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Uncertainty and Monetary Policy Rules in the United States  
 

“Uncertainty is not just an important feature of the monetary policy landscape; it 

is the defining characteristic of that landscape” (Greenspan, 2003).  

 

1) Introduction 

Uncertainty is a central issue in monetary policy, as the quote from Alan 

Greenspan above illustrates.    Empirical models, however, rarely take account of 

this, effectively assuming that policymakers ignore uncertainty.  The evident 

focus of policymakers on uncertainty suggests that this assumption is invalid and 

therefore that empirical models of monetary policy must account for uncertainty.  

This paper considers the effects of uncertainty about the true state of the 

economy on monetary policy, estimating a monetary policy rule that allows for 

this.   

Our empirical model draws on the theoretical literature on optimal 

monetary policy when there is uncertainty about the true state of the economy, 

most prominently Svensson and Woodford (2003, 2004) and Swanson (2004).   

In existing models of monetary policy under certainty, monetary policy affects 

inflation and the output gap directly, so it is optimal for policymakers to use these 

variables in forming monetary policy.  This is the basis for the Taylor rule (Taylor, 

1993) model of monetary policy and its’ subsequent refinements (eg Woodford, 

2003).  The literature on monetary policy under uncertainty assumes instead that 

monetary policy affects the state of the economy, which in turn affects inflation 

and the output gap.  It is then optimal for monetary policy to respond to the state 

of the economy.  However, it is assumed that the state of the economy is 
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unobserved and that policymakers must infer this from observations of inflation 

and the output gap.  Optimal monetary policy is a certainty equivalent function of 

the expected state of the economy.  The expected state of the economy is in turn 

a linear function of inflation and the output gap, whose parameters are functions 

of the variances of these variables.  

The resultant optimal monetary policy rule resembles the familiar Taylor 

rule (Taylor, 1993), but where the coefficients are functions of the variances of 

inflation and the output gap. These apparent departures from certainty 

equivalence arise because of the role of inflation and the output gap as indicator 

variables for monetary policy.  An increase in, for example, the variance of 

inflation reduces the parameter on inflation and increases the parameter on the 

output gap in the equation for the expected state of the economy.  This leads to a 

smaller weight on inflation and a larger weight on the output gap in the monetary 

policy rule.  Similarly, an increase in the variance of the output gap reduces the 

weight on the output gap and increases the weight on inflation in the equation for 

the expected state of the economy, resulting in a lower weight on the output gap 

and a corresponding larger weight on inflation.  As a result, the model makes two 

main testable predictions. First, policymakers should respond less vigorously to 

variables that are more uncertain, so the weight on inflation in the policy rule 

should be lower when inflation is more uncertain and similarly for the output gap 

(cf Peersman and Smets, 1999, Rudebusch, 2001, Soderstrom, 2002, Smets, 

2002, Srour, 2003, Walsh, 2004 and Swanson, 2004). Second, uncertainty about 

one variable may strengthen the response to the other variable, so the weight on 
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the output gap may be larger when inflation is less certain, and vice versa (cf 

Peersman and Smets, 1999, and Swanson, 2004).   

We estimate a system of equations, comprising a monetary policy rule 

whose parameters are functions of the variances of inflation and the output gap 

and equations for inflation and the output gap whose error terms have GARCH 

processes, from which these variances are derived.  We use data since 1983 

since this is when the Fed switched to using the interest rate as the tool of 

monetary policy and since continuity in monetary policy objectives has allowed 

stable policy rules to be estimated over this period (eg Judd and Rudebusch, 

1998).  We find that the behaviour of monetary policymakers is consistent with 

the predictions of the theoretical literature. Monetary policy responds less to 

inflation and the output gap when these variables are more uncertain.  We also 

find that the response to inflation is stronger when the output gap is more 

uncertain, and vice versa.   We quantify the impact of uncertainty by constructing 

a measure of the counterfactual interest rate, which would have been observed if 

there had been no uncertainty. We find that the impact of uncertainty was most 

marked in 1983, when uncertainty increased interest rates by up to 140 basis 

points, 1989-90, when uncertainty increased interest rates by up to 50 basis 

points and in 1996-2001 when uncertainty reduced interest rates by up to 50 

basis points over five years.  

