DESIGN AND TESTING CF A MICROCOMPUTER AJR-FUEL RATIC, IGNITION TIMING SYSTEM, FOR AN ELECTRONICALLY FUEL INJECTED INTERNAL COMBUSTION ENGINE

by

FIROOZ BAKHTIARI-NAJAD

B.S., Kansas State University, 1975

A THESIS

submitted in partial fulfillment of the requirements for the degree
MASTER OF SCIENCE
Department of Mechanical Engineering
KANSAS STATE UNIVERSITY
Manhattan, Kansas

1.978

Approved by:

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION
I-1 Introduction 1
l-2 Objective of the work 3
1-3 Literature Review-Electronic Engine Control by Microprocessor 4
II. THE AIR-FUEL RATIO CONTROLLER
2-1 Introduction 6
2-2 Literature Review-Electronic Air-Fuel Rario Control in Automobiles 6
2-3 Physical Description of Control System 9
2-4 Development of Mathematical Model of the Control System 20
III. THE SPARK IGNITION CONTROLIER
3-1 Introduction 26
3-2 Literature Review 26
3-3 Control Concept and Description of Physical System 29
3-4 Mathematical Description 36
IV. THE SOETWARE
4-1 Introduction 38
4-2 Initialization Routines 38
4-3 The Background Routines 41
4-4 The Real Time (Interrupt Driven) Routine 47
4-5 Service Routine 51
V. EXPERIMENTAL AND TESTING PROCEDURE
5-1 Introduction 57
5-2 Equipment Arrangement 57
5-3 Testing Procedures 58
5-4 Air-Fuel Ratio and Ignition Controller Testing 58
iI. PRESENTATION OF RESULTS
6-1 Introduction 66
6-2 Results of Air-Fuel Ratio Control Tests 66
6-3 Ignition Timing Control Results 74
WII. CONCLUSIONS AND RECOMMENDATIONS
7-1 Introduction 83
7-2 Summary of Results and Conclusions 83
7-3 Recommendations. 84
Chapter Page
LIST OF REFERENCES 87
APPENDIX
A. Microcomputer Specifications 89
B. Engine Specifications 90
C. Testing Equipment Specifications 91
D. Uncertainty Analysis 92
E. Statistical Analysis for Fuel Injector Calibration 102
F. Microcomputer Program Listing 106
G. Detailed Circuit Diagrams 150
H. List of Data for Air-Fuel Ratio Testing 153
I. List of Data for Spark Ignition Testing 163
Table Page

1. Piecewise Linear Model of Air Mass Elow Rate as a Function of Air Flow Sensor Vontage 21
2. Piecewise Linear Model of Angle of Spark Advance vs. Engine Speed. 36
3. Final Results of Air-Fuel Ratio Control 75
4. Result of Air Fuel Ratio Control Using the First Injectors Calibration, (fyom Ref. 3) 76
5. Result of the Air-Fuel Ratio Control Using the Second Injectors Calibration (using data from Table 2) 76
6. Result of Air Fuel Ratio Using Bosch System 78
7. Results of Ignition Tining Control 81

LIST OF EIGURES

Figure Page

1. Air-Fuel Ratio Control System 11
2. Primary Fuel Supply System 13
3. Electromagnetic Fuel Injector 13
4. Start of Fuel Injection Versus Intake Stroke and Firing Point 14
5. Speed Sensor 16
6. Cleaning the Distributor Signal 17
7. Intake Air Flow System 19
8. Sectional View of the Air Flow Sensor 19
9. Air Flow Sensor Calibration 22
10. Piecewise Iinear Best Fitted Graph for Air Elow Sensor 23
11. Fuel Injection Calibration 24
12. Block Diagram of Ignition System 30
13. Spark Advance Control Curve 32
14. Phase Relationship Between Crank Shaft, Distributor, and Ignition Signal 33
15. Initialization Programs 40
16. Injection Program 42
17. Air Flow Sensor Calibration Subroutine 43
18. Ignition Spark Advance Program 45
19. Ignition Time Program 46
20. Phase Relationship Between Distributor, Injection Pulses, Ignition Pulses, and NMI Signal 48
21. Non Maskable Interrupt 50
22. Multiplication Subroutine 52
23. Division Subroutine 54
24. Addition Subroutine 55
25. TIL Circuit Diagram for NMI Signal 60
26. Phase Relation, Generating NMI Signal 61
27. Fuel Consumption Measurenent 64
28. Air Flow Rate Measurement 64
29. Daytronic, Dynamometer, and Strain Gauge Transducer Configuration 64
30. Three Different Calibrations of the Fuel Injectors 68
31. Comparison of the Result of 14-1 Air-Fuel Ratio on Three Different Calibrations 69
32. Comparison of the Result of 16-1 Air-Fuel Ratio on Three Different Calibrations 70
33. Result of Air-Fuel Ratio for the Final Calibration, at 10 lb-ft. 71
34. Result of Air-Fuel Ratio for the Final Calibration, at 25 lb-ft.. 72
35. Result of Air-Fuel Ratio for the Final Calibration, at 40 1b-ft. 73
36. Air-Fuel Ratio vs. RPM for the Bosch System 77
37. Ignition Spark Advance vs. Speed 79
38. Ignition Pulse Length (DWELL) vs. Speed 80

CHAPIER I

INTRODUCTION

1-1 Introduction

Up through the 1960's internal combustion engine contrcl was relatively simple. The average automobile user wanted an engine that performed adequately and reliably, but no one was thinking about emissions and very little thought was given to fuel economy. In recent years, pollution has become a major societal problem and emission control has become a major concern of the automobile industry.

With the advent of fuel shortages and rapidly rising fuel prices the automotive industry now faces the problem of maximizing fuel economy and continuing to decrease exhaust emission levels without sacrificing performance. The basic difficulty is that engine changes which increase fuel economy usually increase emission levels while changes which reduce emission levels usually also reduces fuel economy.

The advent of governmental emission standards in 1968 resulted in the requirement that the automobile engine have more precision in metering and mixing the fuel and air to maintain an air-fuel ratio that would reduce exhaust emissions. Also required is accuracy in the exact firing time of ignition systems. This precision is also an important requirement in terms of driveability and economy.

Emission legislation will impose $\mathrm{HC} / \mathrm{CO} / \mathrm{NO}_{\mathrm{x}}$ limits of $1.5 / 15 / 2.0$ grams per mile by 1977 and $0.41 / 3.43 / 1.0$ grams per mile by 1981-82 (1). Over the past four years, because of the national fuel shortage there has been an
immediate demand for more efficient fuel consumption. Fuel economy legislation requires an average 18 miles per gallon by 1978 and 27.5 miles per gallon by 1985.

Clearly more accurate controls will be necessary to achieve these requirements. There are essentially three basic control functions for the internal combustion engine: Air-fuel ratio, spark advance and exhaust gas recirculation. Spark advance is dependent on exhaust gas recirculation and the air-fuel ratio, and exhaust gas recirculation level is dependent on the air-fuel ratio. Therefore, control of the air-fuel ratio can be the fundamental variable (2).

In order to achieve these goals extremely accurate control will be necessary. The most promising method that can provide this high degree of accuracy in sensing, computation, and control, is electronics. It has been almost 30 years since the world's first electronic digital computer was built. The increase in usage of the digital computer has had an important impact on the field of engineering. The latest computer revolution has been the result of the large scale integration of thousands of electronic elements in a single device. The microprocessor or microcomputer which was invented seven years ago is now finding applications in a wide variety of systems. Since 1971, when the first mocroprocessors were introduced, the automotive engineer has increasingly been challenged to utilize these software programmable devices in new automotive electronic systems.

The extensive computational and logic capability and the versatility of the microprocessor make it ideally suited for an automotive control application. The highly cost-conscious automotive industry is beginning to conclude that, with mass production, the microprocessor's cost-effectiveness will have a
tremendous impact on the design, performance, and overall driveability of automobiles in the years to come.

This thesis describes work in a continuing research project in the Mechanical Engineering Department at Kansas State University in microcomputer engine control. In the previous research (3), air-fuel ratio and engine speed controllers were designed and tested. The controllers were based on a cable look-up algorithm to determine control variables. The objective of this thesis is to implement an air-fuel ratio (A / F) controller based on a computational algorithri and a spark timing controller.

The remainder of this chapter will include a discussion of the objectives of this work and a literature review on electronic engine control by microprocessor.

I-2 Objective of the Work
The objective of this project is that spark timing and air-fuel ratio be simultaneously controlled by the microcomputer in such a manner that the desired engine performance is always achieved. The scope of this research was limited to testing engine speeds between 1000 and 3000 rpm following engine warm-up and engine loads between 10 and 40 lb . ft. The microcomputer was programmed to control spark timing as well as spark advance in addition to fuel injection to obtain three prescribed air-fuel ratios: $14-1,16-1$, and 18-1.

The base goal of this research was to investigate problems associated with the implementation of a microcomputer used as a real-time controller of an electronically fuel injected internal combustion engine. Both the airfuel ratio and the spark timing were implemented on a single microcomputer and both were open loop systems.

The microcomputer used as the controller for this research was a KIM-1 microcomputer system, manufactured by MOS Technology, Inc. The complete discussion of this device will be presented in section 2-3, and the specifications for this microcomputer are given in Appendix A.

The internal combustion engine used for this research was a 1968 Volkswagen engine which was electronically fuel injected. The gasoline injection system for this engine was equipped with a Bosch system and electromagnatically actuated injection valves and solid state circuitry for the metering of injected fuel volume. The complete description of the engine will be given in section 2-3 of chapter 2, and detailed specifications of this engine are listed in Appendix. B.

1-3 Literature Review - Electronic Engine Control by Microprocessor
The use of a microprocessor to control a production automotive engine has become very important to the major automobile manufacturers in the United States. General Motors has had an extensive research program in which several in-vehicle experimental, integrated, automotive electronic systems have been studied and built. Six electronics engineers from GM research laboratories have taken steps to investigate microcomputer engine controls (4). Focusing on the economy-emmissions effects of varying spark advance, air-fuel ratio and exhaust gas recirculation, the team devised a ratio of complementary packages for developing systems to control these engine variables.

One of these packages was the complete test-cell "mapping" of a 5.7litter (350 cubic-inch) V-8 gasoline engine (5). Mapping is the thorough documentation of how engine fuel consumption and emission levels respond to changes in spark advance, air-fuel ratio, and exhaust gas recirculation over the operating speed and load range. General Motors applied MOS/ISI technology
in the design of this automotive computer. It used a single-chip, 4-bit parallel microprocessor with subsystems for both digital display and control functions, which included: ignition timing, ignition dwell, anti-theft, engine speed, four-wheel lock control, speed limiting, speedometer, time of day, speed warning, and traction control. Interface circuitry handled the asynchronous load associated with the vehicle operation and calculation, display, logic, and control were handled by the microprocessor.

Ford Motor Company has signed an agreement with Toshiba for a 12-bit device to control the spark ignition timing and exhaust gas recirculation mass flow based on a number of engine variables. Input-output data and intermediate results are stored in a 128 word, read-write memory. The software program to control the engine is stored in 1500 , 12 -bit words of Read Only Mercury. The system includes an 8-bit analog-to-digital converter with an eight channel analog multiplexer under CPU control (6). Ford plans to install their first microprocessor on a limited number of 1978 model cars. The Chrysler Corporation plans to have a microprocessor operating on one of their 1980 model cars. They have contracts with RCA for an 8-bit C/MOS microprocessor and with Texas Instruments for a l6-bit N/MOS microprocessor (7). Chrysler has indicated that the use of the microprocessor will be for engine control.

An electronic spark timing system with a lo-bit custom made microprocessor by Rockwell International is the first use of a microprocessor on a production automobile. This system is designed for the 1977 Oldsmobile Toronado (7). The appropriate spark time is computed by the MPU, based on environmental and engine operational information such as engine coolant temperature, manifold vacuum, crankshaft position, and engine speed.

CHAPTER II

THE AIR-FUEL RATIO CONTROLLER

2-1 Introduction
An air-fuel ratio controller has been developed, implemented, and tested which computes the amount of fuel necessary for operating the engine based on the requirements of the engine such as speed and load. The air-fuel ratio controller maintains the fuel flow in accordance with measured air flow and prescribed air-fuel ratio.

2-2 Literature Review-electronic Air-Fuel Ratio Control in Automobiles For more than ter years automotive and related research organizations have been studying the relationship between exhaust emission and fuel economy. One of the objectives of autcmotive engineers is to obtain lower emissions with a minimum penalty on fuel economy. One approach to improve present engine performance is by better control of air-fuel ratio.

Conventional carbureted engines that mix fuel and air have been greatly improved in recent years. Even with the improvements this system still does not give an accurate air-fuel ratio over the range of operating conditions encountered. A more accurate method of metering fuel is the electronic fuel injection system. The basic patents on electronic fuel injectors were granted in 1961 to the Bendix Corporation (8). Robert Bosch Gmbtl of West Germany was licensed by Bendix Corp. to develop an electronic fuel injection system for a small displacement, four cylinder engine used in European Automobiles. This system improved the horsepower output of these engines by about five percent.

In 1967 the Bosch D-Jetronic fuel injection system was available as optional equipment on the 1.6 liter displacement, four cylinder Volkswagen engine. The fuel injection duration is regulated as a function of the engine speed and the absolute manifold pressure. Fuel was injected into the intake manifold near the intake valves.

The electronic fuel injection program by the Bendix Corporation was restarted during 1970. They used the work done by Bosch on the D-Jetronic System (10) as the basis for a new system called the L-Jetronic.

There were three main improvements in this new system. First, to improve performance, an air flow sensor was developed to replace the manifold pressure sensor; second, to reduce cost and increase reliability, integrated circuits were used in the elctronic control unit; and finally, to simplify the system, a single channel fuel distribution system was used. On this system the injectors are connected in parallel and operated two times for every camshaft revolution. The inputs to this system are engine speed and air flow rate from the air mass flow sensor which was developed by Robert Bosch. This sensor consists of a plate that turns in a rectangular shaped duct in response to tye air flow pressure acting against a spring. A potentiometer connected to the plate generates a voltage proportional to the air mass flow rate. The LJetronic system has been in use since 1973 (11).

The Bosch Corporation recently completed development of a new electronic control system (12). This system provides a better solution to some of the auto industry's new demands, such as higher safety standards, lower emission of pollutants, lower fuel consumption, better driveability, and higher reliability. They report that in the near future additional electronic systems will control other parts of the automobile. These systems include ignition
control, fuel injection, automatic transmission control, anti-skid control, and maintenance monitoring.

The new Bosch injection control system includes a new electronic control unit and several new sensors to sense speed, temperature, and air flow. The control unit for this system is an NMOS microprocessor system. The speed sensor is different from what was previously developed.

In this system the sensor was mounted on the crankshaft and contains a number of segments corresponding to half the number of cylinders. The segmente are staked our by two magnets of inverse polarity, one at the beginning and the other at the end of the segment. The time which the segment takes to pass a pick up may be counted in order to get a number inversly proportional to engine speed. The mass air flow sensor is the same as the old system. Also with this system another sensor is installed to measure the intake manifold pressure. A pressure box shifts the core of a coil changing the inductance of the coil. The variable inductance changes the oscillating frequency of an operational amplifier circuit. The oscillations are counted to produce a digital value proportional to the manifold pressure.

An air-fuel ratio control using a simple microprocessor was of interest to the Essex Group of United Technology (2). They have completed an open loop control systet. In their research air mass flow and engine speed were used as the two main inputs to the digital computer. The vehicle used was a Lincoln Mark IV with a 460 CID V8 engine. Bosch injectors were used for the fuel injection system. An autotronics model 460 F was used as an air flow sensor. This is a vane type sensor with a high response rate for automotive applications. Experimental data in the vehicle was obtained for this control system utilizing the direct measurement of the intake air mass. It was felt
that for the variability of speed experienced in operating conditions the density type of control would not achieve such good results as the direct measurement system.

Bendix Corporation is developing closed-loop electronic fuel injection, using an oxygen sensors which was developed by Bosch (13). The feedback element is a zirconium-dioxide oxygen sensor which measures the free oxygen in the exhaust. The voltage characteristic of the oxygen sensor is very nearly a step type, with a stable operating point around 360 mp which corresponds to a chosen air-fuel ratio. Through the utilization of the oxygen sensor and the closed loop concept it is possible to achieve a very accurate airfuel ratio and to maintain it independent of changes and drifts in the engine and fuel preparation system. Bendix is also adding the closed loop concept to its original system which uses absolute manifold pressure and engine speed as the two main inputs. These systems are not available in production automobiles since they are still in the research and testing stage.

2-3 Physical Discription of Control Systern

The air-fuel ratio controller developed in this research was an open-loop system. Open-loop control systems are systems in which the control action is independent of out put. That is, the out put is neither measured nor fed back for comparison with the input. Open loop control system must be carefully calibrated and must maintain that calibration, in order to achieve the desired accuracy.

Closed loop control systems have an advantage over open loop control systems (14). The use of feed-back makes the system response relatively insensitive to external disturbances and internal variations in system parameters. It is thus possible to use relatively inaccurate and inexpensive components
and obtain accurate control. From the point of view of stability open-loop control systems are easier to build, since stability is not a major problem. Stability is a major concern in the design of closed loop control systems.

The main reason for choosing an open loop control system in this research was due to lack of an appropriate feed-back element suitable for use as an exhaust gas sensor. Zirconium-dioxide oxygen sensors are being tested for this purpose by the Bendix Corporation, but one could not be obtained for this work.

Figure 1 shows the block diagram of the open loop air-fuel ratio control system. The system consist of a speed sonsor, an air flow sensor, a microcomputer, fuel injector, and the engine. The remainder of this section will provide a discussion of each part of the system.

The engine used in this research was a 1968 four cylinder, horizontally opposed, air cooled Volkswagen engine. Detailed specifications for the engine are given in Appendix B. The engine was equipped with the Bosch D-Jetronic fuel injection system (15). In this system gasoline is injected onto the heads of the intake valves by electromagnetically actuated nozzle valves. Gasoline is supplied to the injectors by a low-pressure, common rail system. Figure 2 shows the primary fuel systems; the positive displacement electric pump draws gasoline from the storage tank and delivered it to the injectors at a constant pressure of 28 psig. The constant pressure is maintained by the pressure regulating valve located at the end of the system. The excess gasoline is returned to the storage tank. The supply pressure of 28 psig was chosen by optiwizing the desired degree of mixture control accuracy. At this pressure electric power consumption could be held within reasonable limits of approximately 25 watts for a medium-size engine (16).

Figure 1. Alrafuel Ratio Control System

There are four injectors ir this system, one mounted over each intake valve. The injector valves are elctromagnetically actuated and serve to both meter and to atomize the fuel. The valve body contains a solenoid whose plunger is attached to the needle valve. As shown in Figure 3, a helical spring keeps the valve closed as long as the solenoid is de-energized. The suel injectors are opened electrically in two pairs (injector pair $I=$ cylinders 1 and 4; Injector pair II = cylinders 2 and 3). The magnetic field in the injector winding is generated by electrical pulses transmitted by the microcomputer and amplified by power transistors.

Both fuel injectors of one pair inject fuel at the same time (15). The injectors for cylinders 1 and 3 inject fuel through the open intake valves stroke, while the injectors of cylinders 2 and 4 inject onto the still closed intake valves while the exhaust gases are being forced out. In this case the fuel is stored in the manifold of the intake valves until the next intake stroke. Eigure 4 shows the start of the injection pulses of the two groups of injectors relative to spark timing and intake stroke. The injector valve lift is approximatley $.006^{\prime \prime}$, and its response time is about 1 ms . The open period of the injectors may range from 2 to 10 ms . depending on the amount of fuel required.

The opening pulse for each group of injector valves is initiated by a trigger contact arrangement installed within the distributor. Each set of contacts generates a pulse for its injectors once for every revolution of the camshaft. The two contracts are spaced 180 camshaft degrees apart. Alternately closing a signal-lobe cam on the distributor shaft generates a squarewave signal exactly synchronized with engine speed (16). The two distributor sigrals are used to determine the starting of the injection pulses as well as

Figure 2. Primary Fuel Supply System

Figure 3. Electromagnetic Fuel Injector

Cylinder Number

Commencemerit
of Injection
Firing Point

Figure 4, Start of fuel Injection Verses Intake Stroke and Firing Point
to measure the engine speed. The injection time is computed by the microcomputer based on the engine speed, air mass flow rate, and specified air-fuel ratio.

The engine speed is measured by the electronic speed sensor shown in Figure 5. The desire specifications for this sensor were that it:
a. be accurate to 0.5% over speed range of 600 to 3600 rpm ,
b. be compatable with the microcomputer input/output port,
c. produce a value inversely proportional to engine speed, and
d. be constructed of readily available, inexpensive components.

To obtain these requirements a counting circuit was designed using TTL integrated circuits. The distributor signal, a square wave synchronized with the engine at a frequency of one half the engine speed, is used to gate a high frequency clock signal into the counter circuit. Some signal conditioning was necessary to clear up the distributor signal, as shown in Figure 6. The microcomputer clock which operates at 1 meqahertz was divided by 32 using 2 TTL counters and used as the clock input to the counters of the speed sensor.

The speed sensor is designed so that the clock signal is gated to the counting network only while the distributor puise is at the high level. The counting network is read into the microcomputer and reset during the low level portion of the distributor signal cycle. The use of 3 , 4-bit binary counters produces a 12 -bit value which is inversely proportional to the engine speed. The sensor wili produce a count of 520 at 3600 rpm and 3125 at 600 rpm . The minimum speed for which the sensor will function is 460 rpm (count of 4096). The resolution of the sensor at 3600 rpm is 0.2%. The maximum speed for which the resolution will be less than 0.5% is 9300 rpm which is far beyond the rated speed of the engine.

Distributor

The fuel acquired for proper operation of the engine is a function not only of the speed but also of the load. The load may be implied by sensing the intake manifold pressure or the intake air-flow rate. In this project we are using the intake air-flow, since this is a better indication of load than manifold pressure. As shown in Figure 7 the intake air flow sensor is installed in front of the throttle. Figure 8 shows a sectional view of the air flow sensor which was developed by Robert Bosch (12). This sensor is a rectangular shaped channel in which air flow pressure forces a plate to turn inside the channel against a spring. To achieve a constant relative measuring error over the span of the sensor, the relationship between the angular position and the air flow quantity is designed to be logarithmic. An analog voltage signal proportional to the air flow quanity is generated by a special potentiometer which is connected to the plate. This analog voltage value needs to be converted to a digital value to be used by the microcomputer. An analog-to-digital converter model $A D C-10 Z$ by Analog Devices, Inc., was used for this purpose. This is a 10-bit converter with a maximum relative accuracy of $11 / 2$ LSB, ($\pm 0.05 \%$ of span) and a conversion time is 20 usec . The output voltage of the air-fuel sensor ranged between 0 to 8 V and a 0 to 10 volt range was used on the analog-to-digital convertor.

A KIM-1 microcomputer manufactured by Mos Technology Inc. was used for the controller for this project. The specifications for KIM-1 are given in Appendix A. Digital values representing the air flow and engine speed were read by the microcomputer once in each engine cycle. These values were scaled by the microcomputer to represent exact value for the air flow and the inverse of the engine rpm. They were then used to compute the required fuel injection time to produce the desired air fuel ratio.

Figure 7. Intake Air Flow System

Figure 8. Sectional View of the Airflow Sensor

2-4 Development of Mathematical Model of the Control System
Implementation of a real-time control strategy using a microprocessor requires the development of the mathematical relationships between the conditions of the engine and the control signal. The mass of the fuel injected in each cycle is the control variable for the electronic fuel injection system. This variable is a function of the time duration of injector opening. The control algorithm is the mathematical relationship between the engine parameters and the time duration of injection.

The relation for the time duration of injection was drived (3) for a single engine cycle as follow:

$$
t=K_{t} K_{f / a} M_{\alpha}
$$

equ. 1
where

$$
M_{\alpha}=\frac{\mathrm{m}_{\alpha}}{2 \mathrm{~N}}
$$

equ. 2
and where:

```
t = duration of time for which the injector is open in milliseconds (ms).
K
    converted into time duration of injection in miliisecond (ms).
K
M = mass of air injected per engine revolution into each cylinder of
    the four cylinder engine in pound mass ( 1b m).
\mp@subsup{m}{\alpha}{\prime}}=\mathrm{ mass air flow rate in pound mass per minute (lbu/min)
N = engine speed, rpm.
```

The mass air flow rate, m_{α}, was measured by air flow sensor. A calibration was required for this sensor in order to obtain an exact vaiue of mass air flow. The output of the air flow sensor was an anag voltage which was converted to a digital value by an analog to digital convertor. The digital
value was converted to air flow value by using the calibration relationship. Figure 9 shows graphically the calibration of air mass flow rate versus the air flow sensor voltage.

The mathematical equations used by the microprocessor to convert the air flow sensor voltage to the air mass flow rate was the least-square fit of the Piecewise Linear model shown in Figure 10. The mathematical relationships are given in Table 1.

$$
\begin{array}{lll}
\mathrm{m}=0.355 \mathrm{~V} & \text { for } 0 \leq \mathrm{V}<2.0 \text { volts } \\
\mathrm{m}=0.41 \mathrm{~V}-0.14 & \text { for } & 2.0 \leqslant \mathrm{~V}<4.0 \text { volts } \\
\mathrm{m}=0.32 \mathrm{~V}+0.22 & \text { for } & 4.0 \leq \mathrm{V}<5.0 \text { volts } \\
\mathrm{m}=1.08 \mathrm{~V}-3.58 & \text { for } & 5.0 \leq \mathrm{V}<6.5 \text { volts }
\end{array}
$$

Table 1. Piecewise linear model of air mass flow rate as a function of air flow sensor voltage.

The speed of the engine was measured by the speed sensor. Calibration of this sensor results the following relationship:

$$
\begin{equation*}
N=\frac{f(60)}{\operatorname{count} t} \tag{equ. 3}
\end{equation*}
$$

where
$f=$ frequency of clock in cycle per second (10/32 = 31,250 hz)
count $=$ value read by the speed sensor
$60=$ convertion from seconds to minutes.
The value of count was read by the microprocessor each engine cycle and is multiplied by the value $1 / 120 \mathrm{~F}$ to produce the value $1 / 2 \mathrm{~N}$.

To determine the value of K_{t} a third calibration was required. This calibration was obtained by measuring the mass of fuel consumed by the engine over a measured length of time. Figure 11 shows the result of this calibration. Each point on the curve represent the average of five tests made at a certain speed and load. The result of a best fit relationship based on

Air Flow Sensor (volts)
Figure 9. Air Flow Sensor Calibration
$(u!w / q 1)$ MOL』 $\downarrow!\forall$

Figure 10. Piecewise Linear Best Fltted Graph for Nir Flow Sensor

Figure 11. Fuel Injection Calibration
least-squares regression routine is:
$t=\frac{M_{f}+0.96923}{0.96101}$
equ. 4
where:
$M_{f}=$ mass of fuel in pound mass ($1 b_{m}$) per injection.
$t=$ length of time which injector is open in milliseconds (ms)
In sumary, the air mass flow rate is computed using the piece wise linear relatipnships given in Table 1 . The inverse of the speed is computed using equation 3. The mass of air induced per cycle is computed using equation 2. The mass of fuel to be injected per injection is computed by multiplying the mass of air by the specified fuel-air ratzo. The length of the injection pulse computed using equation 4. The injections are held open for this prescribed time each cycle.

CHAPTER III

THE SFARK IGNITION CONTROLLER

3-I Introduction
The microcomputer spark controller, designed for this research was an open loop control system. The microcomputer computes the angle of spark advance and spark duration or "dwell" based on the engine speed, rpm. The system is designed so that ignition timing can easily be advanced or retarded based on a Piecewise linear relation of the engine speed.

