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CHAPTER I

INTRODUCTION

When a practical problem in science or technology permits

mathematical formulation, the chances are rather good that it

leads to one or more differential equations. This is certainly

true of the vast catagory of problems associated with beams and

columns, heat transfer and fluid flow, elasticity and electricity,

etc.

Many of these problems which can be neatly formulated as

differential equations can go no further for lack of solutions.

At this point one discovers how few, relatively speaking, are the

equations that have solutions in closed form.

Faced with this situation, various numerical methods have

been devised that squeeze the desired information out of the

differential equation directly. However, most of these methods

yield a solution over a limited range of the domain, and this is

in the form of a table, giving values of the dependent variable

and sometimes its few derivatives for specific values of the in-

dependent variable.

Many times this defines the solution well enough, particu-

larly if the solution has been tabulated with a sufficiently

small increment of the independent variable. But however fine

the increment be, the solution does not compare with an analytical



one, in that it cannot be handled analytically - put in equations,

differentiated or integrated as desired, and so on.

Iterative methods, Improving an assumed analytical solution

with each step, have been suggested, and successfully applied to

problems of initial-value type and also to those boundary value

problems for which Green's function is known. Iteration was first

applied to a technical eigenvalue problem in I898 by L. Vianello

[21]* in a study of buckling problems. The process was applied

by A. Stodola [18] in 190^ to the problem of critical speeds of

rotating shafts. The theory of the method had already been pre-

sented by H. A. Schwarz [16] in 1885 and been developed by E.

Picard [13] . It is interesting to note that all these early works

dealt with a particular class of eigenvalue problems. No effort

was ever made to apply the technique to equilibrium problems and

not many instances could be cited when an attempt was made to

develop this technique further to apply to a wider class of pro-

blems.

It has been attempted in the present work to develop a

technique for obtaining an analytical solution to boundary value

problems governed by quasi-linear differential equations. The

solution was intended to be a power series in the independent

variable. The treatment here was limited to problems in one

dimension, which include the initial value problems as a sub-

class. However, the author has a feeling that with enough modi-

fications, the technique could be extended to problems in more

than one dimension.

* Numbers in brackets refer to references in Bibliography



CHAPTER II

THE PROBLEM

Nomenclature

English alphabets:

A area of cross-section

b breadth of section

B
'

coefficient matrix in the matrix equation representing linear

boundary conditions

Bi
ordinary differential operator

c, coefficients in the series expansion of the solution function

C column vector of c^> i = 1» 2,..., m.

d depth of section, dr .
<*
2

"" end depths

D domain of definition; d/dx; coefficient matrix in DC = F

(refer p. 13)

E modulus of elasticity

F constant column vector in DC = F (refer p. 13)

G ordinary differential operator

I moment of area of cross-section

K constant column vector in the matrix representation of linear

boundary conditions

L length

m order of the governing differential equation

M quasi-linear ordinary differential operator, containing the

highest order derivative term

n number of boundary conditions at the left end



N ordinary differential operator

x the independent variable

y the dependent variable

Greek alphabets:

1/4
a ratio of end depths = d

2
/d

1
; X

3 X^VL

Y (cos a - cosha)/( sinha - sin a)

X eigenvalue, in the non-dimensional formulation
i

p density

I summation sign

id angular frequency

Subscripts and superscripts:

Number! cal subscript to y or x represent that particular mode.

Roman superscript to y represents differentiation.

Numberical or alphabetic superscript in parentheses represent a

particular iteration.



Statement of the Problem

A boundary value problem, in general, may be stated as

M[y] =XN[y] in D
(II-D

B*[y] = i = 1, 2,. .. ,m

on the boundary of D.

Here D is the domain of definition of the problem and, in

case of two-point boundary value problems, is a one-dimensional

continum. M and N are ordinary differential operators, M being

quasi-linear in nature. The order of the differential equation

m is the same as that of the operator M and is larger than the

order of the operator N.

The presence or absence of X , an undetermined parameter,

determines whether the problem belongs to the eigenvalue class or

equilibrium class. In the case of eigenvalue problems the boun-

dary conditions are essentially homogeneous. The formulation is

satisfied by an infinity of values of X and the corresponding

eigenfunctions y.

In the present work a solution of the formulation was sought

in the shape of y expressed as power series in the independent

variable x. In case of eigenvalue problems, the first few eigen-

values and the corresponding mode shapes constituted what was

expected as solution.



The Technique

The governing differential equation of the formulation,

being quasi-linear in nature, was very easily solved for the

highest derivative of y.

D
m
y = Gly]

or y = D-
m
(G[y]) Jo. x

1 ' 1 (H-2)
i=l

where D = d/dx and the negative powers indicate integration. The

c., the constants of integration, were determined by the use of

the m boundary conditions -

B. [y] = i = 1, 2 m.

An iterative process was then set up

m

I

i=l

(r+1), _ n
(II " 3)

B
1

[y
VJ

-

iy
] =

I* = Xf b| * M 1

To start with, a polynomial was selected as an initial guess

for y i.e. y^ . Any polynomial would serve the purpose but it

is advisable to select one that satisfies all the boundary con-

ditions. The proper choice of y^ ' would certainly accelerate

the convergence of the process.

This was enough to proceed, if the parameter X did not enter

the formulation. Otherwise, it sometimes necessiated a guess for



X (in addition to that of solution function) at every step of

iteration. However, this was easily furnished by Raleigh's quo-

tient of the trial function.

It was observed that the iteration process here built up a

power series approxitation to the true solution, each iteration

adding substantially a few terms to the expansion (usually not

less than the order of the differential equation, m.). If the

process was to converge (as it did and could be expected to in

most of the well behaved cases) after enough iterations the first

few terms would quit changing. The convergence could be observed

by comparing the successive iterates.

In eigenvalue problems the process converged to the mode

corresponding to the smallest eigenvalue. The orthogonality con-

dition was used to extract the higher modes.
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Convergence of the Iteration

For initial-value problems, the scheme is the same as the

extension of Picard's method for higher order equations. The

proof has been exhibited in the references [15] » [12] . Levy and

Baggott [8] give a proof of convergence for systems with second

order differential equations of both initial-value and equilibrium

type. A general proof to cover eigenvalue problems cannot be

given. However, a proof for convergence of an iteration proce-

dure in general is given by Collatz ( [2], pp. 36-^-8). Also, the

convergence of an iteration procedure, employing the inverse of

the operator M, is suggested in reference ( [3], p. 30 3)- Vy'hen M

is simply D
m

» the method presented in the thesis coincides with

the method mentioned above. The proof is given below:

The eigenvalue problem

M[y] = XN[y]
(II-*)

B
1
[y] =0, 1=1,2 m

can be written as

y =*G[y]

where G = M N .

Assume that the expansion theorem holds, and also that

A, < \ <_ \„ <_ ju <,
••• Any admissible function y* can then

be expressed as a linear combination of the individual modes y^.

(0) r
y = c

l yl
+ I c

i y ii=2



Starting from an arbitrary admissible function y^ , an

iteration process is set up according to the recurrence relation

y
(n+l) =G[y (n)

]

n = 1, 2, 3, -

For an eigenfunction y,

y
(1) -W 0)

l

= G[c
i
y
i

+ Ivi
i=2

c,

=
x yi

+ I l
1 y iA

l -

1
i=2

A
i

x

oo X

y< 2
> ^Gly' 1

')

so X

= G[f(cy + I ^.y.M
A
l -

1
-
1 i=2

A
i

1 1

= t (-r yi
+ l -r -r y i>A

l
A
l

x
i=2 A

i
A
i

x

-t4<Vi*
lfa

<^'i)
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Continuing in the same manner,

y
<n) •h^m* V&\'t>-i=2 1

** n
As n gets larger, the quotient (—) tends to zero. So that,

\

(n) _ .1

(II-5)

y =7-Hc
lyl

A
l

and Xt
-

(n)

1 "
y
(n+l) •

Thus the iteration converges to the eigenfunction corres-

ponding to the smallest eigenvalue. In general, the process will

converge to the eigenfunction corresponding to the first non-zero

c
i

, if carried out exactly. While working approximately, however,

small components of y- will be inevitably introduced, and the

process will finally converge to the eigenfunction corresponding

to the smallest eigenvalue independent of the choice of y^ '

.



CHAPTER III

COMPUTERIZATION

It is difficult to estimate in advance how much computation

will be required to obtain a solution by iteration. The amount

of computation per cycle increases with the number of cycles.

The number of cycles required depends on the accuracy desired and

on the particular system to be solved. So that, at some stage,

hand computation goes out of the question and recourse has to be

taken to some high-speed computing machine. The problems illus-

trated in the present work were programmed for IBM 1 410/7010

Operating System (1410-PR-155) F0RTRAN-1410-F0-970.

Standardization

For adapting the technique to digital computers, standardi-

zation of the formulation was done. First the formulation was

reduced to non-dimensional form. One of the two boundary points

was made to coincide with the zero of the independent variable

axis ( x-axis) , and the scale of the variable x was adjusted so

that the separation between the boundaries was unity, unless

otherwise necessary.

11
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Boundary Conditions

Each iteration involved a m-fold integration and hence gave

rise to m constants of integration. These constants were to be

determined so as to make the iterate satisfy the boundary condi-

tions. Application of each condition resulted in an algebraic

relation in the m constants of integration to be determined.

Thus a set of m algebraic equations was obtained. The complexity

of these equations naturally depended upon that of the particular

boundary conditions. Fortunately for the computer, all the pro-

blems used for illustration happened to possess linear boundary

conditions. Nevertheless, this was not a limitation to the use-

fullness of the scheme, but it did reduce the amount of computa-

tion required for fixing the m constants. Also, most problems

of practical importance have linear boundary conditions.

The most general linear boundary conditions could be repre-

sented by the matrix equation

B I = K

where B is the coefficient matrix, Y is the column matrix with y,

y » y » y t . y for its elements, and K is the constant

column.

N
c

y = I c.x
1 -1

i=l 1

i=p+l Cl-P-1)! i
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By this time all but the first m coefficients c
±
were known.

Hence, at boundary points, where x is specified, y and any of its

derivatives were just some linear combination of the c
i
(1=1,2, ,

m) . Hence, the unknown column Y could be written as

Y = S C + T

where C is the column of undetermined coefficients cit and S and

T were respectively the square and column matrices determined as:

s«
, J < i

t = r (,1-1)
; x

>i-l

After substitution

B (SC + T) = K

BSC = K - BT

and C = (BS)"
1

(K - B T)

= DF

where D = (BS)"1 (III-D

P = K - BT.

