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I. INTRODUCTION

A prismatic folded plate structure is a shell consisting of a

series of flat plates, mutually supporting each other along their longi-

tudinal edges, that frame into transverse end diaphragms. Folded plates

have been used extensively in the construction of long-span rocf systems

because of their economy and their interesting architectural appearance.

Many other applications of this type of structure are possible in

buildings, bridges, airplanes, and missiles.

The first folded plate structures were constructed in Germany during

the 1920' s for use as coal bunkers and similar structures where the ratio

of span-to-width of plate is relatively small . Technical papers on this

subject began appearing about 1930. The first application in the United

States may have been a warehouse in San Francisco designed by L. H.

Nishkian, Consulting Engineer, and built about 1935 .

In recent years, folded plates have been used for a large variety of

structures and are of increasing importance in the building industry

as the basis of a new system of construction.

Numerous theories on the analysis of folded plates can be found in

engineering literature. For example, the beam method '', Winter and

Pei's method '
, Gesund's method '

, the slope deflection method ', the

ASCE Recommended method '
, and the minimum energy method , have all

been used to analyze folded plates.

These different theories have some common assumptions, but because

the theories are different, the results vary from one method to another.

The purpose of the investigation described in this thesis was to test a



model of a folded plate structure and to compare the experimental results

with results obtained from the theories listed above. From this compar-

ison, an indication was obtained as to which theories are more reasonable

for actual folded plate structures.

The investigation was limited in scope to experiments on one plexi-

glas model of a folded plate structure, and a comparison of the experi-

mental results with the above six different methods of analysis.



II. LITERATURE SURVEY

A. Review of Literature on Methods of Analysis

Numerous technical papers have been written .on methods of analyzing

folded plate structures. The design method most commonly used in the

United States was introduced by Winter and Pei , and was later modified

by Gaafar by introducing the effect of joint displacements. Subsequent

treatments of this approach have been made by many others. These methods

are based on several simplifying assumptions regarding structural behavior.

These will be described in detail in this section.

1. Beam Method
2,

3

'
A

In some cases, designers have used the elementary beam theory

of strength of materials to calculate stresses in folded plate

structures. In general, an analysis by this method will yield

stresses considerably different from the actual stresses in the

structure.

The general flexure formula can be used to determine longitud-

inal stresses provided that the following assumptions are fulfilled:

a. The material is elastic, isotropic, and homogeneous.

b. The structure is completely monolithic.

c. The longitudinal fiber strains and stresses have a planar

distribution over the entire cross section.

d. As a result of assumptions c, all points on a given cross

section experience the same resultant deflection; therefore,

there is no transverse distortion of the cross section.

e. The resultant of the external loads passes through the shear

center of the cross section.



f. Supporting end diaphragms are infinitely stiff parallel to

their own plane.

For the loading on the plexiglas model in this investigation

assumption e. is satisfied for symmetrical loading only, because

the shear center is located at the centroid of the cross-section,

and for symmetrical loading the external loads are applied through

this centroid. Thus, according to the beam theory, there is no

tendency for twist.

Condition d, and thus, condition c are generally not satisfied

in a folded plate structure, because the thin plates forming the

cross section do not provide a sufficiently stiff transverse slab

system to make the transverse distortion of the cross section

negligible.

2. Winter and Pei's Method '

i

The following basic assumptions are made in all methods considered

for this study except the beam method.

a. The material is homogeneous, isotropic, and linearly elastic.

b. The actual deflections are minor relative to the overall

configuration of the structure. Consequently, equilibrium

conditions for the loaded structure may be developed using

the configuration of the undeflected structure.

c. The principle of superposition holds; this assumption is

derivable from the previous two assumptions.

d. Longitudinal joints are fully monolithic with the slab

acting continuously through the joints.

e. Each supporting end diaphragm is infinitely stiff parallel

to its plane but is perfect flexible normal to its plane.



