DESIGN AND TESTING OF A MICROCOMPUTER AIR-FUEL RATIC, IGNITION TIMING SYSTEM, FOR AN ELECTRONICALLY FUEL INJECTED INTERNAL COMBUSTION ENGINE

Ъу

FIROOZ BAKHTIARI-NAJAD

B.S., Kansas State University, 1975

A THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Mechanical Engineering

KANSAS STATE UNIVERSITY Manhattan, Kansas

1978

Approved by:

Major Professor

TABLE OF CONTENTS

Chapt	er		Page											
I.	INTRODI	UCTION												
	1-1 In 1-2 OI 1-3 L:	ntroduction	1 3											
		Microprocessor	4											
II.	THE AII	R-FUEL RATIO CONTROLLER												
	2-1 In 2-2 L:	ntroduction	6											
	2-3 PH 2-4 De	hysical Description of Control System	9 20											
III.	THE SPA	ARK IGNITION CONTROLLER												
	3-1 Ir 3-2 L: 3-3 Co 3-4 Ma	ntroduction	26 26 29 36											
IV.	THE SO	FTWARE												
	4-1 Ir 4-2 Ir 4-3 Th 4-4 Th 4-5 Se	ntroduction	38 38 41 47 51											
v.	EXPERIMENTAL AND TESTING PROCEDURE													
	5-1 Ir 5-2 Ec 5-3 Te 5-4 A:	ntroduction	57 57 58 58											
VI.	PRESENTATION OF RESULTS													
	6-1 Ir 6-2 Re 6-3 Ig	ntroduction	66 66 74											
VII.	CONCLUS	SIONS AND RECOMMENDATIONS												
	7-1 Ir 7-2 Su 7-3 Re	ntroduction	83 83 84											

Chapter

LIST O)F	REFERENCES.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	87	
--------	----	-------------	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	----	--

Page

APPENDIX

Α.	Microcomputer Specifications	9
Β.	Engine Specifications	0
С.	Testing Equipment Specifications	1
D.	Uncertainty Analysis	2
Ε.	Statistical Analysis for Fuel Injector Calibration 10	2
F.	Microcomputer Program Listing	6
G.	Detaíled Circuit Diagrams	0
Η.	List of Data for Air-Fuel Ratio Testing	3
I.	List of Data for Spark Ignition Testing	3

LIST OF TABLES

Table		Page
1.	Piecewise Linear Model of Air Mass Flow Rate as a Function of Air Flow Sensor Vontage	21
2.	Piecewise Linear Model of Angle of Spark Advance vs. Engine Speed	36
3.	Final Results of Air-Fuel Ratio Control	75
4.	Result of Air Fuel Ratio Control Using the First Injectors Calibration, (from Ref. 3)	76
5.	Result of the Air-Fuel Ratio Control Using the Second Injectors Calibration (using data from Table 2)	76
6.	Result of Air Fuel Ratio Using Bosch System	78
7.	Results of Ignition Timing Control	81

LIST OF FIGURES

Figur	e				Page
1.	Air-Fuel Ratio Control System	•	•	•	11
2.	Primary Fuel Supply System	•	•	•	13
3.	Electromagnetic Fuel Injector	•	•	•	13
<u>/</u> .	Start of Fuel Injection Versus Intake Stroke and Firing Point	•	•	٠	14
5.	Speed Sensor	•	•	•	16
б.	Cleaning the Distributor Signal	•	•	•	17
7.	Intake Air Flow System	•	•	•	19
8.	Sectional View of the Air Flow Sensor	•	•	•	19
9.	Air Flow Sensor Calibration	•	•	•	22
10.	Piecewise Linear Best Fitted Graph for Air Flow Sensor \ldots		•	•	23
11.	Fuel Injection Calibration	•	•	•	24
12.	Block Diagram of Ignition System	•	•	•	30
13.	Spark Advance Control Curve	•	•	•	32
14.	Phase Relationship Between Crank Shaft, Distributor, and Ignition Signal	•	•	•	33
15.	Initialization Programs		•	•	40
16.	Injection Program	•	•	•	42
17.	Air Flow Sensor Calibration Subroutine	•	•	•	43
18.	Ignition Spark Advance Program	•	۰	•	45
19.	Ignition Time Program	•	•	•	46
20.	Phase Relationship Between Distributor, Injection Pulses, Ignition Pulses, and NMI Signal	•	•	•	48
21.	Non Maskable Interrupt		•	•	50
22.	Multiplication Subroutine		•		52

Figure

23.	Division Subroutine	54
24.	Addition Subroutine	55
25.	TTL Circuit Diagram for NMI Signal	60
26.	Phase Relation, Generating NMI Signal	61
27.	Fuel Consumption Measurement	64
28.	Air Flow Rate Measurement	64
29.	Daytronic, Dynamometer, and Strain Gauge Transducer Configuration .	64
30.	Three Different Calibrations of the Fuel Injectors	68
31.	Comparison of the Result of 14-1 Air-Fuel Ratio on Three Different Calibrations	69
32.	Comparison of the Result of 16-1 Air-Fuel Ratio on Three Different Calibrations	70
33.	Result of Air-Fuel Ratio for the Final Calibration, at 10 1b-ft	71
34.	Result of Air-Fuel Ratio for the Final Calibration, at 25 lb-ft	72
35.	Result of Air-Fuel Ratio for the Final Calibration, at 40 lb-ft	73
36.	Air-Fuel Ratio vs. RPM for the Bosch System	77
37.	Ignition Spark Advance vs. Speed	79
38.	Ignition Pulse Length (DWFLL) vs. Speed	80

Page

CHAPTER I

INTRODUCTION

1-1 Introduction

Up through the 1960's internal combustion engine control was relatively simple. The average automobile user wanted an engine that performed adequately and reliably, but no one was thinking about emissions and very little thought was given to fuel economy. In recent years, pollution has become a major societal problem and emission control has become a major concern of the automobile industry.

With the advent of fuel shortages and rapidly rising fuel prices the automotive industry now faces the problem of maximizing fuel economy and continuing to decrease exhaust emission levels without sacrificing performance. The basic difficulty is that engine changes which increase fuel economy usually increase emission levels while changes which reduce emission levels usually also reduces fuel economy.

The advent of governmental emission standards in 1968 resulted in the requirement that the automobile engine have more precision in metering and mixing the fuel and air to maintain an air-fuel ratio that would reduce exhaust emissions. Also required is accuracy in the exact firing time of ignition systems. This precision is also an important requirement in terms of driveability and economy.

Emission legislation will impose $HC/CO/NO_x$ limits of 1.5/15/2.0 grams per mile by 1977 and 0.41/3.43/1.0 grams per mile by 1981-82 (1). Over the past four years, because of the national fuel shortage there has been an immediate demand for more efficient fuel consumption. Fuel economy legislation requires an average 18 miles per gallon by 1978 and 27.5 miles per gallon by 1985.

Clearly more accurate controls will be necessary to achieve these requirements. There are essentially three basic control functions for the internal combustion engine: Air-fuel ratio, spark advance and exhaust gas recirculation. Spark advance is dependent on exhaust gas recirculation and the air-fuel ratio, and exhaust gas recirculation level is dependent on the air-fuel ratio. Therefore, control of the air-fuel ratio can be the fundamental variable (2).

In order to achieve these goals extremely accurate control will be necessary. The most promising method that can provide this high degree of accuracy in sensing, computation, and control, is electronics. It has been almost 30 years since the world's first electronic digital computer was built. The increase in usage of the digital computer has had an important impact on the field of engineering. The latest computer revolution has been the result of the large scale integration of thousands of electronic elements in a single device. The microprocessor or microcomputer which was invented seven years ago is now finding applications in a wide variety of systems. Since 1971, when the first mocroprocessors were introduced, the automotive engineer has increasingly been challenged to utilize these software programmable devices in new automotive electronic systems.

The extensive computational and logic capability and the versatility of the microprocessor make it ideally suited for an automotive control application. The highly cost-conscious automotive industry is beginning to conclude that, with mass production, the microprocessor's cost-effectiveness will have a

tremendous impact on the design, performance, and overall driveability of automobiles in the years to come.

This thesis describes work in a continuing research project in the Mechanical Engineering Department at Kansas State University in microcomputer engine control. In the previous research (3), air-fuel ratio and engine speed controllers were designed and tested. The controllers were based on a table look-up algorithm to determine control variables. The objective of this thesis is to implement an air-fuel ratio (A/F) controller based on a computational algorithm and a spark timing controller.

The remainder of this chapter will include a discussion of the objectives of this work and a literature review on electronic engine control by micro-processor.

1-2 Objective of the Work

The objective of this project is that spark timing and air-fuel ratio be simultaneously controlled by the microcomputer in such a manner that the desired engine performance is always achieved. The scope of this research was limited to testing engine speeds between 1000 and 3000 rpm following engine warm-up and engine loads between 10 and 40 lb. ft. The microcomputer was programmed to control spark timing as well as spark advance in addition to fuel injection to obtain three prescribed air-fuel ratios: 14-1, 16-1, and 18-1.

The base goal of this research was to investigate problems associated with the implementation of a microcomputer used as a real-time controller of an electronically fuel injected internal combustion engine. Both the airfuel ratio and the spark timing were implemented on a single microcomputer and both were open loop systems. The microcomputer used as the controller for this research was a KIM-1 microcomputer system, manufactured by MOS Technology, Inc. The complete discussion of this device will be presented in section 2-3, and the specifications for this microcomputer are given in Appendix A.

The internal combustion engine used for this research was a 1968 Volkswagen engine which was electronically fuel injected. The gasoline injection system for this engine was equipped with a Bosch system and electromagnatically actuated injection valves and solid state circuitry for the metering of injected fuel volume. The complete description of the engine will be given in section 2-3 of chapter 2, and detailed specifications of this engine are listed in Appendix B.

1-3 Literature Review - Electronic Engine Control by Microprocessor

The use of a microprocessor to control a production automotive engine has become very important to the major automobile manufacturers in the United States. General Motors has had an extensive research program in which several in-vehicle experimental, integrated, automotive electronic systems have been studied and built. Six electronics engineers from GM research laboratories have taken steps to investigate microcomputer engine controls (4). Focusing on the economy-emmissions effects of varying spark advance, air-fuel ratio and exhaust gas recirculation, the team devised a ratio of complementary packages for developing systems to control these engine variables.

One of these packages was the complete test-cell "mapping" of a 5.7litter (350 cubic-inch) V-8 gasoline engine (5). Mapping is the thorough documentation of how engine fuel consumption and emission levels respond to changes in spark advance, air-fuel ratio, and exhaust gas recirculation over the operating speed and load range. General Motors applied MOS/LSI technology in the design of this automotive computer. It used a single-chip, 4-bit parallel microprocessor with subsystems for both digital display and control functions, which included: ignition timing, ignition dwell, anti-theft, engine speed, four-wheel lock control, speed limiting, speedometer, time of day, speed warning, and traction control. Interface circuitry handled the asynchronous load associated with the vehicle operation and calculation, display, logic, and control were handled by the microprocessor.

Ford Motor Company has signed an agreement with Toshiba for a 12-bit device to control the spark ignition timing and exhaust gas recirculation mass flow based on a number of engine variables. Input-output data and intermediate results are stored in a 128 word, read-write memory. The software program to control the engine is stored in 1500, 12-bit words of Read Only Mercury. The system includes an 8-bit analog-to-digital converter with an eight channel analog multiplexer under CPU control (6). Ford plans to install their first microprocessor on a limited number of 1978 model cars.

The Chrysler Corporation plans to have a microprocessor operating on one of their 1980 model cars. They have contracts with RCA for an 8-bit C/MOS microprocessor and with Texas Instruments for a 16-bit N/MOS microprocessor (7). Chrysler has indicated that the use of the microprocessor will be for engine control.

An electronic spark timing system with a 10-bit custom made microprocessor by Rockwell International is the first use of a microprocessor on a production automobile. This system is designed for the 1977 Oldsmobile Toronado (7). The appropriate spark time is computed by the MPU, based on environmental and engine operational information such as engine coolant temperature, manifold vacuum, crankshaft position, and engine speed.

CHAPTER II

THE AIR-FUEL RATIO CONTROLLER

2-1 Introduction

An air-fuel ratio controller has been developed, implemented, and tested which computes the amount of fuel necessary for operating the engine based on the requirements of the engine such as speed and load. The air-fuel ratio controller maintains the fuel flow in accordance with measured air flow and prescribed air-fuel ratio.

2-2 Literature Review-electronic Air-Fuel Ratio Control in Automobiles

For more than ten years automotive and related research organizations have been studying the relationship between exhaust emission and fuel economy. One of the objectives of automotive engineers is to obtain lower emissions with a minimum penalty on fuel economy. One approach to improve present engine performance is by better control of air-fuel ratio.

Conventional carbureted engines that mix fuel and air have been greatly improved in recent years. Even with the improvements this system still does not give an accurate air-fuel ratio over the range of operating conditions encountered. A more accurate method of metering fuel is the electronic fuel injection system. The basic patents on electronic fuel injectors were granted in 1961 to the Bendix Corporation (8). Robert Bosch Gmbtl of West Germany was licensed by Bendix Corp. to develop an electronic fuel injection system for a small displacement, four cylinder engine used in European Automobiles. This system improved the horsepower output of these engines by about five percent. In 1967 the Bosch D-Jetronic fuel injection system was available as optional equipment on the 1.6 liter displacement, four cylinder Volkswagen engine. The fuel injection duration is regulated as a function of the engine speed and the absolute manifold pressure. Fuel was injected into the intake manifold near the intake valves.

The electronic fuel injection program by the Bendix Corporation was restarted during 1970. They used the work done by Bosch on the D-Jetronic System (10) as the basis for a new system called the L-Jetronic.

There were three main improvements in this new system. First, to improve performance, an air flow sensor was developed to replace the manifold pressure sensor; second, to reduce cost and increase reliability, integrated circuits were used in the elctronic control unit; and finally, to simplify the system, a single channel fuel distribution system was used. On this system the injectors are connected in parallel and operated two times for every camshaft revolution. The inputs to this system are engine speed and air flow rate from the air mass flow sensor which was developed by Robert Bosch. This sensor consists of a plate that turns in a rectangular shaped duct in response to tye air flow pressure acting against a spring. A potentiometer connected to the plate generates a voltage proportional to the air mass flow rate. The L-Jetronic system has been in use since 1973 (11).

The Bosch Corporation recently completed development of a new electronic control system (12). This system provides a better solution to some of the auto industry's new demands, such as higher safety standards, lower emission of pollutants, lower fuel consumption, better driveability, and higher reliability. They report that in the near future additional electronic systems will control other parts of the automobile. These systems include ignition

control, fuel injection, automatic transmission control, anti-skid control, and maintenance monitoring.

The new Bosch injection control system includes a new electronic control unit and several new sensors to sense speed, temperature, and air flow. The control unit for this system is an NMOS microprocessor system. The speed sensor is different from what was previously developed.

In this system the sensor was mounted on the crankshaft and contains a number of segments corresponding to half the number of cylinders. The segments are staked out by two magnets of inverse polarity, one at the beginning and the other at the end of the segment. The time which the segment takes to pass a pick up may be counted in order to get a number inversly proportional to engine speed. The mass air flow sensor is the same as the old system. Also with this system another sensor is installed to measure the intake manifold pressure. A pressure box shifts the core of a coil changing the inductance of the coil. The variable inductance changes the oscillating frequency of an operational amplifier circuit. The oscillations are counted to produce a digital value proportional to the manifold pressure.

An air-fuel ratio control using a simple microprocessor was of interest to the Essex Group of United Technology (2). They have completed an open loop control system. In their research air mass flow and engine speed were used as the two main inputs to the digital computer. The vehicle used was a Lincoln Mark IV with a 460 CID V8 engine. Bosch injectors were used for the fuel injection system. An autotronics model 460 F was used as an air flow sensor. This is a vane type sensor with a high response rate for automotive applications. Experimental data in the vehicle was obtained for this control system utilizing the direct measurement of the intake air mass. It was felt

that for the variability of speed experienced in operating conditions the density type of control would not achieve such good results as the direct measurement system.

Bendix Corporation is developing closed-loop electronic fuel injection, using an oxygen sensors which was developed by Bosch (13). The feedback element is a zirconium-dioxide oxygen sensor which measures the free oxygen in the exhaust. The voltage characteristic of the oxygen sensor is very nearly a step type, with a stable operating point around 360 mv which corresponds to a chosen air-fuel ratio. Through the utilization of the oxygen sensor and the closed loop concept it is possible to achieve a very accurate airfuel ratio and to maintain it independent of changes and drifts in the engine and fuel preparation system. Bendix is also adding the closed loop concept to its original system which uses absolute manifold pressure and engine speed as the two main inputs. These systems are not available in production automobiles since they are still in the research and testing stage.

2-3 Physical Discription of Control System

The air-fuel ratio controller developed in this research was an open-loop system. Open-loop control systems are systems in which the control action is independent of out put. That is, the out put is neither measured nor fed back for comparison with the input. Open loop control system must be carefully calibrated and must maintain that calibration, in order to achieve the desired accuracy.

Closed loop control systems have an advantage over open loop control systems (14). The use of feed-back makes the system response relatively insensitive to external disturbances and internal variations in system parameters. It is thus possible to use relatively inaccurate and inexpensive components and obtain accurate control. From the point of view of stability open-loop control systems are easier to build, since stability is not a major problem. Stability is a major concern in the design of closed loop control systems.

The main reason for choosing an open loop control system in this research was due to lack of an appropriate feed-back element suitable for use as an exhaust gas sensor. Zirconium-dioxide oxygen sensors are being tested for this purpose by the Bendix Corporation, but one could not be obtained for this work.

Figure 1 shows the block diagram of the open loop air-fuel ratio control system. The system consist of a speed sonsor, an air flow sensor, a microcomputer, fuel injector, and the engine. The remainder of this section will provide a discussion of each part of the system.

The engine used in this research was a 1968 four cylinder, horizontally opposed, air cooled Volkswagen engine. Detailed specifications for the engine are given in Appendix B. The engine was equipped with the Bosch D-Jetronic fuel injection system (15). In this system gasoline is injected onto the heads of the intake valves by electromagnetically actuated nozzle valves. Gasoline is supplied to the injectors by a low-pressure, common rail system. Figure 2 shows the primary fuel systems; the positive displacement electric pump draws gasoline from the storage tank and delivered it to the injectors at a constant pressure of 28 psig. The constant pressure is maintained by the pressure regulating valve located at the end of the system. The excess gasoline is returned to the storage tank. The supply pressure of 28 psig was chosen by optimizing the desired degree of mixture control accuracy. At this pressure electric power consumption could be held within reasonable limits of approximately 25 watts for a medium-size engine (16).

There are four injectors in this system, one mounted over each intake valve. The injector valves are electromagnetically actuated and serve to both meter and to atomize the fuel. The valve body contains a solenoid whose plunger is attached to the needle valve. As shown in Figure 3, a helical spring keeps the valve closed as long as the solenoid is de-energized. The fuel injectors are opened electrically in two pairs (injector pair I = cylinders 1 and 4; Injector pair II = cylinders 2 and 3). The magnetic field in the injector winding is generated by electrical pulses transmitted by the microcomputer and amplified by power transistors.

Both fuel injectors of one pair inject fuel at the same time (15). The injectors for cylinders 1 and 3 inject fuel through the open intake valves stroke, while the injectors of cylinders 2 and 4 inject onto the still closed intake valves while the exhaust gases are being forced out. In this case the fuel is stored in the manifold of the intake valves until the next intake stroke. Figure 4 shows the start of the injection pulses of the two groups of injectors relative to spark timing and intake stroke. The injector valve lift is approximatley .006", and its response time is about 1 ms. The open period of the injectors may range from 2 to 10 ms. depending on the amount of fuel required.

The opening pulse for each group of injector valves is initiated by a trigger contact arrangement installed within the distributor. Each set of contacts generates a pulse for its injectors once for every revolution of the camshaft. The two contracts are spaced 180 camshaft degrees apart. Alternately closing a signal-lobe cam on the distributor shaft generates a squarewave signal exactly synchronized with engine speed (16). The two distributor signals are used to determine the starting of the injection pulses as well as

ŧ

Figure 2. Primary Fuel Supply System

Figure 3. Electromagnetic Fuel Injector

Figure 4. Start of fuel Injection Verses Intake Stroke and Firing Point

to measure the engine speed. The injection time is computed by the microcomputer based on the engine speed, air mass flow rate, and specified air-fuel ratio.

The engine speed is measured by the electronic speed sensor shown in Figure 5. The desire specifications for this sensor were that it:

a. be accurate to 0.5% over speed range of 600 to 3600 rpm,

b. be compatable with the microcomputer input/output port,

c. produce a value inversely proportional to engine speed, and

d. be constructed of readily available, inexpensive components. To obtain these requirements a counting circuit was designed using TTL integrated circuits. The distributor signal, a square wave synchronized with the engine at a frequency of one half the engine speed, is used to gate a high frequency clock signal into the counter circuit. Some signal conditioning was necessary to clear up the distributor signal, as shown in Figure 6. The microcomputer clock which operates at 1 megahertz was divided by 32 using 2 TTL counters and used as the clock input to the counters of the speed sensor.

The speed sensor is designed so that the clock signal is gated to the counting network only while the distributor pulse is at the high level. The counting network is read into the microcomputer and reset during the low level portion of the distributor signal cycle. The use of 3, 4-bit binary counters produces a 12-bit value which is inversely proportional to the engine speed. The sensor will produce a count of 520 at 3600 rpm and 3125 at 600 rpm. The minimum speed for which the sensor will function is 460 rpm (count of 4096). The resolution of the sensor at 3600 rpm is 0.2%. The maximum speed for which the resolution will be less than 0.5% is 9300 rpm which is far beyond the rated speed of the engine.

Figur 5. Speed Sensor

The fuel acquired for proper operation of the engine is a function not only of the speed but also of the load. The load may be implied by sensing the intake manifold pressure or the intake air-flow rate. In this project we are using the intake air-flow, since this is a better indication of load than manifold pressure. As shown in Figure 7 the intake air flow sensor is installed in front of the throttle. Figure 8 shows a sectional view of the air flow sensor which was developed by Robert Bosch (12). This sensor is a rectangular shaped channel in which air flow pressure forces a plate to turn inside the channel against a spring. To achieve a constant relative measuring error over the span of the sensor, the relationship between the angular position and the air flow quantity is designed to be logarithmic. An analog voltage signal proportional to the air flow quanity is generated by a special potentiometer which is connected to the plate. This analog voltage value needs to be converted to a digital value to be used by the microcomputer. An analogto-digital converter model ADC-10Z by Analog Devices, Inc., was used for this purpose. This is a 10-bit converter with a maximum relative accuracy of 1 1/2 LSB, (+ 0.05% of span) and a conversion time is 20 usec. The output voltage of the air-fuel sensor ranged between 0 to 8V and a 0 to 10 volt range was used on the analog-to-digital convertor.

A KIM-1 microcomputer manufactured by Mos Technology Inc. was used for the controller for this project. The specifications for KIM-1 are given in Appendix A. Digital values representing the air flow and engine speed were read by the microcomputer once in each engine cycle. These values were scaled by the microcomputer to represent exact value for the air flow and the inverse of the engine rpm. They were then used to compute the required fuel injection time to produce the desired air fuel ratio.

Figure 7. Intake Air Flow System

2-4 Development of Mathematical Model of the Control System

Implementation of a real-time control strategy using a microprocessor requires the development of the mathematical relationships between the conditions of the engine and the control signal. The mass of the fuel injected in each cycle is the control variable for the electronic fuel injection system. This variable is a function of the time duration of injector opening. The control algorithm is the mathematical relationship between the engine parameters and the time duration of injection.

The relation for the time duration of injection was drived (3) for a single engine cycle as follow:

$$t = K_t K_{f/a} M_{\alpha}$$
 equ. 1

where

$$M_{\alpha} = \frac{m_{\alpha}}{2N}$$
 equ. 2

and where:

t = duration of time for which the injector is open in milliseconds (ms). $K_t = convertion factor in which mass of fuel injected (lb_m) per cycle is$

converted into time duration of injection in millisecond (ms).

 $K_{f/a}$ = fuel to air ratio.

$$M_{\alpha}$$
 = mass of air injected per engine revolution into each cylinder of the four cylinder engine in pound mass (1b_m).

 m_{α} = mass air flow rate in pound mass per minute (lbm/min)

N = engine speed, rpm.

The mass air flow rate, m_{α} , was measured by air flow sensor. A calibration was required for this sensor in order to obtain an exact value of mass air flow. The output of the air flow sensor was an analog voltage which was converted to a digital value by an analog to digital convertor. The digital value was converted to air flow value by using the calibration relationship. Figure 9 shows graphically the calibration of air mass flow rate versus the air flow sensor voltage.

The mathematical equations used by the microprocessor to convert the air flow sensor voltage to the air mass flow rate was the least-square fit of the Piecewise Linear model shown in Figure 10. The mathematical relationships are given in Table 1.

m	=	0.35	5 V	for	$0 \leq V < 2.0$ v	olts					
m	=	0.41	V -0.14	4 for	2.0 ≤ V < 4.0	volts					
m	1	0.32	V + 0.2	22 for	4.0 ≤ V < 5.0	volts					
ш	=	1.08	V - 3.	58 for	5.0 ≤ V < 6.5	volts				٠	
Ta	Ь1.	e 1.	Piecew: air flo	ise line ow senso	ar model of a r voltage.	ir mass	flow	rate	as a	function	oí

The speed of the engine was measured by the speed sensor. Calibration of this sensor results the following relationship:

$$N = \frac{f(60)}{count} equ. 3$$

where

f = frequency of clock in cycle per second (10 /32 = 31,250 hz)

count = value read by the speed sensor

60 = convertion from seconds to minutes.

The value of count was read by the microprocessor each engine cycle and is multiplied by the value 1/120F to produce the value 1/2N.

To determine the value of K_t a third calibration was required. This calibration was obtained by measuring the mass of fuel consumed by the engine over a measured length of time. Figure 11 shows the result of this calibration. Each point on the curve represent the average of five tests made at a certain speed and load. The result of a best fit relationship based on

Figure 11. Fuel Injection Calibration

least-squares regression routine is:

$$t = \frac{M_{f} + 0.96923}{0.96191}$$
 equ. 4

where:

 M_{f} = mass of fuel in pound mass (lb_m) per injection.

t = length of time which injector is open in milliseconds (ms)

In summary, the air mass flow rate is computed using the piece wise linear relationships given in Table 1. The inverse of the speed is computed using equation 3. The mass of air induced per cycle is computed using equation 2. The mass of fuel to be injected per injection is computed by multiplying the mass of air by the specified fuel-air ratio. The length of the injection pulse computed using equation 4. The injections are held open for this prescribed time each cycle.

CHAPTER III

THE SPARK IGNITION CONTROLLER

3-1 Introduction

The microcomputer spark controller, designed for this research was an open loop control system. The microcomputer computes the angle of spark advance and spark duration or "dwell" based on the engine speed, rpm. The system is designed so that ignition timing can easily be advanced or retarded based on a Piecewise linear relation of the engine speed.

3-2 Literature Review

Electronic Ignition control systems, like the electronic Air-Fuel ratio controllers, have been the subject of substantial research efforts by the Automotive Industries. The point in the cycle where the spark occurs must be regulated to ensure maximum performance of the engine at different speeds and loads. Also air pollution control is related to the spark advance control. During the early 1970's in an effort to meet government exhaust emission requirements it has been necessary to retard the spark by as much as 10 degrees at idle and at low speeds (17). The addition of catylic converters to remove pollutants during the mid-seventies has permitted engine manufacturers to again time engines for smooth and economic performance.

Spark timing can also be controlled to reduce fuel octane requirements, particularly at low speeds. For example, the octane requirement can be reduced from 105 to 85, by advancing the spark timing from 16 to 34 degree of crank shaft (18). The conventional ignition system with mechanical breaker points is inexpensive, simple to maintain, and is generally adequate for low and medium speeds and loads. Its faults become apparent with high-compression engines or with high speeds of operation. The following are some of the disadvantages of conventional ignition system (17):

- Poor performance at high engine speeds, over 4000 rpm, because of current limitations and inertia (point bounce) caused by the mechanical breaker points.
- Inability to fire partially-fouled spark plugs, because of a slow voltage rise-time.
- Relatively short life of the breaker points because of high current flow at low speeds.
- Relatively short life of the spark plugs, because of the high-energy discharge at low speeds.
- Poor starting because of slow-opening of breaker points at cranking speeds.
- 6. Poor reproducibility of secondary voltage rise and maximum value.

The ability of a transistor to interrupt a circuit carrying a relatively high current makes it an ideal replacement for the breaker points and condensor. Electronic ignition systems have been used as standard equipment on some of the 1975 or later model cars. This system turns on and off a transistor cuircuit by a set of trigger light and light chopper which are mounted on the distributor plate. By using this system contact points and condensor are eliminated. The trigger light consists of an infra-red light-emitting diode and a photo transistor receiver (19). This system also included a central box which is a solid state electronic switching device. The light chopper rotates with the distributor shaft and its blades pass between the infra-red sending unit and the phototransistor-receiver. As each opening between the chopper blades pass the sending unit, a signal is sent to the power-switching transistor in the solid state control box. The length of time for spark firing or the "dwell" is built into the light chopper. Electronic ignition systems are also available to retrofit older model cars which have conventional ignition systems. These systems whether installed as original equipment or retrofit to older models utilize the conventional mechanical vacuum and speed spark advance systems.

The use of microcomputers for ignition control, is being explored by several research institutions. An electronic ignition control system has been designed by D. Bert and Van De Casteele at the University of Ghent, Belgium (20). This system was a simply programmable electronic ignition control system that could be applied to the study of engine behaviour. This apparatus permitted an easy change of the advance or retard characteristics as a function of rpm or vacuum. This system is built out of a disc with 20 cm diameter and 180 holes which was fixed on the engine crank-shaft. The detector system was built up with a set of four phototransistors illuminated by four lights through the holes of the disc. The electronic circuitry consists of a set of TTL integrated circuit including a schmitt trigger, several monostable multivibrators a comparator, several binary counters and a digital to analog convertor. An optical transducer generates impulses at 80° before TDC. A second optical transducer generates impulses every 0.5°. The synchronizing first impulses (80°btdc) enable an electronic counter to count down the second impulses (0.5°). The counter output feeds a digital to analog converter (DAC) and in this way a voltage (or current) linearly decreasing with number of

.5° impulses is obtained. The first impulses (80°btDc) also feed a speed to voltage converter (SVC) that gives an output voltage or current linearly increasing with the speed or rpm. In order to take account for the spark advance control curve, a function generator (FG) processes the speed to voltage output voltage. In general a piecewise linear function suffices for the simulation of the advance characteristic of the engine. The output of the DAC and FG are connected to both inputs of a comparator (COMP). The output of COMP changes its state whenever its input voltages become equal and this gives pulse that actuates the electronic ignition system and presents the counter at 111 111 11 or 2 ex 8 or 256. If a vacuum transucer is used it is possible to extend the system with a second function generator adapted for generating an out output that is function of the vacuum. The sum of the outputs of both function generators can then be compared with the DAC output. The resolution for this system was 0.5 degree. This system was tested on an Opel 1900 engine and the system seemed to be very flexible.

3-3 Control Concept and Description of Physical System

The microcomputer spark ignition control developed in this research was an open loop system. The Block diagram of this system is shown in Figure 12.

The speed sensor used in the ignition control system was the same as was used for Air-Fuel Ratio control system. New values of engine speed are read and stored in certain memory locations every cycle of engine. These values were used to determine proper spark advance. The microcomputer was programmed

to compute the spark advance based on the rpm of the engine. A plot of the spark advance us. speed for the conventional vacuum and apark advance system which was used by the VW engine used for this research is shown in Figure 13. This relationship was obtained by adding the vacuum and contrifugal advance values given in the 1968 VW manual for distributor type 311905205 (15). The proceedure for implementing this function in the microcomputer will be presented in section 3-4.

The hardware interface between the microcomputer and the ignition system is shown in figure G2 of appendix G . The complete specification of the ignition signal requires the generation and proper phasing of three time interval values, each a function of engine speed. The first, called the ignition phasing time, is defined as the time from the negative going edge of the distributor pulse to the leading edge of the next ignition pulse and is equal to the time for 180 degrees rotation of the crankshaft minus the spark advance in angle of crankshaft rotation minus the phase shift of the distributor signal with respect to the crankshaft in degrees of crankshaft rotation. The second time value is the ignition period which is defined as the time from the leading edge of one ignition pulse to the leading edge of the next ignition pulse. The ignition period is the time required for 180 degrees of crankshaft The third time value is the dwell time which is defined as the time rotation. from the leading edge to the trailing edge of the ignition pulse. It is the time for the dwell angle in degrees of crankshaft rotation. The relationships between these time interval values are shown in Figure 14.

The timing of these three time intervals is accomplished on two twelve bit binary counters (3-74193's). Each counter has a corresponding twelve

Figure 14. Phase Relationship Between Crankshaft, Distributor, and Ignition Signal

bit latch (3-7475's) which serves as a buffer for the time interval to be parallel loaded into the timer. The clock signal for both of these counters is a 62.5 khz signal obtained by dividing the microcomputer clock (1 mhz) by 16. Note that this clock signal is at exactly twice the frequency of the clock used in the speed sensor. One of the counters is used to time the ignition phasing interval and the ignition period while the other counter is used to time the dwell interval.