3-2 Literature Review

Electronic Ignition control systems, like the electronic Air-Fuel ratio controllers, have been the subject of substantial research efforts by the Automotive Industries. The point in the cycle where the spark occurs must be regulated to ensure maximum performance of the engine at different speeds and loads. Also air pollution control is related to the spark advance control. During the early 1970's in an effort to meet government exhaust emission requirements it has been necessary to retard the spark by as much as 10 degrees at idle and at low speeds (17). The addition of catylic converters to remove pollutants during the mid-seventies has permitted engine manufacturers to again time engines for smooth and economic performance.

Spark timing can also be controlled to reduce fuel octane requirements, particularly at low speeds. For example, the octane requirement can be reduced from 105 to 85 , by advancing the spark timing from 16 to 34 degree of crank shaft (18).

The conventional ignition system with mechanical breaker points is inexpensive, simple to maintain, and is generally adequate for low and medium speeds and loads. Its faults become apparent with high-compression engines or with high speeds of operation. The following are some of the disadvantages of conventional ignition system (17):

1. Poor performance at high engine speeds, over 4000 rpm , because of current limitations and inertia (point bounce) caused by the mechanical breaker points.
2. Inability to fire partially-fouled spark plugs, because of a slow voltage rise-time.
3. Relatively short life of the breaker points because of high current flow at low speeds.
4. Relatively short life of the spark plugs, because of the high-energy discharge at low speeds.
5. Poor starting because of slow-opening of breaker points at cranking speeds.
6. Poor reproducibility of secondary voltage rise and maximum value.

The ability of a transistor to interrupt a circuit carrying a relatively high current makes it an ideal replacement for the breaker points and condensor. Electronic ignition systems have been used as standard equipneat on some of the 1975 or later model cars. This system turns on and off a transistor cuircuit by a set of trigger light and light chopper which are mounted on the distributor plate. By using this system contact points and condensor are eliminated. The trigger light consists of an infra-red light-emitting diode and a photo transistor receiver (19). This system also included a central box which is a solid state electronic switching device. The light chopper
rotates with the distributor shaft and its blades pass between the infra-red sending unit and the phototransistor-receiver. As each opening between the chopper blades pass the sending unit, a signal is sent to the power-switching transistor in the solid state control box. The length of time for spark firing or the "dwell" is built into the light chopper. Electronic ignition systems are also available to retrofit older model cars which have conventional ignition systems. These systems whether installed as original equipment or retrofit to older models utilize the conventional mechanical vacuum and speed spark advance systems.

The use of microcomputers for ignition control, is being explored by several research institutions. An electronic ignition control system has been designed by D. Bert and Van De Casteele at the University of Ghent, Belgium (20). This system was a simply programmable electronic ignition control system that could be applied to the study of engine behaviour. This apparatus permitted an easy change of the advance or retard characteristics as a function of rpm or vacuum. This system is built out of a disc with 20 cm diameter and 180 holes which was fixed on the engine crank-shaft. The detector system was built up with a set of four phototransistors illuminated by four lights through the holes of the disc. The electronic circuitry consists of a set of TTL integrated circuit including a schmitt trigger, several monostable multivibrators a comparator, several binary counters and a digital to analog convertor. An optical transducer generates impulses at 80° before TDC. A second optical transducer generates impulses every 0.5°. The synchronizing first impulses (80° btdc) enable an electronic counter to count down the second impulses (0.5°). The counter output feeds a digital to analog converter (DAC) and in this way a voltage (or current) linearly decreasing with number of
$.5^{\circ}$ impulses is obtained. The first impulses ($80^{\circ} \mathrm{btDc}$) also feed a speed to voltage converter (SVC) that gives an output voltage or current linearly increasing with the speed or rpm . In order to take account for the spark advance control curve, a function generator (FG) processes the speed to vcltage output voltage. In general a piecewise linear funrtion suffices for the simulation of the advance characteristic of the engine. The output of the DAC and FG are connected to both inputs of a comparator (CONP). The output of COMP changes its state whenever its input voltages become equal and this gives pulse that actuates the electronic ignition system and presents the counter at 111111 Il or 2 ex 8 or 256. If a vacuum transucer is used it is possible to extend the system with a second function generator adapted for generating an out output that is function of the vacum. The sum of the outputs of both function generators can then be compared with the DAC output. The resolution for this system was 0.5 degree. This system was tested on an Opel 1900 engine and the system seemed to be very flexible.

3-3 Control Concept and Description of Physical System

The microcomputer spark ignition control developed in this research was an open loop system. The Block diagram of this system is shown in Figure 12.

The speed sensor used in the ignition control system was the same as was used for Air-Fuel Ratio control system. New values of engine speed are read and stored in certain memory locations every cycle of engine. These values were used to determine proper spark advance. The microcomputer was programed

Figure 12. Block Diagram of Microcomputer Ignition Control System
to compute the spark advance based on the rpm of the engine. A plot of the spark advance us. speed for the conventional vacuum and apark advance system which was used by the $V W$ engine used for this research is shown in Figure 13. This relationship was obtained by adding the vacuum and contrifugal advance values given in the 1968 VW manual for distributor type 311905205 (15). The proceedure for implementing this function in the nicrocomputer will be presented in section 3-4.

The hardware interface between the microcomputer and the ignition system is shown in figure G2 of appendjx G. The complete specification of the ignition signal requires the generation and proper phasing of three time interval values, each a function of engine speed. The first, called the ignition phasing time, is defined as the time from the negative going edge of the distributor pulse to the leading edge of the next ignition pulse and is equal to the time for 180 degrees rotation of the crankshaft minus the spark advance in angle of crankshaft rotation minus the phase shift of the distributor signal with respect to the crankshaft in degrees of crankshaft rotation. The second time value is the ignition period which is defined as the time from the leading edge of one ignition pulse to the leading edge of the next ignition pulse. The ignition period is the time required for 180 degrees of crankshaft rotation. The third time value is the dwell time which is defined as the time from the leading edge to the trailing edge of the ignition pulse. It is the time for the dwell angle in degrees of crankshaft rotation. The relationships between these time interval values are shown in Figure 14.

The timing of these three time intervals is accomplished on two twelve bit binary counters (3-74193's). Each counter has a corresponding twelve

Figure 13. Spark Advance Control Curve

Figure 14. Phase Relationship Between Crankshaft, Distributor, and Ignition Signal
bit latch (3-7475's) which serves as a buffer for the time interval to be parallel loaded into the timer. The clock signal for both of these counters is a 62.5 khz signal obtained by dividing the microcomputer clock (1 mhz) by 16. Note that this clock signal is at exactly twice the frequency of the clock used in the speed sensor. One of the counters is used to time the ignition phasing interval and the ignition period while the other counter is used to time the dwell interval.

The description of the operation of the phasing and period counter follows. Each time this counter reaches a count of zero an ignition pulse is initiated and the counter is parallel loaded with the contents of the latch buffer. As long as the latch buffer holds the ignition period value the counter simply initiates new ignition pulses at regular intervals. Since the engine speed is subject to change the ignition period value must be updated regularly. This is accomplished by transferring the value of the speed sensor counter to the latch during each engine cycle at the same time it is read into the microcomputer. This counter value is equal to the number of cycles of the 31.25 Khz clock during one half cycle of the cam shaft (one revolution of the crankshaft). Since the ignition counter clock signal is twice the frequency of the speed sensor clock the ignition counter will count out the ignition period in exactly one half rotation of the crankshaft (assuming no change in engine speed). Since the latch buffer is refreshed each cycle of the engine no appreciable error occurs due to speed change. The ignition period timing system just described provides a sequence of ignition iniation signals at the correct frequency without intervention of the microcomputer.

In order to obtain an acceptable ignition signal it is necessary to provide correct phasing of the ignition signal with the cycle of the engine. This
phase relationship is maintained by the ignition phasing time interval. During each cycle of the engine the ignition phasing time is computed by the microcomputer. At the falling edge of the distributor pulse the ignition phasing time is parallel loading by the microcomputer into the ignition phasing and period counter. Since the parallel load over writes the existing count the ignition phasing time corrects the ignition phase to account for changes in speed, changes in spark advance, and any errors introduced by the sequencing of the signals.

The final timing interval required to define the ignition signal is the dwell time. The dwell time interval is counted out on another counter. Any dwell angle (in degrees of crankshaft rotation) can be obtained by multiplying the speed sensor count by the appropriate fraction and loading the dwell counter latch buffer regularly from the microcomputer. Certain dwell angles can be obtained without the intervention of the microcomputer. The system used for this study obtains a 45 degree of crankshaft dwell without use of the microcomputer. This is accomplished by shifting the speed sensor count right two bits and loading it into the dwell interval buffer. Each bit the count is shifted is equivalent to dividing the value by two. The difference in the clock frequencies accomplishes an additional division by two. The combined effect is to divide the crankshaft rotation by eight yielding a 45 degree dwell. The dwell interval buffer is refreshed each cycle of the engine to provide correction for changes in engine speed. Loading of the dwell interval into the counter is accomplished by the signal wich initiates the ignition pulse.

The ignition signal is produced by a J-K Flip Flop (7476). The borrow outputs of the dwell counter and the period and phase control are connected
espectively to the J and K inputs to the Flip-Flop. The horrow outputs of the counters go low on the clock pulse when the count reaches zero. The transition of the borrow output of the period and phase counter initiates the ignition pulse by driving the output of the Flip-Flop high. It also initiates the transfer of the dwell time into the dwell counter and loads the period into the phase and period counter. The subsequent transition of the borrow output of the dwell counter terminates the ignition pulse by driving the output of the Fip-Flop Iow. The output of the Flip-Flop drives the input to the Electronic Ignition counter box which controls the ignition discharge.

3-4 Mathematical Description
In order for the microcomputer to compute the exact angle of spark advance, a set of piecewise linear equations of spark advance vs. speed of the engine was obtained from the graph given in Figure 13. These equations are listed in Table 2.

$$
\begin{array}{lr}
\text { ASA }=0 & 0 \leqslant \mathrm{~N} \leqslant 750 \\
\text { ASA }=0.008 \mathrm{~N}-6 & 750 \leqslant \mathrm{~N} \leqslant 1000 \\
\mathrm{ASA}=0.035 \mathrm{~N}-33 & 1000 \leqslant \mathrm{~N} \leqslant 1400 \\
\mathrm{ASA}=0.021667 \mathrm{~N}-14.33 & 1400 \leqslant \mathrm{~N} \leqslant 2000 \\
\mathrm{ASA}=0.015 \mathrm{~N}-1 & 2000 \leqslant \mathrm{~N} \leqslant 2600 \\
\mathrm{ASA}=38.0 & 2600 \leqslant \mathrm{~N}
\end{array}
$$

where
N : engine speed (rpm)
ASA: angle of spark advance (degrees of crankshaft rotation)

Table 2: Piecewise Linear Model of Angle of Spark Advance vs. Engine Speed

Ignition Phasing Angle which is defined as IGAN, and is shown in Figure 14 is computed by Equation (1)

$$
\begin{equation*}
\text { IGAN }=180-\mathrm{ASA}-\phi \tag{I}
\end{equation*}
$$

where ϕ is the phase shift between distributor and crank shaft cycle. This phase shift was measured to be 14.0 degrees of crankshaft rotation. The value of IGAN which is computed by equation 1 is in unit of degrees of crankshaft rotation. It is necessary to convert to the unit of time in order to be used by the ignition timing counters. The mathematical relationship given in equation 2 provides the ignition phasing time in microseconds.

$$
\begin{equation*}
\operatorname{IGTI}=(166.0-\mathrm{ASA})\left(\frac{10^{6}}{6 \mathrm{~N}}\right)-\mathrm{DT} \tag{2}
\end{equation*}
$$

where
IGII : Ignition phasing time (us)
N : Speed of the engine (rpm)
ASA : Angle of spark advance (degree of crankshaft rotation)
DT : Delay time from negative going edge of distributor signal to the loading of the ignition phasing counter ($\mu \mathrm{S}$).

New values of ASA and IGTI were computed for every cycle of engine as new speed values were read by the microcomputer.

As the result of using twelve bit counters and a (2.5 Khz clock in the ignition timing circuit IGTI has a range of from 16 to $65,536 \mu \mathrm{~s}$. The resolution for IGII is $16 \mu \mathrm{~s}$ which corresponds to a maximum crankshaft angle of 0.044 degrees at the minimum speed of 460 rpm . The resolution at 4000 rpm is 0.384 degrees.

CHAPTER IV

THE SOFTWARE

4-I Introduction
The software developed for this research was one of the major tasks. The programming of the microcomputer was all done in hexadecimal machine code. A floating point binary representation with a 16 -bit mantissa and an 8 -bit exponent was used for all numerical values. This provided a resolution of 1 part in 65,000 and a range of 11.70×10^{38}. By using this type of representation the accuracy of computation was maintained.

The programing of the microcomputer was accomplished with the hexidecimal keyboard and display mounted on the KIM-1 microcomputer board. This device proved to be very helpful for loading the programs and for operating the computer. A Teletype Model 33 teletypewriter was also used for printed and punched paper tape copy. The paper tape reader and the teletype were used to reload programs into computer memory when they were lost due to loss of microcomputer power.

The software may be divided into four classifications: the initialization routine, the background routines, and real time (interrupt driven) routines, and the service routines. The details of these routines and the interaction among them is explained in the rest of this chapter.

4-2 Initialization Routines:
The Initialization sequence was necessary to define certain quantities everytime the microcomputer was reset. By the end of this routine all values used during the computation were given initial values. The flowchart of this
program is shows in Figure 15.
The first step in this routine is to initialize the stack, so that the microprocessor may properly process an interrupt. The stack pointer is initialized to location OIFF hexadecimal machine address (21). The next operation sets the interrupt disable bit in the status register. This step is to keep interrupt request signals from effecting the microprocessor until execution of the initialization program was completed.

The next step of this program initializes the status of the input-output registers. There are $15 \mathrm{I} / 0$ lines available in the KIM-1 microcomputer. They are divided into ports A and B. Each of the I / O lines may be defined as an input or an cutput by defining the status of the corresponding bit in the data direction register. The next operation sets the binary mode bit. This step causes the microprocessor to do arithnatic operations in binary.

The next step defines the vector for the non-maskable interrupt. When an interrupt signal is received the microprocessor branches to an interrupt routine. The starting address of this routine is called the interrupt vector. The next three operations of the initialization program establish Air Fuel ratio values and assign initialize values for speed and air flow. The microprocessor uses these initial values at the beginaing of execution, before the first true values of speed and air flow are read from the sensors.

The last operation of this program clears the interrupt disable bit which was set before. Finally, the initialization routine stores all constants values required for software programs into appropriate memory locations. A list of these constants is given in Appendix F . The initialization routine is executed once at the beginning of each experiment.

4-3 The Background Routines
The background routines perform the function of continually updating the control variables; the injection value opening time and the ignition phase time. This is essentially the main program. The program is a large loop which is executed repetitively. The microcomputer executes in the background routines whenever it is not called into the real time routines by an interrupt. The frequency of cycling the background routines is not critical, so long as the control variables are updated often enough to keep up with the changes in speed and load. The operation of the background routines will be described in two parts; the computation of the fuel injection value opening time and the computation of the ignition phase time.

The duration of the fuel injection valves opening is based on the mathematical model which was introduced in section 2-4. Two subprograms are required to complete the computation of injection time.

The first subprogram converts the voltage of air flow sensor to value of air flow rate. Figure 16 shows the flow chart of this subprogram. This program scales air flow rate based on the relationship of the graph in Figure 10 and the piecewise linear equations given in Table 1. The air flow sensor voltage is compared to the ranges corresponding to the different piecewise linear equations. When the correct range is found the corresponding equation is used to compute the air flow rate.

The second subprogram converts the mass of fuel per injection to duration of injection time. This subprogram is based on the graph of Figure 11, and the corresponding linear relation. Figure 17 shows the flow chart for injection program.

The first operation of the injection program calls the subprogram to

Figure 16. Air Flow Sensor Calibration Subroutine

Read Air Flow Sensor A/D Convertor

Read 1/(2RPM) from Speed Sensor

> Multiply Air flow Rate

Multiply Fuel Air
Ratio

Go to Subroutine, ConvertInjection Pulse

Store Injection Pulse in Memory

scale the air flow rate. The Kir Flow Ratio is multiplied by the specified value of Air-Fuel ratio. This product is multiplied by $1 / 2 N$ which was obtained from the speed sensor. The result is the value of the mass of fuel per injection.

The next operation of this prograr calls the subroutine to convert the mass of fuel per injection to injection time. The final operation of the injection program is the scaling of the injection time so that it can be used by the interval tiruer to time out the injection value opening.

Computation of the ignition time control variables was the second objective of the background routine. This portion of the program computes tiae ignition time IGII from the relationship given in section 3-4. The ignition time routing also uses two subprograms. The first one computes and scales the speed value while the second subroutine compute the angle of spark advance.

The first subprogram requires a division subroutine to compute the speed value from the value of $1 / 2 N$ which was read from the speed sensor. The value of speed is used to compute the angle of spark advance. The division routine is one or two service routines to be described later.

The second subroutine determines the angle of spark advance, ASA, based on the relations given in Table 2 of section 3-4. The angle of spark advance is a function of speed. The first step of this subprogram tests the speed and determines the range and corresponding equation. The next operation of this program computes the angle of spark advance by the corresponding relation. The flow chart of this subprogram is given in Figure 18.

The final operation of this routine uses the angle of spark advance and speed to find and scale the ignition phase time. The injection time program and the ignition phase programs are listed in Appendix F . Figure 19 shows the flow chart for ignition time program.

Figure 18. Ignition Spark Advance Program

Figure 19. Ignition Time Program

4-4 The Real Time (Interrupt Driven) Routine
The interrupt capability of the microprocessor is used when an external event has occurred and special service or inmediate attention of microprocessor is required. When an interrupt occurs, the status register and the program counter are stored on the stack. At the end of the interrupt service the status register and the program counter are restored to the values they had at the time the interrupt was taken. In this way the computation continues at the completion of the interrupt from the same point it left at the beginning of the interrupt.

The KIM-1 microprocessor has two kinds of interrupts: The interrupt request and the non-maskable interrupt. The interrupt request can be disabled under program control and can thus be ignored. The non-maskable interrupt can not be disabled or ignored. As soon as the non-maskable interrupt signal transition occurs the microprocessor sets up the stack and transfers to the interrupt service routine.

For this project only the non-maskable interrupt was used. There were two sources of interrupt signals: the distributor signal and the fuel injector timer. There are four different sets of actions taken depending on the source of the interrupt signal and the polarity of the distributor signal at the interrupt time. The distributor signal is a square wave signal synchronized with the cycle of the engine such that two fuel injectors begin their injection time at the rising edge and two at the falling edge of the square wave. The four sets of action with the corresponding interrupt source and distributor signal polarity are sumarized in Figure 20.

The real time program was the most complicated program in this project. The flow chart of this program is shown in Figure 21, and the listing is given

in Appendix F .
The first operation in this routine was to save the contents of the accumulator by pushing it to the stack. The next operation identifies the source of the interrupt. The injection signal is turned on by the microcomputer every revolution of the engine on both edges of the distributor signal. These pulses are created by setting an out-put bit high. The fuel injection interval timer is started by loading the interval timer register with the computed injection time value. The KIM-1 Interval Timer counts down from the specified value of from 1 to 256 at a clock rate of $1,8,64$ or $1024 \mu \mathrm{sec}$. per count. The clock rate is determined by the address where the count value is written. The timer can be programed to generate an interrupt when the counter counts down to zero (22). For the purpose of this work a clock divide rate of 64 microseconds per count with the ability of generating an interrupt was used. When interval timer counts to zero the output bit used to generate the injection pulse is set low.

Thile the interval timer is counting down the injection time, the computed value of ignition phase time is loaded into the ignition counter every second revolution of the engine. The ignition phase time is loaded into the ignition time during the engine revolution when the distributor signal is low. After completion of injection time the injection timer generates an interrupt. The injection bit is set low (injectors turned off) and then either the air flow sensor or speed sensor is read depending on whether the distributor signal is high or low. The speed sensor value and air-flow sensor value had to be scaled and adjusted to floating point binary number during this program. Following the reading of the speed sensor the value from this sensor is loaded into the ignition counter latch. The final operation of interrupt sequence retrives the content of the accumulator from the stack and returns to the

Figure 21. Non-Maskable Interrupt
background routine from the interrupt.

$4-5$ Service Routines

There are five service routines available to the other programs. They are the floating point arithmatic routines for multiplication, division, and addition and subtraction; a routine for displaying values on the seven segment displays; and a routine for storing and analyzing data.

The KIM-1 microcomputer is able to perform the addition or subtraction of two eight bit values. However, multiplication, division, addition and subtraction of values expressed in the floating point format was needed.

The multiplication subroutine was written to multiply the two sixteen bit signed binary numbers and to add the two eight bit signal exponent. The result of the multiplication was shifted and truncated to the same format as the input. To provide the needed accuracy, the subroutine operations are done in double-precision with the sign bit at bit 16. Basically, the multiply routine is a series of tests and shift of the multiplier and multiplicand. Figure 22 shows the flow chart of this program. For higher degree of accuracy, at the beginning of the program, both the multiplier and the multiplicand are shifted so that their highest bits after the sign bits are "1" for positive numbers and "0" for negative numbers. This operation is done at the beginning of all arithmetic programs. Appendix F gives the listing of the multiplication program.

The division program was also written to perform double-precision signed, floating point division of two sixteen bit numbers. The division routine, as shown in Figure 23, consists of a series of trial divisions, each of which will be made by attempting to subtract the divisor from the dividend (23). If the result is negative, the divisor will not "go"; a 0 is therefore placed

Figure 22. Multiplication Subroutine
in the right most bit of the quotient, and the dividend is restored by adding the divisor to the result of the subtraction. The combined quotient and dividend will then be shifted left.

If the result of a trial division is positive, there is no need to restore the partial dividend in the dividend register. A 1 will be placed in the rightmost bit of the quotient, and the dividend and quotient will both be shifted left. It should be noted that the mantissa of divisor be larger than the mantissa of dividend. If this condition is not satisfied the dividend can be adjusted by shifting its mantissa to the right and incrementing its exponent.

The subtraction or addition operation was repeated 15 times, once for each bit of the number. The last part of program determines the exponential of partial quotient, and adjusts and final result. Provisions were also made to take care of the signs of both the divisor and dividend, and the final partial quotient. The list of actual division subroutine is given in Appendix F.

In order to perform addition and subtraction of sixteen bit floating point numbers it is necessary to equate their exponents. To insure maximum accuracy in the result the numbers are first adjusted so that their highest order bit (next to the sign bit) is significant (1 for positive numbers and 0 for negative numbers). The adjustment is accomplished by shifting the number left and decrementing the exponent until the highest order bit is significiat. The numbers are then adjusted until the exponent of the numbers are equal. This is accomplished by shifting the number with the smallest exponent to the right and incrementing its exponent until the exponents are equal. At this point the two numbers will be added by adding the low bytes of numbers first followed by the high bytes. A flow chart of this subroutine is shown in Figure 24 and a listing is given in Appendix F.

Figure 23. Division Subroutine

Figure 24. Addition Subroutine

The subtraction subroutine uses the adition program, except at the beginning it changes the sign of the number to be subtracted.

A program that displays a desired number on the microprocessor's seven segment displays was developed to assist with debugging the software and verifying the operation of the hardware. Any value can be set in the display buffer to observe changes in its value as the program proceeds. During operation of the engine, the display program was used to display the engine speed on the first four displays and the injection pulse time adjusted to an δ-bit number is displayed on the last 2 displays. The listing of the display program is given in Appendix F.

A special program was prepared to take several data points and store them at certain memory locations. This program was used for data acquisition and for error diagnostics. The program was executed at the end of the interrupt program and was thereby able to record a data value every two revolutions of engine for up to 100 different readings. This progran was not used regularly but it was available to test the software programs or the hardware set up. In order to analyse these data thus collected two other programs were written, one to compute the mean value and other to compute standard deviation of the data. The listing of these programs is given in Appendix F .

CHAPTER V

EXPERIMENTAL AND TESTING PROCEDURE

5-1 Introduction

In this chapter equipment used for experimentation will be explained first. The next section of the chapter will contain a description of testing procedure. Finally, the last section explains the air-fuel ratio and ignition time controller testing.

5-2 Equipment Arrangement

The Volkswagen internal combustion engine and the KIM-1 microprocessor have been described in Chapter 2. Detailed specifications for those are given in Appendices A and B. The engine is loaded with a cradled Hydraulic Pump Dynamometer. A straingauge load cell on the torque arm of the dynamometer and a magnetic pickup on the drive shaft provide load torque and speed signals. A Daytronic Instrument Module was used to provide digital readouts of load, torque, speed, and rower. Two digital counterswere used; one for measuring the fuel injection pulse duration, and the other to count the elapsed time for the consumption of a prescribed quantity of fuel during air-fuel ratio tests. A digital multimeter was used to monitor the voltage of the air flow sensor. An oscilloscope was used to observe and measure the various digital signals. A water micro-manometer was used to measure pressure drop across an air flow measuring nozzle. This provided a standard measure of air flow rate. Three power supplies were used to provide dc power for the microprocessor and other equipment. The analog-to-digital convertor and operational amplifiers required ± 15 volts supply, while the microcomputer and TTL circuitry required a +5 volt
power supply. The potentiometer on the air flow senscr used a 10 volt power supply. A sling psychrometer was used to measure the dry-bulb and wet-bulb temperatures of the air. Finally, a mercury barometer was used to measure the atmospheric mressure. Appendix C gives the list of equipment and their specifications. An analysis of the uncertainties associated with the measurements is given in Appendix D.

5-3 Testing Procedures
The software programs for the microcomputer were tested in the laboratory prior to the time the microcomputer was taken to the area in which the engine was located. De-bugging the software programs was the basic part of this test. Arithmetic programs; such as multiplication, division, and addition; were verified separately for the full range of positive and negative numbers. The display program was developed and was of great value in eliminating errors in the software programs.

The interface circuitry was developed and tested in the lab before being applied to the engine. As mentioned before, the distributor signal was not a perfect square wave and the circuitry used to clean this up, as shown in Figure 6, had to be developed and tested on the engine. A substantial effort was required to keep engine noise from causing extraneous signals to be put on some of the lines. To generate NMI pulses on the edges of the distributor signal, a set of monostable multivibrators was used. A great deal of havoc was created when engine noise caused the monostable multivibrators to put out signals when they weren't suppose to. Later, it was decided to generate these pulses using shift registers in conjunction with "NAND" gates. The inverted signal of the distributor was shifted $50 \mu s$ to the right and it was passed through a "NAND" gate with the distributor signal. This generated
the NMI pulses on the positive going edges of the distributor signal. To generate the pulses on the negative going edges of the distributor signal, the inverted distributor signal and the shifted distributor signal were NANDed together. Figure 24 shows the TML integrated circuit used to generate NMI pulses. To show how the signals were shifted the phase relation is depicted in Figure 25.

The phase shift between distributor cycle and the crank shaft cycle was needed to compute ignition phase time. This phase shift was measured using one channel of the oscilloscope for the distributor signal and the other for ignition pulses generated by the electronic ignition system. This phase shift was measured with the engine running at 850 rpm and the vacuum advance hose was disconnected. The ignition timing of the VW engine had been set at 0° TDC at 850 rpm with the vacuum hose disconnected (24). The phase difference between the distributor signal and the ignition pulses was equivalent to the phase between the distributor signal the the crankshaft. This phase shift was measured to be 2.745 ms . which is equivalent to 14 deg . of crank shaft.

5-4 Air-Fuel Ratio and Igrition Controller Testing
The first objective of this thesis was to accurately control the airfuel ratio at any operating condition of the engine. The alr-fuel ratio was set at the desired value by the microcomputer's initialization program at the beginning of the engine operation. The air-fuel ratios at which testing was conducted were 14-1, 16-1, and 18-1. While the engine was operating under microprocessor control at the specified air-fuel ration, the operating conditions of the engine were measured experimentally and the actuai air-fuel ratio was computed.