Winter and Pei provided a convenient solution neglecting the

effect of the relative displacements of the joint. In this analysis,

the roof in the transverse direction is considered as a continuous

one-way slab supported on rigid supports at the joints and thus the

shear forces R are readily obtained. The R-forces at each joint are

then resolved into two component P-forces parallel to the contiguous

plates. The plates, acting as beams between the diaphragms, carry the

P-loads (plate action). At the same time, edge shear stresses CV) are

created along the edges to maintain equal longitudinal strains along

the common edge. The longitudinal plate stresses at a section of the

roof, caused by the P-forces only, are corrected by those longitudinal

edge forces.

It is concluded that the longitudinal edge forces, in addition

to the bending moment M caused by the normal loads P, can be calculated

in the same way as the three moment equation for continuous beams.

3. Gesund's Method '

There are several methods based on the same theory as Gesund's

6 7 9 14
method, ' for example Yitzhaki's method , Vlassow's method , Portland

Cement Association Bulletin , and the Iteration method . In the

present study, the author used Gesund's procedure to calculate the stress

at each ridge.

The analysis used in this procedure may be summarized in two parts:

The first step is the elementary analysis which is based on Winter and

Pel's approach. The procedures and the equations are different, but the

results are identical. Fig. 1 shows the sign and loading convention of

this method.



The second step is a correction analysis; this step is to calculate

edge deflections and to correct the moments and stresses previously obtained

by either of two different procedures:

CI) After obtaining the first correction edge, moments m ,
plate

moments "M , and edge forces N to the original m, M, N, which

are due to elementary analysis, by either solving simultaneous

equations or using the pseudo moment-distribution method, a new

deformation of the plate A will be caused, which in turn leads

.torn , M , N . The calculation process may be repeated as

often as is necessary to reduce the corrections to small values.

Finally, all the corrections may be added together and then

added to the first values of m, M, and N for the final results.

If this method of successive corrections dfverges, it probably

means that the proportions of the structure are such as to make

it too flexible.

(2) Another way of correcting for the motion of the edges is

similar to the method of sidesway correction for moment

distribution in multistory frame. It was first reported by

Gaafar .

8 9
4. Slope Deflection Method '

The structure may be thought of as a continuous one-way slab, that

is, supported by the joints of the plate structure, the plate structure

being loading at the joints by the reactions of one-way slabs.

In the main system, the joints are assumed to be hinged and the

moments m are applied along the joints to secure the continuity of the

slab in the transverse direction. The unknown moments are determined

.



from the slope-deflection equations. The main system is subjected first

to external load only, while the moments as the joints are assumed to

be zero (this first step is based on Winter and Pei's method), and second

to the loading cf unit joint moment m acting separately. The continuity

of the slab at a joint is maintained if the slope-deflections of adjacent

slabs, produced by the external load and by all the joint moment loads

acting simultaneously, reduce to zero.

In a folded plate, the slope-deflections vary longitudinally along

the joints. The slope-deflections can be made to vary similarly along

the structure; that is, the corresponding slope deflection at every

transverse strip will be proportional to the maximum ordinate. In that

case, securing of continuity across any slab strip assures the continuity

across every strip, that is, along the entire structure. The continuity

equations of a slab strip are the same as those of a continuous beam.
f

The slope-deflection equations are established for the transverse

strip of slab at the distance X, at which the 6 -values are maximum and

f(x) = 1. Let only three unknown moments m , m , and m, occur at the

respective joints 2, 3, 4 of the structure. The terms 8 OR , e„„, 6,
20' 30 40

denote the slope-deflections at the joints 2, 3, 4 caused by the action

of the external loads only, while the moments at the joints are zero

(m
2

- m
3

= m^ = 0) ; Q^, 9^, Q denote the slope-deflections at the

respective joints caused by the unit moment nu acting along joint 2

[loading n^ - 1 f(x)J, with the same meaning of 6... 6 9 and

6 24' S 34' 9 44' Then the slope-deflections are



8

e
2

- 6
20

+ e
22
m
2
+ e

23
irl3 + e

24
m
4

-

6
3

= 6
30

+ 6
32
m
2
+ 6

33
m
3
+ 6

34
m
4

= °

6
4

= 9
40

+ e
42
m
2
+ 9

43
ffi

3
+ 6

44
m
4 = °>

These equations are solved for the m-values.

