc , ASSP-25

, pp. 423-428.

[9] N. Ahmed and R.J. Fogler, "On an adaptive lattice predictor and a

related application," to be published in IEEE Circuits and Systems
Magazine , Dec. 1979.

[10] V.N. Faddeeva, Computational Methods of Linear Algebra , Dover Publi-
cations, 1959, pp. lli-117.

[11] D.K. Faddeev and V.N. Faddeeva, Computational Methods of Linear
Algebra , W.H. Freeman and Co., 1963, pp. 168-171.

[12] N. Ahmed, G.R. Elliot, and S.D. Stearns, "Long-term instability
problems in adaptive noise cancellers," Sandia Laboratories, Technical
Report No. SAND 78-1032 , Aug. 1978; available from the National
Technical Information Service, 5285 Port Royal Road, Springfield, VA.
22161.

[13] N. Ahmed. G.R. Elliot, and S.D. Stearns, "Long-term stability
considerations of adaptive predictors," Proc. 12th Asilomar Conf. on
Circuits and Systems, Asilomar, CA. , Nov. 1978, pp. 180-183.

-39-

[14] N.A. Bourgeois, Jr., "Data acquisition and test system software,"
Technical Report - No. SAND 78-1972 , March 1979, pp. 21-36.

[15] D.D. McCracken, Digital Computer Programming , John Wiley and Sons,
New York, N.Y., March 1963.

[16] J.E. Simpson and R.J. Fogler, "A block floating notation for digital
signal processes," to be published in a Sandia Laboratories technical
report.

-40-

ACKNOWLEDGMENTS

The author would like to thank the Sandia Laboratories, Albuquerque,

N.M. for providing the financial support, data, and computing facilities used

in connection with this thesis. The assistance and encouragement given by

Jim Simpson who originated the Block Floating Point notation, Glenn Elliot,

Nick Bourgeois, and Dick Wayne of Sandia Laboratories, is gratefully

acknowledged.

The author would also like to express his appreciation to Dr. Donald

R. Hummels and Dr. J. David Logan for serving as graduate committee members

and for sharing their knowledge and experience. A special thanks is extended

to my major advisor, Dr. Nasir Ahmed whose teachings both in and out of the

classroom have been of immeasurable value.

APPENDIX A

A Block Floating Point Format

Tutorial Program

A-l

C

c

c

c

c
c

PROGRAM FORMAT

HiOCK FLOATING POINT TUTORIAL PROGRAM

Of. ftJGLER
ev. 01.00

08/21/79
0w/23/7 9

LOG
DAT
EQU
INT
COM
FOR
FOR
FOR
FOR

1

110

120

TYP
Tip
ACC

U =

TYP
ACC
If

IF
IF

IF

IF

IF
IF
IF
IF
IF
IF

LP

IF
IF
[F

IF
IF
GO
STO
END

1CAL
A lH
IVAL
EGER
MON
MATC
MAT(
MAT(
MATC
HELP
QUIT
SIZE
EQU
NORM
ALIG
CLIP
ASHL
ASHR
ADO
SUB
MPY
OIV
MPY2
D1V2
R\D
E 4

£ 1

EPf
= 1

ti a- *

E 2

EPT
(RST
CRST
(KST
(RST
(INS
(RST
(RSI
(RST
(RST
(RST
(RST
(RST
(RST
(RST
(RST
(RST
(RST
TO 1

p ip

*1 INS
STRCHJ.
ENCE (

x,s,i
/WSIZE
' ENTE
' OCOMM
80A1)

•OUST
TYP
TER
:ha
DET
COM
DET
:li
LEF
RIG
ADD
SUB
MUL
01

V

MUL
DIV
ROU

* , n a w

N 3 a

TR(81) , SPACE
) , SPACE /u, ' '/

[NSTRCDrRSTRO
,F,E
/ N W , N B w , N

R MACHINE WORD SIZE
AND: ',$)

,$)

OF COMMANDS: '//
ES OUT THE LIST OF COMMANDS'/
MINATES THE FORMAT PROGRAM'/
NGES THE MACHINE WORD SIZE'/
ERMINES IF FORMATS ARE EQUIVALENT'/
PUTES NORMALIZED FORMAT'/
ERMINES IF TWO FORMATS ARE ALIGNED'/
PS A FORMAT'/
T ARITHMETIC SHIFT'/
HT ARITHMETIC SHIFT'/
IT ION OF FORMATS'/
TRACTION OF FORMATS'/
TIPLICATION OF FORMATS'/
ISION Of FORMATS'/
TIPLICATION BY POWERS OF 2'/
ISION BY POWERS OF 2'/
NO A FORMAT'/)

3,(1
R.E3
R.EQ
R.E Q

R.EQ
TR(4
R.EQ
R.Ei
H

R

R

R
p

R

to,

E 3

,

EQ,

EQ,
EQ,
EQ.

NSTR
AS
AS
MP
DI
i«*E

HE
QU
SI
EQ
NO
AL
CL

(J),
HL')

HA ')

Y2')
V2')
. '2'

AD
SU
MP
DI
RN

R.EQ
R.EQ
R.EQ
R . EQ
10
ROGRAM TERMINATED'

J = l ,30)
CALL ASHL
CALL ASHR
CALL MPY2
CALL 0IV2

) INSTRC4)
TYPE 4

GO TO 120
GO TO 100
CALL EUV

= SPACE

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

NORM
ALIGN
CLIP
ADD
SUB
MPX
D J. V

f

ROUND

A-

2

C

C

c

c

c

c

SUBROUTING EQV
INTEGER X1,S1,I1,F1,E1
INTEGER X2,S2,I2,F2,E2

ROUTINE TO TEST EQUIVALENCE OF FORMATS

JOE FOGLER
REV. 01.00

1 FORMAT (

2 FORM ATI'
•3 FORMAT C

'

Otf/22/79
Ob/23/79

E^U: ENTER IRE FORMATS:')
FORMATS ARE EQUIVALENT'

J

FORMATS ARE NOT EQUIVALENT'}

TYPE 1

CALL GETCX.1 ,S1, II ,*• 1 ,E1)
CALL GET(X2,S2,I2,E2,E2)

100
110

IF (Sl.ivlE.S2) GO TO 100
IF (I1+K1.NE.I2+F2) GO TO
IF (S1+I1+E1.NE.S2+I2+E2)
IF (Xl.sME.X2) GO TO 100
TYPE 2

GO 10 110
TYPE 3

RETURN

100
GO TO 100

k-3A<

c

c

c

c

c

c

SUB ROUTINE NORM
INTEGER XI ,31,11 ,F1 ,£1
INTEGER X2,S'2,I2,F2,E2

ROUTINE rO NORMALIZE TWO FORMATS

JOE FOGLER 08/22/79
REV. 01.00 08/23/79

1 FORMATC' NORM: ENTER THE FORMAT'

3

C

c

Ti'FE 1

CALL GETCX1,S1,11,F1,E1)

CALL NORMLU1 ,S1, I1,F1 ,£1)

