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1. GENERAL INTRODUCTION

A remarkable growth of interest in problems of dynamic

optimization has given rise during the past decade to a number of

methods useful for rendering systems optimal. One such method is

Pontryagin's maximum principle.

Originally formulated in 1956 by the Russian mathematician

and his associates (10) , the maximum principle was intended for

the optimization of continuous control systems. In 1959, the

first attempt to extend the maximum principle to the optimization

of stagewise processes was made by Rozonoer (11) . Subsequent

versions of the discrete maximum principle were then advanced

by Chang (1) , Katz (9) , and by Fan and Wang (2)

.

The application of the maximum principle to management and

operations research is still very limited. Transportation

problems (3,5), a capital investment problem (allocation of a

resource) (6) , and a one-dimensional production problem (7) are

examples of the discrete cases which have been recently investi-

gated.

The main objective in this thesis is to demonstrate the

applicability of the maximum principle to other problems in the

area of industrial engineering and management, concentrating the

attention mainly on those problems belonging to the continuous

case. It is not the primary intention, therefore, to introduce

new mathematical models. Rather, it is intended to apply the

maximum principle in order to optimize already developed models,

and functional variations of these models. When appropriate or
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necessary, numerical examples are also presented for further

clarification of the treatment.

The basic algorithms of the discrete and the continuous

maximum principle are presented first, and then the discrete

version is applied in order to optimize the temperatures of a

multistage heat exchanger train (2). The treatment of this

system leads to a two-point boundary value problem whose solution

is demonstrated in detail.

A model for sales response to advertising developed by

Vidale and Wolfe (12) is then treated by the continuous maximum

principle. The optimum solution of this system leads to three

key advertising policies. The linear constraint on the response

function is then removed and the maximum principle is again

applied to the modified model.

Next, a continuous model for production planning presented

by Holt e_t a_l. (4) and to which the maximum principle was applied

by Hwang and Fan (8) is studied. Finally, two models for the

optimization of equipment investment based on the net present

value are treated by the maximum principle. Two numerical exam-

ples are included in the analysis of these two models.

The efficiency of the maximum principle in dealing with

this class of problems is not compared with that of other methods.

The reason for this is that the application of the maximum

principle to this sort of problems has not left the incipient

stages of development. This is a new technique and as such, due

refinements and further developments must take place before any

comparisons of computational efficiency can be made.
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2. THE ALGORITHMS OF THE MAXIMUM PRINCIPLE

INTRODUCTION

The two basic algorithms of the maximum principle are

presented in this section. Although the applicability of these

algorithms may appear to be limited, both algorithms can be

extended to handle a variety of problems encountered in practice,

for example, processes with fixed end points, processes with

choice of initial values, processes with choice of extra par-

ameters, processes with arbitrary final measures as the objective

function and so on. The details of these extensions are given

in Ref . 1 for the discrete maximum principle and in Ref. 2 for

the continuous maximum principle. In these references the

algorithms for the optimization of complex systems are also

treated.

THE DISCRETE MAXIMUM PRINCIPLE (1, 3)

A multistage decision process may be considered as an

abstract notion by which a large number of human activities can

be presented. Since a multistage decision process is an entity

consisting of a finite number of stages, the nature of the process

is completely determined by the types of stages from which the

process is formed and by the way the stages are interconnected.

A schematic representation of a simple multistage process

is shown in figure 1. The process consists of N stages connected

in series. A stage may represent any real or abstract entity

(for example, a space unit, a time period, or an economic



z -\
X
<D

z o>
CD -

CO

7
z -
X

CO
1 CO
1

i

CD
i

1

O
O

i ^.c —
X Cl.

CD

c o>
CD—

-

o c
4— c
en o
_ 1 CO
c —
X O

CD
T3

CM —
X CD

CD
4

CD O
CSJ CP

•*

—

CD—

-

o C\J
»-

CO

CO
V—
—

\

CD

X

CD cr>
o>
o — L±_
c/)

1 1

o —X



7

activity) in which a certain transformation takes place. The

state of the process stream denoted by the s-dimensional vector,

x = (x,, Kjt • • r x ) is transformed at each stage according to an

r-dimensional decision vector, e (8,, 6
2
,...., 6 ), which

represents the decisions made at that stage. The transformation

of the process stream at the n-stage is described by a set of

performance equations,

n ^n, n-1 n-1 n-1 n n n»x^ — i £vx^ /
x
2 *••••* x

s
f *]_* e 2' * • • ' r '

x. = a.,

i = 1, 2,..., s; n 1, 2,,.,, N,

or in vector form

xn = Tn (x
nmml

9 9
n
), n = 1, 2,..., N, (1)

x ss a

.

A typical optimization problem associated with such a

process is to find a sequence of 6 , n = 1, 2,...., N, subject

to the constraints

n = 1, 2, . . . , N,

*J(eJ, e£,..., e£) < o, (2)

i = 1> 2, , . , , r,

which makes a function of the state variable of the final stage

s

S Z ex., c. constant, (3)

i»l x 1 1

an extremum when the initial condition x = a is given. The

function, S, which is to be maximized (or minimized) is the

* The superscript n indicates the stage number. The exponents
2

are written with parentheses or brackets such as (x ) or

[T^x11*"1
! e

n
)]

2

.
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objective function of the process.

The procedure for solving such an optimization problem

by the discrete maximum principle is to introduce an s-dimensional

n n
adjoint vector, z , and a Hamiltonian function, H , which satisfy

the following relations:

H
n

= 1 zWu 11 - 1
; 6

n
), n = 1, 2 N, (4)

i=l
x x

z
i

= —zrzr > 1 = 1,2, , s ; n 1 , 2 , ,N, (5)
3x

i

and

N
z
i

= c
i'

1*1,2, , s. (6)

If the optimal decision vector function, 9 , which makes

the objective function S an extremum (maximum or minimum), is

interior to the set of admissible decisions, e
n

, [the set given

by equation (2)], a necessary condition for S to be a (local)

extremum with respect to G is

3H
n

30
n

= °' n = 1, 2, , N. (7)

_n
If 6 is at a boundary of the set, it can be determined from

the condition that K is (locally) extremum.

THE CONTINUOUS MAXIMUM PRINCIPLE (2, 4)

The simple continuous form of the maximum principle is

concerned in general with solving problems of the following

type:

Suppose that the performance equations of a control



process have the form

dx •

at- = f i

t

x
i
(t) , x

2
(t) , . . . , x

s
(t) ; e

x
(t) , . . . , e

r
(t) ]

,

t < t < T,
o — — '

x. (t ) = a.

,

1 o 1'

i = 1, 2, , s,

or the vector form

~ = ftx(t); 6(t)] # x(t
Q

) = a, (13)

where x(t) is an s-dimensional vector function representing the

state of the process at time t and 0(t) is an r-dimensional

vector function representing the decision at time t.

The optimization problem most commonly associated with

such a process is to find a piecewise continuous decision vector

function, G(t), subject to the constraints

«F

i
[e

1
(t), e

2
(t),..., e

r
(t)] < 0, i = l, 2,..., m, (14)

which makes a function of the final value of the state

s

S = I c.x.(T), c. = constant, (15)
i=l

an extreinum when the initial condition x(t ) = a is given.

The function, S, which is to be maximized (or minimized),

identifies the objective function of the process.

The procedure for solving the problem is to obtain the

optimum control, ^(t), and the corresponding trajectory, x(t),

t ^ t ^ T, is to introduce an s-dimensional adjoint vector,
o

z(t), and a Hamiltonian function, H, which satisfy the following
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relations:
s

H[z(t), x(t), 8(t)] = E z f [x(t); 6(t)], (16)
i = l

X X

dz .

aH
s 3f.—- = = - E z. —1 , i=l, 2,...,s, (17)

dt 3x. j=l J 3x.
l J l

Zi (T) = c if i = 1, 2,. . . , s. (18)

The optimal decision vector function, 6(t), which makes

S an extremum (maximum or minimum), is the decision vector

function, 6(t), which renders the Hamiltonian function, H,

an extremum for almost every t, t ^ t ^ T. If the optimal
o

decision vector function, 6(t), is interior to the set of admis-

sible decisions, G(t),[the set given by equation (14)], a

necessary condition for S to be an extremum with respect to

9(t) is

||=0. (19)

If G(t) is constrained, the optimal decision vector function,

0(t), is determined either by solving equation (19) for 0(t)

or by searching the boundary of the set.

Once the decision vector function, e(t), is chosen, the

adjoint vector function, z(t), is uniquely determined by

equations (17) and (18) and the initial condition at t = t ,

x(t )= a.
o

We shall now present a theorem which finds application in

some of the subsequent chapters. The proof of this theorem is

presented in Reference 2.

Theorem Let G(t), t £ t ± T be a piecewise continuous
* o
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vector function satisfying the constraints given in equation

(14). In order that the scalar function, S, given by equation

(15) may be a maximum (or minimum) for a process described by

equation (13), with the initial condition at t = t , x(t ) = a

given, it is necessary that there exist a nonzero continuous

vector function, z(t), satisfying equations (17) and (18) and

that the vector function, 6(t), be so chosen that H[z(t),x(t),

0(t)] is a maximum (or minimum) for every t, t < t < T. Further-
o — —

more, the attained maximum (or minimum) value of the Hamiltonian

function, H, is a constant for every t.
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3. ITERATIVE PROCEDURE FOR THE OPTIMIZATION

OF A MULTI-STAGE HEAT EXCHANGER

INTRODUCTION

The application of the maximum principle to some optimiza-

tion problems often leads to the two-point boundary-value problem.

The optimum design technique for a simple heat exchanger train

and a refrigeration system has been described in references (1,

2) by making use of the discrete maximum principle. However,

the treatment of the two-point boundary value problem has not

been clearly explained.

Here, therefore, we demonstrate in detail the application

of the regular Falsi method in obtaining a solution for the two-

point boundary value problem when it applies to the optimal design

of simple heat exchangers.

ONE DIMENSIONAL PROCESSES (1)

A multistage decision process is called a one-dimensional

multistage decision process if it can be completely characterized

for the purpose of optimization by a single state variable with

the performance equation of the form

x
l

= T(x
i~

1; qU)
' n = 1, 2,..., N, (1)

x, = a (la)

where x1

? is the only state variable, T the transformation

operator, and 9
n a r-dimensional decision vector.

In general, the objective function to be maximized is a

sum of a certain function of x, and G over all stages of the
1
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system such as

N
z GU? ; e

n
) .

n=l X

The optimization problem associated with such a process is

n
that of finding a sequence of decision variables, G , n = 1, 2,...,

N n-1 n
N so as to maximize Z G(x, ; G ) with x. given. This type of

problem may be treated by introducing a new state variable, x«

,

satisfying

x£ = x^" 1
+ G(x^ 1

; 6
n
), x° = 0, n = 1, 2 N. (2)

It can be shown that

x™ = l GU?"1
, 6

n
).

n=l x

Thus, the problem becomes that of choosing a sequence of G
,

N
n = 1, 2,..., N such that it maximizes x« for a process described

by equations (1) and (2).

To obtain the solution, a general recurrence relation for

the optimal state and decision of the one-dimensional non- linear

process in x will be derived from the application of the discrete

maximum principle (1).

The objective function to be maximized is defined as

2

E

i=l
S = Z c.xN = c x

N
+ c x

N = x
N

t*\i l
c
l
x
l

+ c
2 2

x2* (3)

In order to maximize the objective function, the sequence

of decision vectors, G , n = 1, 2,..., N must be so chosen that

the following conditions are satisfied:

2

H
n

= l zV^x 11" 1
; 6

n
) = maximum (4)

i=l
1 x
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or

8H
n

36
n

= ° ' n = 1, 2,..., N (5)

n nwhere H is the Hamiltonian function for the n-th stage, and z

is an adjoint vector given by the relationship

n 3H
n n = 1/ 2, . . . , N

3x? * i = 1, 2

Z
i "

I n-1 '
, „ (6a)

and
N
i "i

z, = c.. .
( 6b )

For the one-dimensional process, the Hamiltonian function

can be written as

H
n

= z£ Ttx?" 1
; 6

n
) + z* U^ 1

+ Glxf
1

; e
n

) }

.

(7)

According to equation (6a), the recurrence relations for

the adjoint variables, z and z , are found to be

,m ,..n-l „n v «„/__n-l „n.

(8a)
n-1

z
l

=
O X ^^ ; o

z
n +

-jV*., ; d ;

* n-1
3x,

Z
l

+

^l"
1

Z
2

= n
Z
2

/ n = 1 2 .., N. (8b)

From equation (3) it can be seen that c = 0, c =1 and equation

(6b) gives

N
z ! = , (8c)

N
z
2

= 1
' ( 8d )

Substituting equation (8d) into equations (8a) and (8b) gives

z£ = 1 , n=l f 2,..., N ,
(9a)

n
. 3T(x^ 1

; e
n

) aGU?"1
^ e

n
)

z""
1 = ±—

1 z? + i—,
r n - 1, 2,..., N.(9b)

1 ax^"
1 x ax^"

1
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Hence the Hamiltonian function becomes

rl" = zjuxj
-1

; 6") + G
n (x^ 1

; 6
n

) + x^"
1

,

n = 1, 2 , . . . , N .

According to equation (5),

n
3T(x^ 1

; 6
n

) 3G(x"-
1

; 6
n

)

i£_ = z? i + - = 0.

3e
n 1

3e
n

ae
n

n
Solving this equation for z yields

3G(x^" 1
; e

n
)

n
Z
l

= 36
n

STtxf
1

; e
n

)

36
n

n = 1, 2, . . . , N . (10)

The substitution of equation (10) into equation (9b)

yields the recurrence relation

SGU^e 11

) 3G(x^; e
n+1

)

^H ^H+l 3T(x"; 6
n+1

) 3G(x"; 6
n+1

)

r

ZTix*-
1
;*") 3T(x£; 6

n+1
) 3x£ 3x£

n = 1, 2, . . . , N-l. (11)

Combination of equations (8c) and (10) yields

3 6

The simultaneous use of the recurrence relation (11) and

the performance equations (1) and (2) furnishes a powerful tool
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in the optimization of those systems exhibiting the characteris-

tics mentioned above.

