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INTRODUCTION

Numerical transform techniques were introduced into elec-

trical engineering by Tustin in 19l]-7. Since then, several in-

vestigators have produced various methods whose aim is digital

solution of ordinary linear and nonlinear differential equations.

It has been demonstrated by Halijak (2) that all of these

methods have trapezoidal convolution as their fundamental basis.

An appraisal of these methods has led to choosing the mul-

tiple integrator substitution program, together with exact

z-transforms of (l/s)
n

, as the preferred method for solving

ordinary differential equations with constant coefficients.

This method is analogous to Naumov's program ($) , but its execu-

tion is quite different. Explicitly, this method is applicable

only to functions of time continuous on fo, 00! . However, no

generality is lost since the method is inherently adaptable to

discontinuous functions.

All numerical transform techniques require lengthy algebraic

calculations for determining coefficients of recurrence rela-

tionships, and these calculations, external to the digital com-

puter, are a large source of human error. The purpose of this

thesis is to program a digital computer to execute these lengthy

calculations at a high speed, and without human error. The

program determines the required recurrence relation, and then

iterates this recurrence relation to obtain a solution. Fur-

thermore, since the program accepts an nth-order (2^ n £ 13)

ordinary differential equation with constant coefficients



without additional computer programming, it can properly be

called an "autoprogram".

It should be noted that this autoprogram applies only to

initial value problems of ordinary differential equations with

constant coefficients.

It is presumed that the reader is familiar with z-trans-

forms and trapezoidal convolution (1). A deviation from standard

-Tsz-transform notation is employed throughout; namely, z = e

rPq
is used in place of the standard e . The delay operator,

e~Ts , is physically realizable, whereas the predictor, e ls , has

not been found in this physical world.
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DEVELOPMENT OP THE SOLUTION OP
EQUATION WITH ZERO INITIAL

THE nth- ORDER
CONDITION

The Standard Form

The following form will be consid ered the standard form

of the equation to be solved.

dVCt) dn*^y(t)
Cn + Co + . . .

dtn dt
+ cn+1y(t) = x(t) (1)

Ini tial conditions of y(t) and its (n - 1) derivatives are

assumed to be zero. Nonzero initial c onditions are conslidered

in the next section.

The Solution

The above standard form is now expressed in closed
d

form

usi,ng the differential operator D = —
dt

•

[l °™ D"'-M y(t) = x(t) (2)

The i Laplace transform of equation (2) is

[I ^ sn k 7 = x (3)

where the overbar denotes an s-domain function.

Dividing by the highest power of s, which occurs when

k = : 0, the following form results:



n kl - „ , x n -
]£ ck+1 (l/s)
A

y = (l/s)
11

x (k)
k=0

The next step is to take the z-transform of the equation, using

trapezoidal convolution (1) to obtain the transforms of pro-

ducts of (l/s) and y. This method requires that terms involv-

ing (l/s) and (l/s) be treated as special cases, since the

term involving (l/s) involves merely the transform of the

s-variable, i.e., no convolution is involved, and the term in-

volving the (l/s) term reintroduces the initial value of the

unit step function, which has a value of unity in the time do-

main. All other terms involving (l/s)
1

, where i =» 1, require

reintroduction of zero initial values. With this in mind, the

following steps result.

Z lj ck+i(l/s)
k

y =Z fu/s) n
xj (5)

k
E
Q

ck+i z[(i/s)
k
y] = Z f"(l/s)

n
xl (6)

_ c 2T 1 + z _ n ck+1T
k

z Ak (z)

ClZy + Zy + V Zy
2 1 - z k^2 (k-l)J (l-z)k

T
n

z An (z) f_ xqI
Zx (7)

n - 1)1 (l-z)
n

L 2 J(:

The definitions listed below will introduce the reader to new

symbols.

T denotes the sampling time interval.

Zy denotes the z-transform of y.



. T i_1 z A^z)
A.(z) stems from Z(l/s) = and is derived
1

(i-l)J (1-z) 1

in reference (3)

.

The next step toward developing a recurrence relation in

terras of z is to clear fractions in the entire equation by mul-

tiplying by (1-z) , and this yields

« rp

Cl (l-z)
n

Zy" + — (l+zMl-z) 11- 1
Zy"

2

n ck+1T
k

.

+ t J2i- z Ak (z) (l-z) n -k
Zy"

k=2 (k-l)J

rjjn

z An (z) I Zx - — I (8)n (z) [z*-^]

(9)

(n-l)i

This equation is rewritten for siraplicity as

A(n,z) + B(n,z) + C(n,k,z) Zy = D(n,z) Zx

with the following identifications applying to equation (9)

:

A(n,z) = Cl (l-z)
n

(10)

cpT
B(n,z) = (l+z)(l-z)

n' 1
(11)

2

£ Ck+1T n_k
C(n,k,z) = Y z Ak (z) (l-z)

n K
(12)

k=2 (k-l)J

ijin

D(n,z) = z An (z) (13)
(n-1)

!

Upon examining these coefficients it becomes apparent that both

A(n,z) and B(n,z) represent polynomials in z of degree n.

The C(n,k, z) coefficients are polynomials in z for every

value of k between 2 and n. To determine the degree of these



polynomials, it should first be noted (3) that A^(z) is always

of degree (i-2). If this is multiplied by z(l-z)
n "k

, the product

will always be of degree (n-1), and the z term is absent.

A Closed Form for z Ak ( z) ( l-z) n_k

Since the C(n,k,z) coefficient includes a number of poly-

nomials it is of benefit to develop a closed form which would

generate any coefficient of any of these polynomials.

The polynomial E(n,k,z), n.2 2 is defined as

E(n,k,z) = z Ak (z)(l-z)
n_k

= £ br z
r

(llj.)

r=l

The problem is now to determine the bp coefficients. Cris-

well (3) has shown that

n-2
Ak (z) =

J"
A(k,q)z* (15)

q=0

Furthermore, the binomial expansion yields

„ *_ n-k / n-k \

z(l-z)
n -k

=
Y. {

("D q
z
q+1

(16)
q=0 \ q J

The product of equations (1$) and (16) is found by employing

the "Cauchy Product" (Jj.) . The Cauchy product of two polynomials

N . M . N+M n
Z C

i
xl and 2 d

j
xJ is E

Q
en

xI1
»
where en =

k
E ckdn-k- UsinS

this relationship, the expression for br , for given n and k,

becomes

r / n-k \
br (n,k) = £ A(k,u) (-l)

r_U
(17)

u=0 I r-u /



Collection of z-Coefficients Associated
with Zy

The task at hand is to collect all coefficients of equal

powers of z on the left side of equation (9). This amounts to

expanding equations (10), (11), and (12) for a given n, and

adding coefficients of like powers of z. This operation is per-

formed by the computer and the illustration below is given to

aid in the development of the recurrence relation.

Consider the following polynomials of enforced like degree,

A(n,z) = c
l L 1

+ a l z
+ a

2
z + ... + an

zn

c T i" i
B(n, z) = -£- I 1 + b

1
z + b^z2 + ... + t>nz

n

\ (18)

C(n,2,z) = —— [o + dx z
+ d 2 z

2 + . . . + d^-^ 11" 1 + Oz 1
*]

k=2(l)n .

c -i Tn r n
C(n,n, z) = — + w-,z + w 9 z

2 + . . . + w^ ^z11" 1 + 0zn

(n-l)J L
X n_± J

Upon summing coefficients of all columns in this array, there

results a single polynomial in z whose degree is n. Thus the

left side of equation (9) has been reduced to the form

A-j_ + A 2 z + A-^z
2 + Alz^ + . . . + An+1 z

n Zy

= z A(z) Zx (19)
(n-l)J

n
L 2 J
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The next task is to reduce the right side of equation (19).

This polynomial consists of a constant multiplying two poly-

nomials in z. The first, z An(z), is of degree (n-1), whereas

r - *oi
the forcing function factor Zx - — is a polynomial in z of

L 2 J
indefinite degree. The entire term on the right side yields the

form

inT r i
un + u-i z + upz + . . . + un _-| z

n

n-1) ! L
U

J

r*o 2 k i— + X-j^Z + x
2
z + . . . + X^Z + . . . I (20)

where Xq = initial value of the forcing function

xn = x(nT), i.e., the forcing function evaluated at

t = nT.

