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Abstract 

In this paper we use a statistical procedure which is appropriate to test for deterministic and 
stochastic (stationary and nonstationary) cycles in macroeconomic time series. These tests 
have standard null and local limit distributions and are easy to apply to raw time series. Monte 
Carlo evidence shows that they perform relatively well in the case of functional 
misspecification in the cyclical structure of the series. As an example, we use this approach to 
test for the presence of cycles in US real GDP. 
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1. Introduction 

It is a well-known stylised fact that many macroeconomic time series can be specified in terms 

of a trend, and seasonal and cyclical components. However, while the first two of these 

components have been widely examined in the empirical literature, little attention has been 

paid to the cyclical structure of the series. In this paper, we focus on the latter, and use an 

appropriate version of a testing procedure suggested by Robinson (1994) which enables us to 

test for cyclical structures of any type in a unified framework. These tests have several 

distinguishing features compared to other procedures. In particular, they have standard null and 

local limit distributions, implying that it is not necessary to calculate finite sample critical 

values based on Monte Carlo simulations. In addition, their limiting distribution is the same 

regardless of the deterministic components used in the regression model, and therefore they are 

suitable to test for both deterministic and stochastic (stationary or nonstationary) cycles. 

 The structure of the paper is as follows: Section 2 outlines alternative approaches to 

modelling cycles in raw time series, and describes the version of the tests of Robinson (1994) 

used in the present study; Section 3 reports several Monte Carlo experiments aimed at 

assessing the performance of these tests under misspecification in the functional form of the 

cycles; Section 4 presents an empirical application to US real GDP, while Section 5 concludes. 

 

2. Testing for cycles with the tests of Robinson (1994) 

Modelling cycles in macroeconomic time series is still rather controversial. Deterministic 

cycles based on trigonometric functions of time have been proposed for many years. They are 

based on models of the form: 

...,2,1,cos 10 =++= tutsinty tt λβλβ   (1) 
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where β0 and β1 are fixed parameters, λ takes a particular value between 0 and π, and ut is an 

I(0) process, defined for the purpose of the present paper as a covariance stationary process 

with a spectral density function that is positive and finite at any frequency. 

 Stochastic stationary cycles were proposed, amongst others, by Harvey (1985). They are 

based on autoregressive (AR) processes of the form: 

       ...,2,1,2211 =++= −− tuyyy tttt φφ ,  (2) 

with the roots of the AR polynomial lying outside the unit circle. However, in the last few 

years, it has been claimed that, similarly to the trend and to the seasonal components, cycles 

may change or evolve over time, and nonstationary stochastic cycles (or unit root cycles) have 

also been proposed. Thus, for example, Ahtola and Tiao (1987) developed cyclical unit root 

tests based on the AR(2) model (2), which, under the null hypothesis 

Ho: ⏐φ1⏐ < 2  and  φ2 = -1,    (3) 

becomes the cyclical unit root model specified below. More recently, Gray et al. (1989, 1994) 

extended the cyclical unit root model to the fractional case and considered processes of the 

form: 

...,2,1,)21( 2 ==+− tuxLL tt
dµ ,  (4) 

where the unit root model corresponds to the case of d = 1. They showed that the polynomial in 

(4) can be expressed in terms of the Gegenbauer polynomial such that for all d ≠ 0 
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where Γ(x) stands for the Gamma function, and a truncation will be required below (5) to make 

(4) operational. Alternatively, we can use the recursive formula: 
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(see, for instance, Magnus et al., 1966, Rainville, 1960, etc. for further details on Gegenbauer 

polynomials). Using (5), the process in (4) becomes 
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and, when d = 1, we have 

      ...,2,1,2 21 =+−= −− tuxxx tttt µ   (7) 

which is a cyclical I(1) process with the periodicity determined by µ.1 Nesting the unit root 

cyclical model (7) within the fractional structure (4) has some advantages from a statistical 

viewpoint. Note that testing (3) in (2) produces a radically different behaviour in the limit 

distribution. Specifically, if φ1 and φ2 in (2) are such that the roots are within the unit circle, the 

process is stationary, and the limit distribution is, under appropriate transformations, standard 

normal; if φ1 and φ2 are given by (3), the process contains unit roots and the limit distribution is 

non-standard; finally, for the remaining values of φ1 and φ2 the limit distribution is explosive. 

