by

VASANT MADHAVRAO PANDAV

1
B. E., Marathwada University, Aurangabad, India, 1964

A MASTER IS THESIS
submitted in partial fulfillment of the
requirements for the degree

MASTER OF SCIENCE

Department of Mechanical Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas
1967
Approved by:

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION 1
II. THE PROBLEM 2
Nomenclature 2
Statement of the Problem 5
The Technique. 6
Convergence of the Iteration. 8
III. COMPUTERIZATION 11
Standardization of the Formulation 21
Boundary Conditions 12
Subroutines 15
IV. ILLUSTRATION PROBLEMS 17
A Beam on Elastic Foundation 17
Bending of a Strut 20
Vibrations of a Beam Fixed at One End and Hinged at Another. 23
Transverse Vibrations of a Tapered Beam of Rectangular Cross-Section. 26
Longitudinal Vibrations of a Cantilever of Varying Cross-Section
37
34
37
34
Intermediate Eigenvalues 34
V. THE FINAL PROBLEM 38
VI. CONCLUSION AND DISCUSSION 41
SELECTED BIBLIOGRAPHY 44
APPENDICES
A. Computer Programs for Illustrative Problems. 46
B. Main Program and General Subroutines 67
C. The Final Problem - Brief Description and Computer Program 80
ACKNOWLEDGEMENTS 96
VITA 97

LIST OF TABLES

Table Page
I. Results: A Beam on Elastic Foundations 19
II. Results: Bending of a Strut 22
III. Results: Beam Vibrations - First Mode 25
IV. Results: Vibrations of a Tapered Beam. 29
V. Results: Tapered Beam Problem With $\alpha=1$ i.e. a Uniform Beam. 30
VI. Results: Longitudinal Vibrations of a Cantilever. 33
VII. Results: Beam Vibrations - Second Mode 37
VIII. Results: Heat Transfer to an Incompressible Fluid in Laminar Motion 40

CHAPMER I

INTRODUCTION

When a practical problem in science or technology permits mathematical formulation, the chances are rather good that it leads to one or more differential equations. This is certainly true of the vast catagory of problems associated with beams and columns, heat transfer and fluid flow, elasticity and electricity, etc.

Many of these problems which can be neatly formulated as differential equations can go no further for lack of solutions. At this point one discovers how few, relatively speaking, are the equations that have solutions in closed form.

Faced with this situation, various numerical methods have been devised that squeeze the desired information out of the differential equation directly. However, most of these methods yield a solution over a limited range of the domain, and this is in the form of a table, giving values of the dependent variable and sometimes its few derivatives for specific values of the independent variable.

Many times this defines the solution well enough, particularly if the solution has been tabulated with a sufficiently small increment of the independent variable. But however fine the increment be, the solution does not compare with an analytical
one, in that it cannot be handled analytically - put in equations, differentiated or integrated as desired, and so on.

Iterative methods, improving an assumed analytical solution with each step, have been suggested, and successfully applied to problems of initial-value type and also to those boundary value problems for which Green's function is known. Iteration was first applied to a technical eigenvalue problem in 1898 by L. Vianello [21]* in a study of buckling problems. The process was applied by A. Stodola [18] in 1904 to the problem of critical speeds of rotating shafts. The theory of the method had already been presented by H. A. Schwarz [16] in 1885 and been developed by E. Picard [13]. It is interesting to note that all these early works dealt with a particular class of eigenvalue problems. No effort was ever made to apply the technique to equilibrium problems and not many instances could be cited when an attempt was made to develop this technique further to apply to a wider class of problems.

It has been attempted in the present work to develop a technique for obtaining an analytical solution to boundary value problems governed by quasi-linear differential equations. The solution was intended to be a power series in the independent variable. The treatment here was limited to problems in one dimension, which include the initial value problems as a subclass. However, the author has a feeling that with enough modifications, the technique could be extended to problems in more than one dimension.
*Numbers in brackets refer to references in Bibliography

CHAPTER II

THE PROBLEM

Nomenclature

English alphabets:
A area of cross-section
b breadth of section
B coefficient matrix in the matrix equation representing inear boundary conditions
B_{i} ordinary differential operator
c_{i} coefficients in the series expansion of the solution function
c column vector of $c_{1}, 1=1,2, \ldots, m$.
d depth of section, $d_{1}, d_{2}--$ end depths
D domain of definition; $d / d x$; coefficient matrix in $D C=F$ (refer p. 13)

E modulus of elasticity
F constant column vector in $D C=F$ (refer p. 13)
G ordinary differential operator
I moment of area of cross-section
K constant column vector in the matrix representation of linear boundary conditions

L length
m order of the governing differential equation
M quasi-linear ordinary differential operator, containing the highest order derivative term
n number of boundary conditions at the left end

N ordinary differential operator
x the independent variable
y the dependent variable

Greek alphabets:
a ratio of end depths $=\alpha_{2} / \alpha_{1} ; \lambda^{1 / 4}$
в $\lambda^{1 / 4} / L$
$\gamma(\cos \alpha-\cosh \alpha) /(\sinh \alpha-\sin \alpha)$
λ eigenvalue, in the non-dimensional formulation
p density
[summation sign
is angular frequency

Subscripts and superscripts:
Numberical subscript to y or λ represent that particular mode. Roman superscript to y represents differentiation.
Numberical or alphabetic superscript in parentheses represent a particular iteration.

Statement of the Problem

A boundary value problem, in general, may be stated as

$$
\begin{array}{ll}
M[y]=\lambda N[y] & \text { in } D \tag{II-I}\\
B_{1}[y]=0 & 1=1,2, \ldots, m
\end{array}
$$

on the boundary of D.
Here D is the domain of definition of the problem and, in case of two-point boundary value problems, is a one-dimensional continum. M and N are ordinary differential operators, M being quasi-linear in nature. The order of the differential equation m is the same as that of the operator M and is larger than the order of the operator N.

The presence or absence of λ, an undetermined parameter, determines whether the problem belongs to the eigenvalue class or equilibrium class. In the case of eigenvalue problems the boundary conditions are essentially homogeneous. The formulation is satisfied by an infinity of values of λ and the corresponding eigenfunctions y.

In the present work a solution of the formulation was sought in the shape of y expressed as power series in the independent variable x. In case of eigenvalue problems, the first few eigenvalues and the corresponding mode shapes constituted what was expected as solution.

The Technique

The governing differential equation of the formulation, being quasi-linear in nature, was very easily solved for the highest derivative of y.

$$
\begin{align*}
D^{m} y & =G[y] \\
\text { or } y & =D^{-m}(G[y])+\sum_{i=1}^{m} c_{i} x^{1-1} \tag{II-2}
\end{align*}
$$

where $D=d / d x$ and the negative powers indicate integration. The c_{i}, the constants of integration, were determined by the use of the m boundary conditions -

$$
B_{i}[y]=0 \quad 1=1,2, \ldots, m
$$

An iterative process was then set up

$$
\begin{align*}
& y^{(r+1)}=D^{-m}(G[y(r)])+\sum_{i=1}^{m} c_{i}(r+1) x^{i-1} \\
& B_{i}[y(r+1)]=0 \tag{II-3}\\
& r=1,2, \ldots
\end{align*}
$$

To start with, a polynomial was selected as an initial guess for y i.e. $y^{(0)}$. Any polynomial would serve the purpose but it is advisable to select one that satisfies all the boundary conditions. The proper choice of $\mathrm{y}^{(0)}$ would certainly accelerate the convergence of the process.

This was enough to proceed, if the parameter λ did not enter the formulation. Otherwise, it sometimes necessiated a guess for
λ (in addition to that of solution function) at every step of iteration. However, this was easily furnished by Raleigh's quotient of the trial function.

It was observed that the iteration process here built up a power series approxitation to the true solution, each iteration adding substantially a few terms to the expansion (usually not less than the order of the differential equation, m.). If the process was to converge (as it did and could be expected to in most of the well behaved cases) after enough iterations the first few terms would quit changing. The convergence could be observed by comparing the successive iterates.

In eigenvalue problems the process converged to the mode corresponding to the smallest eigenvalue. The orthogonality condition was used to extract the higher modes.

Convergence of the Iteration

For initial-value problems, the scheme is the same as the extension of Picard's method for higher order equations. The proof has been exhibited in the references [15], [12]. Levy and Baggott [8] give a proof of convergence for systems with second order differential equations of both initial-value and equilibrium type. A general proof to cover eigenvalue problems cannot be given. However, a proof for convergence of an iteration procecure in general is given by Collatz ((2], pp. 36-48). Also, the convergence of an iteration procedure, employing the inverse of the operator M, is suggested in reference ([3], p. 303). When M is simply D^{m}, the method presented in the thesis coincides with the method mentioned above. The proof is given below:

The eigenvalue problem

$$
\begin{align*}
M[y] & =\lambda N[y] \\
B_{i}[y] & =0, \quad 1=1,2, \ldots, m \tag{II-4}
\end{align*}
$$

can be written as

$$
y=\lambda G[y]
$$

where $G=M^{-1} N$.

Assume that the expansion theorem holds, and also that $\lambda_{1}<\lambda_{2} \leq \lambda_{3} \leq \lambda_{4} \leq \cdots$ Any admissible function $y^{(0)}$ can then be expressed as a linear combination of the individual modes y_{1}.

$$
\mathrm{y}^{(0)}=\mathrm{c}_{1} \mathrm{y}_{1}+\sum_{1=2}^{\infty} c_{1} \mathrm{y}_{1}
$$

Starting from an arbitrary admissible function $y^{(0)}$, an iteration process is set up according to the recurrence relation

$$
\begin{aligned}
y^{(n+1)} & =G[y(n)] \\
B_{1}[y(n+1)] & =0 \\
n & =1,2,3, \ldots \ldots
\end{aligned}
$$

For an eigenfunction y_{i}

$$
\begin{aligned}
& G\left[y_{i}\right]=y_{i} / \lambda_{i} . \\
& y^{(1)}=G\left[y^{(0)}\right] \\
& =G\left[c_{i} y_{i}+\sum_{i=2}^{\infty} c_{i} y_{i}\right] \\
& =\frac{c_{1}}{\lambda_{1}} y_{1}+\sum_{i=2^{2}}^{\infty} \frac{c_{i}}{\lambda_{1}} y_{i} \\
& =\frac{I}{\lambda_{1}}\left(c_{1} y_{1}+\sum_{i=2^{\infty}}^{\infty} \frac{\lambda_{1}}{\lambda_{i}} c_{i} y_{i}\right) \\
& y^{(2)}=G\left[y^{(1)}\right] \\
& =G\left[\frac{1}{\lambda_{1}}\left(c_{1} y_{1}+\sum_{i=2^{2}}^{\infty} \frac{\lambda_{1}}{\lambda_{i}} c_{i} y_{i}\right)\right] \\
& =\frac{1}{\lambda_{1}}\left(\frac{c_{1}}{\lambda_{1}} y_{1}+\sum_{i=2}^{\infty} \frac{\lambda_{1}}{\lambda_{i}} \frac{c_{1}}{\lambda_{i}} y_{i}\right) \\
& =\frac{1}{\lambda_{1}{ }^{2}}\left(c_{1} y_{1}+\sum_{i=2}^{\infty}\left(\frac{M}{\lambda_{i}}\right)^{2} c_{i} y_{i}\right)
\end{aligned}
$$

Continuing in the same manner,

$$
y^{(n)}=\frac{1}{\lambda_{1}}\left(c_{1} y_{i}+\sum_{i=2}^{\infty}\left(\frac{\lambda_{1}}{\lambda_{i}}\right)^{n} c_{i} y_{1}\right)
$$

As n gets larger, the quotient $\left(\frac{\lambda_{i}}{\lambda_{i}}\right)^{n}$ tends to zero. So that,

$$
\begin{equation*}
y^{(n)}=\frac{1}{\lambda_{1}^{n}} c_{1} y_{1} \tag{II-5}
\end{equation*}
$$

and $\lambda_{1}=\frac{y^{(n)}}{y^{(n+1)}}$.

Thus the iteration converges to the eigenfunction corresponding to the smallest eigenvalue. In general, the process will converge to the eigenfunction corresponding to the first non-zero c_{1}, if carried out exactly. While working approximately, however, small components of y_{1} will be inevitably introduced, and the process will finally converge to the eigenfunction corresponding to the smallest eigenvalue independent of the choice of $y^{(0)}$.

CHAPTER III

COMPUTERIZATION

It is difficult to estimate in advance how much computation will be required to obtain a solution by iteration. The amount of computation per cycle increases with the number of cycles. The number of cycles required depends on the accuracy desired and on the particular system to be solved. So that, at some stage, hand computation goes out of the question and recourse has to be taken to some high-speed computing machine. The problems illustrated in the present work were programmed for IBM 1410/7010 Operating System (1410-PR-155) FORTRAN-1410-F0-970.