The subroutine DMTRX was programmed to find the D matrix

while subroutine BOUND constructed the column vector F. Finally,

the constants c, were obtained by matrix multiplication.



Ik

The problem of obtaining corresponding matrices for obtaining

modes corresponding to higher eigenvalues is discussed later

(Intermediate Eigenvalues p. 34)
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Subroutines

A variety of operations were expected to be performed re-

peatedly. Subroutines were programmed so that they could be in-

serted in any other programs and called for whenever desired.

These subroutines along with their limitations are briefly dis-

cussed below.

i) Subroutine DIFFER (C,NC,D,ND,N) : This subroutine was used to

differentiate a given polynomial C having No terms, N times to

obtain a polynomial D. Nd, the number of terms in D equaled Nc

minus N. The only restriction on N was that it should be non-

zero positive integer.

ii) Subroutine INTGRA (C,NC,D,ND,N) : This subroutine gave a poly-

nomial D as the Nth integration of the polynomial C. Nd equalled

Nc plus N. N should be a non-zero positive integer. The con-

stants of integrations would be left undetermined.

iii) Subroutine SSMUL (A,NA,B,NB,C,NC) : The polynomials A and 3

were multiplied to get polynomial C by this subroutine. Na and

Nb both should be non-zero positive integers.

iv) Subroutine SEDIV (A,NA,B,NB,C,NC) : This subroutine was meant

to obtain the polynomial C as the division of polynomial A by

polynomial B. Nc, the number of terms in C, should be specified

and the process is terminated after calculating that many terms.

v) Subroutine INVRS (A,N): This subroutine was designed to find

the inverse of a square matrix A of order N by Gauss-Sidel re-

duction process. In case the inverse did not exist the program

had instruction to write out 'NO INVERSE 1
.
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vi) Subroutine MATMUL (A.N.3) : This subroutine was specifically

made to multiply a square matrix A, of order N, by a column matrix

B.

vii) Subroutine INTGRD: The aim of the subroutine INTGRD was to

construct G[y^
r
'l from the rth iterate. Tne sequence of in-

structions solely depended upon the operator M (and N, if pre-

sent) of the specific problem. This subroutine, in case of

eigenvalue problems, normalized the iterate every time and also

computed the Raleigh's quotient, if necessary.

viii) Subroutine INITL: This subroutine inilized the particular

problem.

ix) The main program: This program controlled the order in which

all other subroutines were called.

x) Subroutine RESULT: This subroutine writes out what is supposed

to be the answer.



CHAPTER IV

ILLUSTRATIVE PROBLEMS

1) Equilibrium Problems:

i) A Beam on Elastic Foundation:- The equilibrium of a flexible

beam subjected to a uniformly distributed load, while resting on

a continuous elastic foundation was considered. The non-

dimensional formulation as taken from 'Engineering Analysis' by

Crandall ( [3], p. 195) was

y
iv

+ y = 1 < z^l

and y
(Q)

= y
(Q)

= (IV-1)

y (l)
=y

(1)
=

° *

In problems of this type, which possess unique non-zero

solutions, the iteration could be started from an initial guess

,<9> . 6.

In the reference the problem was solved in several ways.

The solution by Ritz's stationary functional method with trial

family ( [3], p. 235)

y = c
1

x (1-x) + c
2

x2 (1-x2 )

was taken for comparison. The solution contained only five terms,

17
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did not satisfy all the boundary conditions, and therefore is not

exact. It is compared with the first, third and sixth iterates,

in Table I.



Table I

Results: A Beam on Elastic Foundation

19

Coeff.
Number

Comparison
Solution First

Iterations
Third Sixth

1 0.0000000 0.0000000 0.0000000 0.0000000

2 0.041249 0.041667 0.041249 0.041249

3 0.000032 0.000000 0.000000 0.000000

4 -0.082434 -0.083333 -0.082646 -0.082646

5 0.041217 0.041667 0.041667 0.041667

6 -0.000344 -0.000344

7 0.000000 0.000000

8 0.000098 0.000098

9 -0.000025 -0.000025

10 0.0000001 0.0000001
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ii) Bending of a Strut:- This problem with its non-dimensional

formulation was taken from "The Numerical Treatment of Differen-

tial Equations" by Collatz (p. 143) . It considered the bending

of a strut with varying flexural rigidity, and axial compressive

load, by a distributed transverse load. The equations of equili-

brium were

y
11

+ (1 + x
2

) y + 1 = -I < i < 1

(IV-2)

y<-u
= y

( +D
= °-

To reduce this formulation to the desired form, a change of

variable was made.

2 x = x + 1. (IV-3)

With this

y
11 + 4 (1 + (2 - 4 x

2
) y) = < x <_ 1

(IV-4)

*<0)
= y (D

= °'

The first seven terms of the power series solution of the

formulation (IV-2) were available in the reference (p. 225) . For

comparison, the change of variable (IV-3) was made. The solution

appears in the second column of Table II.

It may be noted that the initial guess

(0) m
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did not satisfy any of the boundary conditions. This did not in

anyway prevent convergence, since at the very next opportunity

the boundary conditions were forced on the iterate. The results

are given in Table II.
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Table II

Results: Bending of a Strut

Comparison
Coef f

.

Reference Iterations
Number Solution Second Seventh Tv/elfth

1 0.775 x 10~ 8 0.00000 0.00000 0.00000

2 3.47293 4.66667 3.48506 3.47318

3 -1.99998 -6.00000 -2.00000 -2.00000

4 -4.63078 2.66667 -4.66578 -4.63129

5 +5.96531 -1.33333 5.99912 5.96463

6 -2.53309 -2.51655 -2.52592

7 -2.96677 -3.05473 -2.99460

8 4.43757 4.57156 4.51827

9 -1.80832 -1.99472 -1.99803

10 -0.96844 -0.65345 -0.60670

11 2.068897 1.55658 1.51371

12 -1.58388 -0.91128 -0.90380

13 0.731512 0.05860 0.07669

14 -0.21578 0.27760 0.26406

15 0.03083 -0.20495 -0.21599
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2) Eigenvalue Problems:

i) Vibrations of a Beam Fixed at One End and Hinge d at Another:

-

This problem, being ver;y • common, could be found in almc st every

text on vibration of elastic bodies. The present formulation

appeared on page 255 of the reference [ 20] .

F iv
= 3^ 1 x 1 L

y (o)
= yl

(o)
== (iv-5)

y (D = y (L)
=

To make it dimensionless , new variables were introduced-

y = y/L

(IV-6)

x = x/L.

The new formulation was

y
iv

= * y < x < 1

y (o)
= y (o)

= (IV-7)

y(D
= y (i)

= 0.

and X = 3T,

The exact solution to this formulation is

= (cos a x - cosh ax) + y( sln <*x - sinh ax)
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i
4 _where a = A

cos a - cosh a
Y> sinh a - sin a

The a
i s are given by the equation

Tan a = Tanh a
,

The exact solution corresponding to the smallest eigenvalue

was expanded in a power series and the various iterates compared

with it. (Table III)

.
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Table III

Results

:

Beam Vibrations - First Mode

Coeff.
Number

Comparison
Solution

Iterations
Tenth Fifth Second

3 1.0000000 1.0000000 1.0000000 1.0000000

4 -1.3098845 -1.3098847 -1.3098874 -1.3157893

7 0.6603361 0.6603360 0.6603518 0.7368418

8 -0.3706989 -0.3706989 -0.3707157 -0.5263155

9 0.0000000 0.0000000 0.1052631

11 0.0311460 0.0311460 0.0311551

12 -0.0111266 -0.0111266 -0.0111328

15 +0.0003082 0.0003082 0.0003095

16 -0.0000807 -0.0000807 -0.0000814

19 0.0000010 0.0000010 0.0000011

20 -0.0000002 -0.0000002 -0.0000003

h 0.00420661 0.00420651 0.00376984

All (4n+l)
st

and (4n+2)
nd

coeff. are zeros except if last

term of iteration.

Comp•arison solution is series expansion of

cosS, -coshs.
(cosSTX-coshSnX) + —r-r-r . (sinB,x-s

1 1 sinnX, -sinX, 1
linns, x)

1

with i 6
1

= 3.9266023 X. , the ei.genvalue obtained from the

tenth iteration.
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ii) Transverse Vibrations of a Tapered Beam of Rectangular Cross-

section, Simply Supported:- This problem was studied by the

author as an assignment for the course 'Machine Vibrations II*.

The derivation of the formulation follows:

In addition to the usual assumption of small deflections,

it was assumed that the taper is very small: so that the differ-

ential equation of motion can be approximated by that for a uni-

form beam (see formulation (IV-5))«

y
iY

= By <_ x <_ L

with end conditions

y<c» ="('o)
-°

Onlytthe term 3 = &sw ([20], p. 255) is no longer constant

since A and I are variable for the problem considered here, b,

width of the section was assumed to be uniform and the depth was

assumed to vary linearly with x.

d
(x)

= d
l

+ (d2-di }i •

= d
1

[l + (a-l)-
X
r

]

where d, and dp are depths at left and right ends and a

d2
/d

l«
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A
(x) _

b d
(2)

b d? v/12

12

d
1

2
[l+(a-l)|]

2

3
4

=
2

12pu 1

Ed
x

2 l+(a-l)£ 2

With this the differential equation becomes

l+(a-
2

- . x 2 —iv 12 pu —
1}

L y " 2 Y -u Ed^

With the change of variable (IV-6)

[l+(a-l)x]ylv = Xy < x <_ 1

y
(0) " *<o) " ° (IV-8)

y (D = y (D " °

•

-

where X - 12q^
Ed,

1*

The finite difference method with ten intervals was used to

solve the problem. For various values of a , the modes correspond-

ing to the smallest eigenvalues were determined. These solutions

formed the basis for comparison for the answers given by the pre-

sent technique.

•
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Good agreement was found for solutions with values of a =

1, 1.1, ,1.9. But for a = 2 the process apparently converged

to a solution which did not agree with that obtained by the

finite difference method. An investigation into the matter re-

vealed that the reason was in the divergence of the power series

expansion of l/(l+x) . Forming this series was an important step

in constructing the integrand at each iteration. As might be ex-

pected the error was corrected by turning the beam about its

centre. The value of a was now 1/2 and the expansion of 1/(1-0. 5x)

converges rapidly enough. The various solutions are listed in

Table IV, along with the solutions by the finite difference method.