CALL PUTCX1 ,S1 ,11 ,F1,E1)
RETURN
ENO

c

c

c

c

c

c

c

c

c

A-4

SUBROUTINE NOHMLCX1 ,S1 ,11 , Fl , E

IniltGEK XI ,S1 ,11 ,F1 ,EJ

INTEGER X2,S2,I2,F2,E2

NORMALIZATION SUPPORT SUrtFUUTlfJE

U

JOE FOGLEK
REV. 01.00

08/22/79
08/23/79

IF (E1.EU.0) GO TO 110

IF (E1.LT.0) GO TO 100

F2 = «1AX0(0,F1-E1)

12 = 11 + Fl - F2
El = El + II - 12
II = 12
Fl = F2
GU TO 110

100 12 = MAX0(0,I1+E1)
F2 = II + Fl - 12
El = El + II - 12
II = 12
r 1 = F2

110 RETURN
ENO

A-

5

C

C

c

c

c

c

SUBROUTINE ALIGN
INTEGER X1,S1,I1,F1,E1
INTEGER X2,S2,I2,F2,E2

ROUTINE I'U NORMALIZE TWO FORMATS

JOE FOGLER
REV. 01.00

1 FORMAT (
'

2 FORMAT (
•

3 FORMAT (

'

08/22/79
OB/23/79

ALIG: ENTER THE FORMATS')
ARS ',11,' EXCEEDS ARG ',11
FORMATS AKE ALIGNED')

6Y P0*ER5 OF 2'

)

TKPE I

CALb GETU1 ,S1 ,11 ,F1,E1)
CALL GET(X2,S2,I2,F2,E2)

Jl

J2
IF
IF
IF

= SI +

= S2 +

CJ1.EQ,
(j i . g r

,

(Jl.LT,

11 + El

12 + E2
J2) TYPE
J2) TYRE
J2) TYPE

2,1 ,2, J1-J2
2,2,1, J2-J1

RETURN
END

A-6

C

c

c

c

c

c

SUBROUTINE CLIP
INTEGER XI ,S1 ,11 ,F1,E1
INTEGER X2,S2,I2,F2,E2

ROUTINE TO CLIP A FORMAT

JOE FGGLER
REV. 01.00

FUKMATC

'

FORMAT <

'

08/22/79
08/23/79

CLIP: hO* MAN* BITS? ' ,$)
1 <= NBIIS <= ,11)

TYPE 1

ACCEPT
CALL, GET (XI ,S1 ,11 ,F1 ,E1)

*,M

100
120

ji=si+n+Fi-i
IF (M.LT.l .OR. M.GT.J1) GO TO 100
X2 = XI
52 = KAX0(Sl,M+n
12 = fAX0(0,ll+Sl-vS2)
F2 = Fl + SI + II - S2 - 12
E2 = El + E2 - Fl
CALL NORML(X2,S2,I2,F2,E2)
CALL PUT(X2,S2,I2,F2,E2)
GO TO 120
TYPE 2,J1
REIUR:^
END

c

c

c

c

c

c

A-7

SUBROUTINE ASHL
INTEGER XI ,S1 ,11 f Fl »E1
INTEGER X2,S2,12,F2,E2

ROUTINE TO LEFT SHIFT A FORMAT

JOE FOGLEH
HEM. 01.00

Ob/22/79
OS/23/79

1 FORMATC ASHL: HO* MAN* HI fS? ' ,$)
2 FORMATC ',12,' SHIFTS wILL CAUSE O^EPFLOrt')

TYPE 1

ACCEPT *,M
lb (M.LT.l) GO TO 120
CALL GET (XI ,S1 ,11 ,F1 ,E1)

IF CM.GT.Sl-n GO TO 100
X2 = XI

S2 = SI - H

12 = 11

F2 = Fl
£2 = El

CALL MUKV|L(X2,S2,I2,F2,E2)
CALL FUT(X2,S2, I2,F2,£2)
gu ro 120

100 TYPE 2,M
120 RETURN

£tiD

c

c

c

c

c

c

A-8

SUBROUTINE ASHR
COMMON /*SIZE/ N.v,Nf3A F fj

IftTEGER XI ,S1 , I1,F1,E1
IMTFGER X2,S2,I2,F2,E2

ROUTIwb TO RIGHT SHIFT A FORMAT

JOF FOGLER
RFV. 01.00

08/22/ 79
08/23/79

1 FOP-MATC ASHR: HOW MANY BITS? ',$)
2 FORMAT (',12,' SHIFTS WILL CAUSE UNDERFLOW)

TfPE 1

ACCEPT *,M
IF (M.LT.i) GO TO 120
CALL GETUl ,S1,I1 ,F1,E1)

IF CM.GE.N-5i) GO TO 100
X2 = Xi
S2 » SI + K

F2 = MAXO(0 # MINO(N-M-Sl-It #FD)
12 = MlN0(n,N~M-51J
E2 a El + XI - 12

100
120

CALL MORML(X2,S2,I2,F2,F2)
CALL PUt(X2,S2,I2,F2,E2)
GO I'll 120
itype 2,m
RETURM
END

A-

9

SUBROUTINE ADD
INTEGER XI ,S1 ,I1,F1,E1 ,T1 ,U1

INTEGER X2 , S2 , 1 2 , F2 , E2 , T2 , 02
INTEGER X3.S3, I3,F3,E3

C

C ROUTINE TO ADD TWO FORMATS
C

C JOE FQGLER 08/22/79
C REV. 01.00 08/23/79
C

1 FORMA T(» ADD: COMPUTES ARG1 APG2 '

)

2 FOHMATC' FORMATS ARE NOT ALIGNED')
3 FOHMATC Gi/ERFLO* POSSIBLE')

C
TYPE 1

CALL GET(X1,S1,I1,F1,E1)
CALL GET(X2,S2,I2,F2,E2)
IF (S1+I1+E1 .NE. S2+I2+E2) GO TO 120
Tl = MAX0(S1-S2,U)
T2 = MAX0CS2-S1,0)

C
IF (Xl.EQ.O) GO TO 100
IF CX1.NE.-X2) GO TO 100

C

C ARGUMENTS hAVE OPPOSITE EXPLICIT SIGNS
C

It (SI. LI. I .OR. S2.LT.1) GO TO 130
C

Ul = MIN0(I1+F1+T1,MAX0(I1+E1+T1 ,0))
u2 = MIN0(I2 + F2+T2,MAX0(I2 + E2 +T2,U))

X3 =

S3 = 4IN0(S1,S2)
13 = MAX0CU1 ,U2)
E3 = SI + 11 + El - S3 - 13
¥i - MAX0CF1 - El + E3,F2 - E2 + E3)
GO TO 110

C

C ARGUMtuTS DO NOT HAVE OPPOSITE EXPLICIT SIGNS
C

100 IF (Sl.bl.2 .OR. S2.LT.2) GO TO 130
C

Ul = -1 i in* (1 1 + r 1 +n + l ,MAX0(I1+E1+T1+1 ,0))

U2 = jnn0(I2+F2*T2+l,MAX0(I2+E2+T2+l ,0))

