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Abstract 

In this article we estimate the order of integration of the volatility process of several 
exchange rates and stock returns using fractionally integrated semiparametric techniques, 
namely a local Whittle semiparametric estimator. The results suggest that all series can be 
well described in terms of I(d) statistical models, with values of d higher than 0, indicating 
long-memory behaviour. 
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1. Introduction 

High volatility in asset returns is a well known stylised fact. However, there is no 

agreement amongst researchers about the best statistical approach to model this type of 

behaviour. Bollerslev et al. (1992, 1994) proposed ARCH/GARCH models in which the 

variance of the time series conditional on the previous information is known. On the other 

hand, Harvey et al. (1994), Ruiz (1994), Hansen (1995) adopted stochastic volatility 

models where the variance is random. Other similar models, also assuming nonstationarity 

of the volatility process, are reviewed in Bollerslev et al. (1994). Much of the criticism 

about nonstationarity in volatility is based on the fact that the process usually has a large 

negative moving average root, and standard unit root tests (Dickey and Fuller, 1979, 

Phillips and Perron, 1988, etc.) are known to suffer from extreme size distortions in the 

presence of MA roots (see, eg. Schwert, 1989; Pantula, 1991). Wright (1999) applies to the 

log of the squared return series new unit root tests introduced by Perron and Ng (1996), 

which are robust to large negative MA roots. However, the new tests still reject strongly 

the hypothesis of nonstationarity in the volatility process, indicating considerable 

persistence in volatility, which, Wright (1999) suggests, might be better captured using 

AR(p) specifications with a large AR root or fractionally integrated I(d) models. Following 

his suggestion, in this paper we take such an approach and model the volatility of several 

exchange rates and stock prices returns by means of fractional integration techniques. 

Specifically, we use a semiparametric procedure due to Robinson (1995a), which is briefly 

described in Section 2. In Section 3 this procedure is applied to the log of the squared 

returns, while Section 4 contains some concluding comments. 
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2.  A local Whittle semiparametric approach 

For the purpose of the present paper, we define an I(0) process {ut, t = 0, ±1, …}, as a 

covariance stationary process with a spectral density function that is positive and finite at 

the zero frequency. In this context, we say that {xt, t = 0, ±1, …} is I(d) if 
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Clearly, if d = 0 in (1), xt = ut, and xt is said to exhibit ‘short memory’, as opposed to the 

case of ‘long memory’ occurring when d > 0. In essence, there are two main approaches to 

estimating the fractional differencing parameter. One is parametric, with the model being 

specified up to a finite number of parameters. Thus, a functional form for the ut in (1) has 

to be chosen. The other is semiparametric, with ut being allowed to follow any I(0) process. 

A problem with parametric approaches is that they require the model to be correctly 

specified. Otherwise, the estimates are liable to be inconsistent. In fact, misspecification of 

the short-run components of the series may invalidate the estimation of d. Therefore, 

adopting semiparametric procedures might be advantageous. In this article, we use such a 

procedure, namely a local Whittle estimator (Robinson, 1995a) which we now describe. 
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Robinson’s (1995a) estimator is essentially a local “Whittle estimator” in the 

frequency domain, with a band of frequencies that degenerates to zero. The estimator is 

implicitly defined by: 
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for d ∈ (-0.5, 0.5).1 Under finiteness of the fourth moment and other mild conditions, 

Robinson (1995a) proved that: 

,)4/1,0()ˆ( ∞→→− TasNddm do  

where do is the true value of d, with the only additional requirement that m → ∞ slower 

than T. Robinson (1995a) showed that m must be smaller than T/2 to avoid aliasing effects.  

 

3. The order of integration of the volatility of asset returns 

The data analysed in this section are the daily exchange rate and stock return series used by 

Wright (1999). The exchange rate series are the US dollar/UK pound, the US 

dollar/Deutschmark and the US dollar/Japanese yen obtained from Datastream, daily, over 

the calendar years 1986-1996 inclusive. The exchange rate returns were constructed as the 

first differences of the log exchange rates. The stock return data consist of the daily 

changes of the log of the SP/500 index, covering the period from 4 January 1982 to 23 

September 1994. 