Standardization

For adapting the technique to digital computers, standardization of the formulation was done. First the formulation was reduced to non-dimensional form. One of the two boundary points was made to coincide with the zero of the independent variable axis (x-axis), and the scale of the variable x was adjusted so that the separation between the boundaries was unity, unless otherwise necessary.

Boundary Conditions

Each iteration involved a m-fold integration and hence gave rise to m constants of integration. These constants were to be determined so as to make the iterate satisfy the boundary conditions. Application of each condition resulted in an algebraic relation in the m constants of integration to be determined. Thus a set of m algebraic equations was obtained. The complexity of these equations naturally depended upon that of the particular boundary conditions. Fortunately for the computer, all the problems used for illustration happened to possess linear boundary conditions. Nevertheless, this was not a limitation to the usefullness of the scheme, but it did reduce the amount of computation required for fixing the m constants. Also, most problems of practical importance have linear boundary conditions.

The most general linear boundary conditions could be represented by the matrix equation

$$
B Y=K
$$

where B is the coefficient matrix, Y is the column matrix with y, $y^{1}, y^{1 i}, y^{1 i 1}, \ldots, y^{(m-1)}$ for its elements, and K is the constant column.

$$
\begin{aligned}
& y=\sum_{i=1}^{N} c_{1} c_{i} x^{i-1} \\
& D^{p} y=\sum_{i=p+1}^{N_{n}} \frac{(1-1)!}{(1-p-1)!} c_{i} x^{1-p-1}
\end{aligned}
$$

By this time all but the first m coefficients c_{i} were known. Hence, at boundary points, where x is specified, y and any of its derivatives were just some linear combination of the $c_{i}(i=1,2,---$, m). Hence, the unknown column Y could be written as

$$
Y=S C+T
$$

where C is the column of undetermined coefficients c_{i}, and S and T were respectively the square and column matrices determined as:

$$
\begin{aligned}
& s_{i j}= \begin{cases}\frac{(j-1)!}{(j-1)!} x^{j-1} & , j \geq 1 \\
0 & , j<1\end{cases} \\
& t_{i}=\sum_{j} \frac{(j-1)!}{(j-1-1)!} x^{j-1-1}
\end{aligned}
$$

After substitution

$$
\begin{align*}
& B(S C+T)=K \\
& B S C=K-B T \\
& \text { and } C=(B S)^{-1}(K-B T) \\
&=D F \\
& \text { Where } \quad D=(B S)^{-1} \tag{III-I}\\
& F=K-B T
\end{align*}
$$

The subroutine DMTRX was programmed to find the D matrix While subroutine BOUND constructed the column vector F. Finally, the constants c_{i} were obtained by matrix multiplication.

The problem of obtaining corresponding matrices for obtaining modes corresponding to higher eigenvalues is discussed later (Intermediate Eigenvalues p. 34)

Subroutines

A variety of operations were expected to be performed repeatedly. Subroutines were programmed so that they could be inserted in any other programs and called for whenever desired. These subroutines along with their limitations are briefly discussed below.

1) Subroutine DIFFER ($C, N C, D, N D, N$): This subroutine was used to differentiate a given polynomial C having $N c$ terms, N times to obtain a polynomial D. Nd, the number of terms in D equaled N c minus N. The only restriction on N was that it should be nonzero positive integer.
ii) Subroutine INTGRA ($C, N C, D, N D, N$): This subroutine gave a polynomial D as the Nth integration of the polynomial C. Nd equalled Nc plus N. N should be a non-zero positive integer. The constants of integrations would be left undetermined. iii) Subroutine SEMUL ($A, N A, B, N B, C, N C$): The polynomials A and B were multiplied to get polynomial C by this subroutine. Na and Nb both should be non-zero positive integers. iv) Subroutine SEDIV ($A, N A, B, N B, C, N C$) : This subroutine was meant to obtain the polynomial C as the division of polynomial A by polynomial B. Nc, the number of terms in C, should be specified and the process is terminated after calculating that many terms. v) Subroutine INVRS (A, N): This subroutine was designed to find the inverse of a square matrix A of order N by Gauss-Sidel reduction process. In case the inverse did not exist the program had instruction to write out 'NO INVERSE'.
vi) Subroutine MATMUL (A, N, B): This subroutine was specifically made to multiply a square matrix A, of order N, by a column matrix B.
vii) Subroutine INTGRD: The aim of the subroutine INTGRD was to construct $G\left[y^{(r)}\right]$ from the rth iterate. The sequence of instructions solely depended upon the operator M (and N , if present) of the specific problem. This subroutine, in case of eigenvalue problems, normalized the iterate every time and also computed the Raleigh's quotient, if necessary.
viii) Subroutine INITL: This subroutine inilized the particular problem.
ix) The main program: This program controlled the order in which all other subroutines were called.
x) Subroutine RESULT: This subroutine writes out what is supposed to be the answer.

CHAPTER IV

ILLUSTRATIVE PROBLEMS

1) Equilibrium Problems:
i) A Beam on Elastic Foundation:- The equilibrium of a flexible beam subjected to a uniformly distributed load, while resting on a continuous elastic foundation was considered. The nondimensional formulation as taken from 'Engineering Analysis' by Crandall ([3], p. 195) was

$$
y^{i v}+y=1 \quad 0 \leq x \leq 1
$$

and $y_{(0)}=y^{\prime \prime}(0)=0$

$$
\begin{equation*}
y_{(1)}=y^{\prime \prime}(1)=0 \tag{IV-I}
\end{equation*}
$$

In problems of this type, which possess unique non-zero solutions, the iteration could be started from an initial guess

$$
\mathrm{y}^{(0)}=0
$$

In the reference the problem was solved in several ways. The solution by Ritz's stationary functional method with trial family ([3], p. 235)

$$
y=c_{1} x(1-x)+c_{2} x^{2}\left(1-x^{2}\right)
$$

was taken for comparison. The solution contained only five terms,
did not satisfy all the boundary conditions, and therefore is not exact. It is compared with the first, third and sixth iterates, in Table I.

Table I

Results: A Beam on Elastic Foundation

Coeff. Number	Comparison Solution	First	Iterations Third	Sixth
1	0.0000000	0.0000000	0.0000000	0.0000000
2	0.041249	0.041667	0.041249	0.041249
3	0.000032	0.000000	0.000000	0.000000
4	-0.082434	-0.083333	-0.082646	-0.082646
5	0.041217	0.041667	0.041667	0.041667
6			-0.000344	-0.000344
7			0.000000	0.000000
8			0.000098	0.000098
9			0.000025	-0.000025
10				

ii) Bending of a Strut:- This problem with its non-dimensional formulation was taken from "The Numerical Treatment of Differential Equations" by Collatz (p. 143). It considered the bending of a strut with varying flexural rigidity, and axial compressive load, by a distributed transverse load. The equations of equilibrium were

$$
\begin{align*}
& y^{i i}+\left(1+\bar{x}^{2}\right) y+1=0 \quad-1 \leq \bar{x} \leq 1 \tag{IV-2}\\
& y_{(-1)}=y_{(+1)}=0 .
\end{align*}
$$

To reduce this formulation to the desired form, a change of variable was made.

$$
\begin{equation*}
2 x=\bar{x}+1 \tag{IV-3}
\end{equation*}
$$

With this

$$
\begin{align*}
& y^{i i}+4\left(1+\left(2-4 x^{2}\right) y\right)=0 \quad 0 \leq x \leq 1 \tag{IV-4}\\
& y_{(0)}=y_{(1)}=0 .
\end{align*}
$$

The first seven terms of the power series solution of the formulation (IV-2) were available in the reference (p. 225). For comparison, the change of variable (IV-3) was made. The solution appears in the second column of Table II.

It may be noted that the initial guess

$$
y^{(0)}=1
$$

did not satisfy any of the boundary conditions. This did not in anyway prevent convergence, since at the very next opportunity the boundary conditions were forced on the iterate. The results are given in Table II.

Table II

Results: Bending of a Strut

Coeff. Number	Comparison Reference Solution	Second	Iterations Seventh	Twelfth
1	0.775×10^{-8}	0.00000	0.00000	0.00000
2	3.47293	4.66667	3.48506	3.47318
3	-1.99998	-6.00000	-2.00000	-2.00000
4	-4.63078	2.66667	-4.66578	-4.63129
5	+5.96531	-1.33333	5.99912	5.96463
6	-2.53309		-2.51655	-2.52592
7	-2.96677		-3.05473	-2.99460
8	4.43757		4.57156	4.51827
9	-1.80832		-1.99472	-1.99803
10	-0.96844		-0.65345	-0.60670
11	2.068897		1.55658	1.51371
12	-1.58388		-0.91128	-0.90380
13	0.731512		0.05860	0.07669
14	-0.21578		0.27760	0.26406
15	0.03083		-0.20495	-0.21599

2) Eigenvalue Problems:
i) Vibrations of a Beam Fixed at One End and Hinged at Another:This problem, being very common, could be found in almost every text on vibration of elastic bodies. The present formulation appeared on page 255 of the reference [20].

$$
\begin{array}{ll}
\bar{y}^{i v}=\beta^{4} \bar{y} & 0 \leq \bar{x} \leq L \\
\bar{y}_{(0)}=\bar{y}_{(0)}^{i}=0 & \\
\bar{y}_{(L)}=\bar{y}_{(L)}^{i i}=0 & \tag{IV-5}
\end{array}
$$

To make it dimensionless, new variables were introduced-

$$
\begin{align*}
& y=\bar{y} / L \tag{IV-6}\\
& x=\bar{x} / L
\end{align*}
$$

The new formulation was

$$
\begin{array}{ll}
y^{i v}=\lambda y & 0 \leq x \leq 1 \\
y_{(0)}=y_{(0)}^{i}=0 & \\
y_{(1)}=y_{(1)}^{i i}=0 . &
\end{array}
$$

$$
\text { and } \lambda=\beta^{4} L^{4} \text {. }
$$

The exact solution to this formulation is

$$
=(\cos \alpha x-\cosh \alpha x)+\gamma(\sin \alpha x-\sinh \alpha x)
$$

$$
\text { where } \begin{aligned}
\alpha & =\lambda^{\frac{1}{4}}=\beta L \\
\gamma & =\frac{\cos \alpha-\cosh \alpha}{\sinh \alpha-\sin \alpha} .
\end{aligned}
$$

The α^{1} s are given by the equation

$$
\operatorname{Tan} \alpha=\operatorname{Tanh} \alpha .
$$

The exact solution corresponding to the smallest eigenvalue was expanded in a power series and the various iterates compared with it. (Table III).

Table III

Results: Beam Vibrations - First Mode

Coeff. Number	Comparison Solution	Tenth	Iterations Fifth	Second
3	1.0000000	1.0000000	1.0000000	1.0000000
4	-1.3098845	-1.3098847	-1.3098874	-1.3157893
7	0.6603361	0.6603360	0.6603518	0.7368418
8	-0.3706989	-0.3706989	-0.3707157	-0.5263155
9	0.0000000	0.0000000		0.1052631
11	0.0311460	0.0311460	0.0311551	
12	-0.0111266	-0.0111266	-0.0111328	
15	+0.0003082	0.0003082	0.0003095	
16	-0.0000807	-0.0000807	-0.0000814	
19	0.0000010	0.0000010	0.0000011	
20	-0.0000002	-0.0000002	-0.0000003	
λ_{1}		0.00420661	0.00420651	0.00376984

All $(4 n+1)^{\text {st }}$ and $(4 n+2)^{\text {nd }}$ coeff. are zeros except if last term of iteration.