The description of the operation of the phasing and period counter follows. Each time this counter reaches a count of zero an ignition pulse is initiated and the counter is parallel loaded with the contents of the latch buffer. As long as the latch buffer holds the ignition period value the counter simply initiates new ignition pulses at regular intervals. Since the engine speed is subject to change the ignition period value must be updated regularly. This is accomplished by transferring the value of the speed sensor counter to the latch during each engine cycle at the same time it is read into the microcomputer. This counter value is equal to the number of cycles of the 31.25 Khz clock during one half cycle of the cam shaft (one revolution of the crankshaft). Since the ignition counter clock signal is twice the frequency of the speed sensor clock the ignition counter will count out the ignition period in exactly one half rotation of the crankshaft (assuming no change in engine speed). Since the latch buffer is refreshed each cycle of the engine no appreciable error occurs due to speed change. The ignition period timing system just described provides a sequence of ignition iniation signals at the correct frequency without intervention of the microcomputer.

In order to obtain an acceptable ignition signal it is necessary to provide correct phasing of the ignition signal with the cycle of the engine. This

phase relationship is maintained by the ignition phasing time interval. During each cycle of the engine the ignition phasing time is computed by the microcomputer. At the falling edge of the distributor pulse the ignition phasing time is parallel loading by the microcomputer into the ignition phasing and period counter. Since the parallel load over writes the existing count the ignition phasing time corrects the ignition phase to account for changes in speed, changes in spark advance, and any errors introduced by the sequencing of the signals.

The final timing interval required to define the ignition signal is the dwell time. The dwell time interval is counted out on another counter. Any dwell angle (in degrees of crankshaft rotation) can be obtained by multiplying the speed sensor count by the appropriate fraction and loading the dwell counter latch buffer regularly from the microcomputer. Certain dwell angles can be obtained without the intervention of the microcomputer. The system used for this study obtains a 45 degree of crankshaft dwell without use of the microcomputer. This is accomplished by shifting the speed sensor count right two bits and loading it into the dwell interval buffer. Each bit the count is shifted is equivalent to dividing the value by two. The difference in the clock frequencies accomplishes an additional division by two. The combined effect is to divide the crankshaft rotation by eight yielding a 45 degree dwell. The dwell interval buffer is refreshed each cycle of the engine to provide correction for changes in engine speed. Loading of the dwell interval into the counter is accomplished by the signal which initiates the ignition pulse.

The ignition signal is produced by a J-K Flip Flop (7476). The borrow outputs of the dwell counter and the period and phase control are connected

espectively to the J and K inputs to the Flip-Flop. The borrow outputs of the counters go low on the clock pulse when the count reaches zero. The transition of the borrow output of the period and phase counter initiates the ignition pulse by driving the output of the Flip-Flop high. It also initiates the transfer of the dwell time into the dwell counter and loads the period into the phase and period counter. The subsequent transition of the borrow output of the dwell counter terminates the ignition pulse by driving the output of the Flip-Flop low. The output of the Flip-Flop drives the input to the Electronic Ignition counter box which controls the ignition discharge.

3-4 Mathematical Description

In order for the microcomputer to compute the exact angle of spark advance, a set of piecewise linear equations of spark advance vs. speed of the engine was obtained from the graph given in Figure 13. These equations are listed in Table 2.

ASA	=	0	$0 \leq N \leq 750$
ASA	=	0.008 N-6	750 ≤ N ≲1000
ASA	Ħ	0.035 N-33	1000 ≤ N ≤ 1400
ASA	=	0.021667 N-14.33	1400 ≤ N ≤ 2000
ASA	Ħ	0.015 N-1	2000 ≤ N ≤ 2600
ASA	=	38.0	2600 ≤ N

where

N : engine speed (rpm) ASA: angle of spark advance (degrees of crankshaft rotation)

Table 2: Piecewise Linear Model of Angle of Spark Advance vs. Engine Speed

Ignition Phasing Angle which is defined as IGAN, and is shown in Figure 14 is computed by Equation (1)

$$IGAN = 180 - ASA - \phi \tag{1}$$

where ϕ is the phase shift between distributor and crank shaft cycle. This phase shift was measured to be 14.0 degrees of crankshaft rotation. The value of IGAN which is computed by equation 1 is in unit of degrees of crankshaft rotation. It is necessary to convert to the unit of time in order to be used by the ignition timing counters. The mathematical relationship given in equation 2 provides the ignition phasing time in microseconds.

IGTI = (166.0 - ASA)
$$(\frac{10^6}{6N})$$
 - DT (2)

where

IGTI : Ignition phasing time (us)

N : Speed of the engine (rpm)

ASA : Angle of spark advance (degree of crankshaft rotation)

DT : Delay time from negative going edge of distributor signal to

the loading of the ignition phasing counter (μ S).

New values of ASA and IGTI were computed for every cycle of engine as new speed values were read by the microcomputer.

As the result of using twelve bit counters and a (2.5 Khz clock in the ignition timing circuit IGTI has a range of from 16 to 65,536 μ s. The resolution for IGTI is 16 μ s which corresponds to a maximum crankshaft angle of 0.044 degrees at the minimum speed of 460 rpm. The resolution at 4000 rpm is 0.384 degrees.

CHAPTER IV

THE SOFTWARE

4-1 Introduction

The software developed for this research was one of the major tasks. The programming of the microcomputer was all done in hexadecimal machine code. A floating point binary representation with a 16-bit mantissa and an 8-bit exponent was used for all numerical values. This provided a resolution of 1 part in 65,000 and a range of I1.70 x 10^{38} . By using this type of representation the accuracy of computation was maintained.

The programming of the microcomputer was accomplished with the hexidecimal keyboard and display mounted on the KIM-1 microcomputer board. This device proved to be very helpful for loading the programs and for operating the computer. A Teletype Model 33 teletypewriter was also used for printed and punched paper tape copy. The paper tape reader and the teletype were used to reload programs into computer memory when they were lost due to loss of micro-computer power.

The software may be divided into four classifications: the initialization routine, the background routines, and real time (interrupt driven) routines, and the service routines. The details of these routines and the interaction among them is explained in the rest of this chapter.

4-2 Initialization Routines:

The Initialization sequence was necessary to define certain quantities everytime the microcomputer was reset. By the end of this routine all values used during the computation were given initial values. The flowchart of this program is shows in Figure 15.

The first step in this routine is to initialize the stack, so that the microprocessor may properly process an interrupt. The stack pointer is initialized to location OIFF hexadecimal machine address (21). The next operation sets the interrupt disable bit in the status register. This step is to keep interrupt request signals from effecting the microprocessor until execution of the initialization program was completed.

The next step of this program initializes the status of the input-output registers. There are 15 I/O lines available in the KIM-1 microcomputer. They are divided into ports A and B. Each of the I/O lines may be defined as an input or an output by defining the status of the corresponding bit in the data direction register. The next operation sets the binary mode bit. This step causes the microprocessor to do arithmatic operations in binary.

The next step defines the vector for the non-maskable interrupt. When an interrupt signal is received the microprocessor branches to an interrupt routine. The starting address of this routine is called the interrupt vector. The next three operations of the initialization program establish Air Fuel ratio values and assign initialize values for speed and air flow. The microprocessor uses these initial values at the beginning of execution, before the first true values of speed and air flow are read from the sensors.

The last operation of this program clears the interrupt disable bit which was set before. Finally, the initialization routine stores all constants values required for software programs into appropriate memory locations. A list of these constants is given in Appendix F . The initialization routine is executed once at the beginning of each experiment.

Figure 15. Initialization Program

4-3 The Background Routines

The background routines perform the function of continually updating the control variables; the injection value opening time and the ignition phase time. This is essentially the main program. The program is a large loop which is executed repetitively. The microcomputer executes in the background routines whenever it is not called into the real time routines by an interrupt. The frequency of cycling the background routines is not critical, so long as the control variables are updated often enough to keep up with the changes in speed and load. The operation of the background routines will be described in two parts; the computation of the fuel injection value opening time and the computation of the ignition phase time.

The duration of the fuel injection valves opening is based on the mathematical model which was introduced in section 2-4. Two subprograms are required to complete the computation of injection time.

The first subprogram converts the voltage of air flow sensor to value of air flow rate. Figure 16 shows the flow chart of this subprogram. This program scales air flow rate based on the relationship of the graph in Figure 10 and the piecewise linear equations given in Table 1. The air flow sensor voltage is compared to the ranges corresponding to the different piecewise linear equations. When the correct range is found the corresponding equation is used to compute the air flow rate.

The second subprogram converts the mass of fuel per injection to duration of injection time. This subprogram is based on the graph of Figure 11, and the corresponding linear relation. Figure 17 shows the flow chart for injection program.

The first operation of the injection program calls the subprogram to

Figure 16. Air Flow Sensor Calibration Subroutine

Read Air Flow Sensor A/D Convertor

So to Subroutine Convert Sensor Value to Air Flow Rate

> Read 1/(2RPM) from Speed Sensor

Multiply Air flow Rate

Multiply Fuel Air Ratio

Go to Subroutine, Convert-Injection Pulse

Store Injection Pulse in Memory

Jump to Spark Advance Program scale the air flow rate. The Air Flow Ratio is multiplied by the specified value of Air-Fuel ratio. This product is multiplied by ^{12}N which was obtained from the speed sensor. The result is the value of the mass of fuel per injection.

The next operation of this program calls the subroutine to convert the mass of fuel per injection to injection time. The final operation of the injection program is the scaling of the injection time so that it can be used by the interval timer to time out the injection value opening.

Computation of the ignition time control variables was the second objective of the background routine. This portion of the program computes the ignition time IGTI from the relationship given in section 3-4. The ignition time routing also uses two subprograms. The first one computes and scales the speed value while the second subroutine compute the angle of spark advance.

The first subprogram requires a division subroutine to compute the speed value from the value of $\frac{1}{2}$ N which was read from the speed sensor. The value of speed is used to compute the angle of spark advance. The division routine is one or two service routines to be described later.

The second subroutine determines the angle of spark advance, ASA, based on the relations given in Table 2 of section 3-4. The angle of spark advance is a function of speed. The first step of this subprogram tests the speed and determines the range and corresponding equation. The next operation of this program computes the angle of spark advance by the corresponding relation. The flow chart of this subprogram is given in Figure 18.

The final operation of this routine uses the angle of spark advance and speed to find and scale the ignition phase time. The injection time program and the ignition phase programs are listed in Appendix F . Figure 19 shows the flow chart for ignition time program.

Figure 19. Ignition Time Program

4-4 The Real Time (Interrupt Driven) Routine

The interrupt capability of the microprocessor is used when an external event has occurred and special service or immediate attention of microprocessor is required. When an interrupt occurs, the status register and the program counter are stored on the stack. At the end of the interrupt service the status register and the program counter are restored to the values they had at the time the interrupt was taken. In this way the computation continues at the completion of the interrupt from the same point it left at the beginning of the interrupt.

The KIM-1 microprocessor has two kinds of interrupts: The interrupt request and the non-maskable interrupt. The interrupt request can be disabled under program control and can thus be ignored. The non-maskable interrupt can not be disabled or ignored. As soon as the non-maskable interrupt signal transition occurs the microprocessor sets up the stack and transfers to the interrupt service routine.

For this project only the non-maskable interrupt was used. There were two sources of interrupt signals: the distributor signal and the fuel injector timer. There are four different sets of actions taken depending on the source of the interrupt signal and the polarity of the distributor signal at the interrupt time. The distributor signal is a square wave signal synchronized with the cycle of the engine such that two fuel injectors begin their injection time at the rising edge and two at the falling edge of the square wave. The four sets of action with the corresponding interrupt source and distributor signal polarity are summarized in Figure 20.

The real time program was the most complicated program in this project. The flow chart of this program is shown in Figure 21, and the listing is given

Figure 20. Phase Relationship Between Distributor, Injection Pulses, Ignition Pulses, and NMI Signal

in Appendix F .

The first operation in this routine was to save the contents of the accumulator by pushing it to the stack. The next operation identifies the source of the interrupt. The injection signal is turned on by the microcomputer every revolution of the engine on both edges of the distributor signal. These pulses are created by setting an out-put bit high. The fuel injection interval timer is started by loading the interval timer register with the computed injection time value. The KIM-1 Interval Timer counts down from the specified value of from 1 to 256 at a clock rate of 1, 8, 64 or 1024 μ sec. per count. The timer can be programmed to generate an interrupt when the counter counts down to zero (22). For the purpose of this work a clock divide rate of 64 microseconds per count with the ability of generating an interrupt was used. When interval timer counts to zero the output bit used to generate the injection pulse is set low.

While the interval timer is counting down the injection time, the computed value of ignition phase time is loaded into the ignition counter every second revolution of the engine. The ignition phase time is loaded into the ignition time during the engine revolution when the distributor signal is low. After completion of injection time the injection timer generates an interrupt. The injection bit is set low (injectors turned off) and then either the air flow sensor or speed sensor is read depending on whether the distributor signal is high or low. The speed sensor value and air-flow sensor value had to be scaled and adjusted to floating point binary number during this program. Following the reading of the speed sensor the value from this sensor is loaded into the ignition counter latch. The final operation of interrupt sequence retrives the content of the accumulator from the stack and returns to the

Figure 21. Non-Maskable Interrupt

background routine from the interrupt.

4-5 Service Routines

There are five service routines available to the other programs. They are the floating point arithmatic routines for multiplication, division, and addition and subtraction; a routine for displaying values on the seven segment displays; and a routine for storing and analyzing data.

The KIM-1 microcomputer is able to perform the addition or subtraction of two eight bit values. However, multiplication, division, addition and subtraction of values expressed in the floating point format was needed.

The multiplication subroutine was written to multiply the two sixteen bit signed binary numbers and to add the two eight bit signal exponent. The result of the multiplication was shifted and truncated to the same format as the input. To provide the needed accuracy, the subroutine operations are done in double-precision with the sign bit at bit 16. Basically, the multiply routine is a series of tests and shift of the multiplier and multiplicand. Figure 22 shows the flow chart of this program. For higher degree of accuracy, at the beginning of the program, both the multiplier and the multiplicand are shifted so that their highest bits after the sign bits are "1" for positive numbers and "0" for negative numbers. This operation is done at the beginning of all arithmetic programs. Appendix F gives the listing of the multiplication program.

The division program was also written to perform double-precision signed, floating point division of two sixteen bit numbers. The division routine, as shown in Figure 23, consists of a series of trial divisions, each of which will be made by attempting to subtract the divisor from the dividend (23). If the result is negative, the divisor will not "go"; a 0 is therefore placed

Figure 22. Multiplication Subroutine

in the right most bit of the quotient, and the dividend is restored by adding the divisor to the result of the subtraction. The combined quotient and dividend will then be shifted left.

If the result of a trial division is positive, there is no need to restore the partial dividend in the dividend register. A 1 will be placed in the rightmost bit of the quotient, and the dividend and quotient will both be shifted left. It should be noted that the mantissa of divisor be larger than the mantissa of dividend. If this condition is not satisfied the dividend can be adjusted by shifting its mantissa to the right and incrementing its exponent.

The subtraction or addition operation was repeated 15 times, once for each bit of the number. The last part of program determines the exponential of partial quotient, and adjusts and final result. Provisions were also made to take care of the signs of both the divisor and dividend, and the final partial quotient. The list of actual division subroutine is given in Appendix F.

In order to perform addition and subtraction of sixteen bit floating point numbers it is necessary to equate their exponents. To insure maximum accuracy in the result the numbers are first adjusted so that their highest order bit (next to the sign bit) is significant (1 for positive numbers and 0 for negative numbers). The adjustment is accomplished by shifting the number left and decrementing the exponent until the highest order bit is significiat. The numbers are then adjusted until the exponent of the numbers are equal. This is accomplished by shifting the number with the smallest exponent to the right and incrementing its exponent until the exponents are equal. At this point the two numbers will be added by adding the low bytes of numbers first followed by the high bytes. A flow chart of this subroutine is shown in Figure 24 and a listing is given in Appendix F.

Figure 23. Division Subroutine

Figure 24. Addition Subroutine

The subtraction subroutine uses the addition program, except at the beginning it changes the sign of the number to be subtracted.

A program that displays a desired number on the microprocessor's seven segment displays was developed to assist with debugging the software and verifying the operation of the hardware. Any value can be set in the display buffer to observe changes in its value as the program proceeds. During operation of the engine, the display program was used to display the engine speed on the first four displays and the injection pulse time adjusted to an 8-bit number is displayed on the last 2 displays. The listing of the display program is given in Appendix F.

A special program was prepared to take several data points and store them at certain memory locations. This program was used for data acquisition and for error diagnostics. The program was executed at the end of the interrupt program and was thereby able to record a data value every two revolutions of engine for up to 100 different readings. This program was not used regularly but it was available to test the software programs or the hardware set up. In order to analyse these data thus collected two other programs were written, one to compute the mean value and other to compute standard deviation of the data. The listing of these programs is given in Appendix F.

CHAPTER V

EXPERIMENTAL AND TESTING PROCEDURE

5-1 Introduction

In this chapter equipment used for experimentation will be explained first. The next section of the chapter will contain a description of testing procedure. Finally, the last section explains the air-fuel ratio and ignition time controller testing.

5-2 Equipment Arrangement

The Volkswagen internal combustion engine and the KIM-1 microprocessor have been described in Chapter 2'. Detailed specifications for those are given in Appendices A and B. The engine is loaded with a cradled Hydraulic Pump Dynamometer. A strain gauge load cell on the torque arm of the dynamometer and a magnetic pickup on the drive shaft provide load torque and speed signals. A Daytronic Instrument Module was used to provide digital readouts of load, torque, speed, and rower. Two digital counters were used; one for measuring the fuel injection pulse duration, and the other to count the elapsed time for the consumption of a prescribed quantity of fuel during air-fuel ratio tests. A digital multimeter was used to monitor the voltage of the air flow sensor. An oscilloscope was used to observe and measure the various digital signals. A water micro-manometer, was used to measure pressure drop across an air flow measuring nozzle. This provided a standard measure of air flow rate. Three power supplies were used to provide dc power for the microprocessor and other equipment. The analog-to-digital convertor and operational amplifiers required +15 volts supply, while the microcomputer and TTL circuitry required a + 5 volt

power supply. The potentiometer on the air flow sensor used a 10 volt power supply. A sling psychrometer was used to measure the dry-bulb and wet-bulb temperatures of the air. Finally, a mercury barometer was used to measure the atmospheric pressure. Appendix C gives the list of equipment and their specifications. An analysis of the uncertainties associated with the measurements is given in Appendix D.

5-3 Testing Procedures

The software programs for the microcomputer were tested in the laboratory prior to the time the microcomputer was taken to the area in which the engine was located. De-bugging the software programs was the basic part of this test. Arithmetic programs; such as multiplication, division, and addition; were verified separately for the full range of positive and negative numbers. The display program was developed and was of great value in eliminating errors in the software programs.

The interface circuitry was developed and tested in the lab before being applied to the engine. As mentioned before, the distributor signal was not a perfect square wave and the circuitry used to clean this up, as shown in Figure 6, had to be developed and tested on the engine. A substantial effort was required to keep engine noise from causing extraneous signals to be put on some of the lines. To generate NMI pulses on the edges of the distributor signal, a set of monostable multivibrators was used. A great deal of havoc was created when engine noise caused the monostable multivibrators to put out signals when they weren't suppose to. Later, it was decided to generate these pulses using shift registers in conjunction with "NAND" gates. The inverted signal of the distributor was shifted 50 µs to the right and it was passed through a "NAND" gate with the distributor signal. This generated the NMI pulses on the positive going edges of the distributor signal. To generate the pulses on the negative going edges of the distributor signal, the inverted distributor signal and the shifted distributor signal were NANDed together. Figure 24 shows the TTL integrated circuit used to generate NMI pulses. To show how the signals were shifted the phase relation is depicted in Figure 25.

The phase shift between distributor cycle and the crank shaft cycle was needed to compute ignition phase time. This phase shift was measured using one channel of the oscilloscope for the distributor signal and the other for ignition pulses generated by the electronic ignition system. This phase shift was measured with the engine running at 850 rpm and the vacuum advance hose was disconnected. The ignition timing of the VW engine had been set at 0° TDC at 850 rpm with the vacuum hose disconnected (24). The phase difference between the distributor signal and the ignition pulses was equivalent to the phase between the distributor signal the the crankshaft. This phase shift was measured to be 2.745 ms. which is equivalent to 14 deg. of crank shaft.

5-4 Air-Fuel Ratio and Ignition Controller Testing

The first objective of this thesis was to accurately control the airfuel ratio at any operating condition of the engine. The air-fuel ratio was set at the desired value by the microcomputer's initialization program at the beginning of the engine operation. The air-fuel ratios at which testing was conducted were 14-1, 16-1, and 18-1. While the engine was operating under microprocessor control at the specified air-fuel ration, the operating conditions of the engine were measured experimentally and the actual air-fuel ratio was computed.

To experimentally determine the air-fuel ratio the atmospheric pressure,

Figure 25. TTL Circuit Diagram for NMI Signal

Figure 26. Phase Relation, Generating NMI Signal

room dry and wet bulb temperatures, the quantity of fuel consummed, the time duration of the test, and the pressure drop across the nozzle were measured.

The amount of fuel consumed during each test was specified at a constant 0.40 lb, and the time duration for consuming this amount of fuel was measured using an eletronic counter. A microswitch was used to start and stop the counter as shown in Figure 27. The electronic counter started when the plat-form of the balance passed through the null position and tripped the micro-switch. A 0.40 lb weight was placed on the balance with the full tank. When 0.40 lb of the fuel was comsumed the platform of fuel tank would again pass through null and the micro-switch would stop the electronic counter. The value on the electronic counter was the length of time for the engine to consume the 0.40 lb of fuel.

The air mass flow rate, AMFR was calculated from relations given in reference 25. These relations are as follow:

AMFR - (CFM) (DENSA)

where DENSA is the density of the air at test condition. This was calculated from:

DENSA
$$\frac{(\text{ATMPR})(0.491) - 0.38(\text{PW} - \frac{(\text{ATMPR})(0.491)(\text{TDB} - \text{TWB})}{2700})}{(0.37)(\text{TDB})}$$

in this relation, ATMPR is the atmospheric pressure of the air in inches of Hg which was measured with a mercury barometer located in a nearby room, TDB and TWB are dry-bulb and wet-bulb temperatures respectively in oR, and PW is the vapor pressure of water in the air at the wet-bulb temperature in psia. The value of CFM is calculated from the relation

 $CFM = (62.0524) PMN \left(\frac{0.075}{DENSA}\right)^{-0.5014}$

where PMN is the pressure drop across a 1.59 inch (4.04 cm) ASME long radius flow nozzle. The nozzle, as shown in Figure 28, was placed in one end of a

surge tank and from the other end air was drawn by the engine. The pressure drop across the nozzle was measured with a 10 in (25.4cm) water micro-manometer.

The load on the engine was applied by way of an aviation hydraulic pump. Low pressure oil was drawn from a 55 gal (208.2 let) reservoir and pumped back again through a manual pressure control valve and filter. As the pressure against which the pump had to work was increased the torque required of the engine to turn the pump also increased. The pressure control valve provided a mean of increasing the hydraulic pressure. The torque produced by the engine was measured by a strain guage transducer, as shown in Figure 29. The electrical signal from the strain guage transducer was input to the Daytronic Module which provided a digital read out of the load in ft-lb.

The engine speed was obtained by two methods. First, from a fixed magnetic pick-up and a 60 tooth gear mounted on the driveshaft between the clutch and a dynomometer. The pulses from the pick-up transducer were input to the Daytronic Instrument Module which provided a digital read-out of the engine speed. Second, the engine speed measured from the speed sensor and converted by the microcomputer was displayed on the seven segment displays. This value was a hexadecimal number and needed to be converted to a decimal value. It was also possible to measure the engine speed by measuring the distributor signal period using the oscilloscope.

At the beginning of the air-fuel ratio test the engine was allowed to warm up before data was taken. The engine speed and load were set at the desired values. The microcomputer was initialized to control the engine at one of the three specified air-fuel ratio. Data was taken while operating the engine at 3 different speeds and 3 different loads for each value of air-fuel

Figure 27. Fuel Consumption Measurment

ratio. Five tests were made at each set of conditions.

Testing of the air-fuel ratio control was continued until data had been taken at all combinations of speed, load and air-fuel ratio. While data was being taken the fuel injection pulse length was also recorded as measured by the electronic counter and the microcomputer's display. In addition; speed, load, and voltage on the air-flow sensor were measured and recorded.

Microcomputer ignition controller testing was more simple than air-fuel ratio controller testing. The objective of the ignition controller was to accurately control the ignition spark advance and duration of ignition pulse, "dwell". The ignition dwell and spark advance were measured and recorded at the different speed, load, and air-fuel ratio conditions used for fuel injection control testing. A two channel oscilloscope was used to take this data. One channel of oscilloscope was used to display the distributor signal and the other for ignition pulses. The phase difference between starting edge of ignition pulse and the edge of the distributor signal was equivalent to the sum of the spark advance and the phase shift between the distributor and the duration of the ignition pulses. The values recorded for spark advance and ignition duration were in the units of time, and had to be converred to the units of degrees of crank shaft. This conversion is accomplished by multiplying by engine speed in degrees per unit time.

CHAPTER VI

PRESENTATION OF RESULTS

6-1 Introduction

Data obtained from the testing described in the previous chapter is discussed in this chapter. Section 2 of this chapter describes the results of the air-fuel ratio control tests while the ignation timing control results are discussed in the last section.

6-2 Results of Air-Fuel Ratio Control Tests

The data collected during this research is listed in Appendix H. The results of analysis of the data are shown in the tables and graphs of this chapter. The first set of data was obtained for the two air-fuel ratios of 14-1 and 16-1 over 3 engine speeds from 1200 to 2800 rpm, and for the constant load of 25 lb-ft. The analysis of these results showed a minimum of 9.28% and a maximum of 25% deviation from the expected result. An uncertainly analysis on the air-fuel ratio by Schneck (3) showed only 3.29% for the limit of error, therefore research was continued to find the cause of this deviation. The air flow sensor calibration was checked using its recorded voltage and the calculated air flow from the data. This check did not show anything that would cause this error.

The calibration of the fuel injectors was checked. From the data collected a new calibration of the fuel injectors was obtained. This showed a major difference from the calibration that was obtained from reference 3. The microcomputer was reprogrammed with the new mathematical relations of the fuel injector calibration. A second set of data was obtained at the same
conditions of the engine. This gave better results and lower deviations for the air-fuel ratio of 16-1 but not for the air-fuel ratio of 14-1. Analysis of the results showed an error to exist because the points used to calibrate the fuel injectors were too close to each other. The best fit curve through these points gave an inaccurate calibration.

It was decided to recalibrate the fuel injectors with many points widely separated. To obtain this calibration the engine was operated on the Bosch system for several different loads and speeds. The injection pulses were measured on the oscilloscope and data was taken to compute mass of fuel per injection. Figure 11and equation 4 are the results of this calibration. The 3 calibrations described above are compared on Figure 30.

The final data for the air-fuel ratio control was taken based on the last injector calibration for three air-fuel ratios. Figures 31 and 32 compare the air-fuel ratios of 14-1 and 16-1 respectively fro the 3 different fuel injector calibrations. The results of testing for three air-fuel ratios over the engine speeds of 1200 to 2800 are presented in Figures 33 through 35 for load of 10 1b-ft, 25 1b-ft, and 40 1b-ft respectively. Each point on the graphs represents the average of five tests taken at that condition.

After all data was taken, the values of air flow corresponding to the voltages of the air flow sensor were compared to the air flow calculated from the pressure drop across the nozzle. In a few cases there were small differences between these two values. It is believed that the potentiometer on the air flow sensor was not operating properly at all times during the last part of the final tests. In order to best evaluate the performance of the controller in those cases where there was a difference in the value of air flow from the measurements the voltage of air flow sensor was used to compute air

Figure 30. 3 Different Calibrations of the Fuel Injector

oiteA [su]-riA

flow since the microcomputer was calculating injection pulses based on the voltage of air flow sensor.

A statistical analysis was performed on the data for the air-fuel ratio controller in which the mean, standard deviation, and percent standard deviation were calculated. The results of this statistical analysis are presented in Table 3. Also a correlation statistical test was done on the linearity of the fuel injector calibration based on the total final data. The result of this analysis as shown in Appendix E proved that the linear calibration was quite accurate.Table 4&5 also provide the statistical analysis on the results of air-fuel ratio for the first two injector calibrations.

To compare the result of this research on air-fuel ratio control with the Bosch system a set of data was taken while the engine was operating on the Bosch system over the range speeds from 1200 to 2800 for the two loads of 25 lb-ft and 40 lb-ft. The results of this test are shown in Figure 36 and Table 6. The data for this test is listed in Appendix H.

6-3 Ignition Timing Control Results

The analysis of the ignition timing controller data is presented in Table 7 and plotted on Figure 37 and 38. Figure 37 shows the measured ignition spark advance value compared to the piecewise linear relationship used in the controller. Figure 38 presents the measured ignition pulse length or ignition dwell compared to the specified value. Both of these tests were taken for six engine speeds over the range of 1000 to 2800 rpm. Each point on these graphs represents the average of a test taken at the indicated speed.

The data and computed results for the ignition control testing are given in Appendix I. Table 7 shows the statistical analysis of this data in which mean, standard deviation and percent standard deviation were calculated for

					% STANDARD		
AIR-FUEL			TESTED AIR FUEL RATIO	STANDARD DEVIATION	DEV LATION FROM	ON	PERCENT
RATIO	RPM	LOAD	MEAN	AFR	MEAN AFR	TESTS	OFFSET
1.4-1	1200	10	14.26	0.22	1.53	5	1,87
	2000		13.37	0.43	3.23	5	4.50
	2800		13.42	0.33	2.42	ŝ	4.07
	1200	25	13.97	0.10	0.73	5	0.23
	2000		13.99	0.32	2.26	5	0.03
	2800		13.85	0.24	1.77	5	1.07
	1200	40	15.69	0.05	3.22	5	1.2.04
	2000		15.20	0.59	3.91	5	8.57
	2800		14.26	0.69	4.87	5	1.86
			14.22(Avg.)	0.33(Avg.)	2.65(Avg.)	45(Total)	3.80(Avg.)
16 - 1	1200	10	16.30	0.33	2.01	5	1.89
	2000		15.40	0.13	0.81	5	3.72
	2800		15.65	0.17	1.10	5	2.19
	1200	25	15.17	0.41	2.69	5	5.21
	2000		15.72	0.22	1.42	5	1.75
	2800		15.50	0.60	3.25	5	3.14
	1200	40	16.82	0.66	3.95	5	5.12
	2000		16.66	0.32	1.94	5	4.13
	2800		16.17	0.67	4.12	5	1.07
			15.92 (Avg.)	0.38(Avg.)	2.36(Avg.)	45(Total)	3.13(Avg.)
18-1	1200	1.0	18.11	0.16	0.91	5	0.62
	2000		17.09	0.39	2.30	5	5.08
	2800		17.52	0.21	1.21	5	2.68
	1200	25	17.42	0.39	7.97	5	3.22
	2000		18.64	0.67	3.61	5	3.58
	2800		17.82	0.31	1.72	5	1.02
	1200	40	19.76	0.85	4.29	5	9.78
	2000		18.90	0.25	1.34	5	5.01
	2800		18.57	0.76	4.09	5	3.20
			18.19(Avg.)	0.55(Avg.)	3.05(Avg.)	45(Total)	3.80(Avg.)
		[Table 3. Final Re	esults of Air-F	uel Ratio Conti	rol	

				TESTED	STANDARD			
	AIR-FUEL		SPEED	AIR-FUEL	DEVIATION	% STANDARI	NO.	PERCENT
	RATIO	LOAD	RPM	RATIO	AFR	DEVIATION	TESTS	OFFSET
	14-1	25	1200	15.30	0.91	5.98	5	9.26
Infoctoro			2000	17.46	0.53	3.04	5	24.71
Calibration			2800	16.67	0.79	4.76	5	19.09
from								
Pof 2	16-1	25	1200	19.66	1.18	6.02	5	22.90
Ref. J			2000	20.08	0.32	1.69	5	25.47
			2800	19.62	1.05	5.34	5	22.61

Table 4. Result of Air-Fuel Ratio Control Using the First Injectors Calibration, (from Ref. 3)

				TESTED	STANDARD			
	AIR-FUEL		SPEED	AIR-FUEL	DEVIATION	% STANDARD	NO.	PERCENT
	RATIO	LOAD	RPM	RATIO	AFR	DEVIATION	TESTS	OFFSET
	14-1	25	1200	17.59	0.09	0.54	5	25.63
Injectors			2000	17.70	0.79	4.47	5	26.45
Calibration			2800	16.38	0.16	1.02	5	17.03
from								
above	16-1	25	1200	14.00	0.72	5.10	5	12.47
data			2000	17.44	0.91	5.20	5	9.00
			2800	17.77	0.17	0.99	5	9.83

Table 5. Result of the Air-Fuel Ratio Control Using the Second Injectors Calibration (using data from Table 2)

				PERCENT	
		TESTED	STANDARD	STANDARD	
LOAD	SPEED	AIR-FUEL	DEVIATION	DEVIATION	NO.
LB-FT	RPM	RATIO	AFR	FROM MEAN	TEST
25	1200	17.57	0.59	3.06	5
	2000	16.80	0.43	2.55	5
	2800	15.56	0.58	3.71	5
40	1200	17.06	0.61	3.60	5
	2000	16.81	0.35	2.10	5
	2800	15.30	0.42	2.79	5

Table 6. Result of Air-Fuel Ratio Using Bosch System

		PERCENT	OFFSET DUELI	DWDHD	3.15	0.11	0.24	7.67	2.42	2.51	2.68	(Avg.)
	PERCENT	OFFSET	SPARK	AUVAXAUE	17.50	11.64	4.78	3.17	4.35	0.42	6.98	(Avg.)
	I	IDEAL	DWELL	60	45	45	45	45	45	45	45	(Avg.)
	% STANDARD	DEVLATION	FROM MEAN	DWEND	2.71	2.93	0.81	1.50	1.30	1.70	1.83	(Avg.)
		STANDARD	DEVIATION	THEFT	1.180	1.320	0.81.7	0.726	0.572	0.762	0.900	(Avg.)
		MEAN	DWELL	en nur	43.58	44.95	45.11	48.45	43.91	43.87	44.97	(Avg.)
% STANDARD STANDARD DEVIATION IDEAL	IDEAL	SPARK	ADVANCE °CC	69	4.0	11.6	20.5	29.0	34.5	38.0	22.93	(Avg.)
	DEVIATION	FROM MEAN	SPARK	AUNAVUR AUNA	5.19	6.10	1.35	2.51	2.95	3.90	3.67	(Avg.)
	STANDARD	DEV LAT ION	SPARK	MANUE	1.04	1.52	0.50	1.14	1.51	2.01	1.29	(Avg.)
	MEAN	SPARK	ADVANCE DEC CS	00 0111	4.70	12.95	21.48	29.92	36.00	38.16	23.87	(Avg.)
	MEAN	SPEED	MEASURED	VTNUTIWA	999.4	1245.5	1599.3	2008.0	2347.8	2854.4	1842.4	(Avg.)
		DESIRED	SPEED	INF FU	1000	1200	1600	2000	2300	2800	1816.7	(Avg.)
			NO.	CICTI	6	6	6	6	6	6	45	(Total)

Table 7. Results of Ignition Timing Control

the spark advance, dwell, and rpm. Uncertainty analysis was made on the ignition timing measurements. The details of this analysis are given in Appendix D. The result of this analysis showed there is a maximum of 3.1 degrees crankshaft limit of error associated with result of the spark advance and 3.08 degrees with the ignition dwell angle.