The final stresses a are calculated by superposition. The value

o at n consists of o . due to external loading and the a produced by the

joint moments, assuming the case of three unknown moments nu, m„, m,

.

5. ASCE Recommended Method *

This analysis method is divided into three parts: The first part,

an elementary analysis, consists of two steps: (a) Transverse slab

analysis - all surface loads are considered as carried transversely by

the plates acting as continuous one-way slabs spanning between the

unyielding supports at the folds or joints; (b) Longitudinal plate

analysis - all loads carried transversely to the joints are considered

as transferred longitudinally to the end supporting members by the

plates acting as inclined simple beams. Plate deflections computed from

the longitudinal plate analysis will show that some relative displacement

occurs between successive joints, thus violating the basic assumption of

the transverse slab analysis, i.e., unyielding supports.

The second part is a correction analysis. In order to correct for

the relative joint displacements created in the elementary analysis,

the general procedure is to apply an arbitrary relative joint displace-

ment successively to each plate and compute the resulting plate

deflections S. These plate deflections are then related by geometry to the

arbitrary relative joint displacements and a number of simultaneous



equations equal to the number of restrained plates are written and solved

for the actual relative joint displacements.

The third part uses superposition, in which the results of the

elementary analysis are combined with those of the correction analysis to

give the final values.

12
6. Minimum Energy Method

The minimum energy principle states that the actual configuration

of an elastic structure deformed by loading is such that the total

potential energy, which consists of the potential energy of the applied

load and the strain energy of the deformed structure, is a minimum.

Based on this principle, folded plate problems can be solved. The

expressions for the deflections of the structure are selected such

that (a) the boundary conditions of deflection are fulfilled, (b) the

shape of the deflection curve is generally in accord with the expected

deflected shape, and (c) the actual shape and amplitude of the curve

is defined by a set of undetermined coefficients. The total potential

is then expressed in terms of these undetermined coefficients. The fact

that the total potential is a minimum with respect to each such

coefficient is utilized by setting the derivative of. total potential

with respect to each coefficient equal to zero. Thus, as many inde-

pendent linear equations involving the coefficients are obtained as

there are coefficients and the coefficients are then evaluated. Once

the deflection curves are determined, the various stress resultants

are readily obtainable.
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B. Review of Model Studies of Folded Plate Structures.

1. Edward A. Zanoni, "Model studies of a Folded Plate Structure"

A model was fabricated consisting of five plexiglas plates (Fig. 2).

Each plate had a width of 5" and a thickness of 1/8". The model was

18" long. It was tested under various loadings, and the test results

were compared with theoretical values. Two main conclusions were

made:

a. "The correction of longitudinal stresses in the folded plate

structure due to differential joint displacements is extremely

important."

b. "When proper techniques are employed, plexiglas model studies

can be performed very simply. Results that are comparable to

theoretical predictions have been obtained in these studies."

2. Pierre Chevin, "Study of A Folded Plate Structure"
1

17
The author followed the procedure of Zanoni , testing the same

model for various loading conditions including symmetrical ridge line

loads and unsymmetrical ridge line loads. For each of these cases a

theoretical solution was compared with the test results in order to

Q
check the validity of the theory. Based on the method of Yitshaki

,

the author also tested three kinds of structural supports, middle

columns and a tie placed at the top of the vertical walls. The expe-

rimental results showed good agreement with the theoretical analysis.

3. Scordelis, A. C. and Gerasimenko, P. V., "Strength of Reinforced

Concrete Folded Plate Model" .

Two similar reinforced concrete models were designed, model A based

on the elasticity method and model B based on elementary beam theory.
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Both models had the same over-all plan dimensions (30" by 20") and

used 14 - gage (0.08 - in. diameter) annealed "tie wire" as steel

reinforcement (Fig. 3). The models were loaded at each interior

joint with eight equal concentrated loads to approximate a distri-

buted line load. It was concluded that the models exhibited similar

behavior. Ultimate failure occurred at four and one-half times the

full design load in both cases and was caused by diagonal tension

cracking near the supports and cracking in the supporting diaphragms,

which was produced by warping of the diaphragms due to the longitudinal

strains in the folded plate elements. It was also concluded that

folded plate theory can be used to predict the behavior in the working

load range.