The resultant polynomial, also of indefinite degree, is

written as:

Tn r -,

= w + Wj_z + w2 z
2 + . . . + wkz

k + . . . (21)
(n-1) I L J

The required coefficients in equation (21) are found to be:

*0
w = u —

2

w
l

*0
= UqX-l + u

1
—

w
2

*0
s= UqX2 + u-^x-^ + u2 —

*0
wn-l = U xn-1 + u

l
xn-2 +

• • •
+ un-l

~



w
n

= u
O
x
n

+ u
l
xn-l

+
• • •

+ un-lxl

W
k

= U X
k

+ U
l
X
k-l

+
• • •

+ ^-A+l-n

At this point equation (9) has been reduced to the form

Zy = Q(z) (22)

n

So

[p(z)1

where P(z) = £ Ak+1 z

Tn oo
Q(z) = £ wk z

(n-l)i k=0

Recurrence Relation

The recurrence relation for the iterated solution is only

a few steps away. It remains to translate equation (22) from

-Ts
the z-domain into the time domain. Since z = e is a delay

operator such that every z delays its coefficient by T seconds,

and every z
n delays its coefficient by (nT) seconds, the follow-

ing transitions are employed.

z-domain Time domain

Zy ;> yn

z Zy > yn_ 1

z
kZy > yn _k

Upon applying these transitions to equation (22), Q(z) emerges

as a sequence {wi/l in the time domain, where the k^^1 term in the

sequence is the coefficient of zk in the z-domain; hence equa-

tion (22) transforms into
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Tn

Al^k + A2^k-1 + A3^k-2 +
' '

+ An+iyk-n =
"^J7 [

wk] (23)

Solving for yk , one obtains

^k

1 r Tn -,— — ^k " A2^k-1 " A2^k-2 " • • • " An+iyk-n
A1 L(n-l)

J

J
(21+)

Equation ( 2I4.) is the final recurrence relation for the

iterated solution of the differential equation. For the first

n iterations of this equation it is understood that a negative

subscript results in a zero value. This equation shows clearly

the dependence of yk on n previous yk 's, and n previous xk 's

which appear in wk . The subscript k ranges from to m, where

M depends both on the sampling time T and the desired solution

time.

The constant An depends on the coefficients of the differ-

ential equation and the sampling time T. Equations (l8) show

that A-, = Ci •'+ c 2T/2; hence if T = -2c-]_/c2, A-j_ becomes zero,

and equation [2l\) becomes an undefined quantity. This possi-

bility must be investigated when choosing T and a check feature

has been incorporated in the program.

This concludes the development of the solution of the n

order differential equation with zero initial conditions.



11

DEVELOPMENT OP THE SOLUTION OP THE n
th-ORDER

EQUATION WITH INITIAL CONDITIONS

Equation (1) will again be used ias the standard form of

the differential equation.

The new problem differs from the previous development only

by the presence of the initial values of y(t) and its (n-1) de-

rivatives. Since these values are first introduced during the

Laplace transformation, it was found iadvantageous to employ a

method of induction which points out 'that initial conditions

may be considered as an alteration of the forcing function.

The first-order and second-order cases suffice to show the

trend, from which a general form is then deduced. The first-

order case yields:

(03D + c 2 )y(t) = x(t)

c
1
(sy - y ) + c

2y
= x

1 11
{c

1
+ - c

2 )y
= - x + - c-^Jq

s s s

(25)

The second-order case yields:

(c-]_D
2 + C2D1 + Oo)y(t) = x(t)

c
1
(s y - sy

Q
- yQ ) + c 2 ( sy - yQ ) + c^y = x11 1

( Cl + _ C2 + c
3 ) y = x + y ( C]L

s s^ s

11
(1)

1
- + c 2 — ) + y

vxHoi —

)

3 S^ 3^

(26)

The general form becomes:
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fk
s <-)

k
^l-<-)

n --
k
E
1

(
-)k fA^

(kiLk=0 s s k=l s L1=1 J

(27)

Upon comparing equations (27) and (Jj.) , it becomes apparent

that equation (27) differs merely by the term involving the

initial conditions. It is also noted that this term adds to

the forcing function, and that no convolution is involved.

Development of Recurrence Relation

Development of equation (27) into a recursive relationship

follows the procedure of the previous section. It should be

pointed out, however, that trapezoidal convolution will rein-

troduce initial conditions in every convolution operation.

Taking the z-transform of equation (27), we obtain:

z

h]
+z h (

;
,?

]

+z
[(l2

(

;

)k
°^) 7

]

= 4 ,

;

,n "
I

]

tzM ,

]
tz
[i (

;

,k

(i- ,i ,28)

Upon inserting the indicated transforms, and performing the

convolutions in equation (28), there results

[-T 1+z _ T yQ ] r _ y
"J

cxZy + c 2
- Zy - - + f(k,n,z) Zy - —

L 2 I"* 2 (l-z)J L 2 J

r - xoi i
= D(n,z) Zx + Cly ( ) + g(i,k,n,z)

where D(n,z) is defined in equation (13).

(29)
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n T
k

z Ak (z)
f(k,n,z) = f c k+1

JE
ifc

k+1
(k-l)J (l-z)

k

g(i,k,n,z) = £ [# c y
^"^

k=2 Li=l
x u

T
k " 1

z Ak (z)

(k-l)J (1-z)

After multiplying by ( 1-z) , and collecting terms such that the

left side contains only the terms associated with Zy, we obtain:

A(n,z) + B(n,z( + C(n,k,z) Zy = D(n,z) Zx - —

+ y P(n,z) + - C(n,k,z) + G(k,i,n,z) (30)

where A(n,z), B(n,z), C(n,k,z), and D(n,z) have been defined

in equations (10) through (13), and

P(n,z) = ( Cl +— ) (1-z)""
1

(31)

G(k,i,n, Z
) = Js^ W^'] ^yy (!-«*%(•» &2)

The left side of equation (30) is identical to the left side of

equation (9) and the same holds true for the forcing function

factor. The difference lies in two factors on the right con-

taining the initial conditions.

Collection of z-Coefficients

As was done with equation (9), the coefficients of like

powers of z must be collected in equation (30). Since only

the right side differs from equation (9), the problem is to



li+

1

add the coefficients of F(n,z) and - C(n,k,z), multiplying them
2

by y(v and then to add coefficients of G(k,i,n,z). These totaled

coefficients are then added to the respective w^ terms
(n-1) J

k

in the recurrence relationship.

1

It is found that P(n,z), - C(n,k,z), and G(k,i,n,z) are
2

all of degree (n-1) . Their addition follows the same scheme

illustrated in equations (18). Since the result is a polynomial

in z, say R(z), of degree (n-1), the final recurrence relation

for the n order differential equation differs from equation

(2ij.) only during the first n iterations. To illustrate this,

let

2
R(z) = Vq + v-jZ + V2Z + . . . + vn_iz

'2
, ,

„n-l
,Z -1- Vp?

Then, for k 2 n

1 T T
n

"|

yk
= — \-—- wk + vk - A 2yk-i - A3^k-2 - • • •

An+iyk-n (m
Ax L(n-l) I J

For k > n, y, is again given by equation ( 2l\.) .

This concludes the development of the iterated solution

for the n order differential equation, with existing initial

conditions for y(t) and its (n-1) derivatives.

The next section will show the development of a FORTRAN

program which performs all operations indicated above for any n.



15

DEVELOPMENT OP THE FORTRAN PROGRAM

This program is designed to solve any ordinary differential

equation with constant coefficients of order n such that

2 S n < 15.

T. Rado's notation, -::- for START and *» for STOP, will be

used in all flow charts for the sake of notation economy.

Equation (30) is used as the starting point since it is

the last step to contain all polynomials separately. These

polynomials are a function of n and they must be computed sep-

arately before being added to give the final polynomial.

The A(n,z) Polynomial

Equation (10) shows that this merely involves the binomial

expansion of (l-z)
n

. The coefficients of this expansion are

determined as shown by the flow chart in Pig. 1, and are denoted

by a(k), where (k-1) denotes the power of z with which the

a(k) is associated. The constant c^ is not yet included. Be-

cause of memory economy it was found advantageous to expand and

store these polynomials as integers; this required delay of

multiplication by the floating point number c-,.