Comparison solution is series expansion of

$$
\left(\cos \beta_{1} x-\cosh \beta_{1} x\right)+\frac{\cos \beta_{1}-\cosh \beta_{1}}{\sinh \lambda_{1}-\sin \lambda_{1}}\left(\sin \beta_{1} x-\sinh \beta_{1} x\right)
$$

with $\beta_{1}=3.9266023=\lambda_{1} \frac{3 / 4}{4}$, the eigenvalue obtained from the tenth iteration.
11) Transverse Vibrations of a Tapered Beam of Rectangular Crosssection, Simply Supported:- This problem was studied by the author as an assignment for the course 'Machine Vibrations II'. The derivation of the formulation follows:

In addition to the usual assumption of small deflections, it was assumed that the taper is very small: so that the differential equation of motion can be approximated by that for a uniform beam (see formulation (IV-5)).

$$
\bar{y}^{i v}=\beta^{4} \bar{y} \quad 0 \leq \bar{x} \leq L
$$

with end conditions

$$
\begin{aligned}
& \overline{\mathrm{y}}_{(0)}=\overline{\mathrm{y}}_{(0)}^{\prime \prime}=0 \\
& \overline{\mathrm{y}}_{(L)}=\overline{\mathrm{y}}_{(L)}^{\prime \prime}=0 .
\end{aligned}
$$

Only, the term $\beta^{4}=\frac{\rho A}{E I} \omega^{2}([20]$, p. 255) is no longer constant since A and I are variable for the problem considered here, b, width of the section was assumed to be uniform and the depth was assumed to vary linearly with \bar{x}.

$$
\begin{aligned}
d_{(x)} & =a_{1}+\left(d_{2}-d_{1}\right) \frac{\bar{x}}{\bar{L}} \\
& =d_{1}\left[1+(\alpha-1) \frac{\bar{x}}{L}\right]
\end{aligned}
$$

where d_{1} and d_{2} are depths at left and right ends and $\alpha=$ d_{2} / d_{1}.

$$
\begin{aligned}
\frac{A}{I}(x) & =\frac{b d_{(2)}}{b d_{(x)}^{3} / 12} \\
& =\frac{12}{d_{1}^{2}\left[1+(\alpha-1) \frac{\bar{x}}{L}\right]^{2}} \\
\beta^{4} & =\frac{12 \rho \omega^{2}}{E d_{1}^{2}} \frac{1}{1+(\alpha-1) \frac{x^{2}}{L}}
\end{aligned}
$$

With this the differential equation becomes

$$
1+(\alpha-1) \frac{\bar{x}^{2}}{}{ }^{2} \bar{y}^{i v}=\frac{12 \rho \omega^{2}}{E d_{1}^{2}} \bar{y}
$$

With the change of variable (IV-6)

$$
\begin{array}{ll}
{[1+(\alpha-1) x] y^{i v}=\lambda y} & 0 \leq x \leq 1 \\
y_{(0)}=y_{(0)}^{\prime \prime}=0 \tag{IV-8}\\
y_{(L)}=y_{(L)}^{\prime \prime}=0 .
\end{array}
$$

where $\lambda=\frac{12 \rho \omega^{2}}{\mathrm{Ed}_{1}{ }^{2}}$.

The finite difference method with ten intervals was used to solve the problem. For various values of α, the modes corresponding to the smallest eigenvalues were determined. These solutions formed the basis for comparison for the answers given by the present technique.

Good agreement was found for solutions with values of $\alpha=$ 1, 1.1,---,1.9. But for $\alpha=2$ the process apparently converged to a solution which did not agree with that obtained by the finite difference method. An investigation into the matter revealed that the reason was in the divergence of the power series expansion of $1 /(1+x)^{2}$. Forming this series was an important step in constructing the integrand at each iteration. As might be expected the error was corrected by turning the beam about its centre. The value of α was now $1 / 2$ and the expansion of $1 /(1-0.5 x)^{2}$ converges rapidly enough. The various solutions are listed in Table IV, along with the solutions by the finite difference method.

It was expected that the analytical solution would be more accurate, since the difference method used only ten intervals, and inversion of a matrix of order nine was involved. This was easily verified for $\alpha=1$, (see Table V) that is a uniform beam. For this case the mathematically exact solution was known. It was found that the answers from the difference method were a bit too low. There was no way to compare the accuracies of the two methods in case of other values of α. But one thing was certain, that the same trend (the solutions by the present technique being slightly larger than those by the difference method) was followed throughout.

Table IV

Results: Vibrations of Tapered Beam

Dia Ratio α	$\lambda_{l f}$ Difference method Comparison Solution	$\lambda_{1 p}$ Polynomial exp.	$\lambda_{1 p}-\lambda_{1 f}$ $\lambda_{4 p}$ 100
1.0	3.1280996	3.1415925	0.41039377
1.1	3.2051857	3.2183947	0.41042200
1.2	3.2785025	3.2920185	0.41056877
1.3	3.3490291	3.3628388	0.41065602
1.4	3.4170429	3.4311626	0.41151387
1.5	3.4828436	3.4972445	0.41177847
1.6	3.5466312	3.5612992	0.41187216
1.7	3.6085762	3.6235085	0.41188344
1.8	3.6688213	3.7123093	0.39872854
1.9	3.7275184	3.8005053	0.40969377
2.0	3.7847778		0.41382655

*This value was obtained by turning the beam about its center and working the problem with $\alpha=0.5$.

Table V

Results: Tapered Beam Problem with
$\alpha=1$ i.e. a uniform beam.

Coeff.

Exact Solution Comparison Solution
π
1.0000000
-1.6494792
0.8162345
-0.1923374
0.0264380
-0.0023787
$+0.0001509$
-0.0000071
0.00000025

Less than 10^{-8}

Present Solution Tenth Iteration
3.1415925
1.0000000
-1.6449338
$+0.8117423$
-0.1907517
$+0.0261478$
-0.0023460
0.0001484
0.0000070
0.00000025

Less than 10^{-8}

Note:- All odd coefficients in both solutions are zeros.

1ii) Longitudinal Vibrations of a Cantilever of Varying Cross-Section:- This eigenvalue problem was formulated and solved in reference ([2], p. 147). The formulation given was

$$
\begin{array}{cc}
(1+x) y^{11}+y^{1}+\lambda(1+x) y=0 & 0 \leq x \leq 1 \\
y_{(0)}^{1}=y_{(1)}=0 . & \tag{IV-9}
\end{array}
$$

Various numerical methods were applied and close bounds for the smallest eigenvalue were given ($2, \mathrm{p} .236$).

$$
3.218211 \leq \lambda_{1} \leq 3.218532
$$

In order to compare this solution with the solution obtained by the present method, a solution was attempted by another method. The various steps involved were: 1) The first m terms and the eigenvalue were assumed. 2) About 40 more terms in the series expansion were found by using the recurrence relation obtained from the differential equation. 3) The first m terms were then readjusted to satisfy the boundary conditions. 4) An improved eigenvalue was calculated from the Raleigh's quotient of the polynomial solution. The cycle consisting of steps two to four was repeated a number of times, everytime improving the solution function and the eigenvalue.

However, it was observed that the convergence was very slow in both of these processes. The coefficients in the solution polynomial did not decrease rapidly enough. And even after about 20 iterations the eigenvalue agreed with the correct one, only to the second significant figure. To accelerate the convergence, a variable change was made-

$$
t=2 x
$$

so that the new formulation was

$$
\begin{array}{ll}
4(1+1 / 2 t) \frac{d^{2} y}{d t^{2}}+2 \frac{d y}{d t}+\lambda(1+1 / 2 t) y & =0 \\
& 0 \leq t \leq 2 \\
y^{1}(0)=y(2)=0 .
\end{array}
$$

With this formulation agreement up to five places was obtained in 19 iterations. More iterations deteriorated the solution rather than improving. The reason could be attributed to the fact that only eight place arithemetic was used, and this might perhaps be the closest, the answer can reach the true solution with the number of places used in the arithemetic. The solutions are compared in table VI.

Table VI

Results: Longitudinal Vibrations of a Cantilever

Coeff. Number	Comparison Solution	6 th	$\begin{gathered} \text { Iterations } \\ \text { l3th } \end{gathered}$	19 th
λ	3.2184796	3.2427394	3.2245237	3.2185929
1	1.0000000	1.0000000	1.0000000	1.0000000
2	0.0000000	0.0000000	0.0000000	0.0000000
3	-0.3966840	-0.3826942	-0.3909474	-0.3940352
4	0.0661140	0.0598456	0.0630494	0.0642405
5	0.0018139	0.0023530	0.0020571	0.0019467
6	0.0045958	0.0040887	0.0043546	0.0044540
7	-0.0028505	-0.0024963	-0.0026736	-0.0027404
8	0.0011162	0.0009618	0.0010388	0.0010680
9	-0.0004800	-0.0004102	-0.0004452	-0.0004585
10	0.0002170	0.0001836	0.0002002	0.0002064
11	-0.0000983	-0.0000824	-0.0000903	-0.0000933
12	0.0000445	0.0000373	0.0000410	0.0000425
13	-0.0000206	-0.0000170	-0.0000188	-0.0000195
14	0.0000095	0.0000078	0.0000087	0.0000090
15	-0.0000044	-0.0000033	-0.0000040	-0.0000042
16	0.0000021		0.0000019	0.0000019
17	-0.0000010		-0.0000009	-0.0000009
18	0.0000005		0.0000004	0.0000004
19	-0.0000002		-0.0000002	-0.0000002
20	0.0000001		0.0000001	0.0000001

iv) Intermediate Eigenvalues:- The basic iteration procedure always converged to the smallest eigenvalue and the corresponding eigenfunction. However, the method could be modified to provide other modes by orthogonalising the initial trial with respect to the known modes and continually purifying the iterates.

Thus the iterate was required to satisfy all the boundary conditions and the orthogonality conditions, a total of ($\mathrm{m}+\mathrm{p}$) conditions, where the (p+1)st mode was sought. This necessiated ($m+p$) undetermined terms in the expansion polynomial. Out of these, m terms were supplied by the constants of integration, and the next p terms in the series were used to provide the rest.

The orthogonality condition, in the integral equation form, cannot be directly used. The conversion to algebraic equation form is illustrated here. Even though y_{1} and y_{2}, the first and the second eigenfunctions, are used in the illustration, the process is perfectly general. The condition for y_{1} and y_{2} may be written as

$$
\begin{align*}
& \int_{0}^{1} y_{2} M\left[y_{1}\right] d x=0 \\
& \text { or } \quad \int_{0}^{1} y_{2} N\left[y_{1}\right] d x=0 . \tag{IV-10}
\end{align*}
$$

Both the forms are equivalent and simplicity will govern the choice. For the sake of illustration the later form is chosen.

The first eigenfunction, y_{1}, would be known in polynomial form. The application of the operator N will yield another polynomial

$$
N\left[y_{1}\right]=\left\{b_{1} x^{1-1} .\right.
$$

y_{2} is sought as a power series

$$
y_{2}=\sum_{j} c_{j} x^{1-1}
$$

Substituting in (IV-10)

$$
\begin{aligned}
\int_{0}^{1} y_{2} N\left[y_{1}\right] d x & =\int_{0}^{1}\left(\sum_{j} c_{j} x^{j-1}\right)\left(\sum_{i} b_{i} x^{i-1}\right) d x \\
& =\sum_{j} c_{j} \int_{0}^{1} \sum_{i}\left(b_{i} x^{1+j-2}\right) d x \\
& =\sum_{j} c_{j_{1}} \frac{b_{i}}{1+j-1}\left(x^{1+j-1}\right)_{0}^{1} \\
& =\int_{j} c_{j}\left[\frac{b_{i}}{1+j-1}\right. \\
& =\sum_{j} c_{j} a_{j}=0
\end{aligned}
$$

where $d_{j}=\sum_{i} \frac{b_{i}}{i+j-1}$.

Thus, the conditions the iterate should satisfy, are

$$
\begin{aligned}
& B_{i}[y]=0 \quad 1=1,2, \ldots \ldots, m \\
& { }_{j} c_{j} d_{j}=0 \quad i=1,2, \ldots \ldots, p .
\end{aligned}
$$

The method was applied to find the eigenfunction corresponding to the second lowest eigenvalue of the formulation (IV-I). The result, with the expansion of true solution, is tabulated in Table VII.

Table VII

Results: Beam Vibrations - Second Mode

Coeff. Number	Comparison Solution	Tenth	Iterations Fifth	Second
$1 / \lambda_{2}$		0.00040057	0.00040205	0.000509232
3	1.0000000	1.0000000	1.0000000	1.0000000
4	-2.3561851	-2.3561802	-2.3550217	-2.2766555
7	6.9345492	6.9345261	6.9090413	5.4548292
8	-7.0024633	-7.0024360	-6.9620717	-4.8558406
11	3.4348552	3.4348092	3.3694359	1.1291510
12	-2.2072238	-2.2071817	-2.1463823	-0.4514840
15	0.3569306	0.3509095	0.3287323	
16	-0.1681989	-0.1681846	-0.1496814	
19	0.0121331	0.0121300	0.0087900	
20	-0.0045139	-0.0045122	-0.0028828	
23	0.0001725	0.0001723	0.0000522	
24	-0.0000530	-0.0000529	-0.0000100	
27	0.0000012	0.0000012		
28	-0.0000003	-0.0000003		

All $(4 n+1)^{\text {st }}$ and $(4 n+2)^{\text {nd }}$ coeff. are zeros.
Comparison solution $=$

$$
\left(\cos \beta_{2} x-\cosh \beta_{2} x\right)+\frac{\cos \beta_{2}-\cosh \beta_{2}}{\sinh \beta_{2}-\sin \beta_{2}}\left(\sin \beta_{2} x-\sinh \beta_{2} x\right)
$$

with $\beta_{2}=\lambda_{2}^{\frac{3}{4}}=7.0685465$
obtained from 10 th iteration.