4. Chacos, G. P. and Sealzi, J. B. , "Ultimate strength of a Folded

20
Plate Structure"

i

A model was tested to determine the behavior of folded plate

structures under different loading. This folded plate model had an

irregular cross section and was tested as a simple beam to verify

the ultimate moment capacity by the rectangular stress - block method.

The ultimate collapse load of the model agreed with the theoretical

load within 1.8 percent.
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III. EXPERIMENTAL PROGRAM

A. Description of Model and Test Setup

Fig. 4 shoxtfs the dimensions and cross-section of the folded-plate

model, which was based on the structure discussed in a recent report by

the Task Committee on Folded-plate Construction . The scale factor was

1/32. The model consisted of six plates: plate 1 and 6 with a thickness

of 3/16" (0.1875") and plates 2, 3, 4, and 5 with a thickness of 1/8"

(0.125"). Plates 2 and 5 form an angle of 30" with the horizontal while

plates 3 and 4 are 10° from the horizontal. The two end diaphragms were

made of the same thickness material as plates 1 and 5, and the entire

system of plates were fastened together at their joints with a solvent

cement

.

The model material was plexiglas II U.V.A., clear plates. Many

6 21model tests have been performed on aluminum models '
, with very gratifying

results. However, plexiglas has also been used recently with very good

results. The advantage of plexiglas over aluminum is that the strains

will be considerably higher for the same stress condition, permitting the

use of much smaller loads with a plexiglas model. Some of the disadvantages

of working with plexiglas are the variation of the Modulus of Elasticity

_.fxom sheet to sheet and the difficulty in obtaining reliable strain gage

data from plexiglas specimens.

The problem of the variation of Modulus of Elasticity can best be coped

with by conducting tensile coupon tests on coupons cut from each plate. A

technique for obtaining reliable strain gage readings on the plexiglas

model is discussed later.

As for the test setup, there were only four points of contact for the
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reactions. Two small indentations was made in each end diaphragm so that

small steel balls could be used as point supports as shown in Fig. 4.

With these supports the ends of the model could rotate freely. A model

as light in weight as this one must be carefully loaded so that it will

not move laterally, or come off the point supports.

As shown in Fig. 5, the folded plate model was instrumented with

16 SR-4 electrical resistance strain gages to record longitudinal strains

at selected points on the plates. These were arranged in pairs with one

gage on the top face of the plate and another gage at the same point on

the bottom face, that is two gages at the same point on the different

faces to measure the longitudinal strains.

Fig. 6 shows the location of the strain gages. Gages 1, 2, 3, 4, 5,

6, 7, and 8 were placed on the top of the model, while gages 1', 2', 3',

4', 5', 6', 7', and 8' were placed on the bottom face of the model. Gages

f

1, 2, 3, 4, l 1

, 2', 3', and 4', were placed at midspan and gages 5, 6, 7, 8,

5', 6 f

, 7', and 8' were placed 2" from the end diaphragm.

The model was loaded at each interior joint by eight equal concentrated

loads to approximate a distributed line load. Loads were applied through

a "Loading Tree" system as shown in Fig. 7. To transmit the loads to the

structure, nylon threads were tied to the load points on the model.

The "Loading Tree" served to divide the applied load into eight equal

parts to simulate a line loading. To load the model, therefore, one

concentrated load was applied at one end of the loading tree system, and

the load was transmitted to the structure in terms of line loading over

the length of the model. For static loading of models such as this, this

system is extremely practical and the loading can be controlled quite
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accurately.

The dead weight of the loading system and the model itself existed

prior to taking the zero readings

.

B. Determination of Material Properties.

Prior to testing the folded plate model, some preliminary tests were

made to determine various characteristics of the plexiglas and also to

verify the behaviour of the strain gages. The physical properties obtained

from these tests included the Modulus of Elasticity, the creep character-

istics and Poisson's ratio.