For the solution of a problem with a prescribed end point,

x , the condition of z = (equation 8c) or the equivalent

condition given by equation (12) is deleted.

A SIMPLE HEAT EXCHANGER TRAIN

In this section the application of the recurrence relation

to the simple heat exchanger train will be demonstrated.

A schematic representation of a simple heat exchanger

train (cross-current system) is shown in Figure 1. Each exchanger

in the train is a counter current heat exchanger. A cold stream

enters the first stage with a certain temperature x = a, and

N
leaves the final stage with a temperature x = b. The cold stream

is heated at each stage by a hot stream counterf lowing across the

stage. The inlet and outlet temperatures of the hot stream

flowing across the n-th stage are t*} and t^ respectively. Our

discussion will be restricted to the case where WC , the products
P

of fluid flow rate, W, and specific heat, C , are equal for all

streams.

n
The problem is to select the area, G , for each stage of

N n
the train so as to minimize the total area, with x , x , and t

,

n = 1, 2,..., N prescribed.

A heat balance at the n-th stage gives

WC
P
(X

1 " X
l >

= WC
p
(t

l " t
2

)
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or

, n n . n n-1 ti i\t, - x, = t
2

- x, (13)

which indicates that the temperature differences at the inlet and

the outlet are equal. Equating the heat gain of the cold stream

at the n-th stage to the heat transferred at the same stage

gives

WC (x
1

- x
1

) = u 6 (t
1

- x
±

) (14)

where u represents the overall heat transfer coefficient at the

n-th stage.

Solving equation (14) for x , the following performance

equation is obtained:

x"-
1

+ u
n

t" e
n

*i
= f-4— < 15 »x

l + u
n

e

where

U
n

n u

WC
P

n
By introducing a new stage variable, x_ , satisfying the

following performance equation and initial condition,

n n-1 _n n t-> s\x
2

= x
2 '

x
2 ~ ' I

^

the problem is transformed into the standard form in which x« is

n
to be minimized by the proper selection of 6 , n = 1, 2,..., N.

Comparing equations (15) and (16) with equations (1) and
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(2) , we obtain

n-1 r
,n . n Q n

. x, + U t, 6
_. n-1 n n x

1 1T(x ; 6 ) = ^—
1

l + u e

(17)

and

G
n
(x
n-1.

e
n

}
= e

n
^ (18)

Differentiating equations (17) and (18) with respect to

n-L , „n
x and G gives

a-ru?-
1

; e
n

)

3x
n-1

l + u
n

e
n

n 1, 2,..., N, (19)

aTtx^"
1

; e
n

)

86
n

U
n
(t£ - xj-

1
)

(l + u
n

e
n

)

2 '

n = 1, 2, . . . , N, (20)

„ _n , n-1 „n x3G (x
1

; 9 )

3x
n-1 = , n = 1, 2,..., N, (21)

3G
n (x^ 1

; 6
n

)

9e
n

= 1 , n * 1, 2,..., N. (22)

Substituting equations (19) through (22) into the recur-

rence relation (11) yields

2

(1 + U
n

9
n

) 1 + u
n+1

6
n+1

TTn n n-l N TTn+l,.n+l n. *

* 1 ~ X
l * * 1 ~

X
l

(23)
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Solving equation (14) for Un n and substituting the resulting

expression into equation (23) gives

TJ
n . n .11.

n-1 n , n .n* r
lx

l ~ l' ,

.

, %x
±

=
X;L + (x

x
- t

1
){—- n+1 —^ - 1} , (24)

*x
l ' 1 '

n = 1, 2 , . . . , N-l.

COMPUTATIONAL PROCEDURE

N-l
I. Computational procedure based on an estimate of x .

.

N
Since x. = b is fixed, we can start the computations by

N-l N-2 N-3 .
assuming a value for x to obtain x

1
, x

1
, . . . , x. from

equation (24). But before we do so, let us ascertain the range

N-l
of possible values that x may take.

From simple observation we obtain x. as the lower bound

for the range of x. , and x as the upper bound. Therefore

4 i *;
-1

i xj. <25)

But this range can be further reduced by a simple analysis of

the characteristics of a counter- current heat exchanger.

The as surr.ption that no change of phase occurs in the cold

or in the hot stream at any stage is implied in equations (13)

and (14). Figure 2 represents the counter- current heat exchange

process across the n-th stage.

From Figure 2 we obtain

x
l~

1 - x
i
<0

' n=l,2 / ... f N (26)

and

x? - t? < , n = 1, 2,..., N . (27)
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Equation (24) yields

TTn . n ,n x

n-l n , n un s ,
u (x

l " V

and by virtue of equation (27),

,.n . n .n.
(x

l " 1*

V+1
(xj

+1
- t;+1 >

" 1}
" °

• (29)

Solving equation (29) for x and letting n = N-l we obtain, by

virtue of equation (27),

N-l
<

U
N

(
N N. .N-lx

i
< ^t: (x

i " t
i

) + fc
i • oo)

N-l
Thus, the restricted range for x is finally obtained as

Therefore, we may carry out the computational procedure

as follows:

N-l
(i) Assuming a value for x and through the use of the

recurrence equation, equation (24), we obtain the value

of x .

(ii) If the given and the calculated values for x are close

enough (within an error bound), we accept the sequence

of values for x as the optimal one and evaluate G for

each stage from equation (14).

(iii) If the given and the calculated values of x differ

N- 1significantly, we assume a new value for x and repeat

the process.

It should be mentioned at this point that the sequence of
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N-l
values obtained for each assumed value of x is by itself an

optimal path between x and the computed value for x . The

data so obtained, therefore, can be listed for possible design

changes in the end conditions of the system.

N-l
Prior to our systematic search for values of x , we

must define our permissible error limit, E , between the given
m

and the calculated values of x so as to satisfy the relation:

l
E

l " I
<x

?> given ~ fr?> calculated I ± V (32 >

where E > 0.
m

The calculation process then becomes a search for a value

of x^ which generates a value for (x ) ca i cu i ated satisfying
1 N-l

equation (32). This assumed value for x is actually an

approximation to the root, or roots, of some error function

N-l
E = E(x![

x
) (33)

so that

|E| 1 E
m . (34)

The four possible patterns that the error function may

take in the vicinity of a root are depicted in Figure 3. Several

techniques are available for obtaining an approximation to the

root of the error function. In the following iterative procedure

we will utilize the regular Falsi method in accordance with the

nomenclature of Figure 4.

Iterational Procedure

N- 1Step 1. Assume a value for x equal to the upper bound of

its range as given by equation (30).
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B

A
V

V s Estimated state variable

Fig. 3 Four possible behaviors of the erroi

function plotted vs. the state variable

being estimated.



2C
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<
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•

V

v State variable being estimated

Fig. 4 Illustration of the parameters used

in the regular falsi method.
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N-2 N-3
Step 2. Calculate x » x

i »•••> x from equation (24).

Step 3. If the error limit is satisfied as shown in equation (32),

the sequence of x , n = N-2, N-3,..., so obtained is

the optimal sequence of heat exchanger temperatures in

the train.

Step 4. Compute the optimum sequence of heat exchanger areas,

6
n

, from equation (14).

Step 5. If the error limit is not satisfied, decrease x " by

D
a
where

D
a

=
x
N

x
l
4. 5

X
l

N

and repeat Step 2 until the error limit is satisfied

or a change in the sign of the error function occurs.

Step 6. When a change of sign in the error function occurs,

enter the regular Falsi iterative process as follows:

a) Record the last two values given to x, , say A

and B in that order, and the corresponding values

of the errors, E(A) and S(B).

b) Find the straight- line interpolation point, G,

between the last two points, A and B, determined

as follows:

Eir - A
\j — — (B)| + BlE(A)| (35)

c) Let x " = G and compute x9 from equation (24).

d) Compute E(G) = (x?) . - (x?) , ,K 1 'given v
\

J calculated

e) If E(G) meets the error limit, the sequence of xn
,

n = N-2, N-3,..., calculated in (c) is the
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optimal path; then compute G , n= 1, 2,..., N from

equation ( 14)

.

f) If E(G) does not satisfy the error limit, proceed

as follows: If E(G) and E(A) have like signs, let

A = G. If E(G) and E(A) do not have like signs, let

B = G

.

g) Repeat steps (b) through (f) until the error limit

is satisfied.

II. Computational Procedure Based on an Es t imate of x j_

In section I we derived a computational procedure in which

the optimal sequence of stage temperatures, x , and heat exchanger

areas, e
n

, for the N stages were calculated based on the trial

estimates of xy . *n this section we shall derive a similar

procedure in which the computation of the optimal path will be

based on a trial estimate of the temperature, x.

.

From equation (24) we obtain

. n n*

x
l~

1 =
"nTT —rl^T V + fc

l
+1

'
n = 1

'
2 N

' (36)1
U
n+1

(x"
X - t")

L

Since x = a is fixed, we may start the calculations by

1 n
assuming a value for x and obtain x,n=2, 3,...,N from

equation (36).

The upper bound for the range of possible values of x can

be obtained directly from equation (27) by letting n=l. The

lower bound is x . Therefore,

xj < k\ < tj .

The error limit is now defined as
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|e| =
\
(x?) . - (x

1

?) , , . ,1 < E (37)11
I

v 1' given 1 calculated 1 — m

where E is, again, the maximum allowable error. The error
m

function becomes

E = E(x*) (38)

so that

I E I < E .
1 — m

Iterative Procedure

Step 1. Assume a value for x equal to the lower bound of its
l

range, x .

2 3 N
Step 2. Calculate x , x ,..., x from equation (36).

Step 3. If the error limit is satisfied as in equation (37),

the sequence of x thus obtained is the optimal sequence

of heat exchanger temperatures.

Step 4. Compute the optimum sequence of heat transfer areas,

, from equation (14).

Step 5. If the error limit is not satisfied, increase x by D
,

where
.N

b 4.5 N

and repeat step 2 until the error limit is satisfied,

or a change in the sign of the error function occurs.

Step 6. When a change in the sign of the error function occurs,

enter the regular Falsi iterative process. The same

process presented in step 6 of section I is applied here

N-

1

with the only change being that x ' of section I should
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1
, xbe replaced by x , and step (d) shouLd be changed to

read: Compute

E(G) = (x ) - (x )
1 given i calculated

AN EXAMPLE

In order to illustrate the computational procedure, we

shall consider a simple example of a heat exchanger train. The

data for this example are shown in Table 1 (1).

The computations were carried out on an IBM 1620 computer.

The FORTRAN program is included in Table 2 and a symbol table for

this program is given in Table 3 of Appendix I.
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Table 1. Data of Heat Exchanger Problem

WC = 100,000
P

xj = 100°F

x^ = 500°F

Stage, n u
11

, BTU/(hr) (sq ft) (°F) t£, °F

1 120 300

2 80 400

3 40 600
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TABLE A3 RESULTS

STAGF FXIT TFMP. STAGF ARFA

OPTIMAL DFSIGN FOR X = 225..000
AND X 3 = 5CU,,000

1 350. Cuu -2083. 333
2 350. OOo 0.000
3 500.000

TOTAL AREA =

3750.000
1666.667

OPTIMAL DESIGN FOR X = 286, 453
AND X 3 = 500,,000

1 273.182 -412. 36C
2 320.370 740.741
3 500.000

TOTAL AREA=
4490.741
4819.121

OPTIMAL DESIGN FOR X = 35,.692
AND X 3 = 500,.000

1 161.248 754.080
2 290.741 1481.482
3 500.000

TOTAL AREA=
5231.482
7467.043

OPTIMAL DESIGN FOR X = 132,,023
AND X 3 = 500,.000

1 193.302 478.605
2 298.339 1291.518
3 500.000

TOTAL AREA=
5041.518
6811.641

OPTIMAL DESIGN FOR X = 102,,589
AND X 3 = 500,,000

1 182.903 571.564
2 295.813 1354.667
3 500.000

TOTAL AREA=
5104.667
7C30.897

OPTIMAL DESIGN FOR X = 100,,014
AND X 3 = 5 00 ,000

1 182.023 579.264
2 295.602 1359.942
3 500.000

TOTAL AREA=
5109.942
7049.147

OPTIMAL DESIGN FOR X = 100 .001
AND X 3 = 500,,000

1 182.018 579.304
2 295.601 1359.969
3 500.000

TOTAL AREA=
5109.969
7049.242
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4. SALES RESPONSE TO ADVERTISING

INTRODUCTION

The analytical study of promotional efforts has been

advanced by a good number of investigators. Mathematical models

of varying complexity have also been proposed, some of which are

elegantly summarized and discussed in reference (1). Little,

however, has been done in the area of analytical study of sales

promotion through advertising. It is not our intention to present

in this paper a new model for the optimization of sales promotions,

but rather to demonstrate the applicability of the maximum princi-

ple to this type of management problem.

The mathematical model we shall occupy ourselves with was

originally proposed by Vidale and Wolfe (4). The various parameters

of this model are discussed first and then the model is optimized

by the maximum principle. Two response functions similar to those

suggested by Zentler and Ryde (5) are then incorporated into the

original model in order to remove the linearity constraint imposed

on the response function. And, finally, the modified system is

optimized by the maximum principle.

ADVERTISING PARAMETERS

In order to measure the response of individual products

in advertising, Vidale and Wolfe performed a large number of

controlled experiments on actual advertising campaigns. Their

description of the interaction between sales and advertising is

based on three parameters:
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1. X, The sales decay constant

2. M, The saturation Level

3. y[A(t)], The response function.

Sales Decay Constant . In the absence of advertising, the

volume of sales tends to decrease due to customers abandoning the

product because of obsolescence, product acceptability, competing

advertising and like factors. This decrease, in general, appears

to be constant and exponential in character regardless of market

size. Furthermore, this decay effect persists even when adver-

tising campaigns are being undertaken, but the decay is counter-

balanced by a larger number of new customers buying the product.