CHAPTER VII

CONCLUSIONS AND RECOMMENDATIONS

7-1 Introduction

This chapter will provide a summary of the results and conclusions of this research and recommendations for further study.

7-2 Summary of Results and Conclusions

A microcomputer fuel injection and ignition timing control system was designed and tested on an internal combustion engine over the range of speed from 1000 to 3000 and at loads of 10.0 to 40.0 lb-ft at the three air-fuel ratios of 14-1, 16-1 and 18-1. The ignition spark advance and dwell control system was tested at six speed values: 1000, 1200, 1600, 2000, 2300, and 2800 rpm.

The results of testing the air-fuel ratio controller showed that the ability to maintain a prescribed air-fuel ratio over a range of operating conditions is quite dependent on accurate calibrations of the air flow sensor and the fuel injectors. The ability of the system to produce repeatable results is evidenced by the fact that of the 27 sets of data the percent standard deviation only exceeded 5% on one set. The average percent standard deviation was only 2.7%. The ability of the system to obtain the prescribed air-fuel ratio (which is strongly dependent on the above mentioned calibrations) was not as good. The percent off set exceeded 5% on seven of the 27 sets of data with the average percent offset of 3.58%. The larger errors appeared to occur at the heavier loads at the lower speeds.

The six sets of data taken for the Bosch controller indicated a repeat-

ability of 3% standard deviation, but the value of air-fuel ratio varied by 11 to 12% over the range of speeds tested for each load.

The ignition spark advance controller proved to be successful with the maximum deviation of 1.50 degree of CS from the prescribed advance. The average deviation for the six sets of data was less than 1.00 degree of crank shaft. The repeatability of the system was indicated by the 3.67% average percent standard deviation. The limit of error for the measurement of the spark advance angle was between 0.54 degree crank shaft at 1000 rpm and 3.10 degree of the crank shaft at 2800 rpm.

The ignition dwell angle was maintained constant with a maximum error of 3.5 degrees crankshaft and an average error of 1.2 degrees crank shaft. The dwell angle was repeatable with a 1.83% standard deviation. The uncertainty analysis for the measurements of the dwell angle indicated a limit of error between 1.24 and 3.08 degree crank shaft.

Finally, the floating point arithmetic operations with a 2 byte mantissa and a 1-byte exponential proved to be adequate for computing injection pulse duration and angle of spark advance.

7-3 Recommendations

To control air-fuel ratio, ignition spark advance and ignition dwell angle with greater accuracy, and to improve and expand the system for further research, several recommendations are given in this section as follows:

- The microcomputer system could be improved by the addition of more input-output ports and programmable interval timers.
- 2. Improvements could be made on the system by increasing the number of bit on the counters of the speed sensor, ignition spark advance and ignition dwell angle from 12-bit to 16-bit. This would increase the

resolution of these systems to 1 part in 65,000.

- 3. Fuel injection values had to be adjusted for an 8-bit interval timer with a clock division rate of 64 μ sec count. The resolution of the fuel injection pulse was I64 μ s which created an uncertainty in the fuel injection in the order of 3.2%. The source of error could be reduced by using an interval timer with more bits and a faster clock rate. A 16 bit timer would permit use of a 1 mhz clock and reduce this timing uncertainty to less than 0.1%.
- 4. The average execution times for the multiplication, division, subtraction, and addition routines were 1870 µsec, 1120 µsec, 530µs, and 500 µsec respectively. These routines could be improved for faster operation by a combination of additional hardware and improved software.
- 5. The fuel measuring system could be improved by changing from a mass measuring to a volumetric measuring system. Also, an automatic timing system could be devised to measure the time for consumption of the prescribed volumn of fuel.
- 6. The air flow sensor could be improved by replacing the potentiometer with a digital position encoder, or a more reliable potentiometer.
- 7. The air flow measuring system could be improved by using a smaller nozzle, a pitot static measuring system, or a positive displacement flow measuring device.
- If more accurate and reliable fuel and air flow measuring systems were provided the air flow sensor and the fuel injectors should be carefully recalibrated.
- 9. Data for the ignition time controller was collected using the same

sweep rate on the oscilloscope for measuring the cycle of the distributor signal, the spark advance with respect to the distributor signal, and the ignition pulse duration. As a result the ignition pulse duration and the spark advance were small compared to the span of the instrument and the limit of error for these measurements was large. These errors could be reduced if the time base of the oscilloscope were set at the minimum sweep rate for each measurement. The uncertainties that could be obtained are indicated below.

RPM	[\] asa %	UNCERTAINTY ASA DEG CS	$^{\lambda}$ AIGD%	UNCERTAINTY AIGH DEG CS
1000	18.13	.362	. 593	.717
1200·	6.55	.589	1.560	.702
1600	4.31	.862	1.52	.684
2000	3.38	.980	1.58	.711
2300	3.04	1.018	1.64	.738
2800	3.01	1.144	1.76	.792

10. The ultimate purpose of the microprocessor control of fuel injection and ignition timing to reduce exhaust emissions and improve economy could be more readily realized if an exhaust emission sensor and a load sensor were provided so the control loop could be closed. This would present a whole new set of opportunities for improved control strategies.

LIST OF REFERENCES

- 1. Toelle, A.D., "Microprocessor Control of the Automobile Engine", Bendix Electronics and Engine Control System Group, SAE paper no. 770008.
- Russell, J.B. and Nedbal, R.G., "Air-Fuel Ratio Control Using a Simple Microprocessor," Essex Group-United Technology, SAE paper no. 770006.
- Schneck, G.A., "Design Implementation, and Testing of a Real-Time Microcomputer Air-Fuel Ratio and Speed Controller For an Electronically Fuel Injected Internal Combustion Engine," Kansas State University, Masters Thesis, 1976.
- "Search", General Motors, Research Laboratories, March April 1977, Vol. 12, No. 2.
- 5. Vora, L., "Computerized Five-Parameter Engine Mapping," Electronic Dept., General Motors Corp., SAE paper no. 770008.
- Jurgen, Ronald K., "The Microporcessor: In the Driver's Seat?" IEEE Spectrum, June 1975, P.P. 73-77.
- 7. Electronic News, September 27, 1967, Vol. 21, No. 1099, pp. 36.
- 8. Jurgen, Ronald K., "Electronic Fuel Injection: Mileage Boost, Pollution squelch," IEEE Spectrum, November 1975, pp. 34-36.
- 9. Buttgereit, W., Voges, C.H., and Schilter, C., "Exhaust Emission Control by Fuel Injection: The VW 1600 with Electronically Controlled Fuel Injection System," SAE Transactions 1968, paper no. 680192.
- 10. Gyorki, J., "Fundamentals of Electronic Fuel Injection," The Bendix Corporation, SAE paper no. 740020.
- 11. Soltau, J.P., Senior, and K.B. Rowe, B.B., "Digitally Programmed Engine Fueling Controls," Joseph Lucas Ltd, SAE paper no. 730128.
- 12. Binder, K., Kiencke, U., and Zechnall, M., "Car Control by a Central Electronic System", Robert Bosch Gmbh, SAE paper no. 770001.
- 13. Rivard, J.G., "Electronic Fuel Injection in the U.S.A.," The Bendix Corporation, SAE paper no. 741224.
- Ogata, K., <u>Modern Control Engineering</u>, Englwood Cliffs, New Jersey, 1970, pp. 6-7, 16.
- 15. The 1968 VW Program Manual, Provisional Workshop Manual, Fuel System-Electrical System.

- "Electronically controlled Gasoline injection system", Robert Bosch Corporation, BB 700/1A, January 15, 1968.
- Obert, Edward F., <u>Internal Combustion Engines and Air Pollution</u>, (Intext Educational Publishers, New York and London, 1973) pp. 537-538.
- 18. Taylor, Charles F., <u>The Internal Combustion Engine in Theory and</u> <u>Practice</u>, Volume 2, (The M.I.T. Press, Cambridge, Massachusetts and London, 1968) pp. 61, 68.
- 19. Electronic Ignition Owner's Manual, Borg-Warner, Form No. 73-5.
- 20. Baert, D., and Van De Casteele, R., "An Electronic Ignition Control System," University of Ghent (Belgium), SAE Paper no. 770105.
- 21. MOS Microcomputer Programming Manual, January 1976.
- 22. MOS Microcomputer KIM-1 User Manual, August 1976.
- 23. Bartee, Thomas C., <u>Digital Computer Fundamentals</u>, 34d ed., McGraw-Hill Company, 1972, pp. 233-236.
- 24. Robinson, Jeff, ed. Volkswagen Service Repair Handbook, Clymer, Los Angeles, Calif., 1972.
- 25. Williams, W.C. "Operational Characteristics of An Internal Combustion Engine Using Mixture of Gasoline and Propane as the Fuel," Kansas State University, Masters Thesis, 1976.
- 26. Sprague C.H., and Nash, R.T., "Introduction to Engineering Experimentation," Kansas State University, Manhattan, Kansas 1972.

APPENDIX A

MICROCOMPUTER SPECIFICATIONS

Model	KIM-1 Microcomputer System
Manufacture	MOS Technology, Inc.
Available RAM	1152 bytes
Available ROM	2048 bytes
Available I/O	15 bits
Address Range	65,536 bytes
No. of Addressing Modes	13
MPU	8-Bit, 6502 Microprocessor Array
Available Interval timers	1
Interrupt Mode	Non-Maskable (NMI) and Interrupt
	Request (IRQ)
Additio	nal Memory

Manufacturer

The Digital Group

Available RAM

8192 bytes

APPENDIX B

ENGINE SPECIFICATIONS

Model	1968 Volkswagen, Electronic Fuel Injection
Number of Cylinders	4
Displacement	96.9 cu. in. (1.584 (it)
Compression Ratio	8.8:1
Torque (SAE)	86.8 ft-1b @ 2800 rpm
Output (SAE)	65 bhp @ 4600 rpm
Valve Clearance	.006 in (.15 mm) intake and exhaust
Ignition Timing	0° (TDC) @ 850 rpm with vacuum hose disconnected
Spark Plug Type	Bosch W 145 T 1
Engine Oil	SAE 30 (MS) between 40°F and 86°F
Bore	3.36 in (85.5 mm)
Stroke	2.72 in (69.0 mm)
Electronic Ignition	System Specification*
Manufacture	Borg Warner
Triggering Means	Infra-red emitting diode and photo- transistor receiver
Timing Accuracy	Up to 1/4 of 1 degree
Current Rating	10 Ampers
Operating Voltage	12 Volts I 6 volts, negative ground
* This system replaced breaker point	nt and condensor in the distributor.

APPENDIX C

TESTING EQUIPMENT SPECIFICATION

EQUIPMENT

1. Oscilloscope

- 2. Daytronic Modular Instrument System
- 3. Electronic Counter for measuring time for fuel consumption
- Electronic Counter for measuring injection pulse time
- 5. Strain Guage Transducer for load measurement
- 6. Analog to Digital Convertor
- 7. Water Micro Manometer
- 8. Mass Balance
- 9. Digital Multimeter
- 10. D-C Power Supplies

SPECIFICATION

- Tektronix Type S64 with Time Base Type 2B67
- Daytronic Models: 840, 870, 862, and 821
- Hewlett Packard Model 523D
- Universal EPOT Model 6146 with Timer Model 602
- Transducer Model BTC-FF63-CS-50
- Analog Device, Model ADC-10Z
- Meriam, Type MICRO, Model 34FBZ
- Detecto Gram Balance
- Fluke Multimeter Model 8000A
 - LAMBDA Dual Model LPD-421A-FM

APPENDIX D

UNCERTAINTY ANALYSIS

In order to assess the value of the results of this work it is necessary to evaluate the uncertainty associated with each result. These uncertainties are calculated by the proceedure presented by Spargue and Nash (25). For a variable H which is a function of various independently measured values of

$$Y_1, Y_2, Y_3, \dots, Y_n$$
 or (1)

$$H = f(Y_1, Y_2, Y_3, \dots, Y_n),$$
(1)

the uncertainty in H is calculated from the equation

$$\lambda H = S_1^2 \quad \lambda_1^2 + S_2^2 \quad \lambda_2^2 + S_3^2 \quad \lambda_3^2 \quad + \dots + S_n^2 \quad \lambda_n^2$$
(2)

where

$$S_{n} = \frac{\partial f}{\partial Y_{n}} - \frac{Y_{n}}{H}$$
(3)

and λ_n is the uncertainty in the n'th measured value in percent of reading. There are two factors which contribute to the uncertainty of each measurment. The first is the ability of the instrument to position the indicator in the correct position on the scale. This is called instrument uncertainty, The second is the ability of the experimenter to accurately read the indicated value which is known as a resolution uncertainty. Manufacturer's specifications usually indicate the instrument uncertainty. In the absence of better information from manufacture's literature, resolution and instrument uncertainties will both be assumed equal to Y_z of the smallest scale division of the instrument's display.

The uncertainties in the ignition timing parameters of spark advance and dwell will be calculated in this Appendix. The uncertainties in airflow sensor's calibration, air-fuel ratio calculation, and fuel injector calibration will be summarized. These uncertainties are calculated in Appendix C of the reference 3.

Ignition Spark Advance Uncertianty

The angle of spark advance in degree of crank shaft is calcualted from the equation:

$$ASA = \frac{(SPADIS)360}{HADIST} - \phi deg$$
(4)

where SPADIS is the measured phase difference between the ignition pulse and the distributor signal in units of time, ϕ is the phase shift between the distributor and crank shaft cycle in angular degrees of the crank shaft, and HADIST is one half of the period of the distributor signal in unit of time. To calculate the uncertainty in ASA the uncertainties in SPADIS, ϕ and HADIST must first be calculated. The phase shift ϕ was measured in units of time and converted to degree of crank shaft by the equation:

$$\phi$$
 (deg. of crank shaft) = $\frac{(\phi \text{ time}) (360)}{\text{HADIST}}$. (5)

The variables ϕ (time), HADIST, and SPADIS were measured with the Taktronix Type 564 Storage Oscilloscope equipped with a type 2B67 Time-Base Plug in unit. Specifications for this instrument indicate that the calibrated sweep rates are within 3% of the step switch setting. Resolution accuracy will be taken as 1/2 the smallest scale division.

To measure ϕ (time), as explained in Chapter 5, the engine was run at the speed of 850 rpm with vacuum nose off. The values of HADIST, ϕ_t and ϕ_{deg} were 70 ms, 3 ms and 15.43 deg respectively, and the uncertainties in ϕ_t and HADIST are:

$$\lambda_{\phi t} = (\lambda)^2$$
 linearity + $(\lambda)^2$ resolution

$$= (3.0)^{2} + (\frac{0.1\ 100}{6.0})^{2}$$

$$= 3.43\%$$

$$\lambda_{\text{HADIST}} = (\lambda)^{2} \text{ linearity} + (\lambda)^{2} \text{ resolution}$$

$$= (3.0)^{2} + (\frac{100}{70})^{2}$$

$$= 3.323\%$$

The sensitivities of ϕ deg with respect to ϕ_t and HADIST can be computed from equations 3 and 5 as follow:

$$S_{\phi t} = \frac{\frac{\partial \phi \, deg}{\partial \phi_t} \, \phi_t}{\frac{\phi}{\partial eg}} = 1$$

$$S_{\text{HADIST} = \frac{\partial \phi \, deg}{\partial HADIST} \, (\text{HADIST})} = 1$$

The uncertainty in $\phi_{\rm deg}$ is calculated from equation 2.

$$\lambda_{\phi deg} = (\lambda)^2_{\phi t} (S)^2_{\phi t} + (\lambda)^2_{HADIST} (S)^2_{HADIST}$$
$$= (3.430)^2 (1)^2 + (3.323)^2 (1)^2$$
$$= 4.78\%$$

The uncertainties in SPADIS, HADIST, and ASA in equation 4 depend on the rpm of engine and angle of spark advance. The calculation of the uncertainties of the average of 9 measurements of these parameters for a speed of 1000 rpm is as follow:

$$\lambda_{\text{SPADIS}} = (\lambda^2) \text{ linearity} + (\lambda^2) \text{ resolution}$$
$$= (3.0)^2 + (\frac{10.}{.66})^2$$
$$= 15.45\%$$
$$\lambda_{\text{SPADIS}} = \frac{\lambda_{\text{SPADIS}}}{m} = \frac{15.45}{9} = 5.15\%$$

$$\lambda_{\text{HADIST}} = (\lambda^2) \text{ linearity} + (\lambda^2) \text{ resolution}$$
$$= (3.0)^2 + (\frac{100}{58})^2 = 3.46\%$$
$$\lambda_{\text{HADIST}} = -\frac{\lambda_{\text{HADIST}}}{m} = \frac{3.46}{9} = 1.153\%$$

The sensitivity of ASA with respect to SPADIS is computed from equations 3 and 4,

$$S_{\text{SPADIS}} = \frac{\frac{\partial ASA}{\partial \text{SPADIS}} \text{ SPADIS}}{ASA}$$
$$= \frac{\frac{360}{\text{HADIST}} \text{ SPADIS}}{\frac{(\text{SPADIS})(360)}{\text{HADIST}} - \phi_{\text{deg}}}$$

$$= \frac{1}{1 - (\text{HADIST})(\phi \text{deg})}$$
(SPADIS)(360)

Likewise, the sensitivity of ASA with respect to HADIST and ϕ deg will be:

$$S_{\text{HADIST}} = \frac{\frac{\partial ASA}{\partial \text{HADIST}} \text{ HADIST}}{ASA}$$
$$= \frac{\frac{-(SPADIS)(360)}{(\text{HADIST})^2} \text{ HADIST}}{\frac{(SPADIS)(360)}{(SPADIS)(360)} - \phi \text{ deg}}$$
$$= \frac{-1}{1 - \frac{(\text{HADIST})(\phi_{\text{deg}})}{(SPADIS)(360)}}$$

and

$$S_{\phi_{deg}} = \frac{\frac{\partial ASA}{\partial \phi_{deg}} \phi_{deg}}{ASA}$$
$$= \frac{(-1)(\phi_{deg})}{\frac{(SPADIS)(360)}{HADIST} - \phi deg}$$
$$= \frac{1}{1 - \frac{(SPADIS)(360)}{(HADIST)(\phi_{deg})}}.$$

The average values of SPADIS and HADIST for 9 different readings at engine speed of 1000 rpm are:

 $\overline{\text{SPADIS}} = 3.3 \text{ ms},$

HADIST = 58 ms,

$$m = 9$$
.

The values of the sensitivities are:

 $S_{SPADIS} = 4.05\%$ $S_{HADIST} = 4.05\%$ $S_{\phi}_{deg} = -3.54\%$

Finally, the uncertainty in ASA will be:

$$\lambda_{ASA} = \frac{(\lambda^2)}{\phi_{deg}} \frac{(s^2)}{\phi_{deg}} + \frac{(\lambda^2)}{sPADIS} \frac{(s^2)}{sPADIS} + \frac{(\lambda^2)}{HADIS} \frac{(s^2)}{HADIS} + \frac{(\lambda^2)}{HADIS} \frac{(s^2)}{HADIS} + \frac{(\lambda^2)}{HADIS} + \frac{$$

The uncertainty in ASA in angular degrees of crank shaft was calculated to be .545 deg.

The uncertainties in angle of spark advance was also computed for speeds of 1200, 1600, 2000, 2300, and 2800 rpm by the same technique. The result of these calculations are given in Table 1.

Ignition Dwell Uncertainty

The angle of the Ignition Dwell was calculated from the ignition pulse duration from equation:

$$AIGD = \frac{(IGPU)(360)}{HADIST}$$
(6)

UNCERTAINTY deg of CS	. 545	1.056	1.723	2.178	2.410	3.100
χ ^λ ASA	27.26	11.73	8.62	7.51	7.18	8.16
SPADIS	4.05	2.19	1.723	1.513	1.429	1.40
$^{\lambda}_{\mathrm{SPADIS}}$	5.15	4.56	4.45	4.55	4.67	5.52
SHADIST	-4.054	-2.19	-1.723	-1.513	-1.429	1.40
ÅHADIST %	1.15	1.06	1.09	1.15	1.19	1.29
s _¢ d	-3.540	-1.193	723	513	429	401
Р % У Ф _Х	4.78	4.78	4.78	4.78	4.78	4.78
$\phi_{ m d}$ deg. CS	15.43	15.43	15.43	15.43	15.43	15.43
HAD I ST MS	5.8x10 58	9.52x5 47.6	7.52x5 37.6	5.94x5 29.72	5.12x5 25.58	4.1x5
SPADLS MS	.66x5 3.3	.75x5 3.75	.768x5 3.84	.751x5 3.755	.73x5 3.65	.614x5
Speed rpm	1000	1200	1.600	2000	2300	2800

Table 1 Results of Uncertainty in Angle of Spark Advance

where IGPU is the duration of ignition pulse and HADIST is one half of the distributor cycle, where both were measured by the Tektronix Type 564 storage Oscilloscope. Also, AIGD is defined to be the angle of ignition dwell in the units of degree of crank shaft. In order to compute uncertainty in AIGD uncertainties in IGPU and HADIST must first be calculated. The compulation of uncertainty in AIGD for a speed of 1000 rpm is shown. The results for 1200, 1600, 2000, 2300, and 2800 rpm is presented in Table 2.

$$\lambda_{\text{HADIST}} = \frac{(\lambda)^2}{\text{Resolution}} + \frac{(\lambda)^2}{\text{Linearity}}$$

$$= (3.0) + \frac{100}{58}^2 = 3.46\%$$

$$\lambda_{\text{HADIST}} = \frac{\lambda_{\text{HADIST}}}{m} = \frac{3.46}{9} = 1.153\%$$

$$\lambda_{\text{IGPU}} = \frac{(\lambda)^2}{\text{Resolution}} + \frac{(\lambda)^2}{\text{Linearity}}$$

$$= (3.0)^2 + \frac{10}{1.456}^2 = 7.49\%$$

$$\lambda_{\text{IGPU}} = \frac{\lambda_{\text{IGPU}}}{m} = \frac{7.49}{m} = 2.50\%$$

The sensitivities of AIGD to HADIST and IGPU will be calculated from equations 3 and 6 as follow:

$$S_{\text{HADIST}} = \frac{\frac{\partial AIGD}{\partial HADIST} (\text{HADIST})}{AIGD}$$

$$= \frac{\frac{(IGPU)(360)}{(HADIST)^2} (\text{HADIST})}{\frac{(IGPU)(360)}{(HADIST)}} = -1$$

$$S_{\text{IGPU}} = \frac{\frac{\partial AIGD}{\partial IGPU} (IGPU)}{AIGD}$$

$$= \frac{\frac{360}{HADIST} (IGPU)}{\frac{(IGPU)(360)}{HADIST}} = 1$$

The uncertainty in AIGD can now be calculated from equation 2 as:

$$\lambda_{AIGD} = (S^{2}\lambda^{2})_{HADIST} + (S^{2}\lambda^{2})_{IGPU}$$
$$= (1.153)^{2}(-1)^{2} + (2.5)^{2} (1)^{2}$$
$$= 2.75\%.$$

From this result the uncertainty in degree angle of ignition dwell is 1.24 deg. C.S.

Air Flow Sensor Calibration Uncertainty

The following uncertainties are calculated in reference 3. For the air flow sensor:

 $^{\lambda}$ TDB = 0.862%, $^{\lambda}$ TWB - 1.040%, $^{\lambda}$ ATMPR = 0.0493 $^{\lambda}$ DENAIR = 0.86%, $^{\lambda}$ PMN - 2.95%, $^{\lambda}$ CFM = 1.54%

and the sensitivity for above parameters are:

 $S_{TDB} = 0.998$, $S_{TWB} = -0.0098$, $S_{ATMPR} = 1.010$

 $S_{\text{DENAIR}} = 1$, $S_{\text{PMN}} = 1$, $S_{\text{CFM}} = 1$.

From the above values the uncertainty in AMFR is 1.76% and uncertainty in measuring the air flow sensor voltage with the Fluke digital multimeter is 1.43%.

Fuel Injector Calibration Uncertainty

To compute the uncertainty in the calibration of the Fuel Injectors the following uncertainties and sensitivities are used:

$$\lambda_{\text{DELGAS}} = 1.77\%, \ \lambda_{\text{DELTIM}} = 0.043\%, \ \lambda_{\text{RPM}} = 0.473\%$$

DELGAS = 1 ,
$$S_{ELTIME} = -1$$
, and $S_{RPM} = -1$

From the above values the uncertainty in INJECT was computed to be 1.77%. Also, the uncertainty in measuring injection pulse length using the Tektronix Storage Oscilloscope was computed to be 3.83%.

Speed rpm	IGPU ms	HADIST ms	$^{\lambda}$ igpu	S _{IGPU}	$^{\lambda}$ hadist	S _{HADIST}	$^{\lambda}$ AIGD	Uncertainty deg C.S.
1000	1.456x5 7.28	5.8x10 58	2.50	1	1.15	-1	2.75	1.24
1200	1.1912x5 5.956	9.52x5 47.60	2.97	1	1.06	-1	3.16	1.42
1600	0.942x5 4.711	7.52x5 37.6	3.68	1	1.09	-1	3.84	1.73
2000	0.8x5 4.0	5.94x5 29.72	4.28	1	1.15	-1	4.43	1.99
2300	0.624x5 3.12	5.12x5 25.58	5.43	1	1.19	-1	5.56	2.50
2800	0.502x5 2.51	4.1x5 20.5	6.71	ī	1.29	-1	6.84	3.08

Table 2. Results of Uncertainty in Ignition Dwell Angle

Air-Fuel Ratio Uncertainty

To compute uncertainty in AIRIN, uncertainties and sensitivities in several parameters are calculated first.

uncertainties are:

$$\begin{split} \lambda_{\rm TDB} &= 0.907\%, \ \lambda_{\rm TWB} = 1.122\%, \ \lambda_{\rm ATMPR} &= 0.0492\% \\ \lambda_{\rm DENAIR} &= 0.90\%, \ \lambda_{\rm PMN} = 2.36\%, \ \lambda_{\rm PNSD} = 2.53\% \\ \lambda_{\rm CFM} &= 1.27\%, \ \lambda_{\rm AMFR} = 1.56\%, \ \lambda_{\rm COUNTER} = 0.022\% \\ \lambda_{\rm DELTIME} &= 2.9\% \end{split}$$

and the corresponding sensitivities are:

 $S_{TDB} = -0.989$, $S_{TWB} = -0.0091$, $S_{ATMPR} = 1.008$, $S_{PMN} = 1$ $S_{DENAIR} = 1$, $S_{PNSD} = 0.5014$, $S_{CFM} = 1$, $S_{AMFR} = 1$ $S_{AMFR} = 1$, $S_{COUNTER} = 1$, and $S_{DELTIME} = 1$.

From the listed value the uncertainty in AIRIN was calculated to be 3.29% and sensitivity of AIRIN with respect to air-fuel ratio is +1. Also, the uncertainty in measuring 0.4 lb weight of fuel which was used for the determination of DELGAS was calculated to 0.062%, and the sensitivity in DELGAS with respect to air-fuel ratio is 1. Finally, from the above information the uncertainty in air-fuel ratio is:

$$\lambda_{AFR} = (S^2 \lambda^2)_{AIRIN} + (S^2 \lambda^2)_{DELGAS}$$
$$= (3.29)^2 (-1)^2 + (0.062)^2 (1)^2$$
$$= 3.29\%.$$

APPENDIX E

STATISTICAL ANALYSIS FOR FUEL INJECTOR CALIBRATIONS

To determine how well the fuel injector calibration is compared to a linear relation, statistical analysis is done on 27 points of data collected for the air-fuel ratio controller with the final injector calibration. The mass of fuel per injection and injection pulse duration for these 27 points are as follow: 3.12 3.06 3.04 2.87 2.81 3.14 2.72 Injection Pulse (ms) 3.28 2.74 Mass of fuel/injection 2.09 1.99 2.12 1.94 1.77 1.83 1.85 1.70 1.73 $x 10^{5}$ Injection Pulse (ms) 4.34 3.89 4.15 3.84 3.54 3.64 3.72 3.69 3.63 Mass of_fuel/injection 2.97 2.69 2.93 2.69 2.41 2.64 2.55 2.51 2.47 x 10⁵ 5.17 4.82 4.73 4.73 4.66 4.51 4.46 Injection Pulse (ms) 5.13 5.14 3.53 3.58 3.93 3.46 3.40 3.56 3.26 Mass of fuel/injection 3.13 3.12 $x \ 10^{5}$ Let x = injection time (ms)

y = mass of fuel per injection x 10°

then

$$\bar{x} = 3.873$$

$$\bar{y} = 2.661$$

$$s_{yy} = \frac{27}{\sum_{i=1}^{\Sigma}} (Y_i - \bar{Y})^2 = 11.831$$

$$s_{xx} = \frac{27}{\sum_{i=1}^{\Sigma}} (x_i - \bar{x})^2 = 16.724$$

$$s_{xy} = \frac{27}{\sum_{i=1}^{\Sigma}} (x_i - \bar{x}) (Y_i - \bar{Y}) = 13.918$$

$$s_{y,x}^2 = \frac{s_{yy} - \frac{S_{xy}^2}{S_{xx}}}{n^{-2}} = .00992$$
$$R^{2} = \frac{S^{2}xy/S_{xx}}{S_{yy}} = .97905$$

The equation of a straight line is :

$$Y - a + b \left(x - \overline{x}\right)$$

where

$$a = \bar{Y} = 2.6614$$

and

$$b = \frac{S_{XY}}{S_{XX}} = .832.$$

therefore, the linear relation between injection pulse duration and mass of fuel per injection is:

 $Y = 0.8322 \times -0.5617.$

To obtain the confidence bound for the graph of the above relation the 95% confidence interval of μ_x for three points x=2.50, 3.50, 4.50 is calculated using the relation:

 $\mathcal{V}_{x} = \overline{\mathcal{Y}}_{x} + S_{\overline{y}.x} t_{x12}, n-2$

where $t_{x12, n-2}$ is 2.05 for x - .05 and n - 27

$$\overline{Y}_{2.5} = 1.519, \ \overline{Y}_{3.5} = 2.351, \ \overline{Y}_{4.5} = 3.183$$

and

$$S_{y,x} = S_{y,x} \frac{1}{n} + \frac{(x-\bar{x})^2}{S_{yx}}$$

From this relation

$$S_{y.2.5} = 0.0385, S_{y.3.5} = .02120, S_{y.4.5} = .02451$$

thus the result for $\boldsymbol{\mu}_{_{\mathbf{X}}}$ will be

$3.113 < \mu_{4.5} < 3.214$

The confidence bounds and graph for the equation of the line are ploted in Figure E-1. This statistical analysis showed the relation between injection pulse duration and mass of fuel per injection is linear with R=.9895.