To experimentally determine the air-fuel ratio the atmospheric pressure,

Figure 25. TTL Circuit Diagram for NMI Signal

Figure 26. Phase Relation, Generating NMI Signal
room dry and wet bulb temperatures, the quantity of fuel consummed, the time duration of the test, and the pressure drop across the nozzle were measured.

The amount of fuel consumed during each test was specified at a constant 0.40 lb , and the time duration for consuming this amount of fuel was measured using an eletronic counter. A microswitch was used to start and stop the counter as shown in Figure 27. The electronic counter started when the platform of the balance passed through the null position and tripped the microswitch. A 0.40 lb weight was placed on the balance with the full tank. When 0.40 lb of the fuel was comsumed the platform of fuel tank would again pass through null and the micro-switch would stop the electronic counter. The value on the electronic counter was the length of time for the engine to consume the 0.40 lb of fuel.

The air mass flow rate, AMFR was calculated from relations given in reference 25. These relations are as follow:

```
APTRR - (CFM) (DENSA)
```

Where DENSA is the density of the air at test condition. This was calculated from:

$$
\text { DENSA } \frac{(\operatorname{ATMPR})(0.491)-0.38\left(\mathrm{PW}-\frac{(A T M P R)(0.491)(T D B-T W B)}{2700}\right)}{(0.37)(T D B)}
$$

in this relation, $A T M P R$ is the atmospheric pressure of the air in inches of Hg which was measured with a mercury barometer located in a nearby room, TDB and TWB are dry-bulb ana wet-bulb temperatures respectively in oR, and $P W$ is the vapor pressure of water in the air at the wet-bulb temperature in psia. The value of CFM is calculated from the relation

$$
C F M=(62.0524) \quad \mathrm{PMN}\left(\frac{0.075}{\mathrm{DENSA}}\right) 0.5014
$$

where PMN is the pressure drop across a 1.59 inch (4.04 cm) ASME long radius flow nozzle. The nozzle, as shown in Figure 28, was placed in one end of a
surge tank and from the other end air was drawn by the engine. The pressure drop across the nozzle was measured with a 10 in (25.4 cm) water micro-manometer.

The load on the engine was applied by way of an aviation hydraulic pump. Low pressure oil was drawn from a 55 gal (208.2 let) reservoir and pumped back again through \supseteq manual pressure control valve and filter. As the pressure against which the pump had to work was increased the torque required of the engine to turn the pump also increased. The pressure control valve provided a mean of increasing the hydraulic pressure. The torque produced by the angine was measured by a strain guage transducer, as shown in Figure 29. The electrical signal from the strain guage transducer was input to the Daytronic Module which provided a digital read out of the load in $f t-1 b$.

The engine speed was obtained by two methods. First, from a fixed magnetic pick-up and a 60 tooth gear mounted on the driveshaft between the clutch and a dynomometer. The pulses from the pick-up transducer were input to the Daytronic Instrument Module which provided a digital read-out of the engine speed. Second, the engine speed measured from the speed sensor and converted by the microcomputer was displayed on the seven segment displays. This value was a hexadecimal number and needed to be converted to a decimal value. It was also possible to measure the engine speed by measuring the distributor signal period using the oscilloscope.

At the beginning of the air-fuel ratio test the engine was allowed to warm up before data was taken. The engine speed and load were set at the desired values. The microcomputer was initialized to control the engine at one of the three specified air-fuel ratio. Data was taken while operating the engine at 3 different speeds and 3 different loads for each value of air-fuel

Figure 27. Fuel Consumption Measurment

Figure 28. Air Flow Rate Measurment

Figure 29. Daytronic, Dynamometer, and Strain Guage Transducer Conflguration
ratio. Five tests were made at each set of conditions.

Testing of the air-fuel ratio control was continued until data had been taken at all combinations of speed, load and air-fuel ratio. While data was being taken the fuel injection pulse length was also recorded as measured by the electronic counter and the microcomputer's display. In addition; speed, load, and voltage on the air-flow sensor were measured and recorded.

Microcomputer ignition controller testing was more simple than air-fuel ratio controller testing. The objective of the ignition controller was to accurately control the ignition spark advance and duration of ignition pulse, "dwell". The ignition dwell and spari advance were measured and recorded at the different speed, load, and air-fuel ratio conditions used for fuel injection control testing. A two charnel oscilloscope was used to take this data. One channel of oscilloscope was used to display the distributor signal and the other for ignition pulses. The phase difference between starting edge of ignition pulse and the edge of the distributor signal was equivalent to the sum of the spark advance and the phase shift between the distributor and the crank shaft. The dwell was measured from the ignition signal by measuring the duration of the ignition pulses. The values recorded for spark advance and ignition duration were in the units of time, and had to be converted to tise units of degrees of crank shaft. This conversion is accomplished by multiplying by engine speed in degrees per unit time.

CHAPTER VI

PRESENTATION OF RESULTS

6-1 Introduction

Data obtained from the testing described in the previous chapter is discussed in this chapter. Section 2 of this chapter describes the results of the air-fuel ratio control tests while the ignation timing control results are discussed in the last section.

6-2 Results of Air-Fuel Ratio Control Tests

The data collected during this research is listed in Appenjix H. The results of analysis of the data are shown in the tables and graphs of this chapter. The first set of data was obtained for the two air-fuel ratios of 14-1 and 16-1 over 3 engine speeds from 1200 to 2800 rpm, and for the constant load of $25 \mathrm{lb}-\mathrm{ft}$. The analysis of these results showed a minimum of 9.28% and a maximum of 25% deviation fron the expected result. An uncertainly analysis on the air-fuel ratio by Schneck (3) showed only 3.29% for the limit of error, therefore research was continued to find the cause of this deviation. The air flow sensor calibration was checked using its recorded voltage and the calculated air flow from the data. This check did not show anything that would cause this error.

The calibration of the fuel injectors was checked. From the data collected a new calibration of the fuel injectors was obtained. This showed a major difference from the calibration that was obtained from reference 3. The microcomputer was reprogramed with the new mathematical relations of the fuel injector calibration. A second set of data was obtained at the same
conditions of the engine. This gave better results and lower deviations for the air-fuel ratio of $16-1$ but not for the air-fuel ratio of $14-1$. Analysis of the results showed an error to exist because the points used to calibrate the fuel injectors were too close to each other. The best fit curve through these points gave an inaccurate calibration.

It was decided to recalibrate the fuel injectors with many points widely separated. To obtain this calibration the engine was operated on the Bosch system for several different loads and speeds. The injection pulses were measured on the oscilloscope and data was taken to compute mass of fuel per injection. Figure lland equation 4 are the results of this calibration. The 3 calibrations described above are compared on Figure 30.

The final data for the air-fuel ratio control was taken based on the last injector calibration for three air-fuel ratios. Figures 31 and 32 compare the air-iuel ratios of $14-1$ and $16-1$ respectively fro the 3 different fuel injector calibrations. The results of testing for three air-fuel ratios over the engine speeds of 1200 to 2800 are presented in Figures 33 through 35 for load of $10 \mathrm{lb-ft}, 25 \mathrm{lb}-\mathrm{ft}$, and $40 \mathrm{lb}-\mathrm{ft}$ respectively. Each point on the graphs represents the average of five tests taken at that condition.

After all data was taken, the values of air flow corresponding to the voltages of the air flow sensor were compared to the air flow calculated from the pressure drop across the nozzle. In a few cases there were small differences between these two values. It is believed that the potentiometer on the air flow sensor was not operating properly at all times during the last part of the final tests. In order to best evaluate the performance of the controller in those cases where there was a difference in the value of air flow from the measurements the voltage of air flow sensor was used to compute air

$$
\begin{aligned}
& \text { First Calibration } Y=1.0288 X-0.6326 \\
& \text { Second Calibration } Y=1.0268 x-1.9634 \\
& \text { Final Calibration } Y=0.9619 X-0.9692
\end{aligned}
$$

Figure 30. 3 Different Calibrations of the Fuel Injector

$$
\begin{array}{llllll}
\hline 800 & 1200 & 1600 & 2000 & 2400 & 2800 \\
\text { Speed (RPM) }
\end{array}
$$

1200 (RPM) | 1600 |
| :---: |
| Speed (RM) |

Figure 33. Result of Air-Fuel Ratio for The Final Calibration @ 10 ft -lb

Figure 34. Result of Air-Fuel Ratio for The Final Calibration e 25 ft -1b
ㅇ $\quad \infty$
$\therefore \underset{0!2 e y}{n} \pm \quad \simeq$
flow since the microcomputer was calculating injection pulses based on the voltage of air flow sensor.

A statistical analysis was performed on the data for the air-fuel ratio controller in which the mean, standard deviation, and percent standard deviation were calculated. The results of this statistical analysis are presented in Table 3. Also a correlation statistical test was done on the linearity of the fuel injector calibration based on the total final data. The result of this analysis as shown in Appendia E proved that the linear calibration was quite accurate. Table 485 also provide the statistical analysis on the results of air-fuel ratio for the first two injector calibrations.

To compare the result of this research on air-fuel ratio control with the Bosch system a set of data was taken while the engine was operating on the Bosch system over the range speeds from 1200 to 2800 for the two loads of 25 lb-ft and $40 \mathrm{lb}-f t$. The results of this test are shown in Figure 36 and Table 6. The data for this test is listed in Appendix H.

6-3 Ignition Timing Control Results
The analysis of the ignition timing controller data is presented in Table 7 and plotted on Figure 37 and 38. Figure 37 shows the measured ignition spark advance value compared to the piecewise linear relationship used in the controller. Figure 38 presents the measured ignition pulse length or ignition dwell compared to the specified value. Both of these tests were taken for six engine speeds over the range of 1000 to 2800 rpm . Each point on these graphs represents the average of a test taken at the indicated speed.

The data and computed results for the ignition control testing are given in Appendix I. Table 7 shows the statistical analysis of this data in which mean, standard deviation and percent standard deviation were calculated for

$\begin{aligned} & \text { ATR-FUEL } \\ & \text { RATIO } \\ & \hline \end{aligned}$	RPM	LOAD	TESTED AIR FUEL RATIO MEAN	STANDARD DEVIATION AFR	\% STANDARI DEV IA'LION EROM MEAN AFR	$\begin{aligned} & \text { NO } \\ & \text { TESTS } \end{aligned}$	PERCENT OFFSET
1.4-1	1200	10	14. 26	0.22	1. 53	5	1,87
	2000		13.37	0.43	3.23	5	4.50
	2800		13.42	0.33	2.42	5	4.07
	1200	25	13.97	0.10	0.73	5	0.23
	2000		13.99	0.32	2.26	5	0.03
	2800		13.85	0.24	1.77	5	1.07
	1200	40	15.69	0.05	3.22	5	12.04
	2000		15.20	0.59	3.91	5	8.57
	2800		14.26	0.69	4.87	5	1.86
			14.22 (Avg.)	0.33 (Avg.)	2.65 (Avg.)	45(Total)	3.80 (Avg.)
16-1	1200	10	16.30	0.33	2.01	5	1.89
	2000		15.40	0.13	0.81	5	3.72
	2300		15.65	0.17	1.10	5	2.19
	1200	25	15.17	0.41	2.69	5	5.21
	2000		15.72	0.22	1.42	5	1.75
	2800		15.50	0.60	3.25	5	3.14
	1200	40	16.82	0.66	3.95	5	5.12
	2000		16.66	0.32	1.94	5	4.13
	2800		16.17	0.67	4.12	5	1.07
			15.92 (Avg.)	0.38 (Avg.)	2.36 (Avg.)	45 (Total)	3.13 (Avg.)
18-1	1200	10	18.11	0.16	0.91	5	0.62
	2000		17.09	0.39	2.30	5	5.08
	2800		17.52	0.21	1.21	5	2.68
	1200	25	17.42	0.39	7.97	5	3.22
	2000		18.64	0.67	3.61	5	3.58
	2800		17.82	0.31	1.72	5	1.02
	1200	40	19.76	0.85	4.29	5	9.78
	2000		18.90	0.25	1.34	5	5.01
	2800		18.57	0.76	4.09	5	3.20
			18.19 (Avg.)	0.55 (Avg.)	3.05 (Avg.)	45 (Total)	3.80 (Avg.)
			le 3. Final Re	sults of Air-	uel Ratio Cont		

	$\begin{aligned} & \text { AIR-FUEL } \\ & \text { RATIO } \\ & \hline \end{aligned}$	LOAD	$\begin{gathered} \text { SPEED } \\ \text { RPM } \\ \hline \end{gathered}$	$\begin{gathered} \text { TESTED } \\ \text { AIR-FUEL } \\ \text { RATIO } \end{gathered}$	$\begin{gathered} \text { STANDARD } \\ \text { DEVIATION } \\ \text { AFR } \\ \hline \end{gathered}$	\% STARDAR PEVIATION	$\begin{aligned} & 1 \text { NO. } \\ & \text { TESTS } \\ & \hline \end{aligned}$	PERCENT OFESET
	14-1	25	1200	15.30	0.91	5.98	5	9.26
			2000	17.46	0.53	3.04	5	24.71
Calibration			2800	16.67	0.79	4.76	5	19.09
from	16-1	25	1200	19.66	1.18	6.02	5	22.90
Ref. 3			2000	20.08	0.32	1.69	5	25.47
			2800	19.62	1.05	5.34	5	22.61

Table 4. Result of Air-Fuel Ratio Control Using the Eirst Injectors Calibration, (from Ref. 3)

	AIR-FUEL RATIO	LOAD	$\begin{gathered} \text { SPEED } \\ \text { RPPS } \end{gathered}$	$\begin{gathered} \text { TESTED } \\ \text { AIR-FUEL } \\ \text { RATIO } \end{gathered}$	$\begin{gathered} \text { STANDARD } \\ \text { DEVIATION } \\ \text { AFR } \\ \hline \end{gathered}$	$\begin{aligned} & \text { \% STANDARD } \\ & \text { DEVIATION } \end{aligned}$	$\begin{gathered} \text { NO. } \\ \text { TESTS } \end{gathered}$	PERCENT OFFSET
	14-1	25	1200	17.59	0.09	0.54	5	25.63
Injectors			2000	17.70	0.79	4.47	5	26.45
Calibration			2800	16.38	0.16	1.02	5	17.03
from above	16-1	25	1200	14.00	0.72	5.10	5	12.47
data			2000	17.44	0.91	5.20	5	9.00
			2800	17.77	0.17	0.99	5	9.83

Table 5. Result of the Air-Fuel Ratio Control Using the Second Injectors Calibration (using data from Table 2)

LOAD	$\begin{gathered} \text { SPEED } \\ \text { RPM } \end{gathered}$	$\begin{aligned} & \text { TESTED } \\ & \text { AIR-FUEL } \\ & \text { RATIO } \\ & \hline \end{aligned}$	$\begin{gathered} \text { STANDARD } \\ \text { DEVIATION } \\ \text { AFR } \\ \hline \end{gathered}$	PERCENT STANDARD	
				STANDARD DEVIATION	NO.
LB-IT				FROM MEAN	TEST
25	1200	17.57	0.59	3.06	5
	2000	16.80	0.43	2.55	5
	2800	15.56	0.58	3.71	5
40	1200	17.06	0.61	3.60	5
	2000	16.81	0.35	2.10	5
	2800	15.30	0.42	2.79	5

Table 6. Result of Air-Fuel Ratio Using Bosch System
___ Ideal Spark Advance
Measured Spark Advance

Measured Dwell
Ideal Dwell

the spark advance, dwell, and rpm. Uncertainty analysis was made on the ignition timing measurements. The details of this analysis are given in Appendix D. The result of this analysis showed there is a maximum of 3.1 degrees crankshaft limit of error associated with result of the spark advance and 3.08 degrees with the ignition dwell angle.

CHAPTER VII

CONCLUSIONS AND RECOMMENDATIONS

7-1 Introduction

This chapter will provide a summary of the results and conclusions of this research and recommendations for further study.

7-2 Summary of Results and Conclusions
A microcomputer fuel injection and ignition timing control system was designed and tested on an internal combustion engine over the range of speed from 1000 to 3000 and at loads of 10.0 to $40.0 \mathrm{lb}-\mathrm{ft}$ at the three air-fuel ratios of $14-1,16-1$ and $18-1$. The ignition spark advance and dwell control system was tested at six speed values: 1000, 1200, 1600, 2000,2300 , and 2800 rpm.

The results of testing the air-fuel ratio controller showed that the ability to maintain a prescribed air-fuel ratio over a range of operating conditions is quite dependent on accurate calibrations of the air flow sensor and the fuel injectors. The ability of the syster to produce repeatable results is evidenced by the fact that of the 27 sets of data the percent standard deviation only exceeded 5% on one set. The average percent standard deviation was only 2.7%. The ability of the system to obtain the prescribed air-fuel ratio (which is strongly dependent on the above mentioned calibrations) was not as good. The percent off set exceeded 5% on seven of the 27 sets of data with the average percent offset of 3.58%. The larger errors appeared to occur at the heavier loads at the lower speeds.

The six sets of data taken for the Bosch controller indicated a repeat-
ability of 3% standard deviation, but the value of air-fuel ratio varied by 11 to 12% over the range of speeds tested for each load.

The ignition spark advance controller proved to be successful with the maximum deviation of 1.50 degree of $C S$ from the prescribed advance. The average deviation for the six sets of data was less than 1.00 degree of crank shaft. The repeatability of the system was indicated by the 3.67% average percent standard deviation. The limit of error for the measurement of the spark advance angle was between 0.54 degree crank shaft at 1000 rpm and 3.10 degree of the crank shaft at 2800 rpm .

The ignition dwell angle was maintained constant with a maximum error of 3.5 degrees crankshaft and an average error of 1.2 degrees crank shaft. The dwell angle was repeatable with a 1.83% standard deviation. The uncertainty analysis for the measurenents of the dwell angle indicated a limit of error between 1.24 and 3.08 degree crank shaft.

Finally, the floating point arithmetic operations with a 2 byte mantissa and a l-byte exponential proved to be adequate for computing injection pulse duration and angle of spark advance.

7-3 Recommendations
To control air-fuel ratio, ignition spark advance and ignition dwell angle with greater accuracy, and to improve and expand the system for further research, several recommendations are given in this section as follows:

1. The microcomputer system could be improved by the addition of more input-output ports and programable interval timers.
2. Improvements could be made on the system by increasing the number of bit on the counters of the speed sensor, ignition spark advance and ignition dwell angle from l2-bit to l6-bit. This would increase the
resolution of these systems to 1 part in 65,000 .
3. Fuel injection values had to be adjusted for an 8-bit interval timer with a clock division rate of $64 \mu \mathrm{sec}$ count. The resolution of the fuel injection pulse was 164 us which created an uncertainty in the fuel injection in the order of 3.2%. The source of error could be reduced by using an interval timer with more bits and a faster clock rate. A 16 bit timer would permit use of a 1 mhz clock and reduce this timing uncertainty to less than 0.1%.
4. The average extcution times for the multiplication, division, subtraction, and addition routines were $1870 \mu \mathrm{sec}, 1120 \mu \mathrm{sec}, 530 \mu \mathrm{~s}$, and 500 usec respectively. These routines could be improved for faster operation by a combination of additional hardware and improved software.
5. The fuel measuring system could be improved by changing from a mass measuring to a volumetric measuring system. Also, an automatic timing system could be devised to measure the time for consumption of the prescribed volumn of fuel.
6. The air flow sensor could be improved by replacing the potentiometer with a digital position encoder, or a more reliable potentiometer.
7. The air flow measuring system could be improved by using a smaller nozzle, a pitot static measuring system, or a positive displacement flow measuring device.
8. If more accurate and reliable fuel and air flow measuring systems were provided the air flow sensor and the fuel injectors should be carefully recalibrated.
9. Data for the ignition time controller was collected using the same
sweep rate on the oscilloscope for measuring the cycle of the distributor signal, the spark advance with respect to the distributor signal, and the ignition pulse duration. As a result the ignition pulse duration and the spark advance were small compared to the span of the instrument and the limit of error for these measurements was large. These errors could be reduced if the time base of the oscilloscope were set at the minimum sweep rate for each measurement. The uncertainties that could be obtained are indicated below.

R.PM	$\lambda_{\text {ASA }} \%$	UNCERTAINTY ASA DEG CS	$\lambda_{\text {AIGD\% }}$	UNCERTAINTY AIGH DEG CS
1000	18.13	. 362	. 593	.717
1200	6.55	. 589	1.560	. 702
1600	4.31	. 862	1. 52	. 684
2000	3.38	. 980	1.58	. 711
2300	3.04	1.018	1.64	. 738
2800	3.01	1.144	1.76	. 792

10. The ultimate purpose of the microprocessor control of fuel injection and ignition timing to reduce exhaust emissions and improve economy could be more readily realized if an exhaust emission sensor and a load sensor were provided so the control loop could be closed. This would present a whole new set of opportunities for improved control strategies.

LIST OF REFERENCES

1. Toelle, A.D., "Microprocessor Control of the Automobile Engine", Sendix Electronics and Engine Control System Group, SAE paper no. 770008.
2. Russell, J.B. and Nedbal, R.G., "Air-Fuel Ratio Control Using a Simple Microprocessor," Esse: Group-United Technology, SAE paper no. 770006.
3. Schneck, G.A., 'Design Implementation, and Testing of a Real-Time Microcomputer Air-Fuel Ratio and Speed Controller For an Electronically Fuel Injecied Internal Combustion Engine," Yansas State University, Masters Thesis, 1976.
4. "Search", General Motors, Research Laboratories, March - April 1977, Vol. 12, No. 2.
5. Vora, L., "Computerized Five-Parameter Engine Mapping," Electronic Dept., General Motors Corp., SAE paper no. 770008.
6. Jurgen, Ronald K., "The Microporcessor: In the Driver's Seat?" IFEE Spectrum, June 1975, P.P. 73-77.
7. Electronic News, September 27, 1967, Vol. 21, No. 1099, pp. 36.
8. Jurgen, Ronald K., "Electronic Fuel Injection: Mileage Boost, Pollution squelch," IEEE Spectrum, November 1975, pp. 34-36.
9. Buttgereit, W., Voges, C.H., and Schilter, C., "Exhaust Emえ́ssion Control by Fuel Injection: The VW 1600 with Electronically Controlled Fuel Injection System," SAE Transactions 1968, paper no. 680192.
10. Gyorki, J., "Fundamentals of Electronic Fuel Injection," The Bendix Corporation, SAE paper no. 740020.
11. Soltau, J.P., Senior, and K.3. Rowe, B.B., "Digitally Programmed Engine Fueling Controls," Joseph Lucas Ltd, SAE paper no. 730128.
12. Binder, K., Kiencke, U., and Zechnall, M., "Car Control by a Central Electronic System", Robert Bosch Gmbh, SAE paper no. 770001.
13. Rivard, J.G., "Electronic Fuel Injection in the U.S.A.," The Bendix Corporation, SAE paper no. 741224.
14. Ogata, K., Modern Control Engineering, Englwood Cliffs, New Jersey, 1970, pp. 6-7, 16.
15. The 1968 VW Program Manual, Provisional Workshop Nanual, Fuel SystemElectrical System.
16. "Electronically controlled Gasoline injection system", Robert Bosch Corporation, BB 700/1A, January 15, 1968.
17. Obert, Edward F., Internal Combustion Engines and Air Pollution, (Intext Educational Publishers, New York and London, 1973) pp. 537538.
18. Taylor, Charles F., The Internal Combustion Engine in Theory and Practice, Volume 2, (The M.I.T. Press, Cambridge, Massachusetts and London, 1968) pp. 61, 68.
19. Electronic Ignition Owner's Manual, Borg- Warner, Form No. 73-5.
20. Baert, D., and Van De Casteele, R., "An Electronic Ignition Control Systern, " University of Ghent (Belgium), SAE Paper no. 770105.
21. MOS Microcomputer Programaing Manual, January 1976.
22. MOS Microcomputer KIM-1 User Manual, August 1976.
23. Bartee, Thomas C., Digital Computer Fundamentals, 34d ed., McGraw-Hill Company, 1972, Pp. 233-236.
24. Robinson, Jeff, ed. Volkswagen Service - Repair Handiook, Clymer, Los Angeles, Calif., 1972.
25. Williams, W.C. "Operational Characteristics of An Internal Combustion Engine Using Mixture of Gasoline and Propane as the Fuel," Kansas State University, Masters Thesis, 1976.
26. Sprague C.H., and Nash, R.T., "Introduction to Engineering Experimentation," Kansas State University, Manhattan, Kansas 1972.

APPENDIX A

MICROCOMPUTER SPECIFICATIONS

Model
Manufacture
Available RAM
Available ROM
Available I/O
Address Range
No. of Addressing Modes
MPU
Available Intervai timers
Interrupt Mode

KIM-1 Microcomputer System MOS Technology, Inc. 1152 bytes 2048 bytes 15 bits 65,536 bytes 13 8-Bit, 6502 Microprocessor Array 1

Non-Maskable (NMI) and Interrupt
Request (IRQ)

Additional Memory

Manufacturer
Available RAM

The Digital Group
8192 bytes

APPENDIX B

ENGINE SPECIFICATIONS

APPENDIX C

TESIING EOUIPMENT SPECIFICATION

EQUIPMENT

1. Oscilloscope
2. Daytronic Modular Instrument System
3. Electronic Counter for measuring time for fuel consumption
4. Electronic Counter for measuring injection pulse time
5. Strain Guage Transducer for load measurement
6. Analog to Digital Convertor
7. Water Micro Manometer
8. Mass Balance
9. Digital Multimeter
10. D-C Power Supplies

SPECIFICATION

Tektronix Type S64 with Time Base Type 2B67

Daytronic Models: 840, 870, 862, and 821

Hewlett Packard Model 523D

Universal EPOT Model 6146 with Timer Model 602

Transducer Model BTC-FF63-CS-50

Analog Device, Kodel ADC-102.
Meriam, Type MICRO, Model 34FBZ
Detecto Gram Balance
Fluke Multimeter Model 8000A

LAMBDA Dual Model LPD-421A-FM

APPENDIX D

UNCFRTAINTY ANALYSIS

In order to assess the value of the results of this work it is necessary to evaluate the uncertainty associated with each result. These uncertainties are calculated by the proceedure presented by Spargue and Nash (25). For a variable H which is a function of various independently measured values of $Y_{1}, Y_{2}, Y_{3}, \ldots, Y_{n}$ or

$$
\begin{equation*}
H=f\left(Y_{1}, Y_{2}, Y_{3}, \ldots, Y_{n}\right), \tag{1}
\end{equation*}
$$

the uncertainty in H is calculated from the equation

$$
\begin{equation*}
\lambda H=S_{1}^{2} \lambda_{1}^{2}+s_{2}^{2} \lambda_{2}^{2}+s_{3}^{2} \lambda_{3}^{2}+\ldots+s_{n}^{2} \lambda_{n}^{2} \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
S_{n}=\frac{\partial f}{\partial Y_{n}} \frac{Y_{n}}{H} \tag{3}
\end{equation*}
$$

and λ_{n} is the uncertainty in the n 'th measured value in percent of reading. There are two factors which contribute to the uncertainty of each measurment. The first is the ability of the instrument to position the indicator in the correct position on the scale. This is called instrument uncertainty, The second is the ability of the experimenter to accurately read the indicated value which is known as a resolution uncertainty. Manufacturer's specifications ususally indicate the instrument uncertainty. In the absence of better information from manufacture's literature, resolution and instrument uncertainties will both be assumed equal to Y_{z} of the smallest scale division of the instrument's display.

The uncertainties in the ignition timing parameters of spark advance and dwell will be calculated in this Appendix. The uncertainties in air-
flow sensor's calibration, air-fuel ratio calculation, and fuel injector calibration will be summarized. These uncertainties are calculated in Appendix C of the reference 3 .