CHAPTER V

THE FINAL PROBLEM

Most of the problems considered up to this time were of academic nature. It was now decided to work a problem of practical interest. The problem selected is associated with the name of Graetz [7], who obtained the first analytical solution of the problem. The present non-dimensional formulation was taken from a Master's Thesis by Robert Lipkis [10].

$$
\begin{align*}
& y^{11}+y^{1} / x+\left(1-x^{2}\right) y=0 \quad 0 \leq x \leq 1 \\
& y^{1}(0)=y_{(1)}=0 \tag{V-1}
\end{align*}
$$

These equations represent the problem of 'Heat Transfer to an Incompressible Fluid in Laminar Motion'. A brief description of the problem is given in Appendix C.

Mr. Lipkis had evaluated the first few eigenvalues to a very good accuracy. The present method was applied only to obtain the first mode. The eigenvalue obtained (7.31358) tallys with that given in the reference (7.31358) to the given number of places.

An interesting thing about this problem is that, the quotient

$$
\int_{0}^{1} M y d x / \int_{0}^{1} N y d x
$$

for an admissible function y is also a good approximation to the
eigenvalue. In fact, when this quotient was used by mistake, the iteration converged a little earlier than it did while using Raleigh's quotient. This solution is listed in column 3 of the Table VIII.

The reference [17] also listed the values of y^{1} at $\mathrm{x}=1$. The value of $y_{(1)}^{i}$, calculated from the polynomial solution by the present method compared very well with the value in reference. However, this does not mean much. Because, the mode function is only determined to within a constant multiple which can always be adjusted for any desired value of $y^{1}(1)$. It only means that both solutions were normalized in some equivalent manner.

A solution was also attempted without the use of Raleigh's quotient. The term factored out during normalization was taken to be the reciprocal of an approximation to eigenvalue. The process diverged, oscillating between two values which bracketed the true value. As a remedy a weighted average of two successive iterates was tried. This effected the convergence. But the convergence was not fast enough. It is quite likely that a proper choice of weighting factors would do better. (The weighting procedure used was nth approximation $=0.7$ times the $(n-1)$ st approximation +0.3 times the nth iterate.) This solution appears in the second column of Table VIII, and the solution by iteration using Raleigh's quotient appears in column 4.

Table VIII

Results: Heat Transfer to an Incompressible Fluid in Laminar Motion

Coeff.	Comparison Solution 1	Comparison Solution 2	Tenth Iteration
$1 / \lambda_{1}$	0.13677533	0.13673189	0.13073178
1	1.0000000	1.0000000	1.0000000
3	-1.8366730	-1.8283964	-1.8283971
5	1.3018585	1.2928571	1.2928585
7	-0.6285497	-0.6340986	-0.6340993
9	0.2080135	0.2202023	0.2202023
11	-0.0536991	-0.0624800	-0.0624797
13	0.0105566	0.0143570	0.0143570
15	-0.0017016	-0.0028671	-0.0028671
17	0.0002170	0.0004921	0.0004921
19	-0.0000236	-0.0000758	-0.0000758
21	0.0000020	0.0000104	0.0000104
23	-0.0000002	-0.0000013	-0.0000013
25	0.0000000	0.0000001	0.0000001

CHAPTER VI

CONCLUSION AND DISCUSSION

Even though a rigourous proof of the convergence of the iteration for a general problem is not given, it could be seen that the process converges in many cases. The method is sufficiently general in application, and could be used with advantage when no other simple analytical solution is available.

The method is equally applicable to equations with constant and non-constant coefficients. The only requirement is that the coefficients should possess a power series expansion. Obviously, only a finite number of terms (usually a very few) could be kept, so that the error involved will be dependent on the number of terms used and therefore on the rate of convergence of the series expansions of the coefficients.

To be able to continue the iteration without getting stuck in the integration process, no negative or fractional powers of the independent variable should appear in the result of $G[y]$. The appearance of negative powers is usually due to some coefficient in the differential equation, when solved for the highest derivative term. This difficulty can, in most cases, be overcome by a suitable change of variable e.g. $a+t=x,|a|>1$. Another difficulty is encountered when some coefficient has ($a \pm x$) in the denominator with, $|a|$ less than, equal to or slightly larger than one. Division by $(a \pm x)$ is equivalent to
multiplication by its reciprocal. The coefficients in the expansion of $l /(a \pm x)$, decrease, remain the same viz. unity, or increase according as $|a|$ is greater than, equal to, or less than unity. It is of utmost importance to see that these coefficients decrease sufficiently rapidly, by effecting a change of variable, if necessary. Otherwise, the chances of convergence go down. This case was encountered in the problem of vibrations of a tapered beam with $\alpha=2$, and in the longitudinal vibrations of a cantilever. In the first case, the difficulty was solved by switching the ends of the beam and thus working with $\alpha=1 / 2$. This in effect is equivalent to a change of variable of $1-t=x$. In the latter problem a variable change of $t=2 x$, was made. Both of these changes sufficiently accelerated the convergence.

In the end, a few words about the use of various subroutines would not be out of place. Except for subroutines INTGRD and INITL, all subroutines are very general in nature, and can be used for almost any problem. However, when the order of the equation is small e.g. 2, the formation of the D matrix is a very simple matter. If it is fed to the program as data, considerable computer core-space will be saved. This can be used, with advantage, for carrying out more iterations, or for employing more places of arithmetic. The same comment applies to the use of the subroutine BOUND. For instance, the problem of longitudinal vibrations of a cantilever had the following boundary conditions-

$$
y_{(0)}^{1}=y_{(1)}=0
$$

The condition $y_{(0)}^{1}=0$ leads to $c_{2}=0$, and then $y_{(1)}=0$, means simply

$$
c_{1}=\sum_{i=3} c_{i} .
$$

If this is recognized in advance, a few instructions can replace the subroutines BOUND and MATMUL (A, N, B), and therefore subroutines DMTRX and INVRS (A,N).

1. Bennett, Albert A. William E. Milne, and Harry Bateman. Numerical Integration of Differential Equations. pp. 51-70. New York: Dover Publications, Inc., 1956.
2. Collatz, Lothar. The Numerical Treatment of Differential Equations. Third Edition.

Translated by P. G. Williams from a supplemented version of the second German edition. Springer-Verlog. Ohg. Berlin.Gottingten.Heidelberg, 1960.
3. Crandall, Stephen H. Engineering Analysis-A Survey of Numerical. Procedures. New York: McGraw-Hill Book Co., Inc., 1956.
4. Den Hartog, J. P. Advanced Strength of Materials. New York: McGraw-Hill Book Company, Inc., 1952.
5. Fox, L. The Numerical Solution of Two-Doint Boundary Problems in Ordinary Differential Equations. London: Oxford University Press, 1957.
6. Hilderbrand, Francis B. Advanced Calculus for Applications. pp. 200-216. New Jersey: Prentice-Hall, Inc., 1964.
7. Jacob, M. Heat Transfer. Vol. I. p. 451. New York: John Wiley \& Sons, Inc., 1949.
8. Levy, H., and E. A. Bagset. Numerical Solutions of Differential Equations. Vol. I. First American Edition. pp. 35-62. New York: Dover Publications, Inc., 1950.
9. Lipkis, Robert P. 'Discussion of Paper by Sellars, Tribus, and Klein' ASME Transactions. 1956, 78:1272-1274.
10. Iipkis, Robert P. Heat Transfer to en Incompressible Fluid in Lanienar Motion. A Masteris Thesis, University of California, Los Angelas, California, August, 1954.
11. Lovitt, William V. Linear Integral Eauations. First Edition. New York: McGraw-Hill Book Company, Inc., 1924.
12. Milne, William E. Numerical Solution of Differential Equations. pp. 37-42. New York: John Wiley \& Sons, Inc., 1953.
13. Picard, E. Traite d'analyse. Vol. III chapter VI, Paris: Gauthier Villars \& Cie, 1896.
14. Salvadori, Mario G., and Melvin L. Baron. Numerical Methods in Engineering. New York: Prentice-Hall, Inc., 1952.
15. Scarborough, James B. Numerical Mathematical Analysis. pp. 218-260. Baltimore: The John Hopkins Press, 1950.
16. Schwarz, H. A. Gosamnette Mathematische Aphandlrinoen von H. A. Schwarz. Vol. I. pp. 241-265. Berlin, 1890.
17. Siegel, Robert. Heat Transfer for Laminar Flow in Ducts With Arbitrary Time Variations in Wall Temperature.' ASME Transactions. 1960, 82(3):241-249.
18. Stodola, Aurel. Steam and Gas Turbines. Vol. I. Translated by Louis C. Loewenstein from the Sixth German Edition. pp. 460-465. New York: McGraw-Eill Book Company, Inc., 1927.
19. Tlen, Hsun. Heat Transfer for Incompressible Fluid in Laminar Motion in Circular Tubes. Master's Report. Kansas State University, Manhattan, Kansas, 1959.
20. Tong, Kin L. Theory of Mechanical Vibrations. New York: John Wiley \& Sons, Inc., 1960.
21. Vianello, L. 'Graphische Untersuchring der Knickfestigkeit gerader stabe'. Z. Ver. deut. Ing., 1898, 42:1436-1443.

APPENDIX A

Computer Programs

The programs for the problems illustrated in this work are iisted here. Some of the subroutines, which are of rather general character are listed in Appendix B. And Appendix C gives brief description of the Final Problem, and the computer program in 1 ts entirety.

SUEROUTINE INITL
C THIS SUBROUTINE INIIIMLIZES THE PROCLEG OF
C A SCAM ON ELASTIC FELNCATION
COHNON M,N,IT,NC,NE,NP,NPI,NPL,EI
COMNDN B(8,8), $\mathrm{D}(8,1 \in), C(100), E(10), \mathrm{P}(100)$
$C(1)=1$.
NC=1
CALl EMTRX
RETLRN
END

SURKOUTINE INTGRE
C THIS SURROUTINE FLRNS
C THLL IMTIGRAND FLR IFE PRERLEM OF
C A beam cin elastic flundation
COMNON M,N,IT,NC,NE,NP,NPL,NPI,EI
COMNDN $\mathrm{P}(8,8), \mathrm{L}(8,16), \mathrm{C}(100), \mathrm{E}(10), \mathrm{P}(100)$
1 FGRNAT(4E16.8)
2 FORMAT(/)
WRITE(3,1) (C(I), I=1,NC)
W'RITE(3,2)
$C(1)=1 .-C(1)$
DO $20 \mathrm{i}=2$, ivc
$20 \mathrm{C}(1)=-\mathrm{C}(1)$
WRITEi3,1) (C(I),I=1,NC)
RETLRIN
ENO

Subirutitial initl

C This subroutine initializes the proplen cf
C BENLING OF A STkLT
CCHNCA $M, N, I T, N C, N E, N P, N P L, N P 1, E I$
COMNON $\mathrm{B}(8,8), \mathrm{C}(8,16), \mathrm{C}(100), \mathrm{E}(10), \mathrm{P}(100)$
$E(1)=2$.
$E(2)=-4$.
$E(3)=4$.
$N E=3$
CALL DMTRX
$C(1)=1$ 。
$N C=1$
RETLRA
ENO

```
    SUBKULTINE INTGRC
C THIS SUBRDUTINE FLR.&S
C THE liNTGRANO FLR THE pRORLEM CF
C BENLING OF A STRUT
    CCMMON M,N,IT,NC,NE,NP,NPL,NP1,EL
    CONPCN B(9,8),O(8,16),C(100),E(10),P(100)
    1 FCRFAT(4E16.8)
    2 FORMAT(/)
    WRITE(3,1) (C(1),I=1,NC)
    WRITE(3,2)
    CALL SEMUL (C,NG,E,NE,P,NP)
    WRITE(3,2)
    C(1)=-4.-4.*P(1)
    DG 20 I=2,HP
    20C(I)=-4.*P(I)
    NC=NP
    WRITE(3,1) (C(I),I=1,NC)
    RETLRN
    ENO
```

SURKOUTENL IHITL
C THIS SUBBOUTIVE IMITIALIZES THE PROBLEG OF
C VIBRITIUHS OF A BEAM FIXED AT ONE END
C AND HINGEO AT ANCTHER - FIRST MCDE
COMMON M,N,IT,NC,NE,NP,NPL,NPL,FI
CCMMOL $3(8,8), D(8,16), C(100), E(10), P(100)$
$C(1)=1$.
$N C=1$
call cmtiax
RETLRN
ENO

SUFKDUTINE INTGRE
C THIS SUGROUTINT NURNALIZES THE ITERATE FOR THE PROCLEM -
C VIt:RATIDNS OF A EEAN FIXEO AT ONE END
C AND HINGED AT ANCTHER - AVY MEOE
COMNON M,N,IT,NC,NE,NP,NPL,NPL,EI
CCMNON $P(8, \circ), 0(月, 16), \mathrm{C}(100), E(10), 0(100)$
1 FCiRNAT(4E16.8)
2 FCRMAT //)
DG $20 \quad I=1$, NC
IF(C(I).NE.O.O) GU TO 4C
20 CONTINUE
$40 E I=C(I)$
KRITE (3,1) EI
WRITE $(3,2)$
DG $\in O J=I, N C$
GCC(J)=C(J)/EI
W'RITE $(3,1)(6(1), i=1, N C)$
RETLRN
ENO