On the other hand, testing the null of d = 1 in (4) does not produce such an abrupt change in the 

limit behaviour, and the boundary line between stationarity and nonstationarity now 

corresponds to d = 0.5 (if  ⎢µ ⎢< 1). 

Robinson (1994) developed a general testing procedure which enables one to test all the 

above specifications for the cyclical structure in a unified framework. He considers the 

regression model 

                                                 
1  Unit root cycles have been examined by Ahtola and Tiao (1987), Chan and Wei (1988), Gregory (1999a, b), 
and, more recently, by Gil-Alana (2001) and Bierens (2001). 
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....,2,1,' =+= txzy ttt β     (8) 

where yt is the time series we observe; β is a (kx1) vector of unknown parameters; zt is a (kx1) 

vector of exogenous regressors that may include, for example, those in (1); and the regression 

errors xt are of the form given in (4). Thus, we can consider the model 

    ...,2,1,cos 10 =++= txtsinty trrt λβλβ  (9) 

   , (10) ...,2,1,)cos21( 2 ==+− tuxLL tt
d

rλ

where λr = 2πr/T and r = T/j, j indicating the number of time periods per cycle. Robinson 

(1994) proposes a Lagrange multiplier (LM) test of the null hypothesis: 

Ho:  d  =  do,     (11) 

in (9) and (10) for any real value do. Specifically, the test statistic is given by: 
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g(wj; τ) is the function appearing in the spectral density of ut: f(wj; τ) =  (σ2/2π) g(wj; τ), 

evaluated at τ̂  = arg min  σ2(τ). Thus, for example, if ut is a white noise process, g ≡ 1, whilst 

if ut is an AR process of the form: φ(L)ut = εt, then g = |φ(eiλ)|-2, with σ2 = V(εt), so that the AR 

coefficients are a function of τ. Finally, Iû (wj) is the periodogram of ût defined as: 
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∈ M, where M = {w: -π < w < π, λ ∉ (ρl - w1, ρl +w1), l = 1, 2, …, s}, such that ρl, l = 1, 2, …, 

s < ∞ are the distinct poles of ψ(w) on (-π, π]. 

Based on Ho (11), Robinson (1994) established that, under very general conditions, 

       ,)1,0(ˆ ∞→→ TasNr    (13) 

and the same limit distribution holds whether or not deterministic regressors are included in 

(8). Furthermore, he shows that the above test is efficient in the Pitman sense, i.e. that against 

local alternatives of the form: Ha: d = do + δ T-1/2, for δ ≠ 0, the limit distribution is normal, 

with variance 1 and mean that cannot (when ut is Gaussian) be exceeded in absolute value by 

that of any rival regular statistic. Consequently, we are in a classical large sample testing 

situation for the reasons outlined by Robinson (1994). A one-sided test of Ho (11) against the 

alternative: 

Ha:   d > do,                 (14) 

will be given by the rule: 

“Reject Ho (11) if r̂  >  zα”, 

where the probability that a standard normal variate exceeds zα is α. Conversely, a test of (11) 

against the alternative: 

Ha:   d < do,                        (15) 

will be given by the rule: 

“Reject Ho (11) if r̂   <  - zα”. 

Using the set-up described by (9) – (11), we can test for different forms of cyclical 

structure. For example, if we test Ho (11) with do = 0 and white noise ut, the null model 

becomes the deterministic structure described in (1); testing the same null hypothesis with 
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AR(2) ut, we have a test for stochastic stationary cycles of the form given by (2). Further, 

testing Ho with do = 1 amounts to a test for unit root cycles, regardless of whether or not 

deterministic structures and/or autocorrelated disturbances are included. 

 

3. Some Monte Carlo evidence 

In this section we examine the finite-sample behaviour of the above version of the tests of 

Robinson (1994) by means of Monte Carlo simulations. In particular, we investigate their size 

and power properties in the context of deterministic and stochastic (stationary and 

nonstationary) cycles. In all cases, we generate Gaussian series using the routines GASDEV 

and RAN3 of Press, Flannery, Teukolsky and Vetterling (1986), with 10,000 replications. The 

sample sizes are T = 60, 120, 240 and 360 observations, and the nominal size is 5%. 