Ignition Spark Advance Uncertianty

The angle of spark advance in degree of crank shaft is calcualted from the equation:

$$
\begin{equation*}
\mathrm{ASA}=\frac{(\mathrm{SPADIS}) 360}{\mathrm{HADIST}}-6 \mathrm{deg} \tag{4}
\end{equation*}
$$

where SPADIS is the measured phase difference between the ignition pulse and the distributor signal in units of time, ϕ is the phase shift between the distributor and crank shaft cycle in angular degrees of the crank shaft, and HADIST is one half of the period of the distributor signal in unit of time. To calculate the uncertainty in ASA the uncertainties in SPADIS, \varnothing and HADIST must first be calculated. The phase shift ϕ was measured in units of time and converted to degree of crank shaft by the equation:

$$
\begin{equation*}
\phi(\text { deg. of crank shaft })=\frac{(\phi \text { time })(360)}{\text { HADIST }} . \tag{5}
\end{equation*}
$$

The variables ϕ (time), HADIST, and SPADIS were measured with the Taktronix Type 564 Storage Oscilloscope equipped with a type 2 B67 Time-Base Plug in unit. Specifications for this instrument indicate that the calibrated sween rates are within 3% of the step switch setting. Resolution accuracy will be taken as $1 / 2$ the smallest scale division.

To measure ϕ (time), as explained in Chapter 5, the engine was run at the speed of 850 rpm with vacuum nose off. The values of $\operatorname{HADIST}, \phi_{t}$ and $\phi_{\text {deg }}$ were $70 \mathrm{~ms}, 3 \mathrm{~ms}$ and 15.43 deg respectively, and the uncertainties in ϕ_{t} and HADIST are:

$$
\lambda_{\phi t}=(\lambda)^{2} \text { Iinearity }+(\lambda)^{2} \text { resolution }
$$

$$
\begin{aligned}
& =(3.0)^{2}+\left(\frac{0.1100}{6.0}\right)^{2} \\
& =3.43 \% \\
\lambda_{\text {HADIST }} & =(\lambda)^{2} \text { Iinearity }+(\lambda)^{2} \text { resolution } \\
& =(3.0)^{2}+\left(\frac{100}{70}\right)^{2} \\
& =3.323 \%
\end{aligned}
$$

The sensitivities of ϕ deg with respect to ϕ_{t} and HADIST can be computed from equations 3 and 5 as follow:

$$
\begin{aligned}
& S_{\phi t}=\frac{\frac{\partial \phi_{\mathrm{deg}}}{\partial \phi_{t}} \phi_{t}}{\phi_{\mathrm{deg}}}=1 \\
& S_{\text {MADIST }} \frac{\frac{\partial^{\phi} \mathrm{deg}^{\mathrm{HADIST}}}{}(\mathrm{HADIST})}{\phi_{\mathrm{deg}}}=1 .
\end{aligned}
$$

The uncertainty in $\phi_{d e g}$ is calculated from equation 2.

$$
\begin{aligned}
\lambda_{\phi d e g} & =(\lambda)_{\phi t}^{2}(S)_{\phi t}^{2}+(\lambda)_{\text {HADIST }}^{2}(S)_{\text {HADIST }}^{2} \\
& =(3.430)^{2}(I)^{2}+(3.323)^{2}(1)^{2} \\
& =4.78 \%
\end{aligned}
$$

The uncertainties in SPADIS, HADIST, and ASA in equation 4 depend on the rpm of engine and angle of spark advance. The calculation of the uncertainties of the average of 9 measurements of these parameters for a speed of 1000 rpm is as follow:

$$
\begin{aligned}
\lambda_{\text {SPADIS }} & =\left(\lambda^{2}\right) \text { Inearity }+\left(\lambda^{2}\right) \text { resolution } \\
& =(3.0)^{2}+\left(\frac{10 .}{.66}\right)^{2} \\
& =15.45 \% \\
\lambda_{\overline{S P A D I S}} & =\frac{\lambda \text { SPADIS }}{m}=\frac{15.45}{9}=5.15 \%
\end{aligned}
$$

$$
\begin{aligned}
\lambda_{\text {HADIST }} & =\left(\lambda^{2}\right) \text { linearity }+\left(\lambda^{2}\right) \text { resolution } \\
& =(3.0)^{2}+\left(\frac{100}{58}\right)^{2}=3.46 \% \\
\lambda_{\overline{\mathrm{HADIST}}} & =-\frac{\lambda_{\mathrm{HADIST}}}{\mathrm{~m}}=\frac{3.46}{9}=1.153 \%
\end{aligned}
$$

The sensitivity of ASA with respect to SPADIS is computed from equations 3 and 4,

$$
\begin{aligned}
S_{S P A D I S} & =\frac{\frac{\partial A S A}{\partial S P A D I S} \text { SPADIS }}{A S A} \\
& =\frac{\frac{360}{\frac{H A D I S T}{(S P A D I S)(360)}} \operatorname{HPADIS}}{\operatorname{HADIST}}-\phi_{\mathrm{deg}} \\
& =\frac{1}{1-\frac{(\mathrm{HADIST})\left(\phi^{d} \mathrm{deg}\right)}{(S P A D I S)(360)}}
\end{aligned}
$$

Likewise, the sensitivity of ASA with respect to HADIST and ϕ deg will be:

$$
\begin{aligned}
S_{\text {HADIST }} & =\frac{\frac{\partial A S A}{\partial H A D I S T} \operatorname{HADIST}}{A S A} \\
& =\frac{\frac{-(S P A D I S)(360)}{(\mathrm{HADIST})^{2}} \operatorname{HADIST}}{\frac{(S P A D I S)(360)}{\operatorname{HADIST}}-\phi \mathrm{deg}} \\
& =\frac{-1}{\left.1-\frac{(\mathrm{HADIST})(\phi}{(\mathrm{SPADIS})(360)}\right)}
\end{aligned}
$$

and

$$
\begin{aligned}
S_{\phi_{\mathrm{deg}}} & =\frac{\frac{\partial A S A}{\partial \phi_{\mathrm{deg}}} \phi_{\mathrm{deg}}}{\mathrm{ASA}} \\
& =\frac{(-1)\left(\phi_{\mathrm{deg}}\right)}{\frac{(\mathrm{SPADIS})(360)}{\mathrm{HADIST}}-\phi \text { deg }} \\
& =\frac{1}{\left.1-\frac{(\mathrm{SPADIS})(360)}{(\mathrm{HADIST})(\phi} \mathrm{deg}\right)}
\end{aligned}
$$

The average values of SPADIS and HADIST for Ω different readings at engine speed of 1000 rpm are:

$$
\begin{aligned}
& \overline{\mathrm{SPADIS}}=3.3 \mathrm{~ms}, \\
& \overline{\mathrm{HADIST}}=58 \mathrm{~ms}, \\
& \mathrm{~m}=9 .
\end{aligned}
$$

The values of the sensitivities are:

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{SPADIS}}=4.05 \% \\
& \mathrm{~S}_{\mathrm{HADIST}}=4.05 \% \\
& \mathrm{~S}_{\phi}=-3.54 \%
\end{aligned}
$$

Finally, the uncertainty in ASA will be:

$$
\begin{aligned}
\lambda_{A S A} & =\left(\lambda^{2}\right)_{\phi_{\mathrm{deg}}}\left(\mathrm{~S}^{2}\right)_{\phi_{\mathrm{deg}}}+\left(\lambda^{2}\right)_{\mathrm{SPADIS}}\left(\mathrm{~S}^{2}\right)_{\mathrm{SPADIS}+\left(\lambda^{2}\right)_{\operatorname{HADIS}}\left(S^{2}\right)_{\text {HADIS }}} \\
& =(4.78)^{2}(3.54)^{2}+(5.15)^{2}+(4.054)^{2}+(1.153)(4.054)^{2} \\
& =27.26 \% .
\end{aligned}
$$

The uncertainty in ASA in ansular degrees of crank shaft was calculated to be .545 deg .

The uncertainties in angle of spark advance was also computed for speeds of $1200,1600,2000,2300$, and 2800 rpm by the same technique. The result of these calculations are given in Table 1.

Ignition Dwell Uncertainty

The angle of the Ignition Dwell was calculated from the ignition pulse duration from equation:

$$
\begin{equation*}
A I G D=\frac{(\operatorname{IGPU})(360)}{\text { HADIST }} \tag{6}
\end{equation*}
$$

Table 1 Results of Uncertainty in Angle of Spark Advance

$\begin{aligned} & \text { Speed } \\ & \text { rpm } \end{aligned}$	$\underset{\substack{\text { MS }}}{\text { SPADIS }}$	$\begin{gathered} \text { HADIST } \\ \text { MS } \end{gathered}$	$\begin{gathered} \phi_{\mathrm{d}} \\ \mathrm{deg} . \mathrm{CS} \end{gathered}$	${ }_{\lambda_{\phi}}{ }_{\mathrm{d}}$	$S_{\phi_{d}}$	$\underset{\%}{\mathrm{HADIST}}$	$\mathrm{S}_{\text {HADIST }}$	$\begin{gathered} \lambda_{\text {SPADIS }} \\ \% \end{gathered}$	$\mathrm{S}_{\text {SPADIS }}$	${ }_{\%}^{\lambda} \mathrm{ASA}$	UNCERTAINTY deg of CS
1000	$\begin{gathered} .66 \times 5 \\ 3.3 \end{gathered}$	$\begin{gathered} 5.8 \times 10 \\ 58 \end{gathered}$	15.43	4.78	-3.540	1.15	-4.054	5.15	4.05	27.26	. 545
1200	$\begin{array}{r} .75 \times 5 \\ 3.75 \end{array}$	$\begin{gathered} 9.52 \times 5 \\ 47.6 \end{gathered}$	15.43	4.78	-1. 1.93	1.06	-2.19	4.56	2.19	11.73	1.056
1.600	$\begin{array}{r} .768 \times 5 \\ 3.84 \end{array}$	$\begin{gathered} 7.52 \times 5 \\ 37.6 \end{gathered}$	15.43	4.78	-. 723	1.09	-1.723	4.45	1.723	8.62	1.723
2000	$\begin{array}{r} .751 \times 5 \\ 3.755 \end{array}$	$\begin{array}{r} 5.94 \times 5 \\ 29.72 \end{array}$	15.43	4.78	-. 513	1.15	-1. 51.3	4.55	1.513	7.51	2.178
2300	$\begin{array}{r} .73 \times 5 \\ 3.65 \end{array}$	5.12×5	15.43	4.78	-. 429	1.19	-1.429	4.67	1.429	7.18	2.410
2800	$\begin{array}{r} .61 / 4 \times 5 \\ 3.07 \end{array}$	$\begin{aligned} & 4.1 \times 5 \\ & 20.5 \end{aligned}$	15.43	4.78	$-.401$	1.29	1.40	5.52	1.40	8.16	3.100

where IGPU is the duration of ignition pulse and HADIST is one half of the cistributor cycle, where both were measured by the Tektronix Type 564 storage Oscilloscope. Also, AIGD is defined to be the angle of ignition dwell in the units of degree of crank shaft. In order to compute uncertainty in AIGD uncertainties in IGPU and HADIST must first be calculated. The compulation of uncertainty in AIGD for a speed of 1000 rpm is shown. The results for 1200, 1600, 2000, 2300, and 2800 rpm is presented in Table 2.

$$
\begin{aligned}
\lambda_{\text {HADIST }} & =(\lambda)^{2} \text { Resolution }+(\lambda)^{2} \text { Linearity } \\
& =(3.0)+\frac{100^{2}}{58}=3.46 \% \\
\lambda_{\overline{\text { HADISI }}} & =\frac{\lambda \text { HADIST }}{\mathrm{m}}=\frac{3.46}{9}=1.153 \% \\
\lambda_{\text {IGPU }} & =(\lambda)^{2} \text { Resolution }+(\lambda)^{2} \text { Linearity } \\
& =(3.0)^{2}+\frac{10 .{ }^{2}}{1.456}=7.49 \% \\
\lambda_{\overline{\text { IGPU }}} & =\frac{\lambda I G P U}{m}=\frac{7.49}{m}=2.50 \%
\end{aligned}
$$

The sensitivities of AIGD to HADIST and IGPU will be calculated from equations 3 and 6 as follow:

$$
\begin{aligned}
S_{H S D I S T} & =\frac{\frac{\partial A I G D}{\partial H A D I S T}(H A D I S T)}{A I G D} \\
& =\frac{\frac{(\text { IGPU }(360)}{(H A D I S T)^{2}}(H A D I S T)}{\frac{(I G P U)(360)}{(H A D I S T)}}=-1 \\
& \begin{aligned}
S_{\text {IGPU }} & =\frac{\frac{\partial A I G D}{\partial I G P U}(I G P U)}{A I G D} \\
& =\frac{\frac{360}{\text { HADIST }}(\text { IGPU })}{\frac{(I G P U)(360)}{H A D I S T}}=1
\end{aligned}
\end{aligned}
$$

The uncertainty in AIGD can now be calculated from equation 2 as:

$$
\begin{aligned}
\lambda_{A I G D} & =\left(S^{2} \lambda^{2}\right)_{\text {HADIST }}+\left(S^{2} \lambda^{2}\right)_{\text {IGPU }} \\
& =(1.153)^{2}(-1)^{2}+(2.5)^{2}(1)^{2} \\
& =2.75 \% .
\end{aligned}
$$

From this result the uncertainty in degree angle of ignition dwell is 1.24 deg. C.S.

Air Flow Sensot Calibration Uncertainty
The following uncertainties are calculated in reference 3. For the air flow sensor:

$$
\begin{aligned}
& \lambda_{\text {TDB }}=0.862 \%, \lambda_{\text {TWB }}-1.040 \%, \lambda_{\text {ATMPR }}=0.0493 \\
& \lambda_{\text {DENAIR }}=0.86 \%, \lambda_{\text {PMN }}-2.05 \%, \lambda_{\text {CFM }}=1.54 \%
\end{aligned}
$$

and the sensitivity for above parameters are:

$$
\begin{aligned}
& S_{\mathrm{TDB}}=0.998, \mathrm{~S}_{\mathrm{TWB}}=-0.0098, \mathrm{~S}_{\mathrm{ATMPR}}=1.010 \\
& S_{\text {DENAIR }}=1, \quad S_{\mathrm{PM}}=1, \mathrm{~S}_{\mathrm{CFM}}=1 .
\end{aligned}
$$

From the above values the uncertainty in AMFR is 1.76% and uncertainty in measuring the air flow sensor voltage with the Fluke digital multimeter is 1.43%.

Fuel Injector Calibration Uncertainty
To compute the uncertainty in the calibration of the Fuel Injectors the following uncertainties and sensitivities are used:

$$
\begin{aligned}
& \lambda_{\text {DELGAS }}=1.77 \%, \lambda_{\text {DELTIM }}=0.043 \%, \lambda_{\text {RPM }}=0.473 \% \\
& \text { DELGAS }=1, S_{\text {ELTIME }}=-1, \text { and } S_{R P M}=-1
\end{aligned}
$$

From the above values the uncertainty in INJECT was computed to be 1.77%. Also, the uncertainty in measuring injection pulse length using the Tektronix Storage Oscilloscope was computed to be 3.83%.

Table 2. Results of Uncertainty in Ignition Dwell Angle

Speed rpm	$\begin{gathered} \text { IGPU } \\ \text { ms } \end{gathered}$	HADIST ms	$\lambda^{\text {IGPU }}$	$S_{\text {IGPU }}$	$\lambda_{\text {HADIST }}$	$S_{\text {HADIST }}$	$\lambda_{\text {AIGD }}$	$\begin{aligned} & \text { Uncertainty } \\ & \text { deg C.S. } \end{aligned}$
1000	$\begin{gathered} 1.456 \times 5 \\ 7.28 \end{gathered}$	$\begin{gathered} 5.8 \times 10 \\ 58 \end{gathered}$	2.50	1	1.15	-1	2.75	1.24
1200	$\begin{gathered} 1.1912 \times 5 \\ 5.956 \end{gathered}$	$\begin{array}{r} 9.52 \times 5 \\ 47.60 \end{array}$	2.97	1	1.06	-1	3.16	1.42
1600	$\begin{aligned} & 0.942 \times 5 \\ & 4.711 \end{aligned}$	$\begin{gathered} 7.52 \times 5 \\ 37.6 \end{gathered}$	3.68	i	1.09	-1	3.84	1.73
2000	$\begin{gathered} 0.8 \times 5 \\ 4.0 \end{gathered}$	$\begin{array}{r} 5.94 \times 5 \\ 29.72 \end{array}$	4.28	1	1.15	-1	4.43	1.99
2300	$\begin{gathered} 0.624 \times 5 \\ 3.12 \end{gathered}$	$\begin{array}{r} 5.12 \times 5 \\ 25.58 \end{array}$	5.43	1	1.19	-1	5.56	2.50
2800	$\begin{gathered} 0.502 \because 5 \\ 2.51 \end{gathered}$	$\begin{array}{r} 4.1 \times 5 \\ 20.5 \end{array}$	6.71	I	1.29	-1	6.84	3.08

Air-Fuel Ratio Uncertainty
To compute uncertainty in AIRIN, uncertainties and sensitivities in several parameters are calculated first.
uncertainties are:

$$
\begin{aligned}
& \lambda_{\text {TDB }}=0.907 \%, \lambda_{\text {THR }}=1.122 \%, \lambda_{\text {ATMPR }}=0.0492 \% \\
& \lambda_{\text {DENAIR }}=0.90 \%, \lambda_{\text {PMN }}=2.36 \%, \lambda_{\text {PNSD }}=2.53 \% \\
& \lambda_{\text {CFM }}=1.27 \%, \lambda_{\text {AMFR }}=1.56 \%, \lambda_{\text {COUNTER }}=0.022 \% \\
& \lambda_{\text {DELTIME }}=2.9 \%
\end{aligned}
$$

and the corresponding sensitivities are:

$$
\begin{aligned}
& S_{\text {TDB }}=-0.989, S_{\text {TWB }}=-0.0091, S_{A T M P R}=1.008, S_{\text {PNN }}=1 \\
& S_{\text {DENAIR }}=1, S_{\text {PNSD }}=0.5014, S_{\text {CFM }}=1, S_{A M F R}=1 \\
& S_{\text {AMFR }}=1, S_{\text {COUNTER }}=1, \text { and } S_{\text {DELTIME }}=1 .
\end{aligned}
$$

From the listed value the uncertainty in AIRIN was calculated to be 3.29% and sensitivity of AIRIN with respect to air-fuel ratio is +1 . Also, the uncertainty in measuring 0.4 lb weight of f uel which was used for the determination of DELGAS was calculated to 0.062%, and the sensitivity in DELGAS with respect to air-fuel ratio is 1 . Finally, from the above information the uncertainty in air-fuel ratio is:

$$
\begin{aligned}
\lambda_{A F R} & =\left(S^{2} \lambda^{2}\right)_{A I R I N}+\left(S^{2} \lambda^{2}\right)_{\text {DELGAS }} \\
& =(3.29)^{2}(-1)^{2}+(0.062)^{2}(I)^{2} \\
& =3.29 \% .
\end{aligned}
$$

APPENDIX E

STATISTICAL ANALYSIS FOR FUEL INJECTOR CALIBRATIONS

To determine how well the fuel injector calibration is compared to a linear relation, statistical analysis is done on 27 points of data collected for the air-fuel ratio controller with the final injector calibration. The mass of fuel per injection and injection pulse duration for these 27 points are as follow:

Injection Pulse (ms)	3.28	3.12	3.06	3.04	2.87	2.81	3.14	2.72	2.74
$\begin{aligned} & \text { Mass of fueliinjection } \\ & \times 10^{5} \end{aligned}$	2.09	1.99	2.12	1.94	1.77	1.83	1.85	1.70	1.73
Injection Pulse (ms)	4.34	3.89	4.15	3.84	3.54	3.64	3.72	3.69	3.63
$\begin{aligned} & \text { Mass of fuel/injection } \\ & \times 10^{5} \end{aligned}$	2.97	2.69	2.93	2.69	2.41	2.64	2.55	2.51	2.47
Injection Pulse (ms)	5.13	5.14	5.17	4.82	4.73	4.73	4.66	4.51	4.46
$\begin{aligned} & \text { Mass of fuel/injection } \\ & \times 10^{5} \end{aligned}$	3.53	3.58	3.93	3.46	3.40	3.56	3.26	3.13	3.12

Let $\mathrm{x}=$ injection time (ms)

$$
y=\text { mass of fuel per injection } \times 10^{5}
$$

then

$$
\begin{aligned}
& \bar{x}=3.873 \\
& \bar{y}=2.661 \\
& S_{y y}=27 \\
& S_{i=1}\left(y_{i}-\bar{Y}\right)^{2}=11.831 \\
& \sum_{i=1}^{27}\left(x_{i}-\bar{x}\right)^{2}=16.724 \\
& S_{x y}=\sum_{i=1}^{27}\left(x_{i}-\bar{x}\right)\left(Y_{i}-\bar{Y}\right)=13.918 \\
& S_{y \cdot x}^{2}=\frac{S_{y y}-\frac{S_{x y}}{S_{x x}}}{n-2}=.00992
\end{aligned}
$$

$$
R^{2}=\frac{S^{2} x y / S_{x x}}{S_{y y}}=.97905
$$

The equation of a straight line is :

$$
y-a+b(x-\bar{x})
$$

where

$$
a=\bar{Y}=2.6614
$$

and

$$
\mathrm{b}=\frac{S_{x y}}{S_{x x}}=.832
$$

therefore, the linear relation between injection pulse duration and mass of fuel per injection is:

$$
Y-0.8322 x-0.5617 .
$$

To obtain the confidence bound for the graph of the above relation the 95% confidence interval of μ_{x} for three points $\mathrm{x}=2.50,3.50,4.50$ is calculated using the relation:

$$
H_{x}=\bar{Y}_{X} \pm S_{\bar{y} \cdot x}{ }_{x 12, n-2}
$$

where $t_{x 12, n-2}$ is 2.05 for $x-.05$ and $n-27$

$$
\bar{Y}_{2.5}=1.519, \bar{Y}_{3.5}=2.351, \bar{Y}_{4.5}=3.183
$$

and

$$
S_{\bar{y} \cdot x}=S_{y \cdot x} \quad \frac{1}{n}+\frac{(x-\bar{x})^{2}}{S_{x x}}
$$

From this relation

$$
S_{\bar{y} .2 .5}=0.0385, S_{\bar{y}} .3 .5=.02120, S_{\bar{y} .4 .5}=.02451
$$

thus the result for μ_{x} will be
$1.440<\mu_{2.5}<1.598$
$2.297<43.5<2.385$
$3.113<\mu_{4.5}<3.214$
The confidence bounds and graph for the equation of the line are ploted in Figure E-1. This statistical analysis showed the relation between injection pulse duration and mass of fuel per injection is linear with $R=.989 \%$.

Figure El. Injection Calibration Confidence Bounds

APPENDIX F

MICROCOMPUTER PROGRAM LISTING

LIST OF PROGRAMS AND SUBROUTINES

0200-024F, 02C4-0360	Initialization program
0250-02C3	Injection program
2000-213F	Multiply
2140-224F	Addition
2300-23EF	Conversion of Air-flor voltage to mass of air per minute
2400-2486	Conversion of mass of fuel per injection to injection time
2490-24C3	Display
24DO-24F4	Conversion of $1 / 2(\mathrm{RPM})$ to RPM
2500-2582	Division
25B0-25CF	Subtraction
25D0-26CF	Spark advance program
2700-277F	Ignition time program
2790-283F	Interrupt program
2900-2A38	Data recording program

0001-0009	Multiply registers
000A-0018	Divide registers
0019-001C	Constants for ignition system
001D-001F	Ignition time
0020-002B	Intermediate multiply registers
002C-002E	Adjusted RPM with Exp of (-3)
0030-0038	Addition registers
0039-003F	$\text { Constants for } 180 \text { deg. and } \frac{10^{5}}{48}$
0040-0045	Intermediate addicion registers
0047-007B	Constants for injection system
007C-0075	Unscaled speed register (reading)
0081-0083	Voltage of Air-flow Sensor (reading)
0084-0085	Adjusted Ignition time
0086-0088	Mass of air per minute (scaled)
0089-008B	Result of $1 / 2$ (RPM)
008C-008E	RPM Result
008F-00AC	Constants for Spark Advance
00AD-00AF	Spark Advance Result
OOB9-00B2	Mass of fuel per injection
OOB3-00B5	Injection time
OOEE	Injection time adjusted

Zero Page Memory addresses not used:
002F, 0046, 007F, 0080, 00B6-00ED

LIST OF CONSTANTS

	ADDRESS	VALUE	HEX NO.	$\begin{gathered} \text { DECIMAL } \\ \text { NO. } \end{gathered}$	USED FOR
1.	$\begin{aligned} & 0019 \\ & 001 \mathrm{~A} \\ & 001 \mathrm{~B} \end{aligned}$	$\begin{aligned} & 00 \\ & 50 \\ & \text { F4 } \end{aligned}$	5000, F4	5.00	Delay for spark advance
2.	$\begin{aligned} & 0039 \\ & 003 A \\ & 003 B \end{aligned}$	$\begin{aligned} & 00 \\ & 53 \\ & \text { F9 } \end{aligned}$	5300, F9	166.00	Ignition spark angle
3.	$\begin{aligned} & 003 \mathrm{C} \\ & 003 \mathrm{D} \\ & 003 \mathrm{E} \end{aligned}$	$\begin{aligned} & 61 \\ & 5 I \\ & 00 \end{aligned}$	5161, 00	$10^{6 / 48}$	Scaling ignition time
4.	$\begin{aligned} & 0047 \\ & 0048 \\ & 0049 \end{aligned}$	$\begin{aligned} & 00 \\ & 20 \\ & \text { F2 } \end{aligned}$	2000, F2	0.50	RPM Conversion

5. 004 A F5 Conversion from voltage of Air-Elow

004B 68 68FS, F $\quad 0.41$ Sensor to mass of air per minute
$004 \mathrm{C} \quad \mathrm{F} \varnothing$
6. 004D 96

004E A8 A896, E E -. 34146 Sensor to mass of air per minute
004F $\quad \mathrm{F} \emptyset$
7. 0051

0052
0053
51
51EB, Fめ . 320
Conversion from Voltage of Air-Flow Sensor to mass of air per minute
8. 0054

00
58 5800, FI
.6875
Conversion from voltage of Air-Flow
$0055 \quad 58$
Sensor to mass of air per minute
0056
F1
9.

0057 1F
$0058 \quad 45$
451F, F2
1.08

Conversion from voltage of Air-Flow
0059
F2
10.