The general dimensions of the tensile coupons are shown in Fig. 8.

One coupon xjas 1/8" thick, and the other was 3/16" thick. Two SR-4, A-75

strain gages were mounted on each tensile coupon, one to measure longi-

tudinal strain, and the other to measure transverse strain. In order to

test under constant loading, a small hole was drilled at each end of each

i

coupon on the center line. After tying a nylon loop at each hole, constant

loads were applied using weights.

1. Tests of the creep characteristics of the material.

The first series of tests were intended to investigate the creep

characteristics of the material. Since this involves a time factor,

a constant load was applied and readings taken in 10-second intervals

up to 1 minute, and thereafter in one minute intervals until the strain

readings were sufficiently stable. The total testing time for these

tests was 10 minutes.

The coupon tests were conducted at different load levels. For the

1/8" x 1/2" cross-section a stress level of 320 psi was used, that is,

the applied load was 20 lbs. The relationship between strain and time
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for this test is shown in Fig. 9, from which it can be seen that after

five minutes the strain reading were sufficiently stable.

Similarly, the coupon with a 3/16" x 1/2" cross section was

loaded with 30 lbs, resulting in the same stress level (320 psi).

Similar results were obtained from this test.

From the two creep tests, it is obvious that strain is a function

of time, and that strain readings after five minutes of loading

were sufficiently stable. This means that the tensile coupons had

negligible creep effects after applying a constant load for five minutes,

2. Tests to determine the Modulus of Elasticity and Poisson's ratio.

From the creep tests it was known that the tensile coupons had

negligible creep effects after five minutes of loading. The following

tests were based on this experience, in that strain readings were taken

exactly five minutes after a load had been applied.

When electrical resistance strain gages are used on plexiglas, the

heat generated in the gage due to current passing through it can affect

the behavior of the plexiglas in the immediate vicinity of the gage.

To overcome this problem, a procedure was developed whereby current

was applied to each gage for exactly 20 seconds before reading the

strain. This period was sufficient to permit the strain indicator to

stabilize. Since the difference between the strain at zero load and

that at some applied load was the data needed from each test, the use

of the same 20 second gage warmup period for all readings resulted in

the elimination of the local heating effect when strain differences

were calculated. The effectiveness of this procedure was established

when identical strain differences were obtained when a load test was

repeated.
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Using the procedures described above, load was applied in incre-

ments of 5 lb. up to 30 lb. for the coupon having the 1/8" x 1/2"

cross section, and in increments of 5 lb up to 25 lb for the coupon

with the 3/16" x 1/2" cross section. After each loading increment the

applied load was removed, and the coupon was allowed to recover. The

procedure was then repeated with succeeding load increments.

For the first coupon test, Fig. 10 shows the relationship between

load and strain, while in Fig. 11 the relationship between transverse

strain and longitudinal strain is presented. The slope of the curve of

Fig. 10 divided by the cross section of the coupon is the Modulus of

ksi
Elasticity. From this test a value of E = 479 was obtained. The slope

of the curve of Fig. 11 is Poisson's ratio (y = 0.36).

From the test on the coupon with the 3/16" x 1/2" cross section the

ksi
Modulus of Elasticity was 476 and Poisson's ratio was 0.39.

The values of Modulus of Elasticity and Poisson's ratio used in all

subsequent calculations for the folded plate model were based on the

average of the values obtained from the two coupon tests.

From the tensile coupon tests, it was concluded that:

a. The strain readings would become sufficiently stable

after five minutes of constant loading.

h. A constant gage warmup period of 20 seconds could be

used, thereby eliminating the local heating effect.

ksi
c. The Modulus of Elasticity for the plexiglas is 477.5

d. Poisson's ratio is 0.375.

C. Test of Folded Plate Model.

With regard to the creep problem, the procedure for testing the

folded plate model was the same as that used for the tensile coupon
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tests, that is, a time interval of five minutes was permitted to

elapse between application of a load increment and reading the strain

gages. Also, the same 20 second gage warmup period was used to

eliminate the local heating effect, so about 10 minutes was required

for each load increment including reading the 16 strain gages.