 First, we assume that the cyclical structure of the series is purely deterministic and 

consider a process of the form: 

...,2,1,cos =++= ttsinty trrt ελλ   (16) 

with r = T/6. We choose this value in view of the fact that cycles in economics seem to occur 

approximately every six years, and consider alternatives of the form (9) and (10), with do = 0, 

(0.25), 2, and white noise and weakly autocorrelated disturbances.  

(Insert Table 1 about here) 

The values reported in Table 1 are the rejection probabilities of the one-sided statistic 

given by r̂  in (12). Hence, the values corresponding to do = 1 and white noise ut indicate the 

size of the tests. One can see that there is a bias in the size in favour of alternatives of the form 

Ho: d < 0, though there is a considerable improvement as the number of observations increases. 

Specifically, if T = 60, the sizes are 12.7% (against d < 0) and 0.9% (d > 0), whilst they 

improve to 10.3 and 1.9% respectively when T = 120, and to 8.3% and 3.2% with T = 240. 

Finally, if T = 360, these values become 6.7% and 4.5%. When the I(0) disturbances are 

misspecified, there is a higher distortion in the sizes, although again there is an improvement as  
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T increases. Also, when testing for a unit root (i.e., d = 1) in this context of deterministic 

cycles, the rejection probabilities are very high, being equal to 1 in practically all cases if T > 

60. 

 Next, we assume that the cyclical structure is stochastic, and model the true process in 

terms of a stationary AR(2) of the form 

...,2,1,84.055.0 21 =+−= −− tuyyy tttt  .  (17) 

We choose this parameterisation in order to obtain a cyclical structure with cycles occurring 

approximately every six periods. Note that the spectral density function of a process like (2) is 

given by: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−++

=
−− wwee wiwi 2cos2cos)1(21

1
21

1
2 221

2
2

2
1

2

22
21

2

φφφφφπ
σ

φφπ
σ  

and setting this expression equal to 0 yields: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−
= −

2

211*

4
)1(

cos
φ

φφ
w     (18) 

implying that j = 2π/w*. Then, substituting φ1 and φ2 in (18) with, for example, 0.55 and –0.84, 

leads to j ≈ 6. 

(Insert Table 2 about here) 

 Table 2 reports the results of the same experiment as in Table 1, but assuming that the 

true process is generated by (17), while the alternatives are of the form given by (10). It can be 

seen that, similarly to Table 1, there is a size distortion with a bias in favour of alternatives with 

d < 0. This distortion is higher than in the previous case of white noise ut, though again it 

decreases as T increases. When the I(0) disturbances are misspecified, the bias is in the 

opposite direction, with values close to 0 against Ha: d < 0, and practically equal to 1 if the 

alternatives are of the form: d > 0. Moving on to the power of the tests with do = 1, the rejection 

probabilities are close to 1 if ut is correctly assumed to be AR(2), whilst they are relatively low 

with misspecified disturbances. To sum up, Table 2 seems to suggest that the correct 

 7



specification of the underlying I(0) autocorrelated disturbances is crucial in the context of 

stationary stochastic cyclical structures. 

(Insert Table 3 about here) 

Finally, we assume that the true data generating process contains cyclical unit roots of 

the form given by (7) with µ = cos wT/6 and white noise ut, and again perform the test in (10) 

with d = 0 and 1. When d = 0, the rejection probabilities are practically 1 if ut is white noise or 

AR(1), and slightly lower if the disturbances are AR(2). As for the size (i.e., d = 1), once more 

we observe a bias in favour of alternatives with d < 1, though, similarly to the previous cases, 

there is a substantial improvement as the sample size increases. 

Overall, the Monte Carlo evidence indicates that the tests of Robinson (1994) are 

adequate for testing cyclical structures in raw time series, and that, although there is a size 

distortion when the sample size is small, this tends to disappear as the number of observations 

increases. 