APPENDIX F

MICROCOMPUTER PROGRAM LISTING

.

LIST OF PROGRAMS AND SUBROUTINES

0200-024F, 02C4-0360	Initialization program
0250-02C3	Injection program
2000-213F	Multiply
2140-224F	Addition
2300-23EF	Conversion of Air-flor voltage to mass of air per minute
2400-2486	Conversion of mass of fuel per injection to injection time
2490-2403	Display
24D0-24F4	Conversion of $1/2(RPM)$ to RPM
2500-2582	Division
25B0-25CF	Subtraction
25D0-26CF	Spark advance program
2700-277F	Ignition time program
2790-283F	Interrupt program
2900-2A38	Data recording program

ZERO PAGE MEMORY MAP

0001-0009	Multiply registers
000A-0018	Divide registers
0019-001C	Constants for ignition system
001D-001F	Ignition time
0020-002B	Intermediate multiply registers
002C-002E	Adjusted RPM with Exp of (-3)
0030-0038	Addition registers
0039-003F	Constants for 180 deg. and $\frac{10^5}{48}$
0040-0045	Intermediate addition registers
0047-007B	Constants for injection system
007C-007E	Unscaled speed register (reading)
0081-0083	Voltage of Air-flow Sensor (reading)
0084-0085	Adjusted Ignition time
0086-0088	Mass of air per minute (scaled)
0089-008B	Result of 1/2 (RPM)
008C-008E	RPM Result
008F-00AC	Constants for Spark Advance
00AD-00AF	Spark Advance Result
0089-0082	Mass of fuel per injection
00B3-00B5	Injection time
OOEE	Injection time adjusted
Zero Page Memory addresses not used:	
002F, 0046, 007F, 0080, 00B6-00ED	

				DECIMAL	1999 - Constant - Const
	ADDRESS	VALUE	HEX NO.	NO.	USED FOR
1.	0019 001A 001B	00 50 F4	5000, F4	5.00	Delay for spark advance
2.	0039 003A 003B	00 53 F9	5300, F9	166.00	Ignition spark angle
3.	003C 003D 003E	61 51 00	5161, 00	10 ⁶ /48	Scaling ignition time
4.	0047 0048 0049	00 20 F2	2000, F2	0.50	RPM Conversion
5.	004A 004B 004C	F5 68 FØ	68FS, FØ	0.41	Conversion from voltage of Air-Flow Sensor to mass of air per minute
6.	004D 004E 004F	96 A8 FØ	A896, FØ	34146	Conversion from Voltage of Air Flow Sensor to mass of air per minute
7.	0051 0052 0053	EB 51 FØ	51EB, FØ	.320	Conversion from Voltage of Air-Flow Sensor to mass of air per minute
8.	0054 0055 0056	00 58 F1	5800, Fl	.6875	Conversion from voltage of Air-Flow Sensor to mass of air per minute
9.	0057 0058 0059	1F 45 F2	451F, F2	1.08	Conversion from voltage of Air-Flow Sensor to mass of air per minute
10.	005A 005B 005C	EC 95 F3	95EC, F3	-3.315	Conversion from voltage of Air-Flow Sensor to mass of per minute

LIST OF CONSTANTS

				DECIMAL	
	ADDRESS	VALUE	HEX NO.	NO.	USED FOR
11.	005D 005E 005F	El 5A FO	5AEl, FO	.335	Conversion from voltage of Air-Flow Sensor to mass of air per minute
12.	0060 0061 0062	88 42 F2	4288, F2	1.0396	Calibration of injection time First try 7C68, F1 = .972 Second try 64F1, F3 = .788
13.	0063 0064 0065	7C 40 F2	407C, F2	1.0076	Calibration of injection time First try 50F9, F1 = .61489 Second try 631B, F2 = 1.54854
14.	0066 0067 0068	A8 61 02	61A8, O2	10 ⁵	Mass of fuel per injection scaling factor
15.	0069 006A 006B	00 7D F5	7000, F5	15.625	Scaling injection time
16.	006C 006D 006E	dF 46 F2	46dF, F2	1.10740	7 Scaling speed (RPM)
17.	0070 0071 0072	25 49 EE	4925, EE	1/14	Air-fuel ratio 14-1
18.	0073 0074 0075	00 40 EE	4000, EE	1/16	Air-fuel ratio 16-1
19.	0076 0077 0078	C7 71 ED	71C7, ED	1/18	Air-fuel ratio 18-1
20.	0079 007A 007B	66 66 ED	6666, ED	1/20	Air-fuel ratio 20-1

				DECIMAT		
	ADDRESS	VALUE	HEX NO.	NO.	USED FOR	
21.	008F 0090 0091	89 41 EB	4189, EB	.008	Spark advance	computation
22.	0092 0093 0094	00 60 F4	6000, F4	6	Spark advance	computation
23.	0095 0096 0097	AE 47 ED	47AE, ED	.035	Spark advance	computation
24.	0098 0099 009A	00 42 F7	4200, F7	33	Spark advance	computation
25.	009B 009C 009D	BF 58 EC	58BF, EC	.021667	Spark advance	computation
26.	009E 009F 00A0	A8 72 F5	72A8, F5	14.3335	Spark advance	computation
27.	00A1 00A2 00A3	E1 7A EB	7AE1, EB	.015	Spark advance	computation
28.	00A4 00A5 00A6	00 40 F2	4000, F2	1	Spark advance	computation
29.	00A7 00A8 00A9	00 4C F7	4C00, F7	38	Spark advance	computation

Address	Op Code	Oper Byte 1	ands Byte 2	Mnemonic	Comment
0200	A2	FF		LDX	initialize stack pointer
0202	9A 70			TXS	
0203	/8	710		SEL	set interrupt disable flag
0204	A9 SD	/ F		LDA	define data direction register B
0206	8D		1/	STA	lefter lete linesting monister A
0209	A9 AD	00	1 7	LDA	define data direction register A
020B	8D 29	03	1/	SIA	enceify the binery mode
020E	DO	0 5			specify the binary mode
0201	A9 A9	0.) TE	7 7	LDA	specify inq vector, low byte
0211	40	r£ 27	1/	51A TDA	aposify IPO waster high byte
0214	A9 PD	27	1 7	LDA CTA	specify ind vector, high byte
0210	0D TA	гr	11	NOP	
0219	EA			NOP	
021A 021B	A9	44		LDA	initialize speed for 2000 rpm = 4144.E6
021D	8.5	7C		STA	······································
021F	A9	41		LDA	
0221	85	7D		Sta	
0223	6 A	E6		LDA	
0225	85	7E		STA	
0227	A9	70		LDA	define fuel-air ratio 70~1/14, 73~1/16, 76~1/18, 79~1/20
0229	8D	8C	02	STA	
022C	EA			NOP	
022D	A9	F8		LDA	initialize air flow rate for 2 1b/min
022F	85	81		STA	
0231	A9	1F		LDA	
0233	85	82		STA	
0235	A9	F4		LDA	
0237	85	83		STA	
0239	A9	85		LDA	specify NMI vector, low byte
023B	8D	FA	17	STA	
023E	A9	27		LDA	specify MMI vector, high byte
0240	8D	FB	17	STA	
0243	A9	80		LDA	turn off all Tri-States and Latches
0245	8D	00	17	STA	
0248	58			CLI	clear intrupt disable
0249	4C	C4	02	JMP	jump to store constants

INITIALIZATION PROGRAM

Operads Address Op Code Mnemonic Comment Byte 1 Byte 2 02C4 98 Α9 LDA 02C6 85 4D STA 02C8 Α9 LDA A8 02CA 85 4E STA 02CC A9 LDA EB 02CE 85 51 STA 02D0 A9 51 LDA 52 02D2 85 STA 02D4 Α9 99 LDA 02D6 85 54 STA 02D8 85 69 STA 02DA 85 73 STA 02DC Α9 58 LDA 02DE 85 55 STA 02E0 Α9 F1 LDA 02E2 85 56 STA 02E4 Α9 1F LDA 02E6 85 57 STA 02E8 A9 F2 LDA store exponent of the injectors calibration 65 02EA 85 STA 02EC 85 62 STA 02EE 85 6E LDA 02F0 85 59 STA 02F2 A9 45 LDA 02F4 85 58 STA 02F6 A9 EC LDA 02F8 85 5A STA 02 FA Α9 95 LDA 02FC 85 STA 5B 02FE Α9 F3 LDA 0300 85 5C STA 0302 A9 El LDA 0304 85 SD STA 0306 Α9 5A LDA 0308 85 SĒ STA 030A Α9 88 LDA store the injectors calibration equation 030C 85 60 STA 030E Α9 42 LDA 0310 85 61 STA 0312 A9 7C LDA 0314 85 63 STA 0316 A9 40 LDA

CONSTANT STORAGE PROGRAM

CONSTANT STORAGE PROGRAM - Continued

0318	85	64	STA
031A	A9	A8	LDA
031C	85	66	STA
031E	A9	61	LDA
0320	85	67	STA
0322	A9	02	LDA
0324	85	68	STA
0326	A.9	7D	LDA
0328	85	6A	STA
032A	A9	dF	LDA
032C	85	6C	STA
032E	A9	46	LDA
0330	85	6D	STA
0332	A9	25	LDA
0334	85	70	STA
0336	A9	r9	LDA
0338	85	71	STA
A6 60	A9	EE	LDA
033C	85	72	STA
033E	85	75	STA
0340	A9	40	LDA
0342	85	74	STA
0344	A9	C7	LDA
0346	85	78	STA
0348	A9	71	LDA
034A	85	77	STA
034C	A9	ED	CDA
034E	85	78	STA
0350	85	7B	STA
0352	A9	66	LDA
0354	85	79	STA
0356	85	7A	STA
0358	A9	F5	LDA
035A	85	4A	STA
035C	85	6B	STA
035E	A9	68	LDA
0360	85	4 B	STA
0362	A9	Fø	LDA
0364	85	4C	STA
0366	85	4F	STA
0368	85	53	STA
036A	85	5F	STA
036C	A9	00	LDA
036E	85	47	STA
0370	85	92	STA
0372	85	98	STA
0374	85	A4	STA
0376	85	A7	STA

CONSTANT STORAGE PROGRAM - Continued

0378	85	39	STA
037A	85	3E	STA
037C	A9	20	LDA
037E	85	48	STA
0380	A9	F2	LDA
0382	85	49	STA
0384	85	A6	STA
0386	A9	89	LDA
0388	85	8F	STA
038A	A9	EB	LDA
038C	85	91	STA
038E	85	A3	STA
0390	A9	41	LDA
0392	85	90	STA
0394	A9	60	LDA
0396	85	93	STA
0398	A9	Fr	LDA
039A	85	94	STA
0390	A9	AE	LDA
039E	85	95	STA
03A0	A9	47	LDA
03A2	85	96	STA
0344	A 9	ED	LDA
0346	85	97	STA
0348	49	42	LDA
0344	85	99	STA
0340	49	F7	
OBAE	85	Q A	STA
0380	85	Δ.Q	STA
0382	49	RF	
0384	85	OR	CT A
0386	49	58	JIA
0388	85 85	90	LDA CTA
0384	<u>^9</u>	FC	
USBC	85	DLC OD	STA
OBBE	49	5D ΔB	
0300	85	0F AD	STA
9300	00	70	
0302	85	72 0F	LDA CTA
0304	80 A 9	55	5IA IDA
0308	85 85	1 J	LDA CTA
0300	<u> </u>	AU F1	JIA
0300	85	101	CT A
0305	<u>^0</u>	7 4	JIA
0320	A9 05	/A A 2	
0000	60	RZ 4.0	DIA
03DZ	A9 05	40	
0304	<u> </u>	AD AC	DIA
סתכט	A9 05	40	LDA
ορμο	00	Að	SIA

03DA	A9	52		LDA	
O3DC	85	3A		STA	
O3DE	A9	F9		LDA	
03E0	85	3B		STA	
03E2	A9	61		LDA	
03E4	85	3C		STA	
03#6	A9	51		LDA	
03E8	85	3D		STA	
03EA	A9	00		LDA	load 5000, F ₄ for spark advance delay
03EC	85	19		STA	
03EE	A9	50		LDA	
03F0	85	lA		STA	
03F2	A9	F4		LDA	
03F4	85	lB		STA	
03F6	EA			NOP	
03F7	EA			NOP	
03F8	EA			NOP	
03F9	EA			NOP	
03FA	EA			NOP	
03FB	EA			NOP	
03FC	4C	60	28	JMP	jump to initialize the data
					recording program
2860	A9	00		LDA	
2862	80	05	29	STA	
2865	A 9	30		LDA	
2867	8D	06	29	STA	
286A	A 9	60		LDA	
2860	80	34	29	STA	
286F	A 9	32	- /	T.DA	
2871	80	3B	29	STA	
2874	A 9	BO		LDA	
2876	80	ט <u>ס</u> סס	28	STA	
2879	۵D ۵9	30	20	LDA	
2075 2878	80	D6	28	STA	
207D 287F	۵D ۸۹	20	20	TDA	
2880	80	20	29	STA	
2000	8D 80	37	29	I DA	
2005	80	<u>۸</u> 5	20	STA	
2005	۸ <u>۵</u>	80	29	IDA	
2884	80		28	STA	
200A 288D	8D	30	20	IDA	
2000	80	59 E/	28	STA	
2001	6D A 0	E4 EO	20	IDA	
2801	R7 RD	LU	2 ۸	CTA	
207A 2007	<u>v</u> 0	210	2A	1DV DTU	
207/	AY	d C	2 *	LDA	
2077	oD / C	00	2A 00	SIA	iuma ta 0250 infaction ancorre
2076	46	50	02	JEIF	Jump to 0200 rulectron program

Address	Op Code	Uperands		Mnemonic	Comment	
	L	Byte 1	Byte 2			
0250	A2	02		LDX	adjust rom	
0252	B5	70		LDA X		
0254	95	01		STA X		
0256	ČĂ	02		DEX		
0257	10	F9		BPI.		
0259	A2	02		LDX		
025B	B5	6C		LDA . X		
025D	95	04		STA.X		
025E	CA	0.1		DEX		
0260	10	F9		BPL		
0262	20	00	20	ISR	jump to multiply subroutipe	
0265	A2	02	20	LDX	Jump to multiply Subloutine	
0267	B5	26		LDA X		
0269	95	89		STA X		
026B	CA	0,2		DFX		
0260	10	FЭ		BPI.		
026E	FA	FΔ	ΈΔ	NOP		
0271	20	00	23	ISR	jump to sir flow rate conversion	
0274	A2	02	20	LDX	Jump to all flow fact conversion	
0276	B5	86		LDA,X	set up registers to multiply 1/2N by air flow rate	
0278	95	01		STA.X	-,	
027A	ĊA			DEX		
027B	10	F9		BPI.		
027D	A2	02		LDA		
027F	в5	89		LDA . X		
0281	95	04		STA X		
0283	ĊĂ			DEX		
0284	10	F 9		BPI.		
02.86	20	00	20	ISR	jump to multiply subroutine	
0289	A2	02	20	LDX	Jump to multiply bubiodeline	
028B	B5	70		LDA . X		
028D	95	01		STA,X	set up registers to multiply fuel-	
					air ratio by product of $1/2N$	
028F	CA			DFY	and all if w face	
0290	10	F9		BPI.		
02.92	A2	02				
0294	B.5	26		LDA X		
0296	95	04		STA X		
02.98	CA			DEX		
0299	10	F9		BPI.		
029B	20	00	20	JSR		

INJECTION PROGRAM

INJECTION PROGRAM - Continued

029E	A2	02		LDX	set up registers to scale mass of
					fuel per injection by 10 ⁵
02A0	B5	26		LDA,X	
02A2	95	01		STA,X	
02A4	CA			DEX	
02A5	10	F9		BPL	
02A7	A2	02		LDX	
02A9	B5	66		LDA,X	
02AB	95	04		STA,X	
02AD	CA			DEX	
02AE	10	F9		BPL	
02B0	20	00	20	JSR	jump to multiply subroutine
02E3	A2	02		LDX	
02B5	в6	26		LDA,X	
02В7	95	BO		STA,X	
02B9	CA			DEX	
02BA	10	F9		BPL	
02BC	20	00	24	JSR	jump to compute injection pulse
02BF	4C	DO	24	JMP	jump to rpm conversion subroutine
02C2	EA			NOP	
02C3	EA			NOP	

AIR FLOW SENSOR CALIBRATION PROGRAM

2300	D8			CLD	
2301	38			SEC	
2302	A5	81		LDA	compare count of air flow sensor
					voltage with 1FF8
2304	E9	F8		SBC#	
2306	A5	82		LDA	
2308	E9	lF		SBC#	
230A	10	1F		BPL	branch to 232C if CAFSV 1FF8
230C	EA			NOP	
230D	EA			NOP	
230D	EA			NOP	
230E	EA			NOP	
230F	AZ	02		LDX	
2311	B5	81		LDA,X	
2312	95	01		STA,X	
2315	CA			DEX	
2316	10	F9		BPL	branch to 2311 if x-reg is positive
2318	A2	02		CDX	
231A	B5	SD		LDA,X	
231C	95	04		STA,X	
231E	CA			DEX	
231F	10	F9		BPL	
2321	20	00	20	JSR	jump to multiply subroutine
2324	EA			NOP	

2325	EA			NOP	
2326	EA			NOP	
2327	EA			NOP	
2328	EA			NOP	
2329	4C	E4	23	JMP	jump to 23E4, store the final result
232C	D8			CLD	
232D	38			SEC	
232F	A5	81		LDA	compre count of air flow sensor voltage with 3FF0
2331	E9	FO		SBC	
2333	A5	82		LDA	
2335	E9	3F		SBC	
2337	10	39		BPL	branch to 2370 if CAFSV 3FF0
2339	EA			NOP	
233A	EA			NOP	
233B	EA			NOP	
2330	EA			NOP	
233B	Δ2	02		LDX	
2330	R5	81		IDA X	
2335	95	30		STA Y	
23/1	C \	50		DFX	
2342	10	FO		RDI	branch to 233D if X-Reg is positive
2342	10	02		IDY	blanch to 2000 if A-Reg is positive
2344	R2 P5	(D		IDV A	
2340	20	40		LDA,A	
2340	95	22		SIA,A	
204A				DEA	
234B	10	F9 (0	0.1	BPL	branch to 2346 if A-reg is positive
2340	20	40	21	JSR	jump to addition subroutine
2350	EA			NOP	
2351	EA			NOP	
2352	EA			NOP	
2353	EA			NOP	
2354	A2	02		LDX	
2356	В5	36		LDA,X	
2358	95	01		STA,X	
235A	CA	EA		DEX	
235C	10	F8		BPL	branch to 2356 if x-reg is positive
235E	A2	02		LDX	·
2360	B5	4 <u>A</u>		LDA,X	
2362	95	04		STA,X	
2364	CA			DEX	
2365	10	F9		BPL	branch to 2360 if x-reg is positive
2367	20	00	20	JSR	jump to multiply subroutine
236A	EA			NOP	
236B	EA			NOP	
236C	EA			NOP	
236D	4C	E4	23	JMP	jump to 23E4, store the final result

2370	D8			CLD	
2371	38			SEC	
2372	A5	81		LDA	compare count of air flow sensor voltage with 4FF1
2374	E9	F1		SBC	-
2376	A5	82		LDA	
2378	E9	4 F		SBC	
237A	10	35		BPL	branch to 23Bl if CAFSV 4FF1
237C	A2	02		LDX	
237E	B5	81		LDA,X	
2380	95	30		STA,X	
2382	CA			DEX	
2383	10	F9		BPL	branch to 237E if x-rav is positive
2385	A2	02		LDX	۳ × ۲
2387	В5	54		LDA,X	
2389	95	33		STA.X	
238B	CA			DEX	
238C	10	F9		BPL	branch to 2387 if x-reg is positive
238E	20	40	21	JSR	
2391	EA			NOP	
2392	EA			NOP	
2393	EA			NOP	
2394	EA			NOP	
2395	EA			NOP	
2396	A2	02		CDX	
2398	B5	36		CDA . X	
239A	95	01		STA.X	
2390	CA	01		DEX	
2390	10	F9		BPI.	branch to 2396 if x-reg is positive
239F	42 A2	02		LDX	
23A1	B5	51		LDA . X	
2343	95	04		STA X	
2345	CA	0 1		DEX	
2346	10	F9		BPI.	branch to 23Al if x-reg is positive
2348	20	00	20	JSB	jump to multiply subroutipe
23AB	EA	00	20	NOP	Jump to mattapa, sourceant
23AC	EA			NOP	
23AD	EA			NOP	
23AE	40	F4	23	TMP	jump to store final result
23B1	A2	02	20	LDX	Jamp to blore rinar rebard
23Bc	R5	81		LDA X	
2385	95	30		STA X	
23B7	CA	50		DEX	
23B8	10	F9		BPI.	branch to 23B3 if x-regispositive
23BA	42	02		LDX	staten to solo it a regio positivo
23BC	B5	54		LDA X	
23BF	95	33		STA Y	
2300	C A	55		DFX,A	
2301	10	FQ		BPI.	branch to 23BC if x-reg is positive
	10	1 2		10111	eranen er abbert nite@ to poblet.e

AIR FLOW SENSOR CALIBRATION PROGRAM - Continued

23C3 23C6 23C6 23C8 23C9 23CA 23CB 23CB 23CD 23CF	20 EA EA EA EA A2 B5 95	40 92 36 01	21	JSR NOP NOP NOP NOP LDX LDA,X STA,X	jump to addition subroutine
23D2 23D4 23D6 23D8 23DA	10 A2 B5 95 CA	F9 02 57 04		DEA DPL LDX LDA,X STA,X DEX	branch to 23CD if x-reg is positive
23DB 23DD 23E0 23E1 23E2 23E2 23E3 23E4 23E6 23E8 23E8 23EA	10 20 EA EA EA A2 Bt 95 CA	F9 00 02 26 86	20	BPL JSR NOP NOP NOP LDX# LDA,X STA,X DEX	branch to 23D6 if x-reg is positive jump to multiply subroutine
23EB 23ED	10 60	F9		BPL	branch to 23E6 if x-reg is positive

FUEL INJECTORS CALIBRATION PROGRAM

2400	D8		CLD	
2401	18		CLC	
2402	EA		NOP	
2403	EA		NOP	
2404	EA		NOP	
2405	EA		NOP	
2406	EA		NOP	
2407	A2	02	LDX	store the value of mass of fuel
				per injection into the addition
				register
2409	B5	BO	LDA,X	
240B	95	30	STA,X	
240D	CA		DEX	
240E	10	F9	BPL	branch to 2409 if x-reg is positive
2410	A2	02	LDX	
2412	Bt	63	LDA,X	store value of 1.0076 into the addition register

FUEL INJECTORS CALIBRATION PROGRAM - Continued

2414	95	33		STA,X	
2410	10	FO		DEA	branch to 2/1/ if y you is positive
2417	20	4.0	21		iven to addition substitute
2417	20	40	21	JSK	Jump to addition subroutine
2410	EA			NOP	
241D	EA			NOP	
241E	EA			NOP	
241F	EA			NOP	
2420	A2	02		LDX	store result of the previous addition into the multiplica- tion register
2422	B5	36		LDA X	
2424	95	01		STAX	
2426	CA	• 1		DEX	
2427	10	PT		BPL	branch to 2/22 if y-reg is positive
2427	A 2	02		ענו	blanch to 2422 if x leg 15 positive
2425	772 775	60		Z AGL	atoma walue of 1 0206 into the
242D	55	00		LDA,A	multiplication register
242D	95	04		STA,X	
242F	CA			DEX	
2430	10	F9		BPL	branch to 242B if x-ray is positive
2432	20	00	20	JSR	
2435	A2	02		LDX	store the result injection pulse into the proper register
2437	B5	26		LDA X	into the proper register
2439	95	20 B3		STA X	
2435	C 4	5		DEV.	
2430	10	FG		DEA	branch to 2/37 if y-ros is positive
2430	IU	19		DFL	blanch to 2457 if x-leg is positive
2435	EA			NOP	
2435	EA			NOP	
2440	EA			NOP	
2441	EA			NOP	
2442	A2	02		LDX	adjust the value of injection pulse for 8-bit value
2444	B5	B3		LDA,X	
2446	95	01		STA,X	
2448	CA			DEX	
2449	10	F9		BPL	branch to 2444 if x-ray is positive
244B	A2	02		LDX#	
244D	В5	69		LDA,X	
244F	95	04		STA,X	
2451	CA			DEX	
2452	EA			NOP	
2453	10	F8		BPL	branch to 244D if x-reg is positive
2455	20	00	20	JSR	jump to multiply subroutine to
2458	F۵			NOP	aujust injection purse
2/50	EA.			NOP	
2455	E A			NOP	
24JA 2450	AE	20		CDA	
24JD	AJ	29		UDA	

FUEL INJECTORS CALIBRATION PROGRAM - Continued

245D	10	OF		BPL	branch to 246E if exp. of injection pulse is positive
245F	46	27		LSR	• •
2461	66	26		ROR	adjust injection pulse for zero exp.
2463	66	25		ROR	
2465	66	24		ROR	
2467	E6	29		INC	
2469	30	F4		BMI	branch to 245F if exp. of IP is negative
246B	4 C	7D	24	JMP	
246E	FO	OF		BEQ	branch to 247F if exp. of IP is zero
2470	06	24		ASL	
2472	26	25		ROL	adjust injection pulse for zero
2474	26	2.6		ROL	Chip (
2476	26	27		ROL.	
2478	<u> </u>	29		DEC	
2470	D4	<u>رح</u> ۲4		BNE	
247C	ΕA	1 1		NOP	
2470 2470	FΔ			NOP	
247D 247F	15	24			store final result of injection
2471	AJ	24		LDA	store rimar result of injection
2//8T	85	FF		STA	harse IN the brober regrater
2401	60	ن ال شار		DIG	noturn from the subrestine
2400	00			'LT2	recard from the suprodutile

SPEED (RPM) CALCULATION PROGRAM

24D0	A2	02		CDX	load value of $1/2N$ into divisor
	B5	89		CDA,X	register of divide subroutine
	95	OD		STA,X	
	CA			DEX	
	10	F9		BPL	
	A2	02		CDX	
	B5	47		CDA,X	load value of 0.5 decimal into
	95	0A		STA,X	dividend of divide subroutine
	CA			DEX	
	10	F9		BPL	
	EA			NOP	
	EA			NOP	
	EA			NOP	
	20	00	25	JSR	jump to divide subroutine
	A2	02		CDX	
	B5	10		CDA,X	store result of speed (rpm) into
	95	8C		STA,X	the proper registers
	CA			DEX	

SPEED (RPM) CALCULATION PROGRAM - Continued

10	F9		BPL					
4 C	DO	25	JMP	jump	to	spark	advance	program

SPARK ADVANCE SUBROUTINE

25D9	A2	02		LDX	adjust speed (rpm) for constant
25D2	В5	8C		LDA,X	
25D4	95	2C		STA,X	
25D6	CA			DEX	
25D7	10	F9		BPL	
25D9	A.9	FD		LDA−#	
25DB	C5	2 E		CMP	
25DD	FO	09		BEO	branch to 25E8 if exp. of rpm is -3
25DF	46	2D		LSR	
25E1	66	20		ROR	
25E3	E6	2 E		TNC	
25E5	4 C	D9	2.5	JMP	jump to 25D9 to test exp of rpm
25E8	D8			CCD	Jemp co codo corp or tra
25E9	38			SEC	compare rpm with 750 Dec or 1770,
0 5 77 4	4.0	20			FD Hex
25EA	AS	20		LDA-ze	
2DEC DEEE	E.9	70		SBC-ze	
2DEE 2ETO	AD	20		LDA-Ze	
25F0	E9	1/		SBC-ze	been also the DEPT of the man 1750
25F2	10	0B 0B		BPL	branch to 25FF if rpm 1/50
2514	A9 OF	00		LDA#	
25F6	85	AD		STA-ze	set spark advance equal to zero if rpm 750
25F8	85	AE		STA-ze	
25FA	85	AF		STA-ze	
25FC	4 C	B9	26	JMP	jump to the end of program
25FF	EA			NOP	
2600	EA			NOP	
2601	EA			NOP	
2602	38			SEC-ze	
2603	Α5	2C		LDA-ze	compare rpm with 1000 Dec or 1F40,FD Hex
2605	E9	40		SBC-ze	
2607	A5	2D		LDA-ze	
2609	E9	lF		SBC-ze	
260B	10	1C		BPL	branch to 2629 if rpm 1000
260D	A2	02		LDX	-
260F	B5	8F		LDA,X	
2611	EA			NOP	
2612	95	01		STA,X	

SPARK ADVANCE SUBROUTINE - Continued

2614	CA			DEX	
2615	10	F8		BPL	
2617	20	BF	26	JSR	jump to intermediate subroutine
261A	A2	02		LDX	
261C	B5	92		LDA,X	load hex value of 6.0 into the subtraction register
261E	95	33		STA,X	
2620	CA			DEX	
2621	10	F9		BPL	
2623	20	Вφ	26	JSR	jump to subtraction surroutine
2626	4C	BO	26	JMP	jump to the end of program
2629	EA			NOP	
262A	EA			NOP	
262B	EA			NOP	
262C	38			SEC	
262D	A5	2C		LDA-ze	compare rpm with 1400 dec. or 2BC(o FD hex
262F	E9	CO		SBC-∦	
2631	A5	2D		LDA-ze	
2633	E9	2B		SBC-#	
2635	10	1B		BPL	branch to 2652 if rpm 1400 dec
2637	A2	02		LDY	brunch to bobb it ipm itoo acc
2639	R5	95		LDA X	load her value of 035 into the
2637	05	01		CTTA M	multiplication register
2000	95	UT		SIA, A	
2030		TO		DEA	
203E	10	F9	0.6	BPL	
2640	20	Br	26	JSR	jump to intermidiate subroutine
2643	AZ	02		LDX	
2645	В5	98		LDA,X	load hex value of 33.0 into the subtraction register
2647	95	33		STA,X	
2649	CA			DEX	
264A	10	F9		BPL	
264C	20	BO	25	JSR	jump to the subtraction subroutine
264F	4C	BO	26	JMP	jump to the end of program
2652	EA			NOP	
2653	EA			NOP	
2654	EA			NOP	
2655	38			SEC	
2656	A5	2C		LDA-ze	compare rpm with 2000 dec. or 3E80, FD hex
2658	#9	80		SBC-#	
265A	A5	2D		LDA-ze	
265C	E9	3E		SBC-#	
265E	10	18		BPT.	branch to 267B if rom 2000
2660	A2	02		LDX	Fallen co solo at tpm 2000
2662	B5	9B		LDA,X	load value of .02167 into the multiplication register

SPARK ADVANCE SUBROUTINE - Continued

2664 2666	95 CA	01		STA,X DFY	
2667	10	FO		DEA	
2660	10	19 DE	26	DEL	ivez to site otion subscription
2009	20	Dr	20	JSK	jump to subtraction subroutine
2660	AZ	02		LDX	
266E	B5	9E		LDA,X	load hex value of 14.333 into the subtraction register
2670	95	33		STA,X	
2672	CA			DEX	
2673	10	F9		BPL	
2675	20	BO	26	JSR	jump to subtraction subroutine
2678	40	BO	26	IMP	jump to the end of program
267B	38	20	20	SEC	Jump to the cha of brogram
267C	A5	2C		LDA-ze	compare rpm with 2600 dec. or 5140,
0.475	50	1.0		an a l'	FD nex.
267E	E9	40		SBC#	
2680	A5	2D		LDA#	
2682	E9	51		SBC#	
2684	10	1B		BPL	branch to 26Al if rpm 2600
2686	A2	02		LDX	
2688	B5	Al		LDA,X	load hex, value of .015 into the multiplication subroutine
268A	95	01		STA.X	۵.
268C	CA			DEX	
268D	10	F9		BPI.	
268F	20	RF	26	ICR	jump to intermidiste subroutine
2602	120	0.2	20	TDV	Jump to intermidiate subioatine
2092	nz pe	02			load how walks of 1 0 into the
2094	CO	A4		LDA,A	subtraction register
2696	95	33		STA,X	
2698	CA			DEX	
2699	10	F9		BPL	
269B	20	BO	25	JSR	jump to subtraction subroutine
269E	4C	BO	26	JMP	jump to the end of program
26A1	EA			NOP	•••
26A2	EA			NOP	
2643	EA			NOP	
2644	A 2	0.2		TDY	
2044	DE	17		TDY V	land 28 days in days of 4000 F7
2040	Cd	A7		LDA,A	in hex. for spark advance when rpm 2600
26AA	СА			DEX	*
	26AB	10	F9		BPL
26AD	40	00	27	IMP	iump to ignition program
26B0	Δ2	02	~ /	IDX	Jamp to tButtaon broßtam
2000	D5	36		LDA V	store final computed value of
ZUDZ	כם	30		LDA, A	spark advance in the proper memory location
26B4	95	AD		STA.X	
				-	