The B(n, z) Polynomial

As equation (11) shows, B(n, z) is the expansion of

(l+z)(l-z) . The coefficients of this expansion are denoted
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L 5 nl

! 1

K = 1

\ i

m = K + 1

a(K) = L(-l) in/(K-l) 1 (n+l-K) i

No

K = K + 1

Pig. 1. Expansion of (1-z) .
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L = (n-1) J

i

r

K = 1

\V

' /

m = K + 1 K = K + 1

'

i

b(K) = L(-l)»/(K-l)-I(n-K)J

K =: n
V No

Yes

Pig. 2a. Expansion of b(K) = (l+z)(l-z)
Plow chart is continued in Fig. 2b.

n-1



K = 1

18

J = n + 2 - K K = K + 1
A

b(J) = b(J) + b(J - 1)

No

Pig. 2b. Continued expansion of

b(K) (l+zHl-z) 11 - 1
.
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by b(k), where again, b(k) is the coefficient of z . The flow

chart for this expression is shown in Fig. 2a and Fig. 2b.

The C(n,k,z) Polynomials

The next task is expansion of C(n, k,z) polynomials in

equation (12). Here again, the integer coefficients of z will

be computed and stored. They are denoted by

c(I,J) = £ z Ak (z) (l-z)
n-k

. The multiplication by

£ Ck+1T
is delayed until the polynomials are summed for

k=2 (k-l)I

reasons of economizing the required memory.

It is noted that these polynomials include the A, (z) poly-

nomials, derived and computed by Criswell (2). A closed form

for these polynomials is available, and a built-in routine for

their computation was considered. However, since this program

was intended to accept equations of order 2 15, it was found

that memory space could be saved by inputting and storing co-

efficients, rather than calculating them in the program.

Initially, the A^(z) coefficients were read-in and stored

in a square array. As the program progressed, however, memory

capacity was exceeded on several occasions. One of the modifi-

cations made to conserve memory space was to store the A-^(z)

polynomials in a vector, in which each polynomial occupies a

minimum number of positions. It will be noted that the A^(z)

array (2) has zeros in its upper triangle. These positions
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K = 1

R - 1

Sum =

K = K + 1

R = R + 1

<D

U = 1

Denom = (R-TJ) J (n-1+U-K-R) I

Yes

Bicoef = (n-K-1)
I
/Denom

Ivec = K(K-l)/2 + U

Pig. 3a. Expansion of c(n,k,z)
n

= £ z Ak (z)(l-z)
n - k

.

k=2
Continued in Figs. 3b and 3c

Zl

u = u + 1
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Sum = Suin + (A(lvec)) Bicoef ( -1) R~U

_LL

c(K,R) = Sum

1 = 1

-0

<D

<D

<D
c(I,n+l) :

]

'

'

J = 1

Fig. 3b. Expansion of c(n,k,z)
n

n-k

Continued in Fig. 3c.

= V z Ak (z)(l-z)
n -K

.

k=2
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K = n+l-J

X
c(l,K) = c(l,K-l)

Yes

No

No

J = J + 1

1 = 1 + 1

l\

Fig. 3c. Expansion of c(n,k,z)
n

= r z a, ( z ) (l-z)
k=2

n-k
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were eliminated by the vector form. The following transforma-

tion was used to achieve this. Let A(i,j) be a lower triangular

matrix, and let it be stored by rows in a vector B(k). The

A(i,j) element can be stored in the B I li(i-l)/2j + jj

element. The B address is denoted by IVEC in the program.

Summing A(n, z), B(n, z), and
C(n,k,z) Polynomials

At this point the above polynomials have been expanded and

the summation indicated by equations (l8) is to be performed.

The a(n, z), b(n, z), and c(n,k,z) are converted to floating point

numbers, multiplied by their respective coefficients, and summed

into the single polynomial A(z) of equation (19). In the pro-

gram this polynomial is denoted as A12T(K)

.

The D(n, z) Polynomial

Expansion of the D(n,z) polynomial involves recall of the

proper A^(z) polynomial stored in vector form along with all

other A^(z) polynomials. After recall, the coefficient is mul-

tiplied by z, which causes a shift of "one" in its position sub-

script. The resulting polynomial d(k) is of degree n, but its

z term and its z
n term have zero coefficients. Multiplication

by the constant Tn/(n-l) J is again delayed until the coefficients

are used in the W(K) subroutine. The flow chart is shown in

Pig. $.

Mr. David G. Dutra can be credited for this innovation.
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J = 1

A (J) = c x a(J) + (c?T/2) b(J)

A3T(J) =

1 = 1

TP = T

IP2 = 1 + 2

TP = (TP)T

A3T(J) = c IP2 c(l,J) TP/I

<D

<D

Pig. i|a. Summation of the polynomials A(n,z),
B(n,z), and C(n,k,z). Continued

in Pig. i+t)

.
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1 = 1 + 1

No

®n©
A (J) = A (J) + A3T( J)

No
J = J + 1

Yes

Fig. I(.b. Summation of A(n,z), B(n,z),
and C (n,k, z)

.
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d(l) =

v

J = 2

< '^

v

K = (n-1) (n-2)/2 + J - 1

;

i

d(J) - An (K)- J = J + 1

<^ J = n

|Yes

Nc3

-.

d(n+l) =

Fig. 5.

1

Expansion of d(n,z) = z An(z).
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Expanding the F(n,z) Polynomial

Equation (3D shows that F(n, z) requires the binomial ex-

pansion of (l-z)
n-1

; these binomial coefficients are denoted by

f(k) in Pig. 6. Multiplication by the constant c
1

+ (c
2
T/2)

is performed simultaneously with the addition

F(n,z) + (l/2)C(n,k,z)

.

Addition of F(n,z) and ( l/2) C (n,k, z)

Coefficients of C(n,k,z) are already available and are de-

noted by A3T(k) in Pig. i\.a. To perform the addition, recall

A3T(k), divide by 2, and add this to c
±

+ (c 2T/2) times the

f(k) coefficients. This operation is illustrated in Pig. 7.

Coefficients of the resulting polynomial are denoted by FC(k).

Expansion of the G(k,i,n,z) Polynomial

The G(k,i,n,z) polynomial is defined in equation (32).

Its expansion is performed in two distinct steps. The factor

. , £ (k-i) .

contained in the brackets of equation (32), 2.,
c iyo '

1S
i=l

a constant which depends on coefficients of derivative terms in

equation (2) and the initial values of y(t), and its (n-1)

derivatives.

Summation of this factor is performed in a subroutine

which is denoted as the CO(K) subroutine. The argument K, of



L = (n-1)

I

K = 1

28

m = K + 1 K = K + 1

m
f(K) = L(-l)

I7((K-l)i(n-K)J)

No

Pig. 6. Expansion of (l-z) n_1 .
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D = 2cx + c 2T

J = 1

PC (J) = (f(J)D + A(J))y /2 J = J + 1

No

PC(n.+ l) =

Fig. 7. The summation P(n,z) + ( l/2)C(n,k, z)
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K = argument

:

'

*

CO =

'

1

1 = 1

J t

1 1

KI = K - i

•X^ ^s. Yea

i = i + 1 <^ KI =
—

3

.

jNo

CO = CO + c-jyfl(
Kl )

"
n u _^~ i = K \ CO = CO + CiYQ

,

1

Yes

i 1

Return to program -

Fig . 8 . Cs
k

ilculation of CO(K) = J*
i=l

(1
c i7o •
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the subroutine, is synonomous to the upper limit on the summa-

tion symbol in equation (32) . Thus for every k in equation (32)

the subroutine is called and it computes the value of

f* c.y„
(k~

. The flow chart for the CO(K) subroutine is« x °

shown in Pig. 8.

Once the bracketed term in equation (32) have been deter-

mined, the remaining expansion of the G(k,i,n,z) polynomial

follows the expansion for C(n,k,z), which has previously been

discussed. The flow chart for G(k,i,n,z) may be found in

Fig. 9a and Pig. 9b.

The last step in obtaining all polynomials is summation of

the F(n, z); l/2 C(n,k,z) and G(k, i,n, z) polynomials. The re-

sultant polynomial contains all initial conditions, and is of

degree n. Its coefficients are added to W, during the first n

iterations. The flow chart for this polynomial is shown in

Fig. 10.