X3 =

If (X1.EQ.X2) X3 = XI
S3 = MIN0(Sl,S2) - 1

13 = MAX0(U1,U2)
E3 = SI + II + El - S3 - 13
F3 = -1AX0(F1-E1+E3,F2-E2 + E3)

c

110 CALL PUT(X3,S3,I3,F3,E3)
GO TO 140

120 TxPE 2

GO TO 140
130 1KPE 3

140 RETURN
END

c

c

c

c

c

c

A- 10

SUBROUTING SUB
I NTEGEB X 1 , S 1 , 1 1 , F 1 , E 1 , 1 1 , U 1

INTEGER X2,S2,I2,F2,E2,T2,U2
INTEGE8 X3,S3,I3,F3,E3

ROUTINE TO SUB fwO FORMATS

JOE FOGLER
REV. 01.00

08/22/79
Otf/23/79

1 FORMATP SUB: COMPUTES APG1 - ARG2 •

)

2 FORMAT! 1 FORMATS ARE NOT ALIGNED')
3 FOR.*)ATC OVERFLOW POSSIBLE')

TYPE 1

CALL GET(X1,S1,I1,F1,E1)
CALL GET(X2,S2,I2,F2,£2)
if CSltll+El .NE. S2+I2+E2)
Tl = MAX0(S1-S2,0)
T2 = MAX0(S2-S1,0)

GO TO 12U

c

c
c

IF (X1.EQ.0) GO TO 100
IF (X1.NE.X2) GO TO 100

ARGUMENTS HAVE SAME EXPLICIT SIGNS

IF CSl.LT.l .OR. S2.L1.1) GO TO 130
Ul = ,iiN0(ll+Fl+Tl,MAXO(Il+El+Tl ,0))
u2 SMI NO (i2+F2+T2, MAXO (I2+E2+T2 ,)

)

C

c

c

X3
S3
13

E3

GO

=

TO

*IN0(S1,S2)
mAXOCUI, U2)
SI + 11 + El
MAX0CF1 - El
110

- S3 - 13
+ E3,F2 - E2 t3)

ARGUMENTS DO NOT HAVE SAwE EXPLICIT SIGNS

100 IF C31.LT. 2 .OR. S2.LT.2) GO TO 130
Ul = -U^OCIl+Fl+ri+1 ,MAX0(I1+E1+T1+1 ,0)

)

02 = MIN0C12+F2+T2+1 ,MAXO(I2+E2+T2+1 ,0)

)

A3 = u

IF (X1.EQ.X2) X3 = XI
S3 = M1U0(S1,S2) - 1

13 = MAXOCUI, U2)
E3 = SI + II + El - S3 - 13
F3 = .'!AA0(F1-E1+£3,F2-E2 + E3)

110 CALL PUT(X3,S3,I3,F3,£3)
GO TO 140

120 TYPE 2

GO TO 140
130 TYPE 3

140 RETURN
fcND

A-ll

SUBROUTINE MPX
COMMON /*S1ZE/ NW,NBW,N
INTEGER Xl,Sl,il,Fl,El,Tl,Ul
INTEGER X2,S2 , 12, F2 , E2 , T2 , U2
INTEGEH X3,53,13,F3,E3

C

C ROUTINE i'O MULTIPLY TWO .FORMATS
C

C JOF. FOGLER 08/22/79
C HEV. 01.00 08/23/79
C

1 FORMATC MPlf; COMPUTES ARG1 X ARG2')
2 FORMATC »URD SIZE IS NOW ',13,' BITS')
3 FORMATC WARNING — BOTH CANNOT BE LAWGEST NEGATIVE NUMBER 1

)

C
T¥PE 1

CALL GET(X1,S1,I1,F1,E1)
CALL GET (X2,S2,I2,F2,E2)

C
X3 =

IF CX1.EQ.0 .OK. X2.EQ.0) GO TO 100
IF (X1.EQ.X2) X3 = 1

IF CX1.NE.X2) X3 = -1

C

100 S3 = SI + S2
13 = II + 12
F3 = Fl + F2
E3 = El E2
CALL NOHML(X3,S3,I3,F3,E3)
CALL PUT(X3,S3,I3,F3,E3)

C

C

IF (S1.EQ.1.ANU.S2.E:j.1.AND.X1.NE.1.AND.X2.NE.1) ll'rt. 3

N w = 2

N = u a fi * N a

TYPE 2,N

RETURN
END

c

c

c

c

c

c

A-]

subroutine div
COMMON / kS I ZE/ Nw , NbW ,

N

INTEGER X 1 , S i , 1 1 , F 1 , 1 1 , 1 1 , U

1

INTEGER X2,S2,I2,F2,E2,T2,U2
INTEGER X3,S3,I3,F3,E3

ROUTINE fO DIVIDE TwO FORi-iATS

JOE FGGLER
REV. 01.00

Ob/22/79
Ob/23/79

1 FpRMATC DIV: COMMUTES ARG1 / AHG2')
2 FORMAfC OVERFLOW POSSIBLE')
3 FGKwATC' WORD SIZE IS NOW ',13,' BITS')
4 FORMATC WARNING - OVERFLOW CONDITIONS tfUST BE CHECKED')

C

C

TYPE I

N = I * w B w

CALL Gfcr(Xl,Sl,Il,Fl,El)
N w = 1

N = N w * I* A w

CALL GET(X2,S2,I2,F2,E2)

IF CS1.LE.S2) GO TO 120

Xi =

IF CX1.EQ.0 .OR. X2.FW.0)
IF (Xl.Evi.X2) X3 = 1

IF (X1.NE.X2) X3 = -1

;o to ioo

100

C

c

S3 = SI - S2
13 = MAX0(0,1 1-12)
F3 = 1 - S3 - 13
E3 = El - E2 + II - 12 - 13
CALL NORML(X3,S3,I3,F3,E3)
CALL PUT(X3,S3,I3,F3,E3)

4

i , N

TYRE
TYRE
GO TO 130

120 TYRE 2

130 RETURN
END

A-13

C

C

C

C
C

C

c

iiUriHOUri^E MPY2
COMMON /rtSlZk./ NW,N8tf,N

INTEGER XI, SI, II, Fl, El

INTEGER X2,S2,I2,F2,£2

ROUTINE TO MULTIPLY A FORMAT
BY Aw INTEGER PJwER OF 2.

JOE FOGLER
REV. U1.00

1 FORMAT (
'

2 FORMAT (

'

06/22/79
Ub/23/79

MPY2:
A*G X

HOW MANY POWERS OF 2? ',$)

2**', 12,' .vlLL CAUSE OVERFLOW')

TYPE 1

ACCEPT *,M
IF CM.LT.1J GO TO 120
CALL GET(X1,S1,I1,F1,E1)

IF (M.GT.S1-1) GO TO 100
X2 = XI

S2 = SI - -i

12 = 4iN0(U+Fl,Il+M)
F2 = i-iAAOtO,Fl+Il-I2)
E2 s El + II - 12 + M

CALL NURML(X2,62,I2,F2,E2)
CAuL PUT(X2,S2,I2,F2,E2)
GO TO 120

100 TYPE 2,i<<

120 RETURN
END

A-14

SUBROUTINE DIV2
C U N M N / .m S L Z E / f'

1 w » N bw,ti

INTEGER Xl r Sl,Il,Fl,El
I^rr-CER X2,S2,I2,F2,E2

C

C ROUTUc TO DIVIDE A FOR.-iA I

C 8k: AN I^iEGER PJ*ER OF 2.