 

4. An empirical application 

The time series analysed in this section is the logarithmic transformation of US real GDP in 

billion dollars, annually, for the time period 1870 –2000, in 1990 prices. Plots of the original 

series and its first differences, along with their corresponding correlograms and periodograms, 

are shown in Figure 1. The original series is rising over time, and its nonstationarity is 

confirmed by the correlogram (with values decaying very slowly), and the periodogram (with a 

large peak around the zero frequency). Therefore, we perform several unit root tests at the long 

run or zero frequency.  In particular, we use ADF tests (Dickey and Fuller, 1979), where the 

null hypothesis is that of a unit root in the process; the KPSS test (Kiatwkoswki et al., 1992), 

for the null of an I(0) process against the alternative of a unit root; finally, a suitable version of 

Robinson’s (1994) tests (see, e.g., Gil-Alana and Robinson, 1997). In all cases we found 

evidence of a unit root, and therefore first differences were taken. Their plot suggests that these 
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might be stationary, although a cyclical pattern can also be observed; this is especially clear 

when looking at the correlogram and the periodogram. 

(Insert Figure 1 about here) 

 Denoting the differenced series by yt, we use the specification given by (9) and (10) 

with a constant, i.e., we consider processes of the form 

...,2,1,cos 21 =+++= txtsinty trrt λβλβα  (19) 

...,2,1,)cos21( 2 ==+− tuxLL tt
d

rλ   (20) 

testing Ho (11) with do = 0 (in Table 4), and do = 1, (in Table 5), and setting λr = 2πr/T, r = T/j, 

and j = 3, (1), 9, i.e., allowing cycles with a periodicity oscillating between three and nine 

years. In both Table 4 and 5, we consider separately the cases of (i) α = β1 = β2 = 0  a priori 

(i.e., we assume no regressors in the levels regression (19)); (ii) α unknown and β1 = β2 = 0 a 

priori (i.e.., including an intercept); and (iii) all the coefficients unknown, and present the 

results based on both white noise and weakly (AR) autocorrelated disturbances.  

(Insert Tables 4 and  5 about here) 

 Table 4 reports the results based on the null hypothesis of d = 0. Starting with the case 

with all the coefficients unknown, it can be noticed that the non-rejection values occur when j = 

5 (in the case of white noise ut), and when j = 5 or 6 with AR disturbances; very similar results 

are obtained if β1 = β2 = 0 a priori or if all the coefficients are 0. The results based on the null d 

= 1 (in Table 5) decisively reject the hypothesis of cyclical unit roots for all values of j and all 

types of disturbances. In fact, the values in Table 5 also indicate that the tests reject the null in 

favour of alternatives of the form d < 1. Note that the tests are based on the statistic given by r̂  

in (12), and therefore significant negative values represent evidence of orders of integration 

smaller than 1. 

 Going back to the results in Table 4, the similarities between the three cases of no 

regressors, an intercept, and an intercept and cycles may suggest that these deterministic 

 9



components are not required.  Gil-Alana and Robinson (1997) introduced a joint test for 

simultaneously testing the need of a linear time trend and the order of integration at the zero 

frequency. Here, we propose a similar test, but, instead of looking at the zero frequency, we 

focus on the cyclical roots, and, instead of a linear trend, we consider a deterministic cyclical 

structure. Thus, we carry out a joint test of: 

,0: == βandddH oo    (21) 

with β = (β1, β2)’, against alternatives of form: 

             ,0: ≠≠ βorddH oo    (22) 

in (19) and (20). This case is not analysed by Robinson (1994), but the LM test can easily be 

derived as follows: 
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and r̂  calculated as described in Section 2 but using the tu~  just defined. Then, under Ho (21), 

2
3

~ χdS →   as T → ∞, and (23) is compared to the values of the upper tail of the  

distribution. 

2
3χ

(Insert Table 6 about here) 

 In Table 6 we present the statistic (23) for the same values of j and do as before. It can 

be seen that, similarly to the previous tables, the non-rejection values occur when j = 5 and 6, 

implying that deterministic cycles may not be important when modelling this series. In view of 

all this evidence, and also taking into account the insignificance of the estimated coefficients in 

the models based on an intercept and on AR(1) disturbances, we can conclude that the best 

model specification for the growth rate series is a stationary AR(2) model of the form given by 
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(2), with estimated coefficients equal to 0.278 and –0.072. According to (18), this implies that 

the cycles occur approximately every 6.29 periods, which is consistent with the empirical 

evidence for many other macroeconomic time series. 