The loading was accomplished by means of the "Loading Tree"

system previously described (Fig. 7), and applied loads of 10 lb.,

20 lb., 30 lb., and 50 lb. were included in each loading case. The

dead weight of the Loading Tree system and the model itself existed

prior to the readings taken to be at zero load. In order to check

the recovery of the model, each time a load increment was applied

and strain reading recorded the load was returned to zero.

The test results are divided into three parts according to the

loading locations (Fig. 12); line loading at Line 2, line loading at

f

Line 3, and line loading at Line 4.

The results of the test with line loading at Line 2 are presented

in Figs. 13 and 14, which consists of eight plots of applied load

versus measured strain corresponding to the eight gage locations on

the model (Fig. 6). The measured strain values plotted in Figs. 13

and 14 are the averages of the reading of the two gages at each point.

For example; at gage point 1, the measured strains from gage 1 and 1'

were 30x10 in/in, and 60x10 in/in, respectively, due to an applied

load of 10 lbs. The average of these values (45 x 10 in/in) is

plotted as point A in Fig. 13. By taking the average of the two gage

readings at each gage point, plate bending strains are eliminated and

the average longitudinal, in-plane strains are obtained for later
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comparison with values computed based on the various folded plate

theories

.

Similar results for line loading at Lines 3 and 4 are shown in

Fig. 15 to 18, respectively. For each gage point and loading position,

a straight line has been drawn through the plotted points. It is

evident from Fig. 13 to 18 that the model behavior was linear and

elastic. The data also indicates that the creep and local heating

problems previously discussed were successfully overcome.

From the linear load-strain relationships of Figs. 13 to 18 values

of the "unit strain" for each gage point and line loading can be

determined. "Unit strain" is defined as the strain caused by a unit

line load and is the inverse of the slope of a load-strain curve.

For example; at gage point 1, for loading at Line 2 (see Fig. 13),

— fi

the inverse of the slope is plus 5.38 x 10 in/in/lb. Similar results
t

for other gage points and for loading at Lines 3 and 4 are shown in

Figs. 13 to 18.

The unit strain values obtained from the symmetrical loading case

(loading on Line 3) can be checked by the use of symmetry as shown in

Table 1. For example, the unit strain at gage point 1 should be the

same as that for gage point 4. The average of these two unit strain

values is given in column 4 at Table 1, while the percent deviation

is listed in column 5, (0.8%). Similar results are presented in the

table for the other gage points, with a maximum value of the percent

deviation equal to 8.1%. Using the average unit strain values and

the value of E determined from the coupon tests, the stress due to

a line load of 50 lb. has been calculated and listed in the last column
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of Table 1 for later comparison with, theoretical calculations.

The unit strain values for unsymmetrical loadings (loading on

Lines 2 and 4) can be checked against one another by the use of

Maxwell's Law, which can be stated: the unit strain at point m due

to a line loading at point n is equal to the unit strain at point n

due to a line loading at point m. The check on the unit strain

values for unsymmetrical loading is presented in Table 2 in a manner

similar to Table 1. The maximum deviations from the average unit

strain is 9.0%. Stresses due to a line load of 50 lb. are listed in

the last column of Table 2 for later comparison with analytical

results.

The percent deviations in Table 1 and 2 definitely show that the

model gave consistent results. These values are also an indication

that the test set up was stable and that the model recovered from the

-various loading conditions extremely well.
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IX. COMPARISON OF TEST RESULTS WITH THEORETICAL PREDICTION

The longitudinal plate bending stresses in a plate which is a com-

ponent of a folded plate structure are shown in Fig. 19a. At ridges n-1

and n the corresponding longitudinal stresses are a
1

and a respectively.