C

C JOE FUGLER Os/22/79
C REV. 01.0 0ri/23/79
C

1 FORMAT (' DIV2: HOw MAN* POWERS OF 2? ',$)

2 FOHMAfC ARG / 2**', 12,' WILL CAUSE UNDERFLOW)
C

TYFt 1

ACCEPT *,M
IF (M.LT.l) GO 10 120
CALL GElCXl ,S1 ,11 ,F1 ,£1

)

C
It (M.GE.N-81) GO TO 100
X2 = XI

S2 = SI + v,

12 = MAX0(0,I1-M)
f2 = NAX0(U#MIN0(K1*I1-I2#N-S2-I2))
E2 s El II • 12 • H

C
CAbL NORML(X2,S2,I2,F2,E2)
CALL PUT(X2,S2,I2,F2,E2)
GO 10 120

C

100 rYPE 2,M
120 RETURN

END

A-15

SUBROUTINE ROUND
C "'i M L) N / ,'! S 1 Z E / N .v , i i h v i , fi

INTEGER XI ,St ,11 ,bl ,El

INTEGER X2,S2,I2,F2,£2
C

C ROUTINE i'iJ KOUNO A DOUBLE LENGTH
C QPEPAhl ru SINGLE WORD LENGTH
u

C JOE FOGLER OH/22/19
C REV. 01.00 08/23/79
C

1 FuRMATC R ;
vi D : ENTER THE FORMAT 'J

2 FORMAT

C

1 WARNING — FORMAL OVERFLOW MUST BE CHECKED')
j FORMAT.C 1 V-.JKU SIZE IS NOW ',[3,' BITS']

C
N w = 2

N = ,\i ,•< -f ft ci W

c

C

1YPE 1

CALL GEKX1 ,S1 ,11 ,F1 ,tl)

Mm = 1

,„ = ,\j 4 * N B -V

X2 = Al

S2 = SI

12 = Mlti.0tXi#N*51)
t2 = rtAXO(0,MINO(N-Sl-Il ,F1+I1-I2)

J

E2 = El + 11 - 12

CmLL PUT(X2,S2,I2,F2,E2)
IF (Xl.NE.-l) TYPE 2

TiPE 3,N

KETUKi*

A- 16

SUBROUTINE PUT(X,S,l,fr ,£)

SUBROUTINE TJ rfRITE A FORMAT

JOE FOGLER 08/21/79
RFV. 01.00 08/23/79

InTEGEk X,S,I,F,£
LJGICAL+t STR1C4)
DATA STKl /'-',• ' ,'+',' »/

1 FuRMATC =',1A1, ,

C
, ,I2, , /',I2, , /

, ,12,')',I3)
2 FORMAT^' = • ,1A1, ' C ,12, '/' ,12, '/' ,12, ') ')

IF CB.NE.dj TYPE 1 , 6TRI (X + 2) , S , I , F ,E

IF lE.Eu.O) TiPE 2,STKl(X + 2J ,S, I ,f

RETURN
END

A-17

C

C

c

c

c

c

SUBROUTINE GET(X,S, l,F,E)

GET FORMAT SUBROUTINE

JOE FOGLER ud/21/79
REV. 01.00 08/23/79

INTEGER X,S,I,F,E,ES
L0GICAL*1 Sl'R(fcl)

L0GICAL*1 SPACE, DELIM
DAI A SPACE /' '/

CO.if! On /aSIZE/ N«i v NBW,N

1 FQRMAT(•
>• , S)

2 FORMAT(dUAl)
3 FURMAK ' ')

4 F0RMATC1H+, 1A1 , S)

5 FURf-ATC PRECISION EXCEEDS', 13)

b FORMAT (• RRECIS10<\ UNDEFINED')
7 FORMAT (' NOT ENOUGH SIGN BITS')
8 FOKMATC INVALID FORMAT 1

)

90 E =

X =

DO 95 1=1,81
STR(i) =

95 CONTINUE
TYRE 1

ACCER'i 2,(STR(J),Jsl,80)
l^iDl^ = 1

100 IF (STR(INDX).NE. SPACE) GO TO 110
INDX = 1 MUX + 1

IF (INDX. GT. 80) GO TO 206
GO TO 100

110 IF CSTR(INDX).NE.'+') GO TO 120

X = 1

INDX = INDX t 1

GO TO 130
120 IF (STRCINDX).NE.'-') GO TO 130

X = -1

INDX = I <DX + 1

130 IF (STR(INDX).NE. SPACE) GO 10 135
INOX = INDX + 1

IF (lPiDX.Gf.80) GO TO 206
GO TO 130

135 IF (STR(INDX).NE. '(') GO TO 200
INDX = iVDX 1

CAL.L CONV(STR,INDX, '/' ,S,IEftR)

IF (IERR.NE.O) GO TO 200
INDX = INDX + 1

CALL CONV(STR,INDX, •/' ,1,1 ERR)

IF UERR.NE.O) GO TO 200
INUX = INDX + 1

CALL C0NV(S1'R,INDX, ') ' ,F,IERR)
IF (IERR.NE.O) GO TO 200
INDX = li»DX + 1

A- 18

150 IF (STR(INDX).NE. SPACE) GO TO IbO

I no a = INDX + 1

IF (iwDX.Gr.80) GO TO 185

GO TO 150

lbU

170
180

185

ES =

IF ISTRCINDX),
IF (STR(INOX)
ES = 1

IfiOX = i*0X +

200

205

206

210

220

2 30

EQ. » + •

)

NE. '-'

)

1

GO
GO

TO
TO

170
180

1MDX.GT.80) GO TO 20b

CALL CON* C STR, INDX, SPACE, E,IERR

3

IF CiERK.NE.O) E =

IF (ES.NE.O) E = -E

IF (I.EQ.O .AND. F.EQ.O) GO Tu 2 20

IF (S.LT.l) GO TO 2 30

IF CI.GT.N-1) GO TO 210
IF (F.GT.N-1) GO TO 210
IF U + F.Lf.l) GO TO 230
IF CS+I+F.GT.N) GO TO 210
RETURN

IF (INDX.LE.O .OR.
TYPE 3

DO 205 K=1,INDX
TYPE 4, '

'

CONTINUE
fYPE 4, '-,'

1'YPE 3

TYRE 8

GU TO 90
TYPE 5,N
GO TO 9

TYPE o

GO TO 9u
TYPE 7

GO TO 9U
END

c
c

c

c
c

c

A-19

SUBROUTINE CGNVCSTH, INOX ,OELiIH» I VAL, I ERR)