SUBKOUTIAE INITL

6 THIS SURROUTIINE INITIALIZES THE PROBLEIA DF
C VIPRATIGNS UF A TAPERED PEAM OF RECTANGULAR
C CRUSS-SECTION, SINPLY SLDPDRTEU
COMMON M,N, IT, NC, NE,NP, VP1,NP1,EI
COMMON E $(8,8), D(9,16), C(100), E(10), P(100)$
2 FQRMAT(14F5.1)
CALL DMTRX
REAC(1,2) $\triangle L P H$
$E(1)=1$.
E(2)=2.*(ALPH-1.)
$E(3)=(A L P H-1) *.(A L P H-1$.
$\mathrm{NE}=3$
$C(1)=1$.
RETLRA
END

```
    SURROUTINF IITTGRO
    C THIS SUCROUTINE NLRVALIZES thE ITERATE,
    C ANO FURMS THE INIIGRANO FOR THE PROBLES OF
    C VIBRATIU:NS OF A TAPERED DEAM OF RECTANGUIAR
    C CROSS-SIECTIUN, SIMPLY SLPPORTED
    COMMON M,N,IT,NE,NE,NP,NPL,NPL,EEI
    COMMDN [B(R,8),U(9,16),C(100),E(10),P(100)
        1 FURMAT(4E16.8)
        2 FORMAT(/)
        NC=40
    C NORIEALIZATION LIF THE ITERATE
        DO 10 I= 1,NC
        IF(C(I).N5.0.0) GC TO 20
        10 COMTINUE
        20 EI=C(I)
        DO 40 J=T,NC
        40C(J)=C(J)/EI
        WRITE{3,1)EI
        WRITE(3,2)
        WRITE(3,1) (C(I), I=1,NG)
    CONSTRUCTION OF THE INTEGRAND
    NP=NC
    CALL SEOIV(C,NC,E,NL,P,NP)
    WRITE(3,?)
    DC SC I=1,M
        50 C(I)=P(I)
    WRITE(3,1) (C(I),l=1,NO)
    RETLRA
    ENI
```

SUBRDUTEAS INITL
C this surrcutine livitialiles the proilem or
C VIERATIOAS DF A CNGTILFVER REAM OF VARYIAG CRCSS-SECTION
COMMON M,N,IT,NC,NE,NP, NPL,NPL,EI
COMFON C(8, 8), D(e,16),C(100), E(10), $P(100)$
E(1)=2.
$E(2)=1$.
$N E=2$
CALL DitRX
$C(1)=-4$.
$C(2)=0$.
$C(3)=1$.
$N C=3$
RETURN
ENO

SURNOLITTVE D：ダr．x．
C THIS SURKUUTIME CLNSTRUCTS D NATKIX FROM ？MATRIX
C FCR THF PRUELE：CF
C VIBRATIONS CF A CAINTILEVER BEAM DF VAPYING CRCSS－SECTION DIMENSICN F（10）
COMMON N，N，IT，NC，NE，NP，NPL，NP1，EI
CCMNOM $\mathrm{E}(8,8), \mathrm{Q}(8,16), \mathrm{C}(100), \mathrm{E}(10), \mathrm{P}(100)$
1 FORMAT（4E16．8）
2 FCRNAT（14F5．2）
$F(l)=1$ ．
DO $20 \mathrm{I}=2, \mathrm{M}$
$20 F(I)=F(I-1) * F L O A T(I-1)$
$\operatorname{REAC}(1,2) \quad((B(I, J), J=1, N), I=1, M)$
Do $100 \quad I=1$ ，i
IF（I．GT．N）GO TL EO
DU $40 \mathrm{~J}=1, \mathrm{M}$
$40 D(I, J)=8(1, J) * F(J)$
GC TO 100
$60 \quad D(1,1)=8(1,1)$
DO $80 \mathrm{~J}=2, \mathrm{M}$
$D(1, J)=E(1,1)$
DC \＆$k=2, \mathrm{~J}$
JK＝Jー́․
$80 \quad D(I, J)=D([, J)+F(J) * R(I, K) / F(J K+1)$
100 CCMINAUE
DC $120 \quad 1=1, M$
$C O N=1$ ．
$00120 \mathrm{~J}=1 . \mathrm{N}$
$D([, J)=2([, j) * C O N$
120 CCi：COink 2.
CALL INVRS（L，M）
WRITE $(3,1) \quad((0(1, J), J=1, N), I=1, i d)$
RETU？N
ENU
sumroutine Int gice
C THIS SURROUTIN：NLRHALILES THE ITERATLE，
C FINES ITS RALEIGHS GLCIIENT AND FORMS
C THE INTIGHAND FCR THE RECBLEN UF
C VIBRATIONS OF A CANTILEVER BLAM OF VARYING CRCSS－SECTION
DIMENSION F（100），（；（100），P（100）
CGMMUN M，N，IT，NC，NE，NP，NPI，NP1，EI
CGMNGN $\mathrm{E}(8,8), \mathrm{D}(8,16), \mathrm{C}(100), \mathrm{E}(10), ?(100)$
1 FORNAT（4E゙16．8）
4 FOKN゙竍／／）
C NORNALIZATION LOF fHE ItERATE
OC $10 \quad I=1$ ，NC
IF（CII）．NE．0．0）GC TO 20
10 CGNTINUF
2CEI＝し（I）
OC $40 \mathrm{~J}=1, N C$
$40 \mathrm{C}(\mathrm{J})=C(\mathrm{~J}) / E I$
WRITE（3，1）EI
WRITE（3，4）
WRITE（3，1）（C（1）， $1=1, N C)$
6 calculation of raleighs guítient
CALL CIFFER（C，NC，F，NF，1）
WRIIE（3，4）
CALL OIFFFR（F，RF，G，NG，1）
W？ITS（3，4）
CALL SFMUL（G，NG，E，NE，R，NR）
WRITE（3，4）
DO $30 \mathrm{I}=1$ ，VF
50 R（I）$=P(I)+F(I) / 2$.
CALL SENUL（C，NC，K，NR，C，NG）
WRITE（3，4）
CALL INTGRA（G，NG，R，NR，I）
WR．TIE（3，4）
$C M=0$ ．
$C C A=1$ ．
VO $6 C 1=3, N P$
$C C N=C C N * 2$.

CALL SEMUL ($C, N C, E, N E, G, N(G)$
WRITE (3,4)
CALL SEMUL (C,NC,G,NG,R,NR)
WRITE 3,4)
CALL INTGRA (R,NR,G,NG, 1)
WRIE(3,4)
$D N=C$.
$C C \cdot V=1$.
DO $70 \quad \mathrm{I}=3$, NG
CON=CON*2.
$70 \mathrm{DV}=\mathrm{CH}-\mathrm{CON}=\mathrm{G}(\mathrm{I}-1)$
$E I=4 . *[1 \mathrm{M} / 0 \mathrm{~N}$
WRITE 3,1$)$ EI, DF゙, Liv
WRITC(3,4)
C CONSTRUCTION UF THE INTEGKAND
CALL SECIV ($F, N F, E, N E, G, N C$)
WRITE $(3,4)$
DO \&O $I=1, \therefore C$
$80 \mathrm{C}(\mathrm{I})=-E I \approx C(1) / 4 .-G(I) / 2$.
WRITE(3,1) (C(I),I=1,NC)
WRITE(3,4)
RETLQN
ENU

SUPRCUTIAR BUWAE
C THIS SURRCIUTINE CLMPUTES THE F VECTOR FCR THE PROBLEM OF C VIRRATIUNS UF A CANTILEVFR BEAA OF VARYING CRESS-SECTION DINLNSIOV Y(10)
COMNCN M,N,IT,NC,NE,NP,NPI,NPL,EI
COMAC.V $\mathrm{F}(3,8), \dot{U}(\Omega, 16), C(100), E(10), \mathrm{C}(100)$
1 FORBAT(4E16.8)
2 FORMAT//)
DU $10 \quad I=1, M$
$10 \mathrm{C}(1)=0$ 。
$C O N=2 . * *$
DU 3C $T=1$, M
$Y(I)=0$.
$\mathrm{A} \mathrm{I}=\mathrm{I}$
DO $20 \mathrm{~J}=\mathrm{MP} 1$,iNC
$Y(1)=Y(1)+C C N * C(J)$
$20 \operatorname{CCN}=\mathrm{CON} *(F \operatorname{LOAT}(J) /(F L C A T(J)+1 .-A l)) * 2$.
CON=2.**M
DO $30 \mathrm{~J}=1, \mathrm{I}$
$30 \operatorname{CON}=\operatorname{CON} *$ FLOAT $(: x+1-1) / 2$. WRifE(3,1) (C(I), $I=1, M)$

RETLRIV
Enc:

```
C MAIN PRUGRNG FURR GEIAINING THE SECONO
C EIGCNFUNCTION TGR THE PRCPLEEM OF
G VIPKATIONS OF A BEAM FIXED AT ONE ENU
C ANU HINGED AT ANCTHER
    DIMENSION R(100)
    COMMON M,N,IT,NC,NE,NP,NP1,NPL,EI
    COMNON B(9,8),D(\varepsilon;1t.),C(100),巳(10),P(100)
    1 FORMNT(4E16.8)
    2 FORNMT(14I5)
    3 FONH.AT(lH1)
    4 FORNAT(/)
    RE,IC(1,2) M,N,ITL
    MP1=:4+1
    NP1=N+1
    CALL INITL
    HRITE(3,3)
    OO 40 IT=1,ITL
    CALL INTGRD
    CALL INTGRA(C,NL,R,NR,M)
    DO 20 I=HPL,NC
    2\cup C(I)=R(I)
    CALL BOUND
    WRITC(3,4)
    CALL NATMUL(O,MP1,C)
    40 WRITE (3,3)
        cAlL RESULT
        STCP
        ENU
```


SURROUTINE INIIL

C THIS SUBROUTINF INITIALIZES THE PRORLEF CF
C VIBKATIONS CF A BEAH FIXED AT ONE END
C AND HINGED AT ANCTHCR－SECOND NOOE
DIMENSION R（100）
COMMON M，N，IT，NC，NE，NP，NP1，NPI，EI
CCMNON $\mathrm{C}(\varepsilon, \varepsilon), 0(8,16), \mathrm{C}(100), \mathrm{E}(10), \mathrm{P}(100)$
1 FCPRAT（4E16．8）
2 FORAAT（1415）
REAL（1，2）NP
REAL（1，l）（R（I）， $1=1, N P)$
DO 20 I $=1, \mathrm{NP}$

$$
A[=1
$$

$$
P(I)=0 .
$$

DO $2 \mathrm{C} \mathrm{J}=1, \mathrm{NP}$
$20 P(I)=P(I)+R(J) /(A I+F L O A T(J)-1$.
WRITE（3，l）（P（I），$I=1, N P)$
call cmtra
$C(8)=1$ ．
$N C=\varepsilon$
CALl buUja
CALL MATMUL（D，fiPl，ご）
C（7）＝ご（5）
$C(5)=0$ ．
RETURN
ENO

SUR,RUUTIN: CMTiKX

DIMENSICN F(10)
COMNON M, N,IT,NC,NE,NP,NPI,NPI,EI
COMNON $B(8,8), O(8,16), C(100), E(10), P(100)$
1 FORMAT(4E16.8)
2 FORMAT(14F5.2)
3 FCizmat (/)
$F(1)=1$.
DO $20 \mathrm{I}=1$, MP1
$20 \mathrm{~F}(1)=F(I-1)$ *FLCAT(I-1)

DO $100 \mathrm{I}=1, \mathrm{M}$
IF(I.GT.M) GO TC 60
DO $40 \mathrm{~J}=1$, MP1
$40 D(I, J)=B(I, J) * \ddot{F}(J)$
GO TO 100
$6 C D(I, 1)=?(I, 1)$
DC $80 \quad \mathrm{~J}=2, \mathrm{MP} \mathrm{P}$
$D(1, J)=E(1,1)$
CO $80 \mathrm{~K}=2, \mathrm{~J}$
JK $=\mathrm{J}$ -
$8 C D(I, J)=[1(I, J)+F(J) * 2(I, K) / F(J K+1)$
160 CONTIANE
$00120 \mathrm{I}=1, \mathrm{MPI}$
120 ($1 ; \mathrm{Pl}, 1$) $=\mathrm{P}(\mathrm{l})$
WRITE(3,1) (ID(I,J), J=1,NP1), I=1,NP1)
CALL INVRS (D,MP1)
WRITE (3,3)
WRITE(3,1) ((O) $1, J), J=1, N P 1), I=1, N P 1)$
RETLO:
ENi)