Determining the W(K) Coefficients

The ¥(K) coefficients are entries in the sequence W^.. They

are defined in equation (21), and must be determined for every

k, where 1< k s ps/T > t s is a prespecified solution time, and

T is the sampling interval. Equation (33) shows how the W(K)

become part of the solution recurrence relation.

The W(K) are generated in a subroutine whose argument is K.

This subroutine determines the value of W(K) for the particular
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J r

J = 1

\

,. J i

§(J) = o |

,,, !

'

TP = T

K = 1

—*»

KPI = KIZ3

<D

g (J) = g(J) + (CO(KPI) c(K,J)) TP/K1

TP = (TP)T K = K + 1 |

Fig. 9a. Expansion of G(k,i,n,z)
Continued in Pig. 9b.

1
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© No

Yes

J = J + 1

Yes

No

<D

Pig. 9b. Expansion of G(k,i,n,z)

J = 1

PCG(J) = PC (J) + g(J)

No

Yes

J = J + 1

Pig. 10. The summation P(n,z) + (1/2)C (n,k, z)

+ G( i,k,n, z)

.
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K = argument

W =

V

1 = 1

KI = K - I

© Yes

TT = KI

No

W = XQd(K)Tn/(n-l): + FCG(K) "]

Pig. 11a. The W(K) subroutine.
Continued in Pig. lib.
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©

TVAR = (TT)T

X = f(TVAR)

W = W + (Tn/(n-l) J)d(l)X

No

Yes

Return to Program

1 = 1 + 1

<D

Pig. lib. The W(K) subroutine.
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K, and returns W(K) to the main program. The flow chart of the

¥(K) subroutine is shown in Pig. 11a and Fig. lib.

The Iterated Solution

As equation (33) points out, the present value to be cal-

culated is always dependent on n previously calculated values.

Therefore the n previous y^'s must be available in storage.

Since k may become a very large number, it is impossible to store

all yk 's. Thus the program was designed to calculate, store,

and print n of the yk 's. After they are printed out, they are

replaced with new yk 's, until all n of them are replaced and at

this time they are printed again. By using this method, the

core storage required for the output was reduced to n positions,

which is minimal. The flow chart for the iteration is shown

in Pig. 12a, Fig. 12b, and Fig. 12c.

Other Program Features

It was pointed out earlier that the A(l) coefficient could

attain a value of zero. A check feature to detect a zero is

included. The program remedies this defect by choosing one-

half the requested sampling time.

Since it is very common to solve differential equations

whose initial conditions are zero, a feature has been included

which scans the initial conditions. If it finds all of them to

be zero, the routines for the F(n, z) + ( l/2)C(n,k, z) and the
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©

TI = TIME/nT

1 = 1

K = 1

-4

KP = (I-I)n + K

No

y(K) = y(K) (-A(n+D) + W(KP)

y(K) = W(KP)

Yes

<D

I0BJ = KP

Pig. 12a. Iterated solution. Continued
in Fig. 12b and Fig. 12c.
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J = J + 1

Yes
*
] I03J = n

J = 2

-4

KL = K + 1 - J

Yes
• KLN = n + KL

y(K) = y(K) - A(J)y(KL)

y(K) = y(K) - A(J)y(KLN;

l*

No

Yes

©
Pig. 12b. Iterated solution. Continued in Fig. 12c,
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K = K + 1

No

A
v(K) = y(K)/A(l)

ST(K) = ((I-l)n - 1 + K)T

1 = 1 + 1 1

E

No

No

<D

K = K + 1

Fig. 12c. Iterated solution,
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G(k,i,n,z) coefficients are by-passed to save computation time.

Factorials have been described in regular mathematical

notation in the flow charts. However, the program calculates

them in one of two incorporated subroutines: one subroutine

for floating point numbers, and the other subroutine for fixed

point numbers.

The output format statements are written for a 132-

character line printer, and adapt to any order of the input

equation. Discrete time for each iteration is listed to the

left of the computed output.

This concludes the outline of the FORTRAN program. A list-

ing of the program is found in the appendix. It should be noted

that notations used in the flow charts and the program do not

always agree, for the sake of simplicity, in the flow charts.

The program in its present form is geared to the IBM lip.0-

PR-155 computer. It is written in FORTRAN IV language, and re-

quires approximately 38,000 digits of core storage. Work tapes

and CHAIN features are not used and they were purposely avoided

for the sake of increased computation speed. Computer time re-

quired is a function of the solution time requested, and the

order of the equation. Fifteen minutes of computation time

(not including compilation) was rarely exceeded. In order to

reduce compilation time it is recommended that an object deck

be punched for the entire program except for the W(K) subroutine,

This would require that the source deck for the subroutine be

placed ahead of the object deck, and that an EXEQ, FORTRAN card

precede it. This technique reduces compilation tome to a
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fraction of a minute.

The program operates with 18 significant figures for both

floating and fixed point numbers; this was the maximum available

in the available digital computer.

All subroutines are FUNCTION subroutines, which share a

number of variables with the main program in a COMMON memory

area. It should be mentioned that this COMMON area does not

appear on the memory map, and therefore must be added to the

last point of entry, plus the size of the last routine loaded,

in order to arrive at the total size of the program. However,

if a total capacity of ij.0,000 digits of core storage is avail-

able, it is doubtful that this capacity would ever be exceeded,

since this is possible only by a forcing function which requires

more than 2,000 digits. Should this case arise, it is recom-

mended that the fixed point numbers be reduced to 12 significant

figures or less to make up the deficit. This will result in

little or no loss of accuracy in the output.

USING THE FORTRAN PROGRAM

The FORTRAN program is an auto-program in the sense that

no additional programming is required in order to obtain a solu-

tion for an ordinary differential equation with constant coeffi-

cients, provided its order n is 2 2 n £ 13- Therefore the only

input requirements are a statement of the problem to be solved,

the desired sampling time, and solution time.
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Entering the Problem into the Program

To aid in identifying the various quantities, equation (1)

is repeated for convenience:

d (n >y(t) d (n
- 1 ^y(t)

c, + c 9 + . . . + cn+1 y(t) x(t) (1)
1

dtn
2

dt"" 1 nfl

Input Data Cards . The first input data card to be placed

on the back of the deck is a card containing n, X ^, Time, and

T, and in that order from left to right. Here

n denotes the highest order of derivative contained

in the equation and is an integer,

X _ + denotes the initial value of the forcing function,

Time denotes the desired solution time,

T denotes the sampling interval.

The FORTRAN format for this card is (13, E2lj..l8, 2F10.5)

.

Example . Let n = 1+, X
nQt

= 1.0, Time = 5-0, T = .02.

The card appears as follows:

ij. .1 E 1 5-0 .02

I ft!
Column 3 Column 27 Column 37 Column I4.7

The next input card is the card containing c-^, followed by

cards bearing the remaining coefficients of the derivative, one

coefficient per card. The FORTRAN format is (E2I4..I8). It is

important that there are exactly (n+1) cards to be read by the

program for coefficients of the derivatives. If any term on

the left side of equation (l) is absent, the coefficient for

that term must be read-in as zero, i.e., a blank card is placed
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in the proper position of the sequence of the c. input cards.

The last set of input cards to be placed on the back of the

deck is the set of cards containing the initial value of y(t)

and its (n-1) derivatives. The FORTRAN format is again (E2ij..l8),

with one number per card. The first card must contain yQ and

it is placed immediately following cn+ -j_. The second card must

contain y ^
, and so on in ascending order of derivatives, up

to yo^
n_1 ^- Thus yo^

n-1
^ is the last card of the deck. If all

initial conditions are zero, it is required that n blank cards

be read-in.

The forcing function input card cannot be read-in by the

program; hence it must be prepared in proper FORTRAN language

and placed in the proper position of the deck. The position is

in the ¥(K) subroutine, and is denoted by a comment card. The

discrete time is available in the W(K) subroutine, and is de-

noted by TVAR. Thus if the forcing function is a time-varying

quantity, then the time variable must be TVAR.

Example . Let the forcing function be:

x = 3t 2 + 5 sin 6t

The card containing this forcing function appears as follows:

X = 3 . -::-TVAR-:h:-2 + 5.-*SIN(6.-::-TVAR)

1
Column 7

This concludes the discussion of all input data required.