From the theoretical calculations using the various methods, the longitu-

dinal bending stresses were calculated for each ridge (a , and a for

plate n) . The stress distribution in a plate between the two ridges is

linear, therefore, if the ridge stresses are known the stresses at any

point in the plate between ridges can be calculated very simply. In the

folded plate model tests of this investigation the strain gages were

located at points between the ridges CFig. 6). There were two strain gages

at each point, one on the top face of the plate, the other on the bottom

face. The experimental value of the stress at the center of the plate at

a gage point was calculated as follows: if a is the stress measured by

the gage on the top face of the plate and a„ is the stress measured by

the gage on the bottom face of the plate, then the stress at the center

a
l + °2

of the plate is the average of these two stresses ( 7. ) , as shown in

Fig. 19b.

Fig. 19b also shows the technique used to compare theoretical and

experimental values of the longitudinal stresses. The stresses a and a

represent the values calculated by theoretical methods at the gage points,

while the stresses o ? and a' represent the values determined from the
a b

strain gage measurements. Then a - a and a, - a, are the differences
a a b b

between the theoretical and experimental values.

The longitudinal stresses at each ridge of the model as determined

by the various theoretical methods are listed in Tables 3 and 4. The
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theoretical stresses are compared with measured values for each gage

point in Tables 5 and 6. In these tables are listed in differences

between the theoretical and experimental stresses for each analysis

method as well as the percent difference between the two values. A

discussion of the various analysis methods and their comparison with the

experimental results follows.

A. Beam method.

According to the assumptions of the beam method, twist is not per-

[

mitted in the structure, that is, the resultant of the external loads
i

should pass through the shear center of the structure. In order to
I

satisfy this assumption, only the experimental results for a symmetrical

load on the structure (line load at Line 3), can be compared with
i

the predictions based on the beam theory. Fig. 20 shows this comparison,

with solid lines representing the stresses according to beam theory
r

l

and the circled points representing the test results. The theoretical
I

predictions are very bad for both the gage points near the center

of the structure where the load is applied and near the ends. As

Table 5 shows, the percent difference between the predicted and experi-

mental stresses ranges from + 67.0% (gages 2 and 3) to - 77.4% (gages

1 and 4) at midspan, and from -60.0% (gages 6 and 7) to - 68.6% (gages

5 and 8) at the section 2" from the end.

This result is obtained because the structure does not behave as

a unit according to the ordinary beam theory, that is, the longitudinal

stresses are not proportional to the distance from the centroid of

the entire cross section as they would be in the case of beam action.

The beam method may not even predict the correct sense of the longitudinal
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stresses.

B. Winter and Pei's Method:

Winter and Pei's method can be used for both symmetrical and unsymmet-

rical loads. In the case of symmetrical loads (Fig. 21) the theoretical

predictions have the correct sense near the loaded ridge at the center of the

structure, but at the other gage points, near the edges, they have opposite

signs from the experimental results. Table 5 shows that the percent

difference between the stresses varies from + 184.1% (gages 2 and 3) to

- 172.2% (gages 1 and 4) at midspan, and from + 235.0% (gages 6 and 7) to

- 201.1% (gages 5 and 8) 2" from the end. In the case of unsymmetrical

loads (Fig. 22) Winter and Pei's method does not result in as good correl-

ation either, with stresses of opposite signs being obtained at several

points. As Table 6 shows, the percent differences are + 543.0% (gage 1)

and - 432.1% (gage 2) at the midspan, and + 1090% (gage 7) and - 204.0%

(gage 6) 2" from the end.

The lack of agreement between the predictions based on Winter and

Pei's method and the test results can be attributed to the fact that, in

this method of analysis, the effect of relative joint displacements are

neglected.

C. Methods Considering Effect of Joint Displacements

When relative joint displacements are considered in the theoretical

calculations, for example, calculation based on Gesund's method (Figs.

23 and 24), the slope deflection method (Figs. 25 and 26), the ASCE

recommended method (Figs. 27 and 28), and the energy method (Figs. 29 and

30), much better agreement between experimental and theoretical values

is obtained than is the case using methods which neglect relative joint
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displacements. It is obvious from the figures that under both symmetrical

and unsymmetrical loadings, these methods predict the correct sense in

every case and provide a fairly reasonable estimate of the stress values.

Because this plexiglas model is very flexible, the percent differences

between the theoretical and experimental stresses shown in Table 5 and 6

are somewhat misleading in some cases where the predicted stresses are

small and small differences in stress magnitudes result in large values of

percent differences.