Saturation Level. Under real conditions, it is logical

to assume that not everybody will buy a given product even if he

has learned about the product. The reason for this may be found

on the well established affiliation of the potential new customer

with a competing product or, in a broader case, the consumer's

dissatisfaction after purchasing the new product. The net effect

of this is a ceiling of the possible sales volume, or a saturation

level.

Response Function . Of the three parameters in the model,

this is perhaps the most difficult to visualize. The response

function is defined as the sales generated per advertising dollar

independently of the sales level. This response function, how-

ever, affects only that sector of the market which is not already

buying the product. Regardless of the response function, there-

fore, the increments in sales obtained from each additional dollar

spent on advertising becomes smaller as sales approach the
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saturation level.

The value of each one of these parameters differs from

product to product and must therefore be determined separately

for individual items. The sales decay constant may be calculated

from the variations observed in sales volume either after or be-

fore a sales promotion. The saturation level may be estimated

from a market survey or past sales data on substitutive goods.

The response function is indirectly affected by psycho-sociological

factors and may be determined from past results obtained in the

advertising media considered.

It was found by Vidale and Wolfe (4) that carefully

designed test promotions at a sufficiently large scale give sig-

nificant and reproducible results. Since product advertising,

when effective, generates positive results within days or few

weeks, advertising campaigns for new products may be pretested

and the parameters estimated. As the campaign progresses, these

estimates may be improved and adjusted towards the parameters of

the actual campaign.

The purchasing response to any level of advertising

expenditure is assumed to obey a deterministic function through-

out the planning horizon. Similarly, the quality of advertising

as well as the effectiveness of the advertising media used are

assumed constant and totally determined by the values of the

parameters discussed above. Under these conditions, the time

rate of advertising expenditures becomes solely responsible for

the optimization of the sales volume.
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THE MATHEMATICAL MODEL

On the basis of the three parameters explained above, the

change in the rate of sales, without advertising, is represented

by:

where Q(t) is the rate of sales at time t, in dollars per unit of

time.

When advertising is introduced, equation (1) is transformed

by admitting a positive factor which accounts for the effect of

advertisement. Equation (1) becomes

2g£2L- -xQ(t) + T [A(t)][i - ftjfL] (2)

where A(t) = rate of advertising at time t

M = the saturation level of sales for the product.

Both are given in dollars per unit of time.

It may be mentioned at this point that the introduction

of advertising may change the probability of customers leaving

the product and may also alter the overall market conditions.

This means that additional parameters should be introduced into

the mathematical model to account for the second order effects.

But the degree of accuracy attained may not justify the additional

complexity presented by the adjusted model and we shall limit our

analysis to the model given by equation (2).

Notice that (1-Q(t)/M) in equation (2) represents that

fraction of the total market, M, which is not already purchasing

the product. Consequently, this is the only portion of the mar-

ket which is influenced by the advertising ef f ect, y [A( t) ]

.

If a constant rate of advertising, A, is assumed, the



following general solution for equation (2) is obtained

YA
(t)

=[7rTW]{
1 - e

" (YA/M+A,t

f

+ Q°
e
" <v + x,t

38

(3)

t < t ,r

Q(t) = Q(t
r
)e

X(t V, t >_ t
z§

(4)

where Q is the rate of sales at time t=0 and t is some un-
o r

specified time during which a constant rate, A, of advertising

expenditure is maintained. Figure 1 is a graphical representa-

tion of a sales response to an advertising campaign of duration

t .

r

OPTIMIZATION OF THE MODEL

We shall now demonstrate the applicability of the maximum

principle in the optimization of the model discussed above. Two

main cases are considered in which the response to advertising,

y[A(t)l, is first: considered to change linearly with the adver-

tising expenditure, and then an exponential variability is dis-

cussed. In both cases the optimization criteria will be the net

revenue after advertising costs are discounted. Manufacturing

costs and advertising costs are assumed to be independent. The

optimization criteria is represented by the equation

T
S = / [Q(t) - A(t)] dt (5)

o

where T is the planning period. The problem, therefore, becomes

that of determining an advertising expenditure function so that

maximum revenues from sales as given by equation (5) are attained.
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Fig. I Sales response to advertising.
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FIRST CASE : LINEAR RESPONSE

In order to apply the maximum principle, let us define

e(t) = A(t) , o < e(t) < e
max/

x
1
(t) = Q(t) , x

1
(o) = Qq/

dx, x.

dT-
=

" Ax
l

+ * e(1 " FT*'

t

x
2

= / [x
1

- e] dt, x
2
(t) = o,

o

dx
2

dt~
= X

l ~ 9 '

where 6 is the maximum rate permissible for advertising
max

expenditures.

S = c
1
x
2
(T) + c

2
x
2
(T) = x

2
(T) , (11)

therefore, c = 0, c =1.
1 2

The Hamiltonian function and the adjoint variables can

now be written as

dx, dx_
H = z

l dT + z
2 dT

x
l= z^-xxj^ + Y e(i - -j^)] + z

2
[x

1
- e] , (12)

at"
=

~ w: = - z
i

[
- x - V1 - z 2' (13)
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z
1
(T) = c, = 0, (14)

dz.

dt
3H
3x«

= 0, (15)

z
2
(T) = c

2
= 1. (16)

Solving equations (15) and (16) for z_(t) we obtain

z
2
(t) = 1, <_ t £ T.

Substituting equation (17) into (12) and separating terms we

obtain

H = H* + x
x
(l - z,X)

where

x.

H* [z
lY(1 " -W] " 1]0

(17)

(18)

(19)

is the variable part, with respect to 6, of the Hamiltonian. It

is now apparent from equation (19) that the optimal control

associated with this problem is of the "On-Off" or "Bang-Bang"

type. If we let h be the coefficient of 8 in equation (19),

it follows immediately from equation (19) that [2]

if h (t) <

e = (20)

9 if h (t) >
max
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where is the optimum decision policy which will maximize the

objective function given by equation (5). We are now to find the

switching time, t , at which h changes sign. That is

h ( t ) = (21)
s

From the conditions obtained in equation (20), it is seen

that is not a continuous function of time and that it may take

only one of the extreme values. For computational purposes, then,

may be assumed to be a constant,

6 = p where (22)

i
e
max

Substituting equation (22) into (13) and by virtue of

equations (14) and (17) we obtain

1 ,, w(t - T)
z
x
(t) = -±- (1 - e

1"^ x '

(23)

where

« = X + IS-
. (24)

Substituting equation (22) into equation (8), then, solving

the differential equation, we obtain

x
i
(t) - <Qo " ^r» e

" <,,t
+ ¥ • < 25 >X O to to

Substitution of equations (23) and (25) into h, the

coefficient of in the equation (19), yields

— tot
(QQ

~ YPje + yp

h = 1(1 - e
w(t"T)

) [1 2 SL] - 1.

M
(26)

Letting h = in equation (26) and rearranging terms we get

-tot tot

ae
s

+ Be
s

+ C = 0, (27)
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a - m {ir ~ V' < 28 >

3= (iJl-I,.-*. (29 )

w M

Y P j_ JL /^ _ YP\^_wT

a) M
C = X - JL-P. + JL (o - IP-)e~wl - 1 nm

-ut
Letting Y = e in equation (27) and solving it for Y

we obtain

Y = - — ± \/(—

)

2
- -X

2a V
V 2a ;

a

or
"7

t r -±ln (- £- ± J (£-)
2

- i . (32)s lo 2a » 2a a w '

It follows immediately that the values attainable by t
Of

and, consequently, the advertising policy for the period T

depend on the initial conditions and parametric values of the

model. But from equation (26) , regardless of any conditions, the

value of h at t = T is always

h (T) = - 1 < 0. (33)

The conditions given in equation (33) leads us to only three

possible advertising policies depending on the values, t , , and

t 9 , attained by t in equation (32) . These three policies are

depicted graphically in figure 2.

(i) Policy One . If neither t , nor t 9 fall in the interval

<_ t <_ T, or if both are imaginary, no advertising should be

done during the period T. That is
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;(t)

H
So.

T t T t

hi

( i ) Policy one

0,max.

Minn.

«0

ts t

(ii) Policy two

e i

0max.

T

^msn. S| s2 ^

(iii) Policy Three

Fig. 2 Three main advertising policies
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6=0 , < t < T. (34)

This policy may be forced when the sales level is very close to

the saturation level; the decay constant, X, and/or the response

constant, Y, are very small. Under these conditions, advertising

becomes unprofitable.

(ii) Policy Two . If equation (32) generates a value of t
s

which is real and falls inside the interval <_ t <_ T, then the

optimal policy calls for the maximum constant rate of advertising

during the first part of the period. That is

e =

6 for < t < t
max — — s

for t < t < T.
s
— —

(35)

In this case, if A is the total advertising fund available for

the period T, G becomes
max

o — A (36)
max t

s

It is easy to visualize in figure 2 that t is that time when
s

sales approach the saturation level and only very small gains in

sales are obtainable by further advertising. At this time adver-

tising becomes uneconomical.

(iii) Policy Three . Under this case, both values of t given by
S

equation (32) are real and satisfy the condition

1 t , <t <T, (37)
si s2

For this case the optimum policy becomes

s2
(38 >

f°
for o « t « t#l

e = , 9
\ max

for ^l^i'
I

o for t „ < t < T
s2
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where G is, again, the maximum constant rate of advertising
max * '

possible and is given by

e = — *-—
. (39)

max t „ - t
s2 si

A special case occurs when t . = t .. renders h always aF si s2

negative or zero value. Under this condition, policy one applies.

SECOND CASE : EXPONENTIAL RESPONSE

It was assumed in the basic model developed by Vidale and

Wolfe that the response function, y[A(t)], increases linearly

with the rate of advertising regardless of the sales saturation

level, M. Under actual conditions, however, due to factors such

as competing advertising or communication effectiveness, one

might expect to find a saturation level for the response function

beyond which no increase in the advertising effect can be

achieved regardless of any increase on advertising expenditures.

The same effect on the response to advertising has been

supported by Zentler and Ryde (5) while advertising under compe-

tition with a substitutive commodity. In order to correlate

promotional activity and the response to this activity, Zentler

and Ryde introduced an S- shaped curve which embodies the following

ideas: "when promotion is at first started, the response is very

small, but, once the required 'softening up' process has been

performed there is a range in which response rises rapidly as

promotional activity increases. Ultimately, as promotion is

increased to much higher levels, the rate of increase in response

tails off again and a point is reached at which further promotion

produces very little additional effect".
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Although the algebraic form of the family of curves sug-

gested by Zentler and Ryde is rather complex, the basic shape or

behavior of the response function can be closely reproduced by

using exponential functions. In the analysis that follows, two

basic exponential functions will be introduced in an attempt to

reflect more realisticly the response characteristics of a

competitive market.

The two exponential functions are treated separately, but

the assumption that the advertising effect influences only that

sector of the market not already purchasing the product will be

maintained under both conditions.

Exponential Functions . The two exponential functions are

depicted graphically in figure 3. They can be written

r

y[A(t)] = Ke A(t)
, (40)

and

Y [A(t)] = K(l - e
~rA(t)

).

These two functions display the properties that without advertise-

ment expenditure ( A(t) =0 ) the advertisement response is null,

and that the response to advertising does not increase linearly

but exponentially as expenditures on advertising campaigns in-

crease. In both cases the response function approaches assym-

totically a saturation level K which for practical purposes may

be identified with the market capacity or sales saturation level

M. The two functions, however, differ basically in their

behavior at low levels of advertising expenditures.



iff A(t)3 = Ke
-VA(t)

Advertising rate , A (t)

Advertising rate, A(t)

Fig. 3 Exponential functions .



49

The factor r determines the rapidity with which the

response function rises and approaches the saturation level K.

The determination of the value of r must rely on data from adver-

tising campaigns done in the past for related products under

similar market conditions. In addition to the parameter r,

actual conditions may be approximated more closely by the proper

choice of the exponential function.

Let us now discuss the application of these two functions

to the basic advertising model.

Function one . To apply the maximum principle, let us

again define

6(t) = A(t) , 1 6(t) 1 G (42)
max

where is the maximum permissible rate of advertising. It
max

is determined from the condition that the total advertising

expenditure for the period T does not exceed the available or

allocated fund. Let

x
±
(t) = Q(t) , x

1
(0) = QQ , (43)

dx
n

x,
g^i = -Xx

x
+ Y [6(t)] (1 - 3±)

"I
X
l= -\x

1
+ Ke

y
[1 -

-gf]
, (44)

t
x
2
(t) = / [x

x
- 6]dt, x

2
(0) = 0, (45)

dx~

mr = *!-* (46)

The objective function as given by equation (5) can be

written

S = c-jX^T) + c
2
x
2
(T) = x

2
(T), (47)
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therefore, c = 0, c = 1.

The Hamiltonian function and adjoint variables are

H = z
±
[-Xx

1
+ Ke °(1 - —)] + z

2
[x

l
" 6] ' (48)

dz -£

d^ = " 3^
= Z

1
U +

M* ] ~ *2> (49)

z
x
(T) - C

x
- 0,

dZ
2 _ 3H_

dt 3x
x

'

(50)
z
2
(T) = C

2
= 1.

From equation (50) we obtain

z
2
(t) = 1 , <_ t <_ T. (51)

Substituting equation (51) into equation (48) and separating

terms in the Hamiltonian function we obtain

H = H* + x
1
(l - \z,)

,

(52)

where
r

~¥ x
l

H* = Z] Ke
b
(l - -±) - 9 (53)

is the variable part of the Hamiltonian.

3 H
Applying the optimality condition -r-^ - to equation (53)

we obtain

rKz, (1 - ~)e 7 = a*. (54)
1 M

Equation (54) does not give the optimum decision, 0(t), as an

explicit function of time and, consequently, we must also solve

simultaneously for z and x . The set of differential equations

involved is highly non- linear and the process calls for a
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numerical solution of the system of equations given below:

dx„ x
g^i = - Ax

1
+ K(l - -£)e 6 , Xl <0) = QQ (55)

dz\. -£
g^i = z^tA + |e 6] - 1 , Zi (T) (56)

x.

z. (1 - -rr)rKe e = e
2

. (57 )

where x\ (t) , z. (t) and e"(t) are the optimum functions x, (t) ,

z.(t) and 6 (t) respectively which will maximize the objective

function as given by equation (5)

,

The optimum advertising rate, then, is given by

A(t) = 6(t)

.