005 A	EC
005 B	95
005 C	F3

Conversion from voltage of Air-Flow 005C

F3 Sensor to mass of per minute

	ADDRESS	VAIUE	HEX NO.	$\begin{aligned} & \text { ECIMAL } \\ & \text { No. } \\ & \hline \end{aligned}$	USED FOR
11.	$\begin{aligned} & 005 \mathrm{D} \\ & 005 \mathrm{E} \\ & 005 \mathrm{~F} \end{aligned}$	$\begin{aligned} & \mathrm{El} \\ & 5 \mathrm{~A} \\ & \mathrm{FO} \end{aligned}$	5AE1, FO	. 335	Conversion from voltage of Air-Flow Sensor to mass of air per minute
12.	$\begin{aligned} & 0060 \\ & 0061 \\ & 0062 \end{aligned}$	$\begin{aligned} & 88 \\ & 42 \\ & \text { F2 } \end{aligned}$	4288, F2	1.0396	```Calibration of injection time First try 7C68, EI = . 972 Second try 64F1, F3 = . 788```
13.	$\begin{aligned} & 0063 \\ & 0064 \\ & 0065 \end{aligned}$	$\begin{aligned} & 7 C \\ & 40 \\ & \text { F2 } \end{aligned}$	407C, F2	1.0076	```Calibration of injection time First try 50F9, F1 = .61489 Second try 631B, F2 = 1.54854```
14.	$\begin{aligned} & 0066 \\ & 0067 \\ & 0068 \end{aligned}$	$\begin{aligned} & \text { A8 } \\ & 61 \\ & 02 \end{aligned}$	61A8, 02	10^{5}	Mass of fuel per injection scaling factor
15.	0069 006A 006в	$\begin{aligned} & 00 \\ & 7 D \\ & \text { F5 } \end{aligned}$	7000, F5	15.625	Scaling injection time
16.	006 C 006D 006E	$\begin{aligned} & \mathrm{dF} \\ & 46 \\ & \mathrm{~F} 2 \end{aligned}$	$46 \mathrm{dF}, \mathrm{F} 2$	1.107407	Scaling speed (RPM)
17.	$\begin{aligned} & 0070 \\ & 0071 \\ & 0072 \end{aligned}$	$\begin{aligned} & 25 \\ & 49 \\ & \mathrm{EE} \end{aligned}$	4925, EE	1/14	$\begin{aligned} & \text { Air-fuel ratio } \\ & \quad 14-1 \end{aligned}$
18.	$\begin{aligned} & 0073 \\ & 0074 \\ & 0075 \end{aligned}$	$\begin{aligned} & 00 \\ & 40 \\ & E E \end{aligned}$	4000, EE	1/16	$\begin{aligned} & \text { Air-fuel ratio } \\ & 16-1 \end{aligned}$
19.	$\begin{aligned} & 0076 \\ & 0077 \\ & 0078 \end{aligned}$	$\begin{aligned} & C 7 \\ & 71 \\ & E D \end{aligned}$	71C7, ED	1/18	$\begin{aligned} & \text { Air-fuel ratio } \\ & \text { 18-1 } \end{aligned}$
20.	$\begin{aligned} & 0079 \\ & 007 \mathrm{~A} \\ & 007 \mathrm{~B} \end{aligned}$	$\begin{aligned} & 66 \\ & 66 \\ & \text { ED } \end{aligned}$	6666, ED	1/20	$\begin{aligned} & \text { Air-fuel ratio } \\ & 20-1 \end{aligned}$

	ADDRESS	VALUE	HEX NO.	$\begin{aligned} & \text { ECIMAL } \\ & \text { NO. } \\ & \hline \end{aligned}$	USED FOR
21.	$\begin{aligned} & 008 \mathrm{~F} \\ & 0090 \\ & 0091 \end{aligned}$	$\begin{aligned} & 89 \\ & 41 \\ & \text { EB } \end{aligned}$	4189, EB	. 008	Spark advance computation
22.	$\begin{aligned} & 0092 \\ & 0093 \\ & 0094 \end{aligned}$	$\begin{aligned} & 00 \\ & 60 \\ & \text { F4 } \end{aligned}$	6000, F4	6	Spark advance computation
23.	$\begin{aligned} & 0095 \\ & 0096 \\ & 0097 \end{aligned}$	$\begin{aligned} & A E \\ & 47 \\ & E D \end{aligned}$	47AE, ED	. 035	Spark advance computation
24.	0098 0099 009A	$\begin{aligned} & 00 \\ & 42 \\ & \text { E7 } \end{aligned}$	4200, F7	33	Spark advance computation
25.	$\begin{aligned} & 009 \mathrm{~B} \\ & 009 \mathrm{C} \\ & 009 \mathrm{D} \end{aligned}$	$\begin{aligned} & \mathrm{BF} \\ & 58 \\ & \mathrm{EC} \end{aligned}$	58BF, EC	. 021667	Spark advance computation
26.	$\begin{aligned} & \text { OO9E } \\ & 009 \mathrm{~F} \\ & 00 \mathrm{AO} \end{aligned}$	$\begin{aligned} & \text { A8 } \\ & 72 \\ & \text { F5 } \end{aligned}$	72A8, F5	14.3335	Spark advance computation
27.	$\begin{aligned} & 00 \mathrm{~A} 1 \\ & 00 \mathrm{~A} 2 \\ & 00 \mathrm{~A} 3 \end{aligned}$	$\begin{aligned} & \mathrm{EI} \\ & 7 \mathrm{~A} \\ & \mathrm{~EB} \end{aligned}$	7AE1, EB	. 015	Spark advance computation
28.	$\begin{aligned} & \text { 00A4 } \\ & \text { 00A5 } \\ & \text { 00A6 } \end{aligned}$	$\begin{aligned} & 00 \\ & 40 \\ & \text { F2 } \end{aligned}$	4000, F2	1	Spark advance computation
29.	00A7 00A8 00A9	$\begin{aligned} & 00 \\ & \text { 4C } \\ & \text { E7 } \end{aligned}$	4C00, F7	38	Spark advance computation

INITIALIZATION PROGRAM

Aàdress Op Code $\frac{\text { Operands }}{\text { Byte 1 Byte 2 Mnemonic Coment }}$

0200	A2	FF		LDX:	initialize stack pointer
0202	9A			TXS	
0203	78			SEI	set interrupt disable flag
0204	A9	7F		LDA	define data direction register B
0206	8D	01	17	STA	
0209	A9	00		LDA	define data direction register A
020B	8D	03	17	STA	
020E	D8			CLD	specify the binary mode
020F	A9	85		LDA	specify IRQ vector, Iow byte
0211	8D	EE	17	STA	
0214	A9	27		LDA	speciîy IR@ vector, high byte
0216	8D	FE	17	STA	
0219	EA			NOP	
021A	EA			NOP	
021B	A9	44		\therefore DA	```initialize speed for 2000 rpm = 4144,E6```
021D	85	7 C		STA	
02.1F	A9	41		LDA	
0221	85	7D		Sta	
0223	A9	E6		LDA	
0225	85	7E		STA	
0227	A. 9	70		LDA	```define fuel-air ratio 70~1/14, 73~1/16, 76~1/18, 79~1/20```
0229	8D	8C	02	STA	
022C	EA			NOP	
022D	A9	F8		LDA	initialize air flow rate for $2 \mathrm{lb} / \mathrm{min}$
022E	85	81		STA	
0231	A9	1F		LDA	
0233	85	82		STA	
0235	A9	F4		LDA	
0237	85	83		STA	
0239	A9	85		LDA	specify NMI vector, low byte
023B	8D	FA	17	STA	
023E	A9	27		LDA	specify MMI vector, high byte
0240	8D	FB	17	STA	
0243	A9	80		LDA	turn off all Tri-States and Latches
0245	8D	00	17	STA	
0248	58			CLI	clear intrupt disable
0249	4C	C4	02	JMP	jump to store constants

Address	Op Code	Operads	Mnemonic	Comment
		Byte 1 Byte 2		
$02 \mathrm{C4}$	A9	98	LDA	
02Có	85	4 D	STA	
02C8	A9	A8	LDA	
02CA	85	4E	STA	
02CC	A9	EB	LDA	
02CE	85	51	STA	
02D0	A9	51	LDA	
02D2	85	52	STA	
02D4	A9	99	LDA	
02D6	85	54	STA	
02D8	85	69	STA	
02DA	85	73	STA	
02DC	A9	58	LDA	
O2DE	S5	55	STA	
02E0	A9	F1	LDA	
O2E2	85	56	STA	
02E4	A9	1F	LDA	
02E6	85	57	STA	
02E8	A9	F2	LDA	store exponent of the injectors calibration
O2EA	85	65	STA	
02EC	85	62	STA	
O2EE	85	6 E	LDA	
02FO	85	59	STA	
02F2	A9	45	LDA	
02F4	85	58	STA	
02F6	A9	EC	LDA	
02F8	85	5A	STA	
02FA	A9	95	LDA	
02FC	85	5B	STA	
02FE	A9	F3	LDA	
0300	85	5 C	STA	
0302	A9	E1	LDA	
0304	85	SD	STA	
0306	A9	5A	LDA	
0308	85	SE	STA	
030A	A9	88	LDA	store the injectors calibration equation
030C	85	60	STA	
O30E	A9	42	LDA	
0310	85	61	STA	
0312	A9	7 C	LDA	
0314	85	63	STA	
0316	A9	40	LDA	

CONSTANT STORAGE PROGRAM - Continued

0318	85	64	STA
031A	A9	A8	LDA
031C	85	66	STA
O31E	A9	61	LDA
0320	85	67	STA
0322	A9	02	LDA
0324	85	68	STA
0326	A. 9	7D	LDA
0328	85	6A	STA
032A	A9	dF	LDA
032C	85	6 C	STA
032E	A9	46	LDA
0330	85	6 D	STA
0332	A9	25	LDA
0334	85	70	STA
0336	A9	r9	LDA
0338	85	71	STA
033A	A9	EE	LDA
033C	85	72	STA
033E	85	75	STA
0340	A9	40	LDA
0342	85	74	STA
0344	A9	C7	LDA
0346	85	78	STA
0348	A9	71	LDA
034A	85	77	STA
034C	A9	ED	CDA
034E	85	78	STA
0350	85	78	STA
0352	A9	66	LDA
0354	85	79	STA
0356	85	7A	STA
0358	A9	F5	LDA
035A	85	4A	STA
035C	85	$6 B$	STA
035E	A. 9	68	LDA
0360	83	45	S'EA
0362	A9	$F \phi$	LDA
0364	85	4C	STA
0366	85	4 F	STA
0368	85	53	STA
036A	85	5F	STA
036C	A9	00	LDA
036E	85	47	STA
0370	85	92	STA
0372	85	98	STA
0374	85	A4	STA
0376	85	A7	STA

CONSTANT STORAGE PROGRAM - Continued

0378	85	39	STA
037A	85	3 E	STA
037C	A9	20	LDA
037E	85	48	STA
0380	A9	F2	LDA
0382	85	49	STA
0384	85	A6	STA
0386	A9	89	LDA
0388	85	8 F	STA
038A	A9	EB	LDA
038C	85	91	STA
038E	85	A3	STA
0390	A9	41	LDA
0392	85	90	STA
0394	A9	60	LDA
0396	85	93	STA
0398	A9	Fr	LDA
039A	85	94	STA
039C	A9	AE	LDA
039E	85	95	STA
03A0	A9	47	LDA
03A2	85	96	STA
03 A 4	A9	ED	LDA
03A6	85	97	STA
03A8	A9	42	LDA
03AA	85	99	STA
03AC	A9	F7	LDA
03AE	85	9A	STA
03B0	85	A9	STA
03B2	A9	BF	LDA
$03 \mathrm{B4}$	85	9 B	STA
0386	A9	58	LDA
03B8	85	9 C	STA
03BA	A9	EC	LDA
03BC	85	9 D	STA
03BE	A9	$A B$	LDA
93C0	85	9E	STA
03C2	Ao	72	LDA
03C4	85	9F	STA
03C5	A9	F5	LDA
03C8	85	A0	STA
03CA	A9	E1	LDA
O3CC	85	AI	STA
O3CE	A9	7A	LDA
03D0	85	A2	STA
03D2	A9	40	LDA
03D4	85	A5	STA
03D6	A9	4 C	LDA
03D8	85	A8	STA

CONSTANT STORAGE PROGRAM - Continued

03DA	A9	52		LDA	
03DC	85	3A		STA	
O3DE	A9	F9		LDA	
03E0	85	3B		STA	
03E2	A9	61		LDA	
03E4	85	3 C		STA	
03非5	A9	51		LDA	
03E8	85	3D		STA	
03EA	A9	00		LDA	load 5000, E_{4} for spark advance delay
O3EC	85	19		STA	
O3EE	A9	50		LDA	
03F0	85	1A		STA	
03F2	A. 9	F4		LDA	
03F4	85	IB		STA	
03F6	EA			NOP	
03F7	EA			NOP	
03F8	EA			NOP	
03F9	EA			NOP	
03FA	EA			NOP	
03FB	EA			NOP	
03FC	4 C	60	28	JMP	jump to inftialize the data recording program
2860	A9	00		LDA	
2862	8D	05	29	STA	
2865	A9	30		LDA	
2867	8D	06	29	STA	
286A	A9	60		LDA	
286C	80	3A	29	STA	
286F	A9	32		IDA	
2871	8D	3B	29	STA	
2874	A9	B0		LDA	
2876	8D	D5	28	STA	
2879	A9	3C		LDA	
287 B	8D	D6	28	STA	
287E	A9	20		LDA	
2880	8D	A4	29	STA	
2883	A9	37		LDA	
2885	8D	A5	29	STA	
2888	A9	80		LDA	
288A	8D	E3	28	STA	
288D	A9	39		LDA	
288F	8D	E4	28	STA	
2892	A9	EO		LDA	
289A	8D	OC	2A	STA	
2897	A9	3B		IDA	
2899	8D	OD	2 A	STA	
289C	4 C	50	02	JMP	jump to 0250 injection program

Address Op Code $\frac{\text { Operands }}{\text { Byte 1 Byte 2 Mnemonic Comment }}$

0250	A2	02		LDX	adjust rpm
0252	B5	7 C		LDA, X	
0254	95	01		STA, X	
0256	CA			DEX	
0257	10	F9		BPL	
0259	A. 2	02		LDX	
025B	B5	6C		LDA, X	
025D	95	04		STA, X	
025F	CA			DEX	
0260	10	ES		BPL	
0252	20	00	20	JSR	jump to multiply subroutine
0265	A2	02		LDX	
0267	B5	26		LDA, X	
0269	95	89		STA, X	
026B	CA			DEX	
026C	10	F9		BPL	
026E	EA	EA	EA	NOP	
0271	20	00	23	JSR	jump to afr flow rate conversion
0274	A2	02		LDX	
0276	B5	86		LDA, X	set up registers to multiply 1/2N by air flow rate
0278	95	01		STA, X	
027A	CA			DEX	
O27B	10	F9		BPL	
027D	A2	02		LDA	
027F	B5	89		LDA, X	
0281	95	04		STA, X	
0283	CA			DEX	
0284	10	F9		BPL	
0286	20	00	20	JSR	jump to multiply subroutine
0289	A2	02		LDX	
028B	B5	70		LDA, X	
028D	95	01		STA, X	set up registers to multiply fuelair ratio by product of $1 / 2 \mathrm{~N}$ and air flow rate
028F	CA			DEX	
0290	10	F9		BPL	
0292	A2	02		LDA	
0294	B5	26		LDA, X	
0296	95	04		STA, X	
0298	CA			DEX	
0299	10	F9		BPL	
029B	20	00	20	JSR	

INJECTION PROGRAM - Continued

| 029E | A2 | 02 | LDX set up registers to scale mass of |
| :--- | :--- | :--- | :--- | :--- |
| fuel per injection by 10^{5} | | | |

AIR FLOW SENSOR CALIBRATION PROGRAM

2300	D8			CLD	
2301	38			SEC	
2302	A5	81		LDA	compare count of air flow sensor voltage with 1FF8
2304	E9	F 8		SBC 非	
2305	A 5	82		LDA	
2308	E9	1F		SBC 非	
230A	10	IF		BPL	branch to 232C if CAFSV 1FF8
230C	EA			NOP	
230D	EA			NOP	
230D	EA			NOP	
230 E	EA			NOP	
230F	AZ	02		LDX	
2311	B5	81		LDA, X	
2312	95	01		STA, X	
2315	CA			DEX	
2316	10	F9		BPL	branch to 2311 if x -reg is positive
2318	A2	02		CDX	
231A	B5	SD		LDA, X	
231C	95	04		STA, X	
231 E	CA			DEX	
231F	10	F9		BPL	
2321	20	00	20	JSR	jump to multiply subroutine
2324	EA			NOP	

AIR FLOW SENSOR CALIBRATION PROGRAM - Continued

2325	EA			NOP	
2326	EA			NOP	
2327	EA			NOP	
2328	EA			NOP	
2329	4 C	E4	23	JMP	jurnp to 23E4, store the final result
232C	D8			CLD	
232D	38			SEC	
232F	A5	81		LDA	compre count of air flow sensor voltage with $3 F F 0$
2331	E9	FO		SBC	
2333	A5	82		LDA	
2335	E9	3F		SBC	
2337	10	39		BPL	branch to 2370 if CAFSV 3FFO
2339	EA			NOP	
233A	EA			NOP	
233B	EA			NOP	
233C	EA			NOP	
233B	A2	02		LDX	
233D	B5	81		LDA, X	
233F	95	30		STA, X	
2341	CA			DEX	
2342	10	F9		BPL	branch to 233D if X -Reg is positive
2344	A2	02		LDX	
2346	B5	4D		LDA, X	
2348	95	33		STA, X	
234 A	CA			DEX	
234B	10	F9		BPL	branch to 2346 if X-reg is positive
234D	20	40	21	JSR	jump to addition subroutine
2350	EA			NOP	
2351	EA			NOP	
2352	EA			NOP	
2353	EA			NOP	
2354	A2	02		LDX	
2356	B5	36		IDA, \times	
2358	95	01		STA, X	
235A	CA	EA		DEX	
235C	10	F8		BPL	branch to 2356 if $\mathrm{x}-\mathrm{reg}$ is positive
235E	A2	02		LDX	
2360	B5	4A.		LDA, X	
2362	95	04		STA, X	
2364	CA			DEX	
2365	10	F9		BPL	branch to 2360 if $\mathrm{x}-\mathrm{reg}$ is positive
2367	20	00	20	JSR	jump to multiply subroutine
236A	EA			NOP	
236B	EA			HOP	
236C	EA			NOP	
236D	4C	E4	23	JMP	jump to 23E4, store the final result

AIR FLOW SENSOR CALIBRATION PROGRAM - COntinued

2370	D8			CLD	
2371	38			SEC	
2372	A5	81		LDA	compare count of air flow sensor voltage with 4 FFl
2374	E9	F1		SBC	
2376	A5	82		LDA.	
2378	E9	4 F		SBC	
237A	10	35		BPL	branch to 23B1 if CAFSV 4FFl
237C	A2	02		LDX	
237 E	B5	81		LDA, X	
2380	95	30		STA, X	
2382	CA			DEX	
2383	10	F9		BPL	branch to 237E if x -ray is positive
2385	A2	02		IDX	
2387	B5	54		LDA, X	
2389	95	33		STA, X	
238B	CA			DEX	
238C	10	F9		BPL	branch to 2387 if $\mathrm{x}-\mathrm{reg}$ is positive
238E	20	40	21	JSR	
2391	EA			NOP	
2392	EA			NOP	
2393	EA			NOP	
2394	EA			NOP	
2395	EA			NOP	
2396	A2	02		CDX	
2398	B5	36		CDA, X	
239A	95	01		STA, X	
239 C	CA			DEX	
239D	10	F9		BPL	branch to 2396 if x-reg is positive
239F	A2	02		LDX	
23 Al	B5	51		LDA, X	
23 A 3	95	04		STA, X	
2345	CA			DEX	
23A6	10	F9		BPL	branch to 23AI if x-reg is positive
23A8	20	00	20	JSR	jump to multiply subroutine
23AB	EA			NOP	
23AC	EA			NOP	
23AD	EA			NOP	
23AE	4 C	E4	23	JMP	jump to store final result
23B1	A2	02		LDX	
23 Bc	B5	81		LDA, X	
23B5	95	30		STA, X	
$23 \mathrm{B7}$	CA			DEX	
23B8	10	F9		BPL	branch to 23B3 if x -reg is positive
23BA	A2	02		LDX	
23BC	B5	5A		LDA, X	
23BE	95	33		STA, X	
23 CO	CA			DEX	
23 Cl	10	F9		BPL	branch to 23BC if x-reg is positive

23 C 3	20	40	21	JSR	jump to addition subroutine
23 C 6	EA			NOP	
23 C 6	EA			NOP	
23C8	EA			NOP	
23C9	EA			NOP	
23 CA	EA			NOP	
23 CB	A2	92		LDX	
23 CD	B5	36		LDA, X	
23CF	95	01		STA, X	
23DI	CA			DEX	
23D2	10	F9		DPL	branch to 23CD if x-reg is positive
23D4	A2	02		LDX	
23D6	B5	57		LDA, X	
23D8	95	04		STA, X	
23DA	CA			DEX	
23DB	10	F9		BPL	branch to 23D6 if x-reg is positive
23DD	20	00	20	JSR	jump to multiply subroutine
23EO	EA			NOP	
23E1	EA			NOP	
23E2	EA			NOP	
23E3	EA			NOP	
23E4	A. 2	02		LDX:	
23E6	Bt	26		LDA, X	
23E8	95	86		STA, X	
23EA	CA			DEX	
23EB	10	F9		BPL	branch to 23E6 if x-reg is positive
23ED	60				

FUEL INJECTORS CALIBRATION PROGRAM

2400
D8
2401
2402
2403
2404
2405
2406
2407

2409
240B
240D
240E
2410
2412

18
EA
EA
EA
EA
EA
A2

B5
95
CA
10
A2
Bt

CLD
CLC
NOP
NOP
NOP
NOP
NOP
LDX store the value of mass of fuel per injection into the addition register
LDA, X
STA, X
DEX
BPL branch to 2409 if x -reg is positive LDX
LDA, X store value of 1.0076 into the addition register

FUEL INJECTORS CALIBRATION PROGRAM - Continued

2414	95	33		STA, X	
2416	CA			DEX	
2417	10	F9		BPL	branch to 2414 if x-reg is positive
2419	20	40	21	JSR	jump to addition subroutine
241C	EA			NOP	
241D	EA			NOP	
241E	EA			NOP	
241F	EA			NOP	
2420	A2	02		LDX	store result of the previous addition into the multiplication register
2422	B5	36		LDA, X	
2424	95	01		STA, X	
2426	CA			DEX	
2427	10	F9		BPL	branch to 2422 if x-reg is positive
2429	A2	02		LDX	
242B	B5	60		LDA, X	store value of 1.0396 into the multiplication register
242D	95	04		STA, X	
242F	CA			DEX	
2430	10	F9		BPL	branch to 242E if x-ray is positive
2432	20	00	20	JSR	
2435	A2	02		LDX	store the result injection pulse into the proper register
2437	B5	26		LDA, X	
2439	05	B3		STA, X	
243B	CA			DEX	
243C	10	F9		BPL	branch to 2437 if x -reg is positive
243E	EA			NOP	
243F	EA			NOP	
2440	EA			NOP	
2441	EA			NOP	
2442	A2	02		LDX	adjust the value of injection pulse for 8-bit value
2444	B5	B3		LDA, X	
2446	95	01		STA, X	
2448	CA			DEX	
2449	10	F9		BPL	branch to 2444 if x-ray is positive
244B	A2	02		LDX ${ }^{\text {F }}$	
244D	B5	69		LDA, X	
244 F	95	04		STA, X	
2451	CA			DEX	
2452	EA			NOP	
2453	10	F8		BPL	branch to 244D if x-reg is positive
2455	20	00	20	JSR	jump to multiply subroutine to adjust injection pulse
2458	EA			NOP	
2459	EA			NOP	
245A	EA			NOP	
245B	A5	29		CDA	

FUEL INJECTORS CALIBRATION PROGRAM - Continued

245D	10	OF		BPL	branch to 246 E if exp. of injection pulse is positive
245F	46	27		LSR	
2461	66	26		ROR	adjust injection pulse for zero exp.
2463	66	25		ROR	
2465	66	24		ROR	
2467	E6	29		INC	
2469	30	F4		BMI	branch to 245 F if exp. of IP is negative
246B	4 C	7D	24	JMP	
246 E	F0	OF		BEQ	branch to 247 F if exp. of IP is zero
2470	06	24		ASL	
2472	26	25		ROL	adjust injection pulse for zero exp.
2474	26	26		ROL	
2476	26	27		ROL	
2478	C6	29		DEC	
247A	D ϕ	F4		BNE	
247C	EA			NOP	
247D	EA			NOP	
247F	A5	24		LDA	store final result of injection pulse in the proper register
2481	85	EE		STA	
2483	60			RTS	return from the subroutine

SPEED (RPM) CALCULATION PROGRAM

24D0	A2	02		CDX	load value of $1 / 2 \mathrm{~N}$ into divisor
	B5	89		CDA, X	register of divide subroutine
	95	OD		STA, X	
	CA			DEX	
	10	F9		BPL	
	A2	02		CDX	
	B5	47		CDA, X	load value of 0.5 decimal into
	95	OA		STA, X	dividend of divide subroutine
	CA			DEX	
	10	F9		BPL	
	EA			NOP	
	EA			NOP	
	EA			NOP	
	20	00	25	JSR	jump to divide subroutine
	A2	02		CDX	
	B5	10		CDA, X	store result of speed (rpm) into
	95	8C		STA, X	the proper registers
	CA			DEX	

SPEED (RPM) CALCULAIION PROGRAM - Continued

10	F9		BPL
4C	D0	25	JMP

SPARR ADVANCE SUBROUTINE

25D9	A2	02		LDX	adjust speed (rpm) for constant exp. of -3
25D2	B5	8C		LDA, X	
25D4	95	2C		STA, X	
25D6	CA			DEX.	
25D7	10	F9		BPL	
25D9	1.9	FD		LDA- ${ }^{\text {\% }}$	
25DB	C5	2E		CMP	
25DD	F0	09		BEQ	branch to 25E8 if exp. of rpm is -3
25DF	46	2D		LSR	
25E1	66	2C		ROR	
25E3	E6	2E		INC	
25E5	4C	D9	25	JMP	jump to 25D9 to test exp of rpm
25 E 8	D8			CCD	
25E9	38			SEC	compare rpm with 750 Dec or 1770 , FD Hex
25EA	AS	2 C		IDA-ze	
25EC	E9	70		SBC-ze	
25 EE	A5	2D		LDA-ze	
25FO	E9	17		SBC-ze	
25F2	10	OB		BPL	branch to 25FF if rpm 1750
25F4	A9	00		LDA非	
25F6	85	AD		STA-ze	```set spark advance equal to zero if rpm 750```
25F8	85	AE		STA-ze	
25 FA	85	AF		STA-ze	
25FC	4 C	B9	26	JMP	jump to the end of program
25 FF	EA			NOP	
2600	EA			NOP	
2601	EA			NOP	
2602	38			SEC-ze	
2603	A5	2C		LDA-ze	compare rpm with 1000 Dec or 1F40,FD Hex
2605	E9	40		SBC-ze	
2607	A 5	2D		LDA-ze	
2609	E9	1F		SBC-ze	
260B	10	1 C		BPL	branch to 2629 if rpm 1000
260D	A2	02		LDX	
260F	B5	8F		LDA, X	
2611	EA			NOP	
2612	95	01		STA, X	

SPARK ADVANCE SUBROUTINE，－Continued

2614	CA			DEX	
2615	10	F8		BPL	
2617	20	BF	26	JSR	jump to intermediate subroutine
261 A	A． 2	02		LDX	
261C	B5	92		LDA，X	load hex value of 6.0 into the subtraction register
261E	95	33		STA，X	
2620	CA			DEX	
2621	10	F9		BPL	
2623	20	B 6	26	JSR	jump to subtraction surroutine
2626	4 C	B0	26	JNP	jump to the end of program
2629	EA			NOP	
262 A	EA			NOP	
262B	EA			NOP	
262C	38			SEC	
262D	A5	2 C		LDA－ze	compare rpm with 1400 dec ．or 2BC（ \cap FD hex
262F	E9	C0		SBC－非	
2631	A5	2D		LDA－ze	
2633	E9	2B		SBC－非	
2635	10	1B		BPL	branch to 2652 if rpm 1400 dec
2637	A2	02		LDX	
2639	B5	95		LDA，X	load hex value of .035 into the multiplication register
263B	95	01		STA，X	
263D	CA			DFX	
263E	10	F9		BPL	
2640	20	BF	26	JSR	jump to intermidiate subroutine
2643	A2	02		LDX	
2645	B5	98		LDA，X	load hex value of 33.0 into the subtraction register
2647	95	33		STA，X	
2649	CA			DEX	
264 A	10	F9		BPL	
264C	20	B0	25	JSR	jump to the subtraction subroutine
264 F	4C	B0	26	JMP	jump to the end of program
2652	EA			NOP	
2653	EA			NOP	
2654	EA			NOP	
2655	38			SEC	
2656	A5	2C		LDA－ze	compare rpm with 2000 dec ．or 3 E 80 ， FD hex
2658	\＃9	80		SBC－非	
265A	A5	2D		LDA－ze	
265C	E9	3E		SBC－非	
265E	10	1B		BPL	branch to 267B if rpm 2000
2660	A2	02		LDX	
2662	B5	9 B		LDA， X	load value of .02167 into the multiplication register