RUUl'lNb 10 CONVERT A i\l ASCII STRING TO AN INTEGER

JUE FOGLErt
REV. 01.00

08/21/79
Oti/23/79

LGG1CAL*1 STR(81) ,DEL1 M , TAbL (1) ,SPACE,OUMMK
DATA TAbL /•0 ,

,
,

l
,

,
, 2 , ,'3', , 4 ,

,
, 5 , ,'6','7 , ,'b , ,">'/

DAI A SPACE /' '/

I ERR = i

IVAL =

100 IF ISTRCINOX) .NE. SPACE) GO TO 110

INDX = INDX 1

IF (INOX. GI. 80) GO TO 140
GO TO 100

110 DO 120 1=1 , 10

J = [- 1

IF (STR(INDX).EQ.TABL(I)) GO TO 130

120 CONTINUE
125 IF (STR(INp-X).tiE. SPACE) GO TO 13b

INDX = INOX + 1

IF (INDX. GT. 80) GO TO 135
GO TO 12b

130 IERR =

IV AL = lU*iVAL t J

INDX = INDX + 1

IF (I iDX.LE.80) GO TO 110
IEKR = 1

GO TO 140

135 It (STR(INDX).NE.DELIM.AND.DELIW.NE. SPACE) IERR = 1

140 RETURN
ENQ

APPENDIX B

Intrusion- Detection Algorithm

Source Listing

6-1

IDT •L.MS A LP'

LEAST MEAN SQUARE ADAPTIVE LATTICE PREDICTOR
*1TH ADAPTIVE THRESHOLD DETECT COM

JOE
REV

DELCARAT10NS

*

*

*

*

ADCO
DACO
AOCCRU
AOMODE

TMRCRU
TMRCMT
rMRENB
TMMODE
TMRVEC
TMRMSK
BRANCH

SELCRU
SEL1
SEb2

WSPO
*'SP1

WSP2
*SP3
*SP4
WSP5

LTPTRO
LTPTR1

F

G
Gl
B

V

u

ALPHA
BETA
GAMMA
EPSLON
n

FUGLER
02.03

EQU
EQU
EQU
EQU

EQU
EQU
EuU
EQU
EQU
EQU
EQU

EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU

EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU

08/13/79
09/0b/79

>E000
> E 1

>03E0
>000C

>0100
>17C1
>0003
>0000
>FF«8
>0003
>0460

>0000
>0000
>0020

>A00O
>A020
>A040
>A400
>A420
>A440

>A060
>A4o0

>0000
>0020
>0040
>0060
>0080

>7FFC
>028F
>7D70
>028F
>00U1
>000tt

A/D CONVERTER CHANNEL
D/A CONVERTER CHANNEL
A/D CPU BASE ADDRESS
A/D MEMORY-MAP MODE BIT 9

TIMER CPU BASE ADDRESS
TIMER COUNT FOP 8HZ INTERRUPT
TIMER ENABLE BIT N

TIMER INTERRUPT MODE BIT *

TIMER VECTOR ADlJRESS
rirtER INTERRUPT MASK
BRANCH INSTRUCTION

SEL CRU BASE ADDRESS
SELl DISPLACEMENT
SEL2 DISPLACEMENT

WORKSPACE
WORKSPACE
WORKSPACE
WURKSPACE
WORKSPACE
rtUHKSPACE

LATTICE
LATTICE

1

2

3

4

5

POINTER
POINTER

F(M,L) DISPLACEMENT
G(M,L) DISPLACEMENT
GlM-l.L) DISPLACEMENT
B(M,L) DISPLACEMENT
V(M,L) DISPLACEMENT

0.999878
0.1998901
0.9799804
0.1998901
0.000122
NUM6EP OF

(i - BETA)

LATTICE STAGES

+(1/0/15)
+(6/0/10)-5
+11/0/15)
+(6/0/ 10} -5
+11/2/13)

B-2

ATPTRO EQU >A100
ATPTR1 EuU >A500

M EQU >0020
L EuU >0O8U
D EQU >0020
K equ >0002
THETAH EQU >0O00
THETAL EQU >ooia

EA EQU O + L + 2

EB EQU EA + 2

EC EQU EB + 2

QA EwU EC + 2

QB EQU JA + 4

POSMAX EQU >7FFF
NEGMAX EQU >8000
LAST EQU >A7FF

;Al'i.)

;ATl) 1

POINTER
POINTER

2*lb BYTE QA WINDOW LENGTH
2*s4 RTTfE QB *InDOw LEnGIh
2*DELAY LENGTH
ATD CONSTANT LOG2(L/M)
ThETA = 0.0029297 +(27/0/5)-«

;EA POINTER
;EB POINTER
;EC POINTER

ADDRESS
ADDRESS
ADDRESS

DISPLACEMENT
DISPLACEMENT
DISPLACEMENT

;QA ADDRESS DISPLACEMENT
;QB ADDRESS DISPLACEMENT

.•LARGEST POSITIVE NUMBER
; LARGEST NEGATIVE NUMBER
J LAST BYTE OF RAM USED

* ADAP'UVE LATTICE PREDICTOR SHELL

AORG

START

>A800

LftPl *SP0 ; DEFINE SHELL WORKSPACE
bL 3TMINIT .•INITIALIZE THE TIMER
BL 3CLRRAM ;CLEAR RAM

LI R9, ATPTRO ;LOAD ATD POINTER
BL 3ATINIT ; initialize aid o

LI R9,ATPTR1 ;L0AD ATD 1 POINTER
BL .a AT I NIT ; INITIALIZE ATD 1

B-3

* SHELL MAIN LOOP (TIMER INTERRUPT SEP w ICE)

TMRSRV LWPI WSPO
Li R12,TMRCRU
SdO rMRENB

LI R1,>0000
BL 3READ
LI R9,LTPTR0
BL ?ALP
LI R9,ATPTR0
SL 3ATD
MOV R1,R0
LI Rl ,>0UO0
BL 3WRITE
MOV R4,P0
LI Rl ,>0002
BL awRITE
MOV K7,R0
LI R1,>0000
BL ?PUT

LI Rl ,>o001
BL aREAD
LI P9,LIPTR1
BL ?ALP
LI R9,ATPTR1
BL a AID
MOV R 1 , R

LI R1,>0001
BL a«RITE
l*OV R4,P0
LI Rl,>0003
BL dwRITE
MUV R7,R0
LI Rl ,>0001
BL apUT

LIMI TMRMSK
JHP S+O

JDEFINE SHELL .vORKSPACE
;LOAD TIMER CRU-BASE ADDRESS
; ENABLE THE TIMER

LOAD A/D CHANNEL NUMBER
READ A/D CHANNEL
LOAD LATTICE POINTER
INVOKE LATTICE PREDlCIuR
LOAD ATD POINTER
INVOKE ADAPTIVE THRESHOLD DE1ECTOR
GET E(M)**2
LOAD D/A CHANNEL NUMBER
OUTPUT E(M)**2 TO D/A CH
GET QA(M)
LOAD CHANNEL 2

WRITE GA(M) TO D/A CH 2

GET ALAPM(M)
LOAD CHANNEL
WRITE ALARM TO OUTPUT

LOAD A/D CHANNEL NUMBER
READ A/D CHANNEL 1

LOAD LATTICE 1 POINTER
INVOKE LATTICE PREDICTOR
LOAD ATD 1 POINTER
INVOKE ADAPTIVE THRESHOLD DETECTOR
GET ECH)**2
LOAD D/A CHANNEL NUMBER
OUTPUT E(M)**2 TO D/A CH 1