It was expected that the analytical solution would be more

accurate, since the difference method used only ten intervals, and

inversion of a matrix of order nine was involved. This was easily

verified for a = 1, (see Table V) that is a uniform beam. For

this case the mathematically exact solution was known. It was

found that the answers from the difference method were a bit too

low. There was no way to compare the accuracies of the two

methods in case of other values of a. But one thing was certain,

that the same trend (the solutions by the present technique being

slightly larger than those by the difference method) was followed

throughout.



Table IV

Results: Vibrations of Tapered Beam

29

Dia
If

Ratio Difference method lp
a Comparison Solution Polynomial exp,

(

Xl
P" Xlf)lQQ
A
4p

1.0 3.1280996 3.1415925

1.1 3.2051857 3.2183947

1.2 3.2785025 3.2920185

1.3 3.3490291 3.3628388

1.4 3.4170429 3.4311626

1.5 3.4828436 3.4972445

1.6 3.5466312 3.5612992

1.7 3.6085762 3.6235085

1.8 3.6688213 3.6835085

1.9 3.7275184 3.7123093

2.0 3.7847778 *3. 8005053

0.41039377

0.41042200

0.41056877

0.41065602

0.41151387

0.41177847

0.41187216

0.41188344

0.39872854

-0.40969377

0.41382655

*This value was obtained by turning the beam about its center

and working the problem with a = 0.5.



Table V

Results: Tapered Beam Problem with

a = 1 i.e. a uniform beam.

30

Coeff

.

Number
Exact Solution
Comparison Solution

Present Solution
Tenth Iteration

A
l

2

4

6

8

10

12

14

16

18

20

1.0000000

-1.6494792

0.8162345

-0.19233?^

0.0264380

-0.0023787

+0.0001509

-0.0000071

0.00000025

Less than 10
-8

3.1415925

1.0000000

-1.6449338

+0.8117423

-0.1907517

+0.0261478

-0.0023460

0.0001484

0.0000070

0.00000025

Less than 10
-8

Note:- All odd coefficients in both solutions are zeros.
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ill) Longitudinal Vibrations of a Cantilever of Varying Cross-

Section:- This eigenvalue problem was formulated and solved in

reference ( [2 ] , p. 1^7). The formulation given was

(l+xjy11 + y
1 +\ (l+x)y = . x < 1

ym\ = y/-n = 0'

(IV-9)

(o) - '(1)

Various numerical methods were applied and close bounds for

the smallest eigenvalue were given ( 2 , p. 236)

.

3.218211 < \
x

< 3.218532

In order to compare this solution with the solution obtained

by the present method, a solution was attempted by another method.

The various steps involved were: 1) The first m terms and the

eigenvalue were assumed. 2) About 40 more terms in the series ex-

pansion were found by using the recurrence relation obtained from

the differential equation. 3) The first m terms were then read-

justed to satisfy the boundary conditions. 4) An improved eigen-

value was calculated from the Raleigh's quotient of the polynomial

solution. The cycle consisting of steps two to four was repeated

a number of times, everytime improving the solution function and

the eigenvalue.

However, it was observed that the convergence was very slow

in both of these processes. The coefficients in the solution

polynomial did not decrease rapidly enough. And even after about

20 iterations the eigenvalue agreed with the correct one, only to

the second significant figure. To accelerate the convergence, a

variable change was made-
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t = 2 x

so that the new formulation was

fcfl+l/2t)£~g + 2^ + *(l+l/2t)y =
dt a^

L t L 2

y(o y( 2 )
- °.

With this formulation agreement up to five places was ob-

tained in 19 iterations. More iterations deteriorated the solu-

tion rather than improving. The reason could be attributed to

the fact that only eight place arithemetic was used, and this

might perhaps be the closest, the answer can reach the true solu-

tion with the number of places used in the arithemetic. The

solutions are compared in table VI.
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Table VI

Results: Longitudinal Vibrations of a Cantilever

Coef f

.

Number
Comparison
Solution 6 th

Iterations
13th 19th

X 3.2184796 3.2427394 3.2245237 3.2185929

1 1.0000000 1.0000000 1.0000000 1.0000000

2 0.0000000 0.0000000 0.0000000 0.0000000

3 -0.3966840 -0.3826942 -0.3909474 -0.3940352

4 0.0661140 0.0598456 0.0630494 0.0642405

5 0.0018139 0.0023530 0.0020571 0.0019467

6 0.0045958 0.0040887 0.0043546 0.0044540

7 -0.0028505 -0.0024963 -0.0026736 -0.0027404

8 0.0011162 0.0009618 0.0010388 0.0010680

9 -0.0004800 -0.0004102 -0.0004452 -0.0004585

10 0.0002170 0.0001836 0.0002002 0.0002064

11 -0.0000983 -0.0000824 -0.0000903 -0.0000933

12 0.0000445 0.0000373 0.0000410 0.0000425

13 -0.0000206 -0.0000170 -0.0000188 -0.0000195

. 14 0.0000095 0.0000078 0.0000087 0.0000090

15 -0.0000044 -0.0000033 -0.0000040 -0.0000042

16 0.0000021 0.0000019 0.0000019

17 -0.0000010 -0.0000009 -0.0000009

18 0.0000005 0.0000004 0.0000004

19 -0.0000002 -0.0000002 -0.0000002

20 0.0000001 0.0000001 0.0000001

•

•
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iv) Intermediate Eigenvalues:- The basic iteration procedure al-

ways converged to the smallest eigenvalue and the corresponding

eigenfunction. However, the method could be modified to provide

other modes by orthogonalising the initial trial with respect to

the known modes and continually purifying the iterates.

Thus the Iterate was required to satisfy all the boundary

conditions and the orthogonality conditions, a total of (m+p)

conditions, where the (p+l)st mode was sought. This necessiated

(m+p) undetermined terms in the expansion polynomial. Out of

these, m terms were supplied by the constants of integration, and

the next p terms in the series were used to provide the rest.

The orthogonality condition, in the integral equation form,

cannot be directly used. The conversion to algebraic equation

form is illustrated here. Even though y, and y 2 ; the first and

the second eigenfunctions, are used in the illustration, the pro-

cess is perfectly general. The condition for y, and y2
may be

written as

\ y2
M [y

1
l dx =

f
1

or \ y2
N[y

1
]dx = 0. (IV-10)

Both the forms are equivalent and simplicity will govern the choice,

For the sake of illustration the later form is chosen.
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The first eigenfunction, yv , would be known In polynomial

form. The application of the operator N will yield another poly-

nomial

N
[yi

] = p^x1 "1
.

y« is sought as a power series

y2
= [ex1"1

Substituting in (IV-10)

y2
N JyJ dx =

|
(Ic

1
x J

"l
)(Ib

1
xl

-l
)dx

>0 J l

I
c
j i
Kv1+J"2)to

j •'n i

i-^i+3-1

= LVj = o

where d
3

=
^I*J=I
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Thus, the conditions the iterate should satisfy, are

BAyl 1=1,2 m

c.dj =0 1=1,2,
J

The method was applied to find the elgenfunction correspond-

ing to the second lowest eigenvalue of the formulation (IV-1).

The result, with the expansion of true solution, is tabulated in

Table VII.
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Table VII

Results

:

i Beam Vibrations - Second Mode
.. .

Coeff

.

Number
Comparison
Solution Tenth

Iterations
Fifth Second

1/A
2

0.00040057 0.00040205 0.000509232

3 1.0000000 1.0000000 1.0000000 1.0000000

4 -2.3561851 -2.3561802 -2.3550217 -2.2766555

7 6.9345492 6.9345261 6.9090413 5.4548292

8 -7.0024633 -7.0024360 -6.9620717 -4.8558406

11 3.4348552 3.4348092 3.3694359 1.1291510

12 -2.2072238 -2.2071817 -2.1463823 -0.4514840

15 0.3569306 0.3509095 0.3287323

16 -0.1681989 -0.1681846 -0.1496814

19 0.0121331 0.0121300 0.0087900

20 -0.0045139 -0.0045122 -0.0028828

23 0.0001725 0.0001723 0.0000522

24 -0.0000530 -0.0000529 -0.0000100

27 0.0000012 0.0000012

28 -0.0000003 -0.0000003

All (4n+l)
st and (4n+2)

nd
coe ff. are zeros.

Comparison solution =

cos 3 2
(cos6

2
x-cosh8

2
x) +

ST5E3

-coshS-

2
-sinS

2
<
sins

2
x "sinhS

2
x )

with S
2

= \* = 7.0685465

obtained from 10th iteration.

•



CHAPTER V

THE PINAL PROBLEM

Most of the problems considered up to this time were of

academic nature. It was now decided to work a problem of practi-

cal interest. The problem selected is associated with the name

of Graetz[7], who obtained the first analytical solution of the

problem. The present non-dimensional formulation was taken from

a Master's Thesis by Robert Lipkis [10] .

y
11 yVx + (1-x

2
) y = 0<.x<_l

y( )
= *(i) - ° cr-i)

These equations represent the problem of 'Heat Transfer to

an Incompressible Fluid in Laminar Motion' . A brief description

of the problem is given in Appendix C.

Mr. Lipkis had evaluated the first few eigenvalues to a very

good accuracy. The present method was applied only to obtain the

first mode. The eigenvalue obtained (7.31358) tallys with that

given in the reference (7.31358) to the given number of places.

An interesting thing about this problem is that, the quotient

\ M y dx / \ N y dx

•'o
' ^0

for an admissible function y is also a good approximation to the

38
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eigenvalue. In fact, when this quotient was used by mistake, the

iteration converged a little earlier than it did while using

Raleigh's quotient. This solution is listed in column 3 of the

Table VIII.

The reference [1?] also listed the values of y
1

at x = 1.

The value of y^, calculated from the polynomial solution by the

present' method compared very well with the value in reference.

However, this does not mean much. Because, the mode function is

only determined to within a constant multiple which can always be

adjusted for any desired value of yL. It only means that both

solutions were normalized in some equivalent manner.

A solution was also attempted without the use of Raleigh's

quotient. The term factored out during normalization was taken

to be the reciprocal of an approximation to eigenvalue. The pro-

cess diverged, oscillating between two values which bracketed the

true value. As a remedy a weighted average of two successive

iterates was tried. This effected the convergence. But the con-

vergence was not fast enough. It is quite likely that a proper

choice of weighting factors would do better. (The weighting pro-

cedure used was nth approximation = 0.7 times the (n-l)st approxi-

mation +0.3 times the nth iterate.) This solution appears in

the second column of Table VIII, and the solution by iteration

using Raleigh's quotient appears in column 4.
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Table VIII

Results: Heat Transfer to an Incompressible Fluid in Laminar

Motion

Coeff

.