SLB,ROLTINE RGU:if
C THIS SURRCUTINL CCMPLTES THE F VECTOR
C IN THE MATRIX ECUATICN IC=F FER THE HRCPILE: OF
C VIGRATIUNS UF A PEAN FIXEU AT ONE ENO
C AND hinged at Ancfher - second moue
DINENSION Y(10)
COMMON M,N,IT, NC,NE,NP,NP1,NPL, EI
COMVDN $B(8,8), C(8,16), C(100), E(10), P(100)$
1 FCKNAT(4E16.B)
DC $20 I=1, \mathrm{MPI}$
$20 \mathrm{C}(1)=\mathrm{C}$.
$\mathrm{CCN}=1$.
DO $60 \quad \mathrm{I}=1, M$
Y(I) $=0$.
$\mathrm{AI}=\mathrm{I}$
$0040 \mathrm{~J}=8, \mathrm{VC}$
$Y(I)=Y(I)+こ O N \neq C(J)$
40 CCN=CON: $(F L O A T(J) /(F L O A T(J)+1 .-A I))$
$C C_{i}=1$.
Do $60 \quad \mathrm{~J}=1,1$
$60 \mathrm{CON}=\mathrm{CON}$ * (8.-FLUAT(J))
[JC $\& 0 \quad J=1, M$
$80 \mathrm{C}(\mathrm{I})=\mathrm{C}(1)-$ 『(I) J) \#Y(J)
$00100 \quad I=8, N C$
$100 C(M P 1)=C(H P 1)-P(I) * C(:)$
WRITE(3,1) (C(I), $I=1, N P 1)$
WRITE(3,1$)$ (C(I), I=1,NC)
RETURN
ENO

SUBiOUTINE INITL

C THIS SUPROUTINE INIIIALIZES THE PRORLEP CF
C HEAT TRAINSFEK TC AN INCCMPRESSIBLE FLLIC
c in laiminar moticn
CENACN M,N,IT, AC, NE,NP,NPL,NP1,EI
CO:NON $\mathrm{g}(8,8), \mathrm{D}(3,16), \mathrm{C}(100), \mathrm{F}(10), \mathrm{P}(100)$
CALL CMTRX
$E(1)=-1$.
$E(2)=0$.
$E(3)=1$.
$N E=3$
$C(1)=1$.
C(2)=0.
$C(j)=-1$.
$N C=3$
RETL?N
ENU

SUPRKOUTINE INTORE

C this subroutlide Nilrnalifes the iterale, C FINCS ITS RALEIGHS GUETIENT AND FURNS
C THE INTIGPANU FCR THE PRCRLEH UF
C HEAI TRANGFER TC AN INCCHPRESSIBLE FLUIC
c in lamlivar moticn
OIMENSICN F $(100), G(100), H(100), R(100)$
CCMMON M,N,IT, IVC,NE,NP,NPI,NPI, EI
CONNON $B(8,8), C(8,16), C(100), E(10), P(100)$
1 FCPNAT(4E16.8)
2 FCRNAT(/)
nerinalization cf the iterate
DO $20 \mathrm{I}=1$, NC
IFIC(I).NE.O.0) GC IC 30
2C. Coivthius
$30 \mathrm{CIJ}=\mathrm{C}(1)$
DU $40 \mathrm{~J}=1$, NC
$40 \mathrm{C}(\mathrm{J})=し(J) / C I J$
WRITE(3,1) (C(I), $1=1, N C)$
VIRITE(3,2)
C CALCILATIGN OF RALEIGHS QUUTIENT
CALL SEMLLL (C,NC,E,NL,G,NG)
WRITE(3,2)
CALL SEMUL (C, $A C, G, N G, H, N B)$
WRITE 3,2$)$
$F(1)=C$.
CALL INTGRA(H, iiH,F,NF,1)
WRITE(3,2)
$D N=C$.
OC $\varepsilon O I=1, N F$
80 DN = CNO $+F(1)$
CALL CIFFERIC,NC,F,NF, 11
WRITE(3,2)
CALL DIFFER(F,AF,H,NH,1)
WC!TE: 3, 3$)$
DO $0 \mathrm{O} I=1, \mathrm{NH}$

```
    60 H(I)=H(I)+F(I)+1)
    WR:ITE(3,1) (H(1), i=1,NH)
    WRITE(3,2)
    CALL SEMUI. (C,NC,H,NH,R,NR)
    WRITE(3,2)
    H(1)=C.
    CALL INTGRA (R,NR,H,NH,1)
    WRITE(3,2)
    DN=C.
    UO 70 I=1,NH
    70 DM=LM+H(I)
    H(1)=0.
    EI=CM/DN
    WRITE(3,1) EI,ON,DIL
    WRITE(3,2)
c CONSTRUCTION OF thE INTf.gRAND
    NC=NG
    DO SO I=1,NC
    C(I)=G(I)-F(I+1)/EI
    IF(I.GT.NF) C(I)=G(I)
    90 CONTINUE
    R(1)=0.
    WRITE(う,l) (C(I), I=1,NC)
    WRITE(3,2)
    RETLRN
```


APPENDIX B

Programs and Subroutines of General Nature

The main program and all the subroutines listed in this appendix are very general in nature, except that the subroutines DMTRX and BOUND can only be used if the boundaries are $x=0$ and $x=1$.

C MAI: PRUGRAM FUR ALL EGUILIBRIUM PRUGLEMS AND FOR
C THEFIRST NODE LF ALL EIGENVALUF PROPLEISS
C M IS THE GRDER LF ECUATICN A:ND II IS THE NU:BER
c OF BOUNDARY COAIIIIILINS AT $X=0$
DIMENSIUN R (IOC)
COMMOR M,N,IT,NC,NE,NP,NPL,NPL,EI
COMMON $8(8,8), 0(8,16), C(100), E(10), P(100)$
1 FU゙RलAT(4E16.8)
2 FOkirat(515)
. $\mathrm{FCR} \mathrm{Ri}, \mathrm{T}$ T (1 HI)
4 FERAAT(/)
REAL(l,2) M,N,ITL
MPl $=\dot{n}+1$
NPL $L=N+1$
CALL IJITL
W: ITE(3,3)
$0040 \quad \mathrm{IT}=1, \mathrm{ITL}$
CALL INTGRL
CALL INTGRA(C,NC,R,AK, M)
NC $=1 \mathrm{~N}$
OG $20 I=N F 1, N C$
$20 \mathrm{C}(\mathrm{I})=\mathrm{P}$ (I)
CALL BOLHO
CALL MATMLL (U,N,C)
40 VRITE $(3,3)$
call result
STIP
END

SUBROUTIAF RATK\%
C THIS SUBKOUTIVL GENSTRUCTS D MATRIX FROM \& MATRIX
C FOR ALL EOUILIMKIGM PKOBLEMS AND FOR THE
C
FIRST mGDE OF ALL EIGENVALUE PRORLENS
DIMENS ICN F(10)
CCBMCN H,N,IT, IC, AE,NP,NPL,NPL, EI
COMMON B(8,8), D(8,16),C(100), E(10),P(100)
1 FCRMAT(4E16.8)
¿ FORMAT(14F5.1)
3 FORVATI//2OX, EHC MATRIX//
$F(1)=1$.
DO $20 \quad \mathrm{I}=2$, 14
20. $F(1)=F(I-1) * F L L A T(I-1)$

REACL(1,2$)((E(1, j), J=1, K P 1), I=1, M)$
DC $100 \quad I=1,11$
IF(I.GT.N) GO TCBCO
DC $40 \mathrm{~J}=1, \mathrm{M}$
$40 D(I, J)=E([, J) * F(J)$
GO TO 100
$60 D(I, 1)=2(T, i)$
CG $80 \mathrm{~J}=2, \mathrm{M}$
$D(1, J)=P(1,1)$
DO $\varepsilon 0 K=2, J$
JK $=\mathrm{J}-\%$
$80 \mathrm{D}(I, J)=0(I, J)+F(J) * E(I, \ldots) / F(J K+1)$
100 COATTINUE:
CALL INVRS $(0, M)$
WRITE(3,3)
WYITE(3,1) ($(D(I, J), J=1, M), I=1, M)$
REILRN
ENO

SUB, KOLTIIF INVPS ($1, N$ N)
6 THIS SUBRCUTIAE INVERTS MATRIX A OF GKDER it
C BY GAUSS-SIEDEL REDUEIIEN
OIMLNS IOi $\wedge(8,16)$
2 FORIMT(2(//20x,1CHENC INVERSE //))
C AUGNENTING THE MATKIX A PY AN IDENTITY NATKIX $\mathrm{NN}=\mathrm{N}+\mathrm{N}$
DO $20 \quad[=1, N$
I $N=1+N$
DC $10 \mathrm{~J}=1, \mathrm{~N}$
JiN $=\mathrm{J}+\mathrm{i}$
$10 \mathrm{~A}([, \mathrm{~J}, \mathrm{~N})=0$.
$20 \mathrm{~A}(1, I \mathrm{H})=1$.
6 THE REDUCTION PRCOESS STARTS HERE
DO $10 C N=1, N$
30 DIV $=4(\mathrm{M}, \mathrm{M})$
IF(LIV.EQ.0.0) GC TC 70
$0040 \mathrm{~J}=1$, N: N
$46 A(\pi, J)=A(M, J) / D I V$
CC $60[=1, v$
IF (I.EQ.M) GU TC $\in O$
$A I M=A(I, M)$
DO $50 \mathrm{~J}=\mathrm{L}$, Niv
$50 \mathrm{~A}(\mathrm{I}, \mathrm{J})=A(1, J)-\therefore I N * A(K, J)$
60 COMTLiNuL
GC TO 100 .
70 UO SO $I=\mathrm{M}, \mathrm{it}$
IF(A(I,N).EQ.O.O) GU TU 90
C DG LOCP \&O EFFECTS INTERCHANGE CF THE ITH AND MTH RONS DC $\varepsilon \cap J=1$, NN

DUBY=A $(1, J)$
$A(i, j)=A(K, J)$

GC TO 30
90 CONTI.:UE
WRITE(3,2)

```
    100 CONTINUL
C
    TRAISSFERING INVERSE CF A IN THE PLACE OF A
        DC 110 [= l, N
        DO 110 J=1,N
        J:V=J+iv
    110. A([,J)=A([, JN)
    120 RETLRN
        ENO
```

SUEROUTINE PRUS.L
C THE SUSRCUTINE CG:PLTES THE \& VECTUK
C FOK ALL ECUILIPRTUM PRUPLEMS AHO FGR THE
C FIRST NCDE OF ALL [IGENVALIIE PKUBLENS
DIMENSION Y(10)
CCMNEN N,N,IT,NC,NE,NP, MPL,NPL,EI
COMNDIN $B(8,8), C(8,16), C(100), E(10), P(100)$
1 FORNAT(4E16.8)
2 FOKNAT(//20X,5HBCLNE/)
CO $10 \quad I=1, M$
$10 C(I)=6(1, N P 1)$
$C O N=1$.
$0030 \quad \mathrm{I}=1 \mathrm{M}$
$Y(I)=0$.
$A I=1$
DC 20 J $:=1$ PLINC
A Jin $=\mathrm{JN}$
Y(I) $=Y(I)+$ COiNu C (Ji:)
20 CQ: $=$ CON: (AJM/(AJK+1.-AI) $)$
$C O: i=1$.
DO $30 \mathrm{~J}=1$; I
AJM $=\mathrm{M}+1-\mathrm{J}$
30 COIV $=$ CCN $* \Lambda J M$
OO $40 \quad I=1, T P 1, M$
DC $40 \mathrm{~J}=1, \mathrm{M}$
$40 C(I)=C(I)-P(I, J)=Y(J)$
HRITE $(3,2)$
WRITE(3, 1)(C)(I), $I=1, N)$
RETLRN
ENC

```
        SURKOLTIINE MATADL (A,N,P)
C THIS SUPMCUTINE MULTIDLIES A SQUARE NATRIX A
C OF CRIELR N BY A CCLLMN VECTOR E. THE ANSHER.
C APPLARS IN THE CCLUNN %.
    OIMENSION A(8,16),R(8),C(8)
    1 FCRNAT(4E16.8)
    3 FORMAT(20X, CHMATNLL)
        WRITE(3,3)
        DO 100 I= 1,N
        D(I)=5.
        DC 100 J=1,N
100 D(I)=C(I)+A(I,j)*C(J)
    OO 20C I=1,N
200 B(I)=0(I)
    WRITE(3,1)(H(I),I=1,N)
    RETLRN
    ENL
```

```
    SURMOUTINE SEMLLL (A,NA, L,NB, C,NC)
C SERIES A * SEKIES B = SERIES C
    OINONSION A(100), B(1C0),6(100)
    1 FORにAT(4El6.8)
    3 \text { FGRNAT(/20X,2LHSEMIES MLLTIPLICATIUN /)}
    WRITE(3,3)
    NC=N1+NS-1
    IF(NA.GT.NB) GC TC 101
    DO 10C 1=1,NC
    MI= I
    C(I)=0.
    IF(I.GT.NA) MI=NA
    DO 100 J=1,MI
    HIJ=I-J+1
10GC(I)=C(I)+A(J)*A(%IN)
    GO TC 201
101 DO 200 I= 1,NC
    MI=I
    C(I)=C.
    IF(I.GT.NE) MI=Nせ
    DC 200 J=1,mI
    MIJ=I-J+1
200C(I)=C(I)+B(J)*A(KIJ)
201 WRITE(3,1) (C(I),I=1,NC)
    RETURN
    END
```

```
    SURKUUTINE: SED[V (A,NA, B,NB,C,NC)
    OINLNSICH A(10i:), P(100),C(100)
C SUPRCUTINE FUR UIVIEION OF THUS SERIFS
C SERIES M/SERIES R=SERIES C
    1 FORNAT(4E16.8)
    3 FQRNAT(//2OX, CHSELIV /)
    WRITE(3,3)
    I=]
    C(I)=A(I)/A(I)
10 I= I+1
    MI=1
    IF(I.fTT.NB) MI=NB
    C(I)=A(I)
    DC 20 J=2,MI
    MIJ=I+1-J
20C(I)=C(I)-B(J)*C(NIJ)
    C(I)=C(1)/B(1)
    IF(I.LT.NG:) GO TC IC
    WRITE(3,1) (C(I),I=1,NC)
    RETLRi:
    END
```