                                                           
1  Velasco (1999) has recently shown that the fractionally differencing parameter can also be consistently 
estimated semiparametrically in nonstationary contexts by means of tapering. See also Phillips and Shimotsu 
(2005) for an exact Whittle estimate. 
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(Insert Figures 1 and 2 about here) 

 The procedure described in Section 2 is used to estimate the order of integration of 

the volatility of each of these series. More precisely, denoting the log-squares of each of 

the returns by yt
*, we estimate d according to (3). The results for the whole range of values 

of m (from m = 1, …, T/2) are given in Figure 1.2 It can be seen that for all four series the 

values of d are very sensitive to the choice of m, especially if m is small, which may be an 

indication of the presence of short-run dynamics in these series. We also show in Figure 1 

the 95% confidence interval corresponding to the I(0) hypothesis. We observe that all 

estimates are above the interval, implying long-memory behaviour. In Figure 2 we display 

the same estimates but for a shorter range of values of m. One can see that the largest 

estimates are obtained for the US dollar/UK pound series, with d fluctuating around 0.25. 

For the remaining series, the values of d appear to be slightly smaller, ranging around 0.15.  

 

4. Conclusions 

In this article we have examined the stochastic volatility of several exchange rates and 

stock returns by using the local Whittle semiparametric approach proposed by Robinson 

(1995a) to estimate the order of integration of the log of the squared returns. This was 

motivated by an earlier study by Wright (1999), who concluded that even unit root tests not 

suffering from size distortions still lead to strong rejections of nonstationarity in volatility, 

implying that fractionally integrated models may provide a better representation of such 

highly persistent processes. Our results indicate that, indeed, in all cases volatility can be 

                                                           
2  Some methods to calculate the optimal bandwidth numbers are examined in Delgado and Robinson (1996) 
and Robinson and Henry (1996). However, in the case of the Whittle estimator, the use of optimal values has 
not been theoretically justified. Other authors, such as Lobato and Savin (1998), use an interval of values for 
m, but we have preferred to report the results for the whole range of values of m. 
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specified in terms of I(d) statistical models, the parameter d being around 0.25 in the case 

of the US dollar/UK pound exchange rate, and slightly smaller (d ~ 0.15) for the US dollar/ 

Deutsch mark, the US dollar/Japanese yen and the SP/500 series. 

 As mentioned before, there also exist parametric methods for estimating and testing 

the fractional differencing parameter (see, eg., Gil-Alana and Robinson, 1997). In a recent 

paper, Gil-Alana (2003) takes such an approach to test for the presence of unit and 

fractional roots in the same volatility series as in the present study, and concludes that the 

four processes are I(d), the null hypothesis of d = 0 being strongly rejected in favour of 

long-memory alternatives (d > 0). However, as pointed out in Section 2, estimation based 

on parametric procedures has the drawback of potential misspecification, and therefore 

semiparametric approaches such as the one used in this article are preferable. Other 

semiparametric methods (e. g., the average periodogram estimator (Robinson, 1994) and 

the log-periodogram regression estimator (Robinson, 1995b)) have been applied to other 

economic time series (see, eg. Gil-Alana, 2002). Investigating the sensitivity of the results 

to using alternative semiparametric approaches represents an interesting topic for further 

research. 

 

 

 

 

 

 

 

 5



References 

Bollerslev, T.R., Y. Chou and K.F. Kroner, 1982, ARCH models in finance: a selective 
review of the theory and empirical evidence, Journal of Econometrics 52, 5-59. 
 
Bollerslev, T.R., F. Engle and D.B. Nelson, 1994, ‘ARCH models’, in R.F. Engle and D.L. 
McFadden eds. Handbook of Econometrics, Vol. 4, Elsevier, Amsterdam. 
 
Delgado, M.A. and P.M. Robinson, 1996, Optimal spectral bandwidth for long memory. 
Statistica Seneca, 6, 97-112. 
 