Number
Comparison
Solution 1

Comparison
Solution 2

Tenth
Iteration

1/A
X

0.13677533 0.13673189 0.13073178

1 1.0000000 1.0000000 1.0000000

3 -I.836673O -1.8283964 -1.8283971

5 1.3018585 1.2928571 1.2928585

7 -0.6285^97 -0.6340986 -0.6340993

9 0.2080135 0.2202023 0.2202023

11 -0.0536991 -0.0624800 -0.0624797

13 0.0105566 0.0143570 0.0143570

15 -0.0017016 -0.0028671 -0.0028671

17 0.0002170 0.0004921 0.0004921

19 -0.0000236 -0.0000758 -0.0000758

21 0.0000020 0.0000104 0.0000104

23 -0.0000002 -0.0000013 -0.0000013

25 0.0000000 0.0000001 0.0000001



CHAPTER VI

CONCLUSION AND DISCUSSION

Even though a rigourous proof of the convergence of the

Iteration for a general problem is not given, it could be seen

that the process converges in many cases. The method is suffi-

ciently general in application, and could be used with advantage

when no other simple analytical solution is available.

The method is equally applicable to equations with constant

and non-constant coefficients. The only requirement is that the

coefficients should possess a power series expansion. Obviously,

only a finite number of terms (usually a very few) could be kept,

so that the error involved will be dependent on the number of

terms used and therefore on the rate of convergence of the series

expansions of the coefficients.

To be able to continue the iteration without getting stuck

in the integration process, no negative or fractional powers of

the independent variable should appear in the result of G[y]

.

The appearance of negative powers is usually due to some coeffi-

cient in the differential equation, when solved for the highest

derivative term. This difficulty can, in most cases, be over-

come by a suitable change of variable e.g. a + t = x,
|
a| > 1.

Another difficulty is encountered when some coefficient has

(a + x) in the denominator with, |a| less than, equal to or

slightly larger than one. Division by (a + x) is equivalent to

41
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multiplication by its reciprocal. The coefficients in the expan-

sion of l/(a+x), decrease, remain the same viz. unity, or in-

crease according as
|
a| is greater than, equal to, or less than

unity. It is of utmost importance to see that these coefficients

decrease sufficiently rapidly, by effecting a change of variable,

if necessary. Otherwise, the chances of convergence go down.

This case was encountered in the problem of vibrations of a

tapered beam with a = 2, and in the longitudinal vibrations of a

cantilever. In the .first case, the difficulty was solved by

switching the ends of the beam and thus working with a = 1/2.

This in effect is equivalent to a change of variable of 1 - t = x.

In the latter problem a variable change of t = 2 x, was made.

Both of these changes sufficiently accelerated the convergence.

In the end, a few words about the use of various subroutines

would not be out of place. Except for subroutines INTGRD and

INITL, all subroutines are very general in nature, and can be

used for almost any problem. However, when the order of the

equation is small e.g. 2, the formation of the D matrix is a very

simple matter. If it is fed to the program as data, considerable

computer core- space will be saved. This can be used, with advan-

tage, for carrying out more iterations, or for employing more

places of arithmetic. The same comment applies to the use of the

subroutine BOUND. For instance, the problem of longitudinal vi-

brations of a cantilever had the following boundary conditions-

(0) " *<1)
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The condition yf Q \ =0 leads to c„ = 0; and then y/-,\ =0, means

simply

x
i=3

If this is recognized in advance, a few instructions can re-

place the subroutines BOUND and MATMUL (A,N,B) , and therefore

subroutines DMTRX and INVRS (A,N).



SELECTED
BIBLIOGRAPHY

1. Bennett, Albert A, William E. Milne, and Harry Bateman.
Numerical Integration of Differential Equations , pp.
51-70. New York: Dover Publications, Inc., 1956-

2. Collatz, Lothar. The Numerical Treatment of Differential
Equations . Third Edition.

Translated by P. G. Williams from a supplemented version
of the second German edition. Springer-Verlog. Ohg.
Berlin.Gottingten.Heidelberg, i960.

3. Crandall , Stephen H. Engineering Analysis-A Survey of
Numerical Procedures . New York: McGraw-Hill Book Co.,
Inc. ,1956.

4. Den Hartog, J. P. Advanced Strength of Materials . New York:
McGraw-Hill Book Company, Inc., 1952.

5. Fox, L. The Numerical Solution of Two- point Boundary Problems
in Ordinary Differential Equations . London: Oxford
University Press, 1957.

6. Hilderbrand, Francis B. Advanced Calculus for Applications .

pp. 200-216. New Jersey: Prentice-Hall, Inc., 1964.

7. Jacob, M. Heat Transfer . Vol. I. p. 451. New York: John
Wiley & Sons, Inc., 1949.

8. Levy, H. , and E. A. Bagget. Numerical Solutions of Differen-
tial Equations . Vol. I. First American Edition, pp.
35-62. New York: Dover Publications, Inc., 1950.

9. Lipkis, Robert P. 'Discussion of Paper by Sellars, Tribus,
and Klein' ASHE Transactions . 1956, 78:1272-1274.

10. Lipkis, Robert P. Heat Transfer to an Incompressible Fluid
in Lanienar Motion . A Master's Thesis, University of
California, Los Angelas, California, August, 1954.

11. Lovitt, William V. Linear Integral Equations . First Edition.
New York: McGraw-Hill Book Company, Inc., 1924.

44



45

12. Milne, William E. Numerical Solution of Differential
Equations , pp. 37-4-2. New York: John Wiley & Sons, Inc.,
1953-

13. Picard, E. Traite d' analyse . Vol. Ill chapter VI, Paris:
Gauthier Villars & Cie, 1896.

14. Salvador!, Mario G. , and Melvln L. Baron. Numerical Methods
in Engineering . New York: Prentice-Hall, Inc., 1952.

15. Scarborough, James B. Numerical Mathematical Analysis , pp.
218-260. Baltimore: The John Hopkins Press, 1950.

16. Schwarz, H. A. Gosamnette Mathematische Aphandlrlnp-en von
H. A. Schwarz"; Vol. I. pp. 24-1-265. Berlin, 1890.

17. Siegel, Robert. 'Heat Transfer for Laminar Flow in Ducts
With Arbitrary Time Variations in Wall Temperature.'
ASME Transactions . I960, 82(3) 1 24-1-249.

18. Stodola, Aurel. Steam and Gas Turbines . Vol. I. Trans-
lated by Louis C. Loewenstein from the Sixth German
Edition, pp. 460-4-65. New York: McGraw-Hill Book Company,
Inc. , 1927.

19. Tien, Hsun. Heat Transfer for Incompressible Fluid in
Laminar Motion in Circular Tubes . Master's Report.
Kansas State University, Manhattan, Kansas, 1959.

20. Tong, Kin L. Theory of Mechanical Vibrations . New York:
John Wiley & Sons, Inc., I960.

21. Vianello, L. 'Graphische Untersuchring der Knickfestigkeit
gerader stabe 1

. Z. Ver. deut. Ins .. I898, 42:14-36-1443.



46

APPENDIX A

Computer Programs

The programs for the problems illustrated in this work are

listed here. Some of the subroutines, which are of rather gen-

eral character are listed in Appendix B. And Appendix C gives

brief description of the Final Problem, and the computer program

in its entirety.



47

C

C

SUBROUTINE INITL

THIS SUBROUTINE INITIALIZES THf: P^CCLC^ OF

A BclAK ON ELASTIC FCUNDATION

COMMON M t N i IT i NC iNE tNP , f PI t NPl f EI

COKNON Bt8,8),D(8,U)tC(100) ,E(10),PI1001

C( 1) = 1.

NC = 1

C/'LL Gf'.TRX

RETL«iN

Ei\C



48

SUHKOUTINE INTGRC

C TH IS SUBROUTINE FCRfrS

C THE [NTICRAND FLR THE PROBLEM OF

C A REAM CN ELASTIC FCUND4TION

COMMON MtNf [TiNCfNEtKPf KPLiNPl-fCI

COMMON P(R ,8) , D(6tl6] ,C(100) ,6(10) ,P( 100)

1 FQRKAT(4E16.81

2 FQRK/ITC/'i

WRITEOi 11 fC( n,I*l»NC)

KRlTE\3i2J

C( 1 )=L.-C( 1)

00 20 I = 2,:"JC

20 C( I )=-Ct I)

WRITEUil) (C.l l!tl*ifNC)

RETURN

END
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SUBROUTINE IN Ml
C THIS SUBROUTINE INITIALIZES THE PROBLEM CF

C BENCING OF A STkLT

COMMON M,N,IT,NC,NE»NP,MPI,NP1,EI

COMMON B(P,G) ,0(8, 16) ,C( 100) ,EI10) ,P( 100)

E( 1) = 2.

E(j2)«~4«

E(3)=4.

NE*3

CALL DMTRX

C( 1) = 1.

NC«1

RETURN

END
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SUBROUTINE INTGKC

C THIS SUBROUTINE FCR>S

C THE INTIGRAND FOR THE PROBLEM CF

C BENDING OF A STRUT

COMMON MtN»IT,NC,NE»NP,PPl,NPl,EI

COMMON H(%8) ,0(8,16) iCCIOOJ , £( 10) , PI 100)

1 FORMAT UElV.BJ

2 FORMAT (7)

WRITE!?, 11 (C( 1 ),I = 1,,\C)

HRI r£(3,2)

CALL SCiVUL (CfNCiEfNEfPfNP)

WRITE (3, 2)

CI l)»-4.-«.»P( I)

DC 20 1 = 2, TiP

20 C( t )=-4.*P{ I )

NC = .\P

WHITE (3,1) (C( 1 ), 1*1, NC)

RETURN

ENO
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subroutine ini h
c this subroutine imualizes the problem of

C VIBRATIONS OP A BEAP FIXED AT ONE END

C AND HINGED AT ANOTHER - FIRST MODE

COMHQN M,Ni IT,NC»NE|NPiNPl , NP1 ,nl

CCflKQN .'} ( 8 , 8 ) , ( 3 , L 6 ) • C ( 1 00 ) , E ( 10 ) , P ( 100 )

C( 1) = 1.