The remainder of the paper is structured as follows.  Section 2 explains 

our methodology.  Section 3 presents our estimates.  Section 4 summarizes our 

findings and offers some conclusions. 
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2) Methodology 
Our empirical model is based on theoretical contributions by Svensson and 

Woodford (2003, 2004) and Swanson (2004).   We consider the model  

 

(1)   1t t t j tyππ π θ υ− −= + +  

 

(2)  1( )t t t ty X L yβ γ η−= + +  

 

(3)  0t t k tX rα α ε−= − +  

 

(4)  ** ( )t t t t p yt t t qi i E E yπρ π π ρ+ += + − +  

 

where π  is the inflation rate, *π  is the inflation target (or desired rate of inflation), 

y is the output gap, X is the state of the economy (e.g. an index of inflationary 

pressures or an index of excess demand)1, i is the nominal interest rate, i* is the 

equilibrium nominal interest rate, r is the real interest rate (defined as 

1t t t tr i E π += − ) and L is the lag operator.  The integers j, k, p and q can be 

positive, negative or zero, so that the relationships in equations (1)-(4) can be 

backward-looking, forward–looking or contemporaneous.   

This model is similar to that considered by Swanson (2004) and 

comparable to that of Svensson and Woodford (2003, 2004).  Equation (1) is a 

                                                 
1 Although we treat X as a scalar for simplicity, in general it may have many elements; see 
Swanson (2004). 
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Phillips curve in which inflation at time t is affected by lagged inflation and by the 

output gap at time (t−j). Equation (2) is an aggregate demand equation in which 

the output gap is affected by the state of the economy.  Equation (3) describes 

how the state of the economy at time t is affected by the real interest rate at time 

(t−k).  Finally, equation (4) is a policy rule in which interest rates respond to the 

expected gap between inflation and the target p periods ahead and to the 

expected output gap q periods ahead.   We model uncertainty about inflation and 

the output gap by assuming that the error terms in their respective equations 

follow GARCH(1,1) processes.  Specifically, tυ  is a shock to inflation, assumed 

to be distributed as 2(0, )tN πσ , where 2 2 2
0 1 1 2 1t t tπ πσ ω ωυ ω σ− −= + +  and 0ω , 1ω  and 2ω  

are parameters.  η  is a shock to the output gap, assumed to be distributed as 

2(0, )tN ησ , where 2 2 2
0 1 1 2 1t t tη ησ λ λη λ σ− −= + +   and 0λ , 1λ  and 2λ  are parameters.  ε  is 

a shock to the state of the economy, assumed to be distributed as 2(0, )N εσ .  We 

use the implied variances of υ  and η  to measure uncertainty about inflation and 

the output gap respectively (for a similar approach, see Grier and Perry, 2000).  

Policymakers are assumed to know all parameters of the model and the history 

of all variables save for the state of the economy, which is always unknown.    

Swanson (2004) considers a model with simultaneous macroeconomic 

relationships (similar to equations (1)-(3) when 0j k= = ).  Assuming 

policymakers have quadratic preferences, he establishes that a policy rule similar 

to (4) is optimal when 1p q= = − ; he also shows that tπρ  is decreasing and ytρ  is 

increasing in 2
tπσ , the variance of the inflation equation, while tπρ  is increasing 
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and ytρ  is decreasing in 2
tησ , the variance of the output gap equation.  The policy 

rule does not satisfy the certainty-equivalence principle since the weights on the 

monetary policy rule are functions of the variances of the output gap and inflation 

equations.  If known, the optimal monetary policy rule would be a simple function 

of the state of the economy that satisfies certainty equivalence.  Since it is not, 

policymakers use observations of inflation and the output gap as indicator 

variables, in effect predicting the state of the economy using a linear function of 

inflation and the output gap, whose coefficients are functions of the variances of 

equations (1) and (2).  Changes in these variances therefore change the 

parameters of the monetary policy rule in (4), breaking certainty equivalence.  

Extending Swanson’s results to cases with forward-looking variables is difficult2 

and we cannot as yet make claims about the optimality properties of (4) in the 

forward-looking case (although Svensson and Woodford, 2003, 2004, have made 

some progress on this)3.  Nonetheless we conjecture that Swanson’s argument 

can be extended to the forward-looking case and will use the policy rule in (4) as 

the basis of our empirical model4. 