Dickey, D.. and W.A. Fuller, 1979, Distributions of the estimators for autoregressive time 
series with a unit root, Journal of the American Statistical Association 74, 427-431. 
 
Gil-Alana, L.A., 2002, Semiparametric estimation of the fractional differencing parameter 
in the UK unemployment, Computational Economics 19, 323-339. 
 
Gil-Alana, L.A., 2003, Fractional integration in the volatility of asset returns, European 
Review of Economics and Finance 2, 41-52. 
 
Gil-Alana, L.A. and P.M. Robinson, 1997, Testing of unit roots and other nonstationary 
hypotheses in macroeconomic time series, Journal of Econometrics 80, 241-268. 
 
Hansen, B.E., 1995, Regression with nonstationary stochastic volatility, Econometrica 63, 
1113-1132. 
 
Harvey, A.C., E. Ruiz and N.G. Shephard, 1994, Multivariate stochastic variance models, 
Review of Economic Studies 63, 435-463. 
 
Lobato, I.N. and N.E. Savin, 1998, Real and spurious long memory properties of stock 
market data. Journal of Business and Economic Statistics, 16, 261-283. 
 
Pantula, S.G., 1991, Asymptotic distributions of unit-root tests when the process is nearly 
stationary, Journal of Business and Economic Statistics 9, 63-71. 
 
Perron, P. and S. Ng, 1996, Useful modifications to some unit root tests with dependent 
errors and their local asymptotic properties, Review of Economic Studies 63, 435-463. 
 
Phillips, P.C.B. and P. Perron, 1988, Testing for a unit root in a time series regression, 
Biometrika 75, 335-346. 
 
Phillips, P.C.B. and K: Shimotsu, 2005, Exact local Whittle estimation of fractional 
integration, forthcoming in Annals of Statistics. 
 
Robinson, P.M., 1994, Time series with strong dependence, In C.A. Sims ed., Advances in 
Econometrics: Sixth World Congress, Vol 1, 47-95, Cambridge University Press. 
 

 6



Robinson, P.M., 1995a, Gaussian semiparametric estimation of long range dependence, 
Annals of Statistics 23, 1630-1661. 
 
Robinson, P.M., 1995b, Log-periodogram regression of time series with long range 
dependence, Annals of Statistics 23, 1048-1072. 
 
Robinson, P.M. and M. Henry, 1996, Bandwidth choice in Gaussian semiparametric 
estimation of long-range dependence. P.M. Robinson and M. Rosenblatt eds. Athens 
Conference on Applied Probability in Time Series Analysis, Vol.II, New York, 220-232. 
 
Ruiz, E., 1994, Quasi maximum likelihood estimation of stochastic volatility models, 
Journal of Econometrics 63, 289-306. 
 
Schwert, G.W., 1989, Tests for unit roots: A Monte Carlo investigation, Journal of 
Business and Economic Statistics 7, 147-160. 
 
Velasco, C., 1999, Gaussian semiparametric estimation of nonstationary time series, 
Journal of Time Series Analysis 20, 87-127. 
 
Wright, J., 1999, Testing for a unit root in the volatibility of asset returns, Journal of 
Applied Econometrics 14, 309-318. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 7



 

FIGURE 1 
Estimates of d (Robinson, 1995a) in the volatility process for the whole range of values of m 
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The horizontal axis corresponds to the bandwidth parameter number m, whilst the vertical one refers to the 
order of integration. 
 
 
 
 

FIGURE 2 
Estimates of d (Robinson, 1995a) in the volatility process for a shorter range of values of m 

0
0 ,0 5

0 ,1
0 ,1 5

0 ,2
0 ,2 5

0 ,3
0 ,3 5

0 ,4

1 0 0 5 0 0

$ /P o und

S & P 5 0 0

$ /Ye n

 
The horizontal axis corresponds to the bandwidth parameter number m, whilst the vertical one refers to the 
order of integration. 
 

 8


	Abstract
	In this article we estimate the order of integration of the 
	References
	FIGURE 1
	Estimates of d (Robinson, 1995a) in the volatility process f

	FIGURE 2
	Estimates of d (Robinson, 1995a) in the volatility process f