SUAKCUTINE DIFFFR(C,NC, C,ND,N)
C NTH DERIVATIVE CF SERIES $C=$ SEKIES D
DIMENSICN C(100), L(100)
1 FORMAT(4E16.8)
3 FORNAT (/20X, LC HDERIVATIVF: /)
WRITE(3,3)
$A F=1$.
DO $10 \quad I=2$, is
$\mathrm{A} I=\mathbb{I}$
$10 A F=A F * A 1$
$\operatorname{IF}(\mathrm{A} . E 0.1) \quad A F=1$.
$00 \geqslant 0 \mathrm{I}=1$, NC
IN $=1+\mathrm{ti}$
$A I=1$
AIM=IN
O(I) $=C(I N)=A F$
$20 \mathrm{AF}=\mathrm{AF} \# \mathrm{AIN} / \mathrm{AI}$
$N D=N C-N$
WKITE(3,1) (D(I),l=1,NE)
RETLRN
END

```
            SUHRCUTINF INTGKA (C,NC, C,NO, N:
.C NTH INTIGHAL UF SERIES \(6=\) SERIES D
    DIMENSION C(100), ن(1CO)
    1 FCR:AT(4E16.8)
    3 FQRNAT (/20X, 11 HIATIGRATION /)
    WirITE(3,3)
    \(\mathrm{Nl}=\mathrm{A}+1\)
    \(\Delta F=1\).
    DO \(10 \quad 1=2, N\)
    \(A I=I\)
\(10 \Delta F=h F A I\)
    \(I F(N . E Q .1) \quad \wedge F=1\).
    \(\mathrm{ND}=\mathrm{NC}+\mathrm{i}\)
    DC \(20 \quad 1=1, N D\)
    \(\mathrm{I} \mathrm{N}=\mathrm{I}+\mathrm{N}\)
    \(\Delta I=1\)
    AI \(\mathrm{I}=\mathrm{I}\) i
    \(D(I N)=C(I) / A F\)
\(20 \Delta F=\Delta F * A I N / A I\)
    WRITE (3,1) (D(1), I=N1,NC)
    RETLRN
    ENU
```

```
    SUFROUTINE RESULT
C THIS SURRLUUTIIE GIVES THE NESULTS OF AN
6 EGUILIBRIU| PROSLEM
    CCMNON M,N,IT,NC,NE,NP,MP1,NP1,EI
    CCMNON B(8,8),U(8,1t),C(100), E(10),P(100)
1 FORiAAT(4E16.8)
WRIIE(3,1) (C(I),I=l,NC)
RETLRN
END
```

SURKOUTINE RESI:LT
C THIS SUPROUTIN: GIVES TRE RESULTS OF Aiv
c Eigenvalue preflem
CGMMON M,N,IT, C, NE,NP,NPL,NP1,EI
CCMMCR $\mathrm{H}(8,8), 0(E, 1(), C(1 C 0), F(10), P(100)$
1 FCRIVAT(4E16.?)
2 FCRMAT//)
WRITE(3,1) FI
WKITE(2,1) EI
WRITE (3, 2.)
UC $20 \quad \mathrm{I}=1, \mathrm{NC}$
IF(CII).NE.O.O) SC TC $4 C$
20 CCítinue
$40 \mathrm{EI}=6(\mathrm{I})$
DC $60 \mathrm{~J}=\mathrm{I}, \mathrm{NC}$
$60 \mathrm{C}(\mathrm{J})=C(J) / E I$
WRITE(3, 1) (C(1), I=L,NC)
WRITE(2,1) (C(I),I=1,NC)
RETLIN
ENO

APPENDIX C

Description of Final Problem

This is a steady state heat-transfer problem. At steady state there are no variations with time and the energy equation for a fluid in laminar motion in a cylincrecal tube can be written as

$$
\begin{equation*}
\frac{I}{a} \frac{\partial}{\partial a}\left(a \frac{\partial T}{\partial a}\right)=\frac{2 U_{m}}{\alpha}\left[1-\left(\frac{a}{\alpha}\right)^{2}\right] \frac{\partial T}{\partial z} \tag{1}
\end{equation*}
$$

where $T=$ temperature;
$a=r a d i a l ~ c o-o r d i n a t e ~ m e a s u r e d ~ f r o m ~ t h e ~ t u b e ~ a x i s ; ~ a, ~$ tube radius
$U_{m}=$ mean flow velocity
$\alpha=$ thermal diffusivity,
$z=$ anial co-ordinate measured from the entrance of the pipe.

The equation reflects the following postulates:

1) The fluid is incompressible;
2) No heat is transferred by conduction in the z direction.
3) The velocity distribution is parabolic at all crosssections and is maintained independent of the temperature (i.e. viscosity and density are not the functions of temperature);
4) Thermal conductivity and the product $\gamma_{c p}$ are independent of temperature.

The boundary conditions specified were that

1) the fluid and wall were uniformly at temperature T_{i} for
$z \leq 0$,

$$
\text { i.e. } T=T_{1}, \quad z \leq 0
$$

and 2) the wall temperature varies linearly for $z>0$.

$$
T=T_{1}\left(1+\frac{B}{a_{0}} z\right) \quad a=a_{0}
$$

The following dimensionless variables were defined.

$$
\begin{aligned}
& x=\frac{a}{a_{0}} \\
& \omega=\frac{z}{a_{0}^{2}} \frac{a}{2 U_{m}} \\
& t=\frac{T-T_{1}}{T_{i}}
\end{aligned}
$$

In terms of these dimensionless variables the formulation (1) would be

$$
\frac{1}{x} \frac{\partial}{\partial x}\left(x \frac{\partial t}{\partial x}\right)=\left(1-x^{2}\right) \frac{\partial t}{\partial w}
$$

A product solution of the form

$$
t=1-(x) \quad(\omega)
$$

was employed to separate the variables. It was found that

$$
w=e^{-\beta^{2} w}
$$

where $-\beta^{2}$ was the constant of separation. The equation for the y was

$$
\frac{d^{2} y}{d x^{2}}+\frac{1}{x} \frac{d y}{d x}+\beta^{2}\left(1-x^{2}\right) y=0
$$

with the boundary conditions

$$
\begin{aligned}
\frac{d y}{d x}=0 & \text { at } x=0 \\
y=0 & \text { at } x=1
\end{aligned}
$$

The computer program in its entirety is given in the following pages.

6 MAIT PROSRAM FUK ALL EOUILIBRIUM PRUBLENS AND FCR
C THE FIRST MUDE LF ALL EIGENVALUE PRGBLEMS
C. M IS THE URDER CF EGUATICH AND \therefore IS THE HUI BER

C OF eCuidpary comidilens at $x=0$
DIMENSICN R(100)
COMMON M, $\mathrm{H}, \mathrm{IT}, \mathrm{M}, \mathrm{NE}, N \mathrm{~N}, N P 1, N P 1, E I$
CCHKOV $\mathrm{B}(8,8)$, D $(8,16), 6(100), F(10), ?(100)$
1 FCRNA($4 E 16.8$)
2 FCRMAT(515)
3 FGRMAT(1H1)
4 FCDIAAT /)
REAC(1,2) M,N,ITL
MP $\mathrm{l}=\mathrm{M}+\mathrm{l}$
NP L=iv+l
CALL INITL
WRITE(3,3)
CC $40 \quad 1 T=1,1 \mathrm{TL}$
CALL intGro
CALL INTGRA(C,NC,K,NR,M)
$N C=i R$
EC $20 \quad \mathrm{I}=\mathrm{i} 1 \mathrm{P} 1, \mathrm{HC}$
2C C(I)=?(1)
call roline
CALL MATMUL $(0, \mathrm{~N}, \mathrm{C})$
40 YRI1C(3,3)
CALL KESULT
STOP
END

SURROUTINT IAI IL

C this suakoutdia initializes the proelen df
C HEAT TKANSFER TC AN INCCRPRESSIBLE TLUIC
c IA laminar muttla
CONNON NI,N,IT, AC, NE,NP,NPL,NPI,EI
CCNPCiN E $(8,8), \mathrm{L}(9,1 t), \mathrm{C}(100), E(10), P(100)$
CALL CMTRX
$E(1)=-1$.
$\mathrm{E}(2)=0$.
$\mathrm{E}(3)=1$.
$N E=3$
$C(1)=1$.
$C(2)=C$.
$C(3)=-1$.
$\mathrm{NC}=3$
RETLRIN
ENL.

SUBKOUYINE DMTIAX

6 THIS SURBCUTINT. CLNSTRUCTS D NATRIX. FROM E MATRIX C FOK MLL EOUILISRILM PRORLEMS ANO FOK THEZ C FIHST MUDE OF MLL EIGENVALUE PRCBLENS

DIMENSION F(10)
COMNEN M,N,IT,NC,NE,NP,NPL,NPL,EI
CCANCN R $(8,8), 0(8,16), C(100), E(10), P(100)$
1 FORMAT(4E16.8)
2 FORMAT (14F5.1)
3 FORMAT(//20X, BML MATRIX /1
$F(1)=1$.
DO $20 \quad 1=2,4$
$20 \mathrm{~F}(1)=F(1-1) * F L . O A T(I-1)$
$\operatorname{KEAC}(1, ?)((E(I, j), J=1, M P 1), I=1, N)$
CL $100 \mathrm{I}=1$, M
IF(I.GT.N) CO TO EO
DC $4 C J=1, M$
$40 D(I, J)=P(I, J) \%:(J)$
GO TO 200
$60 D(I, 1)=8(I, 1)$
DO \& $\mathrm{J}=2, \mathrm{M}$
$D(1, J)=R(1,1)$
DU $80 \mathrm{~K}=2, \mathrm{~J}$
$J K=J-K$
$80 D(1, J)=E(I, J)+F(J) * せ(I, K) / F(J K+1)$
100 CCNTINUE
CALL I:JVRS (0,3)
WRITE (3,3)
WRITE(3,1$)((0)(I, J), J=1, N), I=1, N)$
RETLRN
END

SUBKOUTINE IHVR:S(A,N)
C THIS SUCROUTINE INVERTS NATHIX A OF URDER it
C BY GALSS-SIEOEL :REDLGIICN
DINENSION $A(5, I t)$
2 FORMAT(2///20X,ICHNG IMVERSE //1)
C AUGMENTING THS NATRIX A BY AN IDENTITY MATRIX
$N N=N+N$
$0020 \quad t=1, N$
IN $=1+i$
00 10 $\mathrm{j}=1, \mathrm{~N}$
$J N=J+N$
$1 G A([, J i v)=0$.
$20 \mathrm{~A}(\mathrm{I}, \mathrm{IN})=1$.
C THE REDUCTION PRCCESS StakTS HERE
DO $100 \quad N_{1}=2, N$
30 DIV $=1(\mathrm{M}, \mathrm{M})$
IF(LIV.EQ.0.0) GC TC 70
DC $40 j=1$, NN
$40 \mathrm{~A}(\mathrm{i}, \mathrm{J})=\mathrm{A}(\mathrm{N}, \mathrm{J}) / \mathrm{B} \mathrm{iv}$
DO $\in C \quad I=1, N$
IF(I.EG.M) GO TL 60
$\triangle I H=A(I, M)$
DC $50 \quad j=1, i N$
50 A(I, J) $=A(1, J)-\Sigma I N \neq A(N, J)$
GU CCNTINUE
GC io 100
70 UC SO $I=\mathrm{M}, \mathrm{N}$
IF(A(I, M).EQ.O.G) GC TO 90
C DC LOCP BG EFFECTS INTERCHANGE GF THE ITH AND MTH KOHS DU $\varepsilon 0 \mathrm{~J}=1, \mathrm{NN}$
DU: $\mathrm{Y}=\mathrm{A}(\mathrm{I}, \mathrm{J})$
$A(I ; J)=A(A, j)$
$80 \Delta(N, J)=$ LUA: Y
GO 1030
90 CENTTANE
WKITC(3,2)
60 TO 120