                                                 
2 Svensson and Woodford (2003, pp 692-693) note that in this case “the problem …is inherently 
more complicated” because “forward-looking variables..depend..on..expectations of future 
endogenous variables and of current and future policy actions. However these expectations in 
turn depend on an estimate of the current state of the economy, and that estimate depends, to 
some extent, on observations of the current forward-looking variables.  This circularity presents a 
considerable challenge”. 
3 Svensson and Woodford’s (2003, p 693) finding that in a forward-looking model “when the 
degree of noise in an indicator of potential output is large, the optimal weight on that indicator 
becomes small” is similar to Swanson (2004)’s results. 
4 The policy rule in (4) has parallels with Brainard’s (1967) model of uncertainty about the 
parameters of macroeconomic relationships.  In that case, the optimal monetary policy rule is 
similar to (4) but where the weights on inflation and the output gap are functions of the variances 
of the uncertain parameters. 
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The policy rule in (4) is a simple extension of the Taylor rule 

representation of monetary policy rules (Taylor, 1993).  Following the influential 

work of Clarida et al (2000), the typical empirical model of monetary policy 

specifies the target for the nominal Federal Funds rate can be written as  

 

(5)  * ( *)t t t p y t t qi i E E yπρ π π ρ+ += + − +  

 

where i~ is the target nominal interest rate, *i is the equilibrium interest rate, 

t t pE π + is the inflation rate that at time t is expected for time (t+p), *π  is the desired 

or target inflation rate, t t qE y +  is the output gap that at time t is expected for time 

(t+q), πρ  is the weight on inflation and yρ  is the weight on output.   The adjustment 

of the actual interest rate towards the target is described by  

 

(6)  titit iiLi ~)1()( 1 ρρ −+= −  

 

where ti
~  is given by (1), 1

21 ...)( −ρ++ρ+ρ=ρ n
iniii LLL  and we can use )1(ii ρ≡ρ  

as a measure of interest rate persistence.   The implied empirical monetary policy 

rule is therefore 

 

(7)  { }0 1( ) (1 )t i t i t t p y t t qi L i E E yπρ ρ ρ ρ π ρ− + += + + − +  

 

where 0 (1 )( * *)i i πρ ρ ρ π= − − .  
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Extending the monetary policy rule in (4) to allow for interest rate 

smoothing, we can write 

 

(8)  { }0 1( ) (1 )t i t i t t t p yt t t qi L i E E yπρ ρ ρ ρ π ρ− + += + + − +  

 

where 22
yt

y
tt σρσρρρ ππ

π
πππ ++=  and 22

yt
y
ytyyyt σρσρρρ π

π ++= . If increased 

uncertainty leads to a more passive response to a variable, then 0π
πρ <  and 

0y
yρ < . If increased uncertainty about one variable strengthens the response to 

other variables, then 0y
πρ >  and 0y

πρ > .  

 In (2), aggregate demand depends on the unobserved state of the 

economy.  We therefore substitute (3) into (2): 

 

(9)  0 1( )t y y t k t ty r L yθ θ γ ξ− −= − + +  

 

where 0 0yθ α β= , yθ αβ=  and t t tξ βε η= + .  ξ  is a demand shock, assumed to be 

distributed as 2(0, )ytN σ .  Since the variance of ξ  is proportional to that of η , we 

assume that this also evolves as a GARCH(1,1) process, so 

2 2 2
0 1 1 2 1yt t ytσ φ φ ξ φ σ− −= + +  where 0φ , 1φ  and 2φ  are parameters.  We can then use 

the implied variance of ξ  to measure uncertainty about the output gap.  Our 

empirical model comprises equations (1), (8) and (9). 
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Our model allows us to quantify the effects of uncertainty on monetary 

policy.  To do this we can construct the counterfactual interest rate, a measure of 

what the interest rate would have been if there had been no uncertainty, using  

 

(10)  0 1ˆ ˆ ˆ ˆ ˆ( ) (1 ){ }c
t i t i t t p y t t qi L i E E yπρ ρ ρ ρ π ρ− + += + + − +  

 

where 0ρ̂ , ˆiρ , ˆπρ  and ˆ yρ  are estimates of the corresponding parameters in (8).   

Equation (10) is simply the fitted value of (8) but where 022 == ytt σσπ  for all t. c
ti  is 

an estimate of what the interest rate would have been if there had been no 

uncertainty.  We can quantify the effect of uncertainty on monetary policy using 

C
tt ii −ˆ , the gap between the fitted value of the interest rate from estimates of (8) 

and the counterfactual interest rate, where a positive value of this gap indicates 

that interest rates were higher because of uncertainty.  