As a check-feature, it is noted that for an n ttl order differen-

tial equation, there are always 2n+3 input cards required; this

assumes that only one card is required for the forcing function.
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Choice of Sampling Time

Choice of a suitable sampling time is very important, and

yet no universal and satisfactory method for determining such a

sampling time has been found. It is, of course, dependent on

the smallest time constant of the equation, as well as on the

period of the forcing function. The sampling time must be a

fraction of the smallest of the two mentioned above. Since the

forcing function period is oftentimes least important, the

quantity to be considered is the smallest time constant of the

equation. This is determined by the smallest root of the poly-

nomial in s associated with the left side of equation (1).

Consider the special case where all derivatives are present,

and the s polynomial on the left side of equation (3) is

normalized such that cn+ ^_
= 1. Then it can be shown that cn is

the sum of all time constants in the polynomial factors. Know-

ing that there are n roots, a division by n results in an

average time constant. This average value may then be decreased

by a factor of 10 or 20 in hopes of approaching the smallest

time constant. This results in T = cn/l0(n)

c

n+1 .
,

Experience

has shown that this sampling interval gives fair results.

A word of warning against choosing an arbitrarily small

sampling time is appropriate at this time. The mathematical

development contains the coefficient Tn/(n-l) I in several

places. Thus when choosing T very small, this coefficient be-

comes extremely small and any time that quantities associated

with this coefficient become added or subtracted, these
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quantities may be lost due to limited register sizes in the

digital computer.

Unit Impulse Forcing Function

It is frequently the case that the unit impulse function,

5(t), is used as a forcing function on differential equations

with constant coefficients. In order to solve such a problem

with the FORTRAN program developed in this paper, it is merely

necessary to apply a forcing function of zero, and increase the

(n-1)value of J
K

' by "one".

Example . Suppose that the response of an equation to a

unit impulse function is to be found and that all initial con-

ditions are zero. The n, Xnot , Time, T card, and the c
±

cards

are prepared in the usual manner. The Jq^
1 ' cards are added

as blank cards, except the card for Vq
-1

, it must bear the

value "one". The forcing function X, in the W(K) subroutine,

is given the value "zero".
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ERROR ANALYSIS

Throughout development of the FORTRAN program, a family of

differential equations was used for testing purposes; it is

listed in equation (3k-) •

«ff (D + k)y(t) = ni (3k)
k=l

d
Here D = — and all initial conditions are zero. The exact

dt
solution to this equation is:

y(t) = (1 - e-V (35)

Error analyses using the above equations, as well as

others, have been performed and a few typical results are

listed. In all cases, the error column shows the quantity:

program output minus exact solution.

A 6th-order Differential Equation

A variation of equation (3k) > which uses initial condi-

tions, is as follows:

n
<fr (D + k)y(t) = (36)
k=l

where J ^ =0, k = 0, 1, 2, . . ., (n-2)

y
(n-l) = n j

The exact solution to these equations is:

y(t) = n(l - e- t
)

n_1
(e- t

) (37)

An error analysis, using equations (36) and (37), for the

case n = 6, is listed in Table 1. The sampling interval was
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TABLE 1. ERROR ANALYSIS CF EQ. (36) , T=.02 SEC.

TIME PROGRAM OUTPUT EXACT SOLUTION ERROR

.000 .0000000000 .0000000000 .0000000000

.100 .0000416663 .0000423694 -.0000007030

.200 .0009586242 .0009614196 -.0000027954

.300 .0051985853 .0051985860 -.0000000007

.400 .0156733710 .0156637651 .0000096059

.500 .0343406003 .0343208863 .0000197139

.600 .0615919820 .0615692714 .0000227105

.700 .0963483956 .0963328839 .0000155117

.800 .1365143404 .1365138878 .0000004525

.900 .1795120918 .1795291398 -.0000170479
1.000 .2227383861 .2227698155 -.0000314294
1.100 .2638833526 .2639223361 -.0000389834
1.200 .3011097240 .3011482471 -.0000385230
1.300 .3331179557 .3331489991 -.0000310434
1.400 .3591310605 .3591499461 -.0000188856
1.500 .3788308058 .3788356438 -.0000048379
1.600 .3922704486 .3922618815 .0000085670
1.700 .3997818270 .3997623597 .0000194673
1.800 .4018880759 .4018612610 .0000268149
1.900 .3992281045 .3991977830 .0000303214
2.000 .3924953274 .3924650383 .0000302891
2.100 .3823907736 .3823633734 .0000274002
2.200 .3695893150 .3695667982 .0000225167
2.300 .3547170790 .3547005606 .0000165183
2.400 .3383379045 .3383277146 .0000101899
2.500 .3209467697 .3209426123 .0000041574
2.600 .3029683529 .3029694890 -.0000011360
2.700 .2847591769 .2847646021 -.0000054252
2.800 .2666120955 .2666206944 -.0000085988
2.900 .2487621583 .2487728252 -.0000106669
3.000 .2313931400 .2314048661 -.0000117260
3.100 .2146442239 .2146561498 -.0000119259
3.200 .1986164895 .1986279320 -.0000114424
3.300 .1833789847 .1833894407 -.0000104559
3.400 .1689742527 .1689833884 -.0000091357
3.500 .1554232548 .1554308855 -.0000076306
3.600 .1427296775 .1427357416 -.0000060640
3.700 .1308836413 .1308881733 -.0000045319
3.800 .1198648528 .1198679574 -.0000031046
3.900 .1096452484 .1096470770 -.0000018286
4.000 .1001911861 .1001919167 -.0000007305
4.100 .0914652402 .0914650612 .0000001789
4.200 .0834276525 .0834267508 .0000009016
4.300 .0760374916 .0760360433 .0000014482
4.400 .0692535636 .0692517283 .0000018352
4.500 .0630351166 .0630330339 .0000020826
4.600 .0573423727 .0573401608 .0000022118
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.02 second. The program output is seen to maintain 1].- figure

accuracy throughout most of the solution.

A 13
t]rl-order Differential Equation

To demonstrate the ability of the program to solve high

order equations, an error analysis of equation {3K) > ?ov n = ^3,

is shown in Table 2. The sampling time used in the solution was

0.02 second, and only sample outputs are listed in the table.

Initially, while the output values are very small, the

error is approximately four per cent; this is caused by limited

register sizes. At Time = 3.0 seconds, the error is less than

0.02 per cent; however, as time becomes larger, the error in-

creases to about 0.3 per cent due to recursively used approxi-

mate output values.

A 3
rd-order Differential Equation
with Unbounded Solution

To determine the behavior of the program in cases of un-

bounded solutions, an error analysis of the following equation

was performed.

y - 3y - kj + I2y = 12 e"* (38)

y(0) = k; y(0) = 2; y(0) = 18

The exact solution is:

y(t) . e -2t + e
2t + e

3t + e -t (39)

The error analysis is shown in Table 3- In this problem,

the initial value of the response is large enough such that no
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TABLE 2. ERROR ANALYSIS CF EQ.<34>» N=13, T= .02 SEC.