100 CCATIAUE
C TRANSFERING INVERUE GF A IN THE PLACE LF A
UC $11 C 1=1, N$
DO $110 \mathrm{~J}=1, \mathrm{~N}$
$J: N=j+N$
$110 \mathrm{~A}(1, \mathrm{~J})=\mathrm{A}(1, \mathrm{JiN})$
120 RETLRN
END
surkoutine intgni
C THIS SURRUUTIN NEKKALIZES THE ITERATE,
C FINCS ITS RALEIGHS GLOTIENT AND FCRAS
C THE INTIGRAND PCR THE PRCBLEA OF
C HEAT TRANSFEK IC Ai INCCPBRESSIELE FLUID
c In laminar noticin
DIMENSICN F(100),G(1C0),H(100),R(10C)
COMMON M,N,IT,NC,NE,ND,NP1,NP1,EI
CCNNON P $(9,8), 0(8,16), C(100), F(10), P(100)$
1 FORNAT(4E16.8)
2 FORMAT(/)
NCKNALIZATICN LF THE ITERATE
DU $20 \mathrm{I}=1$, NC
IF(CII).NE.O.C) GL TU 3C
20 CCATANUE
$30 C I J=こ(1)$
OC $40 \quad j=1, N C$
$40 \mathrm{C}(J)=$ こ (J)/CIJ
WRITE(3,1) (C(I), $i=1, N C)$
W? ITE(3,2)
C CALCULATIGN OF RALEIGHS GUOTIFAT
$C A L L$ SEMUL (C,NC,E,NE,G,NG)
WRIIE13,2)
CALL SEMULIC,NC, G,NG,H,NH)
WKITC(3,2)
$F(1)=0$.
CALL INTGRA(H, NF, F, AF, 1)
WKITE (3, 2)
$\mathrm{CN}=\mathrm{C}$.
DC SO $1=1$, NF
SO $D N=C V+F(I)$
CALL CIFFER(C,NC,F,NF,1)
WRITE(3,2)
CALL CIFFER(F, BAF, r, NH, l)
अरIIE 3,2$)$
$0060 \quad I=1, \mathrm{AH}$

```
    60 H(I)=H(I)+F(I + l)
    WRITE(3,1) (H(I),I=1,NH)
    WRITC(3,2)
    CALL SEMUL (C,NC,H,NH,R,NR)
        WRIT:(3,2)
        H(1)=0.
        CALL INTGR\ (R,NR,H,NH,I)
        WRITE(3,2)
        Dir=c.
        DC 70 I= 1,NH
70 DN: = M N+H(1)
        H(1)=C.
        EI=CM/CN
    WRITE(3,1) [I,CN,CN
    WRIIこ(3,2)
C CCNSTRUCTIUN OF THE INTEGRAND
    NC=NS
    DC SO I=1,NC
    C(I)=G(I)-F(I+1)/EI
    IF(I.GT.NF) C(I)=G(I)
gO CCNTINUE
    R(1)=C.
    WRITE(3,1) (C(I),I=1,NC)
    WRITE(3,2)
    RETLRN
```

SUCNCETINE BOUNL
C THE SUPPDUTINE COHPTES THE F VECTOR
C FCR ALL EOUILI"RILM POBELEMS AND FOR THE
C FIRST MCDE GF GLL EIGENVALUE PRCBLEMS
DIMENSICN Y(10)
CCMMON IA,N,IT,NC,NE,NP,NPL,NPL,EI
CCivime $\mathrm{P}(\mathrm{R}, \mathrm{S}), \mathrm{L}(\varepsilon, 1 \in), \mathrm{C}(100), \mathrm{C}(10), P(100)$
1 FCRNAT(4E16.8)
2. FORFAT(//2.0X,5HECLINL/)

DU $10 \quad[=1,4$
$10 C(I)=8(I, \mathrm{MPl})$
$C O A=1$.
$0030 \quad 1=1, M$
$Y(I)=0$.
$A I=1$
DO 20 JM $=N . P 1$,NC
A $J:=J M$
$Y(I)=Y(I)+C O N * C(J i)$
20 CGN=CON* ($1 \mathrm{Jin} /(\operatorname{AN}+1 .-\mathrm{A}[))$
$\mathrm{CON}=1$.
OC $30 \mathrm{~J}=1, \mathrm{I}$
A Ji $=M+1-J$
$30 \mathrm{CON}=\mathrm{CUN} *$ AJIA
CC 40 I = NP 1, N
DC $4 C \quad J=1, M$
$40 C(I)=C(I)-B(I, J) * Y(J)$
WRITE(3,2)
WRITE $(3,1)(C(I), I=1, M)$
RETLRN
ENG

SUBRCUFINE MATELL (A,N, \quad)
C THIS SUBRCUTIM: NLLTIPLIES A SOLARE WATKIX A
C OF CRLER N EY A CGLLRN VECTCR B. THE GNSLER
c appears in the clluin f.
DIMENSICN A(8, (6), B(8$), \mathrm{C}(8)$
1 FCRMAT(4E16.8)
3 FORVAT(20X, GHMATNLL)
WRITE(3, 3)
DO $100 \mathrm{I}=1, \mathrm{~N}$
C(I) $=0$.
DO $100 \mathrm{~J}=1, \mathrm{~N}$
$100 O(I)=C(I)+A(I, J) * C(J)$
OG $\angle O C \quad 1=1, N$
$200 \mathrm{~B}(\mathrm{I})=\mathrm{C}(1)$
Wrire $(3,1)(B(I), I=1, N)$
RETLRN
ENO

```
            SUCROUTINE SENLL (A,NA,P,NE,C,H.G)
C SERIES A * SERIES E = STRIES C
    DINENSION A(106), E(1CO),C(100)
    1 FCRSAT(4E16.8)
    3 FORNAT(/2OX,2IHSERIES MLLTIPLICATION /)
    WRSTE (3,3)
    NC=AA+NR-1
    IF(Mn.GT.NB) GC IL 101
    OO 10C 1=1,NC
    MI=1
    C(I)=C.
    IF(I.CT.NA) MI=NA
    OC 100 J=1,MI
    MIJ=I-J+1
100C(I)=C(I)+A(J)*E(FIJ)
    GC IU 20.1
101 DO 20C I=1,NC
    MI=I
    C(I)=0.
    IF(I.GT.NE) MI=NB
    OC 200 J=1,MI
    MIJ I I - j+1
200 C(I)=C(I)+B(J)*A(FIN)
201 WRITE(3,1) (C([), i=1,NC)
    RETLRR
    Eiv
```

SUMISOUTINE DIFFER (C,NC, D, ND, N)
C. NTH DFRIVATIVE CF SERIES C = SERIES O

DIMENSION C(106), 由(3:00)
1 FCRFAT(4E1G. \&)
3 FORMAT (/2OX, IC HOEKIVSTIVE //
WRITE $(3,3)$
$A F=1$.
OO $10 \quad \mathrm{I}=2$, N
$A 1=1$
$10 \mathrm{AF}=\mathrm{AF} \# \mathrm{AI}$
IF(N.EQ.1) $A F=1$.
DO $201=1,1 . C$
$i N=i+i$
$A I=I$
$A I N=I N$
$D(I)=C(I N) * A F$
$20 \mathrm{AF}=\mathrm{AF}$ *AIN/AI
$N D=i C^{-i v}$
WRITE $(3,1)$ (O(I),I $=1$, NE)
RETLRN
ENO

```
    SUBRCUTINE INTGRA (C,NC,O,NO,N)
C NTH INTIGHAL UF SERIES G = SEGIES D
    DIN[NSION C(IOOj,C(JCO)
    1 FCRMAT(4E16.8)
    3 FCKMAT (/ZOX, LI HIMIIGRATION /)
    WRITE(3,3)
    N1=ia+1
    AF=1.
    DC 10 [=2,N
    AI=I
    10 AF=AFkAI
    IF(N.EQ.1) AF=1.
    NC=NC+N
    DO 20 [=1,NU
    IN= ! + N |
    AI=I
    AIN=IN
    D(IN)=C(I)/AF
    20 AF=AF*AIIA/AI
        WRITE(3,1) (O(I),I=A1,Ni)
        RETLRN
        ENU
```

```
            SUBNOUTINE RESULT
C THIS SUBHCUTIN: GIVES THE RESULTS OF A.&
c elgenvaluE prlelem
    CCNFON K,N,IT,NC,NE,NP,NPL,NP1,EI
    CONMON B(8,8),0(8,16),C(100),F(10),i(100)
    1 FCPMNT(4ELG.R)
    2 FCHINAT(/)
    WRITE(3,1) EI
    WRITE(?,1) EI
    WRITE(3,2)
    00 20 I=1,NC
    IF(C(I).NE.O.O) GL TO 4C
20 CCNTINUE
40 EI=C(I)
    UC <O J=1,NC
    COC(J)=C(J)/EI
    WRITE(3,1) (C(I),I=1,NC)
    WKIIE(2,1) (C゙(1),l=1,NC)
    RETLPN
    ENE
```


ACKNOWLEDGEIUENTS

I wish to express my thankfulness to Dr. Hugh S. Walker, for his guidance and counsel throughout the course of this work. In addition to being my Major Advisor, he has been my sourse of inspiration and guide for the computer work without which the present work would have been impossible.

I also wish to express my deep gratitude to Dr. Palph G. Nevins, Head of the Department of Mechanical Engineering, for the financial assistance which aided in making the study possible, and for the careful review he has given to this paper.

VITA

Vasant M. Pandav

Candidate for the Degree of

Master of Science

Thesis: AN ITERATIVE TECHNIQUE FOR AN ANALYTICAL SOLUTION TO
TWO-POINT BOUNDARY PROBLEMS.
Major Field: Mechanical Engineering
Biographical:
Personal Data: Born at Jepa-Pimpri, District Bhir, Maharashtra, India, July 10, 1943, the son of Madhavrao G. and Godawaribai M. Pandav.

Education: Attended Middle-Cum-High School, Patoda, Maharashtra; graduated from Y. N. Vidyalaya, Ambajogai, Maharashtra in March 1958; attended Govt. Arts \& Sc. College, Aurangabad, and College of Engineering Aurangabad; received the Bachelor of Engineering (Mechanical) degree from the Marathwada University, Aurangabad D., India, in June 1964, completed requirements for the Master of Science degree at Kansas State University, in November, 1966.

Professional Experience: Worked in the capacity of an Assistant Lecturer in Mechanical Engineering, at College of Engineering, Aurangabad D., India, from June 1964 to August 1965.

AN ITERATIVE TECHNIQUE FOR AN ANALYTICAL SOLUTION TO TWO-POINT BOUNDARY PROBLEMS
by

VASANT MADHAVRAO PANDAV

B. E., Marathwada University, Aurangabad, India, 1964

AN ABSTRACT OF A MASTER'S THESIS

submitted in partial fulfillment of the
requirements for the degree

MASTER OF SCIENCE

Department of Mechanical Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas
1967

An iteration technique for solving two-point boundary problems was studied. The technique yields an analytical solution in the form of a power series in the independent variable. This type of technique had been previously applied to the problem of buckiing of columns by L. Vianello and to the problem of critical speeds of rotating shafts by A. Stodola. Here the method was applied to a larger class of problems.

A variety of problems of both equilibrium and eigen-value type were selected for the study. The problems varied in the order of complexity of the differential equations governing them. Some of them were simple enough to have solutions in closed form. These solutions were expanded in power series so as to make the comparison direct, and therefore, easy. Others did not have closed form solutions so that it was necessary to solve them by some other method. The solutions thus obtained were used to form a basis for comparison.

In the case of eigenvalue problems the method led to the mode corresponding to the lowest eigenvalue. The process was then modified to extract modes corresponding to higher eigenvalues. The orthogonality condition was used for this purpose. Lastly, a problem of practical importance was selected. The problem was typical of its class. The governing equation had a lower order derivative term (independent of eigenvalue) present with the highest order derivative term. The terms had nonconstant coefficients. To the author's knowledge, a closed form
solution had not been obtained for this problem at that time. However, a numerical solution with very good accuracy was available. This solution was used for comparison with that obtained by the present method.