 

3) Empirical Results 

We use quarterly data for 1983Q1-2003Q4.  The sample corresponds to the 

chairmanships of Paul Volcker and Alan Greenspan, but excludes the period 

when the Federal Reserve targeted non-borrowed reserves, rather than interest 

rates5.  We use the Effective Federal Funds rate as the nominal interest rate, 

inflation is the annual proportional change in the consumer price index and the 

output gap is the difference between the logarithm of GDP and the logarithm of 

                                                 
5 Rudebusch (1998) points out that it is hard to estimate a stable US policy rule for the whole 
postwar period. 
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the Congressional Budget Office measure of potential GDP.  Preliminary unit root 

analysis (the results are not reported but are available on request) showed that 

the output gap is stationary whereas the order of integration of the interest rate 

and inflation is more ambiguous; we assume that all variables are stationary (see 

also Dolado et al, 2004 and Clarida et al, 2000, for a discussion of similar 

issues).    

Estimates of the simple Taylor rule model of monetary policy in (7) are 

presented in column (i) of Table 2.  We find that the data prefer a specification in 

which interest rates respond to the expected values of inflation and the output 

gap one quarter ahead and in which use two lags of the interest rate are used to 

capture the persistence effect. We treat inflation and the output gap as 

endogenous, replacing expected future variables with actual values and then 

estimate by GMM using lagged variables as instruments.  We estimate that the 

weight on inflation is 1.58, that on output is 0.84 and the persistence parameter is 

0.96.   These estimates, which are comparable to other results in the literature 

(eg Judd and Rudebusch, 1998, Clarida et al, 2000, Dolado et al, 2004, 

Castelnuovo, 2003), satisfy the Taylor principle that excessive inflation should 

trigger increases in the real interest rate.  They also indicate a moderately 

relatively strong response to the output gap (although this effect is insignificant) 

and show considerable interest rate smoothing.   However, as Table 1b shows, 

the estimates fail the parameter stability test. 

We estimated the system comprising equations (1), (8) and (9) for various 

configurations of the model, considering a range of values for j, k, p and q.  Our 
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preferred model has a contemporaneous response of the output gap to the real 

interest rate (k = 0) and includes two lags of the output gap in (9), whereas 

inflation responds to the current output gap (j = 0) in (1) and interest rates 

respond to the expected inflation and output gaps one quarter ahead (p = q = 1), 

so the preferred specification of the interest rates equation in our system is the 

same as that of the simple Taylor rule6. Since the conditional variance for 

inflation and output are generated regressors (see e.g. Pagan, 1984 and Pagan 

and Ullah, 1988), the estimated variances from equations (1) and (9) may be 

biased and inconsistent measures of the true level of uncertainty if these 

equations are misspecified.  To check this, we follow Pagan and Ullah (1988) in 

testing the squared residuals of the estimated GARCH models for neglected 

serial correlation of up to order 4.  

Column (ii) of Table 1a presents estimates of the system comprising equations 

(1), (8) and (9), while Table 1b presents measures of goodness of fit and 

misspecification tests.  The estimates of equations (1) and (9) seem sensible.  

The tests presented in Table 1b do not indicate misspecification, suggesting that 

we may have adequate measures of the conditional heteroscedasticity of inflation 

and the output gap. The variances of inflation and the output gap implied by the 

estimates in column (ii) are presented in figure 1.  

Our measures of uncertainty, presented in figure 1 seem plausible.  

Inflation uncertainty is greatest in the early part of the sample, following the 

change in Fed Chair in 1987, in the early 1990s and after the third quarter of 

                                                 
6 Estimates of these alternative models are similar to those reported in Table 1, except for the 
case of a purely backward-looking Taylor rule (p = q = -1) where the inflation effect was negative.  
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2001.  Output gap uncertainty declines throughout the 1980s with resurgences in 

the early 1990s and after late 1999.  The low levels of uncertainty shown in figure 

1 in the 1990s reflects the unusual stability of output and inflation in that period 

that has been noted by, among others, Mankiw (2001). 

 Estimates of our proposed model of monetary policy under uncertainty in 

(8) (as part of the system also involving equations (1) and (9)) are presented in 

column (ii) of Table 2.  The inclusion of uncertainty effects improves the fit of the 

interest rate equation model and the estimates of this equation now pass the 

parameter stability test.  The effects of uncertainty are statistically well-

determined. We find that 0π
πρ <  and 0y

yρ < , indicating that monetary policy is 

less responsive to inflation and the output gap when these are more uncertain.  

We also find that 0y
πρ >  and 0y

πρ > , showing that monetary policy is more 

responsive to one variable when the other is more uncertain.  These estimates 

are consistent with the predictions of the theoretical literature, suggesting that the 

behavior of policymakers in the face of uncertainty is conforms to these 

requirements for optimal monetary policy.  