(58)

The advertising rate as given by equation (58) will generate an

optimum sales function

Q(t) = X
x
(t). (59)

Function two . Letting

Y [A(t)] = K(l - e"
rA(t)

) (60)

and following a process similar to that presented in the treat-

ment of function one we obtain

dX
T -rfl

x
i^ = -Ax

x
+ K(l - e

r9
) (1 - -~) (61)

where 9 is, again, the advertising rate and x.,(t) is the sales

function,

dx 9

wr = x
i ~ e

-
x
2
(0) - ° (62)
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The objective function becomes

S = c
x
x (T) + c

2
x
2
(T) = x

2
(T). (63)

The Hamiltonian can now be written as

H = z
1
{-Xx

1
+ K(l - e"

r9
) (1 - -±)} + z

2
{x

l
" 0} (64)

from which we obtain

ar^-lir-V* + |(i--"r6
>) - 2 2- < 65 >

'1

Z;l (t) = c
1

= 0,

and

3^=-%"° - 2
2
(T > -C

a
-1. (66)

Equation (66) gives

z
2
(t) = 1 , <_ t <_ T. (67)

Substituting equation (67) back into (64) and separating terms

the Hamiltonian function becomes

H = H* + x n (1 - Az,) + z.,K(l - -r±) (68)
1 1 1 M

where the variable part, H*, has the form

H* = -
ZlKe"

re
(l - -i) - 6. (69)

9 TT

Applying the optimality condition, ^ = 0, we obtain

Ke"rQ = - (70)
- *1
"l (1 " TT»

from which we get

1 x
l

e = - In {rKz. (l - -£)}, (71)
r 1 M
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Substituting equations (67) and (70) into equations (61)

and (65) we obtain

dz

dt

dx

1 = pi", - -rrr-i r - if (72 >^ 1 r (M - x.)

= -px, - E + K, (73)
dt *"1 rZ

l

where

p = X + |. (74)

The simultaneous solution of equations (72) and (73) gives

the optimum functions for x (t) and z (t). Once these functions

are known, the optimum advertising rate is directly obtained from

equation (71).
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5. OPTIMUM PRODUCTION PLANNING

INTRODUCTION

It is a purpose of this thesis to demonstrate the applic-

ability of the maximum principle in obtaining an optimum policy

for production planning.

Although there are many approaches and models for produc-

tion planning through time, none is universally best. The basic

model presented here is that of Holt e_t aJL. (6). This model, a

projection of a servomechanism to a dynamic inventory system, has

been originally treated by the maximum principle by Hwang and

Fan (7). Their original treatment of the model is presented

first and then two modifications of the basic model are also

treated by the maximum principle. Under the three cases presented

here, the minimization of the total cost for the planning period

will be the optimizing criteria.

The original model developed by Holt e_t a_l. does not take

into consideration the costs associated with changes in the rate

of production. It is customary in designing production criteria

of the discrete type (1, 2, 3), however, to consider the costs of

changing the production level from one period to the other. The

two modifications of the basic model treated here, although of

continuous character, incorporate these costs into the analysis.

THE ORIGINAL MODEL

Forecasting is used by manufacturing companies in order to

design prodtiction rules which anticipate and prepare for sales
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fluctuations. These forecasts are not always precise and a buf-

fer inventory is maintained in order to damper abrupt fluctua-

tions in sales which may cause runouts or may force rapid changes

in the rate of plant operation.

In general, the rate of change in the inventory level is

equal to the difference between the rate of production and sales

rate, that is,

dl
3t

= P(t) - Q(t) (1)

where I (t) , P(t), and Q(t) represent the inventory level, produc-

tion rate and sales rate respectively.* Although the dynamic

characteristics of a production scheduling system are dependent

upon the relation between sales forecasts and actual sales, it is

assumed here that sales are known with certainty, that is, Q(t)

may be a known prescribed function of time, or a constant.

It is also assumed that the costs from holding inventories

and/or stockouts will be approximated by the quadratic C_[I(t) -

_ 2
I] , whereas the rate at which manufacturing costs are incurred

_. 2
can be approximated by the quadratic C [P(t) - P] , where C and

C are constants, and I and P represent the desired inventory

and the production level of the plant respectively. Both T and P

may be functions of time t. For simplicity, however, both will be

considered as constants. Therefore, the total cost incurred

during the period between time and time T can be written

* I (t) , P(t), and Q(t) may be given in $/(unit time) or (physical
units)/(unit of time). The units of C_, C_ must be determined
accordingly.
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T
C = / {C [I(T) - I]

2
+ C [P(t) - P]

2
}dt (2)

o

where T, some time in the future, is not necessarily the length

of the season.

The problem, then, is to find the optimum production rate

which minimizes the total cost function represented by equation

(2) subject to the constraint given by equation (1). The objec-
»

tive function to be minimized can be written

T
S = / (C^Kt) - I]

2
+ C

p
[P(t) - P]

2
}dt . (3)

o

OPTIMIZATION OF THE MODEL

In order to apply the maximum principle, let us define

X
L
(t) = I(t), (4)

and

e(t) = p(t), (5)

where 0(t) is the decision variable to be chosen. Then, equation

(1) becomes

dx,
= e(t) - Q(t) , x n (0) = I (6)dt "*w *xw , ^x-, -

where Q(t) is a certain fixed function representing the sales

forecast.

We introduce x (t) such that
2

x
2
(t) = / (C^x^t) - I]

2
+ C

p
[6(t) - P]

2
}dt (7)

o
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and from equation (7) we obtain

dx
= C T [x,(t) - I]

2
+ C„[6(t) - P]

2
, x o (0) = 0. (8)

dt " ^H-i**' -' v
P lMW LJ

' "2

The objective function becomes

S = c
1
x
1
(T) + c

2
x
2
(T) = x

2
(T) (9)

from which we obtain c, = 0, c =1.
1 2

The Hamiitonian function and the adjoint variables can be

written

H(z
1
,x
1
,e) = z

x
(e - Q) + z

2
[c

I
(x

1
- I)

2
+ c

p
(e - p)

2
], (10)

VT^ - - 2Z
2
C
I
(X

1 - T)
'

Z
1
(T) = C

l = °' (11)

= 0, z (T) = C = 1. (12)dt 3x
2

' 2
V

' 2

Solving equation (12) for z (t) gives

z
2
(t) =1 , <_ t <_ T . (13)

Substituting equation (13) into (10) gives

^,2 „ , . - % 2H (z-^e) = z^e - q) + c
I
(x

1
- i) + c

p
(e - p) . (14)

3H
According to the maximum principle, the optimality condition -r-g- =

gives the optimal control for this problem. From equation (14)

we obtain, then,

|| = = z
1

+ 2C
p
(6 - P) (15)

or

z
x
(t) = - 2C

p
[9(t) - P]. (16)

The combination of equations (15) and (11) yields

" 2cp31= -2C
i
(x
i-D (17)
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or

c
i
(x

i
(t) " r) - c

P af= °- (is)

The simultaneous solution of the pair of differential

equations given by equations (18) and (6) yields the optimum

inventory and production policies. These solutions are

x
1
(t) = Aie

Xt
+ A

2
e"

Xt
+ (x

1
) , (19)

6(t) = A,Ae At - A.Xe" At + ^ B + Q(t ),dt (20)

where

x = J c" • (2D
P

A and A- are constants which may be determined from the initial

conditions associated with the problem, and (x ) identifies the
1 P

particular solution in equation (19) and which is decided by the

form and/or the values of the functions T and S.

ADDITIONAL COST FACTORS

The model discussed above assumes the existence of a

desired inventory level I and production rate P. Any deviations

from these levels are assumed to induce costs as given by

equation (2). The model, therefore, accounts for those costs

which are directly related with the size of the deviation from

the desired levels, but does not take into consideration the rate

at which these deviations are induced or diminished.

It is apparent that high inventory levels due to abrupt

decreases in sales may be avoided by appropriately timed sharp
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decreases in the production rate (8). It is also possible to

prevent runouts due to sudden increases in the sales volume by

providing rapid increases in the production rate. These measures,

however effective, are accompanied by significantly high costs

which are induced by factors such as labour force inertia, reor-

dering and production scheduling, etc., and must therefore be

taken into consideration when designing production policies.

Some analyses of discrete functional character [6] often

use the quadratic

K
i

i p
i

- Vi'
2

to identify the aggregate cost of changing the production rate

from level P. to level P. , or vice-versa, during or after some

discrete interval of time At. The average cost rate associated

with these changes in the production level, then, can be written

2 rP- -P. -.12
K2[ir] =K

2[
1

it
1_1

J

where K and K are some specified constants. Similarly, the
1 2

rate at which these costs occur in the continuous case may be

approximated by obtaining the limit,

K
2

dp]
2

. . „ Tap"

This expression will be used in the analysis that follows.

We shall consider first a simplified model which removes

the constraints imposed by the desired inventory and production

levels, I and P, but which takes into consideration the cost of

changing the production rate. A more comprehensive model v/ill

then be studied.
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SIMPLIFIED MODEL

Since no preference levels for inventory or production

are given, the production rate will be directly regulated by a

known (deterministic) sales forecast, Q(t), and the costs induced

by approximating this forecast throughout the planning period T.

Let us assume, therefore, that the rate of costs from holding

inventories and/or stockouts will be approximated by the

quadratic

C
A
[Q(t) - P(t)]

2
, (22)

whereas the rate of costs associated with changes in the

production rate is approximated by the quadratic

l

,

dP(t)
B dt (23)

where P(t) is the rate of production, and C_ and C„ are constants.

Therefore, the total cost incurred between time and T is

T 2

CT = / {CA [Q(t) - P(t)]
2

+ C
B

[2|£siLj }dt, (24)

o

where T, again, is not necessarily the length of the season.

The problem is that of finding the optimum production

rate P(t) which will minimize the cost function as given by

equation (24) . The objective function, then, can be written

T 2

S = / (C
A
[Q(t) - P(t)]

2
+ C

B [

d
|l^-J }dt. (25)

o
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OPTIfllZATION OF THE MODEL

In order to apply the maximum principle, let us define

6(t) = P(t) , 6(0) = P
q

(26)

where 6 (t) is the decision variable to be determined, P is the
' o

initial production rate at time t = 0. Let us define a state

variable x, (t) such that

t
2 de 2

x
x
(t) = / {C (Q - Q) + CB (|£) }dt (27)

o

from which we obtain

dx
n 9 ,

ft
2

^i= C
A (Q - 6)

2 +CB (||) , x
1
(0) = 0. (28)

The system defined by equations (26) and (28) does not

contain the standard form required by the maximum principle.*

We must, therefore, standardize this system before the maximum

principle can be applied. In order to perform this transforma-

tion, let us introduce an additional state variable

x
2
(t) = G(t) (29)

and a new decision variable such that

- - If . (30,

Therefore,

dx
9^~ = co , x

2
(0) = 6(0) = P

Q . (31)

In terms of equations (29) through (31) x, (t) becomes

X
x
(t) = / (C

A
(Q - x

2
)

2
+ C

B
(co)

2
}dt (32)

o

* This problem belongs to that category of systems containing
memory in the decision (4)

.
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and

dX
l 2 2

3t"
= CA (Q " X

2
} + C

B
(w)

'
x
l
(0) " °« (33)

Equations (31) and (33) now constitute a standard system and the

objective function can be written

S = c
1
x
1
(T) + c

2
x
2
(T) = x

1
(T) / (34)

Therefore, c = 1, c =0.
* 1 '2

The Hamiltonian function becomes

H(x
1(
z
r

u>) = z
1
(C
A [Q - x

2
]

2
+ C

B
[u>]

2
} + z

2
{o>}. (35)

From equation (35) we obtain

dZ
l 3H

at"
= " axY

=
° '

z
i
(T) = c

i
= 1 ' < 36 >

dz_

dt~ = " Hj = 2z
l
[Q - X

2
1C

A'
2
2
(T) = c

2
= °- (37)

Solving equation (36) for z (t) we obtain

z
x
(t) =1

, <_ t <_ T. (38)

Hence, the Hamiltonian function can be written

H = CA [Q - x
2

]

2
+ C

b
[oj]

2
+ z

2
w. (39)

According to the maximum principle, the optimum decision

function for this problem can be obtained from the optimality

3Hcondition —- - 0. Applying this condition to equation (39) we

obtain

if " ° = 2mC
B

+ z
2

(40)

or

z
2

= -2wC
B

. (41)

Differentiating equation (41) with respect to time and substituting

the result into equation (37) yields

dt = " CT [Q " x
2

] ' (42)
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|f--^[Q-X2].
(42)

Differentiating equation (31) and substituting for u in equation

(42) gives

d
2
x C C

7 - tA x = - r£ Q. (43)
dt^

U
B * ^B

The solution of equation (43) constitutes, by virtue of

equation (40) , the optimum production policy for the planning

period. The solution of equation (43) yields

x
2
(t) = Aie

Xt
+ A

2
e"

Xt
+ (x

2
)

p
(44)

where (x_) represents the particular solution for equation (43)

and it is determined by the character and/or value of the sales

forecast function Q(t). Ecruations (44) and (29) yield

?(t) = A.eXt + A e"
Xt

+ (x ) (45)
JL Z Z p

where

X-\||. (46,

A. and A
2

are constants which may be determined from the initial

conditions associated with the problem.

A MORE COMPREHENSIVE MODEL

We shall now study a model which, as in the original case,

assumes desired preference levels for the production rate and

inventory volumes. In addition, this model takes into account

the costs associated with any changes in the production rate.

We shall assume that, in general, the rate of change in

finished-goods inventories is given by
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S^L = p( t ) - Q(t) , 1(0) = I
q , (47)

where I(t), P(t) and Q(t) represent the inventories, production

and sales forecast for time t respectively.