NC = 1

CALL DfcTax

RETURN



52

SUBROUTINE INTGRD

C THIS SUBROUTINE NORMALIZES THC ITERATE FOR' THE PROBLEM -

C VIBRATIONS OF A BEAf FIXED AT ONE END

C AND HINGCD AT ANOTHER - ANY WCDE

COMMON MiNi IT|NCfiNEfNP f fPl|NPl ,EI

COMMON P(P,P) ,0(0,16) ,0(100) ,E( 10) ,P( 100)

1 FCRMT14E16.8)

2 FORKATt/1

DO 20 I«1»NC

IF(C( I ) .•1E.0.0 ) GC TC 4C

20 CCM INUE

40 EI=C( I )

WRITE (3,1) EI

WRITC(3,2)

DG 60 J«I f NC

60 C( J)=C( JI/EI

WRITE (3, 1) (C( I ) , i = l,NCJ

RETLRiN

END
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subkoutins: initl

C TH[^ SUBROUTINE INITIALIZGS THE PROBLEM OF

C VIBRATIONS UF A rAPEREO BEAM of rectangular

C CROSS-SECTIONi j^'.PLY SLPPORTEU

COMMON M , N , I T , NC »NE t NP , PP1 t NP1 »E1

COMMON P. ( 8 , R ) , D ( 9 , 1 6 ) , C ( LOO ) , E ( 10 ) , Pi 100 )

.
2

' FORMAT ( 14F5.1)

CALL DMTRX

RE4CU,2) 4LPH

£( L)-l.

E(21*2.»I&LPH-1. )

El 5) = ( ALPH-L. ) MALPH-l. )

NE-3

C( U»l.

RETURN

ENO
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SUBROUTINE INTGRO

C THlj SUBROUTING NORMALIZES THE ITERATE

i

C ANO FORMS THE INTIGRANO FOR THE PROBLEM OF

C VIBRATIONS OF A TAPERED BEAM QF RECTANGULAR

C CROSS-SECT IOfii SIMPLY SUPPORTED

COMMON M t N, I Ti NC i NE , NP »

i

v P L t NP L • E

I

COMMON B( n » « ) » D

(

?

,

16 ) , C ( 100 ) , E ( 10 ) , P I 100

)

1 FORMAT! 4E16. 8)

2 FORMAT!/)

NC»40

C NORMALIZATION CF THE ITERATE

00 10 I = L,NC

IF(C( I ) .NE.O.n) GC TG 20

10 CONTINUE

20 EI-»C( I )

DO 40 J=IiNC

40 C( J >»C! J)/EI ..

WRITE!3tl)EI

WRITE! 3i 2)

WRITE!3ill ( C ( i > , I = 1 (NC)

C ' CONSTRUCTION OF THE INTEGRAND

NP = inC

CALL SED IVICNC »E|NEi P , NP)

WR ITE( 3 i 2)

DC 50 l»l,NC

50 C( I )*P( I )

WRITECJ.l) (C( I ) ,1-liNC)

RETURN

:iH\j
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SUBrtOUTfNr INI TL

C THIS SUBROUTINE INITIALIZES THE PROBLEM Or

C VI2RATIONS CF A CANTILFVER BEAM Or VARYING CRCSS-StCT ION

COMMON MtN»ITfNCiNEfNPf^Pl»NPliEI

COMMON D(fltS) ,O(0, It) ,C( 100) , C(10) ,P ( IOC)

E(l)*2.

Ef 2)»l.

NE = 2

CALL DMTRX

C ( 1 )
=- '»

.

C(2)=0.

C(3)=l.

NC = 3

RE? TURN

END
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SUBROUTINE DMTRX

c THIS SUBROUTINE CLNSTRUCTS D MATRIX FROM E MATRIX

c FOR THf- PROCLEf! CF

c VIQR4T10NS CP A CANTILEVER BEAM OF VARYING CROSS-SECTION

DIMENSION F(10)

COMMON K,N|lT|NC|NE»NPtfPl»NPl,El

COMMON B ( ?, , C ) , ( 8 , It ) , C ( 100 ) , E ( 1 ) , P { 100 )

1 FORMAT (4E16. 8)

2 FORMAT( 14F-5.2)

F( 1 )=l.

DC 20 1 = 2, M

20 F( I ) = F ( I-1)«FLGAT( I-L)

REAC(li2) ( 16( I >J)i J»l iM i'1-liMJ

DO 100 1=1, H

IF( I.GT.N) GO TO iO

OU AG JaLtM

4(J D( I ,J)=B( I ,J)*r (J)

GC TO ICO
•

60 D( I ,1)=S ( I i i)

DC 80 J = 2,M

• D( I ,J)=C( 1,1)

,
DC £0 K = 2,J

jk = j-:;

80 D( I ,J)=0( I , J) + F( J)*f» (I |K)/F( JK + 1)

100 CONTINUE

DC 120 I = 1 , M

C0N*1.

3 00 120 J«1#M

( I , J ) = D ( I i J)»C'ON

120 C0fci?CQN*2.

CALL IflVRSlOfM)

• MR I TE (3. 1 ) ( { ( I , J ) , J = 1 , M ) , I = 1 , M )

RCTURN

E.NG
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SUBROUTINE IN1GRC

c THIS SUPiUJUTlN r

: NCRPALUES THE ITERATE,

c FINCS ITS RALEIGHS CUCTIENT ANO FORMS

c THE [NTIGPANO FCR THE PROBLEM UF

c VIBRATIONS UP A CANTILEVER BEAM OF VARYING

DIMENSION F( 1001 p G 1 ICC ) ,R( 100)

COMMON M,N»IT,NC»hE,NP,FPl,NPi,EI

COMKON I* (8,8) , D(8, 16) ,C ( 100) ,E (10) ,P ( 100 )

CROSS-SECTION

1 FORfAKAE16.8)

4 fckmti/ )

c NORMALIZATION OF THE ITERATE

DC LO I=1,NC

IF ( C( I ) .NCO.O) GC TO 20

IC CGNTINUF.

•

20 EI*C( 1

)

DC <iO J=I iNC

40 C( J)=C( J) /EI

WRITE! 3, DEI

WSI TE(3,4)

WRITE! 3, 11 (C( I ) ,1 = 1 »NC)

c

t

CALCULATION OF RALEIGHS QUOTIENT

CALL DIFFER ( C , NC , F ,NF , 1 )

WRITE( 3, A)

CALL OIFFFR (F ,!\F ,G,NG, I)

WRITE (3,4)

CALL SEMUL (G»NG,£,NE»R,NR)

W« ITE(3,4)

DO bO I=1,NF

50 R( I )=P( I )+F( I ) /2.

CALL S-EMUL (C,\C,k,.\R,G,NG)

WRITE (3, A)

CALL INTGRA (G,NG,R,.\:"< • 1)

Wrt I TE( 3, A)

DM =0.

CG\'=1.

DO 60 I«3,NR

,
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CCN=CCN*2.

60 DM*CM4C0N*ft( 1-1 )

CALL SEHUL (CiNCiEfKEfG'iNG)

WRITE 13, 41

CALL SEKUL ( C , NC t G , ,\G , R , NR )

WRITE! 3,4)

CALL INTGRA IR,NR»G,NG, I)

WRITE (3, 4)

DN = C.

CCN«1.

DC 70 I=3,NG

C0N=CUi\*2.

70 DN«CN-CO.N»G( I- 1

)

EI*4.»DM/0N

WR HE[3,1) EI t OK t UN

WRITE (3,4

)

CONSTRUCTION OF THE INTEGRAND

CALL SCDIV IF,NF,E,NE,G,NC)

WRI IE (3,4)

DO 60 1 = 1, 'iC

80 C( I )=-FI*C( I )/4.-G( N./2.

WRI TO (3,1) (C(I)tl-lfNC)

WRITE (3, 4)

RE TORN

ENO
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SUP ROUT INC BOUi-iO

C THIS SURROUTINfc CCMPUTES THE F VECTOR FCR THE PROBLEM OF

c vidrWioms OF A CANTILEVER BEAM OF VARYING CRCSS-SECTION

DIMENSION Y( 1C )

COMKCN M,Ni [T|NC»NE»NP f PPiiNPl,EI

COKtfCN R(8,8)tO(8,U)fCllOO) ,E( 10) ,P< 100)

1 FORMAT ( AC 16.8)

2 FORMAT!/

)

00 10 1=1,

M

10 C( I )=C.

C0N*2*»»H

DO 30 [*iiW

Y( I )=0.

A I = I

DO 20 J*MP1»NC

Y( I ) = Y( I )+CCN*C( J)

2 CCN=CO,\«( FLOAT I J ) / ( FLO A T( J ) + 1

.

-AI ) ) '2 .

C0N=2.*«N

DO 20 J=l,I

30 CON«CON» FLOAT ( ,\+l-J)/2.

HRITE'('iil) CC(I'»tl"l.M)

RETURN

ENO
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C

c

c

c

MAIN PROGRAM FORR OBTAINING THE SECOND •

EIGCNFUNCTION FOR THE PROBLEM Of:

VIBRATIONS GF A BCAf FIX6D AT ONE END

AND HINGED AT ANOTHER

DIMENSION RUOO)

COMMON M ,N , IT , NC , NE ,NP i fPl »NP1 ,EI

COMMON Rt« f 6),D(fi', U.)fC(lOO) ,5(10) ,P(100)

1 FORMAT (4E16. 81

2 FORMAT 1 14151

3 FORMAT I IHi'l

A FORMAT! /)

R E A

C

( 1 1 2 ) M t N
i

"IT

L

MP1=M+1

NPl*N+l

CALL INI T L

WRITE(3»3]

DC 40 IT=1»ITL

CALl INTGRO

CALL I NTGR A(C i NC f R i NR , M

)

DC 20 I=MPl,NC

20 C( I 1*R( I )

CALL BOUND

WRITE I 3,4]

CALL MATMl)L(DiMPliC)

AC WRITE (3, 3)

CALL RESULT

STLP

ENC
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SUDrtOUTINC INI 1

L

C THIS SUBROUTINE INITIALIZES THE PROBLEM CF

C VIBRATIONS OP A BEA/' FIXED AT ONE END

C ANC HINGED AT ANOTHER - SECOND KOOE

DIMENSION RdOGl

COMMON M,M, ITiNCiNE »NP f PPliNPl ,EI

COUPON C ( 8 , e ) , D ( B', 1 6 ) , C ( 100 ) , E ( 10 ) , P { 100 )

1 F0RPAT<4E16.8)

2 FORMAT

{

141 5

J

REALI1.2) NP

REACH, 11 CR< I ) » 1=1, NP)

DO 20 I=1,NP'

A I = 1

P(I)=U.