We illustrate the impact of uncertainty on interest rates in figure 2, where 

we plot C
tt ii −ˆ , the gap between the fitted and counterfactual interest rates, with 

estimated confidence intervals of +/- two standard errors7.  There are three 

periods in which uncertainty had a significant effect on interest rates: early-

mid1983, when uncertainty increased interest rates by 100-140 basis points, 

                                                                                                                                                 
Full details of these and other unreported estimates are available from the authors. 
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1989Q3-1990Q4 when uncertainty increased interest rates by up to 50 basis 

points and 1996Q1-2001Q1 when uncertainty reduced interest rates by up to 50 

basis points over five years.  

These are plausible findings. The large effect in 1983 reflects uncertainty 

about the effects of the switch to the interest rate as the policy instrument and 

may also reflect continuing uncertainty about change in policy instituted by Paul 

Volcker a few years earlier; the effect of the early 1990s may reflect the 

recession of 1990-1, while the sustained effect of the late 1990s reflects the 

debate about whether the increase in output over the 1990s reflected a rapid 

increase in the underlying equilibrium level of output (e.g. Gordon, 1997).   We 

can calculate the relative contributions of inflation and output gap uncertainty to 

the gap between the fitted and counterfactual interest rates using  

 

(11) 2 2
1 1 1 1

ˆ ˆ ˆ ˆ ˆ ˆ(1 ){[ ] [ ] }π π
π π πρ ρ π ρ σ ρ π ρ σ+ + + +− = − + + +c y y

t t i t t y t t t t t y t t yti i E E y E E y  

 

Figure 3 depicts the contributions of inflation and output gap uncertainty to the 

gap between the fitted and counterfactual interest rates, constructed using the 

decomposition in (11).  The gap is more closely correlated with the output gap 

effect, suggesting that the impact of uncertainty on interest rates is largely driven 

by output gap uncertainty, which generally outweighs the effect of inflation 

uncertainty.   This is consistent with the comments of policymakers, whose focus 

                                                                                                                                                 
7 Recursive GMM is used to derive recursive estimates and standard errors of the parameters in 
(8) which are then used to construct C

tt ii −ˆ  +/- two standard errors. 
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is usually on output uncertainty (e.g. Meyer, 1999, Greenspan, 2003, and Yellen, 

2003). 

Our model assumes that the only effect of uncertainty on monetary policy 

rules is on the response of the interest rate to inflation and the output gap.  We 

also estimated alternative models of the impact of uncertainty on monetary policy 

rules.  In particular, we added inflation and output gap uncertainty directly to the 

model in (8), producing a composite model that encompasses both our model 

and that of Dolado et al (2004)8.  The direct effects of inflation and output gap 

uncertainty were insignificant suggesting that uncertainty only affects monetary 

policy by changing the response of interest rates to inflation and the output gap9.   

 We also considered models in which uncertainty affects the degree of 

interest rate smoothing10.  This was not successful.  We also considered an 

alternative model in which interest rates are affected by asset price disequilibria, 

measured by the lag of the log(dividend-price ratio) based on the S&P composite 

stock price index.  As an alternative measure of asset prices, we also considered 

whether interest rates are affected by the growth of the S&P index (following 

                                                 
8 The model estimated was  

{ }22
1110 )1()( yttttyttttitit y

yEEiLi σρσρρπρρρρ σπσπ π
+++−++= ++− ; this model simplifies to 

the model in Dolado et al (2004) if 0y y
y y

π π
π πρ ρ ρ ρ= = = = . 

9 We could not reject the restrictions 0
πσρ =  and 0

yσρ =  but could reject the restrictions 

0y y
y y

π π
π πρ ρ ρ ρ= = = = . 

10 The model estimated was { }1110 )1()( ++− +−++= ttyttttittitt yEEiLi ρπρρρρ π , where 
1

1 2 int( ) ... n
it i t i tL L Lρ ρ ρ ρ −= + + +  and 22

yt
y
ijtijijijt σρσρρρ π

π ++= , j=1,…,n. If policymakers 
adjust interest rates less frequently when uncertainty is greater (eg, Goodhart, 1999) then 

0ij
πρ >  and 0y

ijρ > . 
 



 16

Bernanke and Gertler, 1999, 2001). Consistent with Bernanke and Gertler 

(1999), we failed to find any effect. 