We assume also that the rate of costs from holding inven-

tories and/or stockouts will be approximated by the quadratic

CjIKt) - I]
2

(48)

where T is the desired inventory level. The rate at which manu-

facturing costs due to deviations from the desired plant operation

level, P, can be approximated by the quadratic'*

C [P(t) - P]
2

(49)
ir

and the rate of costs associated with changes in the production

rate is approximated by

V^, 2
. ,50,

Therefore, the total cost for the planning period T is given by

T
CT = / (CjIKt) - I]

2
+ C [P(t) - P]

2
+ C [£^^-]

2
}dt (51)

o
"

where C , C , and C are constants.
I P R
Here again the problem is that of determining the optimum

production rate so that the sum of costs for the planning period

as given by equation (51) is minimized. The objective function

to be minimized can then be written

T
S = / {CjtKt) - I]

2
+ C [P(t) - P]

2
+ C

R [^|^-]
2
}dt. (52)

*I and P are both assumed to be constant for simplicity.
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OPTIMIZATION OF THE MODEL

and

To apply the maximum principle, let us define

e(t) - p(t) , e(0) = p , (53)
o

x (t) = I(t). (54)

Then, equation (47) becomes

dx
= 6(t) - Q(t) , x, (0) = I , (55)dt v

'
vv ' ' «!»-# -

We introduce x (t) such that

x
2
(t) = / {C [x - I]

2
+ C [6 - P]

2
+ C [|i] 2

}dt, (56)
o p

or

dx

g^ = c
I
[x

1
- I]

2
+ C

p
[6 - P]

2
+ C

R [^]
2

, x
2
(0) = 0. (57)

Since the system defined by equation (55) and (57) is not

given in the standard form required by the maximum principle*,

we must first convert the system to the required standard form

before the Hamiltonian function can be formulated. To perform

this transformation we introduce

x (t) = e(t) (58)

and a new decision variable

_ de

Therefore,

w dt
(59)

dx.
a) , x, (0) =6(0) = P . (60)dt ' ~3 VV" vv" o

*This system belongs to that type of problem containing memory
in the decision.
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In terms of equations (58) through (60), equations (55) and (57)

can be written

dx,

g£± = x
3

- Q , Xl (0) = I
Q , (61)

dx

dt^
= C

I
[X

1 " I]2 + C
p
[X

3 " ¥]2 + CR
[w]2

'
x
2
(0) = °* (62)

The enlarged system defined by equations (60) through (62)

is now in the standard form. The objective function becomes

S = E c.x (T) = x 9 (T) (63)
i=l

1 1 '

from which we obtain c = c = 0, c =1.13 2

The Hamiltonian function can now be written

HU-j^w) = z
1
{x

3
- Q} + z

2
{C

I
[x

1
- I]

2
+ C [x

3
- P]

2

+ C
R
[w]

2
} + z

3
U) . (64)

From equation (64) we obtain the adjoint variables as

d^= " Up " 2z 2
tx

l " T* CI' «im * °1 * °- <65)

at^= -Hj- ° - VT
>

c
2 - l ' < 66 '

and

dz
^ aw

= -z. - 2z n [x- - P]C , z (T) = Co = 0. (67)dt 8x
3

1 "~2 l
3

J p' 3
V

'
w
3

Solving equation (66) for z (t) we obtain

z
2
(t) = 1, <_ t <_ T. (68)

Hence, the Hamiltonian function becomes

H = z
1
(x

3
-Q} + C

I
[x

1
-I]

2
+ C [x

3
-P]

2
+ C

R
[o)]

2

+ z
3
U}. (69)
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3 H
Applying the optimality condition *— to equation (69), we

obtain

|S = - 2C D u> + Z- (70)
dui R 3

or

z
3
(t) = -2C u>. (71)

Differentiating equation (67) with respect to time and

substituting equations (65) and (68) into the resulting equation

yields

d z_ dx,
—4= 2VX

1
" I] " 2Cp3T • (72)

dt c

The differentiation of equation (72) and the substitution of

equation (61) into the result gives

d z d x
1 = 2C_[x- - Q(t)] - 2C \ . (73)

dt
J X J P dt:

Let us substitute equation (60) into equation (71). We

obtain
dx.

Z- = -2Cp —± . (74)
3 R

dt

Differentiating equation (74) three times with respect to time

and substituting z (t) back into equation (73) gives

d4x. C d2 x_. C C

j ~ ^ y + tA x, = ^ Q(t). (75)
dt ^R dt

Z
'"R

J ^R

Using the identity defined by equation (58), equation (75)

becomes

4-i dfe + fi 6 = Jt Q (t). (76,
dt ^R dt ^R UR

The solution of the differential equation (76) gives,

by virtue of equation (70), the optimum solution for the decision

variable (production rate), 8(t). In terms of the differential
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69

D = -| (77)
at

equation (76) can be written

E
4 c 9 c -, c

>

4 - ^ D
2 + ^ e = ^ Q(t) (78)

CR
CR J ^R

Let us define

(e) (79)
p

to be the particular solution of equation (78). It is determined

once the sales forecast function, Q(t), is defined. The comple-

mentary part of the solution to equation (78) can be obtained by

letting
C C

D
4 _ ^ D

2 + * =0 (80)
LR

U
R

and solving for the roots of this polynomial. We obtain

1
+ fa

+ \/a

+ b

X
2

= - b

X
3
= - \/~a~ + b

X = -
\/ a - b (81)

where
4

a " 2C (82)
R

C 2 C_
!(-£-) - -i

. (83)

2C
R

C
R

The form of the complementary solution for 6(t) is obviously

determined by the character of the roots defined in equation (81).

These roots are, of course, ultimately determined by the values
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of the parameters of the model, C , C , and C . Since these

parameters are always positive and real quantities, we may dis-

tinguish three main feasible forms of solution for (t)

:

1. If

I „ 2(^E-) >
b±

or C ' > 4C
R
C (84)

R R p

the roots given by equation (81) are all real and distinct. Under

this case, the optimum decision (optimum production rate) is given

by

X t At X t x
4
t

6(t) = A.e + A e + A e
J

+ A„e + (6) (85)
1 2 3 4 P

where A,, A
?

, A_ , and A. are constants to be determined from the

boundary condition associated with the problem.

2. If

<i)2
-5; °r C

p

2
= 4C

R
C
I'

(86 ^

then b = 0, and the roots in equation (81) become two distinct

pairs of real roots. That is

X, = X_ = +/a ,

X
2

= X
4

= -/a" . (87)

Under this case, the optimum decision becomes

e"(t) = A n
e
At

+ Ante
Xt

+ A-e"
Xt

+ A.te"^ + (e)
1 2 3 4 P

= e
Xt

(A
x

+ A
2
t) + e~

Xt
(A

3
+ A

4
t) + (6)

p
(88)

where

x = +
V i • < 89 '
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3. If

(#-) < g£ f or C
p

2
< 4 C]CCR (90)

b becomes an imaginary quantity and the four roots in equation

(81) take the form

L = + i' a - bi

3 = " T
X„ = - J a + bi

X
4

= - -/ a - "bi (91)

where i = /^T , and

I C ~C J*'

b" = ]

'

=i - (JJ-) . (92)

^
UR ^R

The roots given by equation (91) can be easily transformed

into pairs of conjugate mixed (real and imaginary) roots by using

DeMoivre's theorem for roots of imaginary quantities. The nomen-

clature used in this theorem is graphically described in figure 1.

If we define

a + bi = r(cos p + i sin p) (93)

where
i ' »

/ O 1
(94)

r

r - V
2

a + f2

cos p
- a

nr^F
and

sin p
- b

* a + b

(95)

(96)

and using the first root in the complex plane, the DeMoivre

theorem can in our case be written
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^rea

N = a + b i

1

I i

vr
U

b

* n

\

" u

real

N = a - bi

Fig. I Complex variable representation
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(97)

With the simultaneous use of equations (93) and (97) the following

identities are obtained

a+bi=a + 3i

ya - bi =-a + Bi

where

(98)

a = Va
2
+ E2

~
+

and

B =_ N rvi2
+ E2

"-

4C
R

,

4CH

4C
R

4C
R

(99)

(100)

By virtue of the condition given in equation (90), it can be

proved that B is always a real quantity.

In terms of the identities given by equation (98), the

four roots of equation (91) become

X, =

X„ =

X-, =-

Va + bi

\/a - bi

Va + bi

= a + Bi

= -a + Bi

= -a - Bi

= -ya - bi = a - Bi (101)

It is now apparent that X, and X, , as well as \n and X constitute14* 2 3

two pairs of conjugated complex roots.

The optimum decision policy under this case, therefore,
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is given by the function

?(t) = e
at

[A, cos Bt + A
2

sin 6t] +

e~
at

[A
3

cos Bt + A. sin Bt]

.

(102)

Under any one of the three conditions discussed above, the

knowledge of a particular sales forecast function Q(t) is required

in order to obtain the total solution for the optimum decision

function as given either by equation (85), (88) or (102). Once

the optimum decision function, G(t), has been determined, the

actual inventory level resulting from this decision can be ob-

tained directly from equation (61) using a direct integration.

That is

x
1
(t) = / [6(t) - Q(t)]dt + K (103)

o

where K is an integration constant to be determined from the

initial conditions, that is, the inventory level existing at the

beginning of the planning period.
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6. MATHEMATICAL MODELS FOR THE

OPTIMIZATION OF EQUIPMENT INVESTMENT

INTRODUCTION

A problem faced by a manufacturing company when investing

in production equipment is that of maximizing the total net worth

of such an investment. The sales of goods generate a continuous

stream of revenue over the productive life of the equipment.

Associated in time with this stream of revenue is a corresponding

stream of expenses necessary for the production of these goods.

The difference between these two streams represents the return on

investment before deducting capital costs.

In this paper, a basic model for profit maximization treated

by Preinreich (5) and others (1, 6) is introduced and then a more

comprehensive model is presented. The applicability of the maxi-

mum principle (2, 4) in optimizing equipment investment is then

demonstrated by using both models.

A CLASSICAL MODEL FOR PROFIT MAXIMIZATION

From the efficiency point of view, two general kinds of

equipment may be distinguished: the "constant efficiency" and

the "diminishing efficiency" types. Under the first category

we may classify those items whose efficiency remains fairly con-

stant throughout their service lives and whose service terminates

abruptly with their first failure. An electric light bulb is the

best example of this type of equipment. To the second classifi-

cation belong those durable goods whose service life may be

extended almost indefinitely if their component parts are replaced
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or repaired as necessary. This type of equipment is characterized

by a decline in productivity or an increase in maintenance costs

as they are used over time.

The economics of replacement associated with these two

types of equipment are quite different. For those goods dis-

playing a constant efficiency, a probability distribution for the

length of their lives may be obtained from life tests and various

replacement policies may be evaluated on the basis of this dis-

tribution. Since there is no cost of declining efficiency

associated with the problem, the analysis is very often reduced

to a comparison of the expected values of the several alternatives.

If a simple piece of equipment of the diminishing efficiency

type earns revenue according to some function, R(t), and incurs a

stream of maintenance and operating expenses given by the function

U(t), then the net present value of the investment to the firm is

given by (5)

T
V
1

/ [R(t) - U(t)]e" lt:
dt + D(T)e"lT - B, (1)

o

where

V » net present worth of the investment,

B = installed cost of the equipment,

T = economic life of the equipment,

D(T) = salvage value of the equipment at time T,

i = annual rate of interest.

Note that the expense function, U(t), excludes depreciation costs

and interest on investment in order to avoid double counting these
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items in equation (1).

For an infinite chain of similar machines, the present

worth formula given by equation (1) becomes (5)

T
V = {/ [R(t) - U(t)]e" lt: dt + D(T)e" lt:

- B}
l - . (2)

o (1-e )

Equations (1) and (2) are very often of the discrete character in

which a summation of the discrete revenue and expenditures dis-

counted to the present replaces the integrals of equations (1)

and (2).

We shall consider only the continuous case for a single

machine. The objective function for the case under consideration

can be written

S = V . (3)

The problem, therefore, becomes that of determining the optimum

life of the equipment, T, so that the net present value as given

by equation (1) attains its maximum.

Optimization based on the simple model

Before we proceed to solve the optimization problem stated

above, let us briefly discuss the applicability of the maximum

principle to the problem.

Figure 1 is a graphical representation of the optimum

trajectory concept used in such variational techniques as the

maximum principle and the classical calculus of variations. The

problem usually treated by these techniques is that of selecting

a decision function, l)(t), to obtain an optimum trajectory, x(t),

which renders the objective function, S(t), an extremum in the
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e.(t)
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—- Time , t

Fig. I Optimum Trajectory with the decision

vector, 0(t) as the parameter.
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closed interval, t < t < T. Very often the boundaries of the
o — —

interval are also to be chosen. These techniques are also ap-

plicable when the initial and/or final conditions are specified.

For the optimization under consideration, the determina-

tion of the optimum upper bound, T, alone will extremize the

objective function. That is, the problem belongs to the "zero

control" category in which no decision function is involved and,

consequently, there are no trajectories involved. This problem,

therefore, does not belong to a class of problems in which the

application of variational techniques is advantageous. This type

of problem is amenable to solution by the classical calculus.

Taking the derivative of equation (1) with respect to T

and applying the condition

dY = (4)
dT

given by the classical calculus, we obtain

R(T) - U(T) = iD(T) - D»(T). (5)

If the functions for revenue, expenditure and depreciation

are known, the optimum service life, T, can be obtained from

equation (5) be means of a simple numerical analysis.

Solution by the maximum principle

In order to apply the maximum principle, let us define

fc -it
x
1
(t) = / [R(t) - U(t)]e x dt, (6)

o

dx, . .

g^i = [R(t) - U(t)]e' 1T:
, x

1
(o) = , (7)

x
2
(t) = D(t)e~xt - B ,

(8)
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dx • •

^-2. - D'ftje""
1 *1

- iDftJe"
1 *1

, x
2
(o) - , (9)

where D' (t) = dD/dt.