All of the four analytical methods which account for relative joint

displacements provided a fairly good estimate of the experimental results

for both symmetrical and unsymmetrical loads. It is obvious that these

results emphasize the importance of including the effects of relative joint

displacements in the analysis of folded plate structures.
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V. CONCLUSIONS

On the basis of the study reported herein, the following conclusions

may be advanced regarding the behavior of plexiglas folded plate models

and the methods of analysis for folded plate structures:

1. Plexiglas can be used as a model material with reasonable

results. The advantage of plexiglas over metals is evident in that

the strains will be considerably higher for plexiglas than for

metals under the same stress condition, permitting the use of much

smaller loads on the plexiglas.

2. When proper precautions are taken, the creep and strain gage

warm-up problems can be overcome in testing plexiglas models,

resulting in consistent and reproducable data.

3. The stresses calculated by approximate methods (the beam method

and Winter and Pei's method) which neglect relative joint displace-

ments, are significantly in error with experimental results with

regard to both magnitude and distribution across the cross section.

4. The Gesund's method, the slope deflection method, the ASCE

recommended method, and the energy method are alternate methods to

each other; although the analytic procedures and equations differ,

the results are practically equivalent.

5. The stresses calculated by the methods which consider relative

joint displacements, for example, the Gesund's method, the slope

deflection method, the ASCE recommended method, and the energy

method, agree fairly well with experimental results.
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VI. SUGGESTIONS FOR FUTURE RESEARCH

The following are recommended as subjects for future research:

1. Additional research is needed to compare the theoretical results

with experimental results using different type of folded plate

structures and different end conditions.

2. Because most folded plate structures are made of reinforced

concrete, research should also be conducted to investigate the

behavior of reinforced concrete folded plate models, first in the

design load range, after which ultimate load tests could be

conducted to check the various ultimate strength theories.

3. A lateral load study, and a torsion study could be performed in

future research.

A. The edge beams of the folded plate could be subjected to

prestress, with the prestressing forces treated as external loads

and the stresses produced by them superimposed on those caused by the

loads on the structure.
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Note: p is normally a distributed load and is

Indicated by a single arrow only for convenience,

-""'Reaction R
22

Reaction R
12

All forces, loads, rections, moments, and angles
are regarded as positive as shown in (a) and(b).

Fig.l Sign and Loading Convention for Gesund's Method
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Fig. 5 Folded Plate Model
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Fig. 7 Loading Tree System
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(a) Longitudinal Bending Stresses

-k
"T

—̂ Longitudinal stress at the
gage point calculated by
theoretical method

(Jn-1

Stress 01 measured by
upper strain gage

tress (J2 treasured by
lower strain gage
Average stresses at the
center point

Experimental value
^Sb^n7

Difference between experimental and
theoretical values
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Fig. 11 Comparison of Longitudinal Plate Bending Stre;sses
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ABSTRACT

A study of a simple span, plexiglas, folded plate model consisting

of six plates is presented. The purpose of the study was twofold:

(1) To verify theories used in the present day analysis of folded

plate systems by means of a structural model; and

(2) To investigate testing techniques for three-dimensional

structural models fabricated from plexiglas.

Preliminary tests conducted to determine the creep characteristics,

Poisson's ratio and the Modulus of Elasticity of the plexiglas, and also

to verify the behavior of strain gages are described in detail. The

various experimental setups are also described and illustrated.

Analytical values of longitudinal, plate bending stresses obtained

using the beam method, Winter and Pei's method, Gesund's method, the slope

i

deflection method, the ASCE recommended method, and the energy method

are compared with experimental results.

It is concluded that the analysis methods which neglect relative

joint displacements yield stress values which are significantly in error

with respect to magnitude and distribution across the cross section,

while methods which consider relative joint displacements, although the

analytic procedures are quite different, yield results which are practically

equivalent and which result in good agreement with the experimental values

.

It is also concluded that, when proper precautions are taken, plexi-

glas can be used as a model material with consistent results and the

model tests can be performed very simply.