SPARK ADVANCE SUBROUTINE -Continued

26B6	CA			DEX	
26B7	10	F9		BPL	
26B9	4C	00	27	JMP	jump to ignition program
26BC	EA			NOP	
26BD	EA			NOP	
26BE	EA			NOP	
26BF	A2	02		LDX	load exact value of speed (rpm) into the multiplication
2601	R5	80		τρα γ	Sabioacine
2001	05	04		CTA V	
2005	9 9	04		DTR,A	
2005	LA 10	FO		DEA	
2000	10	F9	20	BPL	
2008	20	00	20	JSR	jump to multiplication subroutine
26CB	AZ	02		LDX	
26CD	В5	26		LDA,X	load result of multiply into the addition register
26CF	95	30		STA,X	
26C1	CA			DEX	
26D2	10	F9		BPL	
26D4	60			JSR	jump from subroutine
			IGNITI	ION PROGRA	Μ
2700	A2	02		LDX	load value of (180-¢ deg into the addition register
2702	в5	39		LDA,X	
2704	95	30		STAX	
2706	CA			DEX	
2707	10	F9		BPI.	
2709	A2	02		LDX	load value of spark advance into
2705	<u>-</u>	102			the subtraction register
270B	BD	AD		LDA,X	
270D	95	33		STA,X	
2/0F	CA			DEX	
2710	10	F9		BPL	
2712	20	BO	25	JSR	jump to subtraction subroutine
2715	A2	02		LDX	
2717	B5	36		LDA,X	load result of subtraction into
2719	95	01		STA X	the mercupal reprotect
271B	CA	0 T		DEX.	
2710	10	РŦ		RDI	
271F	A2	02		IDV	
	14	04			

2720 B5 89

LDA,X load value of 1/2 (rpm) into the multiply register

2722	95	04		STA,X	
2724	CA			DEX	
2725	10	F9		EPL	
2727	20	00	20	TSB	jump to multiplication subroutipe
2724	12	02	20	IDV	Jump to marciprication Subroacine
272A	AZ DE	02		LDA	
2720	82	26		LDA,X	multiply subroutine
272E	95	01		STA,X	
2730	CA			DEX	
2731	10	F9		BPI.	
2723	<u>+</u> 0	02		IDV	load how we lue of $10^6/48$ into the
2755	A2	02		LDA	multiply subroutine
2735	B5	3C		LDA,X	
2737	95	04		STA,X	
2739	CA			DEX	
2734	10	F9		BPI.	
2730	20	00	20	ICD	Turn to multiplication subrouting
2730	20	00	20	721	Jump to multiplication subroutine
273F	AZ	02		LDX	
2741	В5	26		LDA,X	load result of multiply into the addition register
2743	95	30		STA.X	
2745	C A			DFX	
2745	10	FO		DDA	
2740	10	F 9		DFL	
2748	A2	02		LDX	delay into the subtraction
					register
274A	B5	19		LDA,X	
274C	95	33		STA,X	
274E	CA			DEX	
274F	10	FG		BPL.	
2751	20	BO	25	TCR	jump to subtraction subroutine
2754	20	00	20	TDV	Jump to subtraction subroduine
2754	AZ	02		LDX	
2756	B5	36		LDA,X	store result of ignition time in
					the proper registers
2758	95	1D		STA,X	
275A	CA			DEX	
275B	10	FQ		BPI.	
2750	10	FD		TDV	toot ignition time for $x = 3$
2750	A9	FD		LDA	test ignition time for exp. of -5
2751	C5	1 F		СМР	
2761	Fø	09		BEQ	branch to 276C if exp is -3
2763	46	1E		LSR-ze	adjust exp of ignition time for -3
2765	66	1D		ROR-ze	
2767	E6	1 F		TNC	
2760	40	50	27	IMD	tump to 275D to test evp
2707	40	עכ	21		Jump to 2100 to test exp
2700	AD	TD		UDA-ze	
276E	85	84		STA-ze	adjust ignition time for 12-bit ignition counters, store final adjusted value in memory
					LOCALION VV04 AND VV02

IGNITION PROGRAM - Continued

2770	A5	1E		LDA-ze					
2772	85	85		STA-ze					
2774	46	85		LSR-ze					
2776	66	85		ROR-ze					
2778	46	84		LSR-ze					
277A	46	84		LSR-ze					
277C	4C	90	24	JMP j	jump	to	display	su	broutine
277F	EA			NOP					

NON-MASKABLE INTERRUPT

48			PHA save accumulator
AD	00	17	LDA test injection pulse
4A			LSRA
BO	46		BCS branch to 27D2 if injection pulse is high
A5	EE		LDA-ze set injection pulse count
8D	0E	17	STA-ze
A9	01		LDA# turn on injection pulse
OD	00	17	ORA-Ab
8D	00	17	STA-Ab test distributor signal
30	35		BMI branch to 27D0 if it is high
A9	01		LDA-# waite 80 micrsecond
85	46		STA-ze
C6	46		DEC
DO	FC		BNE
A9	3F		LDA# set direction of the B-register
			as output
8D	03	17	STA-Abs
A5	85		LDA-ze load high byte of ignition time into the B-register
8D	02	17	STA-Abs
Α9	21		LDA-#
8D	00	17	STA-Abs turn off latch No. 2
A9	01		LDA-#
8D	00	17	STA-Abs turn off latch No. 2
A5	84		CDA-ze
8D	02	17	STA-Abs
A9	41		CDA#
8D	00	17	STA-Abs turn on latch No. 1
A9	61		LDA#
8D	00	17	STA-Abs turn off latch No. 1 and turn on
			parallel load
A9	00		LDA-#
8D	03	17	STA-Abs set direction of the B-register as input
	48 AD 4A BO A5 8D A9 0D 8D 30 A9 85 C6 D0 A9 85 C6 D0 A9 85 C6 D0 A9 80 A5 80 A9 80 80 80 A9 80 A9 80 A9 80 A9 80 A9 80 A9 80 A9 80 A9 80 80 80 80 80 80 80 80 80 80 80 80 80	48 00 4A 00 4A 00 4A 00 40 46 A5 EE 8D 0E A9 01 0D 00 8D 00 30 35 A9 01 8D 00 30 35 A9 01 85 46 C6 46 D0 FC A9 3F 8D 03 A5 85 8D 02 A9 21 8D 00 A5 84 8D 02 A9 41 8D 00 A9 61 8D 00 A9 61 8D 03 A9 61 8D 03	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

NON-MASKABLE INTERRUPT - Continued

27CB	A9	01		LDA-#
27CD	8D	00	17	STA-Abs turn off parallel load
27D0	68			PLA resore accumulator
27D1	40			RTI return from interrupt program
27D2	4C	45	28	JMP jump to 2845 to save x-register
2705	EA			NOP
2706	EA			NOP
2707	A9	80		LDA-# turn off injection pulse
2709	20	00	17	AND-Abs
2700	2D 8D	00	17	STA-Abs
2705	10	25	± /	BPI test distributor signal and
	10	20		branch to 2806 if it is low
27F1	٨ ٩	0.2		
2722	8D	02	7 7	STA Abe turn on bigh bute of ein flou
275.5	GD	00	17	SIA-ADS LUFH ON High byte of alf-llow
2756	ά Τ)	0.2	17	Count tri-state
27£0	AD	02	17	LDA-Abs read high byte of air-flow coun and adjust
27E9	29	3F		AND
27EB	85	82		STA-ze
27ED	A9	00		CDA-#
27EF	8D	00	17	STA-Abs turn off high byte of air-flow count Tri-state
27F2	A9	04		LDA-#
27F4	8D	00	17	STA-Abs turn on low byte of air-flow
	00	00	<u> </u>	count Tri-State
2757	AD	02	17	LDA-Abs read low byte of air-flow count
-1-1	112	02	± /	and adjust
27 15 4	29	FC		AND
2780	0.5	10		ASI
2710	0A 0A			
2759	0A OA			ACT
2755	0A 0E	0.1		ASL CTA
2/11	85	10		SIA
2801	26	82	• •	RUL RUD
2803	4C	35	28	JMP jump to the end of interrupt program
2806	EA			NOP
2807	A9	28		LDA-# turn on high byte of rpm count
				latch and tri-states
2809	8D	00	17	STA-Abs
280C	A9	08		LDA-#
280E	8D	00	17	STA-ABS turn off high byte of rpm count
2002	0.0	00		latches
2811	۸D	02	17	LDA-Abs read high byte of rpm count and
2011		02	± /	adjust
2814	20	নি		
2816	85	70		STA-70
2010	۵ <i>٦</i>	00		IDA_# turn off tri states of high but
2010	АУ	00		rpm count

NON-MASKABLE INTERRUPT -Continued

281A	8D	00	17	STA-Abs	
281D	A9	50		LDA-#	turn on tri states and latches of
					low byte of rpm
281F	8D	00	17	STA-Abs	
2822	A9	10		LDA-#	
2824	8D	00	17	STA-Abs	turn off latches of low byte of rpm count
2827 282A 282B 282C 282D 282F 2831 2833 2835	AD OA OA 85 26 A9 85 A9	02 7C 7D E7 7E 00	17	LDA-Abs ASL-A ASL-A STA ROL LDA-# STA-ze LDA-#	read low byte of rpm count and adjust
2837	8D	00	17	STA-Abs	
283A	4C	00	29	JMP	jump to data testing program reload x-register
283D	68			PLA	101000 A 10820001
283E	AA			TAX	
283F	68			PLA	reload accumulator from stack
2840	40			RTI	
2841	EA			NOP	
2842	EA			NOP	
2843	EA			NOP	
2844	EA			NOP	
2845	EA			NOP	
2846	EA			NOP	
2847	EA			NOP	
2848	8A			TXA	save x-register
2849	48			PHA	
284A	A9	FF		LDA	
284C	8D	OF	17	STA	
284F	4C	D5	27	JMP	
2852	EA			NOP	

MULTIPLICATION SUBROUTINE

2000 2003 2005	EA EA A5	EA EA 01	EA	NOP NOP LDA	enter	the multiplicand per register	into	the
2007 2009 200B	85 A5 85	20 02 21		STA LDA STA	L L			

MULTIPLICATION SUBROUTINE -Continued

200D	A5	04	LDA	enter the multiplier into the proper register
200F	85	22	STA	
2011	A5	05	LDA	
2013	85	23	STA	
2015	DS		CLD	specify the binary made clear all intermidiate registers
2016	A9	00	LDA-#	
2018	85	24	STA	
201A	85	25	STA	
201C	85	26	STA	
201E	85	27	STA	
2020	85	28	STA	
2022	85	29	STA	
2024	85	2A	STA	
2026	85	2 B	STA	
2028	85	07	STA	
202A	EA		NOP	
202B	EA		NOP	
202C	EA		NOP	
202D	EA		NOP	
202E	EA		NOP	
202F	A2	10	LDX	load x-register with decimal 16
2031	A 5	21	CDA	test multiplicand high byte
			02	branch to 204D if it is zero branch to 2051 if it is positive
2033	FΟ	18	BEO	
2035	10	1B	BPI.	
2037	85	21	STA	
2039	38		SEC	
203A	A9	00	CDA-#	take care of the sign if multiplicand megative
203C	E5	20	SBC	
203E	85	20	STA	
2040	A9	00	LDA-#	
2042	E5	21	SBC	
2044	85	21	STA	
2046	A5	07	CDA	
2048	18		CLC	
2049	69	80	ADC-#	turn on the flag no. 1
204B	85	07	STA	
204D	A5	20	LDA	test multiplicand low byte branch
20/17			750	bo 20B7 if it is zero
204F	FU	00	BEQ	
2052	EA		NUP	
2052	EA		NOP	
2005/	LA	0.0	NOP	toot multiplion high buts
2034	AS	23	LDA	branch to 2073 if it is zero

MULTIPLICATION SUBROUTINE - Continued

				branch to 2077 if it is positive
2056	FO	1B	BEQ	
2058	10	1.D	BPL	
205A	85	23	STA	
205C	38		SEC	
205D	A9	00	LDA-#	take care of the sign if-multi-
2057	E.C.	2.2	SDC	plier is negative
2051	ES	22	SBC	
2061	85	22	STA	
2063	A9	00	LDA-#	
2065	ES	23	SBC	
2067	85	23	STA	
2069	A5	07	LDA	
206B	18		CLC	
206C	69	80	ADC-#	turn off the flay No. l
206E	85	07	STA	
2070	EA		NOP	
2071	EA		NOP	
2072	EA		NOP	
2073	AS	22	CDA	test multiplier low byte branch to 2087 if it is zero
2075	FΟ	40	BEO	
2077	FA	10	NOP	
2078	AS	20		transfer multiplicand into the new
2070	85	28	STA	register
2072	10	20	CDA	register
2070	95	20	CDA	
207E	10	29	SIA	
2000	10	2.2	LLC	-life
2001	40	25	LFK	lowest bit
2083	66	22	ROR	
2085	90	1D	BCC	branch to 20A4 if it is zero
2087	18		CLC	
2088	EA		NOP	
2089	EA		NOP	
208A	EA		NOP	
208B	EA		NOP	
208C	A5	28	CDA	
208E	65	24	ADC	add content of intermidiate- register to content of the result register
2090	85	24	STA	
2092	A 5	29	LDA	
2094	65	25		
2096	85	25	CTA	
2098	Δ 5	2 ^	TDA	
2000	65	26	LDA	
2004	05	20	ADU	
2070	00	20	DIA	

MULTIPLICATION SUBROUTINE - Continued

209E 2040	A5 65	2B 27		LDA ADC	
20A2	85	27		STA	
20A4	18	- /		CLC	
20A5	06	28		ASL	shift intermidiate register to left
20A7	26	29		ROL	
20A9	26	2A		ROL	
20AB	26	2B		ROL	
20AD	CA			DEX	decrement x-register
					branch to 20B2 if x-register is zero
					branch to 2080 if x-register is not zero
20AE	FO	02		BEQ	
20B0	DO	CE		BNE	
20B2	EA			NOP	
20Be	EA			NOP	
20B4	4 C	BA	20	JMP	jump to 20BA
20B7	4C	28	21	JMP	jump to 2128 to set regult zero
20BA	D8			CLD	
20BB	18			CLC	
20BC	AS	03		CDA	add exponent of multiplier and multiplicant
20BE	65	06		ADC	
2000	85	08		STA	
20C2	AA			TAX	transfer the exponent of the re- sult to x-register
2003	18			CLC	
20C4	A9	00		LDA-#	clear the flag no. 2
2006	85	09		STA	
20C8	AS	27		CDA	test the highest bit of the result branch to 20D1 if it is zero
20CA	OA			ASLA	
20CB	90	04		BCC	
20CD	A9	80		CDA	turn on the flag no. 2
20CF	85	09		STA	
20D1	EA			NOP	
20D2	A5	27		CDA	
20D4	OA	OA		ASLA	
20D6	EA	077		NOP	
20D7	Б0	0F.		BCS	test is 1
20D9	06	24		ASL	shift the result in order to adjust its one to highest bit l
20DB	26	25		ROL	
20DD	26	26		ROL	
20DE	26	27		ROL	
20E1	CA			DEX	decrement exponent of the result
20E2	A5	27		LDA	

MULTIPLICATION SUBROUTINE - Continued

20E4	0A	OA	ASLA	test one to the highest bit of result branch to 20D9 if it is zero
20E6	90	Fl	BCC	
20E8	Á 5	09	LDA	
20FA	04	0,5	ASLA	test flav no. 2
20EB	90	04	BCC	branch to 20E1 if it is zero
2050	<u> </u>	80	LDA	branch to zori if it is acto
2055	05	27	ORA	
2011	86	20	CTY .	
2011	50 F 4	29 FA	NOP	
2015	EA	EA	NOT	
2015	LA	07	NOF TDA	test fles as 1 breach to 211/ if
2 UF 7	A	07	LDA	it is off
20F9	10	19	BPL	
20FB	38		SEC	
20FC	A9	00	LDA-#	change the result to negative
20FE	E5	24	SBC	
2100	85	24	STA	
2102	A9	00	LDA	
2104	ES	25	SBC	
2106	85	25	STA	
2108	A9	00	LDA-#	
210A	E5	26	SBC	
210C	85	26	STA	
210E	A9	00	LDA-#	
2110	E5	27	SBC	
2112	85	27	STA	
2114	EA	EA	NOP	
2116	D8		CLD	
2117	18		CLC	
2118	A9	10	LDA-#	adjust exponent if decimal point is
211	65	20	ADC	IS IN FIGHE OF FOCH DIE
211A 211C	85	29	ADC STA	
2110	19	20	CIC	
211E	TO	10		
2115	A9			adjust exponent if decimal point is in fron of 28th bit
2121	65	29	ADC	
2123	85	2A	STA	
2125	60		RTS	return from the subroutine
2126	EA	EA	NOP	
2128	A9	00	CDA-∦	
212A	85	24	STA	set result equal to zero if one of the multiplier or multiplican is zero
212C	85	25		
212E	85	26		

2130	85	27	STA	
2132	85	28	STA	
2134	85	29	STA	
2136	85	2A	STA	
2138	85	2B	STA	
213A	60		RTS	return from the subroutine
213B	EA	EA	NOP	
213D	EA	EA	NOP	
213F	EA		NOP	

DIVIDE SUBROUTINE

2500 2501 2502 2503 2504 2505	EA EA EA EA EA			NOP NOP NOP NOP NOP NOP	
2506	4C	85	25	JMP	jump to 2585 to adjust dividend
2509	A9	00		LDA-#	set partial quotient to zero
250B	85	10		STA-ze	
250D	85	11		STA-ze	
250F	85	12		STA-ze	
2511	A9	0E		LDY	load y-reg with deciman 14
2513	38			SEC	
2514	A5	13		LDA-ze	subtract divisor from divident
2516	E5	16		SBC-ze	
2518	85	13		STA-ze	
251A	A5	14		LDA-ze	
251C	E5	17		SBC-ze	
251E	85	14		STA-ze	
2520	30	16		BMI	branch to 2538 if result of above
					subtraction is negative
2522	A9	01		LDA-#	
2524	05	10		ORA-ze	
2526	85	10		STA-ze	set one on the LSB of quotient
2528	18			CLC	
2529	06	10		ASL-ze	shift quotient to left
252B	26	11		ROL-ze	
252D	18			CLC	
252E	06	13		ASL-ze	shift dividend to left
2530	26	14		ROL-ze	
2532	88			DEY	
2533	DO	DE		BNE	branch to 2513 if 6-reg is not zero
2535	4C	5B	25	JMP	jump to 255B
2538	18				

DIVIDE SUBROUTINE - Continued

233D 18 CLC 233D 18 CLC 2340 26 14 ROL-ze 2542 D8 CLD 2543 18 CLC 2544 A5 13 LDA-ze 2544 A5 14 LDA-ze 2545 10 06 BPL branch to 2558 if result of abd 2550 10 06 BPL branch to 2539 if y-reg is not 2555 4C 5B 26 JMP jump to 255B 258 EA EA NOP SEC SEC 2550 08 SEC SEC SEC SEC 2551 38 SEC SEC SEC SEC 2560 E5 18 SEC-ze Sta-ze stor exp. of result 2564 18 LDA-ze <td< th=""><th>2539 243B</th><th>06 26</th><th>10</th><th></th><th>ASL-ze ROL-ze</th><th>shift quotient to left</th></td<>	2539 243B	06 26	10		ASL-ze ROL-ze	shift quotient to left
233E 06 13 ASL-ze shift divident to left 2542 08 CLD 2543 18 CLC 2544 A5 13 LDA-ze 2545 516 ADC-ze 2548 85 13 STA-ze 2544 A5 14 LDA-ze 2544 A5 14 LDA-ze 2542 85 14 STA-ze 2542 85 14 LDA-ze 2542 65 17 ADC-ze 2542 85 14 STA-ze 2550 10 06 BPL branch to 2558 if result of abc 2555 4C 5B 26 JMP jump to 255B 255 4C 5B 26 JMP jump to 252B 255 AC 5B 26 JMP jump to 252B 255 AS 15 LDA-ze subtract exp. of divisor from C 2560 E5 18 SEC 256 2560 E5 12	2530	18	- -		CLC	
2510 26 14 RDL-ze Suffic divident to the dit the ditore divident to the dit the divident to the di	2535	06	13			shift divident to left
25402614RDL-ZE2542258CLD254318CLC2544A513LDA-ze25466516ADC-ze25488514LDA-ze25406517ADC-ze25428514STA-ze254225510062552D0E3BNE25534258255425826255545582559D0C72558882559D02559262550382550382550382550382560E5256A92560E518SEC-ze25605125611225624925635122564A511LDA-ze2565A92576512ADC-ze2566A511LDA-ze2571F025750A25730A2574A92575042577A025782625790610ASL2579262570C62570C62571C62572C62573A2574C72575C6257	2540	26	14		ROI - 20	SHILL GIVIDENC CO TELC
2543 18 CLC 2544 A5 13 LDA-ze 2546 65 16 ADC-ze 2548 85 13 STA-ze 2544 A5 14 LDA-ze 2542 85 14 STA-ze 2542 85 14 STA-ze 2544 A5 14 DA-ze 2545 85 14 STA-ze 2550 10 06 BPL branch to 2538 if result of abc 2552 D0 E3 BNE branch to 2539 if y-reg is not 2555 4C 5B 26 JMP jump to 255B 2550 B0 C7 BNE branch to 2522 if y-reg is not 2551 A5 15 LDA-ze subtract exp. of divisor from of 2552 A5 15 LDA-ze subtract exp. of result 2564 B CLC StA-ze store exp. of result 2567 65 12 ADC-ze store exp. of quotient 2566 A5 11 <	2540	20 D8	Τ4		CID	
2544 A5 13 LDA-ze add dividend to divisor 2546 65 16 ADC-ze add dividend to divisor 2548 85 13 STA-ze 254 2544 A5 14 LDA-ze 2542 85 14 STA-ze 2544 A5 14 LDA-ze 2545 85 14 STA-ze 2546 65 17 ADC-ze 2547 85 14 STA-ze 2550 10 06 BPL branch to 2538 if result of abordition is positive 2555 4C 5B 26 JMP jump to 255B 2558 88 DEY storte to 2522 if y-reg is not 255 2559 D0 C7 BNE branch to 2522 if y-reg is not 0f divident 2550 38 SEC 255 35 15 LDA-ze subtract exp. of divisor from to of divident 2560 E5 18 SEC-ze 256 A9 F2 LDA-if add decimal-14 to exp. of result 2567	2044	12				
2544 A5 15 ADC-ze add divided to divisor 2546 65 16 ADC-ze 2548 85 14 LDA-ze 2542 65 14 ADC-ze 2542 85 14 ADC-ze 2542 85 14 STA-ze 2545 85 14 STA-ze 2550 10 06 BPL branch to 2558 if result of abc 2552 D0 E3 BNE branch to 2529 if y-reg is not 2555 4C 5B 26 JMP jump to 2558 2559 D0 C7 BNE branch to 2522 if y-reg is not 2558 EA EA NOP 2550 38 SEC SEC 2551 38 SEC SEC 2560 E5 18 SEC-ze 2564 18 SEC-ze Sta-ze 2564 18 CLC add decimal-14 to exp. of result 2567 65 12 ADC-ze 2568 A5	2040	10	10			add dividend to divider
23400510ADC-2225488513STA-ze2544A514LDA-ze25428514STA-ze25501006BPLbranch to 2558 if result of abo addition is positive2552D0E3BNEbranch to 2558 if result of abo addition is positive2552D0E3BNEbranch to 2558 if result of abo addition is positive25554C5B26JMP2558S8DEY2559D0C7BNEbranch to 2522 if y-reg is not2558S8SEC255938SEC255038SEC255038SEC2560E5182562S5122564182564182565A925676512ADC-ze2568A511LDA-ze2569D02569A511LDA-ze2560D02571F02575A2577B02577B02578262578262579C62579C62577C62578262577C62578262577C62578262577C62578262577C6257826<	2044	AJ 6 E	16		LDA-Ze	
2340651351A=2e254AA514LDA=ze254C6517ADC-ze254E8514STA=ze25501006BPLbranch to 2538 if result of abd addition is positive2552D0E3BNEbranch to 2539 if y=reg is not25534C5B26JMPjump to 255E2558EAEANOE2559D0C7BNEbranch to 2522 if y=reg is not2558EAEANOE255038SEC2551A515LDA=ze2560E518SEC=25628512STA=ze256418CLC2565A9F2LDA=#25668512STA=ze25676512ADC=ze2568A511LDA=ze2569B512STA=ze2569D004BND2571F00FBEQ2573A511LDA=ze2574CAASLA2577B009BCS25772611ROL25772611ROL25772612DEC25772612DEC25772612DEC25772612DEC25772612DEC25772612DEC25	2040	00	10		ADC-ZE	
2544A514LDA=2e254C6517ADC-ze254E8514STA=ze25501006 BPL branch to 2558 if result of abd addition is positive2552D0E3 BNE $branch to 2539$ if y -reg is not25554C5B26 JMP $jump$ to 255B2558EAEANOP2559D0C7 BNE $branch to 2522$ if y -reg is not2558EAEANOP255938SEC2560E5182560E5182561ABCLC2562A5122564182565A9F22569851225698512257665122576A5102577D0DF2578CA2577B00925782611257906102578262577A02578262578262577C4257826257906257925258EA2577C62578262577C62578262578262577252583EA2583EA2583EA2584EA2584	2040	85	13		SIA-ze	
254C6517ADC-22254E8514STA-ze25501006 SPL branch to 2558 if result of abd addition is positive2552D0E3 BNE branch to 2539 if y-reg is not25554C5B26 JMP jump to 255B255888 DEY 2559D0C7 BNE branch to 2522 if y-reg is not2558EAEANOP2559S8SEC255038SEC2551A515LDA-ze2560E518SBC-ze2561E518SBC-ze25628512STA-ze256418CLC2565A9F2LDA-#add decimal-14 to exp. of result to adjust decimal point256765122568A511LDA-zetest high byte of quotient2567A510LDA-zetest high byte of quotient2571F0OFBEQbranch to 2582 if it is zero2573A511LDA-ze2582 if bit 14 of quotient is 125790610ASLA2579257906102579C62579C62579C62579C62579C62579C62579C62579C62579C72582<	254A	A5	14		LDA-ze	
234E8514STA=2e25501006BPLbranch to 2558 if result of about addition is positive2552D0E3BNEbranch to 2539 if y-reg is not25554C5B26JMP2559D0C7BNEbranch to 2522 if y-reg is not2558EAEANOP2559D0C7BNEbranch to 2522 if y-reg is not2558EAEANOP255038SEC2551A515LDA-ze2562E518SBC-ze256418CLC2565A9F2LDA-#2566A512STA-ze25676512ADC-ze2568A511LDA-ze2569B512STA-ze2568A511LDA-ze2570D0CFBEQbranch to 2473 if not zero2577B009BCSbranch to 2582 if bit 14 of25790610ASLA257906102577262578262579C62579C62577C732582602577C732583EA2583EA2583EA2583EA2583EA2584EA2583EA2584EA2584EA <td>2540</td> <td>65</td> <td>1/</td> <td></td> <td>ADC-ze</td> <td></td>	2540	65	1/		ADC-ze	
25501006SPLbranch to 2558 if result of abdition is positive addition is positive2552D0E3BNEbranch to 2539 if y-reg is not25554C5B26JMPjump to 255B255888DEY2559D0C7BNEbranch to 2522 if y-reg is not2558EAEANOP255938SEC255038SEC255138SEC2560E51825628512256418CLC256418CLC2569851225698512256965122560D0042560D0042561A5102562A5112564182565A52568A52571F0D004BNDbranch to 2473 if not zero2567A510LDA-ze25760A25770A25782625790610ASL25790610ASL25790610ASL25792612DEC2578262579C62579C62579C62582602583EA2583SEC2584	254E	85	14		STA-ze	
2552D0E3BNEbranch to 2539 if y-reg is not25554C5B26JMPjump to 255B255888DEY2559D0C7BNEbranch to 2522 if y-reg is not2558EAEANOP255038SEC2552A515LDA-ze2560E518SBC-ze25628512STA-ze256418CLC2565A9F2LDA-#25668512STA-ze25676512ADC-ze2568A511LDA-ze25698512STA-ze25698512STA-ze2569A511LDA-ze2567A510LDA-ze25750AASLA25750AASLA2577B009BCS25782611257906102579C6122577A2578262579C62579C62579C62579C62579C62579C62577A2582602583EA2583EA2583EA2583SEC2583SE2584EA2584EA25853838SEC </td <td>2550</td> <td>10</td> <td>05</td> <td></td> <td>BPL</td> <td>branch to 2558 if result of above addition is positive</td>	2550	10	05		BPL	branch to 2558 if result of above addition is positive
2555 4C 5B 26 JMP jump to 255B 2558 88 DEY 2559 D0 C7 BNE branch to 2522 if y-reg is not 255B EA EA NOP 255D 38 SEC 255E A5 15 LDA-ze subtract exp. of divisor from of divident 2560 E5 18 SBC-ze store exp. of result 2564 18 CLC 2565 A9 2565 A9 F2 LDA-# add decimal-14 to exp. of result 2567 65 12 STA-ze store exp. of quotient 2569 85 12 STA-ze add decimal-14 to exp. of result 2569 85 12 STA-ze add decimal-14 to exp. of quotient 2560 04 BND branch to 2473 if not zero add gist for quotient 2571 F0 OF BEQ branch to 2582 if bit 14 of quotient adjust bit 14 of quotient for 3 2577 0A ASLA 2577 ASLA adjust bit 14 of quotient for 3 2577<	2552	DO	E3		BNE	branch to 2539 if y-reg is not zero
2558 88 DEY 2559 D0 C7 BNE branch to 2522 if y-reg is not 2558 EA EA NOP 2550 38 SEC 2550 38 SEC 2551 A5 15 LDA-ze subtract exp. of divisor from a of divident 2560 E5 18 SBC-ze store exp. of result 2564 18 SBC-ze store exp. of result ctract exp. of result 2564 18 SBC-ze store exp. of result ctract exp. of result 2564 18 SBC-ze store exp. of result ctract exp. of result 2565 A9 F2 LDA-# add decimal-14 to exp. of result to adjust decimal point 2566 A5 11 LDA-ze test high byte of quotient to adjust decimal point 2567 A5 10 LDA-ze test high byte of quotient to adjust for zero 2567 A5 10 LDA-ze test high byte of quotient to adjust for zero 2571 F0 OF BEQ branch to 2582 if bit 14 o	2555	4 C	5B	26	JMP	jump to 255B
2559D0C7BNEbranch to 2522 if y-reg is not255BEAEANOP255D38SEC255EA515LDA-ze2560E518SBC-ze25628512STA-ze256418CLC25676512ADC-ze25698512STA-ze25698512STA-ze25698512STA-ze25698512STA-ze25676512ADC-ze2568A511LDA-ze2567A510LDA-ze2567A510LDA-ze2567A510LDA-ze2571FOOFBEQ2573A511LDA-ze25760AASLA2577B009BCS257826112579061025774C7325774C732582602583EANOP2584EA2583SEC38SEC38SEC38SEC38SEC39SEC39SEC39SEC39SEC39SEC39SEC39SEC39SEC39SEC39SEC30SEC	2558	88			DEY	
255BEAEANOP255D38SEC255D38SEC255D38SEC255D38of divident2560E518256285122564182565A9F2256765122568A51125698512256985122560D0042561ADC-ze2565A5112567A52568A511LDA-ze2567A52571FOC61225750A2577B025790610ASL2570C625774C25782625774C25782625774C2582602583EANOP2584EA2585382584EA25853825823838383838383838383838383838384384384384384384384384384384384384	2559	DO	C7		BNE	branch to 2522 if y-reg is not zero
255D 38 SEC 255E A5 15 LDA-ze subtract exp. of divisor from end of divident 2560 E5 18 SBC-ze 2562 85 12 STA-ze store exp. of result 2564 18 CLC 2565 A9 F2 LDA-# add decimal-14 to exp. of result 2567 65 12 ADC-ze 2569 85 12 STA-ze 2560 00 04 BND branch to 2473 if not zero 2567 A5 10 LDA-ze test low byte of quotient 2560 D0 04 BND branch to 2582 if it is zero 2567 A5 11 LDA-ze test low byte of quotient 2571 F0 OF BEQ branch to 2582 if bit 14 of 2576 0A ASLA 2576 0A 2577 B0 09 BCS branch to 2582 if bit 14 of 2579 06 10 ASL adjust bit 14 of quotient for 14 2577 C6 12	255B	EA	EA		NOP	
255E A5 15 LDA-ze subtract exp. of divisor from of of divident 2560 E5 18 SBC-ze 2562 85 12 STA-ze store exp. of result 2564 18 CLC 2565 A9 F2 LDA-# add decimal-14 to exp. of result 2565 A9 F2 LDA-# add decimal-14 to exp. of result to adjust decimal point 2567 65 12 ADC-ze 2568 A5 11 LDA-ze test high byte of quotient 2568 A5 11 LDA-ze test high byte of quotient 2567 2569 A5 10 LDA-ze test low byte of quotient 2560 D0 04 BND branch to 2582 if it is zero 2571 F0 OF BEQ branch to 2582 if bit 14 of 2575 0A ASLA ASLA 2576 0A ASLA 2578 26 2579 06 10 ASL adjust bit 14 of quotient for 12 2579 06 10 ASL adjust bit 14 of quotient	255D	38			SEC	
2560 E5 18 SBC-ze 2562 85 12 STA-ze store exp. of result 2564 18 CLC 2565 A9 F2 LDA-# add decimal-14 to exp. of result 2566 A9 F2 LDA-# add decimal-14 to exp. of result 2567 65 12 ADC-ze 2569 85 12 STA-ze 2565 A5 11 LDA-ze test high byte of quotient 2567 A5 10 LDA-ze test high byte of quotient 2567 A5 10 LDA-ze test high byte of quotient 2571 F0 OF BEQ branch to 2582 if it is zero 2573 A5 11 LDA-ze 2577 2576 OA ASLA 2577 2577 BO 09 BCS branch to 2582 if bit 14 of quotient for	255E	A 5	15		LDA-ze	subtract exp. of divisor from exp.
2562 85 12 STA-ze store exp. of result 2564 18 CLC 2565 A9 F2 LDA-# add decimal-14 to exp. of result 2567 65 12 ADC-ze 2568 A5 11 LDA-ze test high byte of quotient 2567 A5 11 LDA-ze test high byte of quotient 2569 85 12 STA-ze 2568 A5 11 LDA-ze test high byte of quotient 2567 A5 10 LDA-ze test high byte of quotient 2571 FO OF BEQ branch to 2582 if it is zero 2575 OA ASLA 2576 OA ASLA 2577 BO O9 BCS branch to 2582 if bit 14 of 2579 06 10 ASL adjust bit 14 of quotient for 1 2577 26 11 ROL 2 2577 26 12 DEC 2 2577 4C 73 25 JMP 2	2560	E5	18		SBC-ze	
2564 18 CLC 2565 A9 F2 LDA-# add decimal-14 to exp. of result to adjust decimal point 2567 65 12 ADC-ze 2569 85 12 STA-ze 256D D0 04 BND branch to 2473 if not zero 256F A5 10 LDA-ze test low byte of quotient 2573 A5 11 LDA-ze test low byte of quotient 2575 0A ASLA 2576 0A 2577 B0 09 BCS branch to 2582 if bit 14 of quotient for 1 2579 06 10 ASL adjust bit 14 of quotient for 1 2579 06 10 ASL adjust bit 14 of quotient for 1 2577 26 11 ROL 2577 2577 26 12 DEC 2579 06 10 ASL adjust bit 14 of quotient for 1 2570 C6 12 DEC 2582 16 2583 EA NOP 2584 EA NOP 25	2562	85	12		STA-ze	store exp. of result
2565 A9 F2 LDA-# add decimal-14 to exp. of result to adjust decimal point 2567 65 12 ADC-ze 2569 85 12 STA-ze 256B A5 11 LDA-# add decimal-14 to exp. of result to adjust decimal point 256B A5 12 STA-ze 256D 256B A5 11 LDA-ze test high byte of quotient 256F A5 10 LDA-ze test low byte of quotient 2571 F0 OF BEQ branch to 2582 if it is zero 2573 A5 11 LDA-ze 2582 if bit 14 of 2576 OA ASLA 2576 2577 B0 09 BCS branch to 2582 if bit 14 of 2577 B0 09 BCS branch to 2582 if bit 14 of 2578 26 11 ROL 2578 2575 Q6 12 DEC 2577 2577 4C 73 25 JMP 2582 60 RTS 2583 EA 2583 EA	2564	18	1-		CLC	bebre enpr of febale
2505 AD 12 LDA - 2 to adjust decimal point 2567 65 12 ADC-ze 2569 85 12 STA-ze 256B A5 11 LDA-ze test high byte of quotient 256F A5 10 LDA-ze test low byte of quotient 2571 F0 OF BEQ branch to 2582 if it is zero 2573 A5 11 LDA-ze 2575 OA ASLA 2576 OA ASLA 2577 BO 09 BCS branch to 2582 if bit 14 of quotient for 12000000000000000000000000000000000000	2565	A 9	F2		LDA-#	add decimal-14 to exp. of result
2567 65 12 ADC-ze 2569 85 12 STA-ze 256B A5 11 LDA-ze test high byte of quotient 256D D0 04 BND branch to 2473 if not zero 256F A5 10 LDA-ze test low byte of quotient 2571 F0 OF BEQ branch to 2582 if it is zero 2575 0A ASLA 2576 0A ASLA 2577 B0 09 BCS branch to 2582 if bit 14 of quotient for 12 2578 26 11 ROL 2578 26 2579 06 10 ASL adjust bit 14 of quotient for 12 2579 06 10 ASL adjust bit 14 of quotient for 12 2578 26 11 ROL 2577 2577 4C 73 25 JMP 2582 60 RTS 2583 EA 2584 EA NOP 2585 38 SEC adjust dividend so that to be	2200					to adjust decimal point
2567 65 12 ADS 22 2569 85 12 STA-ze 256B A5 11 LDA-ze test high byte of quotient 256D D0 04 BND branch to 2473 if not zero 256F A5 10 LDA-ze test low byte of quotient 2571 F0 OF BEQ branch to 2582 if it is zero 2573 A5 11 LDA-ze 2576 OA ASLA 2577 BO O9 BCS branch to 2582 if bit 14 of quotient for 1 2579 06 10 ASL adjust bit 14 of quotient for 1 2579 06 10 ASL adjust bit 14 of quotient for 1 2579 06 10 ASL adjust bit 14 of quotient for 1 2579 C6 12 DEC 257F 2577 4C 73 25 JMP 2582 60 RTS 258 2583 EA NOP 2584 EA 2585 38 SEC adjust dividend so that to be	2567	65	12			to adjust accurat point
2567651251A-2e256BA511LDA-zetest high byte of quotient256DD004BNDbranch to 2473 if not zero256FA510LDA-zetest low byte of quotient2571F00FBEQbranch to 2582 if it is zero2573A511LDA-ze25760AASLA2577B009BCS25782611257906102575ASLadjust bit 14 of quotient for 1257526112576C61225774C7325JMP258260RTS2583EANOP2584EANOP258538SECadjust dividend so that to be	2569	.85	12		STA-20	
250BAS11LDA-2etest high byte of quotient256DD004BNDbranch to 2473 if not zero256FA510LDA-zetest low byte of quotient2571F0OFBEQbranch to 2582 if it is zero2573A511LDA-ze25750AASLA25760AASLA2577BO09BCS2578261125790610257826112577C61225774C732582602583EA2584EANOP2585382582Go2583SECadjust dividend so that to be	256B	.55	11		IDA-ZO	toat high byto of quatient
2565 A5 10 LDA-ze test low byte of quotient 2571 F0 OF BEQ branch to 2582 if it is zero 2573 A5 11 LDA-ze 2575 OA ASLA 2576 OA ASLA 2577 BO 09 BCS branch to 2582 if bit 14 of quotient is 1 2579 O6 10 ASL adjust bit 14 of quotient for 1 2578 26 11 ROL 2577 2577 C6 12 DEC 2577 4C 73 25 2583 EA NOP 2584 EA NOP 2585 38 SEC adjust dividend so that to be	256D		11		LDA-26	branch to 2/72 if not sore
2507 AS 10 LDA-2e test fow byte of quotient 2571 F0 OF BEQ branch to 2582 if it is zero 2573 A5 11 LDA-ze 2575 OA ASLA 2576 OA ASLA 2577 BO O9 BCS branch to 2582 if bit 14 of quotient is 1 2579 O6 10 ASL adjust bit 14 of quotient for 1 2578 26 11 ROL 2577 2570 C6 12 DEC 2577 2582 60 RTS 2583 EA NOP 2584 EA NOP 2585 38 SEC adjust dividend so that to be	2500		10			branch Lo 2475 II not zero
2571 F0 OF BEQ DFANCH to 2582 if if if is zero 2573 A5 11 LDA-ze 2575 OA ASLA 2576 OA ASLA 2577 BO O9 BCS branch to 2582 if bit 14 of quotient is 1 2579 O6 10 ASL adjust bit 14 of quotient for 1 2577 Z6 11 ROL Z577 2575 C6 12 DEC 2577 4C 73 25 JMP 2583 EA NOP NOP 2584 EA NOP SEC adjust dividend so that to be	2501	AJ TO	10		LDA-Ze	Lest low byte of quotient
2575 AS 11 LDA-ze 2575 OA ASLA 2576 OA ASLA 2577 BO O9 BCS branch to 2582 if bit 14 of quotient is 1 2579 O6 10 ASL adjust bit 14 of quotient for 1 2578 26 11 ROL 2577 C6 12 DEC 2577 4C 73 25 2583 EA NOP 2584 EA NOP 2585 38 SEC adjust dividend so that to be	2571	FO	OF		BEQ IDA	Dranch to 2002 if it is zero
2575 OA ASLA 2576 OA ASLA 2577 BO O9 BCS branch to 2582 if bit 14 of quotient is 1 2579 O6 10 ASL adjust bit 14 of quotient for 1 2578 26 11 ROL 257D 2577 4C 73 25 JMP 2582 60 RTS 2583 EA NOP 2584 EA NOP 2585 38 SEC adjust dividend so that to be	2073	AD	11		LDA-ze	
2576 OA ASLA 2577 BO O9 BCS branch to 2582 if bit 14 of quotient is 1 2579 O6 10 ASL adjust bit 14 of quotient for 1 257B 26 11 ROL 257D 257F 26 12 DEC 257F 4C 73 25 JMP 2582 60 RTS 2583 EA NOP 2584 EA NOP 2585 38 SEC adjust dividend so that to be	2010	UA OA			ASLA	
2577 BO 09 BCS branch to 2582 if bit 14 of quotient is 1 2579 06 10 ASL adjust bit 14 of quotient for 1 257B 26 11 ROL 257D C6 12 DEC 257F 4C 73 25 2582 60 RTS 2583 EA NOP 2584 EA NOP 2585 38 SEC adjust dividend so that to be	2576	UA	~~~		ASLA	
2579 06 10 ASL adjust bit 14 of quotient for 1 257B 26 11 ROL 257D C6 12 DEC 257F 4C 73 25 JMP 2582 60 RTS SES 2583 EA 2584 EA NOP SEC adjust dividend so that to be	2577	BO	09		BCS	quotient is 1
257B 26 11 ROL 257D C6 12 DEC 257F 4C 73 25 JMP 2582 60 RTS 2583 EA NOP 2584 EA NOP 2585 38 SEC adjust dividend so that to be	2579	06	10		ASL	adjust bit 14 of quotient for 1
257D C6 12 DEC 257F 4C 73 25 JMP 2582 60 RTS 2583 EA NOP 2584 EA NOP 2585 38 SEC adjust dividend so that to be	257B	26	11		ROL	
257F 4C 73 25 JMP 2582 60 RTS 2583 EA NOP 2584 EA NOP 2585 38 SEC adjust dividend so that to be	257D	C6	12		DEC	
2582 60 RTS 2583 EA NOP 2584 EA NOP 2585 38 SEC adjust dividend so that to be	257F	4C	73	25	JMP	
2583EANOP2584EANOP258538SECadjust dividend so that to be	2582	60			RTS	
2584EANOP258538SECadjust dividend so that to be	2583	EA			NOP	
2585 38 SEC adjust dividend so that to be	2584	EA			NOP	
less than divisor	2585	38			SEC	adjust dividend so that to be less than divisor