Since the system defined by equations (7) and (9) is non-

autonomous (the right hand sides of equations (7) and (9) depend

explicitly on time), we shall introduce a new state variable,

x , defined by

dx.,

air
= 1

>
x
3
<0) - 'o = ° • (10)

It is obvious that x = t.

The objective function as given by equation (3) can now

be written

S -
I c. x (T)

1=1

- x
1
(T) + x

2
(T), (ID

therefore, c = c = 1, c =0.
1 2 3

The Hamiltonian function and the adjoint variables are (2,4)

dx, dx
2

dx.,

H = zi^r + z
2 ar + z

3 3T
-ix~

= z
x

{ [R(t) - U(t)]e
J

} +

-ix_ -ix-.

+ z
2

(D'(t)e - iD(t)e } + z
3
{l}, (12)

dz
l - |S--

3x
1

z
x
(T) - o

±
.« 1,

dz
2

dt
= - 7^= o

3x
2

z
2
(T) - c

2
- l f

(13)

(14)

(15)

(16)
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dz
3 an

" ix
3j—i - - |2- - iz. [R(t)-U(t)]e

at 9x
3

1

+iz
2
D'(t)e J

-i
Z
z
2
D(t)c , (17)

z
3
(T) - c

3
- 0. (18)

Solving equations (13) through (16) we obtain

z-^t) =1, <_ t <_ T,

z
2
(t) = 1, <_ t <_ T .

Equations (17) and (18) can now be solved for z (t) to yield

(19)

(20)

T
z (t) - -i / [R(t)-U(t)-iD(t) + D' (t)]e~

lt:
dt . (21)

J
t

Substituting equations (19), (20) and (21) back into

equation (12), the Hamiltonian function becomes

H = [RftJ-UUHe" 111
+ D'(t)e" :Lt

- iDftJe""
11

T
- i / [R(t)-U(t)-iD(t)+iD(t)+D' (t)]e"

lt dt . (22)

According to the maximum principle, the optimal decision

function 9(t) which makes S maximum makes H maximum and fixed at

zero, for time T not fixed, that is (2, 4)

max H = , t t < T.
o- -

Using this optimality condition and substituting t = T into

equation (22) finally we obtain

R(T) - U(T) = iD(T) - D'(T). (23)

Equation (23) is the same solution given by the classical

differential calculus. It can be seen that the calculus solution
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requires only one differentiation while the maximum principle

requires considerably more manipulation than that required in

the use of the calculus.

A numerical example

In order to illustrate, let us assume that the total cost

of installation, B, for a given piece of equipment is $10,000 and

that this machine will generate a revenue function of the form (1,

6)

R(t) = 6,000 (1 - 0.02t). ( 24 >

The annual rate of expenses has been estimated to be $2,000 for

the first year and it is expected to increase at a rate of 15% per

year due to additional maintenance and service required to keep

the machine in operation. Therefore,

U(t) = 2,000 (1+0. I5t). < 25 )

These estimates are based on the company's experience with similar

machines in the past. It has been the company's policy to assume

an exponential depreciation for this type of machine of the form

D(t) = 3e"
kt

= 10,000 e-°'
20t

.
(26)

All alternative proposals are evaluated using an annual rate of

interest of 10%. On the basis of these figures, we want to know

how long the machine should be kept in operation in order to

maximize any profit derived from the investment over and above

the prescribed rate of interest.

From equation (26) we obtain

D-(t) = - 2,000 e-°-
20t (27)
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and substituting equations (24) through (26) into equation (23)

gives

400 - 42 t = 300 e"°
,20t

. (28)

A solution of equation (28) for T gives T = 7.98 years. For this

investment time, the present value of V, = $6,021 is obtained from

equation (1). This is an optimum.

A MORE REALISTIC MODEL

We assumed in the model discussed above that the investment

time, T, is solely responsible for the maximization of profits.

It is easy to visualize, however, that under actual conditions

there are other factors which are equally or more significant than

the investment time and which should therefore be brought into the

analysis. One such factor is the production rate at which the

equipment is operated. In the analysis that follows, the produc-

tion rate is introduced as the second decision variable which is

dependent on time.

The manner in which the production rate affects the opera-

tion of the system varies with the market conditions (revenue

function), the manufacturing process (expense function) and the

type of equipment used (depreciation function). These factors

are not completely independent of each other but for computational

purposes they may be considered so without lessening the efficiency

of the model.

A mathematical model which accounts for all possible forms

of variation in the system is obviously unattainable and therefore

simplifying assumptions are made here.

1. The company's share of the market, M , remains constant
s
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throughout the investment time, T.

2. The cost of any shortage is negligible* and no inven-

tory is carried. Consequently, we can write

iP(t) 1 M , ^t< T, (29)
3

where P(t) is the production rate.

3. The amount of maintenance and servicing required per

unit time, M(P,t), is proportional to the cumulative service

obtained from the machine up to time t, / P(t)dt, and is inversely
o

proportional to the total expected service of the machine, A. We

may write

M(P,t) * m [i / P(t)dt] Y E (30)
o

where E is the fixed overhead cost associated with the machine

($/time). The constants m and y are positive parameters charac-

teristic of each type of machine and can be determined from the

company record (or manufacturer's data) on similar machines in

the past.

It can be derived from equation (30) that when the expected

production has been obtained from the machine,

t
/ P(t)dt = A (units produced),
o

the rate of maintenance and servicing required becomes

M (P,t) = m E ($/time).

Figure 2 is a graphical representation of the effect of the value

of y on the maintenance cost function. Both m and y must be

chosen according to the maintenance conditions dictated by each

JU
' It will be seen later that, despite of this assumption, the con-
ditions for optimality require a rate of production as close as
possible to the market share.
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-»- Cumulative production, P(t)dt

Fig. 2 The effect of r on the maintenance

cost function.
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particular type of machine. In all cases, these parameters as

well as all other parameters in the model may be functions of

time but, for simplicity, we shall treat them as constants

throughout the analysis.

4. The revenue function is proportional to the production

rate since we assume a constant sale price, S . Then,

R(P,t) = S
p

P(t). (31)

Similarly, the function

VC(P,t) = C
v

P(t) (32)

represents all variable costs with C being the per-unit variable

cost.

5. With the total installed cost, B, and a constant rate

of depreciation, k, the salvage value of the machine at time t is

given by

D(t) = B e~ . (33)

Using the net present worth as the criteria for optimality

we write

T
V « / [R(P f t)-VC(P,t)-E-M(P,t)]e"*

lt
dt + D(t)e""

lT
- B. (34)

o

The term under the integral sign represents the present worth of

revenues minus all expenses except depreciation. The two terms

outside the integral sign may be understood as the net total cost

of buying the equipment and selling it at a price D(T) after T

years of use.

Let us, for simplicity, assume y =2. Substituting equations

(29) through (33) into equation (34) and rearranging terms we

obtain
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T t

V = / {(S -C )P(t)-E[l + m(i / P(t)dx)
2

] }e"
lt:
dt

O ^ O

+ B[e"
(k+i)T

-l]

.

(35)

Our objective is to maximize the net present value of the

investment as given in equation (35) by choosing the most profit-

able rate of production, P (t) , during the optimum investment time,

T. We shall accomplish this through the use of the maximum

principle.

Optimization based on the more realistic model

To apply the maximum principle let the production rate be

the decision variable, i.e.,

e(t) = p(t) , o e(t) < eTnav . (36)

The state variables are defined as follows:

1 t
x
l
(t) =

X f 6 < T > dT t < 37 >

o

^i=eu2.
f Xi ,o)=0/

x
2
(t) - B[e" (k+i)t

-11,

dx
g^i • - (k+i) Be' (k+i)t

, x
2
(o) = 0,

t
7

.

x
3
(t) = / [qe(t) - E(l + raxp] e"

lt:
dt,

o

g^i - [qe(t) - Ed+mx^le"11 , x
3
(o) = 0, (42)

where

q = (S
p

- C
v ) > . (43)

q is the unit logistic margin (3) , that is, the sale price minus

the variable cost per unit.

(38)

(39)

(40)

(41)
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Since the system defined by equations (38), (40) and (42)

is nonautonomous (the right hand sides depend explicitly on time),

we shall introduce an additional state variable, x , defined by
4

x
4
(t) = t,

dx
4^ - 1, x

4
<0) = t

Q
= 0. (44)

The objective function to be maximized now becomes

4

S = Z c.x.(T) = x 9 (T) + x,(T) . (45)
i=1

i i /. j

Therefore,
c=c=0, c » c = L.14' 2 3

The Hamiltonian function and adjoint variables can be

written as (2, 4)

H = z
l

{l } + z
2 { " <k+i)B e"

(k+i,X4}

+ z
3

{q0-E(l+m xj) }e"
1X

4 + z
4
U}, (46)

dT
1 - - 1x7

- 2z
3
Emx

1
e-

ix
4, z^T) - c, = 0, (47)

aSr=-Hj=°' .
2
W-c

2
-l f (48)

^ - - |S_ .
, z„(T) - c- - 1, (49)

dt 9x
3

' 3
X

' 3

dz
4 3H

,u ,2 "
(k+i)x

4 += -z~(k+i) Be +
dt 3x

4
2

z
3
i[qe-E(l+mx^)]e * , z

4
(T) = c

4
= 0. (50)

2,, " lx4



90

Solving equations (48) and (49) we obtain

z
2
(t) =1, <_ t <_ T (51)

Z-(t) - 1, < t <_ T . (52)

Substituting equations (51) and (52) into equation (46) and

separating terms we obtain

-(k+i)x
4 2

-ix
4

H = H* - (k+i)Be - E(l+m x^e + z
4

(53)

where

z
l

H * =
(1T

+ q) 9(t) (54)

is the variable part, with respect to 6(t), of the Hamiltonian.

It is now apparent from equation (54) that the optimal

control associated with this problem is of the "on - off" or

"Bang - Bang" type in which the variable part of the Hamiltonian

function takes the form (2)

H* = h 6. (55)

This type of control is characterized by the variation of the

decision variable, 6, which may take its maximum value (when h

is positive) or its minimum value (when h is negative) in order

to maximize the Hamiltonian function (2).

Let h be the coefficient of in equation (54), that is

z
l

h = -~ + q . (56)

Then the optimal control which renders the Hamiltonian its

maximum value will be

f0 (Production at the maximum rate) if h >

_ max '

e =( (57)

I (no production at all) if h <
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where 9 is the optimal decision policy (optimum production rate)

which will maximize the objective function. Recall that > 0.

We shall now find the switching time, t , at which h changes
s

sign. The switching time may be found from the condition

h(t ) = 0. (58)
s

From the optimality condition obtained in equation (57)

it is seen that 6 is not a continuous function of time and that it

may take only one of the extreme values. For computational pur-

poses, then, 6 may be assumed to be a constant,

e = p

(59)

Using equation (59) and solving for x and z in equations

(38) and (47) with the boundary conditions, x (0) = 0, and z (T) =

0, we obtain

x
1
(t) = jj£ , (60)

z (t) =
"2m

^
p [(iT+l)e~

iT -(it+De" 111
] , (61)

Ai
and h can now be written

h = - 2l^ [(iT+l)e"
iT -(it+l)e"it ] + q . (62)

A i

Since q > 0, it follows immediately from equation (62) that

h > for <_t < T (63)

and consequently,

t > T. (64)
s

Since we are concerned only with the interval < t <. T at the

end of which the service life of the machine is terminated, the
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optimum production policy for this period is

f Maximum Plant Capacity

P(t) = 0(t) = G = min
max

M , the market share
s

^ t <_T. (65)

In order to maximize the total present worth of the investment,

then, the maximum possible rate of production should be main-

tained throughout the service life of the machine. The rate of

production, however, should not exceed the market share of the

company since inventories are not allowed. The optimal condition

given by equation (65) precludes the first part of assumption

number two since the optimal condition minimizes shortages re-

gardless of how inexpensive they may be. The assumption, however,

is not redundant since the introduction of a shortage cost and

its effect on the optimality condition were not tested.

It only remains to be determined what the optimum invest-

ment time T should be. According to the maximum principle, a

condition for optimality is obtained by making use of the fact

that max H = for t < t <_ T. Solving equation (50) for z ,

we obtain

z
4
(t) - (k+i) B (e-

(k+i)t
-e-

(k+i)T
) iafl^e-^-e"")

+ 2§^. [ (i
2
t
2
+2it+2)e-

it-(i
2
T
2+ 2iT+2)e-

iT
] .

(66)

A i

Substituting z , z , z , z and q into equation (46), the
1 2 3 4

Hamiltonian function becomes

H = 2|E|i [.-"(lt+l) - e
_iT

<iT+l)] - (k+i)Be-
(k+i)T

A i

+ {qe -E[l + m(^) 2
]} e

-it
+ Sli2i (a"

1* - e'
iT

)
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2

+ 2|1- [(i
2
t
2

+ 2it + 2)6*"^ -(i
2
T
2

+ 2iT + 2)e"
iT

] . (67)
A i

Letting t = T and H = in equation (67), we obtain

i s? (S_~,C ) 9 " E _~<i ~-kT _ P v ; mE6 =.2 .

e
<k+i

>
B 7^T£ '

(

from which the optimum investment time T can be found.

Let us define

(Sp-Cv )
~"E

a =
(k+i)B '

-2
mE

f

(69)

(70)

(71)

(72)

(k+i)A
2
B

-kf
F
x

= e

F
2

= a-3 T
2

Equation (68), then, can be written as

F = F . (73)
1 2

Note that the maximum values of F and F are 1 and a respectively,
1 2

which occur at T = and both are monotonically decreasing

functions of T. As shown in Fig. 3, therefore, three situations

must be considered in solving T from equation (73).

When a > 1 only one real and positive root occurs at which

the objective function (net present worth) attains a unique

extremum.

When a < a < 1, there exist two positive real roots,

which satisfy equation (73). a is the value of a at which the

two roots coincide. In other words, when a = a , the curves
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Fig. 3 Three situations in solving for T
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representing F, and F„ are tangential to each other

(73).