DO 2C J=1,NP

20 P( i)aPtI)+R(JJ/(AI*FLOATIJ)-l.l

WRITE13,1J (P( I ) ,1=1, NP)

CALL DMTRX

C(8)*l«

nc=£

CALL BOUtJU

CALL MATMUL(D,MP1 ,C)

CC7)»C.(5)

C( fiJ = 0.

RETURN

ENO
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C

C

C

SUBROUTINE DMTKX

THIS SUBHCUTINt: CONSTRUCTS D MATRIX FCK Trill PROBLEM OF

VIBRATIONS OF A BEAM FIXED AT ONE END

AND HINGED AT ANCIHCR - SECOND MODE

DIMENSION F(IQ)

COMMON MiNtIT f NCtNEfNP,MPlfNPl,EI

COMMON B(8f8)»D(8f l6) f C(100) fE(l.O) tP(lOO)

1 FORMAT (4E16. 8)

2 FQRMATt 14F5.2)

3 FORMATI/1

F( 1 ) = 1.

DO ?.C. I»1,MP1

20 F( I )=F( I-l)»FLUA Hl-l)

REAC(lt2) I(B( I,J),J*l,M),I*liM)

DO ICO 1 = 1,

M

IF( l.GT.M) GO TO 6

DO 40 J»1,MP1

40 D( I ,J)=R( I ,J)*F*U)

GO TO 100

6G DC I,1)=BU,1)

DC 60 J»2,MP1

D( 1 ,J)=r ( I , I)

DC SO K«2,J

JK^J-r;

6C D( I,J)=D(I , J)+FU)*P. (I ,Kl/F{ JK+1)

ICO CONTINUE

DO 12C 1 = 1, MP I

120 d(mpii i )*?n )

WRITE! 3,1) { (D( I ,J) ,J*l,MPll f
1=1 f MPD

CALL INVRS(D,MP1)

WRITE! 3,3)

HR I TE ( 3, I J ( ( C ( I , J ) , J? 1 , MP 1 ) , I = 1 » M P 1

)

RETURN

ENO
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SUBROUTINE BOUNC

C THIS SUBROUTINE COMPUTES THE F VECTCK

C IN 1H1- MATRIX ECUAHGN CC»F FOR THE PROBLEM OF

C VtDRATIUNS UF A PLAi* FIXED AT ONE END

C AND HINGED AT ANOTHER - SECOND MODE

D I KENS ION Y(1G)

COMMON M,N»IT,NCiNCfNP»*PliNPitEI

COMMON B ( 8 , F ) , C ( R , 1 6 ) , C ( 100 ) , E 1 10 )
, P ( 100

)

1 FCRMAn'iE16.8)

DO 20 I=1,MP1

20 C( I )=C.

CCN=1.

DO 60 1=1,

M

Y( I ) = 0.

AI*I

DO 40 J=8,NC

Y( I )=Y( I )+CON»C(J)

AG CON-CON*-(FLOAT! J ) / ( FLOAT ( J ) + 1 . -A I ) )

CON=l.

DO 60 J=l,

I

60 C0N=CQN*(8.-FL0ATIJ)

J

DC 80 J=1,M

8 C( I )=C( I )-B ( I

,

J)«Y( J)

DO ICO I=8,NC

ICO C(MPl)=C(MPl)-P( I )*C( I )

WRITE (3,1) (C( I) , l = l,.v?l)

WRITE! 3i 1.1 (C( I ) i 1=1. NO
RETURN

END



64

SU8UQU1 INF INI J'L

C THIS SUBROUTINE INITIALIZES THE PROBLEM CF

C HCAl TRANSFER TC AN INCCRPRE SS I RLE FLLIC

C IK LAMINAR MOTICN

CONM3N M.NtlTiNCtNetNPt^PltNPlfEI

COMMON BC 8 »8> , 0(8,16) ,C ( 100) ,E ( 10) ,P< 100)

CALL DMTRX

G(l)=-1.

E12)=C.

E ( 3 ) = 1

.

NE = J

C( 1) = 1.

C( ?)=C.

C( j)=-1.

NC»3

RETURN

ENO
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'

SUBROUTINE INTGRC

c ThIS SUBROUTINE NORMALIZES THE ITERATGi

c FINOS ITS UALEICHS QUOTIENT AND FORMS

c THE INTIGRANO FOR THE PROBLEM UF

c HEAT TRANSFER TC AN INCCMPRESSIBLE FLUID

c IN LAMINAR MOTION

DIMENSION F(lOC)iGllOO) ,H(100) ,R!100)

COMMON M»N»lT,NC»NEfNP,MPl,NPl,£I

CO»'CN Bl8,e),D!8,U),C!l00) ,EI 10) ,P! 100)

L FORMAT (4E16.0)

2 FORMAT!/)

c NORMALIZATION CF THE ITERATE

DC 20 1*1, NC

IFICC I J.NE.0.0) G'C TC 3C

2 CONTINUE

30 CIJ=C( I

)

DO 40 J«1,NC

40 C ( J)=C( J)/CIJ

WRITE! 3,1) (C( I ) , 1=1, NO
WRITE! 3, 2)

c CALCULATION OF RALEIGHS QUOTIENT

CALL SEMUL I C »NC , E ,NE ,G , NG

)

WRITE!3,2)

CALL SEMUL (C iNC

f

G CN6 1

H

v NH1

WRITE! 3, 2)

F(1)=C.

CALL lNTGRA.(HfRH|F>KFf 1)

WRITE! 3,2

1

DN = C.

DC 80 I*l,NF

•

ec DN»CN+F! I)

CALL OIFFERtCt NC,F,NF, I

)

WR I fE!3,2)

CALL niFFER!F,NF,h,KH, I)

WRlTE!3i?)

DU 60 1 = 1 ,NH
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60 H( I )=H( I )+F( 1 + 1)

WRITEJ 3i 1) (IK I ) » I = ifNH)

wi> I r R ( 3, ?)

CALL SEMiH. (C,NCiH,NH,R,NR)

HH I TECi,2)

H( 1 )=C.

CALL INTGRA |«»iNRtH,NH,l)

HRI r E ( 3 , 2 )

D* = C.

L)G 70 I«l v NH

70 DM»UM+H(

I

)

H( L)=G.

E [=CM/0N

WR'lTCOi I) Eli DK.fCN

MRIT£(3>2)

CONSTRUCTION OF THE INTEGRAND

NC*NG

no 90 i*ifNC

C( i )=r,( i )-F( i + i)/ai

IF( I.CT.MF) C( 1)=G( I)

go CONTINUE

RIU.»0.

WRITE I.3, I) (C( I ) , 1 = 1, NO
WRI fC('3,2)

RETL r

<.s
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APPENDIX B

Programs and Subroutines of General Nature

The main program and all the subroutines listed in this ap-

pendix are very general in nature, except that the subroutines

DMTRX and BOUND can only be used if the boundaries are x = and

x• 1.
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C MAth PfUlGRAM FOR ALL EQUILIBRIUM PROBLEMS AND FOR

C THE FIRST MOOE L F ALL EIGENVALUE PROBLEMS

C M IS THf ORDER CF CCUATICN AND N IS THE NUMBER

C OF BOUNOA«*Y CONDI TICNS 'U X=0

DIMENSION R( LOO)

COMMON M f N| IT, N'C ,i\E , NP , NPl » NP1 • E I

COMMON B ( S , 8 ) , ( 8 , 16 ) , C ( 100 ) , E ( 1 ) , P ( 100

)

1 FGKrAT('.E16.0)

2 FQRM4T(SI5)

.i FORMAT J IH1 )

A FOKMATt/1

REAC(1 V 2) MtNi ITL

MP1*M+1

NP L»N+1

CALL INITL

WRITE(3,3)

DG 40 I T = 1 , ITL

CALL INTGRC

CALl INTGRA(CiNCiKiNR,M)

NC=NR

DG 20 I«MPl t NC

20 C( I ) = '•'(
I )

CALL BOUND

CALL MATKUL ID»M»C)

AG WR I TE ( 3, 3)

CALL RESULT

STOP

END
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SUBROUTINE DMT ft

X

C THIS SUBROUTINE CCNSTRUCTS D MATRIX F.<C,V B MATRIX

C FC'i ALL EQUILIBRIUM PROBLEMS AND FOR THE

c fikst hooe cf all eigenvalue problems

DIMENSION FC 10)

COMMON M,N»IT,NC,NE,NP,MP1,NP1»£I

COMMON Q(B, fl) ,0(6,16) , C (100) , E( 10) ,P( 100)

1 FORMAT (AE16. 8)

2 FORMAT! UF5.1)

3 F0RKATC//20X, tHG MATRIX /)

F( 1) = 1.

. DG 20 1 = 2,

M

2 0. F( I ) = F( I-l)»FLL,vr( 1-1)

REAL. (1,2) ( (B( I ,J) ,J=1,MP1) , I=1,M)

DC 100 1=1 t M

IF( I.GT.N) CO TC .60

DC 40 J«1,M

AC D( I ,J)»B( I ,J) »TW)

GC TO ICO

60 D( I ,1)=[J
. ( I ,1)

DG 80 J=2,N

D( I ,J)=F. ( I ,1)

DC CO K=2,J

j k = j-;-;

8 D( I ,J)=D( I ,J) + F( J)«e (I iK)/F( JK + l)

100 CONTINUE

CALL INVRS(OtM)

HKIIE(3,3)

WRITE! 3,1) ( (D ( I , j) , J=l »M) ,1 = 1 ,M)

RETURN

END
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c

c

c

c

SUBROUTINE INVRSCA.N)

ThIS SUBRCUTINL INVERTS MATRIX A OF ORDER N

BY GAUSS-5 lEDIiL RGDCdlCN

DIMENSION A 18, 16)

2 FORMAT (2{//20X,lCHNC INVERSE //))

AUGMENTING THE MTRIX A PY AN IDENTITY MATRIX

NN=N+N

DC 20 1=1,

N

IN*I+N

DO 10 J=1,N

JN-J+N

1U At I ,J,\) = 0.

2 A ( I , I N 1 = 1

.