We performed a number of robustness checks.  We estimated our system 

using two alternative volatility measures, (i) derived from recursive estimates of 

our GARCH systems and (ii) measured as a four quarter backward-looking 

moving average of the measures derived from the estimates of Table 1.  We also 

used alternative measures of the output gap, obtained by (i) applying the Kalman 

Filter to our measure of the output gap, regressing the log of output on its lag and 

the unobserved state variable, assuming that the latter follows a random walk, (ii) 

using the Hodrick-Prescott filtered level of output as a measure of potential 

output and (iii) using real-time output data from the database maintained by the 

Federal Reserve Bank of Philadelphia.  A measure of the real-time output gap 

was constructed by applying the Hodrick-Prescott filter to the real-time output to 

obtain a measure of potential real-time output.  We also estimated our system 

using a measure of the average real interest rate, constructed as the difference 

between a four quarter moving average of the nominal interest rate and a four 

quarter moving average of the inflation rate (see Rudebusch, 2001).  Table 2 

summarises the average weights on inflation and the output gap implied by these 

estimates and the correlations between the implied values of tπρ  and ytρ  and 

those implied by the estimates of (8).  In most cases, the average weights on 

inflation and the output gap are similar to those in Table 1, with correspondingly 

high correlations.  
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4) Conclusions 

This paper has argued that the effects of uncertainty about the true state of the 

economy can be analyzed using a simple 3-equation system that captures the 

main features of the theoretical literature on optimal monetary policy in this case.  

The system features a monetary policy rule that extends the familiar Taylor rule 

representation of monetary policy by allowing the weights on inflation and the 

output gap to depend on the variances of inflation and the output gap, these 

latter being derived from GARCH models.   Estimating our model using data 

since the early 1980s, we have found that the actions of policymakers are 

consistent with the principles of optimal policy in that they respond less 

vigorously to inflation and the output gap when these are less certain. They also 

respond more strongly to one variable when the other is more uncertain. 

We have used our model to calculate the counterfactual interest rate that 

our estimates suggest would have been observed if there had been no 

uncertainty.  Using this, we found that uncertainty has a marked impact on 

monetary policy in three periods.  We find that uncertainty increased interest 

rates following the switch to the interest rate as the tool of policy in the early 

1980s and during the recession of the early 1990s, but that uncertainty reduced 

interest rates during the long expansion of the mid- late 1990s, when debate 

concerned the sustainability of high output growth.   

Our findings suggest that the effects of uncertainty can be detected using 

simple empirical models of monetary policy rules.  Our work can be extended in 

several ways.  We might embed on analysis of monetary policy in a more 
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sophisticated structural model in order to estimate the parameters of a structural 

model of optimal monetary policy.  We might estimate our model over different 

time periods in order to identify occasions when the behavior of policymakers 

was not consistent with the predictions of models of optimal monetary policy.  We 

might estimate our model using data for different countries in order to investigate 

the impact of different monetary policy regimes on the response to uncertainty.  

We intend to address these issues in future work.  
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Table 1 
Model estimates using GMM. Sample: 1983Q1-2003Q4 

 
Interest rate equation:  { }0 1 1 1( ) (1 )t i t i t t t yt t ti L i E E yπρ ρ ρ ρ π ρ− + += + + − + ,  where 

22
yt

y
tt σρσρρρ ππ

π
πππ ++=    and   22

yt
y
ytyyyt σρσρρρ π

π ++= . 

Output gap equation:  0 1 1 2 2t y y t t t ty r y yθ θ γ γ ξ− −= − + + + ,   2 2 2
0 1 1 2 1yt t ytσ φ φ ξ φ σ− −= + + . 

Inflation equation:  1t t t tyππ π θ υ−= + + ,   2 2 2
0 1 1 2 1t t tπ πσ ω ωυ ω σ− −= + + . 

 
a) parameter estimates  

 (i) (ii) 
Interest rate equation   
   

iρ    0.956 (0.032)   0.876 (0.015) 

πρ    1.584 (0.749)   1.074 (0.213) 

π
πρ    -2.333 (0.452) 

y
πρ     4.805 (0.387) 

yρ  
  0.836 (0.530)   1.429 (0.132) 

y
πρ     1.525 (0.267) 

y
yρ    -2.900 (0.394) 

   
Output gap equation   
   

0yθ     0.660 (0.019) 

yθ    -0.021 (0.003) 

1γ     1.256 (0.019) 

2γ    -0.354 (0.017) 

0φ      0.114 (0.040) 

1φ      0.150 (0.071) 

2φ      0.836 (0.046) 

Inflation equation   
   

πθ     0.012 (0.005) 