When a < a , there is no real value solution to equation

The tangential point of F, and F_ where a = a and T =

T , can be determined by simultaneously solving equation (73)

and the condition,

dF,

dT

dP.

T = T dT
u

T = T
u

(74)

Equations (73) and (74) can be written respectively as

e"
kT

= a -$ T
2

,u '

-kT
u = 2 6T

U

(75)

(76)

and the solution for T can be carried out numerically. It can
u x

also be carried out approximately by representing the exponentials

in equations (75) and (76) by the second order polynomial*

-kT,
2 2

u = 1 - kT + %- T
u 2 u

(77)

With this approximation equations (75) and (7 6) become

2

1 - kT + ~ T = a - 3T^ ,u 2 u u u '

1 - kT +ll-T 2 = 2
r^TU 2 U K u

(78)

(79)

From equation (79) we obtain

+ 4) ± / (I * 2B.2<!£»* ) <& + ^» - ? (80)

* The error on a for = 0.05 and k = 0.25, for instance, is

approximately 4%.
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Substituting equation (80) back into equation (78), a , is

obtained as

- (l +^)
3

- (Hit) - [(l +i|)
2

- 1] \ (1 +2|)
2

-k
2

(81)
u

k
2

k
2

k
2

V k
z

Note that the negative sign in front of the radical in equation

(80) is used in obtaining equation (81). The positive sign

generates a value for a which is larger than one. Recall that

Once the optimum investment time is determined, the net

present value of the investment can be calculated from equation

(35) . This gives

V -
<5p'C

Y
)?'E

(l-a"
1*) B[e-<

k+i ' ?- 1]
max l

—2 .
—

+ l*^ [ e
" lT

(i
2
T
2

+ 2iT + 2) - 2] . (82)

A i

Summary of results

1. a > 1. In this case equation (68) generates only one

root at which a positive extremum is attained by the net present

worth function.

2. a a 1. Two roots, T and f , where T > T , are
" ~ ~ 12 2 l

obtained. T occurs before the break-even point indicating the

time at which the maximum loss occurs. At T the net present
2

worth of the investment is maximized.

3. a < a . Equation (68) fails to have a root and the

net present worth function does not have an extremum. Losses

increase indefinitely.
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Figure 4 is a graphical representation of the behavior of

the net present worth function under these three conditions.

As a closing statement, let us mention that, although the

model is based on assumptions which could perhaps be considered

too restrictive, we feel that the applicability of the maximum

principle to this type of problems has been fully demonstrated.

It is indeed very likely that the market share and/or the plant

capacity may not remain constant as in the case of a growing mar-

ket or a seasonal product. It can also be the case that many of

the parameters of the model are time variables of one form or

another. In all these cases, however, better reflection of actual

conditions is feasible and the treatment of the model through the

maximum principle differs from our case only in the handling of

more complex functions.

A numerical example

A manufacturing company is contemplating the production

of a well established item. A market survey has revealed the

existence of a potential average demand for the product of 3,000

units per year and it is expected to remain at this level for

several years in the future. The market price for this product

is expected to remain at $5.00 per unit.

Three manufacturing methods are available to the company,

all of which call for an investment of $10,000 to cover the cost

of equipment and installation. The fixed overhead cost that would

be allocated to this equipment has been estimated to be $2,000 per

year. Regardless of which manufacturing method is used, the

equipment is expected to produce 10,000 units before a complete



(
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o
>

c
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t
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Fig. 4 Net present value under three

conditions for <*

.
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overhaul becomes imperative. The company's experience with simi-

lar machines in the past, however, has proven this overhaul to be

economically inadvisable and the practice has been to dispose of

the equipment by salvaging it when or before this major overhaul

becomes necessary. The equipment depreciates exponentially with

an annual rate of 0.30.

Although the life of the equipment is not directly affected

by the manufacturing process employed, variable costs and mainte-

nance costs differ from method to method. For all three methods,

however, maintenance costs are expected to approximate the

function given by equation (30). From past data, the values of

the parameter, m, as well as the variable costs associated with

each manufacturing method have been estimated as given in Table

1. With the existing plant facilities, the maximum rate of pro-

duction P (t), that can be achieved is 3500 units a year.
M

On the basis of this information, four questions are to be

answered:

1. Should the company invest?

2. Which manufacturing method should be used?

3. What should the production rate be?

4. When should the company salvage the equipment?

It is the company's practice to use a rate of interest of 107<> per

year and the net present worth criteria in evaluating all invest-

ments.

In order to answer these questions, each one of the alter-

natives should be fully evaluated. Equation (68) gives the time

at which the maximum present worth and/or maximum losses occur.

Using these results, the maximum or minimum present worth for each
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alternative can be calculated from equation (82).

A complete summary of the results is given in Table 2. It

can be seen that method 1 generates the maximum present worth of

$2602.66 after the optimum investment period of 3.03 years. Fur-

thermore, method 1 having a > 1, gives rise to a single extremum

in the net present worth function while method II, with a < a <

1, displayed two extrema: the first at the time where the maximum

loss occurs and the second at the point of the maximum profit.

Method III, for which a < a ,
gives rise to no extrema points.

These results agree with our mathematical analysis.

Figure 5 is a graphical representation of the effect of

decreasing the production rate below the market rate, M , (the
s

optimal production rate) for the case of production method II.

Extensive numerical simulation of the three production methods

also confirmed that the optimal policies and the resulting mini-

mum described values for the net present worth are indeed correct.
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Fig. 5 Effect of decreasing the production

level below the market rate (the opti-

mum rate) (Method 1 ) .
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Table 1. PARAMETRIC VALUES

Market Share, M = 3,000 units/year
s

Plant Capacity, P (t) = 3,500 units/year
M

Expected Life, A = 10,000 units

Equipment Cost, B $10,000

Overhead Cost, E = $2,000 per year

Depreciation Rate, k = 0.30 (exponential)

Interest Rate, i = 10% per year

Sale Price, S = $5.00 per unit
P

Method I Method II Method III

Variable Cost
per unit, C $2.80 $3.25 $4.32

v
Parameter, m 1.80 0.45 0.33
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Method u
T

(Years)

Present
worth,

V

($)

1.150 0.840 0.081 3.03 2602.66

II 0.813 0.783 0.020 0.74

5.54

- 254.18

1900.31

III 0.010 0.592 0.015

The optimum production rate for all three methods

= The market share 3000 units/year.
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7. CONCLUDING REMARKS

The assumptions on which mathematical models are built are

largely responsible for the validity of the results and the use-

fulness of the models. Under particular situations it might be

felt that some of the assumptions undertaken by the models treated

in this paper are inadequate and that, in order to reflect actual

conditions, these models must take simpler forms or that additional

functional characteristics should be considered.

Let us mention, however, that it was not our primary inten-

tion to develop these models but rather to demonstrate that the

application of the maximum principle in optimizing these models

is feasible and practical. This, we feel, has been achieved.

Furthermore, the application of the maximum principle to

similar management systems needs to differ from ours only in the

handling of more diversified functions. Let us not conclude,

however, that the treatment by the maximum principle of the prob-

lems presented in this paper has been an exhaustive one. The

maximum principle in the area of industrial management is a fairly

new technique still in its developmental stages and further

refinements and improvements in its theory will provide in the

future for a more powerful analysis in a wider range of applica-

tions. These are, at least, our expectations.
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equation (l83a)
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l

,x
l '

from eq. (177)
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N-l N-l n
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Apply Falsi
method

les

v Compute Q ,
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^
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from eq. (167)
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TABLE Al COMPUTER PROGRAM FOR OPTIMIZATION 10 9

OF A SIMPLE HEAT EXCHANGER TRAIN

C COMPUTATION BASED ON ESTIMATE OF X(N-l).- DACCARETT
DIMENSION X(10)»AREA(10)»U(1C)»CU(10),T(10)»E(3)»AA(3)

101 READ 500,NS*WCP,EM
READ 600,X0,X(NS+1

)

DC 5 K = lrNS
J = K + ] i

5 RFAD' 600, U( J ) »T ( J)

PUNCH 1000
1 = 1

K5=NS-1
CU(NS+1)=U(NS+1)/WCP
ANS=NS
D=(X(NS+1 )-X0)/(4.5*ANS)
X(NS)=U(NS+1 )*(X(NS+1 )-T(NS+l ) )/U(NS)+T(NS)

10 DC 20 K=1,KS
N=NS+1-K
CU(N)=U(N)/WCP
F1=X(N)-T(N)
IF(ARS(F1 J-1.0) 15,13,13

1 3 F2=X(N+1 )-T(N+l

)

IF(ABS(F2)-1.0) 15,18,18
15 X(NS)=X(NS)-D

GO TO 10
18 X(N-1)=X(N)+F1*(CU(N)*F1/(CU(N+1)*F2)-1.0)
20 CONTINUE

TA=0.0
DO 30 U=1,NS
N = J + 1

AREA(N) = (X(N)-X(N-1))/((T(N)-X(N-)) *CU(N) )

TA=TA+AREA(N)
30 CONTINUE

F( I )=XO-X( 1

)

AA( I )=X (NS)
PUNCH 700, X( 1

)

PUNCH 800,NS,X(NS+1

)

DC 33 K=1,NS
J = K + 1

33 PUNCH 900,K,X( J) »AREA( J)
PUNCH 200, TA
IF(ABS(E( I ) )-FM) 100,100,35

35 I F ( 1-2 ) 40,45,45
40 X(NS)=X(NS)-D

1=2
GO TO 10

45 IF(E(1 )*E< I ) ) 60*50,50
50 E(l )=E( I )

AA( 1 )=AA(

I

)

IFU-3) 55,65,65
55 X(NS)=X(NS)-D

GO TO 10
60 E(2 )=E( I

)
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TAPLF Al (Cont'd)

AA ( 2 )=AA( I

)

6 5 G = ( AA( 1 )*ARS( E(2) )+AA(2) *ABS( Ed ) ) ) /(ABS (Ed J )+ABS( EC 2)
X(NS)=G
1=3
GO TO 10

100 GC TO 101
200 FORMAT (<?X 11HTOTAL ARFA=»F15.3)
500 FORMAT! I2»2F10.2)
6 00 FORMAT (2F 10.2

)

700 FORMAT(/10X 2AH0PTIMAL DESIGN FOR X =,F15.3)
800 FCRMATI25X 5HAND X»I2»1X 1H=,F15.3)
900 FORMAT! 15 ,2F15.3)

1000 FORMAT! 5HSTAGE»5X 10HEXIT TEMP.»5X 10HSTAGE ARFA)
END

DATA CARDS
?0 100000. 00000 0G0 0.01 NS,WCP*FM

0O00100. 000000500. CO X0,X(N+1)
0O00120. 000000300. 00 Ull).T(l)
0O00080. 000000400. 00 U(2)»T(2)
0O00040. 000000600. 00 U(3)»T(3)



TABLE A2 SYMBOL TABLE 111

Program Mathematical Item
symbol symbol

NS N Number of stages

N n Stage number

XO ^ xi^ • Given value for the
1 given inlet temperature

X(N) x Outlet temperature
of the cold stream
at the n-th stage

, \ n
U(N) u

CU(N) U
n

T(N) t Inlet temperature
* of the hot stream

at the n-th stage

AREA(N) e"

E(I)=XO - X(l) E Error function

N-l
D D Decrements in x

a for each trial 1

E(l) Value of the error
before a change in sign

Value of the error
after a change in sign

B

G

Value of the error

at x^ L = G

WCP (w)(c )
p

AA(1)

E(2)

AA(2)

AA(3)

EE(3)
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TABLE 4 COMPUTER PROGRAM

PPT I
f

'

I

Z

ATI ON OF FQ Ul PMFNT I
f ' VE

r '"'

P I
"• F N

:

fW-CNGM 5 ) >Af-M 3 ) , F ( fj ) j A A (. ! ) , A

1

R F A D <-t 3 » F E » A i i A K « 8 » THE TA , A

RFAD 'i6v. > DT»FM
PUNCH 4 b 5 , A

PUNCH 4 b 4 » B

PUNCH 4 b 3 * A K

PUNCH 4 b 2 » A

I

PUNCH 451 ,EE
PUNCH 457*THETA
PUNCH 456, D7 »EM

c

C COMPUTING OPTIMUM INVF5TMENT TIME
C

DO 120 J=] ,3

R r AD buC ,Q ( J ) ,AM( J)

R2 = Q( J)*THETA-EE
R3= ( AK+AI ) *B
R4=AM{ J )*EE*THETA*THETA/ ( A*A

)

ALFA( J)=R2/R3
BETA( J)=R4/R3
PUNCH 461 ,Q( J

)

PUNCH 462,AM(J)
PUNCH 463 ,ALFA ( J ) ,BETA ( J

)

NR = 6

T = ! .0

5 T = l

10 Rl=] .O/EXP ( AK*T)
R5= (R2-R4*T*T) /R3
E ( I )=R1-Rb
A A ( I ) = T

IF( ABS(E( I.) ) -EM) 100 ,100,3b
3 5 I F ( 1-2 ) 40,4b » 45
40 T = T + D t

1=2
CO TO 10

^5 IF.(
r
E( 1 )'*E(2) ) 60,50 , 50

^0 F{ 1 )=F( I )

A A ( 1 )=AA{ I )

I F ( 1-3 ) 5 5,6 5,65
5 5 I F ( R 5

)

' 1 2 U , 1 2 -
;

, 5

6

56 T=T+DT
GO TO 10

6 0' E ( 2 ) = E ( I )

A A ( 2 )=AA( I )

6 5 G= ( A A ( 1 )
;c- a PS ( F ( ? ) ) + AA ( 2 ) *A BS ( E ( 1 ) ) ) / ( A3S ( E ( 1 ) ) +A PS ( F ( 2 ) )

T=G
1=3
GO TO 1
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'
i IMULAT1

141
C

K 3

1 ^7
20
•at 00
400
4 5

'

'

453
4^2
453
454

4 r̂ 5

4^7
460
46]
4A?
46 3
5'

55'-

555
56^
565
57^
^75
5 80

r

1 n0 2
in 00 •

101

oo< C

uoooc

Pi:

T=.