GET QA(M)
LOAD CHANNEL 3

ir-RITE OA(M) TO D/A CH 3

GET ALAPM(M)
LOAD OUTPUT CHANNEL NUMBER
OUTPUT ALARM TO OUTPUT CHANNEL

?ENA8L£ TIMER INTERRUPT
;wAIT FOR TIMER INTERRUPT

3-4

* riMER INITIALIZATION ROUTINE

* REGISTER USAGE: RO,Rll,R12

TMINIT LI R12,ADCCRU
SBO ADMODE
LI R12, BRANCH
MOV R12 f f'tHHVEG
LI R12,TMRSRV
MUV Hl2,m'MRVEC + 2

LI R12, TMRCRU
LI R0,TMRCNT
LDCR R0,0
SHZ TMMODE
H •nil

*

* CLEAR RAM ROUTINE

* REGISTER USAGE: R0,R11

CLRRAM LI
UUOPC CLR

CI
JNE
a

RO,*SPl
*P0 +

RO,LAST+l
LOOPC
»R1 1

;LOAD A/D CRU-BASE ADDRESS
;A/U ME.v OR*-mAPP£D MODE
;LOAD BRANCH INSTRUCTION
;STURE AT riMER VECTOR ADDRESS
;LOAD TIMER SERVICE ADDRESS
; STORE AT TIMER VECTOR + 2

;LOAD TIMER CRU-BASE ADDRESS
;LOAD TIMER COUNT
;SET UP TIMER
; TIMER INTERRUPT MODE
; RETURN TO CALLER

;LOAD ADDRESS OF WORKSPACE I

; CLEAR RAM
?END OF RAM?
;LOOP IF NOT
;ELSE RETURN TO CALLER

*

*

ATINIT

ADAPTIVE THRESHOLD DETECTOR INITIALIZATION

REGISTER USAGE:

RO TEMPORARY
H9 ATD POINTER
Rll SUBROUTINE LINKAGE

LI
A

MOV
LI
A

MOV
LI
A

MOV

CLR
CLR
CLR
CLR

B

R0,L+D-M
R9,RO
R0,e£A(R9)
RO,L
H9,R0
R0,«EB(R9)
R0,>OO0O
R9,R0
RO,iSEC(R9)

iaaA(R9)
3JA+2CR9J
ariB(R9)
id^H + 2(R9)

Rll

LOAD POINTER DISPLACEMENT
FORM EA POINTER
STORE THE POINTER
LOAD POINTER DISPLACEMENT
FORM EB POINTER
STORE THE POINTER
LOAD POINTER DISPLACE^tNl
FORM EC POINTER
STORE THE POINTER

;CLEAR UA HI

;CLEAR QA LO
.•CLEAR QB HI

; CLEAR OB LO

; RETURN TO CALLER

B-5

*

*

*

*

READ

A/0 HEAD SUBROUTINE

REGISTER USAGE:

RO
Rl

RU

RETURNS SAMPLE FROM A/i) Ifij (2/0/11)
CONTAINS A/D CHANNEL «

SUBROUTINE LINKAGE REGISTER

FORMAT

SLA
A I

MOV
CI
JNE
INC
SRA
B

Hl,l
R1,ADC0
*R1,R0
R0,NEGMAX
S+4
RO
R0,1
Rll

;FORM A/U CHANNEL DISPLACEMENT
;FORM A/D CHANNEL ADDRESS
;READ FROM A/D
JOISALLOW LAHGEST NEGATIVE »

.•REFORMAT TO

; RETURN TO CALLER

C 1/0/1 1)

(2/0/11)

D/A rfRITE SUBROUTINE

REGISTER USAGE:

*

WRITE

RO
Rl
Rll

CONTAINS DATA TO BE OUTPUT (LEFT JUSTIFIED)
CONTAINS D/A CHANNEL *

SUBROUTINE LINKAGE REGISTER

SLA
Ai
MOW
B

Rl ,1

Rl ,DAC0
R0,*R1
Rll

;FORM D/A CHANNEL D1SPLACEMEM
;F0RM D/A CHANNEL ADDRESS
; OUTPUT DATA TO D/A CONVERTER
; RETURN TO CALLER

* PUT SUBROUTINE
*

* REGISTER USAGE:
*

* RO INDICATES ALARM TRUE IF NONZERO
* Rl OUTPUT CHANNEL NUMBER (0 OR 1)

* Rll SUBROUTINE LINKAGE REGISTER
*

* JOI'E: OUTPUT FALLS FOR APPROX. .66 MICROSECONDS

PUT

PUTO

PUT1
RETP

MOV RO,RO ; ALARM TRUE?

JEO RETP ;MO, DON'T OUTPUT
LI R12,SELCRU ;LOAD SEL CRU BASE ADDRESS

CI R 1 , > ;OUTPUT CHANNEL 0?

JEO PUTO ;yes
CI HI, >0001 ; OUTPUT CHANNEL 1?

JEU PUT1 ; YES
JMP RETP
TB SfcLl .•TWIDDLE SEL1 LINE
J."tP RETP
TB SKL2 ;TWIDDLE SEL2 LINE

B Rll ; RETURN TO CALLER

B-6

*

*

*

*

ALP

LEAST MEAN SQUARE ADAPTIVE LATTICE PREDICTOR

HEGISTER USAGE:

PREDICTOR
USED

ERRORRO RETURNS
Rl IHKU R3

R9 POINTER
RIO SAVES RETURN LINKAGE
R11 LOCAL SUBROUTINE RETURN

MOV R 11, RIO
MOV R0,iaF(R9)
MOV R0, (aG(R9)
LI R«,N

LOOPL MQV aB(R9),Rl
fiOV aGl(R9),R2
hL a MULT
MOV R2,R4
MOV Ri, R5
MOV ?F(R9),R2
CLR R3
BL aASHR
S R4,R2
S R5,R3
JOC S+4
DEC R2
BL SASHL
BL a ED IT
MOV R2,§f+2(R9)

*

MOV aB(R9),Rl
MOV £F(R9),H2
6L raMULT

MOV R2,R4
MOV R3,R5
MOV aGl(P9),R2
CLR R3
BL aASHR
S R4,R2
S R5,R3
JOC S+4
DEC R2
BL aASHL
BL aEDIT
MOV R2,»G+2(R9)

LINKAGE

;SAVE RETURN LINKAGE
;F(M, 1) = X(M) (2/0/11)
;G(M,1) = XCM) 12/0/11)
;LOAD » OE LATTICE STAGES

LOAD 8(M,L) C 1/0/15)
LOAD G(M-1,L) (1/1/14)
B(M,L)*G(M-1,L) (2/1/29)
COPY ARGUMENT

LOAD F(M,L) (1/1/14)
EXTEND PRECISION
REFORMAT F(*,L) (2/1/14)
F(M,L) - B(M,L)*G(M-1,L) (1/2/29)