SPARK ADVANCE SUBROUTINE - Continued

2664	95	01		STA, X	
2666	CA			DEX	
2667	10	F9		BPL	
2669	20	BF	26	JSR	jump to subtraction subroutine
266C	A2	02		LDX	
266 E	B5	9E		LDA, X	load hex value of 14.333 into the subtraction register
2670	95	33		STA, X	
2672	CA			DEX	
2673	10	F9		BPL	
2575	20	B0	26	JSR	jump to subtraction subroutine
2678	4 C	BO	26	JMP	jump to the end of program
267B	38			SEC	
267C	A5	2C		LDA-ze	compare rpm with 2600 dec . or 5140 , FD hex.
267E	E9	40		SBC \% ${ }^{\text {\% }}$	
2680	A5	2D		LDA ${ }^{\text {\% }}$	
2682	E9	51		SBC非	
2684	10	1B		3PL	branch to 26Al if rpm 2600
2686	A2	02		LDX	
2688	B5	A1		LDA, X	load hex, value of .015 into the multiplication subroutine
268A	95	01		STA, X	
268 C	CA			DEX	
268D	10	F9		BPL	
2685	20	BF	26	JSR	jump to intermidiate subroutine
2692	A2	02		LDX	
2694	B5	A4		LDA, X	load hex value of 1.0 into the subtraction register
2696	95	33		STA, X	
2698	CA			DEX	
2699	10	F9		BPL	
269B	20	B0	25	JSR	jump to subtraction subroutine
269E	4C	B0	26	JMP	jump to the end of program
26 Al	EA			NOP	
26A2	EA			NOP	
26A3	EA			NOP	
26 A 4	A2	02		LDX	
26A6	B5	A7		LDA, X	load 38 deg . in dec. of $4 \mathrm{C} 00, \mathrm{~F} 7$ in hex. for spark advance when rpm 2600
26AA	CA			DEX	
	26AB	10	F9		BPL
26AD	4C	00	27	JMP	jump to ignition program
26B0	A2	02		LDX	
26B2	B5	36		LDA, X	store final computed value of spark advance in the proper memory location
2634	95	AD		STA, X	

26B6	CA			DEX	
26B7	10	F9		BPL	
2689	4 C	00	27	JMP	jump to ignition program
26 BC	EA			NOP	
26 BD	EA			NOP	
26BE	EA			NOP	
26BF	A2	02		LDX	load exact value of speed (rpm) into the multiplication subroutine
26 Cl	B5	8C		LDA, X	
26C3	95	04		STA, X	
26C5	CA			DEX	
26 C 6	10	F9		BPL	
26C8	20	00	20	JSR	jump to multiplication subroutine
26CB	A2	02		LDX	
26 CD	B5	26		LDA, X	load result of multiply into the addition register
26 CF	95	30		STA, X	
26 Cl	CA			DEX	
26D2	10	F9		BPL	
26D4	60			JSR	jump from subroutine
			IGN	PROGRA	
2700	A2	02		LDX	load value of (180- ϕ deg into the addition register
2702	B5	39		LDA, X	
2704	95	30		STA, X	
2706	CA			DEX	
2707	10	F9		BPL	
2709	42	02		LDX	load value of spark advance into the subtraction register
270B	B5	AD		LDA, X	
270D	95	33		STA, X	
270 F	CA			DEX	
2710	10	F9		BPL	
2712	20	B0	25	JSR	jump to subtraction subroutine
2715	A2	02		LDX	
2717	B5	36		LDA, X	load result of subtraction into the multiply register
2719	95	01		STA, X	
271B	CA			DEX	
271C	10	F9		BPL	
271E	A2	02		LDX	
2720	B5	89		LDA, X	load value of $1 / 2$ (rpm) into the multiply register

IGNITION PROGRAM - Continued

2722	95	04		STA, X	
2724	CA			DEX	
2725	10	F9		EPL	
2727	20	00	20	JSR	jump to multiplication subroutine
272A	A2	02		LDX	
272C	B5	26		LDA, X	load result of multiply into the multiply subroutine
272E	95	01		STA, X	
2730	CA			DEX	
2731	10	F9		BPL	
2733	A2	02		LDX	load hex value of $10^{6} / 48$ into the multiply subroutine
2735	B5	3C		LDA, X	
2737	95	04		STA, X	
2739	CA			DEX	
273A	10	F9		BPL	
273 C	20	00	20	JSR	Jump to multiplication subroutine
273F	A2	02		LDX	
2741	B5	26		LDA, X	load result of multiply into the addition register
2743	95	30		STA, X	
2745	CA			DEX	
2746	10	F9		BPL	
2748	A2	02		LDX	load value of 80 us for interupt delay into the subtraction register
274.	B5	19		LDA, X	
274 C	95	33		STA, X	
274 E	CA			DEX	
274 F	10	F9		BPL	
2751	20	BO	25	JSR	jump to subtraction subroutine
2754	A2	02		LDX	
2756	B5	36		LDA, X	store result of ignition time in the proper registers
2758	95	1D		STA, X	
275A	CA			nex	
275B	10	F9		BPL	
275D	A9	FD		LDX	test ignition time for exp. of -3
275 F	C5	1F		CMP	
2761	F \downarrow	09		BEQ	branch to 276C if exp is -3
2763	46	1E		LSR-ze	adjust exp of ignition time for -3
2765	66	1D		ROR-ze	
2767	E6	1 F		INC	
2769	4C	5D	27	JMP	jump to 275D to test exp
276 C	A5	1D		CDA-ze	
276 E	85	84		STA-ze	adjust ignition time for 12 -bit ignition counters, store final adjusted value in memory location 0084 and 0085

IGNITION PROGRAM－Continued

2770	A5	1 E		LDA－ze	
2772	85	85		STA－ze	
2774	46	85		LSR－ze	
2776	66	85		ROR－ze	
2778	46	84		LSR－ze	
277A	46	84		LSR－ze	
277C	4 C	90	24	JMP	jump to display su broutine
277F	EA			NOP	

NON－MASFABLE INTERRUPT

2785	48			PHA save accumulator
2786	AD	00	17	LDA test injection pulse
2789	4 A			LSRA
278A	B0	46		BCS branch to 27D2 if injection pulse むs high
278 C	A5	EE		LDA－ze set injection pulse count
278E	8D	OE	17	STA－ze
2791	A9	01		LDA非 turn on injection pulse
2793	OD	00	17	ORA－Ab
2796	8D	00	17	STA－Ab test distributor signal
2799	30	35		BMI branch to 27D0 if it is high
279B	A9	01		LDA－waite 80 micrsecond
279D	85	46		STA－ze
279F	C6	46		DEC
27 Al	D0	FC		BNE
27A3	A9	3F		LDA非 set direction of the B－register as output
27A5	8D	03	17	STA－Abs
27A8	A5	85		LDA－ze load high byte of ignition time into the B－register
27AA	8D	02	17	STA－Abs
27 AD	A9	21		LDA－管
27 AF	8D	00	17	STA－Abs turn off latch No． 2
27B2	A9	01		LDA－非
27B4	8D	00	17	STA－Abs turn off latch No． 2
$27 \mathrm{B7}$	A5	84		CDA－ze
27B9	8D	02	17	STA－Abs
27 BC	A9	41		CDA ${ }^{\text {F }}$
27 BE	8D	00	17	STA－Abs turn on latch No． 1
27 Cl	A9	61		LDA ${ }^{\text {a }}$
$27 \mathrm{C3}$	8D	00	17	STA－Abs turn off latch No． 1 and turn on parallel load
27C6	A9	00		LDA－非
2708	8D	03	17	STA－Abs set direction of the B－register as input

```
NON-MASKABLE INTERRUPT - Continued
```

27 CB	A9	01		LDA－${ }^{\text {F }}$	
27 CD	8D	00	17	STA－ADs	turn off parallel load
27D0	68			PLA	resore accumulator
27D1	40			RTI	return from interrupt program
27D2	4 C	45	28	JMP	jump to 2845 to save x－register
27D5	EA			NOP	
27D6	EA			NOP	
27D7	A9	80		LDA－非	turn off injection pulse
27D9	2D	00	17	AND－Abs	
27DC	8D	00	17	STA－Abs	
27DF	10	25		BPL	test distributor signal and branch to 2806 if it is low
27 El	A9	02		CDA－	
27E3	81）	00	17	STA－Abs	turn on high byte of air－flow count tri－state
27 E 6	AD	02	17	LDA－Abs	read high byte of air－flow count and adjust
27E9	29	3F		AND	
27 EB	85	82		STA－ze	
27 ED	A9	00		CDA－梅	
27EF	8D	00	17	STA－Abs	turn off high byte of air－flow count Tri－state
27 F 2	A9	04		LDA－非	
27 F 4	8D	00	17	STA－Abs	turn on low byte of air－flow count Tri－State
$27 \mathrm{F7}$	AD	02	17	LDA－Abs	read low byte of air－flow count and adjust
27FA	29	FC		AND	
27 FC	OA			ASL	
27 FD	OA			ASL	
27 FE	OA			ASL	
27FF	85	81		STA	
2801	26	82		ROL	
2803	4C	35	28	JMP	jump to the end of interrupt program
2806	EA			NOP	
2807	A9	28		LDA－ \％$^{\text {\％}}$	turn on high byte of rpm count latch and tri－states
2809	8D	00	17	STA－Abs	
280C	A9	08		LDA－非	
280E	8D	00	17	STA－ABS	turn off high byte of rpm count latches
2811	$A D$	02	17	LDA－Abs	read high byte of rpm count and adjust
2814	29	3 F		AND－非	
2816	85	7D		STA－ze	
2818	A9	00		LDA－排	turn off tri states of high byte rpm count

NON－MASKABIE INTERRUPT－Continued

281A	8D	00	17	STA－Abs	
281D	A9	50		LDA-非	turn on tri states and latches of low byte of rpm
281F	8D	00	17	STA－Abs	
2822	A9	10		LDA－非	
2824	8D	00	17	STA－Abs	turn off latches of low byte of rppo count
2827	$A D$	02	17	LDA－Abs	read low byte of rpm count and adjust
282A	OA			ASL－A	
282 B	OA			ASI－A	
282 C	OA			ASL－A	
282D	85	7 C		STA	
282 F	26	7D		ROL	
2831	A9	E7		LDA－${ }^{\text {F }}$	
2833	85	7 E		STA－ze	
2835	A9	00		LDA－韭	
2837	8D	00	17	STA－Abs	
283A	4 C	00	29	JMP	jump to data testing program reload x－register
283D	68			PLA	
283 E	AA			TAX	
283F	68			PLA	reload accumulator from stack
2840	40			RTI	
2841	EA			NOP	
2842	EA			NOP	
2843	EA			NOP	
2844	EA			NOP	
2845	EA			NOP	
2846	EA			NOP	
2847	EA			NOP	
2848	8A			TXA	save x －register
2849	48			PHA	
284A	A9	FF		LDA	
284 C	8D	OF	17	STA	
284 F	4C	D5	27	JMP	
2852	EA			NOP	

MULTIPLICATION SUBROUTINE

2000	EA	EA	EA	NOP
2003	EA	EA		NOP 2005
	A5	01		LDA
2007	85	20		STA
2009	A5	02	LDA	
$200 B$	85	21	STA	

200D	A5	04	LDA	enter the multiplier into the proper register
200F	85	22	STA	
2011	A5	05	LDA	
2013	85	23	STA	
2015	D ε		CLD	specify the binary made clear all intermidiate registers
2016	A9	00	LDA－非	
2018	85	24	STA	
201A	85	25	STA	
201C	85	26	STA	
201E	85	27	STA	
2020	85	28	STA	
2022	85	29	STA	
2024	85	2 A	STA	
2026	85	2B	STA	
2028	85	07	STA	
202A	EA		NOP	
202B	EA		NOP	
202C	EA		NOP	
202D	EA		NOP	
202E	EA		NOP	
202F	A2	10	LDX	load x－register with decimal 16
2031	A5	21	CDA	test multiplicand high byte branch to 204D if it is zero branch to 2051 if it is positive
2033	F0	18	BEQ	
2035	10	1B	BPL	
2037	85	21	STA	
2039	38		SEC	
203A	A9	00	CDA－葹	take care of the sign if multiplicand megative
203C	E5	20	SBC	
203E	85	20	STA	
2040	A9	00	LDA－非	
2042	E5	21	SBC	
2044	85	21	STA	
2046	A5	07	CDA	
2048	18		CLC	
2049	69	80	ADC－\＃	turn on the flag no． 1
204B	85	07	STA	
204D	A5	20	LDA	test multiplicand low byte branch bo $20 B 7$ if it is zero
204F	F0	66	BEQ	
2051	EA		NOP	
2052	EA		NOP	
2053	EA		NOP	
2054	A5	23	LDA	test multiplier high byte branch to 2073 if it is zero