 

5. Conclusions 

In this paper we have presented a version of the tests of Robinson (1994) that is appropriate to 

test for cyclical components in raw time series. These tests are very general and suitable for 

both deterministic and stochastic (stationary and nonstationary) cycles without any change in 

their standard (normal) limit distribution. We report several Monte Carlo experiments showing 

that their size is slightly biased for small sample sizes, but approximates the nominal one for 

higher values of T. Also, we show that these tests have power to detect functional 

misspecification in the cyclical case. Finally, we applied them to the first differences of the log 

transformation of US real GDP. We find strong evidence against unit root cycles, and 

deterministic components also seem to be inappropriate. A simple AR(2) process with 

stationary complex roots appears to be the best specification for describing the cyclical 

structure of this series. 

 The present study can be extended in several ways. For instance, finite-sample critical 

values for the different forms of cyclical structures could be computed, and the case of non-

normal disturbances could also be considered. Further, it might be of interest to obtain point 

estimates of the fractional differencing parameters for the cyclical components (examples in a 

semiparametric context are Arteche and Robinson, 2000, and Arteche, 2001). However, this 

would be much more computationally intensive. Moreover, the emphasis should be put on 

confidence intervals, rather than point estimates, when preliminary integer differencing appears 

to be required in order to achieve I(0) stationarity.2  

                                                 
2  Note that the approach used in this paper generates simply computed diagnostics for departures from a particular 
type of cyclical behaviour; specifically, the results presented in this paper should be interpreted as giving support 
to models assuming that real output is I(1) with the cyclical structure determined by a stationary AR(2) model. 
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FIGURE 1 
Plots of the original series with their corresponding correlograms and periodograms 
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The large sample standard error under the null hypothesis of no autocorrelation is 1/√T or roughly 0.08 for the 
series used in this application. 
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TABLE 1 

Rejection frequencies of the tests of Robinson (1994) in the context of deterministic 
cyclical structures 

True model: ,cos 6/6/ tTTt tsinty ελλ ++=    

Alternatives:       ,cos 6/16/0 tTTt xtsinty ++= λβλβ                   

 ,)cos21( 2
6/ tt

d
T uxLL =+− λ

Ho:  d = 0 Ho:  d = 1 Sample size Disturbances 
Ho:  d < 0 Ho:  d > 0 Ho:  d < 1 

White noise 0.127 0.009 1.000 
AR(1) 0.152 0.004 0.993 

T   =   60 

AR(2) 0.164 0.003 0.987 
White noise 0.103 0.019 1.000 

AR(1) 0.136 0.016 1.000 
T   =   120 

AR(2) 0.149 0.012 0.999 
White noise 0.083 0.032 1.000 

AR(1) 0.099 0.026 1.000 
T   =   240 

AR(2) 0.105 0.024 1.000 
White noise 0.067 0.045 1.000 

AR(1) 0.071 0.044 1.000 
T   =   360 

AR(2) 0.073 0.043 1.000 
In bold: The sizes of the tests. The nominal size is 95% and 10,000 replications were carried out in each case. 
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TABLE 2 

Rejection frequencies of the tests of Robinson (1994) in the context of stationary 
stochastic cyclical structures 

True model:  ,84.055.0 21 tttt yyy ε+−= −−    
Alternatives:  ,)cos21( 2

tt
d

r uyLL =+− λ
Ho:  d = 0 Ho:  d = 1 Sample size Disturbances 

Ho:  d < 0 Ho:  d > 0 Ho:  d < 1 
White noise 0.000 0.996 0.365 

AR(1) 0.000 0.988 0.317 
T   =   60 

AR(2) 0.261 0.000 0.895 
White noise 0.000 1.000 0.512 

AR(1) 0.000 1.000 0.506 
T   =   120 

AR(2) 0.198 0.004 0.9976 
White noise 0.000 1.000 0.677 

AR(1) 0.000 1.000 0.605 
T   =   240 

AR(2) 0.097 0.015 1.000 
White noise 0.000 1.000 0.775 

AR(1) 0.000 1.000 0.707 
T   =   360 

AR(2) 0.083 0.022 1.000 
In bold: the sizes of the tests. The nominal size is 95% and 10,000 replications were carried out in each case. 
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TABLE 3 

Rejection frequencies of the tests of Robinson (1994) in the context of 
nonstationary stochastic cyclical structures 