CLIP TO (1/1/29)
ROUND TO (1/1/14)
F(M,L+1) =

F(M,L) - 8(M,L)*G(M-1,L) (1/1/14)
LOAD 8(M,L) (1/0/15)
LOAD F(M,L) (1/1/14)
B(M,L)*F(M,L) (2/1/29)
COPY ARGUMENT

LOAD G(m-1,L) (1/1/14)
EXTEND PRECISION
REFORMAT G(M-1,L) (2/1/14)
G(M-1,L) - 6(M,L)*E(M,L) (1/2/29)

CLIP TO (1/1/29)
ROUND TO (1/1/14)
G(M,L+1) =

G(M-1,L) - 8(M,L)*F(M,L) (i/1/14)

B-7

MOV SF(H9),R2
ABS R2
MPY R2,R2
MOV ?G1(R9),H4
AttS B4
MP* R4,R4
A R4,R2
A R5,P3
Jf>iC S + 4

INC R2
BL 3ASHL
BL 3EDIT
LI Rl, GAMMA
MP* Rl t R2
MOV R2,R4
MOV R3,R5

LI HI, BETA
MUV ?V(R9),P2
MPY R1,R2

A 94, R2
A R5,R3
JNC S+4
INC R2
HL aASHL
BL 9EUIT
MOV R2,aV(R9)
MUV R2,R7

LOAD F(M,l.) CI/ 1/1 4)

ABS(F(",D) +(1/1/14)

F(M,L)**2 +(2/2/28)
LOAD GCM-1,L) 11/1/14)
ABS(G(M-l,L)

)

+(1/1/14)
G(M-1,L)**2 +C2/2/28)
F(M,L)**2 G(M-1,L)**2 +(.1/3/28)

CLIP TO
ROUND TO
GAMMA = 1 - BETA
GAMMA *(F(M,L)**2
COPY ARGUMENT

LOAD BETA
LOAD V(M-t,L)
3ETA*V(M-1 ,L)

BETA*V(M-1 ,L) +

GAMK.A*(F(M,L)**2

+(1/2/28)
+(1/2/13)
+(o/0/10)-5

GCM-1 ,L)**2)
+(7/2/23)-5

+11/0/15)
+(1/2/1 3)

+(2/2/28)

G(M-1,L)**2)
(1/3/28)

CLIP TO +(1/2/28)
ROUND TO + U/2/13)
V(M,L) = BETA*V(M-1 ,L) +

GAMMA*(F(M,L)**2 + G (M- 1 , L) **2

)

+(1/2/13)

CLR Rb
CI R2,EPSLON
JLT BYPASS

MOV 3F+2(R9),R1
MOV 3G1(P9),R2
bL fdMULT

MOV P2,R4
MOV R3,R5
MUV 3F(R9),H1
MOV ?G+2(H9),R2
BL a MULT
A R4,R2
A R5,R3
JNC S+4
I imC R2
BL 3ASHL
dL 3 EDIT
MOV R2,R6
ABS R2
SPA R2,l
LI HI, ALPHA
MPY R1,P2
OU R7,R2
I rn V R 6

JLT S+4
Nfc'.G R2
MUV R2,R6

?T =

;V(v,L) < EPSLON?
,*YES, BYPASS COMPUTATION OF I

LOAD F(M,L+1) (1/1/14)
LOAD GCM-1, L) (1/1/14)
F(M,L+1)*G(M-1,L) (2/2/28)
COPY ARGUMENT

LOAD F(M,L)
LOAD G(M,L+1)
F(M,L)*G(M,L+1)
F(M,L+1)*G(M-1,L)

CLIP TU
ROUND TO
SAVE SIGN IMFO
ABS()

REFORMAT
LOAD ALPHA
ALPHA*ABS(
ALPHA*ABS(
TEST SIGN
RESTORE SIGN
T =

F(

11/1/14)
(1/1/14)
(2/2/28)

F(M,L)»G(M,L+1)
(1/3/28)

(1/2/28)
(1/2/1 3)

) / V (M , L)

TORE SIGN
; ALPHA* (F(M, u+l)*G(M-1
M,L)*G(«,(/!))/V(M,L)

+(1/2/13)
+(2/2/12)
+(6/0/1 0)-5
+ ('c/2/23)-5
+(7/0/9) -5

,L) +

l7/0/9)-5

B-8

BYPASS bl K1,U
MOV ?d(R9)»R2
BL tfiMULT

A R6,R2
BL yASHL
BL ?EDIT
MOV R2,a8(R9)

MOV ?G(R9) ,«G1(R9)
INCT R9
DEC R8
JEGi ENDLOP
B 3LOOPL

ENDLOP MOV ?G(R9) ,<?G1(R9)

MOV 3F (R9),R0

MOV R0,R2
A8S R2

MPY R2,R2
BL 3ASHL
BL £EDIT
MOV R2,R1

SRA HO, 4

SRA Rl,4

;LOAD U

;LOAD B(M,L)
;U*B(M,L)

jB(M+l,L) = U*8(M,L) + I

;CL1P TO
; ROUND TO
.'STORE B(M+1,L)

;G(M-1,L) = G(m,L)
;BU^P POINTER
;COUNT = COUNT - 1

;UUIT IF COUNTsO
;ELSE PROCESS IN.EXT STAGE

;G(M-1 ,N + 1) = G(M,N+1)
SLOAU PREDICTOR ERROR

;COPY E(M)
?abs(E(v))
?E(M)**2
;CLIP TO
; ROUND TO
;COPY E(M) FOR OUTPUT

+(1/0/15)
C 1/0/1 5)
12/0/30)

(1/1/30)
(1/0/30)
(1/0/15)
(1/0/15)

(1/1/14)

; FORMAT E(M) FOP OUTPUT
; FORMAT E(M)*2 FOR OUTPUT

(1/1/14)
(1/1/14J

(1/1/14)
+(1/1/14)
+(2/2/28)
+(1/2/28)
(1/2/13)
+(1/2/13)

(5/1/10)
+(5/2/9)

B *R10 RETURN TO CALLER

B-9

* ADAPTIVE THRESHOLD DETECTOR ROUTINE
*

ATO MOW R 11, RIO ;SAVE

MOV 3EA(R9),R6 ;LOAD

MOV ?EB(R9),R7 ;LOAD

MOV 3EC(R9),R8 ;LOAO

S *R8,@QB+2(R9)
JOC S+4
DEC «QR(R9)
A *R7,(aUB + 2(R9)

JNC $+4
INC PQBCR9)

S *R6,»GA+2(R9)
JUC S+4
DEC ?QACR9)
A R2,iaQA + 2(R9)
JUC S + 4

IMC ?UA(R9)

MOV R2,*R8

LI R5,D+L+2
A R9,R5
INCT R6

C R5,P6
JHE S + 4

MOV R9 ,R6

MOV R6,«EA(R9)
INCT R7

C >R5,R7
JfNlE S + 4

MOV R9,R7
MOV R7,£EBCP9)
INC T R8

C R5,R8
J N E S + 4

MOV R9,R8
MOV R8,3EC(R9)

RETURN POINTER
EA POINTER
FB POINTER
EC POINTER

QbCM) = QB(M-l)
- E(M-L-0)*.2 .

+ ECM-D)*2 111/8/13]

?QA(M) = QA(M-l)
;

_ £(to-M)*2 ...