THC REDUCTION PROCESS STARTS HERE

DC ICC M>lfN

30 DIV*A(M»M)

IF (CIV. CO. 0.0) GC TC 7

DO 40 J=1,NN •

40 A(M|J)*A(H,J)/DIV

DC 60 1=1,

N

If II.EQ.M] GO TC 6

A I. ' = .'( I,M)

DC tO J=1,NN

50 A( I ,J)=At I , J)-AIK«A(M, J)

60 CONTINUE

GC TO ICO

70 DC SO I = M,N

-

IFIAdtMJ.EO.O.O). GC TO <30

c DC LGOP 80 EFFECTS INTERCHANGE OF ThC ITH AND

DC 60 J=l, NN

DUMY*A( I , J )

. A( I ,J)=A(K,J)

60 MM,J)=DUKY

GC TO 30

90 CONTINUE

WRITS! 3.2)

GC TO 120

MTH ROWS
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100 CONTINUC

TRANSFERING INVERSE CF A IN THE PLACE OF A

DC 110 [»l,N

DC 110 J = l,N

JN*J+N

110 At I ,J) = A( I , J.\)

120 RETURN

END
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SUflKQUTINE BOUi.C

C THE SUBROUTINE COMPUTES THE F VCCTUx

C FGK ALL EQUILIBRIUM PROBLEMS AiiO FOR THf-

C FIRST .''CDC OF ALL EIGENVALUE PROBLEMS

DIMENSION Y( 10 )

COMMON M t N i IT, NC i M: ,NP , f
; P 1 , NPl , E I

COMMON B(8,R) ,0(8, 16) ,C{1.00) ,E( 10) ,P( 100)

"
1 FORMAT (AC 16. 8)

2 F0RMAT(//20X,5HB0UNC/J

DC 10 I = 1,M

10 C( I ) = ('.( I ,NP1)

CGN*l.

DC 30 I«1,M

Y( I ) = 0.

A I = 1

DC 20 J!M=M Pi,.\C

AJM*JM

Y(I)=Y(I »+CON*'C(Jh)

20 CON*CGN«(AJM/(AJK*lv-A I ) )

CC.\ = 1.

DO 30 J=li

I

AJM*M*l-J

30 CCN=CONVAJM

DC AG I«NP1,M

DC 40 J=1,M

4 C( I )=C( I )- p,( I, J)«V(J)

WRITE! 3,21

WRITE! 3,1 MCI II, 1*1, Ml

RETURN

END
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SUBROUTINE KATHUL IA,N,N

C THIS SUBROUTINE MULTIPLIES A SQUARE MATRIX A

C OF CRIJGR N BY A COLUMN VECTOR 8. THE ANSWER

C APPEARS IN THE COLUMN 8.

DIMENSION A { 8 , 16 ) , B { 8 ) , ( 8

)

1 FORMAT (4E16.8)

3 FORMAT (20Xi6H.yAT.MLL)

WRI fE(3,3)

DO 100 1=1,

N

D( I ) = 0.

DG 100 J = 1,N

100 D( I )*DI I )+A( I , J) »B( Jl

DG 20C 1 = 1, N

200 B{ I )=D( I )

WRITE (3, 1) (H( I ) , 1 = 1 ,N1

RETURN

END
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SUBROUTINE SjEMUL [A,NA ,H,NB,C t NC)

SERIES A * SERIES B = SERIES C

DIMENSION A( 100) ,S ( ICC) ,Cl 100)

1 FCUi'.ATI 4E16.8)

3 FORKATI/ZOX.ZIHSEkIES multiplication /)

WRITE! 3, 3)

NON&+NB-1

IF(NA.GT.MR) GC TC 101

DG IOC 1=1, NC

MI=I

C( I )»0.

IF{ I.GT.NA) MI = .\A

DG 100 J=l ,MJ

MIJ*I-J+1

100 C( I ) = C( I )+A( J) *Mi« I J)

GG TG 201

10 1 OG 200 I = l,i\C

M I = i

C( I ) = C.

IF( l.GT.NP ) MI«NB

GC 200 J = 1,M

MIJ=I-J+l

200 C( I )=C( I HSI J) »A(MIJ)

201 WRITE! 3, I J (C( I ) , 1 = 1, NO
RETURN

END
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SUBROUTINE SGOIV { A , NA , I! ,fi'd , C , NC )

DIMENSION A( LOO , B { 100 ) , C ( 100 )

C SUBROUTINE F(j:< DIVISION OF TWO SERIES

C SERIES A/SCRIES B=SERIES C

1 FORMAT UE 1 6. 81

3 F0RMAT(//20X,6HSEDIV /)

WRITE (3, 3)

1 = ]

C( I )=A( I )/0( I)

10 1= Ml
M I «

1

IFU.GT.NB1 M1«NQ

C( I )=A( I )

DC 20 J=2,MI

MIJ=I+1-J

20 C( I )=C( I )-R( JI*C<* Ul
C( I J=C( I 1/8 I 1)

IF ( I.LT.NC J GO TC 1C

WRITC (3,1) (C( I ) , I=1,NCJ

RETURN

END
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SUBROUTINE DIFFEtUG.NC ,CtND|N)

NTH DERIVATIVE LF SERIES C SERI.ES D

DIMENSION C(IOO) id IGO)

1 FQRKAT(4E1'6«8)

3 FORM! (/2CX, IC HDERIVATIVE /)

WRITE! 3* 3)

AF = 1.

DO 10 1=2, N

A I = I

10 AF = AF-*A1

iFU.EG.l) AF = 1.

DU ?0 I=1,NC

IN=1*N

AI = 1

A I H = I

N

[)( I ) = C( IN)*AF

20 AF=AF»AIN/A]

NO»NC-N

WKIT5(3,1) (0(11* I" I i NO)

RETURN

END
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SURKOUTINE RESULT

C -THIS SUBROUTINE: GIVES THE RESULTS Cf: AN

C E0U1LIBR IUM PROBLEM

CCMM3N M,N| IT,i\C,i\E ,KP,P?l,HPl ,El

COMfON B(8«e)f 0(8fl6)«.C(l00) tECIO) tPClOOJ

1 FORfcAT(4E16.8)

HRMEOtll (CU It I- If NC)

RETURN

ENC
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SUBROUTINE RESULT

C THIS SUPROUTINf: GIVES ThE RESULTS OF AN

C EIGENVALUE PRGPLCM

COMMON M,Ni IT|NCiNE,NP|NPliNPl ,EI

COMMON R (Ri8 )
1-0.(6, 16 ) ,C( 100) ,E( 10) ,P( 1001

1 FCRPATUE16.8)

2 FQR?AT(/1

WRITE! 3 til FI

WRIT£(2,1.1 FI

WRITEOi?)

OC 20 [«1,NC

IF(CU).NE.O.O) GC TC 4C

2 CONTINUE

AG EI=G( I

)

DC 60 J»l |NC

6 C{ J )=(..( J) /EI

WRITE (3,1) (G( I ) , 1=1, NO'

WRITE12.1) (C( I ) , 1=1, NO
RETURX

END
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APPENDIX C

•

Description of Final Problem

This is a steady state heat-transfer probl em. At steady

state there are no variations with time and the energy equation

for a fluid in laminar motion in a cylincrecal tube can be

written as

(1)

where T = temperature;

a = radial co-ordinate measured from the

tube radius

tube axis; a ,

U = mean flow velocity
m

o = thermal diffusivity,

z = anial co-ordinate measured from the e

pipe.

ntrance of the

The equation reflects the following postulates:

1) The fluid is incompressible;

2) No heat is transferred by conduction ir i the z direction.

3) The velocity distribution is parabolic at all cross-

sections and is maintained independent of the temperature

(i.e. viscosity and density are not the functions of

temperature)

;

4) Thermal conductivity and the product y p are independent

of temperature.
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The boundary conditions specified were that

1) the fluid and wall were uniformly at temperature T, for

z ,< 0,

i.e. T = T,', z <,

and 2) the wall temperature varies linearly for z > 0.

T = T^l + -2-z) a = a
Q

o

The following dimensionless variables were defined.

X = a
a
o

U)
= Z _a

a
2 2U

o m

t =
T-^
T
i

In terms of these dimensionless variables the formulation (1)

would be

X 3X
VX

3x' U X ;
3ui

A product solution of the form

t = 1 - (x) U)

was employed to separate the variables. It was found that

W = e
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2
where -g was the constant of separation. The equation for the

y was

& + 1 |X t 6
2
(1 . x

2
)y .

QX

with the boundary conditions

€ - « at x - o

y = at x = 1.

The computer program in its entirety is given in the

following pages.
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C

c

c

c

MAIh PROGRAM FOR ALL EQUILIBRIUM PROBLEMS *NO FCR

THE r I R T, T MODE LF ALL EIGENVALUE PROBLEMS

M IS fHf. ORDER Cf EQUATION AND N IS THE NUMBER

OF BOUNDARY CONDITIONS AT X=0

DIMENSION R'flOC)

COMMON M ,N , IT, NC ,NE ,NP » MP1 ,NP1 iEI

COMMON RCft.«)tD(8,UJ,C{ipO)iC(10).P( 100)

1FCRMAT{4E16»8)

2 FORMAT (5 IS)

3 FORMAT ( 1H1

)

4 FORMAT!/

1

R 6 A C 1

1

, 2 ) M t N t IT

L

M?l=M+l

NP l.*N*l

CALL I (ill I.

WRITE (3, 3)

CC 40 IT«1,ITL

CALL INTGRO

CALL INTGRA(C,NCik»MRf M)

NC=KR

DC 20 I*MPl f NC

20 C( I >-R( I

)

CALL COUND

CALL MATMUL

AG WP ITE(3,3)

CALL RESULT

STOP

END

{ D 1 1- i C

)
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C

C

c

SUBROUTINE INITl

THIS SUBROUTINE INITIALIZES THE PROBLEM OF

HEAT TRANSFER TC AN iNCCNPRESSIBLE FLUIC

I,\ LAMINAR MOT ION

COMMON H»N»-ITiNCtNEfNPi*'Pl»N p l '
f I

COMMON B < 8 ,8 )

,

V

i

8 , U )

,

C ( 100) , E

(

10 ) , P ( 100

)

CALL DMTRX

Ell)*- 1.

E( ?)=0.

E( 3)=l.

NC = 3

C( 1 ) = l.

CI2J*0.

C( 3)=-l.