0ω     0.057 (0.022) 

1ω     0.625 (0.174) 

2ω      0.289 (0.140) 

   
Notes: Column (i) reports the parameter estimates of equation (7) in 
main text. Column (ii) report the parameter estimates of the system 
involving equations (1), (8) and (9) in main text. Numbers in 
parentheses are the standard errors of the estimates. 
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b) Goodness of fit and diagnostics 
 (i) (ii) 
Interest rate equation   
   
Average inflation effect   1.584   2.312 
Average output gap effect   0.836   0.720 
Adjust. R2   0.961   0.964 
s.e. of regression   0.471   0.451 
J stat 11.00 [0.81] 17.99 [0.12] 
Parameter stability   2.11 [0.03]   0.15 [0.97] 
   
Output gap equation   
   
Adjust. R2    0.943 
s.e. of regression    0.493 
Parameter stability    0.14 [0.93] 
Neglected ARCH    0.50 [0.73] 
   
Inflation equation   
   
Adjust. R2    0.782 
s.e. of regression    0.495 
Parameter stability    1.62 [0.20] 
Neglected ARCH    0.68 [0.60] 

Notes: For column (i), J stat is a chi-square test of the model’s 
overidentifying restrictions (Hansen, 1982). For column (ii), J stat is a chi-
square test of the system’s overidentifying restrictions. The instruments 
are a constant, one lag of 2

ytσ and 2
tπσ  and six lags of the interest rate, 

inflation and the output gap. Parameter stability is an F test of parameter 
stability (see Lin and Teräsvirta, 1994, and Eitrheim and Teräsvirta, 
1996). Neglected ARCH is the Lagrange Multiplier F test on the squared 
residuals for remaining serial correlation of order 4. Numbers in square 
brackets are the probability values of the test statistics. 
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Table 2 

Estimates based on alternatives measures 
 Recursive 

estimates 

4-quarter 

MA 

estimates 

Kalman 

Filter 

estimates 

Hodrick-

Prescott 

Filter 

estimates 

Real-time 

output 

estimates 

Average 

real interest 

rate 

estimates 

Average 

inflation effect 

 2.326  1.849  1.300  1.232  1.452  1.836 

Correlation 1  0.715  0.473  0.814  0.956  0.556  0.962 

       

Average output 

gap effect 

 0.953  0.273  0.681  1.809  1.938  0.958 

Correlation 2  0.708  0.561  0.959  0.868  0.554  0.635 

Notes:  
1 Correlation between the implied values of 22

yt
y

tt σρσρρρ ππ
π
πππ ++=  and that implied by the 

estimate of Table 1 column (ii). 
2 Correlation between the implied values of 22

yt
y
ytyyyt σρσρρρ π

π ++=  and that implied by the 

estimate of Table 1 column (ii). 
3 The average real interest rate is the difference between ti  and tπ , where ti  and tπ  are the 

four quarter moving averages of the nominal interest and inflation rates respectively.  
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Figure 1 
The implied variance of inflation and the output gap 
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Figure 2 
The gap between fitted and counterfactual interest rates  
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Figure 3 
The contributions of inflation and output gap uncertainty to the gap 

between fitted and counterfactual interest rates  

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

84 86 88 90 92 94 96 98 00 02

gap between fitted and counterfactual interest ra tes
contribution of output gap volatility to the interest rate gap
contribution of inflation volatility to the interest rate gap

 
 



 25

References 

 
Bernanke, B.S. and M. Gertler (1999). Monetary policy and asset price volatility, 
Federal Reserve Bank of Kansas City Economic Review, 84, pp 17-51. 
 
Bernanke, B.S. and M. Gertler (2001). Should central banks respond to 
movements in asset prices? American Economic Review Papers and 
Proceedings, 91, pp 253–257 . 
 
Brainard, W. (1967). Uncertainty and the effectiveness of policy, American 
Economic Review, 57, pp 411-425. 
 
Castelnuovo, E. (2003). Taylor rules, omitted variables and interest rate 
smoothing in the US, Economics Letters, 81, pp 55-59. 
 
Clarida, R. J., M. Gali and M. Gertler (2000). Monetary policy rules and 
macroeconomic stability: evidence and some theory, Quarterly Journal of 
Economics, 115, pp 147–180. 
 
Dolado, J., R. María Dolores and F.J. Ruge-Murcia (2004). Non-linear monetary 
policy rules: Some new evidence for the US, Studies in Nonlinear Dynamics and 
Econometrics, 8, article 2. 
 