DIVIDE SUBROUTINE - Continued

2586	A5	9A		LDA-ze	
2588	E5	OD		SBC-z3	
258A	A.5	OB		LDA-ze	
258C	E5	OE		SBC-ze	
258E	30	09		BMI	
2590	46	OB		LSR-ze	
2592	66	0A		ROR-ze	
2594	E6	9C		INC-ze	
2596	4C	85	25	JMP	jump to 2585 to compare dividend
					and divisor
2599	A2	05		LDX	
259B	В5	0A		LDA,X	load value of divisor and dividend into the intermidiate registers
259F	CA			DEX	
25A9	10	F9		DPL	
25A2	4C	09	25	JMP	

ADDITION SUBROUTINE

2140 2142	А5 Dø	30 07		CDA BNE	test first number if it is zero
2144	A5	31		CDA	
2146	Dø	03		BNE	
2148	4C	41	22	JMP	jump to test other number for zero
214B	4C	26	22	JMP	jump to set result equal to the first number
214E	EA	EA		NOP	
2150	A5	30		LDA	enter two numbers need to added
0150	05	10		051	into the intermidiate register
2154	85	40		STA	
2154	A5	31		LDA	
2156	85	41		STA	
2158	A5	32		CDA	
215A	85	42		STA	
215C	A5	33		CDA	
215E	85	43		STA	
2160	A.5	34		CDA	
2162	85	44		STA	
2164	A5	35		LDA	
2166	85	45		STA	
2168	A5	41		CDA	test first number for positive
216A	OA			ASLA	
216B	90	1B		BCC	branch to 2188 if it is positive
216D	A5	41		CDA	
216F	0A	AO		ASLA	test next to highest bit of the first number
2171	90	09		BCC	branch to 217C if it is zero
ADDITION SUBROUTINE - Continued

2175 26 41 ROL adjust first number to have one to highest bit o for negative nubmer 2177 C6 42 DEC negative nubmer 2179 EA EA NOP 2179 EA EA NOP 2170 A5 41 LDA 2177 OA OA ASLA 2170 A5 41 LDA 2181 BO FO BCS 2183 EA EA NOF 2184 OA OA ASLA 2185 rC AO ASLA 2186 BO 12 BCS 2187 EA EA NOP 2180 DA OA ASLA 2190 O6 40 ASL 2192 26 41 LDA 2194 C6 42 DEC 2195 AS 41 LDA 2194 OA ASLA BCC branch to 2190 if one to highest in o	its
one to highest bit o for negative nubmer2177C642DEC2179EAEANOP217BEAEANOP217DA541LDA2181BOFOBCS2183EAEANOP2185rCAO212186A541LDA2187AOOAASLA2188AS41LDA2180OAOAASLA2181BO12BCS2182EAEANOP2184OAOAASLA2190O640ASL21922641ROL2194C642DEC2195EAEANOP2194C642DEC2195EAEANOP2196EAEANOP2197EAEANOP2198OAOAASLA2199EAEANOP2140A544LDA21A0A544LDA21A39015BCC21A8OACA21A990OC21A8OAASLA21A990OC21A6C43ASL21A7OALSLA21A8OAASLA21A990OC21A8OAASL21A990OC	
2177 C6 42 DEC 2179 EA EA NOP 2178 EA EA NOP 2179 A5 41 LDA 2177 A5 41 LDA 2178 EA EA NOP 2171 A5 41 LDA 2171 A5 41 LDA 2181 BO FO BCS 2183 EA EA NOF 2184 OA OA ASLA 2185 rC AO 21 JMP 2184 OA OA ASLA adjust one to highest bit of first number for one if it positive 2185 EA EA NOP Softive DEC 2186 BO 12 BCS Softive DEC 2190 O6 40 ASLA DEC DEC 2192 26 41 ROL DEC DEC 2194 C6 42 DEC DEC DEC 2198 OA </td <td></td>	
2177 C6 42 DEC 2179 EA EA NOP 217B EA EA NOP 217D A5 41 LDA 217F OA OA ASLA 2181 BO FO BCS 2183 EA EA NOF 2185 rC AO 21 JMP 2186 A5 41 LDA 2187 CAO 21 JMP jump to alAO if first number 2186 A5 41 LDA adjust one to highest bit of first number for one if if positive 2180 BO 12 BCS BCS 2190 O6 40 ASLA adjust one to highest bit of first number for one if if positive 2191 26 41 ROL BCS 2192 26 41 ROL BCS 2194 A5 41 LDA LDA 2198 AA AA ASLA BCC branch to 2190 if one to highest is not bit of first number is not bit of first number is not bit of first number i	
2179EAEANOP217BEAEANOP217DA541LDA217FOAOAASLA2181BOFOBCS2183EAEANOP2184CAOAASLA2185rCAO212186A541LDA2187BOOAASLA2188EAEANOP2180BO12BCS2181EAEANOP2182EAEANOP2184C642DEC2195OAOAASLA2196A541LDA2198OAOAASLA2199O640ASLA2194C642DEC2195EAEANOP2140A544LDA21A0A544LDA21A1OASCLA21A2OAASLA21A39015BCC21A6A544LDA21A7OALSLA21A8OALSLA21A990OCBCC21A8OALSLA21A7OALSLA21A8OALSLA21A990OC21A8OALSLA21A990OC21A8OALSLA21A990OC21A8OA </td <td></td>	
217BEAEANOP217DA541LDA217FOAOAASLA2181BOFOBCS2183EAEANOP2185rCAO21JMP2186A541LDA2187OAOAASLA2188A541LDA2180BO12BCS2181BO12BCS2182EAEANOP2190O640ASL21922641ROL2194C642DEC2198OAOAASLA2194C642DEC2195EAEANOP2196EAEANOP2197EAEANOP2198OAOAASLA2199EAEANOP2190EAEANOP21912EAEANOP2192EAEANOP2193OAOAASLA2194C642DEC2140A544LDA21A0A544LDA21A139015BCC21A5A544LDA21A7OASLA21A8OAASLA21A990OCBCC21A8OAASLA21A990OCBCC21A8OAAS	
217DA541LDA217FOAOAASLA2181BOFOBCS2183EAEANOF2185rCAO21JMP2186A541LDA2187OAOAASLAadjust one to highest bit of first number for one if it positivefirst number for one if it positive218CBO12BCS218EEANOP2190O64O219226412194C6422195EAEA2196A5412197EA2198OA2190F4BCCbranch to 2190 if one to high bit of first number is not bit of first number is not2190EA2140A521A0A521A1DA21A2OA21A39015BCC21A6A521A7OA21A8OA21A8OA21A8OA21A8OA21A8OA21A8OA21A8OA21A99090CC21A8OA21A8OA21A8OA21A8OA21A99090CC21A8OA21A99090CC21A8OA21A990 <tr< td=""><td></td></tr<>	
217FOAOAASLA2181BOFOBCS2183EAEANOP2185rCAO21JMP2184OAOAASLA218AOAOAASLA218AOAOAASLA218CBO12BCS218EEAEA2190O640219226412196A5412198OAOA2198OAOA2198C6422196EA2197EA2198OA0AOA2199AS2190AS2194C642DEC2195EA2196EA2197EA2198OA0AOA2199AS2190AS2194AS2195EAEANOP2196EAEANOP2197EAEANOP2198OAOAASLA2199DI2195EAEANOP2196EAEANOP2197EAEANOP2198OACAECbranch to 21EA if it is post21A39015EC21A5A544LDA21A7 <td></td>	
2181BOFOBCS2183EAEANOP2185rCAO21JMP2186A541LDA2187OAOAASLA2188OAOAASLA2180BO12BCS2181EAEA2182BO122184BO122185EAEA2186BO122187BOAO2188EAEA2190O640219226412194C6422195OAOA2196A5412197EA2198OA2198CA2199EA2142CA2190F4BCCbranch to 2190 if one to hig bit of first number is not2197EA2188CA2198CA21439015BCC21A39015BCC21A4LDA21A5A544LDA21A7CA21A8CA21A99090CC21A8CA21A99090CC21A8CA21A99090CC21A8CA21A99021A99021A1A521A1A5	
2183EAEANOP2185rCAO21JMPjump to alAO if first number2188A541LDA2180OAOAASLAadjust one to highest bit of first number for one if if positive2180BO12BCS2181EAEANOP2182EAEANOP2190O640ASL21922641ROL2194C642DEC2195A541LDA2196A541LDA2197EAEANOP2198OAOAASLA2199EAEANOP21902140A544LDAtest the sign of the second21A0A544LDA21A39015BCC21A5A544LDA21A7OAASLA21A8OAASLA21A990OC21A8OAASL21A990OC21A8OAASL21A990OC21A8OA21A8OA21A990OC21A8OA21A99090CC21A8OA21A99090CC21A8OA21A99090CC21A8OA21A990 <tr< td=""><td></td></tr<>	
2185rCAO21JMPjump to alAO if first number2185A541LDA218AOAOAASLAadjust one to highest bit of first number for one if if positive218CBO12BCS218EEAEANOP2190O640ASL21922641ROL2194C642DEC2195OAOAASLA2194C642DEC2195EAEANOP2196AS41LDA2197EAEANOP2198OAOAASLA219990F4BCCbranch to 2190 if one to high bit of first number is not2196EAEANOP2197EAEANOP2198OAOAASLA219990F4BCC2140A544LDA21A1A544LDA21A2OAASLA21A39015BCC21A5A544LDA21A7OALSLA21A8OAC21A8OAASL21A990OC21A8OALSLA21A990OC21A8OALSLA21A990OC21A8OA21A7C64521A8OA21A7C64	
2185 A5 41 LDA 2184 OA OA ASLA adjust one to highest bit of first number for one if is positive 2186 BO 12 BCS 2188 EA EA NOP 2190 O6 40 ASL 2192 26 41 ROL 2194 C6 42 DEC 2196 A5 41 LDA 2197 26 41 ROL 2198 OA OA ASLA 2199 OA OA ASLA 2190 OF4 BCC branch to 2190 if one to highest bit of first number is not 2197 EA EA NOP 2198 OA OA ASLA 2199 EA EA NOP 21910 EA EA NOP 2192 EA EA NOP 2143 90 15 BCC branch to 21BA if it is post 21A3 90 15 BCC branch to 21BA if it is negative	r is neg
2100ASAIASLA218AOAOAASLAadjust one to highest bit of first number for one if it positive218CBO12BCS218EEANOP2190O640ASL21922641ROL2194C642DEC2196A541LDA2198OAOAASLA2199POF4BCC2190EAEANOP2191EAEANOP2192EAEANOP2194C642DEC2195A541LDA2196A541LDA2197EAEANOP2140A544LDA21A2OAASLA21A39015BCC21A7OALSLA21A8OALSLA21A990OC21A8O64321A7C64421A7C64421A8O621A8O621A7C621A8O643ASL21A990C64421A7C621A8OAA54421A7C621A8OA21A7C621A8OA21A7C621A8OA21A7C621A7C6 <td>1 10 1106</td>	1 10 1106
210A 0A 0A ASLA adjust one to ingrest bit of first number for one if it positive 218C BO 12 BCS 218E EA EA NOP 2190 06 40 ASLA 2192 26 41 ROL 2194 C6 42 DEC 2195 0A 0A ASLA 2198 0A 0A ASLA 2199 0A 0A ASLA 2190 FA EC branch to 2190 if one to highest bit of first number is not 2198 0A 0A ASLA 2199 PO F4 BCC branch to 2190 if one to highest bit of first number is not 2190 EA EA NOP NOP 2191 EA EA NOP NOP 2140 A5 44 LDA LDA 21A7 OA ASLA Adjust bit 14 of the second for 0 if it is negative 21A8 OA LSLA ASLA 21A9 90 OC BCC	f the
218C B0 12 BCS 218E EA EA NOP 2190 06 40 ASL 2192 26 41 ROL 2194 C6 42 DEC 2196 A5 41 LDA 2198 OA OA ASLA 2199 OA OA ASLA 2194 C6 42 DEC 2195 A5 41 LDA 2194 90 F4 BCC branch to 2190 if one to hig bit of first number is not 2197 EA EA NOP 2198 EA EA NOP 2190 EA EA NOP 2140 A5 44 LDA test the sign of the second 21A3 90 15 BCC branch to 21BA if it is pos: 21A5 A5 44 LDA 21A7 21A8 OA LSLA adjust bit 14 of the second for 0 if it is negative 21A8 OA ASLA 21A7 <td></td>	
218C B0 12 BCS 218E EA EA NOP 2190 06 40 ASL 2192 26 41 ROL 2194 C6 42 DEC 2196 A5 41 LDA 2198 OA OA ASLA 2198 OA OA ASLA 2197 EA EA NOP 2198 OA OA ASLA 2199 PO F4 BCC branch to 2190 if one to high bit of first number is not 2190 EA EA NOP 2191 EA EA 2190 EA EA NOP 2140 A5 44 LDA test the sign of the second for 0 if it is negative 21A5 A5 44 LDA LSLA adjust bit 14 of the second for 0 if it is negative 21A7 OA LSLA ASLA 21A9 90 OC BCC 21A8 O6 43 ASL 21AF C6 45 DEC <t< td=""><td>L 12</td></t<>	L 12
218C 30 12 $3CS$ 218E EA EA NOP 2190 06 40 ASL 2192 26 41 ROL 2194 $C6$ 42 DEC 2196 $A5$ 41 LDA 2198 OA OA $ASLA$ 2194 90 $F4$ BCC $branch to 2190$ if one to hig $219C$ EA EA NOP 219E EA EA NOP 21A0 $A5$ 44 LDA test the sign of the second $21A2$ OA $ASLA$ $21A3$ 90 15 BCC $branch to 21BA if it is post 21A3 90 15 BCC branch to 21BA if it is negative for 0 if it is negative 21A7 OA LSLA adjust bit 14 of the second for 0 if it is negative 21A8 OA LSLA ZIAP 90 OC BCC 21AB O6 43 ASL ZIAF $	
218E EA NOP 2190 06 40 ASL 2192 26 41 ROL 2194 C6 42 DEC 2196 A5 41 LDA 2198 OA OA ASLA 2198 OA OA ASLA 2197 EA EA DEC 2198 OA OA ASLA 2199 90 F4 BCC branch to 2190 if one to high bit of first number is not 2192 EA EA NOP 2195 EA 2140 A5 44 LDA test the sign of the second 21A2 OA ASLA 21A3 90 15 21A3 90 15 BCC branch to 21BA if it is post 21A5 A5 44 LDA 21A7 21A7 OA LSLA adjust bit 14 of the second for 0 if it is negative 21A8 O6 43 ASL 21A9 90 OC BCC 21AB O6	
2190 06 40 ASL 2192 26 41 ROL 2194 C6 42 DEC 2196 A5 41 LDA 2198 OA OA ASLA 2199 OA OA ASLA 2191 90 F4 BCC branch to 2190 if one to hig bit of first number is not bit of first number is not bit of first number is not 219C EA EA NOP 219E EA EA NOP 21A0 A5 44 LDA test the sign of the second 21A2 OA ASLA 21A3 90 15 BCC branch to 21BA if it is post 21A5 A5 44 LDA 21AA adjust bit 14 of the second for 0 if it is negative 21A7 OA LSLA adjust bit 14 of the second for 0 if it is negative 21A8 OA LSLA 21AD 26 44 21AB O6 43 ASL 21AF C6 45 DEC <td< td=""><td></td></td<>	
2192 26 41 ROL 2194 C6 42 DEC 2196 A5 41 LDA 2198 OA OA ASLA 2199 90 F4 BCC branch to 2190 if one to hig bit of first number is not bit of first number is not bit of first number is not 219C EA EA NOP 219E EA EA NOP 21A0 A5 44 LDA test the sign of the second 21A2 OA ASLA 21A3 90 15 BCC branch to 21BA if it is pos: 21A5 A5 44 LDA LSLA adjust bit 14 of the second for 0 if it is negative 21A7 OA LSLA adjust bit 14 of the second for 0 if it is negative 21A8 OA LSLA 21AP 90 OC BCC 21AB O6 43 ASL ASL 21AF C6 44 ROL 21AF 21AF C6 44 LDA 21B3 OA <t< td=""><td></td></t<>	
2194C642DEC2196A541LDA2198OAOAASLA219A90F4BCCbranch to 2190 if one to hig bit of first number is not219CEAEANOP219EEAEANOP21A0A544LDA21A2OAASLA21A39015BCC21A5A544LDA21A7OALSLA21A8OALSLA21A990OC21ABO64321AFC64521AFC644LDA21AFC644LDA21ABOA21A8OA21A8OA21A99000CC21A8OA21A9A21A9A21A8AA54421A921A8A3A5A421A921A8AA5A421A9A5A4A5A4A5A4A5A4A5A4A5A4A5A5A6A5A5A6A5A6A5A5A4A5A4A5A5A6 <td></td>	
2196A541LDA2198OAOAASLA219A90F4BCCbranch to 2190 if one to hig bit of first number is not219CEAEANOP219EEAEANOP21A0A544LDA21A2OAASLA21A39015BCC21A5A54421A7OALSLA21A8OALSLA21A990OC21ABO64321AFC64421AFC621B1A521AFC621B1A521AFC621AFC621AFC621AFC621AFC621AFC621AFC621AFC621AFC621AFC621AFC621AFC621AFC621AFC121AFC12	
2198OAOAASLA219A90F4BCCbranch to 2190 if one to hig bit of first number is not219CEAEANOP219EEAEANOP21A0A544LDAtest the sign of the second21A2OAASLA21A39015BCCbranch to 21BA if it is pos:21A5A544LDA21A7OALSLA21A8OALSLA21A990OC21ABO64321AFC64421AFC621ABOA21AB<	
219A90F4BCCbranch to 2190 if one to high bit of first number is not219CEAEAEANOP219EEAEANOP21A0A544LDAtest the sign of the second21A2OAASLA21A39015BCCbranch to 21BA if it is post21A5A544LDA21A7OALSLA21A8OALSLA21A990OC21ABO64321AFC64521B1A544LB3OAA5A4A5A4A5A5A4LSLAA5A4A5A5A6A5A7A5A7A6A7 </td <td></td>	
219CEAEANOP219EEAEANOP21A0A544LDAtest the sign of the second21A2OAASLA21A39015BCCbranch to 21BA if it is post21A5A544LDA21A7OALSLAadjust bit 14 of the second for 0 if it is negative21A8OALSLA21A990OCBCC21ABO643ASL21AFC645DEC21B1A544LDA21B3OAASLA	ghest
219CEAEANOP219EEAEANOP21A0A544LDAtest the sign of the second21A2OAASLA21A39015BCCbranch to 21BA if it is pos:21A5A544LDA21A7OALSLAadjust bit 14 of the second for 0 if it is negative21A8OALSLA21A990OCBCC21ABO643ASL21AFC645DEC21B1A544LDA21B3OAASLA	t one
219EEAEANOP21A0A544LDAtest the sign of the second21A2OAASLA21A39015BCCbranch to 21BA if it is post21A5A544LDA21A7OALSLAadjust bit 14 of the second for 0 if it is negative21A8OALSLA21A990OCBCC21ABO643ASL21AFC644ROL21AFC644LDA21AFC644ASL21B1A544LDA21B3OAASLA	
21A0A544LDAtest the sign of the second21A2OAASLA21A39015BCCbranch to 21BA if it is post21A5A544LDA21A7OALSLAadjust bit 14 of the second for 0 if it is negative21A8OALSLA21A990OCBCC21ABO643ASL21AFC645DEC21B1A544LDA21B3OAASLA	
21A2OAASLA21A39015BCCbranch to 21BA if it is post21A5A544LDA21A7OALSLAadjust bit 14 of the second for 0 if it is negative21A8OALSLA21A990OCBCC21ABO643ASL21AFC644ROL21AFC645DEC21B1A544LDA21B3OAASLA	number
21A39015BCCbranch to 21BA if it is post21A5A544LDA21A7OALSLAadjust bit 14 of the second for 0 if it is negative21A8OALSLA21A990OCBCC21ABO643ASL21AFC645DEC21B1A544LDA21B3OAASLA	
21A5A544LDA21A7OALSLAadjust bit 14 of the second for 0 if it is negative21A8OALSLA21A990OCBCC21ABO643ASL21AFC644ROL21AFC645DEC21B1A544LDA21B3OAASLA	itive
21A70ALSLA21A70ALSLA21A80ALSLA21A9900C21AB064321AD264421AFC64521B1A54421B30A21B30A	16116
21A7OAISLAadjust bit 14 of the second for 0 if it is negative21A8OALSLA21A990OCBCC21ABO643ASL21AD2644ROL21AFC645DEC21B1A544LDA21B3OAASLA	number
21A8 OA LSLA 21A9 90 OC BCC 21AB O6 43 ASL 21AD 26 44 ROL 21AF C6 45 DEC 21B1 A5 44 LDA 21B3 OA ASLA	IIumber
21A8 0A ESLA 21A9 90 0C BCC 21AB 06 43 ASL 21AD 26 44 ROL 21AF C6 45 DEC 21B1 A5 44 LDA 21B3 0A ASLA	
21A9 90 0C BCC 21AB 06 43 ASL 21AD 26 44 ROL 21AF C6 45 DEC 21B1 A5 44 LDA 21B3 0A ASLA	
21AB 06 4.3 ASL 21AD 26 44 ROL 21AF C6 45 DEC 21B1 A5 44 LDA 21B3 OA ASLA	
21AD 26 44 ROL 21AF C6 45 DEC 21B1 A5 44 LDA 21B3 OA ASLA	
21AF C6 45 DEC 21B1 A5 44 LDA 21B3 OA ASLA	
21B1 A5 44 LDA 21B3 OA ASLA	
21B3 OA ASLA	
ZIB4 OA ASLA	
21B5 BO F4 BCS branch to 24AB if bit 14 is	one
21B7 4C CE 21 JMP	
21BA A5 44 CDA adjust bit 14 of the second	d number
for 1 if it is positive	
21BC OA ASLA	
21BD OA ASLA	
21BE BO OE BCS	