MULTIPLICATION SUBROUTINE－Continued

2056	FO	1B	BEQ	
2058	10	1D	EPL	
205A	85	23	STA	
205C	38		SEC	
205D	A9	00	LDA－非	take care of the sign if－multi－ plier is negative
205F	ES	22	SBC	
2061	85	22	STA	
2063	A9	00	LDA－折	
2065	ES	23	SBC	
2067	85	23	STA	
2069	A 5	07	LDA	
$206 B$	18		CLC	
206C	69	80	ADC－笋	turn off the flay No． 1
206 E	85	07	STA	
2070	EA		NOP	
2071	EA		NOP	
2072	EA		NOP	
2073	AS	22	CDA	test multiplier low byte branch to $20 B 7$ if it is zero
2075	F0	40	BEQ	
2077	EA		NOP	
2078	AS	20	LDA	transfer multiplicand into the new
207A	85	28	STA	register
2070	AS	21	CDA	
207E	85	29	STA	
2080	18		CLC	
2081	1.6	23	LSR	shift multiplier right and test lowest bit
2083	66	22	ROR	
2085	90	1D	BCC	branch to $20 A^{4}$ if it is zero
2087	18		CLC	
2088	EA		NOP	
2089	EA		NOP	
208A	EA		NOP	
208B	EA		NOP	
208C	A 5	28	CDA	
208E	65	24	ADC	add content of intermidiate－ register to content of the result register
2090	85	24	STA	
2092	A5	29	LDA	
2094	65	25	ADC	
2096	85	25	STA	
2098	A5	2 A	LDA	
209A	65	26	ADC	
209C	85	26	STA	

```
MULTIPLICATION SUBROUTINE - Continued
209 E
20 AO
20 A 2
\(20 A 4\)
\(20 A 5\)
\(20 A 7\)
\(20 A 9\)
\(20 A B\)
\(20 A D\)
\begin{tabular}{|c|c|c|c|}
\hline 20AE & F0 & 02 & \\
\hline 20B0 & D0 & CE & \\
\hline 20B2 & EA & & \\
\hline 20Be & EA & & \\
\hline 2034 & 4C & BA & 20 \\
\hline 2087 & 4 C & 28 & 21 \\
\hline 20BA & D8 & & \\
\hline 20BB & 18 & & \\
\hline 20BC & AS & 03 & \\
\hline 20BE & 65 & 06 & \\
\hline 20C0 & 85 & 08 & \\
\hline 20.2 & A4 & & \\
\hline 20 C 3 & 18 & & \\
\hline \(20 \mathrm{C4}\) & A. 9 & 00 & \\
\hline 2006 & 85 & 09 & \\
\hline \(20 \mathrm{C8}\) & AS & 27 & \\
\hline 20CA & 0A & & \\
\hline 20CB & 90 & 04 & \\
\hline 20CD & A9 & 80 & \\
\hline 20CF & 85 & 09 & \\
\hline 20D1 & EA & & \\
\hline 20 D 2 & A5 & 27 & \\
\hline 20D4 & OA & 0A & \\
\hline 20D6 & FA & & \\
\hline 20D? & EO & OF & \\
\hline 20D9 & 06 & 24 & \\
\hline 20DB & 26 & 25 & \\
\hline 20DD & 26 & 26 & \\
\hline 20DE & 26 & 27 & \\
\hline 20E1 & CA & & \\
\hline 20E2 & A5 & 27 & \\
\hline
\end{tabular}

A5
2B
27
27
28
29
2A
2B
CA
65
85
18
06
26
26
26
CA
\[
\begin{aligned}
& 20 A 0 \\
& 20 A 2 \\
& 20 A 4 \\
& 20 A 5 \\
& 20 A 7 \\
& 20 A 9 \\
& 20 A B \\
& 20 A D
\end{aligned}
\]

LDA
ADC
STA
CLC
ASL shift intermidiate register to left
ROL
ROL
ROL
DEX decrement x-register
branch to 20B2 if x-register is zero
branch to 2080 if x-register is not zero
BEQ
BNE
NOP
NOP
JMP
JMP
CLD
CLC
CDA
ADC
STA
TAX
CLC
STA

ASLA
BCC
STA
NOP
CDA
ASLA
NOP
BCS
ASL

ROL
ROL
ROL
DEX decrement exponent of the result
LDA
transfer the exponent of the result to x-register

LDA- \(\#\) clear the flag no. 2
CDA test the highest bit of the result branch to \(20 D 1\) if it is zero

CDA turn on the flag no. 2
jump to 20BA
jump to 2128 to set regult zero
add exponent of multiplier and multiplicant
\begin{tabular}{|c|c|c|c|c|}
\hline 20 E 4 & OA & OA & ASLA & test one to the highest bit of result branch to 20D9 if it is zero \\
\hline 20 E 6 & 90 & F1 & BCC & \\
\hline 20 E 8 & A5 & 09 & LDA & \\
\hline 20EA & OA & & ASLA & test flay no． 2 \\
\hline 20EB & 90 & 04 & BCC & branch to 20Fl if it is zero \\
\hline 20ED & A9 & 80 & LDA & \\
\hline 20 EF & 05 & 27 & ORA & \\
\hline 20 E 1 & 86 & 29 & STX & \\
\hline 20F3 & EA & EA & NOP & \\
\hline 20F5 & EA & EA & NOP & \\
\hline 20.7 & A 5 & 07 & LDA & test flag no． 1 branch to 2114 if it is off \\
\hline 20F9 & 10 & 19 & BPL & \\
\hline 20FB & 38 & & SEC & \\
\hline 20EC & A9 & 00 & LDA－析 & change the result to negative \\
\hline 20FE & E5 & 24 & SBC & \\
\hline 2100 & 85 & 24 & STA & \\
\hline 2102 & A9 & 00 & LDA & \\
\hline 2104 & ES & 25 & SBC & \\
\hline 2106 & 85 & 25 & STA & \\
\hline 2108 & A9 & 00 & LDA－非 & \\
\hline 210A & E5 & 26 & SBC & \\
\hline 2100 & 85 & 26 & STA & \\
\hline 210 E & A9 & 00 & LDA－\({ }^{\text {F }}\) & \\
\hline 2110 & E5 & 27 & SBC & \\
\hline 2112 & 85 & 27 & STA & \\
\hline 2114 & EA & EA & NOP & \\
\hline 2116 & D8 & & CLD & \\
\hline 2117 & 18 & & CLC & \\
\hline 2118 & A9 & 10 & LDA－\＃＊ & adjust exponent if decimal point is is in front of l6th bit \\
\hline 211A & 65 & 29 & ADC & \\
\hline 211C & 85 & 28 & STA & \\
\hline 211E & 18 & & CLC & \\
\hline \(211 F\) & A9 & 1C & LDA－\＄ & adjust exponent if decimal point is in fron of 28 th bit \\
\hline 2121 & 65 & 29 & ADC & \\
\hline 2123 & 85 & 2A & STA & \\
\hline 2125 & 60 & & RTS & return from the subroutine \\
\hline 2126 & EA & EA & NOP & \\
\hline 2128 & A9 & 00 & CDA－非 & \\
\hline 212A & 85 & 24 & STA & set result equal to zero if one of the multiplier or multiplican is zero \\
\hline
\end{tabular}

\author{
MULTIPLICATION SUBROUTINE - Continued
}
\begin{tabular}{lllll}
2130 & 85 & 27 & STA \\
2132 & 85 & 28 & STA \\
2134 & 85 & 29 & STA & \\
2136 & 85 & \(2 A\) & STA & \\
2138 & 85 & \(2 B\) & STA & \\
\(213 A\) & 60 & & RTS & return from the subroutine \\
\(213 B\) & EA & EA & NOP & \\
\(213 D\) & EA & EA & NOP & \\
\(213 F\) & EA & & NOD &
\end{tabular}

DIVIDE SUBROUTINE
2500

2501
2502
2503
2504
2505
2506
2509
250B
250D
250 F
2511
2513
2514
2516
2518
251A
251C
251E
2520
2522
2524
2526
2528
2529
252B
252D
252E
2530
2532
2533
2535
2538
EA
NOP
NOP
NOP
NOP
NOP
NOP
JMP jump to 2585 to adjust dividend
IDA-\# set partial quotient to zero
STA-ze
STA-ze
STA-ze
LDY load y-reg with deciman 14
SEC
LDA-ze subtract divisor from divident
SBC-ze
STA-ze
LDA-ze
SBC-ze
STA-ze
BMI branch to 2538 if result of above subtraction is negative
LDA-
ORA-ze
STA-ze set one on the ISB of quotient CLC
ASL-ze shift quotient to left
ROL-ze
CLC
ASL-ze shift dividend to left
ROL-ze
DEY
BNE branch to 2513 if 6-reg is not zero
JMP jump to 255B

\section*{DIVIDE SUBROUTINE - Continued}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 2539 & 06 & 10 & & ASL-ze & shift quotient to left \\
\hline 243B & 26 & 11 & & ROL-ze & \\
\hline 253D & 18 & & & CLC & \\
\hline 253E & 06 & 13 & & ASL-ze & shift divident to left \\
\hline 2540 & 26 & 14 & & ROL-ze & \\
\hline 2542 & D8 & & & CLD & \\
\hline 2543 & 18 & & & CLC & \\
\hline 2544 & A5 & 13 & & LDA-ze & add dividend to divisor \\
\hline 2546 & 65 & 16 & & ADE-ze & \\
\hline 2548 & 85 & 13 & & STA-ze & \\
\hline 254A & A 5 & 14 & & LDA-ze & \\
\hline 254C & 65 & 17 & & ADC-ze & \\
\hline 254E & 85 & 14 & & STA-ze & \\
\hline 2550 & 10 & 06 & & SPL & branch to 2558 if result of above addition is positive \\
\hline 2552 & D0 & E3 & & BNE & branch to 2539 if y-reg is not zero \\
\hline 2555 & 4 C & 5B & 26 & JMP & jump to 255B \\
\hline 2558 & 88 & & & DEY & \\
\hline 2559 & D0 & C7 & & BNE & branch to 2522 if y-reg is not zero \\
\hline 255B & EA & EA & & NOP & \\
\hline 255D & 38 & & & SEC & \\
\hline 255E & A5 & 15 & & LDA-ze & subtract exp. of divisor from exp. of divident \\
\hline 2560 & E5 & 18 & & SBC-ze & \\
\hline 2562 & 85 & 12 & & STA-ze & store exp. of result \\
\hline 2564 & 18 & & & CLC & \\
\hline 2565 & A9 & F2 & & LDA-\# & add decimal-14 to exp. of result to adjust decimal point \\
\hline 2567 & 65 & 12 & & ADC-ze & \\
\hline 2569 & 85 & 12 & & STA-ze & \\
\hline 256 B & A5 & 11 & & LDA-ze & test high byte of quotient \\
\hline 256D & D0 & 04 & & BND & branch to 2473 if not zero \\
\hline 256F & A5 & 10 & & LDA-ze & test low byte of quotient \\
\hline 2571 & F0 & OF & & BEQ & branch to 2582 if it is zero \\
\hline 2573 & A5 & 11 & & LDA-ze & \\
\hline 2575 & 0A & & & ASLA & \\
\hline 2576 & OA & & & ASLA & \\
\hline 2577 & BO & 09 & & BCS & branch to 2582 if bit 14 of quotient is 1 \\
\hline 2579 & 06 & 10 & & ASL & adjust bit 14 of quotient for 1 \\
\hline 257B & 26 & 11 & & ROL & \\
\hline 257D & C6 & 12 & & DEC & \\
\hline 257F & 4 C & 73 & 25 & JMP & \\
\hline 2582 & 60 & & & RTS & \\
\hline 2583 & EA & & & NOP & \\
\hline 2584 & EA & & & NOP & \\
\hline 2585 & 38 & & & SEC & adjust dividend so that to be less than divisor \\
\hline
\end{tabular}

DIVIDE SUBROUTINE - Continued
\begin{tabular}{|c|c|c|c|c|c|}
\hline 2586 & A5 & 9A & & LDA-ze & \\
\hline 2588 & E5 & OD & & SBC-z3 & \\
\hline 258A & A5 & OB & & LDA-ze & \\
\hline 258C & E5 & OE & & SBC-ze & \\
\hline 258E & 30 & 09 & & BMI & \\
\hline 2590 & 46 & OB & & LSR-ze & \\
\hline 2592 & 66 & OA & & ROR-ze & \\
\hline 2594 & E6 & 9 C & & INC-ze & \\
\hline 2596 & 4C & 85 & 25 & JMP & jump to 2585 to compare dividend and divisor \\
\hline 2599 & A. 2 & 05 & & LDX & \\
\hline 259B & B5 & OA & & LDA, X & load value of divisor and dividend into the intermidiate registers \\
\hline 259F & CA & & & DEX & \\
\hline 25A9 & 10 & F9 & & DPL & \\
\hline 25A2 & 4C & 09 & 25 & JMP & \\
\hline
\end{tabular}

\section*{ADDITION SUBROUTINE}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 2140 & A5 & 30 & & CDA & test first number if it is zero \\
\hline 2142 & D¢ & 07 & & BNE & \\
\hline 2144 & A5 & 31 & & CDA & \\
\hline 2146 & D \(\phi\) & 03 & & BNE & \\
\hline 2148 & 4C & 41 & 22 & JMP & jump to test other number for zero \\
\hline 214B & 4C & 26 & 22 & JMP & jump to set result equal to the first number \\
\hline 214 E & EA & EA & & NOP & \\
\hline 2150 & A5 & 30 & & LDA & enter two numbers need to added into the intermidiate register \\
\hline 2152 & 85 & 40 & & STA & \\
\hline 2154 & A5 & 31 & & LDA & \\
\hline 2156 & 85 & 41 & & STA & \\
\hline 2158 & A5 & 32 & & CDA & \\
\hline 215A & 85 & 42 & & STA & \\
\hline 215C & A5 & 33 & & CDA & \\
\hline 215E & 85 & 43 & & STA & \\
\hline 2160 & A5 & 34 & & CDA & \\
\hline 2162 & 85 & 44 & & STA & \\
\hline 2164 & A5 & 35 & & LDA & \\
\hline 2166 & 85 & 45 & & STA & \\
\hline 2168 & A5 & 41 & & CDA & test first number for positive \\
\hline 216 A & 0A & & & ASLA & \\
\hline 216 B & 90 & 1B & & BCC & branch to 2188 if it is positive \\
\hline 216D & A5 & 41 & & CDA & \\
\hline 216 F & OA & OA & & ASLA & test next to highest bit of the first number \\
\hline 2171 & 90 & 09 & & BCC & branch to 217C if it is zero \\
\hline
\end{tabular}

\section*{ADDITION SUBROUTINE - Continued}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 2173 & 06 & 40 & & ASL & \\
\hline 2175 & 26 & 41 & & ROL & adjust first number to have its one to highest bit o for negative nubmer \\
\hline 2177 & C6 & 42 & & DEC & \\
\hline 2179 & EA & EA & & NOP & \\
\hline 217 B & EA & EA & & NOP & \\
\hline 217D & A5 & 41 & & LDA & \\
\hline 217F & OA & OA & & ASLA & \\
\hline 2181 & B0 & FO & & BCS & \\
\hline 2183 & EA & EA & & NOP & \\
\hline 2185 & rC & AO & 21 & JMP & jump to alaO if first number is neg \\
\hline 2188 & A. 5 & 41 & & LDA & \\
\hline 218A & OA & OA & & ASLA & adjust one to highest bit of the first number for one if it is positive \\
\hline 218C & B0 & 12 & & BCS & \\
\hline 218 E & EA & EA & & NOP & \\
\hline 2190 & 06 & 40 & & ASL & \\
\hline 2192 & 26 & 41 & & ROL & \\
\hline 2194 & C6 & 42 & & DEC & \\
\hline 2196 & A5 & 41 & & LDA & \\
\hline 2198 & OA & OA & & ASLA & \\
\hline 219A & 90 & F4 & & BCC & branch to 2190 if one to highest bit of first number is not one \\
\hline 219C & EA & EA & & NOP & \\
\hline 219 E & EA & EA & & NOP & \\
\hline 21A0 & A5 & 44 & & LDA & test the sign of the second number \\
\hline 21 A 2 & OA & & & ASLA & \\
\hline 2143 & 90 & 15 & & BCC & branch to 21BA if it is positive \\
\hline 2145 & A5 & 44 & & LDA & \\
\hline 2147 & OA & & & LSLA & adjust bit 14 of the second number for 0 if it is negative \\
\hline 2148 & OA & & & LSLA & \\
\hline 21 A9 & 90 & OC & & BCC & \\
\hline 21 AB & 06 & 4.3 & & ASL & \\
\hline 21 AD & 26 & 44 & & ROL & \\
\hline 21 AF & C6 & 45 & & DEC & \\
\hline 21B1 & A5 & 44 & & LDA & \\
\hline \(21 \mathrm{B3}\) & OA & & & ASLA & \\
\hline 2184 & OA & & & ASLA & \\
\hline 21B5 & BO & F4 & & BCS & branch to 24 AB if bit 14 is one \\
\hline \(21 \mathrm{B7}\) & 4 C & CE & 21 & JMP & \\
\hline 21BA & A5 & 44 & & CDA & adjust bit 14 of the second number for 1 if it is positive \\
\hline 21BC & OA & & & ASLA & \\
\hline 21 BD & OA & & & ASLA & \\
\hline 21 BE & B0 & OE & & BCS & \\
\hline 21 CO & EA & EA & & NOP & \\
\hline
\end{tabular}

\section*{ADDITION SUBROUTINE - CONTINUED}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 21C2 & 06 & 43 & & ASL & \\
\hline 21C4 & 26 & 44 & & ROL & \\
\hline \(21 \mathrm{C6}\) & C6 & 45 & & DEC & \\
\hline 21C8 & A5 & 44 & & CDA & \\
\hline 21 CA & OA & OA & & ASLA & \\
\hline 21 CC & 90 & F4 & & BCC & \\
\hline 21CE & A5 & 42 & & CDA & \\
\hline 2100 & C5 & 45 & & CMP & compare the exponents of two numbers \\
\hline 21D2 & F0 & 11 & & BEQ & branch to 21ES if equal \\
\hline 2104 & 10 & 12 & & BPL & branch to s1E8 if exp. of first number greater than second exp. \\
\hline 2106 & A5 & 41 & & IDA & \\
\hline 2108 & OA & & & ASLA & \\
\hline 21D9 & 66 & 41 & & ROR & \\
\hline 21 DB & 66 & 40 & & ROR & \\
\hline 21 DD & E6 & 42 & & INC & \\
\hline 21DF & A5 & 42 & & LDA & \\
\hline 21E1 & C5 & 45 & & CMP & \\
\hline 21E3 & 30 & F1 & & BMI & \\
\hline 21E5 & 4C & FE & 21 & JMP & \\
\hline 21E8 & 18 & & & CLC & \\
\hline 2159 & A5 & 44 & & CDA & adjust two numbers for equal exp. \\
\hline 21EB & EA & EA & & NOP & \\
\hline 21ED & OA & & & ASLA & \\
\hline 21EE & 66 & 44 & & ROR & \\
\hline 21F0 & 66 & re & & ROR & \\
\hline \(21 F 2\) & E6 & 45 & & Inc & \\
\hline 21 F4 & A5 & 42 & & LDA & \\
\hline 21F6 & C5 & 45 & & CMP & \\
\hline \(21 F 8\) & D0 & EE & & BNE & \\
\hline 21 FA & EA & EA & & NOP & \\
\hline 21FC & EA & EA & & NOP & \\
\hline 21 FE & A5 & 42 & & LDA & store exp. of the result \\
\hline 2200 & 85 & 38 & & STA & \\
\hline 2202 & D8 & & & CLD & \\
\hline 2203 & A5 & 40 & & CDA & add low bytes of two numbers \\
\hline 2205 & 18 & & & CLC & \\
\hline 2206 & 65 & 43 & & ADC & \\
\hline 2208 & 85 & 36 & & STA & \\
\hline 220A & A5 & 41 & & CDA & add high bytes of two numbers \\
\hline 220 C & 65 & 44 & & ADC & \\
\hline 220 E & 85 & 37 & & STA & \\
\hline 2210 & 50 & OF & & BVC & branch to 2221 if overfiow is clear \\
\hline 2212 & EA & EA & & NOP & \\
\hline 2214 & EA & & & NOP & \\
\hline 2215 & 66 & 37 & & ROR & adjust result if overflow is set \\
\hline 2217 & 66 & 36 & & ROR & \\
\hline 2219 & E6 & 38 & & INC & \\
\hline
\end{tabular}

\section*{ADDITION SUBROUTINE - Continued}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 221b & EA & EA & & NOP & \\
\hline 221D & EA & EA & & NOP & \\
\hline 221F & EA & EA & & NOP & \\
\hline 2221 & 60 & & & RTS & return from subroutine \\
\hline 2222 & EA & EA & & NOP & \\
\hline 2224 & EA & EA & & NOP & \\
\hline 2226 & A5 & 33 & & LDA & test low byte of the second number \\
\hline 2228 & DO & 04 & & BNE & branch to 2150 if not zero \\
\hline 222A & A5 & 34 & & CDA & test high byte of the second number \\
\hline 222C & F0 & 04 & & BEQ & test high byte of the second number \\
\hline 222E & 4 C & 50 & 21 & JMP & branch to 2232 if zero \\
\hline 2231 & EA & & & NOP & \\
\hline 2232 & A5 & 30 & & LDA & set result equal to first number if second number is zero \\
\hline 2234 & 85 & 36 & & STA & \\
\hline 2236 & A5 & 31 & & LDA & \\
\hline 2238 & 85 & 37 & & STA & \\
\hline 223A & A5 & 32 & & LDA & \\
\hline 223C & 85 & 38 & & STA & \\
\hline 223E & 4 C & 21 & 22 & JMP & jump to return from subroutine \\
\hline 2241 & A5 & 33 & & LDA & \\
\hline 2243 & 85 & 36 & & STA & set result equal to second number \\
\hline 2245 & A5 & 34 & & LDA & if first number is zero \\
\hline 2247 & 85 & 37 & & STA & \\
\hline 2249 & A5 & 35 & & LDA & \\
\hline 224B & 85 & 38 & & STA & \\
\hline 224D & 4C & 21 & 22 & JMP & jump to return from subroutine \\
\hline
\end{tabular}

SUBTRACTION SUBROUTINE
\begin{tabular}{llll}
25 BO & 38 & & \\
25 B 1 & A9 & 00 & SEC \\
25 B 3 & E5 & 33 & LDA \\
25 B 5 & 85 & 33 & SBC \\
25 B 7 & A9 & 00 & STA \\
25 B 9 & E5 & 34 & \\
25 BB & 85 & 34 & LDA \\
25 BD & 4 C & 40 & 21 \\
25 CO & EA & & SBC \\
25 C 1 & EA & & SMP \\
25 C 2 & EA & & NOP \\
& & & NOP \\
& & & NOP
\end{tabular}

\section*{DISPLAY PROGRAM}
\begin{tabular}{ll}
2490 & A5 \\
2492 & 85 \\
2494 & A5 \\
2496 & 85 \\
2498 & \(A 5\) \\
249 A & 85 \\
249 C & A 9 \\
249 E & 8 D \\
24 Al & A 9 \\
24 A 3 & 8 D \\
24 A 6 & A 2 \\
24 A 8 & AO \\
24 AA & B 9 \\
24 AD & 4 A \\
24 AE & 4 A \\
24 AF & 4 A \\
24 BO & 4 A \\
24 BI & 20 \\
24 B 4 & B 9 \\
24 B 7 & 29 \\
24 B 9 & 20 \\
24 BC & 88 \\
24 BD & DO \\
24 BF & EA \\
24 CO & 4 C
\end{tabular}

DATA RECORDING PROGRAM－Continued
\begin{tabular}{|c|c|c|c|c|}
\hline 2928 & A9 & 00 & & LDA．\({ }^{\text {F }}\) \\
\hline 292A & 8D & 05 & 29 & STA－ze store rpm from location 3000 if all rpm location is filled \\
\hline 292D & A9 & 30 & & LDȦ非 \\
\hline 292F & 8D & 06 & 29 & STA－ze \\
\hline 2932 & EA & & & NOP \\
\hline 2933 & EA & & & NOP \\
\hline 293r & EA & & & NOP \\
\hline 2935 & A2 & 02 & & LDX \\
\hline 2937 & B5 & AD & & LDA，X－ze \\
\hline 2939 & 90 & 60 & 32 & STA，X－Abs store counts of spark advance inlocations 3260 to 34 B8 \\
\hline 293C & CA & & & DEX \\
\hline 293D & 10 & F8 & & BPL \\
\hline 293F & 18 & & & CLC \\
\hline 2940 & AD & 3A & 29 & LDA－Abs \\
\hline 2943 & 69 & 03 & & ADC \＃ \\
\hline 2945 & 8D & 3A & 29 & STA－Abs \\
\hline 2948 & AD & 3B & 29 & LDA－Abs \\
\hline 294B & 69 & 00 & & ADC非 \\
\hline 294D & 8D & 3 B & 29 & STA－Abs \\
\hline 2950 & 38 & & & SEC \\
\hline 2951 & AD & 3A & 29 & LDA－Abs test the end of spark advance memory locations． \\
\hline 2954 & E9 & B8 & & SBC \({ }^{\text {\％}}\) \\
\hline 2956 & AD & 3B & 29 & LDA－Abs \\
\hline 2959 & E9 & 34 & & SBC \({ }^{\text {F }}\) \\
\hline 295B & 30 & OA & & memory locations is not filled \\
\hline 295D & A9 & 60 & & LDA\＃ \\
\hline 295F & 8D & 8A & 29 & STA－ABS store spark advance from 3260 if all locations are filled \\
\hline 2962 & A9 & 32 & & LDA－非 \\
\hline 2964 & 8D & 3B & 29 & STA－Abs \\
\hline 2967 & EA & & & NOP \\
\hline 2968 & EA & & & NOP \\
\hline 2969 & EA & & & NOP \\
\hline 296A & A2 & 02 & & LDX－非 \\
\hline 296C & B5 & B3 & & LDA，X－ze \\
\hline 296E & 9D & C9 & 34 & STA，X－Abs store counts of ignition time in memory locations 34 C 0 to 3718 \\
\hline 2971 & CA & & & DEX \\
\hline 2972 & 10 & F8 & & DPL \\
\hline 2974 & 18 & & & CLC \\
\hline 2975 & AD & 6F & 29 & LDA－Abs \\
\hline 2978 & 69 & 03 & & ADC－非 \\
\hline 297A & 8D & 6 F & 29 & STA，Abs \\
\hline 297D & AD & 70 & 29 & LDA，Abs \\
\hline 2970 & 69 & 00 & & ADC－非 \\
\hline
\end{tabular}

\section*{DATA RECORDING PROGRAN－Continued}
\begin{tabular}{|c|c|c|c|c|}
\hline 2982 & 8D & 70 & 29 & STA，Abs \\
\hline 2985 & 38 & & & SEC \\
\hline 2986 & AD & 6 F & 29 & LDA－Abs test the end of ignition time memory iocation \\
\hline 2989 & E9 & 18 & & SBC－7 \\
\hline 298B & \(A D\) & 70 & 29 & LDA，Abs \\
\hline 298 E & E9 & 37 & & SBC－\({ }^{\text {d }}\) \\
\hline 2980 & 30 & OA & & BMI branch to 299C if ignition time location is not filled \\
\hline 2992 & A9 & CO & & LDA－非 \\
\hline 2994 & 8D & 6 F & 29 & STA，Abs store counts of ignition time from 34 CO if locations is filled \\
\hline 2997 & A9 & 34 & & CDA－非 \\
\hline 2999 & 8D & 70 & 29 & STA，Abs \\
\hline 299C & EA & & & NOP \\
\hline 299D & EA & & & NOP \\
\hline 299E & EA & & & NOP \\
\hline 299F & A2 & 02 & & LDX－非 \\
\hline 29 Al & B5 & 86 & & LDA，X－ze \\
\hline 29 A 3 & 90 & 20 & 37 & STA，Z－Abs store counts of air flow rate in memory locations 3720 to 3978 \\
\hline 2946 & CA & & & DEX \\
\hline 29 A 7 & 10 & F8 & & BPL \\
\hline 29A9 & 18 & & & CLC \\
\hline 29AA & AD & A4 & 29 & LDA－Abs \\
\hline 29AD & 69 & 03 & & ADC－非 \\
\hline 29AF & 8D & A4 & 29 & STA，Abs \\
\hline 29B2 & \(A D\) & A 5 & 29 & LDA－Abs \\
\hline 29B5 & 69 & 00 & & ADC－非 \\
\hline \(29 \mathrm{B7}\) & 8D & A5 & 29 & STA－Abs \\
\hline 29BA & 38 & & & SEC \\
\hline 29BB & AD & A4 & 29 & LDA－Abs test the end of air flow counts memory locations \\
\hline 29BE & E9 & 78 & & SBC－说 \\
\hline 29C9 & AD & A5 & 29 & LDA－Abs \\
\hline 29C3 & E9 & 39 & & SBC－非 \\
\hline 29C5 & 30 & OA & & BMI branch to 29 D if air flow memory locations is filled \\
\hline \(29 \mathrm{C7}\) & A9 & 20 & & LDA－韭 \\
\hline 29C9 & 8D & A5 & 29 & STA－Abs store counts of air flow from location 3720 \\
\hline 29CC & A9 & 37 & & CDA－非 \\
\hline 29CE & 8D & A5 & 29 & STA－Abs \\
\hline 29 D 1 & EA & & & NOP \\
\hline 29 D 2 & EA & & & NOP \\
\hline 29 D 3 & EA & & & NOP \\
\hline \(29 D 4\) & A2 & 02 & & LDX－非 \\
\hline 29D6 & B5 & 10 & & LDA，X－ze \\
\hline 2908 & 90 & 80 & 39 & STA，X－Abs store counts of ignition time in memory locations 3980 to 3BD8 \\
\hline
\end{tabular}

\section*{DATA RECORDING PROGRAM－Continued}
\begin{tabular}{|c|c|c|c|c|}
\hline 29D8 & 90 & 80 & 39 & STA，X－Abs store counts of ignition time in memory locations 3980 to 3BDS \\
\hline 29DB & CA & & & DEX \\
\hline 29DC & 10 & F8 & & BPL \\
\hline 29DE & 18 & & & CLC \\
\hline 29DF & \(A D\) & D9 & 29 & LDA，Abs \\
\hline 29E2 & 69 & 03 & & ADC \\
\hline 29E4 & 8D & D9 & 29 & STA－Abs \\
\hline 29E7 & AD & DA & 29 & CDA－Abs \\
\hline 29EA & 69 & 00 & & ADC \\
\hline 29EC & 8 D & Da & 29 & STA，Abs \\
\hline 29EF & 38 & & & SEC \\
\hline 29F0 & AD & D9 & 29 & CDA－Abs test the end of ignition time counts location \\
\hline 29 F 3 & E9 & D8 & & SBC－非 \\
\hline 29F5 & AD & DA & 29 & LDA，Abs \\
\hline 29F8 & E9 & 3B & & SBC－\＄ \\
\hline 29FA & 30 & OA & & BMI branch to 2 A06 if locations of
ignition time count are filled \\
\hline 29FC & A9 & 80 & & LDA－\＃ \\
\hline 29 FE & 8D & D9 & 29 & STA，Abs \\
\hline 2 A 01 & A9 & 39 & & LDA－䧸 \\
\hline 2A03 & 8D & DA & 29 & STA，Abs \\
\hline 2A06 & EA & & & NOP \\
\hline 2A07 & EA & & & NOP \\
\hline 2A08 & EA & & & NOP \\
\hline 2A09 & A5 & EE & & LDA－ze \\
\hline 2 AOB & 8D & E0 & 3B & STA－Abs store counts of injection pulse in memory locations 3 BEO to 3CA8 \\
\hline 2A0E & \(A D\) & OC & 2A & LDA－Abs \\
\hline \(2 \mathrm{Al1}\) & 69 & 01 & & ADC \\
\hline \(2 \mathrm{Al3}\) & 8D & OC & 2A & STA－Abs \\
\hline 2 Al 6 & AD & OD & 2A． & LDA－Abs \\
\hline 2A19 & 69 & 00 & & ADC \\
\hline 2AIE & 38 & & & SEC \\
\hline 2AlF & AD & OC & 2 A & LDA－Abs test the end of injection pulse location \\
\hline 2A22 & E9 & A8 & & SBC－非 \\
\hline 2A24 & AD & OD & 2A & LDA－ze \\
\hline 2 A 27 & E9 & 3 C & & SBC－\＃ \\
\hline 2A29 & 30 & OA & & BMI branch to 2 A35 if locations are
not filled \\
\hline 2A2B & A9 & EO & & LDA－\＃ \\
\hline 2A2D & 8D & OC & 2A & STA－ze \\
\hline 2 A 30 & A9 & 3 B & & CDA－\＃store counts of injection pulse from the location 3BEO \\
\hline
\end{tabular}

\section*{DATA RECORDING PROGRAM - Continued}
\begin{tabular}{lllll}
\(2 A 32\) & 8D & OD & \(2 A\) & STA, ze \\
\(2 A 35\) & EA & & & NOP \\
\(2 A 36\) & EA & & & NOP \\
\(2 A 37\) & EA & & & NOP \\
2A38 & 4C & \(3 D\) & 28 & JMP \\
\(2 A 3 B\) & EA & & & NOP
\end{tabular}

MEAN CALCULATION PROGRAM (RPM)
\begin{tabular}{|c|c|c|c|c|c|}
\hline 2A50 & A2 & 02 & & LDX & call the first number \\
\hline 2A52 & BD & 00 & 30 & LDA, X-Abs & \\
\hline 2A55 & 95 & 30 & & STA, X-ze & \\
\hline 2A57 & CA & & & DEX & \\
\hline 2A58 & 10 & F8 & & DPL & \\
\hline 2A5A & A2 & 02 & & LDX & call the second number \\
\hline 2A5C & BD & 03 & 30 & LDA, X - Abs & \\
\hline 2A5F & 95 & 33 & & STA, X-ze & \\
\hline 2A61 & CA & & & DEX & \\
\hline 2A62 & 10 & F8 & & BPL & \\
\hline 2A64 & 20 & 40 & 21 & JSR & jump to addition subroutine to add two numbers \\
\hline 2A67 & A2 & 02 & & LDA & \\
\hline 2A69 & B5 & 36 & & LDA, X-ze & \\
\hline 2 A 6 B & 95 & 30 & & STA, X-ze & \\
\hline 2A6D & CA & & & DEX & \\
\hline 2 A 6 E & 10 & F9 & & BPL & \\
\hline 2A70 & A2 & 02 & & LDX & call the third number \\
\hline 2A72 & BD & 06 & 30 & LDA, X-Abs & \\
\hline 2A75 & 95 & 33 & & STA, X-ze & \\
\hline 2A77 & CA & & & DEX & \\
\hline 2A78 & 10 & F8 & & BPL & \\
\hline 2A7A & 20 & 40 & 21 & JSR & jump to addition subroutine to fine sum of first three numbers \\
\hline 2A7D & 18 & & & CLC & \\
\hline 2A7E & \(A D\) & 73 & 2A & LDA, Abs & \\
\hline 2A81 & 69 & 03 & & ADC- & adjust to find sum of the total numbers \\
\hline 2A83 & 8D & 73 & 2A & STA-Abs & \\
\hline 2A86 & AD & 74 & 2A & LDA-Abs & \\
\hline 2489 & 69 & 00 & & ADC-㭏 & \\
\hline 2A8B & 8D & 74 & 2 A & STA-Abs & \\
\hline 2A8E & 38 & & & SEC & test if all numbers are added \\
\hline 2A8F & AD & 73 & 2A & CDA-Abs & \\
\hline 2A92 & E9 & 58 & & SBC-E & \\
\hline 2A94 & \(A D\) & 74 & 2A & LDA-Abs & \\
\hline 2A97 & E9 & 32 & & SBC-非 & \\
\hline 2A99 & 30 & DC & & BMI & branch to 2 A 67 if all numbers are not added \\
\hline
\end{tabular}
```