Eitrheim, Ø. and T. Teräsvirta (1996). Testing the adequacy of smooth transition 
autoregressive models, Journal of Econometrics, 74, pp 59-75. 
 
Goodhart, C. (1999). Central Bankers and Uncertainty, Bank of England 
Quarterly Review, February, pp 102-121. 
 
Gordon, R.J. (1997). The time-varying NAIRU, and its Implications for economic 
policy, Journal of Economic Perspectives, 11, pp 11-32. 

 

Greenspan, A. (2003). Remarks, in Monetary Policy and Uncertainty: Adapting to 
a Changing Economy, Federal Reserve Bank of Kansas City. 
 
Grier, K. and M. Perry (2000). The Effects of Real and Nominal Uncertainty on 
Inflation and Output Growth: Some GARCH-M Evidence, Journal of Applied 
Econometrics, 15, pp 45-58 
 
Hansen, L. P. (1982). Large sample properties of generalized method of 
moments estimators, Econometrica, 82, pp 1029–1054. 
 
Hodrick, R.J. and E.C. Prescott (1997). Postwar U.S. business cycles: An 
empirical investigation, Journal of Money, Credit, and Banking, 29, pp 1–16. 
 



 26

Judd, J. and G. Rudebusch (1998). Taylor’s rule and the Fed: 1970-97, Federal 
Reserve Bank of San Francisco Economic Review, 3, pp 3-16.  
 
Lin, C-F.J. and T. Teräsvirta (1994). Testing the constancy of regression 
parameters against continuous structural change, Journal of Econometrics, 62, 
pp 211-228. 
 
Mankiw, G (2001). American Economic Policy in the 1990s, Centre for Business 
and Government, John F  Kennedy School of Government, Harvard. 
 
Meyer, L. (1999). Q&A on the economic outlook and challenged facing monetary 
policy, speech before the Philadelphia Council for Business Economics, 
www.federalreserve.gov   
 
Pagan, A. (1984). Econometric issues in the analysis of regressions with 
generated regressors, International Economic Review, 25, pp 221-247. 
 
Pagan, A. and A. Ullah (1988). The econometric analysis of models with risk 
terms, Journal of Applied Econometrics, 3, pp 87-105. 
 
Peersman, G. and F. Smets (1999). The Taylor Rule: a useful monetary policy 
benchmark for the Euro Area? International Finance, 2, pp 85-116. 
 
Rudebusch, G. (2001). Is the Fed too timid? Monetary policy in an uncertain 
world, Review of Economics and Statistics, 88, pp 203-17. 
 
Rudebusch, G. (1998). Do measures of monetary policy in a VAR make sense?, 
International Economic Review, 39, pp 907–931. 
 
Sack, B. (2000). Does the Fed act gradually? A VAR analysis, Journal of 
Monetary Economics, 46, pp 229-256. 
 
Smets, F. (2002). Output gap uncertainty: does it matter for the Taylor Rule?, 
Empirical Economics, 27, pp 113-129. 
 
Soderstrom, U. (2002). Monetary policy with uncertain parameters, Scandinavian 
Journal of Economics, 104, pp 125-145. 
 
Srour, G. (2003). Some notes on monetary policy rules with uncertainty, Bank of 
Canada Working Paper No. 2003-16. 
 
Svensson L.E.O. and M. Woodford (2003). Indicator variables for optimal policy, 
Journal of Monetary Economics, 50, pp 691-720. 
 



 27

Svensson L.E.O. and M. Woodford (2004). Indicator variables for optimal policy 
under asymmetric information, Journal of Economic Dynamics and Control, 28, 
pp 661-690. 
 
Swanson, E. (2004). On signal extraction and non-certainty-equivalence in 
optimal monetary policy rules, Macroeconomic Dynamics, 8, pp 27-50.  
 
Taylor, J. (1993). Discretion versus policy rules in practice, Carnegie-Rochester 
Conference Series on Public Policy, 39, pp 195-214. 
 
Walsh, C. (2004). Implications of a changing economic structure for the strategy 
of monetary policy, Santa Cruz Center for International Economics Working 
Paper No. 03/18, University of California, Santa Cruz. 
 
Woodford, M. (2003), Interest and Prices: Foundations of a Theory of Monetary 
Policy, Princeton: Princeton University Press. 
 
Yellen, J. (2003). Remarks, in Monetary Policy and Uncertainty: Adapting to a 
Changing Economy, Federal Reserve Bank of Kansas City. 
 