21C2	06	43		ASL	
21C4	26	44		ROL	
21C6	C6	45		DEC	
21C8	A5	44		CDA	
21CA	OA	OA		ASLA	
21CC	90	F4		BCC	
21CE	A 5	42		CDA	
2100	C5	45		CMP	compare the exponents of two num-
2100	00			0.11	bers
21D2	FO	11		BEQ	branch to 21ES if equal
21D4	10	12		BPL	branch to slE8 if exp. of first
					number greater than second exp.
21D6	A5	41		LDA	
21D8	OA			ASLA	
21D9	66	41		ROR	
21DB	66	40		ROR	
2100	E6	42		TNC	
21DF	A 5	42		LDA	
2151	C5	45		CMP	
2152	30	4.J 121		PMT	
2105	50	r I PE	2.1	DITL	
21E0	40	FE	21	JMP	
ZIES	18			CLC	
21E9	A5	44		CDA	adjust two numbers for equal exp.
21EB	EA	EA		NOP	
21ED	OA			ASLA	
21EE	66	44		ROR	
21F0	66	re		ROR	
21F2	E6	45		Inc	
21F4	A5	42		LDA	
21F6	C5	45		CMP	
21F8	DO	EE		BNE	
21FA	EA	EA		NOP	
21FC	EA	EA		NOP	
21FE	A 5	42		LDA	store exp. of the result
2200	85	38		STA	
2202	D8	00		CLD	
2203	A 5	40		CDA	add low bytes of two numbers
2205	18	+0		CIC	add fow byceb of ewo nambero
2205	65	1.3		ADC	
2200	05	43		ADC CTA	
2200	05	50		CDA	add high but as of two numbers
220A	AD C F	41		CDA	add nigh bytes of two numbers
2200	65	44		ADC	
220E	85	37		STA	
2210	50	OF		BVC	branch to 2221 if overflow is clear
2212	EA	EA		NOP	
2214	EA			NOP	
2215	66	37		ROR	adjust result if overflow is set
2217	66	36		ROR	
2219	E6	38		INC	

ADDITION SUBROUTINE - Continued

221B	EA	EA		NOP	
221D	EA	EA		NOP	
221F	EA	EA		NOP	
2221	60			RTS	return from subroutine
2222	EA	EA		NOP	
2224	EA	EA		NOP	
2226	A5	33		LDA	test low byte of the second number
2228	DO	04		BNE	branch to 2150 if not zero
222A	A5	34		CDA	test high byte of the second number
222C	FO	04		BEQ	test high byte of the second number
222E	4 C	50	21	JMP	branch to 2232 if zero
2231	EA			NOP	
2232	A5	30		LDA	set result equal to first number if second number is zero
2234	85	36		STA	
2236	A5	31		LDA	
2238	85	37		STA	
223A	A5	32		LDA	
223C	85	38		STA	1
223E	4C	21	22	JMP	jump to return from subroutine
2241	A.5	33		LDA	J
2243	85	36		STA	set result equal to second number
2245	A5	34		LDA	if first number is zero
2247	85	37		STA	
2249	A5	35		LDA	
224B	85	38		STA	
224D	4C	21	22	JMP	jump to return from subroutine
			SUBTRACTION	SUBRO	UTINE
25B0	38			SEC	

2500	50			010	
25B1	A9	00		LDA	find 2's complement of second number
25B3	E5	33		SBC	-
25B5	85	33		STA	
25B7	A9	00		LDA	
25B9	E5	34		SBC	
25BB	85	34		STA	
25BD	4C	40	21	JMP	jump to addition subroutine
2500	EA			NOP	
25C1	EA			NOP	
25C2	EA			NOP	

DISPLAY PROGRAM

2490 2492	A5 85	2d FB		LDA-ze STA-ze	load high byte of rpm
2494 2496	A5 85	2C FA		LDA-ze	load low byte of rpm
2498	A 5	EF		LDA-ze	load adjusted injection pulse
2490	85	F9		STA-ze	Toda adjusted injection puise
2490	49	र 1		LDA-#	
249E	80	43	17	STA-AD	
2490	Δ <u>9</u>	75	± 7	LDA-#	
2443	80	41	17	STA-Ab	
2465	Δ2	00	1/	IDX-#	
24/10	40	03		LDY-#	
2440	RO	20	00		load accumulator with OOF8+V
2444	Δ.Δ.	10	00	ISR-A	Toad accumulator with 001011
24AD 24AE	41			I SP-A	
24AE	4/1			LOX-A	
24AP	44			LON-A	
24DU 24DU	20	4.8	15	ICD	iump to 1F/8
24 DL 27 D/	20	40 E0	<u>00</u>	T DA (V)	load accumulator with OCE84V
24D4 9/77	20	10	22	LDA (1)	Toad accumulator with ourori
24D/ 2/D0	29	1.9	117	ANDT	$i_{\rm HMD}$ to $1E/8$
24 B9 24 BC	20	40	11	DEV	Jump to Ir48
24DU 24DU	00	ED		DLI DNE	brench to 2/18 if V-ros is possive
24BD 24BD	DU	ED		DINE	branch to 24Ao II i=reg is negative
24DF 24CO	EA 40	5.0	0.2	NUP	iver to inication program
			DATA RE	CORDING PROC	GRAM
2900	A2	02		LDX	
2902	В5	8C		LDA,Xze	
2904	9D	99	39	SAX-Abs	store counts of rpm in memory locations 3000 to 3258
2907	CA			DEX	
2908	10	F8		BPL	
290A	18			CLC	
290в	AD	05	29	LDA-Abs	
290E	69	03		ADC#	
2910	OD	05	29	STA-Abs	
2913	AD	06	29	LDA-Abs	
2916	69	00		ADC#	
2918	8D	06	29	STA-Abs	
291B	38			SEC	
291C	AD	05	29	CDA-Abs	test end of rpm memory location
291F	E9	58		SBC#	
2921	AD	06	29	LDA-Abs	
2924	E9	32		SBC#	
2926	30	0A		BMI	branch to 2932 if rpm location is filled

DATA RECORDING PROGRAM - Continued

2928	A9	00		LDA#
292A	8D	05	29	STA-ze store rpm from location 3000 if
				all rpm location is filled
292D	A9	30		LDA#
292F	8D	06	29	STA-ze
2932	EA			NOP
2933	EA			NOP
293r	EA			NOP
2935	A2	02		LDX
2937	В5	AD		LDA,X-ze
2939	90	60	32	STA,X-Abs store counts of spark advance
				inlocations 3260 to 34B8
293C	CA			DEX
293D	10	F8		BPL
293F	18			CLC
2940	AD	34	29	LDA-Abs
2943	69	03	_ /	
2945	80	30	29	STA-Abe
2048		30	20	
2940	AD 60	00	29	
294D	90	20	20	
2940	0D 20	20	29	STA-ADS
2950	38	2.1	0.0	
2951	AD	3A	29	LDA-Abs test the end of spark advance
0051		- 0		memory locations.
2954	E9	B8		SBC#
2956	AD	3B	29	LDA-Abs
2959	E9	34		SBC#
295B	30	OA		BMI branch to 2967 if spark advance
				memory locations is not filled
295D	A9	60		LDA#
295F	8D	8A	29	STA-ABS store spark advance from 3260 if
				all locations are filled
2962	A9	32		LDA-#
2964	8D	3B	29	STA-Abs
2967	EA			NOP
2968	EA			NOP
2969	EA			NOP
296A	A2	02		LDX-#
296C	B5	B3		LDA.X-ze
296E	9D	69	34	STA X-Abs store counts of ignition time
2702	20	0,	04	in memory locations 34C0 to 3718
2971	CA			DEX
2972	10	F8		DPL
2974	18			CLC
2975	AD	6F	29	LDA-Abs
2978	69	03		ADC-#
297A	8D	6F	29	STA, Abs
297D	AD	70	29	LDA, Abs
2970	69	00		ADC-#

DATA RECORDING PROGRAM - Continued

2982	8D	70	29	STA, Abs
2905	20	(D	20	
2986	AD	6F	29	LDA-Abs test the end of ignition time memory location
2989	E9	18		SBC-#
298B	AD	70	29	LDA, Abs
298E	E9	37		SBC-#
2980	30	0A		BMI branch to 299C if ignition time
		~ ^		location is not filled
2992	A9	CO		LDA- <i>it</i>
2994	8D	6F	29	STA,Abs store counts of ignition time from 34C0 if locations is filled
2997	A9	34		CDA-#
2999	8D	70	29	STA, Abs
299C	EA			NOP
299D	EA			NOP
299E	EA			NOP
299F	A2	02		LDX-#
29A1	B5	86		LDA.X-ze
29A3	90	20	37	STA,Z-Abs store counts of air flow rate in
2946	CA			DEX
2947	10	F8		BPT
2949	18	10		
2944		Δ/1	29	I DA-Abs
2910	69	03	2)	
2945	80	0.J	20	STA Abc
20R2		A 5	29	I DA-Abs
2902	69	00	29	
2900	80	4.5	20	$ADC = \pi$
2004	20	AJ	29	STA-ADS
29DA 2000	06	. /	20	JEL IDA Ale test the sed of sim flow country
79BB	AD	A4	29	memory locations
29BE	E9	78		SBC-#
29C9	AD	A5	29	LDA-Abs
29C3	E9	39		SBC-#
29C5	30	OA		BMI branch to 29D1 if air flow memory locations is filled
29C7	A9	20		LDA- <i>i</i> !
29C9	8D	A5	29	STA-Abs store counts of air flow from location 3720
29CC	A9	37		CDA−#
29CE	8D	A5	29	STA-Abs
29D1	EA			NOP
2902	EA			NOP
2903	FA			NOP
2904	Δ2	02		LDX-#
2906	R5	10		LDA X-ZP
2900	90	80	30	STA X-Abs store counts of ignition time
2900	20	00	57	in memory locations 3980 to 3BD8

DATA RECORDING PROGRAM -Continued

29D8	90	80	39	STA,X-AI	bs store counts of ignition time in memory locations 3980 to 3BD8
2908	CA			DFX	
2000	10	F 8		RDI	
2900	10	ΓO		DIC	
29DE	10	20	20		
29DF	AD	D9	29	LDA,ADS	
29E2	69	03		ADC	
29E4	8D	D9	29	STA-Abs	
29E7	AD	DA	29	CDA-Abs	
29EA	69	00		ADC	
29EC	8D	Da	29	STA,Abs	
29EF	38			SEC	
29F0	AD	D9	29	CDA-Abs	test the end of ignition time
		29		0011 1100	counts location
2053	FQ	D8		SBC-#	counts rocation
2915	4D	DO	20		
29FJ	AD FO		29	LDA, ADS	
2910	E9	38		SBC-1	
29FA	30	0A		BWT	branch to 2A06 if locations of
					ignition time count are filled
29FC	A9	80		LDA-#	
29FE	8D	D9	29	STA, Abs	S
2A01	A9	39		LDA-#	
2A03	8D	DA	29	STA,Abs	
2A06	EA			NOP	
2407	FA			NOP	
2408	FA			NOP	
2400	A 5	FF		IDA RO	
2A09	AD	LL	2.12	LDA-2e	
ZAUB	80	EU	38	SIA-ADS	in memory locations 3BEO to 3CA8
2AOE	AD	0C	2A	LDA-Abs	
2A11	69	01		ADC	
2A13	8D	0C	2A	STA-Abs	
2A16	AD	OD	2A	LDA-Abs	
2A19	69	00		ADC	
241F	38	00		SEC	
2415	10	00	Ώ∧	IDA-Abc	tost the end of injection pulse
2417	70	00	ZA	LDA-ADS	location
2A22	E9	A8		SBC-#	
2A24	AD	OD	2A	LDA-ze	
2A27	E9	3C		SBC - #	
2A29	30	OA		BMI	branch to 2A35 if locations are not filled
2A2B	A9	EO		LDA-#	
2A2D	8D	OC	2A	STA-ze	
2A30	A9	3B		CDA-#	store counts of injection pulse
					from the location 3BEO

DATA RECORDING PROGRAM - Continued

2A32	8D	OD	2A	STA,ze
2A35	EA			NOP
2A36	EA			NOP
2A37	EA			NOP
2A38	4C	3D	28	JMP
2A3B	EA			NOP

MEAN CALCULATION PROGRAM (RPM)

2A50	A2	02		LDX call the first number
2A52	BD	00	30	LDA, X-Abs
2A55	95	30		STA,X-ze
2A57	CA			DEX
2A58	10	F8		DPL
2A5A	A2	02		LDX call the second number
2A5C	BD	03	30	LDA, X-Abs
2A5F	95	33		STA,X-ze
2A61	CA			DEX
2A62	10	F8		BPL
2A64	20	40	21	JSR jump to addition subroutine to
				add two numbers
2A67	A2	02		LDA
2A69	В5	36		LDA.X-ze
2A6B	95	30		STA.X-ze
2A6D	ĊĂ	50		DEX
2A6E	10	F9		BPI.
2470	A 2	02		LDX call the third number
2472	BD	06	30	LDA X-Abs
2475	95	22	50	STA X-70
2477	C A	55		DFY
2478	10	FS		BDI
2470	20	40	21	ISP jump to addition subroutine to
⊊n/n	20	40	~1	fine cum of first three numbers
247D	18			
2A75		73	2 ^	
2481	60	03	28	ΔDC_{-} adjust to find sum of the total
ZAUI	09	00		numbers
2A83	8D	73	2A	STA-Abs
2A86	AD	74	2A	LDA-Abs
2A89	69	00		ADC-#
2A8B	8D	74	2A	STA-Abs
2A8E	38			SEC test if all numbers are added
2A8F	AD	73	2A	CDA-Abs
2A92	E9	58		SBC-E
2A94	AD	74	2A	LDA-Abs
2A97	E9	32		SBC-#
2A99	30	DC		BMI branch to 2A67 if all numbers are
				not added

MEAN CALCULATION PROGRAM (RPM) - Continued

2А9Ъ	A2	02		LDX	
2A9D	B5	36		LDA,X-ze	load sum of the total number into the dividend of divide subroutine
2A9F	95	0A		STA,X-ze	
2AA2	CA			DEX	
2AA3	10	F9		BPL	
2AA5	A9	00		LDA-#	load number of values into the divisor of divide subroutine
2AA7	85	OD		STA-ze	
2AA9	A9	4B		LDA-#	
2AAB	85	OE		STA-ze	
2AAD	A9	FA		LDA-#	
2AAF	85	OF		STA-ze	
2AB1	20	00	25	JSR	jump to the divide subroutine
2AB4	A2	02		LDX	5
2AB6	B5	10		LDA,Xze	store result of the mean in the proper register
2AB8	9D	5A	32	STA, X-Ab	S .
2ABB	CA			DEX	
2ABA	10	F9		CDA-#	
2ABC	60			RTS	return from the subroutine

STANDARD DIVIATION CALCULATION PROGRAM (RPM)

2C00	A2	02		LDX
2CO2	BD	00	30	LDA, X-Abs compute difference of first number x, and mean \bar{x} , or $(x_1-\bar{x})$
2C05	95	30		STA, X-ze
2007	CA			DEX
2008	10	F8		DPL
2C0A	A2	02		LDX
2C0C	BD	5A	32	CDA, Z-Abs
2COF	95	33		STA,X-ze
2C11	CA			DEX
2C12	10	F8		DPL
2C14	20	BO	25	JSR jump to subtraction subroutine
2C17	A2	02		LDX
2C19	В5	36		LDA, X-ze compute result of $(x_1 - x)^2$
2C1B	95	01		STA,X-ze
2C1D	95	04		STA, X-ze
2C1F	CA			DEX
2C2O	10	F7		BPL
2C22	20	00	20	JSR jump to multiplication subroutine
2C25	A2	02		LDX
2C27	B5	26		LDA,X-ze store result of $(x - \overline{x})^2$ in a register
2C29	95	B6		STA,X-ze
2029	95	B 6		STA,X-ze

2C2B	CA			DEX
2C2C	10	F9		BPL
2C2E	A2	02		LDX
2C30	BD	03	30	LDA, X-Abs compute difference of second
0000	0.5	20		number x_2 and mean x or (x_2-x)
2033	95	30		STA, X-ze
2035	LA 10	70		DEX
2036	10	F8		BPL
2038	A2	02	<u> </u>	LDX
203A	BD	5A	32	LDA, X-Abs
2C3D	95	33		STA, X-ze
2C3F	CA			DEX
2040	10	F9	0.5	DPL
2042	20	BO	25	JSR jump to subtraction subroutine
2045	A2	02		LDX - 2
2C47	BS	36		LDA, X-ze compute result of (x_2-x)
2049	95	10		STA, X-ze
2C4B	95	04		STA, X-ze
2C4D	CA			DEX
204E	10	F7		BPL I I I I I I I I I I I I I I I I I I I
2050	20	00	20	JSR jump to multiply subroutine
2055	AZ D5	02		$\frac{LDX}{DA} = \frac{-2}{2} - \frac{2}{2}$
2055	BD	26		LDA, X-ze compute sum of $(x_1-x) + (x_2-x)$
2057	95	30		STA, X-ze
2059	CA 10	77.6		DEX
205A	10	F.9		
2050	AZ D5	02		LDX
ZUDE	BD	BO		LDA, X-ZE
2000	95	33		SIA, X-Ze
2002		70		
2003	10	F 9	2.1	DFL ICD iven to the addition subrauting
2005	20	40	21	JSK Jump to the addition subroutine
2000	AZ P5	02		LDA V no observe recent of $0x = \frac{1}{2} \frac{2}{1} (x = \frac{1}{2})^2$
ZCOA	Ca	20		LDA, λ -ze store result of $9x_1 - x_2 + (x_2 - x)$
2060	0.5	DC		IN A register
2000 2065	95 CA	00		DEV
200E 206F	10	FO		זכי
2001	18	ĽĴ		
2071		31	20	CDA 7-Abs adjust to compute Sum $(x - x)^2$
2072	69	03	20	ADC-20
2075	20 08	31	20	STA X-Abs
2C7A	AD	32	20	LDA X-Abs
2C7D	69	00	20	ADC-ze
2C7F	80	32	20	STA. X-Abs
2082	38	~ ~	20	SEC
2083	AD	31	2C	LDA.X-Abs test if x = x
2C86	E9	58		SBC-ze
2C88	AD	32	2C	LDA.X-Abs
				···

STANDARD DIVIATION CALCULATION PROGRAM (RPM) - Continued

2C8B	E9	32		SBC-ze
2C8D	30	9F		BMI branch to 2C2E if x, x
2C8F	A2	02		LDX
2C91	В5	В6		LDA,X-ze load sum $(x, -\overline{x})^2$ into the dividend of the divide subroutine
2093	95	OA		STA,X-ze
2C95	CA			DEX
2C96	10	F9		BPL
2C98	A9	CO		LDA-# load value of (n-1) into the divisor of the divide subroutine
2C9A	85	OD		STA-ze
2C9C	A9	4A		LDA-#
2C9E	85	OE		STA-ze
2CAO	A9	FA		LDA-#
2CA2	85	OF		STA-ze
2CA4	20	00	25	JSR jump to the divide subroutine
2CA7	A2	02		LDX
2CA9	B5	10		LDA,X-ze store the result of standard
0	0-	6 -		divistion in a proper subroutine
2CAB	9D	5D	32	STA,X-Abs
2CAE	CA			DEX
2CAF	10	F9		BPL
2CB1	60			RTS return from the subroutine

APPENDIX G

DETAILED CIRCUIT DIAGRAMS

Figure 61. TTL Peripheral Circuitry for The Air-Fuel Controller System

APPENDIX H

LIST OF DATA FOR AIR-FUEL RATIO TESTING

LIST OF DATA (BOSCH SYSTEM)

AFT RESULT	17.71	17.57	17.63	18.23	16.73	17.21	16.66	17.05	16.12	16.95	15.70	16.35	14.80	15.27	15.70	18.19	17.28	16.98	16.63	16.71	17.03	16.61	17.04	17.11	16.29	14.72	15.46	15.06	15.82	15.48
MFPM LB/MIN	.05876	.05885	.05862	.05670	.06178	.09540	.09841	.09541	.01005	.09559	.14264	.1367	.1486	.1435	.1394	.0839	.0875	.0869	.0877	.0860	.1334	.1367	.1335	.1330	.1396	.2139	.1999	.2053	.1956	.2000
AMFR LB/MIN	1.0404	1.0339	1.0339	1.0339	1.0339	1.6421	1.6397	1.6267	1.6204	1.6204	2.2401	2.2356	2.1990	2.1909	2.1898	1.5264	1.5131	1.4757	1.4584	1.4373	2.2706	2.2706	2.2751	2.2751	2.2751	3.1474	3.0887	3.0920	3.0953	3.0953
CVM FT ³ /MIN	14.7786	14.6855	14.6855	14.6855	14.6855	23.3494	23.3143	23.1291	23.0405	23.0405	31.8520	31.7376	31.2671	31.1521	31.1356	21.6291	21.4396	20.9099	20.6646	20.3665	32.1867	32.1867	32.2502	32.2502	32.2502	44.6931	43.8588	43.9056	43.9523	43.9523
DENAIR LB/FT ³	.07040	.07040	.07040	.07040	.07040	.07033	.07033	.07033	.07033	.07033	.07033	.07033	.07033	.07033	.07033	.07057	.07057	.07057	.07057	.07057	.07050	.07057	.07057	.07057	.07057	.07042	.07042	.07042	.07042	.07042
PW PSIA	.29497	.29497	.29497	.29497	.29497	.31626	.31626	.31626	.31626	.31626	.29497	.29497	.29497	.29497	.29497	.27494	.27494	.27494	.27494	.27494	.28495	.28495	.28495	.28495	.28495	.28495	.28495	.28495	.28495	.28495
DELTIM	408.4	407.8	409.4	423.3	388.4	251.6	243.9	251.5	238.7	251.1	168.3	175.5	161.5	167.3	172.1	286.1	274.2	276.1	273.7	276.7	179.9	175.5	179.8	180.5	171.8	112.2	120.1	116.9	122.7	123.7
DELGAS LB	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40
INJPU MIC-SEC	3681.3	3698.3	3700.0	3667.7	3697.3	3252.0	3251.7	3253.0	3293.7	3296.0	3373.5	3377.0	3377.0	3377.0	3375.6	4273.0	4273.0	4273.0	4273.0	4274.0	4149.0	4149.0	4i50.0	4149.C	4150.0	4148.0	4149.0	4150.0	4150.0	4150.0
ATMPR in-Hg	28.85	28.85	28.85	28.85	28.85	28.85	28.85	28.85	28.85	28.85	28.88	28.88	28.88	28.88	28.88	28.76	28.76	28.76	28.76	28.76	28.76	28.76	28.76	28.76	28.76	28.76	28.76	28.76	28.76	28.76
TWB °F	64.0	64.0	64.0	64.0	64.0	66.0	66.0	66.0	66.0	66.0	64.0	64.0	64.0	64.0	64.0	62.0	62.0	62.0	62.0	62.0	63.0	63.0	63.0	63.0	63.0	63.0	63.0	63.0	63.0	63.0
TDB °F	81.4	81.4	81.4	81.4	81.4	81.5	81.5	81.5	81.5	81.5	82.0	82.0	82.0	82.0	82.0	78.0	73.0	78.0	78.0	78.0	78.0	78.0	78.0	78.0	78.0	79.0	79.0	79.0	79.0	79.0
PMN in-H2O	.054	.053	.053	.053	.053	.133	.133	.131	.130	.130	.248	.247	.239	.237	.237	.115	.113	.107	.105	.102	.254	.254	.255	.255	.255	.488	.470	.471	.472	.472
AFS V	2.93	2.93	2.93	2.93	2.96	4.22	4.22	4.22	4.20	4.19	5.39	5.39	5.37	5.36	5.37	3.70	3.69	3.69	3.70	3.70	5.39	5.39	5.39	5.39	5.39	6.18	6.16	6.15	6.15	6.14
LOAD FT-LB	25.0	25.0	25.0	25.0	25.0	25.1	25.1	25.1	25.1	25.1	25.1	25.0	25.0	25.1	25.0	40.0	40.0	40.1	39.9	39.9	40.0	40.0	40.0	40.1	40.1	40.0	40.0	40.0	40.0	40.0
SPEED RPM	1193	1191	1198	1187	1205	2037	2042	2035	2028	2018	2837	2847	2822	2817	2825	1250	1250	1255	1240	1235	2055	2050	2045	2050	2055	2840	2810	2805	2810	2810

LIST OF DATA (AIR-FUEL RATIO 14-1) FINAL

AFR RESULT	14.25	14.48	14.05	14.02	14.04	13.86	13.22	13.03	13.20	13.53	13.04	13.82	13.49	13.38	13.45	13.99	14.13	1.3.94	13.89	13.89	14.30	13.76	13.60	14.30	14.02	13.61	13.80	13.98	13.53	14.04
MFPM LB/min	.05313	.05131	.05290	.05301	.05292	.07671	.08043	.08155	.08053	.07855	.12415	.11712	.11995	.12098	.12036	.07322	.07247	.07349	.07374	.07376	.10692	.11159	.11288	.10641	.10808	.16219	.16486	.16276	.16816	.16154
AMFR LB/MIN	.7573	.7432	.7432	.7432	.7432	1.0630	1.0630	1.0630	1.0630	1.0630	1.6184	1.6184	1.6184	1.6184	1.6184	1.0243	1.0243	1.0243	1.0243	1.0243	1.5286	1.5352	1.5352	1.5220	1.5154	2.2753	2.2753	2.2753	2.2753	2.2687
GFM FT ³ /MIN	10.1922	10.0011	10.0011	10.0011	10.0011	14.5520	14.5520	14.5520	14.5520	14.5520	22.5333	22.5333	22.5333	22.5333	22.5333	14.5423	14.5423	14.5423	14.5423	14.5423	21.7873	21.8814	21.8814	21.6932	21.5992	32.3748	32.3748	32.3748	32.3748	32.2809
DENAIR	.07431	.07431	.07431	.07431	.07431	.07305	.07305	.07305	.07305	.07305	.07183	.07183	.07183	.07183	.07183	.07043	.07043	.07043	.07043	.07043	.07016	.07016	.07016	.07016	.07016	.07028	.07028	.07028	.07028	.07028
PW PSIA	.15314	.15314	.15314	.15314	.15314	.17796	.17796	.17796	.17796	.17796	.20625	.20625	.20625	.20625	.20625	.31626	.31626	.31626	.31626	.31626	.32757	.32757	.32757	.32757	.32757	.32757	.32757	.32757	.32757	.32757
DELTIM	451.69	467.78	453.72	452.70	453.51	312.88	298.41	294.30	298.02	305.52	193.31	204.92	200.08	198.38	199.40	327.77	331.19	326.58	325.48	325.37	224.47	215.08	212.61	225.54	222.06	143.55	145.58	147.46	142.72	148.57
DELGAS LB	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40
INJPU MIC-SEC	3218	3318	3316	3318	3317	3124	3124	3124	3124	3124	3061	3061	3063	3061	3062	4341	4340	4342	4341	4342	3894	3895	3893	3894	3896	4150	4158	4159	4150	4150
ATMPR in-Hg	29.23	29.23	29.23	29.23	29.23	29.23	29.23	29.23	29.23	29.23	29.23	29.23	29.23	29.23	29.23	28.85	28.85	28.85	28.85	28.85	28.85	28.85	28.85	28.85	28.85	28.85	28.85	28.85	28.85	28.85
TWB °F	46.0	46.0	46.0	46.0	46.0	50.0	50.0	50.0	50.0	50.0	54.0	54.0	54.0	54.0	54.0	66.0	66.0	66.0	66.0	66.0	67.0	67.0	67.0	67.0	67.0	67.0	67.0	67.0	67.0	67.0
TDB °F	61.0	61.0	61.0	61.0	61.0	70.0	70.0	70.0	70.0	70.0	79.0	79.0	79.0	79.0	79.0	80.0	80.0	80.0	80.0	80.0	82.0	82.0	82.0	82.0	82.0	81.0	81.0	81.0	81.0	81.0
PMN $fn-H_20$.027	.026	.026	.026	.026	.054	.054	.054	.054	.054	.127	.127	.127	.127	.127	.052	.052	.052	.052	.052	.116	.117	.117	.115	.114	.256	.256	.256	.256	.255
AFS VOL	2.24	2.23	2.24	2.24	2.24	3.06	3.07	3.07	3.07	3.07	4.25	4.25	4.25	4.24	4.25	3.03	3.03	3.03	3.03	3.03	4.22	4.23	4.23	4.24	4.25	5.50	5.51	5.51	5.51	5.50
LOAD FT-LB	10.1	10.1	10.1	10.1	10.1	10.0	10.0	10.0	10.0	10.0	10.1	10.2	10.2	10.2	10.2	25.0	25.0	25.0	25.0	25.0	25.0	25.0	25.0	25.0	25.0	25.0	25.0	25.0	25.1	25.0
SPEED RPM	1265	1240	1265	1250	1260	2005	<u>1995</u>	1985	1995	1990	284N	2845	2845	2850	2845	1240	1230	1230	1235	1230	2020	2030	2030	2030	2040	2815	2810	2815	2820	2810

LIST OF DATA (AIR-FUEL RATIO 14-1) FINAL

FT-	LB VO	L in-H20	Ho Ho	H o	1n-Hg	MIC-SEC	LB	SEC	PSIA	DENALK	FT3/MIN	AMFR LB/MIN	MFPM LB/MIN	AFR RESUL1
C	0 3.7	4 . 092	71.0	56.0	29.21	5045	.40	280.35	.22183	.07272	19.0512	1.3854	.08560	16.18
0	0 3.7	3 .092	71.0	56.0	29.21	5140	.40	259.50	.22183	.07272	19.0512	1.3854	.09248	14.98
0	0 3.7	4.092	71.0	56.0	29.21	5172	.40	280.01	.22183	.07272	19.0512	1.3854	.08571	16.1(
40.	0 3.7	2.092	71.0	56.0	29.21	5175	.40	268.06	.22183	.07272	19.0512	1.3854	.08950	15.47
40.	0 3.7	1.092	71.0	56.0	29.21	5174	.40	270.77	.22183	.07272	19.0512	1.3854	.08864	15.6
40.	0 5.3	7 .229	75.0	56.0	29.21	5170	.40	168.43	.22183	.07268	30.1028	2.1880	.14249	15.3
40.	1 5.3	6 .228	75.0	56.0	29.21	5139	.40	172.18	.22183	.07268	30.0368	2.1832	.13939	15.6
40.	1 5.3	6 .228	75.0	56.0	29.21	5140	.40	171.35	.22183	.07268	30.0368	2.1832	.14006	15.5
40.	1 5.3	6.228	75.0	56.0	29.21	5108	.40	155.90	.22183	.07268	30.0368	2.1832	.15390	14.1
40.	1 5.3	6 .228	75.0	56.0	29.21	5107	.40	167.20	.22183	.07268	30.0368	2.1832	.14354	15.2
40.	0 6.3	0 .491	75.0	58.0	29.21	5171	.40	98.55	.23843	.07217	44.2839	3.1959	.24353	13.1
40.	1 6.3	0.491	75.0	58.0	29.21	5171	.40	111.05	.23843	.07217	44.2839	3.1959	.21612	14.7
40.	2 6.3	9.488	75.0	58.0	29.21	5172	.40	111.33	.23843	.07217	44.1481	3.1861	.21558	14.7
40.	1 6.3	0 .491	75.0	58.0	29.21	5172	.40	105.84	.23843	.07217	44.2839	3.1959	.22676	14.0
40.	2 6.3	0 .491	75.0	58.0	29.21	5172	.40	109.05	.23843	.07217	44.2839	3.1959	.22017	14.5