NO 3

RETURN •

ENU
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C

C

c

SUBROUTINE DMTKX

THIS SUBROUTINE CONSTRUCTS D MATRIX FROM B MATRIX

FCk ALL EQUILIBRIUM PROBLEMS AND FOR THE

FIRST MODE OF ALL EIGENVALUE PROBLEMS

DIMENSION FUO)

COMK.N M,N,IT f
NC,NE,NP,.*Pt,NPl,EI .

CCMKCN B*B,8) , D(8 , 16) ,C (100) ,E ( 10) ,P< 100

)

1 FORMAT (4E16. 8)

2 FORMAT \ 14F5.1)

3 FORMAT (//?.0X, BHU MATRIX /)

F( l)»l.

DO 20 I = 2,iv.

2 F( I ) = Fl 1-1 )»FLOA T( 1-1)

REACClt?)(CB(ItJ»tJ-lt»*Pl)iI*ltHJ

DC 100 I»liM

IF( I.GT.N) CO TO 60

DG AC J=liM

AG D( I,J)*BUtJ)*F(J)

GO TO ICO

60 D( I,l)=BU.l)

DC 80 J = 2,M

Dt l,J)=B( I il )

DC eo K=2,J

JK»J-K

80 D(I,J)=DU,J) + F{J)*B(I,K)/F{JK+1)

100 CONTINUE

CALL INVRS(OtK)

WR ITC(3 f 3)

WRITE I 3,1) I IDC It J)i.J«liK)iI*l»K)

RETURN
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SUBROUTINE INVKMAth)

C THIS SUBROUTINE INVERTS MATRIX A OF ORDER N

C HY GAUSS-SIEOEL KEDUCJICN

DIMENSION MB, lc)

2 FORMAT! 2 1//20X,1CHNC INVERSE //))

C AUGMENTING THE ,V A T K 1 X A BY AN IDENTITY MATRIX

NN*N*N

DO 20 I»l,N

IM= I +.\

DO 10 J=1,N

i& a( I ,jn)=g.

2 A ( I , IN ) * I

.

c the: reduction process starts here

DO 100 M«1,N

3 DIV«MM,M)

IF(CIV.EQ.O.O) GG TC 7

DC 4 J=1,NN

ao AC-, ,j)=a{'-' ,j )/;:;

V

DO 60 1=1,

N

IF( I. EG. MI GO TL 60

AIMaAI [ ,M)

DG 30 J=1,NN

50 A( I ,J)=A ( I ,J).-AIM*A{M, J)

60 CCN riNUH

GC 10 100

7 DO SO I=M,N

IF(A( I ,M ) .EG. CO) GC TC 90

C DO LOO? 80 EFFECTS INTERCHANGE OF THf

DO SO J = l,\i\

DUMY=A< I , J)

A( I ,J) = M,\,J)

CO A(K»J)»DUMY

GO TO 30

<-/u CGNTINUE

Wk IT" (3, 2)

GO TC 120

ITH AND HTH ROWS
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ICO CONTINUE

TRANSFERING INVERSE OF A IN THE PLACE bF A

DC 11C 1=1 iN

DO 11C J = l ,N

JN-J+N

110 A( I ,J)=A( I ,JN)

120 RETLKN

EN 13
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SUBROUTINE INTGKC

c THIS SUBROUTINE NORMALIZES THE ITERATE,

c FINOS ITS RALCIGHS QUOTIENT AND FORMS

c THE INTIGRANO T CR THE PROBLEM OF

c HEAT TRANSFER U. AN INCOMPRESSIBLE FLUID

c IN LAM INAR MOT ION

DIMENSION F( IOC) ,G( 100 > ,H( IOC) ,R{10CJ

COMMON M,N,IT,NC,NE,NP,MP1,NP1,EI

CO'MKON R ( 3 ,8) , 0( 8,16 J t C ( 100) ,E { 10) ,P( 100)

1 FORMAT (AS 16. 8)

2 FORMAT!/)

c NORMALIZATION OF IHE ITERATE

DO 20 1=1, NC

IF(C( I ) .ME. 0.0) GC TO 3C

2 CONTINUE

30 CU=C( I

)

DC 40 J=l,NC

40 C( J)=CU)/CIJ

WRITE (3,1) (C( 1 ) , 1 = 1, NO
WRITE( 3,2)

:

c CALCULATION OF RALEIGHS QUOTIENT

CALL S EM UL ( C , N C , E , N L , G , i\G )

WR11E(3,'2)

CALL SEMUL ( C , N C , G , NG ,H , IVH

)

WK I T
c (3,2)

F(1)=0.

CALL tNTGRA(H,NH,F,NF, 1

)

WR I T E I 3 , 2

)

DN = C.

DC SO 1=1, NF

9 DN =CN*F( I )

CALL DIFFCR(C,NC»F,iSF, 1)

WRITE (3, 2)

CALL DIFF£R(F,NF,h,NK, 1 )

KR I ft I 3, 2)

dc lc 1*1,m

•
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c

c

c

SUGHCUTINE BOUNU

THr SUBROUTINE CCMJ lTLiS THE F VECTOR

FC« ALL EOUILITKIUM PROBLEMS AND FO.'< THE

FIRST i-iCDC OF ALL EIGENVALUE PROBLEMS

DIMENSION Y( LOl

COMMON M , M , I T , NC » t\£ / NP

,

^ PI ,NP1 , £1

COMMON B IS ,8 ) , 1 e ,16) ,C ( LOO) ,£ ( 10) ,P( 100)

1 FGRKAT(4E16.8)

2 FGi;
! 1

v AT(//?OX, ciHL: CLMC/)

DG 10 I=1,M

10 C( I )»BU,MP1)

CQN«*l.

DG JO I*lfM

Y( I ) = 0.

A I ^ 1

' DG 20 JM*MP1,NC

AJMaJM

Y( I )=Y{ I )+CC'M*C ( J.v )

20 CCN=CON* ( -i J*/ ( AJM+1 .-A I )

)

C0N=1.

DC 30 J=l, I

AJM=M+1-J

30 CON«C0««AJM

DC 40 I*NP1»M

DC AC J»1,M

AG CI I ) = C( I Hft< If J)*Y< J)

WRITE! 3,2)

WRITE (3,1) (C(I )t 1 = 1 fM)

RETURN

•

•

•

ENL,

.
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C

c

c

SUBROUTINE MATKUL (A','N, P
)

THIS SUftRCUTltfc MULTIPLES A SQUARE MATRIX A

OF CRUER N BY A GOLIMN VECTOR B. THE ANSWER

APPEARS IN THE COLUMN R.

D I MENS ION A ( 8 1 16 J • B-l 8 ) i C ( 8 )

1 FCRMATCE16.8)

3 FORMAT 120X,6HMATMUL)

HRITE(3f3J

DC IOC 1 = 1, N

D( I ) = C.

DC ICO J = 1,N

ICG D( I )=C( I )+A(I, J)»D( J)

DC 20C i = i,r-;

2CO B( I ) = C( I

)

WRI IE(3 f 1) (B( I ) i 1 = 1 iN)

RETURN

ENC
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SUBROUTINE DIFFuH IC f NC ,C ,ND,N)

NTH DERIVATIVE CF SERIES C = SERIES

DIMENSION C( IOC ) f C ( J.00 )

1 FCRfcAT{4E16.8)

3 FORMAT (/20X, IC HDEKIVMIVE /)

Wi< IT£(3|31

AF»1.

OC 10 1=2,

N

A I --
I

10 AF=AF#AI

IFtN.EQ.ll AF«l.

DO 20 I=1,UC

IN* I+N

AI«I

A I N = I .\

D( I )=C( IN) »AF

20 AF.*AF«AIN/AI

ND=NC-N

WRITEOil) (Dm,!* l.NC)

RETURN

END
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SUBROUTINE INTGRA tC»NC-,0,NO,N 3

NTH INMGRM. OF SERIES C = S E * ; I L
: S

DIMENSION C( 100) ,C( ICO)

1 FORMAT (AE16. 8]

3 FORMAT (/20X, 11 KIN riGRATIO.N /)

WRITE ( it J)

Nl=.\+l

AF»1.

DC 10 I=2,N

A I = I

10 AF=AF*AI

IF(N.EO.l) AF»li

NC eNC+N

DO 20 1=1,ND

IN=i+N

AI=I

A IN* IN

Dl IN)=CI [)/AF

20 AF»AF*AIN/AI

Wr!IT£(3,l) (D( I ) , l = .NL,NfJ)

RETURN

END



95

C

C

SUBROUTINE RESULT

THIS SUBROUTINE GIVL: 5 fHE RESULTS OF AN

EIGENVALUE PROBLEM

Cdv i' ON M»N , IT, NC , .\E , NP , NP I . NP1 , E I

CpKttQN l>. ( R , 8 ) , I P , 16 ) , C ( 100 ) , F ( 10 ) , P ( 100 )

1 F C *'
i

v A T ( A E 1 6 . B )

2 FORNATi/l

HRiTEO'tl) EI

w R I T £ ( 2 . 1 ) EI

WRITE (3,2)

00 20 1=1, NC
J

IF (CI I ) .NC.0.0) GC TO AC

20 CONTINUE

40 EI*C( I

)

DC 60 J=I,NC

6 C( J )='".( J) /EI

WRITE! 3,1) (C( I ) »
1-1 »NC)

WRI1E(2,1) ICU),I"ltNC)

RETURN

END
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An iteration technique for solving two-point boundary pro-

blems was studied. The technique yields an analytical solution

in the form of a power series in the independent variable. This

type of technique had been previously applied to the problem of

buckling of columns by L. Vianello and to the problem of critical

speeds of rotating shafts by A. Stodola. Here the method was

applied to a larger class of problems.

A variety of problems of both equilibrium and eigen-value

type were selected for the study. The problems varied in the

order of complexity of the differential equations governing them.

Some of them were simple enough to have solutions in closed form.

These solutions were expanded in power series so as to make the

comparison direct, and therefore, easy. Others did not have

closed form solutions so that it was necessary to solve them by

some other method. The solutions thus obtained were used to form

a basis for comparison.

In the case of eigenvalue problems the method led to the

mode corresponding to the lowest eigenvalue. The process was

then modified to extract modes corresponding to higher eigen-

values. The orthogonality condition was used for this purpose.

Lastly, a problem of practical importance was selected. The

problem was typical of its class. The governing equation had a

lower order derivative term (independent of eigenvalue) present

with the highest order derivative term. The terms had non-

constant coefficients. To the author's knowledge, a closed form



solution had not been obtained for this problem at that time.

However, a numerical solution with very good accuracy was avail-

able. This solution was used for comparison with that obtained

by the present method.