TIME PROGRAM OUTPUT EXACT SOLUTION ERROR

.000 .0000000000 .0000000000 .0000000000

.100 .0000000000 .0000000000 .0000000000

.200 .0000000002 .0000000002 .0000000000

.400 .0000005564 .0000005435 .0000000129

.500 .0000054895 .0000054180 .0000000714

.600 .0000323561 .0000321109 .0000002452

.700 .0001339868 .0001333633 .0000006234

.800 .0004294542 .0004281530 .0000013011

.900 .0011342541 .0011318964 .0000023576
1.000 .0025765706 .0025727577 .0000038128
1.100 .0051903205 .0051847395 .0000055809
1.200 .0094836707 .0094762043 .0000074663
1.300 .0159894190 .0159802007 .0000092182
1.400 .0252080129 .0251974015 .0000106113
1.500 .0375543704 .0375428637 .0000115067
1.600 .0533170796 .0533052116 .0000118679
1.700 .0726345915 .0726228517 .0000117398
1.800 .0954891232 .0954779081 .0000112151
1.900 .1217160228 .1217056117 .0000104110
2.000 .1510246406 .1510151747 .0000094659
2.100 .1830261981 .1830176439 .0000085542
2.200 .2172644486 .2172565350 .0000079135
2.300 .2532457268 .2532378546 .0000078722
2.400 .2904659797 .2904571096 .0000088700
2.500 .3284333388 .3284218763 .0000114625
2.600 .3666856216 .3666693192 .0000163024
2.700 .4048027829 .4047786709 .0000241120
2.800 .4424147690 .4423791000 .0000356690
2.900 .4792054630 .4791536298 .0000518332
3.000 .5149134904 .5148398733 .0000736171
3.100 .5493306320 .5492283485 .0001022835
3.200 .5822985126 .5821590769 .0001394357
3.300 .6137041328 .6135170709 .0001870618
3.400 .6434747069 .6432272075 .0002474993
3.500 .6715721888 .6712488735 .0003233153
3.600 .6979877934 .6975706713 .0004171220
3.700 .7227367580 .7222053858 .0005313722
3.800 .7458535142 .7451853414 .0006681728
3.900 .7673873665 .7665582255 .0008291410
4.000 .7873987180 .7863834082 .0010153098
4.100 .8059558478 .8047287610 .0012270867
4.200 .8231322245 .8216679538 .0014642707
4.300 .8390043242 .8372781959 .0017261283
4.400 .8536498954 .8516383811 .0020115143
4.500 .8671466011 .8648275903 .0023190108
4.600 .8795709571 .8769239071 .0026470499
4.700 .8909975011 .8880035026 .0029939984
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TABLE 3. ERROR ANALYSIS OF EQ. (38) » T=.005 SEC.

TIME PROGRAM OUTPUT EXACT SOLUTION ERROR

.000 4.0000000000 4.0000000000 .0000000000

.050 4.1230723546 4.1230720033 .0000003512

.100 4.2948308044 4.2948297368 .0000010676

.150 4.5196994790 4.5196971901 .0000022888

.200 4.8029984846 4.8029942971 .0000041874

.250 5.1510597066 5.1510527300 .0000069765

.300 5.5713626873 5.5713517683 .0000109190

.350 6.0726935577 6.0726772190 .0000163386

.400 6.6653304951 6.6653068613 .0000236337

.450 7.3612597460 7.3612264532 .0000332928

.500 8.1744269140 8.1743809996 .0000459143

.550 9.1210289748 9.1209667452 .0000622296

.600 10.2198533661 10.2197702351 .0000831310

.650 11.4926715227 11.4925618180 .0001097047

.700 12.9646954182 12.9645521471 .0001432710

.750 14.6651070516 14.6649216195 .0001854320

.800 16.6276724156 16.6274342871 .0002381284

.850 18.8914533382 18.8911496303 .0003037078

.900 21.5016327431 21.5012477372 .0003850058

.950 24.5104713688 24.5099659255 .0004854433
1.000 27.9784168882 27.9778077465 .0006091416
1.050 31.9753897317 31.9746286708 .0007610608
1.100 36.5822738251 36.5813266621 .0009471629
1.150 41.8926449844 41.8914703766 .0011746078
1.200 48.0147749740 48.0133229895 .0014519845
1.250 55.0739553438 55.0721657562 .0017895876
1.300 63.2151922564 63.2129925117 .0021997446
1.350 72.6063317491 72.6036345437 .0026972053
1.400 83.4416844425 83.4383848385 .0032996039
1.455 97.2981833086 97.2940746025 .0041087060
1.500 110.3804930143 110.3755854522 .0049075621
1.550 127.0462023071 127.0402340347 .0059682723
1.600 146.2928523430 146.2856064378 .0072459052
1.650 168.5253189952 168.5165359181 .0087830770
1.700 194.2126946745 194.2020641413 .0106305332
1.750 223.8985404090 223.8856917441 .0128486648
1.800 258.2127825616 258.1972732585 .0155093031
1.850 297.8855188009 297.8668209586 .0186978423
1.900 343.7630406016 343.7405248514 .0225157502
1.950 396.8264291030 396.7993455672 .0270835357
2.000 458.2131387052 458.1805944480 .0325442572
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accuracy is lost due to register sizes, and the percentage error

is extremely small for the first few iterations. Nonetheless,

the error increases with solution time because of recursively

used approximate output values. It is noted, however, that at

Time = 2.0 seconds, the error is still only about 0.007 per cent.

The sampling time used for the output in Table 3 is 0.00J?

second; the error for a sampling time of 0.01 second was slightly

larger.

A 2
nd-order Differential Equation with

Oscillatory Solution

Various monotonic responses have been investigated, and

this problem demonstrates the ability of the program to determine

oscillatory responses. The equation solved for this purpose is

y + 2y + 2y = -2 cos 2x - !+ sin 2x ( 1+.0

)

y(0) = 1; y(0) = 1

The exact solution is

y(t) = e"x sin x + cos 2x (ip.)

The sampling time used in this error analysis is 0.02

second, and the result is listed in Table l±. It is noted that

the error remains extremely small for the entire solution time.

The maximum error is approximately O.OI4. per cent, and it re-

mains below 0.03 per cent for iterations beyond Time = 1.0

second.
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TABLE 4. ERROR ANALYSIS CF EQ. (40) , T=.02 SEC.

TIME PROGRAM OUTPUT EXACT SOLUTION ERROR

.000 1.0000000000 1.0000000000 .0000000000

.120 1.0776206343 1.0775131780 .0001074563

.240 1.0741546312 1.0739784313 .0001761999

.360 .9977896616 .9975791219 .0002105397

.480 .8594767402 .8592612705 .0002154696

.600 .6724365978 .6722401141 .0001964836

.720 .4515400592 .4513806853 .0001593738

.840 .2125935350 .2124835188 .0001100162

.960 -.0284328750 -.0284870273 .0000541523
1.060 -.2197690140 -.2197755496 .0000065355
1.200 -.4567250049 -.4566689375 -.0000560673
1.320 -.6181413456 -.6180398896 -.0001014560
1.440 -.7312110442 -.7310753081 -.0001357360
1.560 -.7897996881 -.7896430631 -.0001566250
1.680 -.7911428610 -.7909799917 -.0001628693
1.800 -.7359367386 -.7357824856 -.0001542530
1.920 -.6282402201 -.6281086640 -.0001315560
2.040 -.4751935684 -.4750971041 -.0000964643
2.160 -.2865689552 -.2865175194 -.0000514357
2.280 -.0741778762 -.0741783472 .0000004709
2.400 .1488314154 .1487756207 .0000557947
2.520 .3687470130 .3686361243 .0001108887
2.640 .5720934809 .5719313330 .0001621429
2.760 .7464139042 .7462077046 .0002061996
2.880 .8809897522 .8807495998 .0002401523
3.000 .9674579532 .9671962381 .0002617151
3.120 1.0002904104 1.0000210558 .0002693545
3.240 .9771090071 .9768466300 .0002623771
3.360 .8988185209 .8985775540 .0002409669
3.480 .7695502378 .7693440654 .0002061723
3.600 .5964198515 .5962600087 .0001598428
3.720 .3891138236 .3890093048 .0001045187
3.820 .1986452790 .1985915229 .0000537560
3.960 -.0799080286 -.0798876064 -.0000204221
4.080 -.3149852375 -.3149022465 -.0000829910
4.200 -.5324993048 -.5323584355 -.0001408692
4.300 -.6913342249 -.6911510988 -.0001831260
4.440 -.8668332198 -.8666034120 -.0002298077
4.560 -.9645102035 -.9642544226 -.0002557808
4.680 -1.0074439736 -1.0071767887 -.0002671849
4.800 -.9931493972 -.9928860385 -.0002633586
4.920 -.9224136756 -.9221691642 -.0002445114
5.040 -.7992537976 -.7990420853 -.0002117122
5.160 -.6306884420 -.6305216123 -.0001668296
5.280 -.4263374362 -.4262250112 -.0001124249
5.400 -.1978717660 -.1978201598 -.0000516062
5.520 .0416543010 .0416421511 .0000121499
5.640 .2785506569 .2784754598 .0000751970
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rd
A 3 -order Differential Equation

The error analysis of this particular problem was prompted

by remarks in reference (6). The error analysis is performed

on the following equation.

y + 6y + lly + 6y = 6 C ij-2

)

y(0) = y(0) = y(0) =

The exact solution is

y(t) = 1 - 3*^ + 3e" 2t - e"
3t

(1+3)

Table 5 shows results of this error analysis. A sampling

time of O.OI4. second was used for the solution. Again, the error

is larger for initial iterations because of limited register

sizes, but at Time = 1.0 second the error is down to O.O36 per

cent, and remains below 0.01 per cent for most of the solution.