LIST OF DATA (AIR-FUEL RATIO 16-1) FINAL

AFR RESULT	16.18	16.05	16.67	16.18	16.54	15.37	15.54	15.29	15.44	15.34	15.84	15.51	15.60	15.82	15.62	14.67	14.92	15.12	15.22	15.82	15.50	15.82	15.59	15.62	16.06	16.20	16.07	15.27	15.02	14.15
MFPM LB/MIN	.04912	.04867	.04686	.04828	.04722	.07042	.07028	.07141	.07075	.07056	.10276	.10496	.10394	.10250	.10424	.06849	.06669	.06580	.05636	.06093	.09811	.09656	.09713	.09862	.09637	.14107	.14201	.14908	.15122	.16002
AMFR LB/MIN	.79468	.78123	.78128	.78128	.78128	1.0827	1.0923	1.0923	1.0923	1.0827	1.6279	1.6279	1.6214	1.6214	1.6279	1.0052	.99508	.99508	.99508	.96405	1.5212	1.5279	1.5144	1.5413	1.5479	2.2857	2.2834	2.2766	2.2721	2.2651
GFM FT ³ /MIN	10.7961	10.6141	10.6141	10.6141	10.6141	14.8175	14.9496	14.9496	14.9496	14.8175	22.4019	22.4019	22.3133	22.3133	22.4019	14.2469	14.1033	14.1034	14.1034	13.6636	21.3262	21.4201	21.2309	21.2309	21.7005	31.9723	31.9401	31.8450	31.7821	31.6841
DENAIR LB/FT ³	.07361	.07361	.07361	.07361	.07361	.07361	.07361	.07361	.07361	.07361	.07267	.07267	.07267	.07267	.07267	.07056	.07056	.07056	.07056	.07056	.07133	.07133	.07133	.07133	.07133	.07149	.07149	.07149	.07149	.07149
PW PSIA	.16514	.16514	.16514	.16514	.16514	.17155	.17155	.17155	.17155	.17155.	.17796	.17796	.17796	.17796	.17796	.31626	.31626	.31626	.31626	.31626	.29497	.29497	.29497	.29497	.29497	.28432	.28432	.28432	.28432	.28432
DELTIM	488.64	493.10	512.19	497.13	508.21	340.79	341.47	336.09	339.19	340.12	233.55	228.65	230.90	234.15	230.24	350.38	359.85	364.72	367.17	393.89	244.61	248.54	247.09	243.35	249.04	170.13	169.00	160.99	158.71	149.98
DELGAS	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	• 40	.40	.40	.40	.40	.40
INJPU MIC-SEC	2997	2 998	3124	3120	3020	2869	2870	2869	2869	2870	2805	2806	2805	2805	2806	3894	3829	3828	3829	3828	3571	3508	3540	3571	3541	3637	3638	3638	3636	3637
ATMPR in-Hg 1	29.23	29.23	29.23	29.23	29.23	29.23	29.23	29.23	29.23	29.23	29.23	29.23	29.23	29.23	29.23	28.85	28.85	28.85	28.85	28.85	29.19	29.19	29.19	29.19	29.19	29.19	29.19	29.19	29.19	29.19
TWB °F	48.0	48.0	48.0	48.0	48.0	49.0	49.0	49.0	49.0	49.0	50.0	50.0	50.0	50.0	50.0	66.0	66.0	56.0	56. 0	66.0	64.0	64.0	64.0	64.0	64.0	63.0	63.0	53.0	63.0	63.0
TDB °F	66.0	66.U	66.0	66.0	66.0	70.0	70.0	70.0	70.0	70.0	73.0	73.0	73.0	73.0	73.0	79.0	79.0	79.0	79.0	79.0	80.0	80.0	80.0	80.0	80.0	79.0	79.0	79.0	79.0	79.0
PMN <u>1n-H2O</u>	.030	.029	.029	.029	.029	.056	.057	.057	.057	.056	.127	.127	.126	.126	.127	.050	.049	.049	.049	.046	.113	.114	.112	,116	.117	.254	.254	.252	.251	.250
AFS	2.27	2.27	2.24	2.25	2.27	3.09	3.10	3.10	3.10	3.10	4.24	4.24	4.26	4.25	4.26	3.00	2.99	2.98	2.98	2.83	4.24	4.22	4.15	4.14	4.15	5.43	5.43	5.43	5.42	5.43
LOAD FT-LB	10.0	10.0	10.0	10.0	10.0	9.9	9.8	9.9	9.9	9.8	10.0	10.1	10.1	10.1	10.1	24.9	25.0	25.0	25.0	24.9	25.1	25.2	25.1	25.1	25.0	25.0	25.0	25.0	24.9	25.0
SPEED RPM	1270	1230	1230	1240	1220	2005	1995	2000	2010	2000	2845	2845	2830	2840	2845	1230	1250	1250	1250	1175	2032	2023	2003	2010	2020	2825	2815	2815	2815	2805

LIST OF DATA (AIR-FUEL RATIO 16-1) FINAL

AFR RESULT	18.51	17.18	18.41	18.27	17.50	17.14	16.77	16.60	16.27	16.52	17.76	16.27	15.90	16.43	16.81
MFPM LB/MIN	.08605	.09232	.08215	.08281	.08645	.13304	.13542	.13681	.13961	.13746	.19319	.21084	.21608	.20219	.19766
AMFR LB/MIN	1.59289	1.58638	1.51297	1.51297	1.51297	2.28027	2.27132	2.27132	2.27132	2.27132	3.4302	3.4302	3.4363	3.3220	3.3220
GFM FT ³ /MIN	22.4900	22.4036	21.3670	21.3670	21.3670	32.3034	32.1767	32.1767	32.1767	32.1767	47.4960	47.4960	47.5802	45.9973	45.9973
DENAIR	.07081	.07081	.07081	.07081	.07081	.07059	.07059	.07059	.07059	.07059	.07222	.07222	.07222	.07222	.07222
PW PSIA	.20625	.20625	.20625	.20625	.20625	.21404	.21404	.21404	.21404	.21404	.22183	.22183	.22183	.22183	.22183
DELTIM	278.90	259.97	292.12	289.81	277.62	180.39	177.23	175.42	171.91	174.59	124.23	113.83	111.07	118.70	121.42
DELGAS LB	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40
INJPU MIC-SEC	4748	4790	4851	4854	4850	4734	4724	4724	4725	4725	4724	4725	4726	4728	4660
ATMPR in-Hg	29.21	29.21	29.21	29.21	29.21	29.21	29.21	29.21	29.21	29.21	29.21	29.21	29.21	29.21	29.21
TWB °F	54.0	54.0	54.0	54.0	54.0	55.0	55.0	55.0	55.0	55.0	56.0	56.0	56.0	56.0	56.0
TDB °F	71.0	71.0	71.0	71.0	71.0	73.0	73.0	73.0	73.0	73.0	75.0	75.0	75.0	75.0	75.0
PMN In-H ₂ O	.123	.122	.111	.111	.111	.256	.254	.254	.254	.254	.534	.534	.540	.503	.496
AFS VOL	4.02	4.01	3.79	3.84	3.85	5.46	5.45	5.44	5.46	5.46	6.36	6.36	6.37	6.31	6.30
LOAD FT-LB	40.0	40.0	40.0	40.0	40.0	40.0	39.8	40.0	39.9	39.9	40.0	40.0	40.0	40.0	40.0
SPEED RPM	1280	1275	1210	1220	1220	2000	2010	1995	2010	2010	2880	2885	2900	2835	2830

FINAL
18-1)
RATIO
(AIR-FUEL
DATA
LIST

AFR RESULT	17.93	18.16	18.25	18.56	18.10	17.54	16.83	16.89	17.14	17.21	17.74	17.31	17.50	17.68	17.36	17.65	17.52	16.10	19.56	16.27	18.21	18.67	18.32	19.55	19.94	17.97	17.30	18.04	17.77	18.00
MFPM B/MIN	.04494	.04647	.04692	.04612	.04663	.06703	.06987	.06961	.06861	.06832	.09831	.10107	.099996	.09896	.10044	.06213	.06311	.06461	.06269	.06755	.09813	.10593	.10092	.10086	.10096	.13837	.14359	.13626	.14370	.13713
AMFR LB/MIN 1	.80564	.84383	.85618	.85618	.84383	1.17570	1.17570	1.17570	1.17570	1.17570	1.74373	1.74975	1.74,975	1.74975	1.74373	1.09649	1.10562	1.04007	1.22630	1.09924	1.94686	1.97761	1.94996	1.96740	1.97761	2.4866	2.4826	2.4583	2.5541	2.4684
CFM FT ³ /MIN	11.0054	11.5271	11.6958	11.6958	11.5271	16.0899	16.0899	16.0899	16.0899	16.0899	23.8864	23.9689	23.9689	23.9689	23.8864	15.6815	15.8120	14.8746	17.5379	15.7207	27.9105	28.3513	27.9599	28.2051	28.3513	35.8926	35.8345	35.4839	36.8660	35.6304
DENAIR LB/FT ³	.07320	.07320	.07320	.07320	.07320	.07307	.07307	.07307	.07307	.07307	.07300	.07300	.07300	.07300	.07300	.06992	.06992	.06992	.06992	.06992	.06975	.06975	.06975	.06975	.06975	.06927	.06927	.06927	.06927	.06927
PW PSIA	.19165	.19165	.19165	.19165	.19165	.17155	.17155	.17155	.171.55	.17155	.19165	.19165	.19165	.19165	.19165	.32757	.32757	.32757	.32757	.32757	.33889	.33889	.33889	.33889	.33889	.33889	.33889	.33889	.33889	.33889
DELTIM SEC	534.09	516.49	511.47	520.38	514.69	348.02	343.47	344.81	349.82	351.27	244.12	237.46	240.09	242.53	238.95	386.27	380.30	371.45	382.81	355.28	224.57	226.56	237.81	217.94	217.71	167.26	167.26	176.13	167.02	175.01
DELGAS LB	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40
INJPU MIC-SEC	3125	3126	3190	3120	3140	2742	2740	2677	2692	2720	2742	2740	2741	2741	2742	3731	3765	3637	3637	3741	3702	3655	3742	3702	3701	3604	3637	3701	3636	3573
ATMPR 1n-Hg	29.26	29.26	29.26	29.26	29.26	29.23	29.23	29.23	29.23	29.23	29.23	29.23	29.23	29.23	29.23	28.80	28.80	28.80	28.80	28.80	28.55	28.55	28.55	28.55	28.55	28.55	28.55	28.55	28.55	28.55
TWB °F	52.0	52.0	52.0	52.0	52.0	49.0	49.0	49.0	49.0	49.0	52.0	52.0	52.0	52.0	52.0	67.0	67.0	67.0	67.0	67.0	68.0	68.0	68.0	68.0	68.0	68.0	68.0	68.0	68.0	68.0
TDB °F	69.0	69.0	69.0	69.0	69.0	70.0	70.0	70.0	70.0	70.0	70.0	70.0	70.0	70.0	70.0	83.0	83.0	83.0	83.0	83.0	79.0	79.0	79.0	79.0	79.0	83.0	83.0	83.0	83.0	83.0
PMN 1n-H ₂ O	.031	.034	.035	.035	.034	.066	.066	• 066	.066	• 066	.145	.146	.146	.146	.146	.060	.061	.054	.075	.061	.189	.195	.190	.193	.195	.310	.309	.303	.326	.305
AFS VOL	2.44	2.55	2.57	2.57	2.50	3.27	3.28	3.28	3.28	3.27	4.37	4.37	4.37	4.37	4.37	3.13	3.16	3.07	3.06	3.43	5.03	5.04	5.04	5.05	5.05	5.68	5.67	5.64	5.74	5.66
LOAD FT-LB	10.0	10.1	10.1	10.1	10.1	10.0	9.9	10.0	10.1	9.9	10.0	10.0	10.0	10.0	10.0	25.1	25.0	25.0	25.0	25.0	25.0	25.2	25.0	25.0	25.0	25.0	25.0	25.0	25.1	25.1
SPEED RPM	1200	1270	1240	1250	1230	2020	2005	2060	2050	2010	2870	2865	2900	2860	2880	1247	1227	1235	1227	1340	2000	2070	1990	2030	2000	2837	2835	2727	2903	2840

LIST DATA (AIR-FUEL RATIO 18-1) FINAL

MIN RESULT	804 18.44	974 20.20	996 20.08	818 20.62	342 19.46	716 19.00	507 19.25	725 18.92	831 18.60	752 18.72	695 17.43	990 18.20	510 18.86	219 19.18	247 19.22
/MIN LB/	6232 .08	8125.08	80.69.08	8181.08	8181.09	4167 .12	4082 .12	4082 .12	3870.12	3870.12	4321.19	4558 .18	3021 .17	3021 .17	3144 .17
ET ³ /MIN LE	24.0009 1.	25.6835 1.	25.6039 1.	25.7628 1.	25.7629 1.	34.3017 2.	34.1821 2.	34.1821 2.	33.8811 2.	33.8811 2.	48.7360 3.	49.0719 3.	46.8895 3.	46.8895 3.	47.0643 3.
DENALK LB/FT ³	.07057	.07057	.07057	.07057	.07057	.07045	.07045	.07045	.07045	.07045	.07042	.07042	.07042	.07042	.07042
PW PSIA	.27494	.27494	.27494	.27494	.27494	.27494	.27494	.27494	.27494	.27494	.28495	.28495	.28495	.28495	.28495
DELTIM	272.61	267.43	266.78	272.17	256.89	188.73	191.89	188.61	187.04	188.20	121.86	126.38	137.06	139.38	139.15
DELGAS LB	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40
MIC-SEC	4660	4662	4570	4660	4728	4536	4470	4533	4532	4469	4405	4469	4469	4480	4469
in-Hg l	28.76	28.76	28.76	28.76	28.76	28.76	28.76	28.76	28.76	28.76	28.76	28.76	28.76	28.76	28.76
H° TWB	62.0	62.0	62.0	62.0	62.0	62.0	62.0	62.0	62.0	62.0	63.0	63.0	63.0	63.0	63.0
H of L D B	78.0	78.0	78.0	78.0	78.0	79.0	79.0	79.0	79.0	79.0	79.0	79.0	79.0	79.0	79.0
1n-H2O	.130	.162	.161	.163	.163	.288	.286	.286	.281	.281	.580	.588	.537	.537	.541
VOL	4.16	4.86	4.86	4.87	4.87	5.62	5.61	5.61	5.59	5.59	6.45	6.47	6.38	6.38	6.39
FT-LB	39.7	39.9	40.0	40.0	40.0	40.1	40.2	40.0	40.0	40.0	40.1	40.1	40.0	40.0	40.0
SPEED RPM	1230	1430	1400	1400	1420	2030	2020	2050	2020	2030	2875	2890	2785	2785	2793

LIST OF DATA (FIRST INJECTOR CALIBRATION)

AFR RESULT	15.21	14.12	14.74	16.26	16.15	17.05	16.75	17.72	17.94	17.84	15.74	17.39	17.20	17.14	15.88	19.14	18.83	21.02	19.41	19.85	20.39	20.08	19.75	20.05	20.07	20.55	19.81	18.48	19.58	20.25
MFPM LB/MIN	.06737	.07259	.06951	.06280	.06284	.09648	.09762	.09375	.09142	.09104	.14584	.13199	.13186	.13153	.14199	.05922	.06020	.05567	.05841	.05710	.09688	.09835	.09946	.09850	.09789	.12729	.13565	.14606	.13730	.13331
AMRF LB/MIN	1.0249	1.0249	1.0249	1.0210	1.0150	1.6447	1.6349	1.6615	1.6401	1.6246	2.2957	2.2947	2.2690	2.2555	2.2555	1.1335	1.1335	1.1702	1.1335	1.1335	1.9754	1.9754	1.9646	1.9754	1.9647	2.6162	2.6881	2.6999	2.6881	2.6999
CFM FT ³ /MIN	14.5332	14.5332	14.5332	14.4770	14.3923	23.4451	23.3063	23.6847	23.3793	23.1588	32.5885	32.5885	32.2092	32.0179	32.0179	15.4202	15.4202	15.9192	15.4202	15.4202	26.9200	25.4200	26.7737	26.4200	26.7737	35.6535	36.6333	36.7940	36.6333	36.7940
DENAIR LB/FT ³	.07052	.07052	.07052	.07052	.07052	.07015	.07015	.07015	.07015	.07015	.07045	.07045	.07045	.07045	.07045	.07351	.07351	.07351	.07351	.07351	.07338	.07338	.07338	.07338	.07338	.07338	.07338	.07338	.07338	.07338
PW PSIA	.28996	.28996	.28996	.28996	.28996	.31626	.31626	.31626	.31626	.31626	.33889	.33889	.33889	.33889	.33889	.17155	.17155	.17155	.171.55	.17155	.17796	.17796	.17796	.17796	.17796	.17796	.17796	.17796	.17796	.17796
DELTIM SEC	356.24	330.61	345.26	351.82	381.91	248.76	245.84	255.99	262.51	263.62	164.56	181.83	182.01	182.46	169.02	405.29	398.68	431.10	410.86	420.31	247.73	244.03	241.30	243.66	245.18	188.54	176.93	164.31	174.81	180.03
DELGAS LB	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40
INJPU MIC-SEC	3777	3765	3765	3765	3764	3380	3380	3380	3378	3379	3444	3444	3422	3402	3380	3700	3637	3639	3638	3639	3574	3536	3574	3560	3550	3511	3572	3573	3550	3570
ATMPR in-Hg 1	28.85	28.85	28.85	28.85	28.85	28.85	28.85	28.85	28.85	28.85	28.85	28.85	28.85	28.85	28.85	29.26	29.26	29.26	29.26	29.26	29.26	29.26	29.26	29.26	29.26	29.26	29.26	29.26	29.26	29.26
TWB °F	63.5	63.5	63.5	63.5	63.5	66.0	66.0	66.0	66.0	66.0	68.0	68.0	68.0	68.0	68.0	49.0	49.0	49.0	49.0	49.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0
TDB °F	80.5	80.5	80.5	80.5	80.5	83.0	83.0	83.0	83.0	83.0	80.0	80.0	80.0	80.0	30.0	67.0	67.0	67.0	67.0	67.0	68.0	68.0	68.0	68.0	68.0	68.0	68.0	68.0	68.0	68.0
PMN fn-H ₂ 0	.052	.052	.052	.052	.051	.134	.132	.137	.133	.131	.260	.260	.254	.251	.251	.061	.061	.065	.061	.061	.185	.185	.183	.185	.183	.324	.342	.345	.342	. 345
AFS VOL	3.07	3.06	3.04	3.03	3.02	4.36	4.30	4.36	4.28	4.20	5.46	5.45	5.41	5.41	5.41	3.38	3.38	3.39	3.38	3.38	5.17	5.17	5.17	5.17	5.17	5.79	5.84	5.85	5.84	5.85
LOAD FT-LB	24.9	25.0	25.0	25.0	25.0	25.0	25.0	25.0	25.1	25.1	25.1	25.0	25.0	25.1	25.1	24.9	24.9	24.9	24.9	24.9	25.1	25.1	25.1	25.1	25.1	24.9	24.9	25.0	25.0	25.0
SPEED RPM	1225	1228	1225	1217	1219	2025	2015	2032	2017	1997	2821	2835	2798	2800	2795	1200	1240	1200	1210	1220	2030	2040	2030	2030	2030	2735	2780	2800	2790	2780
	1 .:	.+	4.	4.	4.	4.	4.	4.	.4.	. 4	4.	.4.	.4.	4.	.4.	.6.	.6.	.6.	.6.	.6.	.6.	.6.	-6.	.6.	.6.	.6.	-6.	.6.	.0	

LIST OF DATA (SECOND INJECTOR CALIBRATION)

ARF RESULT	17.59	17.69	17.49	17.59	17.51	18.43	16.86	17.81	17.56	17.96	16.36	16.23	16.56	16.29	16.46	14.04	14.97	13.27	13.74	13.92	16.85	16.24	16.99	17.72	18.71	17.71	17.86	17.91	17.89	17.49
MFPM LB/MIN	.06283	.06248	.06316	.06280	.06310	.09859	.10464	.09871	.10016	.09788	.14703	.14819	.14496	.14739	.14589	.05049	.05027	.05940	.05766	.05691	.09226	.09160	.09150	.08820	.08951	.12809	.13193	.13035	.13056	.13319
AMRF LB/MIN	1.1050	1.1050	1.1050	1.1050	1.1050	1.8174	1.7644	1.7584	1.7584	1.7584	2.4053	2.4053	2.4009	2.4009	2.4009	.7922	.7922	.7922	.7922	.7922	1.5545	1.4881	1.5545	1.5629	1.6742	2.3360	2.3227	2.3337	2.3361	2.3292
CFM FT ³ /MIN	15.0378	15.0378	15.0378	15.0378	15.0378	24.8194	24.0954	24.0137	24.0137	24.0137	32.7796	32.7796	32.7195	32.71.95	32.7195	11.1926	11.1926	11.1926	11.1926	11.1926	22.1656	21.2194	22.1660	22.2860	23.8870	31.9600	31.8450	31.9310	31.9620	31.8692
DENAIR LB/FT ³	.07348	.07348	.07348	.07348	.07348	.07322	.07322	.07322	.07322	.07322	.07338	.07338	.07338	.07338	.07338	.07078	.07078	.07078	.07078	.07078	.07012	.07012	.07012	.07012	.07012	.07309	.07309	.07309	.07309	.07309
PW PSIA	.18481	.18481	.18481	.18481	.18481	.18405	.18405	.18405	.18405	.18405	.17796	.17796	.17796	.17796	.17796	.26303	.26303	.26303	.26303	.26303	.28432	.28432	.28432	.28432	.28432	.27368	.27368	.27368	.27368	.27368
DELTIM SEC	381.97	384.12	379.98	382.15	380.32	243.42	229.36	243.13	239.62	245.20	163.23	161.95	165.56	162.83	164.51	425.35	455.18	404.14	416.22	421.68	260.13	262.00	262.17	272.10	268.13	187.37	181.92	184.12	183.83	180.20
DELGAS LB	. 40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40
INJPU MIC-SEC	3768	3832	3820	3840	3820	3573	3574	3573	3573	3574	3637	3637	3572	3637	3640	3480	3520	3511	3470	3498	3263	3331	3221	3223	3253	3255	3316	3253	3252	3252
ATMPR in-Hg	29.26	29.26	29.26	29.26	29.26	29.26	29.26	29.26	29.26	29.26	29.26	29.26	29.26	29.26	29.26	28.88	28.88	28.88	28.88	28.88	28.88	28.88	28.88	28.88	28.88	28.88	28.88	28.88	28.88	28.88
TWB °F	51.0	51.0	51.0	51.0	51.0	51.0	51.0	51.0	51.0	51.0	50.0	50.0	50.0	50.0	50.0	61.0	61.0	61.0	61.0	61.0	63.0	63.0	63.0	63.0	63.0	62.0	62.0	62.0	62.0	62.0
TDB °F	67.0	67.0	67.0	67.0	67.0	69.0	69.0	69.0	69.0	69.0	68.0	68.0	68.0	68.0	68.0	79.0	79.0	79.0	79.0	79.0	84.0	84.0	84.0	84.0	84.0	82.0	82.0	82.0	82.0	82.0
PMN in-H ₂ 0	.058	.058	.058	.058	.058	.157	.148	.147	.147	.147	.274	.274	.273	.273	.273	.031	.031	.031	.031	.031	.120	.110	.120	.121	.139	.239	.258	.259	.259	.258
VFS VOL	0	20	.19	.20	.19	4.78	4.78	4.73	4.73	4.73	5.57	5.56	5.56	5.56	5.56	2.94	3.11	3.10	3.05	3.05	4.66	4.61	4.44	4.35	4.53	5.48	5.49	5.49	5.49	5.49
	3.1	з.	ŝ	\mathcal{C}	ር)	~																								
LOAD A FT-LB V	25.0 3.1	24.8 3.	25.0 3.	25.0 3	25.0 3	25.0 4	25.0	25.0	25.0	25.0	25.0	25.0	25.0	25.0	25.0	24.9	25.0	25.1	25.1	25.0	25.0	25.0	25.1	25.0	25.0	25.0	25.0	25.1	25.1	25.0
SPEED LOAD A RPM FT-LB V	1250 25.0 3.1	1230 24.8 3.	1250 25.0 3.	1240 25.0 3	1235 25.0 3	2070 25.0 4	2050 25.0	2040 25.0	2060 25.0	2050 25.0	2880 25.0	2830 25.0	2830 25.0	2830 25.0	2840 25.0	1202 24.9	1212 25.0	1237 25.1	1223 25.1	1210 25.0	2037 25.0	2007 25.0	2012 25.1	1983 25.0	2045 25.0	2795 25.0	2802 25.0	2805 25.1	2810 25.1	2817 25.0

APPENDIX I

LIST OF DATA FCR SPARK IGNITION TESTING

LIST OF DATA FOR IGNITION SYSTEM

		DISTRIB-	COMPUTED					
	SPEED	UTOR	SPEED	SPARK ADV	SPARK ADV	SPARK ADV		
	(RPM)	CYCLE (MS)	(RPM)	BASED ON	BASED ON	ACTUAL	DWELL	DWELL
]	DAYTRONIC	SCOPE	FROM DIST	DIST (MS)	DIST (MS)	(DEG CS)	(MS)	(DEG CS)
-								
	1015	116.0	1034.0	3.30	20.48	5.05	7.10	44.07
	1030	116.0	1034.0	3,50	21.72	6.29	7.30	45.31
	1010	116.0	1034.0	3.40	21.10	5.67	7.00	43.45
	1010	120.0	1000.0	3.30	19.80	5.27	7.20	43.20
	980	116.0	1034.0	3.20	19.86	4.37	7.10	44.07
	910	131 0	916 0	3 40	18 69	3.43	7.50	41 22
	1065	122 0	983 6	3 50	20.66	5.23	7.20	42.49
	960	124 0	967 7	3 50	20.00	4 89	7 60	42.49
	1015	122.0	083 6	3.14	18 53	3 10	7 50	44.26
	1010	122.0	903.0	3.14	10.00	5.10	7.50	44.20
	1265	94 0	1276 6	3 75	28 72	13.29	6.0	45 96
	1200	93.0	1200.3	3 85	20.72	1/ 38	6.0	45.47
	2165	95.0	1250.5	3.60	27.01	11 85	6.0	45.47
	2105	91.0	1218 7	3.65	27.20	13 45	5 5	43.47
	1220	91.0	1200.2	3.00	20.00	14 76	5.5	43.52
	1230	93.0	1290.5	3.90	27 02	14.70	0.0 4 1	40.45
	1230	90.0	1224.5	3.00	27.92	12.49	0.1	44.40
	2100	102.0	11/0.5	3.70	20.11	10.08	0.0	42.35
	2170	97.0	1237.1	3.75	28.57	13.14	6.1	44.90
	1240	94.0	12/6.6	3.65	27.96	12.53	6.0	45.96
	1600	75 5	1500 /	2.84	26 61	21 10	. 7	11 00
	1600	77.0	1602 1	2.04	30.01 27 70	21.10	4.7	44.02
	1609	74.9	1602.1	2.95	37.70	22.35	4.0	40.14
	1610	74.7	1606.4	3.80	30.02	21.19	4.7	45.30
	1590	/5./	1585.2	3.88	36.90	21.47	4.0	43.75
	1595	/5.5	1589.4	3.92	37.38	21.95	4./	44.82
	1590	75.0	1600.0	3.84	36.86	21.43	4.6	44.16
	1595	/5.3	1593.6	3.80	36.33	20.90	4.8	45.89
	1600	75.2	1595.7	3.90	37.34	21.91	4.8	45.95
	1605	74.9	1602.1	3.78	36.33	20.90	4.7	45.18
	2005	(0,0	2000 0	2 70		20 07	1.0	1.9 0
	2005	60.0	2000.0	3.70	44.4	20.97	4.0	40.0
	1995	60.0	2000.0	3.90	40.8	31.37	4.0	40.0
	1985	60.0	2000.0	3.80	45.6	30.17	4.0	48.0
	2005	60.0	2000.0	3.60	43.2	27.77	4.0	48.0
	1997	60.0	2000.0	3.85	46.2	30.77	4.0	48.0
	2000	60.0	2000.0	3.80	45.6	30.17	4.0	48.0
	2020	59.0	2033.9	3.70	45.1	29.67	4.0	48.8
	2005	58.0	2069.0	3.60	44.6	29.17	4.0	49.6
	2060	58.0	2069.0	3.75	46.5	31.07	4.0	49.6

LIST OF DATA FOR IGNITION SYSTEM

	DISTRIB-	COMPUTED					
SPEED	UTOR	SPEED	SPARK ADV	SPARK ADV	SPARK ADV		
(RPM)	CYCLE (MS)	(RPM)	BASED ON	BASED ON	ACTUAL	DWELL	DWELL
DAYTRONIC	SCOPE	FROM DIST	DIST (MS)	DIST (MS)	(DEG CS)	(MS)	(DEG CS)
2370	50.4	2381.9	3.70	52.87	37.44	3.10	44.30
2350	51.0	2353.9	3.70	52.25	36.82	3.14	44.34
2340	51.1	2347.4	3.60	50.70	35.27	3.08	43.38
2345	51.7	2321.1	3.80	52.92	37.49	3.15	43.87
2330	51.6	2323.8	3.80	53.00	37.57	3.13	43.64
2350	51.1	2347.4	3.60	50.70	35.27	3.06	43.09
2360	51.1	2350.2	3.50	49.35	33.92	3.18	44.84
2335	51.2	2341.9	3.70	52.00	36.57	3.09	43.42
2350	51.3	2340.1	3.60	49.14	33.71	3.15	44.30
2840	41.0	2926.8	3.16	55.58	40.15	2.50	43.90
2845	42.0	2857.1	3.27	56.06	40.63	2.55	43.71
2850	42.0	2857.1	3.20	54.94	39.51	2.50	42.86
2845	42.0	2857.1	2.98	51.09	35.66	2.55	43.71
2845	42.0	2857.1	2.91	49.97	34.54	2.50	42.86
2830	41.0	2926.8	3.02	53.03	37.60	2.50	43.90
2870	40.0	3000.0	2.91	52.47	37.04	2.50	45.00
2865	41.0	2926.8	3.12	54.88	39.45	2.50	43.90
2900	40.0	3000.0	3.01	54.27	38.84	2.50	45.00

VITA

Firooz Bakhtiari-Nejad

Candidate for the Degree of

Master of Science

- Thesis: DESIGN AND TESTING OF A MICROCOMPUTER AIR-FUEL RATIO, IGNITION TIMING SYSTEM FOR AN ELECTRONICALLY FUEL INJECTED INTERNAL COMBUSTION ENGINE
- Major Field: Mechanical Engineering

Biographical:

- Personal Data: Born in Kermanshah, Iran, August 5, 1951, the son of Abolghasem and Monereh Bakhtiari-Nejad.
- Education: Graduated from Merat High in Tehran, Iran, in 1970; received two Bachelor of Science degrees in Electrical Engineering in May 1975 and in Mechanical Engineering in December 1975 both from Kansas State University, Manhattan, Kansas; completed requirements for the Master of Science degree in Mechanical Engineering at Kansas State University in April, 1976.
- Professional Experience: Worked as a graduate teaching assistant from August 1976 to May 1978 at Mechanical Engineering Department of Kansas State University.
- Professional Organizations: Member of the American Society of Mechanical Engineerings; American Society of Heating, Refrigerating and Air-Conditioning Engineering.

ACKNOWLEDGEMENT

The author wishes to express his deepest gratitude to Dr. J. Garth Thompson for serving as his major advisor throughout the past two years. Without his guidance, encouragement and help this research may never have reached a successful conclusion. The author would also like to thank Dr. Ralph Turnquist and Dr. W. W. Koepsel for serving on the advisory committee, and the Mechanical Engineering Department staff for suggestions and assistance.He also thanks to Mrs. Linda Brown and the author's brother Farhad for typing the many and varied pages within this thesis.

The author owes gratitude to his parents, who have always provided him with all kinds of opportunities for better studying. To his wife Roxana, he would like to say "thank you for all your patience and encouragement while I was working on this thesis."

DESIGN AND TESTING OF A MICROCOMPUTER AIR-FUEL RATIO, IGNITION TIMING SYSTEM, FOR AN ELECTRONICALLY FUEL INJECTED INTERNAL COMBUSTION ENGINE

by

FIROOZ BAKHTIARI-NEJAD

B.S., Kansas State University, 1975

AN ABSTRACT OF A THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Mechanical Engineering

KANSAS STATE UNIVERSITY Manhattan, Kansas

ABSTRACT

In recent years, pollution has become a major societal problem and emission control has become a major concern of the automobile industry. With the advent of fuel shortages and rapidly rising fuel prices the automotive industry now faces the problem of maximizing fuel economy and continuing to decrease exhaust emission levels without sacrificing performance. The basic difficulty is that engine changes which increase fuel economy usually increase emission levels while reducing emission levels susally also reduces fuel economy.

Emission legislation will impose HC/CO/NOX limits of 1.5/15/2.0 gram per mile by 1977 and 0.41/3.43/1.0 grams per mile by 1981-82. Fuel economy legislation requires an average 18 miles per gallon by 1978 and 27.5 miles per gallon by 1985. In order to meet these goals extremely accurate control in metering and mixing the fuel and air also in firing time of engine is necessary.

The objective of this thesis was to control simultaneously spark timing and air fuel ratio by the microcomputer. The scope of this work was limited to testing engine speeds between 1000 and 3000 rpm and engine loads between 10 and 40 lb-ft. at 3 different air-fuel ratios of 14-1, 16-1, 18-1. The airfuel ratio and spark time controller were open loop, nonfeedback control system, based on the computational approach.

Testing was performed on a 1968 model, 96.6 cubic inch displacement, four cylinder, horizontally opposed, air cooled spark ignition, internal combustion Volkswagen engine equipped with a Bosch injection system. Data for the air fuel ratio testing was collected, following an engine warm at combinations of three loads, 10, 25 and 40 lb-ft and three different speeds of 1200, 2000 and 2800 rpm and air fuel ratios of 14-1, 16-1, 18-1. For the ignition, spark advance and the ignition dwell testing, data was taken at six different speeds of 1000, 1200, 1600, 2000, 2300, 2800.

The result of testing the air-fuel ratio controller showed a percentage of offset exceeded 5% on seven of the 27 sets of data with average percent offset of 3.589%, while the percent standard deviation only exceeded 5% on one set. Results of the uncertainty for air-fuel ratio measurment showed limit of error of 3.3%. The ignition spark advance testing result was successful with the maximum deviation of 1.5 degrees of crank shaft. The average deviation for the six sets of data was less than 1.0 degree of crank shaft. Average percent standard deviation for these data was 3.67%.

Ignition dwell system showed better results with the maximum offset of 3.5 degrees crank shaft and an average error of 1.2 degrees of crank shaft. Uncertainty for this measurement showed between 1.24 and 3.08 degree crank shaft limit of error.

.