; + ECM)*2

?E(M-L-0)*2 = ECM)*2

[13/6/13]

+(1/2/13)

;LOAD MAXIMUM BUFFER DISPLACEMENT
;FORM ABSOLUTE ADDRESS
;ADVAf-CE EA POINTER
?T1ME TO CIRCULATE?
t

;YES
; STORE THE POINTER
; ADVANCE EB POINTER
;TIME TO CIRCULATE?
•
r

;YES
; STORE THE POINTER
; ADVANCE EC POINTER
;TIME TO CIRCULATE?
•

;YES
; STORE THE POINTER

B-10

LFO

LP1

LP2

LP 3

MOV (dQACR9),P2
MOV @^A+2(R9) ,K3

LI R8,K
BL 3ASHL
DEC R8
JNE LPO
MOV R2,R12
MOV R3,R13
s 3QBCR9J ,R2

s 3QB+2(R9) ,R3

JOC S+4
DEC R2

mOV R2,R4
MOV R3,R5
LI R7,THETAH
LI R8,THETAL
S R7,R4

R8,P5S

JOC S+4
DEC R4

LI R7,>07FF
MOV R4,P4
JGT $ + 6

JEQ S + 4

CLH R7

Li R8,>0004
BL VJASHR

DEC P8
JtME LP1
MOV R3,Pb

MOV R12,R2
1*0V R13,R3
LI P8,>0004
BL ?ASHR
DEC R8

JNE LP2
MOV R3,R4

MO V aQB(R9) ,R2

MOV a^B+2(P9) ,R3

Li R8,>0004
dL aASHR
DEC R8
JNE LP3
MOV H3,R5

?LOAD OA(M)

;LQAO AID CONSTANT
;RESCALE OA(M)

;SAVE QACM) FOP OUTPUT
9

;QA(M) - QB(M)
9

9

;SAVE
9

;LOAD THETA

; (QA(M)-QB(M)) - THETA

C 1 3/6/131

(11/8/13)

(10/y/l3)

+ U7/0/5)-b

(9/10/13 J

*R1U

ALARM CM) = .TRUE.
(QA(M)*QB(M) J - THETA > 0?

MO, ALARM (M) = .FALSE.

;LOAD OUTPUT SHIFT COUNT
.•REFORMAT
J BUMP SHIFT COUNT
•

jQA-GB FOR OUTPUT

LOAD QA(M)

LOAD OUTPUT SHIFT COUNT
REFORMAT
BUMP SHIFT COUNT

QACM) IN R4 FUR OUTPUT

LOAD OB(MJ

LOAD OUTPUT SHIFT COUMT
REFORMAT
BUMP SHIFT COUNT

;QB(M) IN R5 FuR OUTPUT

; RETURN TO CALLER

B-ll

*

* 2'S CuMPLEMENT SIGNED MULTIPLY ROUTINE
*

* K2:R3 <— Rl * R2

* RO IS MODIFIED
* Rll IS USED FOP
*

MULT

1

RETURN LINKAGE

CLR
MOV
JGT
J£U
MOV
MOV
JGT
JEU
A

MPY
S

H

RO
R1,R1
$ + 6

$ + 4

R2.R0
R2.R2
S + b

$ + 4

Rl ,RO
R1,R2
R0.R2
*R11

SIGN FIX =

TEST SIGN OF Rl

SIGN FIX = (R2)
TEST SIGN OF R2

1

;SIGN FIX = SIGN FIX
;R2:R3 <— Rl * R2

;FIX SIGN OF RESULT
.•RETURN TO CALLER

+ CR1)

* EDIT (ROUNDUP) ROUTINE
*

* R2 <— EDIT(R2:R3)
* Rl 15 USED FOR SUBROUTINE
«

EDIT

LINKAGE

EOT

MOV
JGT
JEQ
INC
J NO
LI
CI
JNE
INC
B

R3.R3
EOT
EDT
R2
EDT
R2,POS*AX
R2.NEGMAX
S+4
R2
*R11

TEST MSB OF LOW ORDER KURD
DON'T INCREMENT IF ZERO

INCREMENT HIGh-ORDER -vOKD

SKIP IF NO OVERFLOW
LOAD LARGEST POSITIVE NUMBER
DISALLOW LARGEST NEGATIVE NO<

RETURN TO CALLER

B-12

*

* DOUBLE PKECISIJN RIGHT ARITHMETIC SHIFT

* R2:R3 <-- ASHR(P2:R3)
* Rll IS USED FOR SUBROUTINE LINKAGE
*

ASHR SHU R3,l ; SHIFT LOwER WORD RlGhT

SRA R2,l ;SriIFT HIGHER "ORD RIGHT

j fJ C $ + 6 ;SKIF IF LSB tikS ZERO

AI R3,NEGMAX ;SET MSB OF LOwER WORD TO ONE

b * Ru ; RETURN TO CALLER

*

* 00U8UE eRECiSIDN LEFT ARITHMETIC
* SHIFT rflTH OVERFLOW CHECK
*

* R2:R3 <— ASHL(R2:R3)
* Rll IS USED FOR SUBROUTINE LINKAGE

ASHL SLA R2,l ;SHIFT HIGHER WORD LEFT
;OVERFLOw?
;,vAS IT POSITIVE?
;NQ, LOAD SAX MEG. VALUE
*
9

; RETURN TO CALLER

RASL Ul R2,P05MAX f*ES, LOAD WAX POS. VALUE

SLA R2, 1

J NO ASL
JNC PASL
LI R2,NEGMAX
CL« R3

J M P RASL
Ul R2,P05MAX
SETO R3

JMP RASL
SLA R3,l
JNC $ + 4

INC R2
d Rll

END START

JRETURN TO CALLER

ASL SLA R3,l ; SHIFT LOWER wORO LEFT
;SKIR IF M SB v»AS ZERO
;SFT LSB OF HIGHER ORDER *QRD

HASL B *RH ; RETURN TO CALLER

ON A BLOCK FLOATING POINT IMPLEMENTATION

OF AN INTRUSION-DETECTION ALGORITHM

by

ROBERT JOSEPH FOGLER

B.S., Kansas State University, 197:

AN ABSTRACT OF A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Electrical Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas

1979

The main objective of this paper is to present various aspects of

implementing a specific intrusion-detection algorithm on a microprocessor

using block floating point arithmetic. In particular a TI 9900 based test

system is considered.

The proposed algorithm is able to detect intruder stimuli which are

broadband and transient in nature, while rejecting correlated noise which

may be present with the intruder signal. The algorithm consists of two main

functional blocks: an adaptive lattice predictor (ALP) and an adaptive

threshold detector (ATD)

.

The ALP is used to remove correlated noise hence reduces the number

of false alarms, while improving the signal-to-noise ratio when intruder

stimuli are present, thereby simplifying the task of the ATD.

The ATD uses a variance estimate of a noise segment, and a signal

plus noise segment from the .UP output sequence. It then compares a function

of these estimates with a fixed threshold.

Experimental results demonstrating the performance of the intrusion-

detection algorithm using data obtained from an actual test site are

included.