This error analysis compares favorably with that listed in

reference (6), Table I, which was obtained using Wasow's method.

It should be pointed out that the sampling time used in obtain-

ing Table 5, was determined by the algorithm mentioned under

"Choice of Sampling Time" in this thesis. This algorithm is an

attempt at paying heed to the smallest time constant of the

equation, rather than to choose the sampling interval arbitrar-

ily, which is a much too common, practice. In this particular

example the algorithm insured that there were at least eight

samplings during the smallest time constant interval of one-

third, as compared to three samplings used in reference (6).

If a continuous function is to be approximated by discrete

samplings, it is important that samplings are frequent enough
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TABLE 5. ERROR ANALYSIS OF EQ. (42 ) , T=.04 SEC.

TIME PROGRAM OUTPUT EXACT SOLUTION ERROR

.000 .0000000000 .0000000000 .0000000000

.240 .0097657726 .0097143362 .0000514363

.480 .0554593666 .0554007238 .0000586428

.720 .1352839404 .1352013871 .0000825533
1.000 .2526723375 .2525804578 .0000918797
1.240 .3589154098 .3588430551 .0000723547
1.480 .4607842444 .4607477478 .0000364965
1.720 .5532511619 .5532539125 -.0000027505
2.000 .6464219161 .6464623147 -.0000403986
2.240 .7133572346 .7134181881 -.0000609535
2.480 .7691513078 .7692218215 -.0000705136
2.720 .8150372311 .8151083241 -.0000710929
3.000 .8578875889 .8579516416 -.0000640526
3.240 .8869953242 .8870496767 -.0000543524
3.480 .9103523973 .9103958174 -.0000434200
3.720 .9290130601 .9290457198 -.0000326596
4.000 .9460318826 .9460533270 -.0000214443
4.240 .9573835281 .9573969698 -.0000134417
4.480 .9663766081 .9663836435 -.0000070354
4.720 .9734900539 .9734921969 -.0000021430
5.000 .9799239444 .9799220528 .0000018915
5.240 .9841875248 .9841833587 .0000041660
5.480 .9875496691 .9875440883 .0000055807
5.720 .9901994385 .9901931015 .0000063370
6.000 .9925887775 .9925821608 .0000066167
6.240 .9941683321 .9941618318 .0000065002
6.480 .9954117931 .9954056220 .0000061711
6.720 .9963904631 .9963847508 .0000057123
7.000 .9972719423 .9972668479 .0000050944
7.240 .9978541509 .9978496079 .0000045430
7.480 .9983121846 .9983081827 .0000040018
7.720 .9986724985 .9986690091 .0000034893
8.000 .9989968914 .9989939496 .0000029418
8.240 .9992110775 .9992085561 .0000025214
8.480 .9993795408 .9993773931 .0000021476
8.720 .9995120377 .9995102184 .0000018193
9.000 .9996313064 .9996298162 .0000014901
9.240 .9997100456 .9997087955 .0000012501
9.480 .9997719706 .9997709256 .0000010449
9.720 .9998206712 .9998198008 .0000008704

10.000 .9998645071 .9998638063 .0000007007
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so that the region containing the steepest slope is also sampled,

and not skipped. On the other hand, choosing an arbitrarily

small sampling time induces error because of limited register

sizes.

AREAS OP FURTHER INVESTIGATION

The first and foremost matter which should be investigated

in the future is determination of the optimum sampling time for

a particular problem. Error in the output is a definite func-

tion of sampling time. In fact, choosing the wrong sampling

time can cause unbounded and oscillatory outputs for an equation

which has a bounded monotonic solution. Empirical evidence

points toward existence of an optimum sampling time—one which

causes minimum error in the output.

It is suggested that an empirical relationship be found,

or perhaps a method which first determines the smallest time

constant of the equation and utilizes this for determination of

the optimum sampling time.

The second area to be investigated concerns extension of

this method of solution to differential equations with time-

varying coefficients. The method employed in this program is

readily adaptable to such equations but it is felt that computa-

tion time would increase tremendously. Perhaps a state-space

approach is needed here.
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SUMMARY

The goal of the introduction has been achieved. The choice

of the multiple integrator substitution program, together with

exact z-transforms of (l/s) , resulted in. a numerical method of

J-V.

solution whose complexity proved small enough to make an n -

order FORTRAN autoprogram possible.

The output of the autoprogram has moderate accuracy. This

was expected, as the method of solution is more primitive than

other numerical methods, which, on the other hand, seldom lend

themselves to n -order autoprogramming. If extremely high

accuracy is desired, this author suggests that other numerical

methods be investigated also. In cases where the initial value

of the first derivative is zero, for example, the modified

Boxer-Thaler z-form delivers very high accuracy; in some other

cases it does not. Thus when dealing with numerical methods,

it must be recognized that there is no single method which pro-

duces the best solution for every type of problem. With this

in mind, the method presented in this thesis is a worth-while

addition to those already available.

The autoprogram developed in this thesis represents two

basic points of achievement. (1) Elimination of human error in

the calculation of coefficients. An example of the possible

consequences of errors of this nature is presented by Sidney

Lees in reference (6). (2) A completely mechanized high-speed

method for obtaining approximate solutions to n^-order differ-

ential equations with constant coefficients.
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Although the autoprogram was originally designed for equa-

tions of order 2 through l£, it has proven itself reliable only

up to order 13, inclusively. Limited register sizes in the

computer (18 significant figures) cause discrepancies in co-

efficients for orders higher than 13, and cause unreliable

outputs. However, at the time of this writing, the autoprogram

has not been tested on computing equipment capable of more than

18 significant figures.

Should any reader be interested in. the use of the auto-

program, the author will gladly furnish a deck along with in-

structions for input data.
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LISTING CF THE AUTCPROGRAM
FORTRAN 4 LANGUAGE
SOURCE PROGRAM

C THE PICKER-PROGRAM FOR ORDINARY DIFF. EQUATIONS *
C THIS PROGRAM WILL ACCEPPT ANY ORDINARY DIFF. EQUATION WITH CONSTANT *
C COEFFICIENTS* AND OF ANY ORDER BETWEEN 2 AND 13. *
C IN THIS FORM THE PROGRAM IS GEARED TO THE IBM 1410-PR-155 *

INTEGER A,R,U,SUM»DENCM,BICCEF,A3,A1,A2
DIMENSION AU05),A1(16),A12T(16),A3(14,16),AC1(16),Y(15) *A3T( 16)
COMMON N,X0*T»A2(16) »NPI »AC2T ( 16) ,YCD(15) ,YC,C(16) »CON

95 FORMAT( I 3 , E24. 18 »2F 10. 5

)

96 FCRMAT(E24.18>
ICO F0RMAT(4I20)

* 105 FCRMAT(1HL,76H*** BE SURE TO DOUBLE-CHECK YOUR FORCING FUNCTION IN
1 THE W(K) -SUBROUTINE ***)

106 I-0RMAT(1HL,38HLISTING OF THE C(I) IN ASCENDING ORDER)
107 F0RMAT(1HL,56HLISTING OF Y-ZERO AND THE Y-ZERO-DOTS IN ASCENDING

1RDER)
* 108 FCRMAT<1H1*32HY0U READ-IN THE FOLLOWING VALUES,/ 1HL IX , 1HN ,20X ,4HX

1NCT»6X,4HTIME,9X,1HT,/1HK)
* 203 FCRMAT<1H1,47X,38HLISTING OF THE I TERATED . VALUES CF Y { K ) * /1HL ,4{ 5X

1,4HTIME,2CX,4HY(K))

)

* 204 FCRMAT(1HK,4(F9.4,1X,E23.17)/1HK,4(F9.4,1X,E23.17)/1HK,4<F9.4,1X,E
123.17)/1HK,3(F9.4,1X»E23.17)

)

206 FORMAT ( 1HK ,6E20.10/1HK,20X,5E20. 10 /1HK»20X,5E20. 10)
READ(1»100) A

1 DO 3 1=1,14
DO 3 J=l,14

3 A3(I»J>=0
DO 4 1=1,16
A2(I)=0
A01(I)=0.0
YOD(I)=0.0

4 AC2T(I)=0.0
5 READ(1,95) N ,XNOT»TIME,T
WRITE(3,108)
NI=N-1
NH=N/2
NPI=N+1
XC=.5*XNCT
WRITE(3,95) N,XNCT»TIME,T
READ(1,96) (C(I) ,I=1,NPI