DC
I

I

R2-

]

F2 ;

F4 =

F^:

F<v

MCM
MCH

141

.

•

1 .

01

P?
1 .

(
i

. LFA( 1 ) * Al
'

. rA(l),RFTA(2), *. )

,
= R A

,
= AI

iLUE
CRTH
INCH

T + w

VAI

PUI

T =

(• L

• J

/t

J)*
(J)
/A I

/'

(Rl
'( A

:* a
i

= F 3

(J )

5b
.25

= 1*3
XP ( AK*T

)

; rA-
'

r H I T a * T H i T A. / ( A - •'
)

XP( A I*T)
F 2 ) * F 3

*f?-t. )

I * A I * A I )

*T*T+2.0*AI*T+2.C
+F4+F5*( F2*F6-2.0)
= V A L U E

>»T»WCRTH( 1 ) »'rtCRTH ( 2 ) CRTnl I

FOR
FOR

FO r-?

FOP
FOP
FOR
FOP
F R

FOR
FOP
FOP
FOP
P 0R
F0 Q

FO^
FOR
^OP
FOP
FOR
FOR
FOP
FOR
F OR
FOR
END
PAT

o< .c
l> ; i

2.20
1 .7 C

^•68

MAT
v AT
MAT
MA T

M A T

MAT
M a T

"AT
ma r

MA f

MAT
MAT
MAT
MAT
M A T

MAT
MAT
M A T

f ' a T

••1 A T

MAT
SAT
MAT
'•'AT

MAT

( / 1 5 X

( / 1 X

( / 1 1 X

( /r x

( ] 5 X 5

(6F10.
( 2 3HFI
i ] 4 H I N

( 1 BHOE
(25HNE
i2b^~X
( 3H0T
( 2 1 H M a

(2FH .

( //24H
( /41-r 1

( / 5 H A L

(2F3 .

( //2uX
( //8X
(/6X 9

( / 1 9 X 5

( 1 9 X 5 H

( 1H )

( A F 1 5 .

38HPFRT' IRE * T ICN OF CM- I

:

'

i .- U F LI

] BHN F
~ r

• <
" ' : •'•" = > 12)

31HCPTIMUM VALUFS FCLI (

r, 0~r >!0.,I2»]H))
5HTIMF=»F6.2 s^X l OHNFT 'a'OPTH= Flo. 2 )

HTIME=»F6.2 »3X 5HRAT =» !.2»3X 61 ;=.--.
2)

XEO OVERHEAD CO':; T= S , F10.2)
TERES! RATF=»F5.2 )

PREC1ATICN RATE=»Fb.2)
T INSTALLATION CONST= i ,FlL.2)
PECTED SERVICE ( UNI TS) =1 10.2

)

= »F5.2 »5X 11HMAX. ERROR=»l .5)
X If "J" MARKET SH \RE= tFK .2)
5 )

UNIT LOGISTIC MARGIN* 3 , F5.2 )

= »F5. ?

)

FA = ,F6. 3 •
I; X 5HPFTA=>F6.3)

3 )

2> H***** I" IL A T I
•

i
.

- •
•«

)

44HNE i PF • N 7 aCRTH FHF ^O
-

IT1

HT I,ME ( YRo ) ,8X 7HCCND. 1>8X ID. 2»8X OND.
I IAL F A = F 6 . 3 » 4X 5 FA=»F6.3»4X = F 6 . ?

BE f A= > r6 . 3 »4X 5HBE1 A- >F6.3 » 4> fA= s 5.3 )

2)

A CARDS
i i

• \

1 . 8

• 4

OUL i 3

1

45
33

a
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COMPUTING MAXIMUM PRESENT WORTH

100 NR=NR+1
PUNCH 29.i. M R

F 1 = P 2 / h I

F 2 =!'. 1 • i / F X P ( f\ I * T )

F3= ( 1.C-F2 )*F]
F4=B*{R1*F2-1

•

0)
F K = RA/ ( AI *A I*A I )

F 6 = A I -A 1 * T - T + 2 . 0*A I *T + 2 .

VALUE=F 3+F4+F5* ( F2-*F 6-2 .0 )

PUNCH 300 »T» VALUE

PERTURBING OPTIMUM VALUES

PUMCH 103
BFST=T
F Y E = .

DC 113 Ll = l >2
IF( FYF) 1 v C,t ,1000,2000

1000 PRC=THETA
EYE=1.0
GO TC 1C5

200C PRC=0.95*THETA
10 5 OJC=0.o

DC 113 L 2 = 1 » 2

IF(CJC) 15( C ,^15 00, 2 5'C

15 00 T = < .95*8EST
CJC=1 .0

GO T 11

^

2500 T=1.05*BEST
IIP RR1=1.0/EXP( AK*T)

RP2=0( J )*PRC-EE
RR4 = AM ( J ) *EE*THETA*THETA/

(

A*A )

FF1=RR2/AI
FF2=1.

-

/EXP( AI*T )

FF3=(1.G-FF2)*FF1
FF4=B*(RR1*FF2-1.0)
FF5=RR4/(A I*A I*A I

)

FF6=AI*A I *T*T+2

•

r *A I *.T + 2.C
VALUE = FF3-'-FF4 +FF5* ( FF2*FF6-2.0 )

113 PUNCH 40 0,T, PRO, VALUE
IF(R5) 1 2 T, 120,115

115 T=BEST+DT

12 (j PUNCH 15 7, MR
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Fig. 6 FLOW CHART
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Program
symbol

EE

AI

AK

B

THETA

A

A1FA(J)

BETA(J)

AM

T

E(l)

AA(1)

E(2)

AA(2)

AA(3)

E(3)

NR

Mathematic

a

symbo
1

1

Item

E Fixed overhead cost

i Interest rate

k Depreciation rate

B Total installation cost

P(t) Production rate

A Expected service

a Parameter

6 Parameter

m Parameter

f Optimum time

(Computing Investment Time)

Value of error before
a change in sign

Value of T at this
point

Value of error after
a change in sign

Value of f at this
point

Interpolation between
AA(1) and AA(2)

Value of error at AA(3)

(Computing Optimum Present Worth)

Number of roots in eq.
(68) and Number of
extrema points in eq.
(79)

VALUE Net Present Worth
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Program
symbol

Mathematical
symbo

1

Item

(Perturbing Optimum Values)

PRO

BEST

EYE, OJO

(Simulation Processes)

WORTH(J) V

T TV 2

Production Rate

Optimum times

Dummy variables

Net present value

SYMBOL TABLE
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TABLE 5 RESULTS

C C OPTIMIZATION C^ FOUIP^FMT INVESTMENT — DACCA otr TT

FyPFCTFO SERVICE (UNITS)= ICO . (

NFT INSTALLATION! CONST= F 1000 . C

DFPR EC I AT I ON RATE = .30
INTEREST RATI = .10-.
FTXED OVERHEAD COST= I 2000.00
MAXIMUM MARKET SHARE= 3000.00
DT- .40 MAX. ERROR= .01000

LIMIT LOGISTIC MARGIN* S 2.20

M = 1.8

ALFA= 1.150 BETA= .081

OPTIMUM VALUES FOLLOW (ROOT NO. 1)

TIM'E= 3.03 NET WORTH= 26<2.66

PERTURBATION OF OPTIMUM VALUES FOLLOWS
TIME= 2.88 RATE = 3000. OC WCRTH= 2588.59
TIME- 3.18 RATE= 3C0C.C WORTH- 2591.6]
TI- C = 2.88 RATF = 2850.00 WORTH= 1763.47
TIME= 3.18 RATE= 2850.00 WORTH= 1602.6?

NUMBER OF EXTREMA= 1

UNIT LOGISTIC MARGIN= S 1.75

M = .45

ALFA= .813 BETA= .020

OPTIMUM VAI..UFS FOLLOW (ROOT NO. 1)

T.IME= .74 NET WORTH= -254.18

PERTURBAT ION
TIME- .71
TIME- .78
TIME- . n.

TIME- .78

OPTIMUM VALUES FOLLOW (ROOT NO. 2)

TIME= 5.54 NET WORTH- 19. .31

PERTURBATION OF OPTIMUM VAI iFS FOLLOWS
TIME- 5.27 RATE- 3000. v v'CRTH= 1

c
- 80 . 9 b

TIME- 5.82 RATE- 3000. 0; WORTrl- 189 .4

TIME= 5.2 7 RATE- 2650.^ a/CRT H = 8 6.41
II ME- 5.82 RATE- 2 8 50. ^ aORTH- 7 3 2.29

NUMBER OF EXTREMA- 2

F OPTI MUM VALUE S FOLLOWS
RATE- 3 . <* '• WORTH- -253.79
RATE- 3 C • - WO R T H = -2 5 3.4

'

RATE- 2 c b . ( WORTH- -432 •
'5 5

RATE- 28 50.^ WORTH- -450.35



120

LIMIT I

' - •

\ =

A L F A = . w 1 • 1
'-

:

= C

I f •' U L A T 1

•

I PRESENT WCR1 H UNDER 1 HREE CCNDIT1 )
*

TIME(YRS) CCND. 1 CCND. 2 .3

A L F A = 1.1!

BE TA= .081

0. j,r:0

.25 1 8 2 . 4 7

,r>r> '• 17.79
.75 68 £ .°2

1
.' ^8 .47

1.25 1278. 3

5

1.5o • 69.73
1.75 1842.
2.. . 2 o 7 . 46
2.25 2 293.85
2 . 5 o 2 4 - 5.31
2.75 ? :

b 8 . 3 4
'
J . 260] . 8

r)

3.2 5 25 77.76
3.!

3.75 ? 3 Q 5.37
a. 2 4 8 .

' 4

4.2 5 17( 4.73
4 . 5 J 127 2.34
4.75 • OS
5.0o ] 2 9 . 7 5

5.25 - ^84.57
- 1 3 9 6 . 4

5.75 -2 306.87
6.C -3316 . 4

6.2 5 -44 2 6.
6.50 -56^7.1 fi

6 • 7 5 - < 94 7.79
7.' - 8 3 5 E .55
7.23 - 9 8 6 9 . f

7.5 -1] • U .49
7. 7j -; 6.26
b. -14991.3

2

8.25 .
c

> 7

8.5-.' -
1 .12

• 8.75 -? >7 .48

A LI A =

BETA = i

-1' - 61
-/ P 5

--1

-22 8.

-163.
-

. 4

20' . 5 6

. 7 c

5 2 :

.

6 v . . !

. .
'

•

3 2 3, , 4 4

1 181, ,

: 3 28, .

14 63,
•

. •

o /, .

L 7 7 J >

] b . .

lo/v .

]
.

. .

6 / .
'

1
. .

"
' .«]

16'- .

" - •

.67

.

•• .

/ / . •

•
• .

1 .

-
j i

. .

-

_ • U --, , e

-

- • 2 3.23
-4516. -

-
1 : . c

-

.85
-6
-73]

-•

-

-

-9
-

: _ - .

-

-i
- 1 i 3

-11
- 1

;

-

-

-]

- . L46.
-14
-

. •

-
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9.00 -2316'* .24 — -
.
r- —

] / 2 4 • 6 P

9 . 2 5 -

?

5 4 3 2*47 _ < 7 ;• - - - /,
- . f u

9.5-j -2 7 ?9 3.4 4 -12 7 3. 7

•

~
j i 5.00

9 . 7 5 - '3 J 2 4 1 . 4 3 ~~
; O -' "' • <- l

—
.

'"'....'

1 . u - 3 2 7 7 4 . 3 7 -2137.2' -19] 3 . 3

2

10.25 -35 3 9i, .96 - 2 6 3.23 -19 762. 4

3

10.50 - 3 o 8 b . 5 V -3 /6 •
—

^J C i 4 6 . j
".

10.7-5 -4' 86 5.46 — 3 o 1 1 . > i
-

. i 4.1 . 6

11.00 -43719.53 -4 1 46.84 -
; i 5 4

'

:

. ', 7

n .25 -4 664 8.66 -4 7- : . ' 4 - '

; 166.53
1 3 •

^" -49651 .7 1 -5 3- .9? - ? 3 7 9 5 .
r 4

11.75 -
'

> 2 7 2 3.56 - ( 890.63 -23435.21
12.00 -5 5 86 5.30 -6 5 12.66 -240P C .27
1 2.25 -59072.78 -7 154.5 -24 745.40

END F PROGRAM AT STA TET rt,ENT 058 + LINES

; 7 /
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A remarkable growth of interest in problems of dynamic

optimization has given rise during the past decade to a number

of methods useful for rendering systems optimal. One such

method is Pontryagin's maximum principle.

Originally formulated in 1956 by the Russian mathema-

tician, the maximum principle was intended for the optimization

of continuous control systems. In 1959, the first attempt to

extend the maximum principle to the optimization of stagewise

processes was made by Rozonoer. Several subsequent versions of

the maximum principle were then advanced.

The application of the maximum principle to management

and operations research is still very limited. The objective

of this thesis is to demonstrate the applicability of the

maximum principle to some problems in the area of management and

industrial engineering, concentrating mainly on problems belonging

to the continuous case. The maximum principle is applied in the

optimization of already developed models and functional varia-

tions of these models. Some numerical examples are presented

for further clarification of the treatments.

The basic algorithms of the discrete and the continuous

maximum principle are presented first, and then the discrete

version is applied in order to optimize the temperatures of a

multistage heat exchanger. The solution of the resulting two-

point boundary value is demonstrated in detail.

A model for sales response to advertising is treated by

the continuous maximum principle, and then the linear constraint

on the response function is removed. The treatment of this

model leads to three key advertising policies.



Next, a continuous model for production planning is

studied and, finally, two models for the optimization of equip-

ment investment based on the net present value are treated by

the maximum principle. Two numerical examples supplement the

treatment of these models.

The efficiency of the maximum principle in dealing with

this class of problem is not compared with that of other

methods. The reason for this is that the application of the

maximum principle to this sort of problems has not left the

incipient stages of development. This is a new technique and

as such, due refinements and further developments must take

place before any comparisons of computational efficiency can

be made.