True model:  ,cos2 216/ tttTt yyy ελ +−= −−    
Alternatives:  ,)cos21( 2

6/ tt
d

T uyLL =+− λ
Ho:  d = 0 Ho:  d = 1 Sample size Disturbances 
Ho:  d ≠ 0 Ho:  d < 1 Ho:  d > 1 

White noise 0.763 0.136 0.015 
AR(1) 0.768 0.141 0.002 

T   =   60 

AR(2) 0.711 0.468 0.004 
White noise 0.991 0.102 0.022 

AR(1) 0.995 0.144 0.006 
T   =   120 

AR(2) 0.833 0.441 0.033 
White noise 1.000 0.080 0.039 

AR(1) 1.000 0.174 0.026 
T   =   240 

AR(2) 0.859 0.515 0.113 
White noise 1.000 0.061 0.048 

AR(1) 1.000 0.173 0029 
T   =   360 

AR(2) 0.984 0.546 0.110 
In bold: The sizes of the tests. The nominal size is 95% and 10,000 replications were carried out in each case. 
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TABLE 4 
Testing of stationary cycles with the tests of Robinson (1994) 

Model:    ,cos 10 tjjt xtsinty +++= λβλβα  

,)cos21( 2
tt

d
j uxLL =+− λ Ho:   d = 0 

Ut  /  j 3 4 5 6 7 8 9 
White noise -3.06 -1.70 0.12’ 1.90 3.47 4.10 3.38 

AR(1) -2.05 -1.77 -1.02’ -0.52’ 2.31 3.65 3.40 
AR(2) -3.34 -1.98 -1.65’ -1.39’ 2.04 3.11 3.54 

Imposing β0 =  β1 = 0 
Ut  /  j 3 4 5 6 7 8 9 

White noise -2.92 -1.56’ 0.12’ 2.20 3.88 4.40 3.99 
AR(1) -2.17 -1.71 -1.02’ -0.23’ 3.08 3.65 3.11 
AR(2) -3.45 -1.68 -1.39’ -0.73’ 3.34 3.21 2.95 

Imposing   α= β0 =  β1 = 0 
Ut  /  j 3 4 5 6 7 8 9 
AR(1) -2.99 -1.71 -1.03’ -0.23’ 2.31 3.21 3.90 
AR(2) -3.21 -1.69 -1.40’ -0.74’ 1.98 2.34 2.98 

‘ and in bold: Non-rejection values of the null hypothesis at the 95% significance level. 
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TABLE 5 
Testing of nontationary (integrated) cycles with the tests of Robinson (1994) 

Model:    ,cos 10 tjjt xtsinty +++= λβλβα  

,)cos21( 2
tt

d
j uxLL =+− λ Ho:   d = 1 

Ut  /  j 3 4 5 6 7 8 9 
White noise -7.87 -4.13 -4.67 -6.64 -7.90 -8.58 -8.96 

AR(1) -8.54 -4.32 -11.98 -7.08 -8.08 -8.34 -7.09 
AR(2) -6.59 -4.40 -16.44 -15.06 -10.04 -9.07 -7.85 

Imposing β0 =  β1 = 0 
Ut  /  j 3 4 5 6 7 8 9 

White noise -7.89 -4.16 -4.69 -6.66 -7.91 -8.59 -8.96 
AR(1) -7.99 -5.26 -11.13 -7.13 -8.00 -8.34 -7.11 
AR(2) -8.04 -4.39 -16.54 -15.67 -8.91 -9.08 -7.88 

Imposing   α = β0 =  β1 = 0 
Ut  /  j 3 4 5 6 7 8 9 

White noise -7.89 -4.16 -4.69 -6.66 -7.91 -8.58 -8.97 
AR(1) -8.43 -5.26 -11.12 -7.23 -7.88 -8.34 -7.09 
AR(2) -8.04 -4.40 -16.56 -15.98 -8.90 -9.08 -7.88 
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TABLE 6 

Joint test of (21) against (22) in model given by (19) and (20) 
and white noise ut

J Ho :   d  =  0  and  β  =  0 Ho :   d  =  1  and  β  =  0 
3 10.58 62.30 
4 8.46 17.31 
5  0.01’ 22.07 
6  4.86’ 44.39 
7 15.21 62.69 
8 19.43 73.82 
9 15.98 80.45 

‘ and in bold: Non-rejection values for the null hypothesis at 95% significance level. 
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