)

READ(1,96) YO,(YCD(

I

)»I=1,NI )

WRITE(3»106)
WRITE(3»206) (C(I ) ,I=1,NPI)
WRITE<3»107)
WRITE(3»206)Y0»(Y0D( I)»I = 1»NI )

WRITE(3,105)
IF(T.EQ.-2.*C(1)/C<2) ) T=T*.5
NF=N
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L=IFAC(NF)
DC 111 K=1,NPI
M = K+1

111 A1(K)=L*(-1)**M/<IFAC(K-1)*IFAC<N+1-K)

)

L2=IFAC(NI )

DC 112 K=1»N
M2=K+1

112 A2<K)=L2*(-l)**M2/( I FAC < K-l ) *IFAC ( N-K )

)

DC 113 K=1,N
J=N+2-K

113 A2( J)=A2(J)+A2(J-1)
DC 130 K=1,NI
DC 130 R=1,NH
SUM =

DC 110 U=1»K
DENCM=IFAC(R-U)*IFAC(NI+U-K-R)
IF(DENCM.EQ.O) GC TC 110
BICCEF=IFAC(NI-K)/DENCM
IVEC=(K*(K-1) )/2+U
SUM=SUM+A( IVEC)*BICCEF*(-1)**(R-U)

110 CCNTINUE
120 A3(K»R>=SUM

L=N-R
NK1=N-K+1

130 A3(K>L)=SUM*(-1)**NK1
DC 134 1 = 1, NI
A3(I»NPI )=0
DC 133 J=1,NI
K=NPI-J

133 A3(I »K)=A3( ItK-1)
134 A3(I»1)=0

DC 30 J=1,'NPI
A12T(J)=C(1)*FLCAT(A1(J) ) + (C ( 2 )*.5*T) *FLCAT ( A2< J )

)

A3T(J)=0.
1 = 1

TP = T

GC TC 29
28 1=1+1

IF( I.GT.NI ) GC TC 30
29 IP2=I+2

TP=TP*T
A3T(J)=A3T(J)+(C(IP2)*FLCAT(A3(I,J))/FAC(I) )*TP
GC TC 28

30 A12T<J)=A12T(J)+A3T(J)
A2(l)=0
DC 132 J=2,N
K=NI*(NI-l)/2+J-l

132 A2(J)=A(K)
A2(NPI)=0
IFJYC.EQ.O.) GC TC 136
L11=IFAC(NI)
DC 230 K=1,N
MH =K+1
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230 A1<K)=L11*(-1)**M11/(IFAC(K-1)*IFAC(N-K)

)

AKNPI )=0

D=2.*C(1)+C(2)*T
DC 231 J=1,N

231 AC1 <J) = (FLCAT(AKJ) )*D+A3T(J) )*YC*.5
GC TC 33

136 DC 32 I=1»NI
IF(YCDd) .NE.O.) GC TC 33

32 CONTINUE
GO TO 237

33 DC 234 J=1,N
AC2T(J)=0.
TP = T

K=l
GC TC 233

232 K=K + 1

IF(K.EQ.N) GC TC 234
TP=TP*T

233 KPI=K+1
A02 T ( J ) =AC2 T ( J ) + { CO ( KP I ) *F LCA T ( A3 ( K » J ) ) / FAC < K ) ) *TP
GC TC 232

234 CONTINUE
235 DC 236 J=1,N
236 AC2T(J)=A02T( J)+AC1( J)
237 WRITE(3,203)

TI=TIME/<T*FLCAT(N) )

IT=IFIX(TI)+1
CON =T**N/FAC(NI

>

DO 49 1 = 1, IT
DC 48 K=1,N
KP=( I-1)*N+K
IF (I.GT.l) GC TC 40
GC TC 41

40 Y(K)=Y(K)*(-A12T(NPI))+W(KP)
GC TC 42

41 Y(K)=W(KP)
42 IF (KP.EQ.l) GC TC 48

IOBJ=KP
IF( I.GT.1)ICBJ=N
DC 47 J=2,ICBJ

44 KL=K+1-J
IF (KL.LE.O) GC TC 45
GC TC 46

45 KLN=N+KL
Y(K)=Y(K)-A12T(J)*Y(KLN)
GC TC 47

46 Y(K)=Y(K)-A12T(J)*Y(KL)
47 CONTINUE
48 Y(K)=Y(K)/A12TQ)

DO 485 K=1»N
485 ACKK)=FLCAT( (I-l)*N-l + K)*T
49 WRITE(3>204) (ACKK) ,Y(K) ,K = 1,N)

END
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LISTING OF THE FUNCTION SUBROUTINES

FACTORIAL SUBROUTINES

10

20

30

40

FUNCTION IFACCN)
IF(N)1C20,30
IFAC=0
RETURN
IFAC=1
RETURN
IFAC=1
NRAN=N
DO 40 I = 1,,MRAN
IFAC=IFAC*I
RETURN
END

50

60

70

80

FUNCTION FAC(N)
IF(N) 50,60,70
FAC=0.
RETURN
FAC=1.
RETURN
FAC=1.
NRAN=N
DC 80 I=1,NRAN
FAC=FAC*FLCAT( I)

RETURN
END
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THE CC(K) SUBROUTINE

FUNCTION CO(K)
INTEGER A2
COMMON N,XO»T»A2(16) »NPI »A02T ( 16) »YOD ( 15 > »Y0»CU6 ) .CON
CO=0.
DO 90 I = 1.K
KI=K-I
IF(KI.EQ.0)CO=CC+C( I )*Y0
IF(KI.EQ.C) GO TO 90
CO=CO+C( I )*YOD(KI>

90 CONTINUE
RETURN
END

THE W(K) SUBROUTINE

FUNCTION W(KO
INTEGER A2
COMMON N.XC.T.A2Q6) »NPI »AC2T ( 16 ) »YOD( 15 ) .YO.C< 16 ) .CON
IF(K.GT.N) GO TO 81
W=XO*FLOAT ( A2 ( K )

) *CCN+A02T ( K

)

IF (K-l) 84*84.82
81 W=0.
82 DO 83 I = 1.N

KI=K-I
IF (KI.EQ.O) GO TO 84
TT = KI
TVAR=TT*T

C THE NEXT CARD IS YOUR FORCING FUNCTION. THE TIME VARIABLE
MUST BE TVAR
X= A FUNCTION OF TVAR

83 W=W+FL0AT(A2( I) )*X*CCN
84 RETURN

END



A FORTRAN AUTOPROGRAM FOR SOLVING ORDINARY LINEAR
DIFFERENTIAL EQUATIONS WITH CONSTANT CO-

EFFICIENTS USING EXACT Z-TRANSFORMS
OF (l/s) n AND TRAPEZOIDAL

CONVOLUTION

by

WILLIAM A. PICKER

B. S., Kansas State University, 1961].

AN ABSTRACT OF A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Electrical Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1966



Numerical transform techniques were introduced into elec-

trical engineering by Tustin in 19lj-7. Since then, several

investigators have prod oed various methods for digital solution

of ordinary linear and nonlinear differential equations. It has

been shown by Halijak that all of these methods have trapezoidal

convolution as their fundamental basis.

This thesis uses the multiple integrator substitution pro-

gram, together with exact z-transforms of (l/s)
n

, for solving

ordinary differential equations with constant coefficients.

This method, like all other numerical methods, requires lengthy

algebraic calculations for determining coefficients of the re-

currence relation. In order to eliminate manual algebraic cal-

culations, and associated human error, a FORTRAN program is

developed which determines the recurrence relation, and iterates

this recurrence relation to obtain the discrete solution of the

differential equation.

This program is an "autoprogram", since it accepts any

nth-order (2 <n<13) differential equation with constant co-

efficients without additional programming effort.

The mathematical derivation of the nth-order discrete solu-

tion, both with and without existing initial conditions, is in-

cluded. Development of the autoprogram is demonstrated with

flow charts, and a listing of the autoprogram is given in the

appendix.

The result is a completely mechanized, high-speed method

for solving an nth-order differential equation with constant co-

efficients, resulting in moderate accuracy solutions.