MEAN CALCULATION PROGRAM (RPM) - Continued

```
\begin{tabular}{|c|c|c|c|c|c|}
\hline 2 A 9 b & A2 & 02 & & \multicolumn{2}{|l|}{LDX} \\
\hline 2A9D & B5 & 36 & & LDA, X-ze & load sum of the total number into the dividend of divide subroutine \\
\hline 2A9F & 95 & OA & & STA, X-ze & \\
\hline 2AA2 & CA & & & DEX & \\
\hline 2 A 43 & 10 & F9 & & SPL & \\
\hline 2AA5 & A9 & 00 & & LDA- \({ }^{\text {F }}\) & load number of values into the divisor of divide subroutine \\
\hline 2 AA 7 & 85 & OD & & STA-ze & \\
\hline 2 AAP & A9 & 4B & & LDÁ-非 & \\
\hline 2 AAB & 85 & OE & & STA-ze & \\
\hline 2 AAD & A9 & FA & & LDA-* & \\
\hline 2AAF & 85 & OF & & STA-ze & \\
\hline 2ABI & 20 & 00 & 25 & JSR & jump to the divide subroutine \\
\hline \(2 \mathrm{AB4}\) & A2 & 02 & & LDX & \\
\hline \(2 \mathrm{AB6}\) & B5 & 10 & & LDA, Xze & store result of the mean in the proper register \\
\hline 2AB8 & 9D & 5A & 32 & STA, X-Ab & \\
\hline 2 ABB & CA & & & DEX & \\
\hline 2 ABA & 10 & F9 & & CDA- \({ }^{\text {\% }}\) & \\
\hline 2ABC & 60 & & & RTS & return from the subroutine \\
\hline
\end{tabular}

STANDARD DIVIATION CALCULATION PROGRAM (RPM)
\begin{tabular}{|c|c|c|c|c|}
\hline 2 COO & A2 & 02 & & LDY \\
\hline 2C02 & BD & 00 & 30 & LDA, \(\mathrm{X}-\mathrm{Abs}\) compute difference of first number \(x\), and mean \(\bar{x}\), or ( \(x_{1}-\bar{x}\) ) \\
\hline \(2 \mathrm{C05}\) & 95 & 30 & & STA, X-ze \({ }^{\text {e }}\) \\
\hline 2007 & CA & & & DEX \\
\hline 2C08 & 10 & F8 & & DPL \\
\hline 2 COA & A2 & 02 & & LDX \\
\hline 2C0C & BD & 5A & 32 & CDA, \(\mathrm{z}-\mathrm{Abs}\) \\
\hline 2 COF & 95 & 33 & & STA, X-ze \\
\hline \(2 \mathrm{Cl1}\) & CA & & & DEX \\
\hline 2C12 & 10 & F8 & & DPL \\
\hline 2 C 14 & 20 & BO & 25 & JSR jump to subtraction subroutine \\
\hline \(2 \mathrm{Cl7}\) & A2 & 02 & & LDX \\
\hline 2 C 19 & B5 & 36 & & LDA, X -ze compute result of \(\left(\mathrm{x}_{1}-\overline{\mathrm{x}}\right)^{2}\) \\
\hline 2C1B & 95 & 01 & & STA, X-ze \\
\hline 2C1D & 95 & 04 & & STA, X-ze \\
\hline 2C1F & CA & & & DEX \\
\hline 2C20 & 10 & F7 & & BPL \\
\hline 2C22 & 20 & 00 & 20 & JSR jump to multiplication subroutine \\
\hline 2C25 & A2 & 02 & & LDX \\
\hline 2C27 & B5 & 26 & & LDA, X-ze store result of \((x-\bar{x})^{2}\) in a register \\
\hline 2C29 & 95 & B6 & & STA, X-ze \\
\hline
\end{tabular}

\author{
STANDARD DIVIATION CALCULATION PROGRAM (RPM) - Continued
}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 2C2B & CA & & & DEX & \\
\hline 2C2C & 10 & F9 & & BPL & \\
\hline 2C2E & A2 & 02 & & LDX & \\
\hline 2C30 & BD & 03 & 30 & \[
\mathrm{LDA}, \mathrm{X}-\mathrm{Abs}
\] & compute difference of second number \(x_{2}\) and mean \(\bar{x}\) or \(\left(x_{2}-\bar{x}\right)\) \\
\hline 2C33 & 95 & 30 & & STA, X-ze & \\
\hline 2C35 & CA & & & DEX & \\
\hline 2C36 & 10 & F8 & & BPL & \\
\hline 2C38 & A2 & 02 & & LDX & \\
\hline 2C3A & BD & 5A & 32 & LDA, X -Abs & \\
\hline 2C3D & 95 & 33 & & STA, X-ze & \\
\hline 2C3F & CA & & & DEX & \\
\hline 2 C 40 & 10 & F9 & & DPL & \\
\hline 2C42 & 20 & BO & 25 & JSR & jump to subtraction subroutine \\
\hline 2 C 45 & A2 & 02 & & LDX & \\
\hline 2 C 47 & B5 & 36 & & LDA, X-ze & compute result of \(\left(x_{2}-\bar{x}\right)^{2}\) \\
\hline 2C49 & 95 & 01 & & STA, X-ze & \\
\hline 2 C 4 B & 95 & 04 & & STA, X-ze & \\
\hline 2C4D & CA & & & DEX & \\
\hline 2C4E & 10 & F7 & & BPL & \\
\hline 2C50 & 20 & 00 & 20 & JSR & jump to multiply subroutine \\
\hline 2C53 & A2 & 02 & & LDX & \\
\hline 2C55 & B5 & 26 & & LDA, X-ze & compute sum of \(\left(\mathrm{x}_{1}-\overline{\mathrm{x}}\right)^{2}+\left(\mathrm{x}_{2}-\overline{\mathrm{x}}\right)^{2}\) \\
\hline 2C57 & 95 & 30 & & STA, X-ze & \\
\hline 2C59 & CA & & & DEX & \\
\hline 2C5A & 10 & EG & & PL & \\
\hline 2C5C & A2 & 02 & & LDX & \\
\hline 2C5E & B5 & B6 & & LDA, X-ze & \\
\hline 2 C 60 & 95 & 33 & & STA, X-ze & \\
\hline 2C62 & CA & & & DEX & \\
\hline 2 C 63 & 10 & F9 & & BPL & \\
\hline 2C65 & 20 & 40 & 21 & JSR & jump to the addition subroutine \\
\hline 2C68 & A2 & 02 & & LDX & - \(-2+(x-2\) \\
\hline 2C6A & B5 & 36 & & \[
\operatorname{LDA}, \mathrm{X}-\mathrm{ze}
\] & store result of \(\left.9 x_{1}-\bar{x}\right)^{2}+\left(x_{2}-\bar{x}\right)^{2}\) in a register \\
\hline 2C6C & 95 & B6 & & STA, X-ze & \\
\hline 2C6E & CA & & & DEX & \\
\hline 2C6F & 10 & F9 & & BPL & \\
\hline 2C71 & 18 & & & CLC & \\
\hline 2C72 & AD & 31 & 2 C & CDA, \(\mathrm{Z}-\mathrm{Abs}\) & adjust to compute Sum \(\left(\mathrm{x}_{i}-\bar{x}\right)^{2}\) \\
\hline 2C75 & 69 & 03 & & \(A D C-z e\) & \\
\hline 2C77 & 8D & 31 & 2 C & STA, X-Abs & \\
\hline 2C7A & AD & 32 & 2 C & LDA, \(\mathrm{X}-\mathrm{Abs}\) & \\
\hline 2C7D & 69 & 00 & & ADC-ze & \\
\hline 2C7F & 8D & 32 & 2 C & STA, X-Abs & \\
\hline 2 C 82 & 38 & & & SEC & \\
\hline 2C83 & AD & 31 & 2C & LDA, X-Abs & test if \(\mathrm{x}_{i}=\mathrm{x}_{n}\) \\
\hline 2C86 & E9 & 58 & & SBC-ze & \\
\hline 2C88 & AD & 32 & 2 C & LDA, X-Abs & \\
\hline
\end{tabular}

STANDARD DIVIATION CALCULATION PROGRAM（RPM）－Continued
\begin{tabular}{|c|c|c|c|c|c|}
\hline 2C8B & E9 & 32 & & SBC－ze & \\
\hline 2C8D & 30 & 9F & & BMI & branch to 2C2E if \(\mathrm{x}_{\text {c }} \mathrm{x}_{0}\) \\
\hline 2C8F & A2 & 02 & & LDX & \\
\hline 2C91 & B5 & B6 & & LDA，X－ze & load sum \((x,-\bar{x})^{2}\) into the dividend of the divide subroutine \\
\hline 2C93 & 95 & OA & & STA，X－ze & \\
\hline 2C95 & CA & & & DEX & \\
\hline 2096 & 10 & F9 & & BPL & \\
\hline 2C98 & A9 & CO & & LDA－作 & load value of（ \(n-1\) ）into the divisor of the divide subroutine \\
\hline 2C9A & 85 & OD & & STA－ze & \\
\hline 2C9C & A9 & 4A & & LDA－非 & \\
\hline \(2 \mathrm{C9E}\) & 85 & OE & & STA－ze & \\
\hline 2 CAO & A9 & FA & & LDA－弗 & \\
\hline 2 CA 2 & 85 & OF & & STA－ze & \\
\hline \(2 \mathrm{CA4}\) & 20 & 00 & 25 & JSR & jump to the divide subroutine \\
\hline 2 CA 7 & A2 & 02 & & LDX & \\
\hline 2 CA 9 & B5 & 10 & & LDA，X－ze & store the result of standard divistion in a proper subroutine \\
\hline 2 CAB & 9D & 5D & 32 & STA，X－Abs & \\
\hline 2CAE & CA & & & DEX & \\
\hline 2CAF & 10 & F9 & & BPL & \\
\hline 2CBI & 60 & & & RTS & return from the subroutine \\
\hline
\end{tabular}

\section*{APPENDIX G}

DETAILED CIRCUIT DIAGRAMS




APPENDTX H

LIST OF LATA FOR AIR-FUEL KATIO TESTiNG


.05876
.05885
.05862
.05670
.06178
.09540
.09841
.09541
.01005

 \(\stackrel{\sim}{\sim}\) \(\stackrel{\rightharpoonup}{7}\) \({ }_{0}^{\infty}\) \(\stackrel{i n}{n}\) 0
0
0
0
0
0 \begin{tabular}{l}
\(\circ\) \\
0 \\
\(\circ\) \\
\hline
\end{tabular} N．
N．
\(\underset{\sim}{7}\)
\(\cdots\) in or 그ㄱㅜㅡ군 \(\stackrel{\text { a }}{\stackrel{1}{N}}\) g
－
-1 \begin{tabular}{l} 
ñ \\
\multirow{2}{n}{} \\
\\
\hline
\end{tabular}
 \begin{tabular}{l} 
O \\
\(\stackrel{\rightharpoonup}{\circ}\) \\
\hline
\end{tabular}




Mmonmonononooobo0000000ル000000





 000000000000000000000000000000


 \begin{tabular}{ll} 
各 \\
0 \\
\hline
\end{tabular} SPEED
RPM







\begin{tabular}{|c|c|}
\hline 范 & \[
\stackrel{\sim}{\sim} \stackrel{\infty}{\underset{\sim}{\mathcal{G}}}
\] \\
\hline \[
\begin{aligned}
& \text { 드․ } \\
& \text { 䍗 }
\end{aligned}
\] &  \\
\hline \[
\sum_{i}^{\infty}
\] & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline \[
\sum_{\substack{\mathrm{E}}}^{\substack{\mathrm{E}}}
\] & \begin{tabular}{l}
 \\
 \\
 \\

\end{tabular} \\
\hline \(\stackrel{\text { 戌 }}{\substack{\text { a }}}\) &  \\
\hline 范 &  \\
\hline \[
\begin{aligned}
& \text { 昌 } \\
& \text { 号 } \\
& \text { U }
\end{aligned}
\] & \begin{tabular}{l}
 \\
 \\

\end{tabular} \\
\hline 式䍖 & \\
\hline  & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline & \begin{tabular}{l}
000000000000000000000000000000 \\

\end{tabular} \\
\hline \[
\underset{\sim}{\circ}
\] & \begin{tabular}{l}
000000000000000000000000000000 \\

\end{tabular} \\
\hline  &  \\
\hline 永 & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline \[
\begin{aligned}
& \text { Q } \\
& \substack{9 \\
\hline \\
\hline \\
\hline}
\end{aligned}
\] & \begin{tabular}{l}
HHHHHOOOOOHNNNNOOO0000000000H0 \\

\end{tabular} \\
\hline & \\
\hline
\end{tabular}


\begin{tabular}{|c|c|}
\hline 范 & \[
\stackrel{\sim}{\sim} \stackrel{\infty}{\underset{\sim}{\mathcal{G}}}
\] \\
\hline \[
\begin{aligned}
& \text { 드․ } \\
& \text { 䍗 }
\end{aligned}
\] &  \\
\hline \[
\sum_{i}^{\infty}
\] & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline \[
\sum_{\substack{\mathrm{E}}}^{\substack{\mathrm{E}}}
\] & \begin{tabular}{l}
 \\
 \\
 \\

\end{tabular} \\
\hline \(\stackrel{\text { 戌 }}{\substack{\text { a }}}\) &  \\
\hline 范 &  \\
\hline \[
\begin{aligned}
& \text { 昌 } \\
& \text { 号 } \\
& \text { U }
\end{aligned}
\] & \begin{tabular}{l}
 \\
 \\

\end{tabular} \\
\hline 式䍖 & \\
\hline  & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline & \begin{tabular}{l}
000000000000000000000000000000 \\

\end{tabular} \\
\hline \[
\underset{\sim}{\circ}
\] & \begin{tabular}{l}
000000000000000000000000000000 \\

\end{tabular} \\
\hline  &  \\
\hline 永 & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline \[
\begin{aligned}
& \text { Q } \\
& \substack{9 \\
\hline \\
\hline \\
\hline}
\end{aligned}
\] & \begin{tabular}{l}
HHHHHOOOOOHNNNNOOO0000000000H0 \\

\end{tabular} \\
\hline & \\
\hline
\end{tabular}



    DENAIR



    出


        ATMPR




        若


        SPEED
RPM

LIST OF DATA（AIR－FUEL RATIO 16－1）FINAL








LB





 000000000000000000000000000000


\section*{

 \\ 
 \\ 
}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline SPEED RPM & \[
\begin{array}{r}
\text { LOAD } \\
\text { FT-LB }
\end{array}
\] & \begin{tabular}{l}
AFS \\
VOL
\end{tabular} & \[
\begin{gathered}
\text { PMN } \\
\text { in- } \mathrm{H}_{2} \mathrm{O}
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{TDB} \\
{ }^{\circ} \mathrm{F}
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{TWB} \\
{ }^{\circ} \mathrm{F}
\end{gathered}
\] & & \[
\begin{gathered}
\text { INJPU } \\
\text { MIC-SEC } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { DELGAS } \\
\text { LB } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { DELTIM } \\
\text { SEC }
\end{gathered}
\] & \[
\begin{gathered}
\text { PW } \\
\text { PSIA }
\end{gathered}
\] & DENAIR & \[
\begin{gathered}
\text { CFM } \\
\mathrm{FT}^{3} / \mathrm{MIN}
\end{gathered}
\] & \[
\begin{gathered}
\text { AMFR } \\
\text { LB/MIN } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { MFPM } \\
\text { LB/MIN } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { AFR } \\
\text { RESULT }
\end{gathered}
\] \\
\hline 1280 & 40.0 & 4.02 & . 123 & 71.0 & 54.0 & 29.21 & 4748 & . 40 & 278.90 & 20625 & . 07081 & 22.4900 & 1.59289 & . 08605 & 18.51 \\
\hline 1275 & 40.0 & 4.01 & . 122 & 71.0 & 54.0 & 29.21 & 4790 & . 40 & 259.97 & . 20625 & . 07081 & 22.4036 & 1.58638 & . 09232 & 17.18 \\
\hline 1210 & 40.0 & 3.79 & . 111 & 71.0 & 54.0 & 29.21 & 4851 & 40 & 292.12 & . 20625 & . 07081 & 21.3670 & 1.51297 & . 08215 & 18.41 \\
\hline 1220 & 40.0 & 3.84 & . 111 & 71.0 & 54.0 & 29.21 & 4854 & . 40 & 289.81 & . 20625 & . 07081 & 21.3670 & 1.51297 & . 08281 & 18.27 \\
\hline 1220 & 40.0 & 3.85 & . 111 & 71.0 & 54. & 29.21 & 4850 & . 40 & 277.62 & . 20625 & . 07081 & 21.3670 & 1.51297 & . 08645 & 17.50 \\
\hline 2000 & 40.0 & 5.46 & . 256 & 73.0 & 55.0 & 29.21 & 4734 & . 40 & 180.39 & . 21.404 & . 07059 & 32.3034 & 2.28027 & . 13304 & 17.14 \\
\hline 2010 & 39.8 & 5.45 & . 254 & 73.0 & 55.0 & 29.21 & 4724 & . 40 & 177.23 & . 21404 & . 07059 & 32.1767 & 2.27132 & . 13542 & 16.77 \\
\hline 1995 & 40.0 & 5.44 & . 254 & 73.0 & 55.0 & 29.21 & 4724 & . 40 & 175.42 & . 21404 & . 07059 & 32.1767 & 2.27132 & . 13681 & 16.60 \\
\hline 2010 & 39.9 & 5.46 & . 254 & 73.0 & 55.0 & 29.21 & 4725 & . 40 & 171.91 & . 21404 & . 07059 & 32.1767 & 2.27132 & . 13961 & 16.27 \\
\hline 2010 & 39.9 & 5.46 & . 254 & 73.0 & 55.0 & 29.21 & 4725 & . 40 & 174.59 & . 21404 & . 07059 & 32.1767 & 2.27132 & . 1374 & 16.52 \\
\hline 2880 & 40.0 & 6.36 & . 534 & 75.0 & 56.0 & 29.21 & 4724 & . 40 & 124.23 & . 22183 & . 07222 & 47.4960 & 3.4302 & 19319 & 17.76 \\
\hline 2885 & 40.0 & 6.36 & . 534 & 75.0 & 56.0 & 29.21 & 4725 & . 40 & 113.83 & . 22183 & . 07222 & 47.4960 & 3.4302 & 21084 & 16.27 \\
\hline 2900 & 40.0 & 6.37 & . 540 & 75.0 & 56.0 & 29.21 & 4726 & . 40 & 111.07 & . 22183 & . 07222 & 47.5802 & 3.4363 & 21608 & 15.90 \\
\hline 2835 & 40.0 & 6.31 & . 503 & 75.0 & 56.0 & 29.21 & 4728 & . 40 & 118.70 & . 22183 & . 07222 & 45.9973 & 3.3220 & . 20219 & 16.43 \\
\hline 2830 & 40.0 & 6.30 & . 496 & 75.0 & 56.0 & 29.21 & 4660 & . 40 & 121.42 & . 22183 & . 07222 & 45.9973 & 3.3220 & 19766 & 16.81 \\
\hline
\end{tabular}

\begin{tabular}{l}
H \\
\hline H \\
H \\
H
\end{tabular}




呑
 \(\stackrel{\circ}{\stackrel{+}{i}}\) o 0
in
N
in
\(i\)











 000000000000000000000000000000
風䜿





\section*{}





PW
PSIA




\section*{}



\(\begin{array}{r}\text { TDB } \\ { }^{\circ} \mathrm{F} \\ \hline\end{array}\)



TWB ATMPR




RPM
1230
1430
1400
1400
1420
2030
2020
2050
2020
2030
2875
2890
2785
2785
2793


 \(\sum_{\substack{\infty \\ n}}^{\substack{z}}\)











TWB ATMPR
\({ }^{\circ} \mathrm{F}\) in－Hg


 Nのか










\footnotetext{

}



 \(\qquad\)




 000000000000000000000000000000


碱





要吕



APPENDIX I

LIST OF DATA FCR SPARK IGNITION TESTING

LIST OF DATA FOR IGNITION SYSTEM
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline  & \[
\begin{gathered}
\text { DISTRIB- } \\
\text { UTOR } \\
\text { CYCLE (MS) } \\
\text { SCOPE } \\
\hline
\end{gathered}
\] & ```
COMPUTED
    SPEED
    (RPM)
FROM DIST
``` & \[
\begin{aligned}
& \text { SPARY ADV } \\
& \text { BASED ON } \\
& \text { DIST (MS) } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { SPARK ADV } \\
& \text { BASED ON } \\
& \text { DIST (MS) } \\
& \hline
\end{aligned}
\] & SPARK ADV ACTUAL (DEG CS) & \[
\begin{aligned}
& \text { DWELL } \\
& (\mathrm{MS})
\end{aligned}
\] & \[
\begin{aligned}
& \text { DWELL } \\
& \text { (DEG CS) } \\
& \hline
\end{aligned}
\] \\
\hline 1015 & 116.0 & 1034.0 & 3.30 & 20.48 & 5.05 & 7.10 & 44.07 \\
\hline 1030 & 116.0 & 1034.0 & 3.50 & 21.72 & 6.29 & 7.30 & 45.31 \\
\hline 1010 & 116.0 & 1034.0 & 3.40 & 21.10 & 5.67 & 7.00 & 43.45 \\
\hline 1010 & 120.0 & 1000.0 & 3.30 & 19.80 & 5.27 & 7.20 & 43.20 \\
\hline 980 & 116.0 & 1034.0 & 3.20 & 19.86 & 4.37 & 7.10 & 44.07 \\
\hline 910 & 131.0 & 916.0 & 3.40 & 18.69 & 3.43 & 7.50 & 41.22 \\
\hline 1065 & 122.0 & 983.6 & 3.50 & 20.66 & 5.23 & 7.20 & 42.49 \\
\hline 960 & 124.0 & 967.7 & 3.50 & 20.32 & 4.89 & 7.60 & 44.12 \\
\hline 1015 & 122.0 & 983.6 & 3.14 & 18.53 & 3.10 & 7.50 & 44.26 \\
\hline 1265 & 94.0 & 1276.6 & 3.75 & 28.72 & 13.29 & 6.0 & 45.96 \\
\hline 1240 & 93.0 & 1290.3 & 3.85 & 29.81 & 14.38 & 6.0 & 45.47 \\
\hline 2165 & 95.0 & 1263.2 & 3.60 & 27.28 & 11.85 & 6.0 & 45.47 \\
\hline 2170 & 91.0 & 1318.7 & 3.65 & 28.88 & 13.45 & 5.5 & 43.52 \\
\hline 1230 & 93.0 & 1290.3 & 3.90 & 30.19 & 14.76 & 6.0 & 46.45 \\
\hline 1230 & 98.0 & 1224.5 & 3.80 & 27.92 & 12.49 & 6.1 & 44.45 \\
\hline 2100 & 102.0 & 1176.5 & 3.70 & 26.11 & 10.68 & 6.0 & 42.35 \\
\hline 2170 & 97.0 & 1237.1 & 3.75 & 28.57 & 13.14 & 6.1 & 44.90 \\
\hline 1240 & 94.0 & 1276.6 & 3.65 & 27.96 & 12.53 & 6.0 & 45.96 \\
\hline 1600 & 75.5 & 1589.4 & 3.84 & 36.61 & 21.18 & 4.7 & 44.82 \\
\hline 1609 & 74.9 & 1602.1 & 3.93 & 37.78 & 22.35 & 4.8 & 46.14 \\
\hline 1610 & 74.7 & 1606.4 & 3.80 & 36.62 & 21.19 & 4.7 & 45.30 \\
\hline 1590 & 75.7 & 1585.2 & 3.88 & 36.90 & 21.47 & 4.6 & 43.75 \\
\hline 1595 & 75.5 & 1589.4 & 3.92 & 37.38 & 21.95 & 4.7 & 44.82 \\
\hline 1590 & 75.0 & 1600.0 & 3.84 & 36.86 & 21.43 & 4.6 & 44.16 \\
\hline 1595 & 75.3 & 1593.6 & 3.80 & 36.33 & 20.90 & 4.8 & 45.89 \\
\hline 1600 & 75.2 & 1595.7 & 3.90 & 37.34 & 21.91 & 4.8 & 45.95 \\
\hline 1605 & 74.9 & 1602.1 & 3.78 & 36.33 & 20.90 & 4.7 & 45.18 \\
\hline 2005 & 60.0 & 2000.0 & 3.70 & 44.4 & 28.97 & 4.0 & 48.0 \\
\hline 1995 & 60.0 & 2000.0 & 3.90 & 46.8 & 31.37 & 4.0 & 48.0 \\
\hline 1985 & 60.0 & 2000.0 & 3.80 & 45.6 & 30.17 & 4.0 & 48.0 \\
\hline 2005 & 60.0 & 2000.0 & 3.60 & 43.2 & 27.77 & 4.0 & 48.0 \\
\hline 1997 & 60.0 & 2000.0 & 3.85 & 46.2 & 30.77 & 4.0 & 48.0 \\
\hline 2000 & 60.0 & 2000.0 & 3.80 & 45.6 & 30.17 & 4.0 & 48.0 \\
\hline 2020 & 59.0 & 2033.9 & 3.70 & 45.1 & 29.67 & 4.0 & 48.8 \\
\hline 2005 & 58.0 & 2069.0 & 3.60 & 44.6 & 29.17 & 4.0 & 49.6 \\
\hline 2060 & 58.0 & 2069.0 & 3.75 & 46.5 & 31.07 & 4.0 & 49.6 \\
\hline
\end{tabular}

\section*{LIST OF DATA FOR IGNITION SYSTEM}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { SPEED } \\
\text { (RPM) } \\
\text { DAYTRONIC } \\
\hline
\end{gathered}
\] & ```
DISTRIB-
 UTOR
CYCLE (MS)
 SCOPE
``` & \begin{tabular}{l}
COMPUTED \\
SPEED \\
(RPM) \\
FROM DIST
\end{tabular} & \begin{tabular}{l}
SPARK ADV \\
BASED ON \\
DIST (MS)
\end{tabular} & \begin{tabular}{l}
SPARK ADV \\
BASED ON \\
DIST (MS)
\end{tabular} & SPARK ADV ACTUAL (DEG CS) & \[
\begin{aligned}
& \text { DWELL } \\
& \text { (MS) }
\end{aligned}
\] & \[
\begin{aligned}
& \text { DWELL } \\
& \text { (DEG CS) }
\end{aligned}
\] \\
\hline 2370 & 50.4 & 2381.9 & 3.70 & 52.87 & 37.44 & 3.10 & 44.30 \\
\hline 2350 & 51.0 & 2353.9 & 3.70 & 52.25 & 36.82 & 3.14 & 44.34 \\
\hline 2340 & 51.1 & 2347.4 & 3.60 & 50.70 & 35.27 & 3.08 & 43.38 \\
\hline 2345 & 51.7 & 2321.1 & 3.80 & 52.92 & 37.49 & 3.15 & 43.87 \\
\hline 2330 & 51.6 & 2323.8 & 3.80 & 53.00 & 37.57 & 3.13 & 43.64 \\
\hline 2350 & 51.1 & 2347.4 & 3.60 & 50.70 & 35.27 & 3.06 & 43.09 \\
\hline 2360 & 51.1 & 2350.2 & 3.50 & 49.35 & 33.92 & 3.18 & 44.84 \\
\hline 2335 & 51.2 & 2341.9 & 3.70 & 52.00 & 36.57 & 3.09 & 43.42 \\
\hline 2350 & 51.3 & 2340.1 & 3.60 & 49.14 & 33.71 & 3.15 & 44.30 \\
\hline 2840 & 41.0 & 2926.8 & 3.16 & 55.58 & 40.15 & 2.50 & 43.90 \\
\hline 2845 & 42.0 & 2857.1 & 3.27 & 56.06 & 40.63 & 2.55 & 43.71 \\
\hline 2850 & 42.0 & 2857.1 & 3.20 & 54.94 & 39.51 & 2.50 & 42.86 \\
\hline 2845 & 42.0 & 2857.1 & 2.98 & 51.09 & 35.66 & 2.55 & 43.71 \\
\hline 2845 & 42.0 & 2857.1 & 2.91 & 49.97 & 34.54 & 2.50 & 42.86 \\
\hline 2830 & 41.0 & 2926.8 & 3.02 & 53.03 & 37.60 & 2.50 & 43.90 \\
\hline 2870 & 40.0 & 3000.0 & 2.91 & 52.47 & 37.04 & 2.50 & 45.00 \\
\hline 2865 & 41.0 & 2926.8 & 3.12 & 54.88 & 39.45 & 2.50 & 43.90 \\
\hline 2900 & 40.0 & 3000.0 & 3.01 & 54.27 & 38.84 & 2.50 & 45.00 \\
\hline
\end{tabular}

\section*{VITA}

Firooz Bakhtiari-Nejad
Candidate for the Degree of
Master of Science

Thesis: DESIGN AND TESTING OF A MICROCOMPUTER AIR-FUEL RATIO, IGNITION TIMING SYSTEM FOR AN ELECTRONICALLY FUEL INJECTED INTERNAL COMBUSTION ENGINE

Major Field: Mechanical Engineering

\section*{Biographical:}

Personal Data: Born in Kermanshah, Iran, August 5, 1951, the son of Abolghasem and Monereh Bakhtiari-Nejad.

Education: Graduated from Merat High in Tehran, Iran, in 1970; received two Bachelor of Science degrees in Electrical Engineering in May 1975 and in Mechanical Engineering in December 1975 both from Kansas State University, Manhattan, Kansas; completed requirements for the Master of Science degree in Mechanical Engineering at Kansas State University in April, 1976.

Professional Experience: Worked as a graduate teaching assistant from August 1976 to May 1978 at Mechanical Engineering Department of Kansas State University.

Professional Organizations: Member of the American Society of Mechanical Engineerings; American Society of Heating, Refrigerating and Air-Conditioning Engineering.

\section*{ACKNOWLEDGEMENT}

The author wishes to express his deepest gratitude to Dr. J. Garth Thompson for serving as his major advisor throughout the past two years. Without his guidance, encouragement and help this research may never have reached a successiful conclusion. The author would also like to thank Dr. Ralph Turnquist and Dr. W. W. Koepsel for serving on the advisory committee, and the Mechanical Engineering Department staff for suggestions and assistance. He also thanks to Mrs. Linda Brown and the author's brother Farhad for typing the many and varied pages within this thesis.

The author owes gratitude to his parents, who have always provided him with all kinds of opportunities for better studying. To his wife Roxana, he would like to say "thank you for all your patience and encouragement while I was working on this thesis."

\title{
DESIGN AND TESTING OF A MICROCOMPUTER AIR-FUEL RATIO, IGNITION TIMING SYSTEM, FOR AN ELECTRONICALLY FUEL INJECTED INTERNAL COMBUSTION ENGINE
}

\section*{by}

EIROOZ BAKHTIARI-NEJAD
B.S., Kansas State University, 1975

AN ABSTRACT OF A THESIS

\author{
submitted in partial fuifillment of the requirements for the degree MASTER OE SCIENCE Department of Mechanical Engineering KANSAS STATE UNIVERSIIY \\ Manhattan, Kansas
}

\begin{abstract}
In recent years, pollution has become a major societal problem and emission control has become a major concern of the automobile industry. With the advent of fuel shortages and rapidly rising fuel prices the automotive industry now faces the problem of maximizing fuel economy and continuing to decrease exhaust emission levels without sacrificing performance. The basic difficulty is that engine changes which increase fuel economy usually increase emission levels while reducing emission levels susally also reduces fuel economy.

Emission legislation will impose HC/CO/NOX limits of \(1.5 / 15 / 2.0\) gram per mile by 1977 and \(0.41 / 3.43 / 1.0\) grams per mile by 1981-82. Fuel economy legislation requires an average 18 miles per gallon by 1978 and 27.5 miles per gallon by 1985. In order to meet these goals extremely accurate control in metering and mixing the fuel and air also in firing time of engine is necessary.

The objective of this thesis was to control simultaneously spark timing and air fuel ratio by the microcomputer. The scope of this work was limited to testing engine speeds between 1000 and 3000 rpm and engine loads between 10 and \(401 \mathrm{~b}-\mathrm{ft}\). at 3 different air-fuel ratios of \(14-1,16-1,18-1\). The airfuel ratio and spark time controller were open loop, nonfeedback control system, based on the computational approach.

Testing was performed on a 1968 model, 96.6 cubic inch displacement, four cylinder, horizontally opposed, air cooled spark ignition, internal combustion Volkswagen engine equipped with a Bosch injection system. Data for the air fuel ratio testing was collected, following an engine warm at combinations of three loads, 10,25 and \(401 \mathrm{~b}-\mathrm{ft}\) and three different speeds of 1200,2000 and
\end{abstract}

2800 rpm and air fuel ratios of \(14-1,16-1,18-1\). For the ignition, spark advance and the ignition dwell testing, data was taken at six different speeds of \(1000,1200,1600,2000,2300,2800\).

The result of testing the air-fuel ratio controller showed a percentage of offset exceeded \(5 \%\) on seven of the 27 sets of data with average percent offset of \(3.589 \%\), while the percent standard deviation only exceeded \(5 \%\) on one set. Results of the uncertainty for air-fuel ratio measurment showed limit of error of \(3.3 \%\). The ignition spark advance testing result was successful with the maximum deviation of 1.5 degrees of crank shaft. The average deviation for the six sets of data was less than 1.0 degree of crank shaft. Average percent standard deviation for these data was \(3.67 \%\).

Ignition dwell system showed better results with the maximum offset of 3.5 degrees crank shaft and an average error of 1.2 degrees of crank shaft. Uncertainty for this measurement showed between 1.24 and 3.08 degree crank shaft limit of error.```

